Invaginating Structures in Mammalian Synapses
Petralia, Ronald S.; Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.
2018-01-01
Invaginating structures at chemical synapses in the mammalian nervous system exist in presynaptic axon terminals, postsynaptic spines or dendrites, and glial processes. These invaginating structures can be divided into three categories. The first category includes slender protrusions invaginating into axonal terminals, postsynaptic spines, or glial processes. Best known examples of this category are spinules extending from postsynaptic spines into presynaptic terminals in forebrain synapses. Another example of this category are protrusions from inhibitory presynaptic terminals invaginating into postsynaptic neuronal somas. Regardless of the direction and location, the invaginating structures of the first category do not have synaptic active zones within the invagination. The second category includes postsynaptic spines invaginating into presynaptic terminals, whereas the third category includes presynaptic terminals invaginating into postsynaptic spines or dendrites. Unlike the first category, the second and third categories have active zones within the invagination. An example of the second category are mossy terminal synapses of the hippocampal CA3 region, in which enlarged spine-like structures invaginate partly or entirely into mossy terminals. An example of the third category is the neuromuscular junction (NMJ) where substantial invaginations of the presynaptic terminals invaginate into the muscle fibers. In the retina, rod and cone synapses have invaginating processes from horizontal and bipolar cells. Because horizontal cells act both as post and presynaptic structures, their invaginating processes represent both the second and third category. These invaginating structures likely play broad yet specialized roles in modulating neuronal cell signaling. PMID:29674962
Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses
Johnson, Jerry E.; Perkins, Guy A.; Giddabasappa, Anand; Chaney, Shawntay; Xiao, Weimin; White, Andrew D.; Brown, Joshua M.; Waggoner, Jenna; Ellisman, Mark H.
2007-01-01
Purpose In conventional neurons, Ca2+ enters presynaptic terminals during an action potential and its increased local concentration triggers transient exocytosis. In contrast, vertebrate photoreceptors are nonspiking neurons that maintain sustained depolarization and neurotransmitter release from ribbon synapses in darkness and produce light-dependent graded hyperpolarizing responses. Rods transmit single photon responses with high fidelity, whereas cones are less sensitive and exhibit faster response kinetics. These differences are likely due to variations in presynaptic Ca2+ dynamics. Metabolic coupling and cross-talk between mitochondria, endoplasmic reticulum (ER), plasma membrane Ca2+ ATPase (PMCA), and Na+-Ca2+ exchanger (NCX) coordinately control presynaptic ATP production and Ca2+ dynamics. The goal of our structural and functional studies was to determine the spatiotemporal regulation of ATP and Ca2+ dynamics in rod spherules and cone pedicles. Methods Central retina tissue from C57BL/6 mice was used. Laser scanning confocal microscopy (LSCM) experiments were conducted on fixed-frozen vertical sections. Primary antibodies were selected for their tissue/cellular specificity and ability to recognize single, multiple or all splice variants of selected isoforms. Electron microscopy (EM) and 3-D electron tomography (ET) studies used our standard procedures on thin- and thick-sectioned retinas, respectively. Calibrated fluo-3-Ca2+ imaging experiments of dark- and light-adapted rod and cone terminals in retinal slices were conducted. Results Confocal microscopy showed that mitochondria, ER, PMCA, and NCX1 exhibited distinct retinal lamination patterns and differential distribution in photoreceptor synapses. Antibodies for three distinct mitochondrial compartments differentially labeled retinal areas with high metabolic demand: rod and cone inner segments, previously undescribed cone juxtanuclear mitochondria and the two plexiform layers. Rod spherule membranes uniformly and intensely stained for PMCA, whereas the larger cone pedicles preferentially stained for NCX1 at their active zones and PMCA near their mitochondria. EM and ET revealed that mitochondria in rod spherules and cone pedicles differed markedly in their number, location, size, volume, and total cristae surface area, and cristae junction diameter. Rod spherules had one large ovoid mitochondrion located near its active zone, whereas cone pedicles averaged five medium-sized mitochondria clustered far from their active zones. Most spherules had one ribbon synapse, whereas pedicles contained numerous ribbon synapses. Fluo-3 imaging studies revealed that during darkness rod spherules maintained a lower [Ca2+] than cone pedicles, whereas during light adaptation pedicles rapidly lowered their [Ca2+] below that observed in spherules. Conclusions These findings indicate that ATP demand and mitochondrial ATP production are greater in cone pedicles than rod spherules. Rod spherules employ high affinity/low turnover PMCA and their mitochondrion to maintain a relatively low [Ca2+] in darkness, which increases their sensitivity and signal-to-noise ratio. In contrast, cone pedicles utilize low affinity/high turnover NCX to rapidly lower their high [Ca2+] during light adaptation, which increases their response kinetics. Spatiotemporal fluo-3-Ca2+ imaging results support our immunocytochemical results. The clustering of cone pedicle mitochondria likely provides increased protection from Ca2+ overload and permeability transition. In summary, these novel studies reveal that several integrated cellular and subcellular components interact to regulate ATP and Ca2+ dynamics in rod and cone synaptic terminals. These results should provide a greater understanding of in vivo photoreceptor synaptic terminal exocytosis/endocytosis, Ca2+ overload and therapies for retinal degenerations. PMID:17653034
Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.
Johnson, Jerry E; Perkins, Guy A; Giddabasappa, Anand; Chaney, Shawntay; Xiao, Weimin; White, Andrew D; Brown, Joshua M; Waggoner, Jenna; Ellisman, Mark H; Fox, Donald A
2007-06-15
In conventional neurons, Ca2+ enters presynaptic terminals during an action potential and its increased local concentration triggers transient exocytosis. In contrast, vertebrate photoreceptors are nonspiking neurons that maintain sustained depolarization and neurotransmitter release from ribbon synapses in darkness and produce light-dependent graded hyperpolarizing responses. Rods transmit single photon responses with high fidelity, whereas cones are less sensitive and exhibit faster response kinetics. These differences are likely due to variations in presynaptic Ca2+ dynamics. Metabolic coupling and cross-talk between mitochondria, endoplasmic reticulum (ER), plasma membrane Ca2+ ATPase (PMCA), and Na+-Ca2+ exchanger (NCX) coordinately control presynaptic ATP production and Ca2+ dynamics. The goal of our structural and functional studies was to determine the spatiotemporal regulation of ATP and Ca2+ dynamics in rod spherules and cone pedicles. Central retina tissue from C57BL/6 mice was used. Laser scanning confocal microscopy (LSCM) experiments were conducted on fixed-frozen vertical sections. Primary antibodies were selected for their tissue/cellular specificity and ability to recognize single, multiple or all splice variants of selected isoforms. Electron microscopy (EM) and 3-D electron tomography (ET) studies used our standard procedures on thin- and thick-sectioned retinas, respectively. Calibrated fluo-3-Ca2+ imaging experiments of dark- and light-adapted rod and cone terminals in retinal slices were conducted. Confocal microscopy showed that mitochondria, ER, PMCA, and NCX1 exhibited distinct retinal lamination patterns and differential distribution in photoreceptor synapses. Antibodies for three distinct mitochondrial compartments differentially labeled retinal areas with high metabolic demand: rod and cone inner segments, previously undescribed cone juxtanuclear mitochondria and the two plexiform layers. Rod spherule membranes uniformly and intensely stained for PMCA, whereas the larger cone pedicles preferentially stained for NCX1 at their active zones and PMCA near their mitochondria. EM and ET revealed that mitochondria in rod spherules and cone pedicles differed markedly in their number, location, size, volume, and total cristae surface area, and cristae junction diameter. Rod spherules had one large ovoid mitochondrion located near its active zone, whereas cone pedicles averaged five medium-sized mitochondria clustered far from their active zones. Most spherules had one ribbon synapse, whereas pedicles contained numerous ribbon synapses. Fluo-3 imaging studies revealed that during darkness rod spherules maintained a lower [Ca2+] than cone pedicles, whereas during light adaptation pedicles rapidly lowered their [Ca2+] below that observed in spherules. These findings indicate that ATP demand and mitochondrial ATP production are greater in cone pedicles than rod spherules. Rod spherules employ high affinity/low turnover PMCA and their mitochondrion to maintain a relatively low [Ca2+] in darkness, which increases their sensitivity and signal-to-noise ratio. In contrast, cone pedicles utilize low affinity/high turnover NCX to rapidly lower their high [Ca2+] during light adaptation, which increases their response kinetics. Spatiotemporal fluo-3-Ca2+ imaging results support our immunocytochemical results. The clustering of cone pedicle mitochondria likely provides increased protection from Ca2+ overload and permeability transition. In summary, these novel studies reveal that several integrated cellular and subcellular components interact to regulate ATP and Ca2+ dynamics in rod and cone synaptic terminals. These results should provide a greater understanding of in vivo photoreceptor synaptic terminal exocytosis/endocytosis, Ca2+ overload and therapies for retinal degenerations.
Vesicle Pool Size at the Salamander Cone Ribbon Synapse
Bartoletti, Theodore M.; Babai, Norbert
2010-01-01
Cone light responses are transmitted to postsynaptic neurons by changes in the rate of synaptic vesicle release. Vesicle pool size at the cone synapse constrains the amount of release and can thus shape contrast detection. We measured the number of vesicles in the rapidly releasable and reserve pools at cone ribbon synapses by performing simultaneous whole cell recording from cones and horizontal or off bipolar cells in the salamander retinal slice preparation. We found that properties of spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs) are representative of mEPSCs evoked by depolarizing presynaptic stimulation. Strong, brief depolarization of the cone stimulated release of the entire rapidly releasable pool (RRP) of vesicles. Comparing charge transfer of the EPSC with mEPSC charge transfer, we determined that the fast component of the EPSC reflects release of ∼40 vesicles. Comparing EPSCs with simultaneous presynaptic capacitance measurements, we found that horizontal cell EPSCs constitute 14% of the total number of vesicles released from a cone terminal. Using a fluorescent ribeye-binding peptide, we counted ∼13 ribbons per cone. Together, these results suggest each cone contacts a single horizontal cell at ∼2 ribbons. The size of discrete components in the EPSC amplitude histogram also suggested ∼2 ribbon contacts per cell pair. We therefore conclude there are ∼20 vesicles per ribbon in the RRP, similar to the number of vesicles contacting the plasma membrane at the ribbon base. EPSCs evoked by lengthy depolarization suggest a reserve pool of ∼90 vesicles per ribbon, similar to the number of additional docking sites further up the ribbon. PMID:19923246
Van Hook, Matthew J; Thoreson, Wallace B
2015-01-01
Differences in synaptic transmission between rod and cone photoreceptors contribute to different response kinetics in rod- versus cone-dominated visual pathways. We examined Ca2+ dynamics in synaptic terminals of tiger salamander photoreceptors under conditions that mimicked endogenous buffering to determine the influence on kinetically and mechanistically distinct components of synaptic transmission. Measurements of ICl(Ca) confirmed that endogenous Ca2+ buffering is equivalent to ˜0.05 mmol/L EGTA in rod and cone terminals. Confocal imaging showed that with such buffering, depolarization stimulated large, spatially unconstrained [Ca2+] increases that spread throughout photoreceptor terminals. We calculated immediately releasable pool (IRP) size and release efficiency in rods by deconvolving excitatory postsynaptic currents and presynaptic Ca2+ currents. Peak efficiency of ˜0.2 vesicles/channel was similar to that of cones (˜0.3 vesicles/channel). Efficiency in both cell types was not significantly affected by using weak endogenous Ca2+ buffering. However, weak Ca2+ buffering speeded Ca2+/calmodulin (CaM)-dependent replenishment of vesicles to ribbons in both rods and cones, thereby enhancing sustained release. In rods, weak Ca2+ buffering also amplified sustained release by enhancing CICR and CICR-stimulated release of vesicles at nonribbon sites. By contrast, elevating [Ca2+] at nonribbon sites in cones with weak Ca2+ buffering and by inhibiting Ca2+ extrusion did not trigger additional release, consistent with the notion that exocytosis from cones occurs exclusively at ribbons. The presence of weak endogenous Ca2+ buffering in rods and cones facilitates slow, sustained exocytosis by enhancing Ca2+/CaM-dependent replenishment of ribbons in both rods and cones and by stimulating nonribbon release triggered by CICR in rods. PMID:26416977
Sjöstrand, F S
2002-01-01
Each rod is connected to one depolarizing and one hyperpolarizing bipolar cell. The synaptic connections of cone processes to each bipolar cell and presynaptically to the two rod-bipolar cell synapses establishes conditions for lateral interaction at this level. Thus, the cones raise the threshold for bipolar cell depolarization which is the basis for spatial brightness contrast enhancement and consequently for high visual acuity (Sjöstrand, 2001a). The cones facilitate ganglion cell depolarization by the bipolar cells and cone input prevents horizontal cell blocking of depolarization of the depolarizing bipolar cell, extending rod vision to low illumination. The combination of reduced cone input and transient hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus facilitates ganglion cell depolarization extensively at onset of the stimulus while no corresponding enhancement applies to the ganglion cell response at cessation of the stimulus, possibly establishing conditions for discrimination between on- vs. off-signals in the visual centre. Reduced cone input and hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus accounts for Granit's (1941) 'preexcitatory inhibition'. Presynaptic inhibition maintains transmitter concentration low in the synaptic gap at rod-bipolar cell and bipolar cell-ganglion cell synapses, securing proportional and amplified postsynaptic responses at these synapses. Perfect timing of variations in facilitatory and inhibitory input to the ganglion cell confines the duration of ganglion cell depolarization at onset and at cessation of a light stimulus to that of a single synaptic transmission.
Paired-Pulse Depression at Photoreceptor Synapses
Rabl, Katalin; Cadetti, Lucia; Thoreson, Wallace B.
2011-01-01
Synaptic depression produced by repetitive stimulation is likely to be particularly important in shaping responses of second-order retinal neurons at the tonically active photoreceptor synapse. We analyzed the time course and mechanisms of synaptic depression at rod and cone synapses using paired-pulse protocols involving two complementary measurements of exocytosis: (1) paired whole-cell recordings of the postsynaptic current (PSC) in second-order retinal neurons and (2) capacitance measurements of vesicular membrane fusion in rods and cones. PSCs in ON bipolar, OFF bipolar, and horizontal cells evoked by stimulation of either rods or cones recovered from paired-pulse depression (PPD) at rates similar to the recovery of exocytotic capacitance changes in rods and cones. Correlation between presynaptic and postsynaptic measures of recovery from PPD suggests that 80 –90% of the depression at these synapses is presynaptic in origin. Consistent with a predominantly presynaptic mechanism, inhibiting desensitization of postsynaptic glutamate receptors had little effect on PPD. The depression of exocytotic capacitance changes exceeded depression of the presynaptic calcium current, suggesting that it is primarily caused by a depletion of synaptic vesicles. In support of this idea, limiting Ca2+ influx by using weaker depolarizing stimuli promoted faster recovery from PPD. Although cones exhibit much faster exocytotic kinetics than rods, exocytotic capacitance changes recovered from PPD at similar rates in both cell types. Thus, depression of release is not likely to contribute to differences in the kinetics of transmission from rods and cones. PMID:16510733
Berry, Corbett T; Sceniak, Michael P; Zhou, Louie; Sabo, Shasta L
2012-01-01
Presynaptic terminal formation is a complex process that requires assembly of proteins responsible for synaptic transmission at sites of axo-dendritic contact. Accumulation of presynaptic proteins at developing terminals is facilitated by glutamate receptor activation. Glutamate is loaded into synaptic vesicles for release via the vesicular glutamate transporters VGLUT1 and VGLUT2. During postnatal development there is a switch from predominantly VGLUT2 expression to high VGLUT1 and low VGLUT2, raising the question of whether the developmental increase in VGLUT1 is important for presynaptic development. Here, we addressed this question using confocal microscopy and quantitative immunocytochemistry in primary cultures of rat neocortical neurons. First, in order to understand the extent to which the developmental switch from VGLUT2 to VGLUT1 occurs through an increase in VGLUT1 at individual presynaptic terminals or through addition of VGLUT1-positive presynaptic terminals, we examined the spatio-temporal dynamics of VGLUT1 and VGLUT2 expression. Between 5 and 12 days in culture, the percentage of presynaptic terminals that expressed VGLUT1 increased during synapse formation, as did expression of VGLUT1 at individual terminals. A subset of VGLUT1-positive terminals also expressed VGLUT2, which decreased at these terminals. At individual terminals, the increase in VGLUT1 correlated with greater accumulation of other synaptic vesicle proteins, such as synapsin and synaptophysin. When the developmental increase in VGLUT1 was prevented using VGLUT1-shRNA, the density of presynaptic terminals and accumulation of synapsin and synaptophysin at terminals were decreased. Since VGLUT1 knock-down was limited to a small number of neurons, the observed effects were cell-autonomous and independent of changes in overall network activity. These results demonstrate that up-regulation of VGLUT1 is important for development of presynaptic terminals in the cortex.
Berry, Corbett T.; Sceniak, Michael P.; Zhou, Louie; Sabo, Shasta L.
2012-01-01
Presynaptic terminal formation is a complex process that requires assembly of proteins responsible for synaptic transmission at sites of axo-dendritic contact. Accumulation of presynaptic proteins at developing terminals is facilitated by glutamate receptor activation. Glutamate is loaded into synaptic vesicles for release via the vesicular glutamate transporters VGLUT1 and VGLUT2. During postnatal development there is a switch from predominantly VGLUT2 expression to high VGLUT1 and low VGLUT2, raising the question of whether the developmental increase in VGLUT1 is important for presynaptic development. Here, we addressed this question using confocal microscopy and quantitative immunocytochemistry in primary cultures of rat neocortical neurons. First, in order to understand the extent to which the developmental switch from VGLUT2 to VGLUT1 occurs through an increase in VGLUT1 at individual presynaptic terminals or through addition of VGLUT1-positive presynaptic terminals, we examined the spatio-temporal dynamics of VGLUT1 and VGLUT2 expression. Between 5 and 12 days in culture, the percentage of presynaptic terminals that expressed VGLUT1 increased during synapse formation, as did expression of VGLUT1 at individual terminals. A subset of VGLUT1-positive terminals also expressed VGLUT2, which decreased at these terminals. At individual terminals, the increase in VGLUT1 correlated with greater accumulation of other synaptic vesicle proteins, such as synapsin and synaptophysin. When the developmental increase in VGLUT1 was prevented using VGLUT1-shRNA, the density of presynaptic terminals and accumulation of synapsin and synaptophysin at terminals were decreased. Since VGLUT1 knock-down was limited to a small number of neurons, the observed effects were cell-autonomous and independent of changes in overall network activity. These results demonstrate that up-regulation of VGLUT1 is important for development of presynaptic terminals in the cortex. PMID:23226425
Quantal amplitude at the cone ribbon synapse can be adjusted by changes in cytosolic glutamate
Bartoletti, Theodore M.
2011-01-01
Purpose Vision is encoded at photoreceptor synapses by the number of released vesicles and size of the post-synaptic response. We hypothesized that elevating cytosolic glutamate could enhance quantal size by increasing glutamate in vesicles. Methods We introduced glutamate (10–40 mM) into cone terminals through a patch pipette and recorded excitatory post-synaptic currents (EPSCs) from horizontal or OFF bipolar cells in the Ambystoma tigrinum retinal slice preparation. Results Elevating cytosolic glutamate in cone terminals enhanced EPSCs as well as quantal miniature EPSCs (mEPSCs). Enhancement was prevented by inhibiting vesicular glutamate transport with 1S,3R-1-aminocyclopentane-1,3-dicarboxylate in the patch pipette. A low affinity glutamate receptor antagonist, γD-glutamylglycine (1 mM), less effectively inhibited EPSCs evoked from cones loaded with glutamate than control cones indicating that release from cones with supplemental glutamate produced higher glutamate levels in the synaptic cleft. Raising presynaptic glutamate did not alter exocytotic capacitance responses and exocytosis was observed after inhibiting glutamate loading with the vesicular ATPase inhibitor, concanamycin A, suggesting that release capability is not restricted by low vesicular glutamate levels. Variance-mean analysis of currents evoked by flash photolysis of caged glutamate indicated that horizontal cell AMPA receptors have a single channel conductance of 10.1 pS suggesting that ~8.7 GluRs contribute to each mEPSC. Conclusions Quantal amplitude at the cone ribbon synapse is capable of adjustment by changes in cytosolic glutamate levels. The small number of channels contributing to each mEPSC suggests that stochastic variability in channel opening could be an important source of quantal variability. PMID:21541265
Calcium transient in presynaptic terminal of squid giant synapse: detection with aequorin.
Llinás, R; Blinks, J R; Nicholson, C
1972-06-09
Microinjection of aequorin, a bioluminescent protein sensitive tocalcium, into the presynaptic terminal of the squid giant synapse demnonstrated an increase in intracellular calcium ion concentration during repetitive synaptic transmission. Although no light flashes synchronous with individual presynaptic : tion potentials were detected, the results are considered consistent with the hypothesis that entry of calcium into the presynaptic terminal triggers release of e synaptic transmitter substance.
Shin, Angela H; Thayer, Stanley A
2013-05-01
Human immunodeficiency virus (HIV) infection of the CNS produces dendritic damage that correlates with cognitive decline in patients with HIV-associated neurocognitive disorders (HAND). HIV-induced neurotoxicity results in part from viral proteins shed from infected cells, including the HIV transactivator of transcription (Tat). We previously showed that Tat binds to the low density lipoprotein receptor-related protein (LRP), resulting in overactivation of NMDA receptors, activation of the ubiquitin-proteasome pathway, and subsequent loss of postsynaptic densities. Here, we show that Tat also induces a loss of presynaptic terminals. The number of presynaptic terminals was quantified using confocal imaging of synaptophysin fused to green fluorescent protein (Syn-GFP). Tat-induced loss of presynaptic terminals was secondary to excitatory postsynaptic mechanisms because treatment with an LRP antagonist or an NMDA receptor antagonist inhibited this loss. Treatment with nutlin-3, an E3 ligase inhibitor, prevented Tat-induced loss of presynaptic terminals. These data suggest that Tat-induced loss of presynaptic terminals is a consequence of excitotoxic postsynaptic activity. We previously found that ifenprodil, an NR2B subunit-selective NMDA receptor antagonist, induced recovery of postsynaptic densities. Here we show that Tat-induced loss of presynaptic terminals was reversed by ifenprodil treatment. Thus, Tat-induced loss of presynaptic terminals is reversible, and this recovery can be initiated by inhibiting a subset of postsynaptic NMDA receptors. Understanding the dynamics of synaptic changes in response to HIV infection of the CNS may lead to the design of improved pharmacotherapies for HAND patients. Copyright © 2012 Elsevier Inc. All rights reserved.
Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals.
Bulgari, Dinara; Zhou, Chaoming; Hewes, Randall S; Deitcher, David L; Levitan, Edwin S
2014-03-04
Neurons vary in their capacity to produce, store, and release neuropeptides packaged in dense-core vesicles (DCVs). Specifically, neurons used for cotransmission have terminals that contain few DCVs and many small synaptic vesicles, whereas neuroendocrine neuron terminals contain many DCVs. Although the mechanistic basis for presynaptic variation is unknown, past research demonstrated transcriptional control of neuropeptide synthesis suggesting that supply from the soma limits presynaptic neuropeptide accumulation. Here neuropeptide release is shown to scale with presynaptic neuropeptide stores in identified Drosophila cotransmitting and neuroendocrine terminals. However, the dramatic difference in DCV number in these terminals occurs with similar anterograde axonal transport and DCV half-lives. Thus, differences in presynaptic neuropeptide stores are not explained by DCV delivery from the soma or turnover. Instead, greater neuropeptide accumulation in neuroendocrine terminals is promoted by dramatically more efficient presynaptic DCV capture. Greater capture comes with tradeoffs, however, as fewer uncaptured DCVs are available to populate distal boutons and replenish neuropeptide stores following release. Finally, expression of the Dimmed transcription factor in cotransmitting neurons increases presynaptic DCV capture. Therefore, DCV capture in the terminal is genetically controlled and determines neuron-specific variation in peptidergic function.
Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals
Bulgari, Dinara; Zhou, Chaoming; Hewes, Randall S.; Deitcher, David L.; Levitan, Edwin S.
2014-01-01
Neurons vary in their capacity to produce, store, and release neuropeptides packaged in dense-core vesicles (DCVs). Specifically, neurons used for cotransmission have terminals that contain few DCVs and many small synaptic vesicles, whereas neuroendocrine neuron terminals contain many DCVs. Although the mechanistic basis for presynaptic variation is unknown, past research demonstrated transcriptional control of neuropeptide synthesis suggesting that supply from the soma limits presynaptic neuropeptide accumulation. Here neuropeptide release is shown to scale with presynaptic neuropeptide stores in identified Drosophila cotransmitting and neuroendocrine terminals. However, the dramatic difference in DCV number in these terminals occurs with similar anterograde axonal transport and DCV half-lives. Thus, differences in presynaptic neuropeptide stores are not explained by DCV delivery from the soma or turnover. Instead, greater neuropeptide accumulation in neuroendocrine terminals is promoted by dramatically more efficient presynaptic DCV capture. Greater capture comes with tradeoffs, however, as fewer uncaptured DCVs are available to populate distal boutons and replenish neuropeptide stores following release. Finally, expression of the Dimmed transcription factor in cotransmitting neurons increases presynaptic DCV capture. Therefore, DCV capture in the terminal is genetically controlled and determines neuron-specific variation in peptidergic function. PMID:24550480
Zurawski, Zack
2017-01-01
G-protein βγ subunits (Gβγ) interact with presynaptic proteins and regulate neurotransmitter release downstream of Ca2+ influx. To accomplish their roles in sensory signaling, photoreceptor synapses use specialized presynaptic proteins that support neurotransmission at active zone structures known as ribbons. While several G-protein coupled receptors (GPCRs) influence synaptic transmission at ribbon synapses of cones and other retinal neurons, it is unknown whether Gβγ contributes to these effects. We tested whether activation of one particular GPCR, a metabotropic glutamate receptor (mGluR), can reduce cone synaptic transmission via Gβγ in tiger salamander retinas. In recordings from horizontal cells, we found that an mGluR agonist (L-AP4) reduced cone-driven light responses and mEPSC frequency. In paired recordings of cones and horizontal cells, L-AP4 slightly reduced cone ICa (∼10%) and caused a larger reduction in cone-driven EPSCs (∼30%). Proximity ligation assay revealed direct interactions between SNAP-25 and Gβγ subunits in retinal synaptic layers. Pretreatment with the SNAP-25 cleaving protease BoNT/A inhibited L-AP4 effects on synaptic transmission, as did introduction of a peptide derived from the SNAP-25 C terminus. Introducing Gβγ subunits directly into cones reduced EPSC amplitude. This effect was inhibited by BoNT/A, supporting a role for Gβγ/SNAP-25 interactions. However, the mGluR-dependent reduction in ICa was not mimicked by Gβγ, indicating that this effect was independent of Gβγ. The finding that synaptic transmission at cone ribbon synapses is regulated by Gβγ/SNAP-25 interactions indicates that these mechanisms are shared by conventional and ribbon-type synapses. Gβγ liberated from other photoreceptor GPCRs is also likely to regulate synaptic transmission. SIGNIFICANCE STATEMENT Dynamic regulation of synaptic transmission by presynaptic G-protein coupled receptors shapes information flow through neural circuits. At the first synapse in the visual system, presynaptic metabotropic glutamate receptors (mGluRs) regulate cone photoreceptor synaptic transmission, although the mechanisms and functional impact of this are unclear. We show that mGluRs regulate light response encoding across the cone synapse, accomplished in part by triggering G-protein βγ subunits (Gβγ) interactions with SNAP-25, a core component of the synaptic vesicle fusion machinery. In addition to revealing a role in visual processing, this provides the first demonstration that Gβγ/SNAP-25 interactions regulate synaptic function at a ribbon-type synapse, contributing to an emerging picture of the ubiquity of Gβγ/SNARE interactions in regulating synaptic transmission throughout the nervous system. PMID:28363980
Van Hook, Matthew J; Babai, Norbert; Zurawski, Zack; Yim, Yun Young; Hamm, Heidi E; Thoreson, Wallace B
2017-04-26
G-protein βγ subunits (Gβγ) interact with presynaptic proteins and regulate neurotransmitter release downstream of Ca 2+ influx. To accomplish their roles in sensory signaling, photoreceptor synapses use specialized presynaptic proteins that support neurotransmission at active zone structures known as ribbons. While several G-protein coupled receptors (GPCRs) influence synaptic transmission at ribbon synapses of cones and other retinal neurons, it is unknown whether Gβγ contributes to these effects. We tested whether activation of one particular GPCR, a metabotropic glutamate receptor (mGluR), can reduce cone synaptic transmission via Gβγ in tiger salamander retinas. In recordings from horizontal cells, we found that an mGluR agonist (L-AP4) reduced cone-driven light responses and mEPSC frequency. In paired recordings of cones and horizontal cells, L-AP4 slightly reduced cone I Ca (∼10%) and caused a larger reduction in cone-driven EPSCs (∼30%). Proximity ligation assay revealed direct interactions between SNAP-25 and Gβγ subunits in retinal synaptic layers. Pretreatment with the SNAP-25 cleaving protease BoNT/A inhibited L-AP4 effects on synaptic transmission, as did introduction of a peptide derived from the SNAP-25 C terminus. Introducing Gβγ subunits directly into cones reduced EPSC amplitude. This effect was inhibited by BoNT/A, supporting a role for Gβγ/SNAP-25 interactions. However, the mGluR-dependent reduction in I Ca was not mimicked by Gβγ, indicating that this effect was independent of Gβγ. The finding that synaptic transmission at cone ribbon synapses is regulated by Gβγ/SNAP-25 interactions indicates that these mechanisms are shared by conventional and ribbon-type synapses. Gβγ liberated from other photoreceptor GPCRs is also likely to regulate synaptic transmission. SIGNIFICANCE STATEMENT Dynamic regulation of synaptic transmission by presynaptic G-protein coupled receptors shapes information flow through neural circuits. At the first synapse in the visual system, presynaptic metabotropic glutamate receptors (mGluRs) regulate cone photoreceptor synaptic transmission, although the mechanisms and functional impact of this are unclear. We show that mGluRs regulate light response encoding across the cone synapse, accomplished in part by triggering G-protein βγ subunits (Gβγ) interactions with SNAP-25, a core component of the synaptic vesicle fusion machinery. In addition to revealing a role in visual processing, this provides the first demonstration that Gβγ/SNAP-25 interactions regulate synaptic function at a ribbon-type synapse, contributing to an emerging picture of the ubiquity of Gβγ/SNARE interactions in regulating synaptic transmission throughout the nervous system. Copyright © 2017 the authors 0270-6474/17/374619-17$15.00/0.
Differential cellular and subcellular distribution of glutamate transporters in the cat retina.
Fyk-Kolodziej, Bozena; Qin, Pu; Dzhagaryan, Arturik; Pourcho, Roberta G
2004-01-01
Retrieval of glutamate from extracellular sites in the retina involves at least five excitatory amino acid transporters. Immunocytochemical analysis of the cat retina indicates that each of these transporters exhibits a selective distribution which may reflect its specific function. The uptake of glutamate into Muller cells or astrocytes appears to depend upon GLAST and EAAT4, respectively. Staining for EAAT4 was also seen in the pigment epithelium. The remaining transporters are neuronal with GLT-1alpha localized to a number of cone bipolar, amacrine, and ganglion cells and GLT-1v in cone photoreceptors and several populations of bipolar cells. The EAAC1 transporter was found in horizontal, amacrine, and ganglion cells. Staining for EAAT5 was seen in the axon terminals of both rod and cone photoreceptors as well as in numerous amacrine and ganglion cells. Although some of the glutamate transporter molecules are positioned for presynaptic or postsynaptic uptake at glutamatergic synapses, others with localizations more distant from such contacts may serve in modulatory roles or provide protection against excitoxic or oxidative damage.
Chloride equilibrium potential in salamander cones
Thoreson, Wallace B; Bryson, Eric J
2004-01-01
Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl) was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca)) and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca). PMID:15579212
Mechanistic insights on spider neurotoxins.
Luch, Andreas
2010-01-01
In physiology research, animal neurotoxins historically have served as valuable tools for identification, purification, and functional characterization of voltage-dependent ion channels. In particular, toxins from scorpions, sea anemones and cone snails were at the forefront of work aimed at illuminating the three-dimensional architecture of sodium channels. To date, at least six different receptor binding sites have been identified and--most of them--structurally assigned in terms of protein sequence and spatial disposition. Recent work on Australian funnel-web spiders identified certain peptidic ingredients as being responsible for the neurotoxicity of the crude venom. These peptides, termed delta-atracotoxins (delta-ACTX), consist of 42 amino acids and bind to voltage-gated sodium channels in the same way as classical scorpion alpha-toxins. According to the 'voltage-sensor trapping model' proposed in the literature, delta-ACTX isoforms interact with the voltage sensor S4 transmembrane segment of alpha-subunit domain IV, thereby preventing its normal outward movement and concurrent conformational changes required for inactivation of the channel. As consequence prolonged action potentials at autonomic or somatic synapses induce massive transmitter release, resulting in clinical correlates of neuroexcitation (e.g., muscle fasciculation, spasms, paresthesia, tachycardia, diaphoresis, etc.). On the other hand, the major neurotoxin isolated from black widow spiders, alpha-latrotoxin (alpha-LTX), represents a 132 kDa protein consisting of a unique N-terminal sequence and a C-terminal part harboring multiple ankyrin-like repeats. Upon binding to one of its specific presynaptic receptors, alpha-LTX has been shown to tetramerize under physiological conditions to form Ca2+-permeable pores in presynaptic membranes. The molecular model worked out during recent years separates two distinguishable receptor-mediated effects. According to current knowledge, binding of the N terminus of alpha-LTX at one of its specific receptors either triggers intracellular signaling cascades, resulting in phospholipase C-mediated mobilization of presynaptic Ca2+ stores, or leads to the formation of tetrameric pore complexes, allowing extracellular Ca2+ to enter the presynaptic terminal. Alpha-LTX-triggered exocytosis and fulminant transmitter release at autonomic synapses may then provoke a clinical syndrome referred to as 'latrodectism', characterized by local and incapacitating pain, diaphoresis, muscle fasciculation, tremor, anxiety, and so forth. The present review aims at providing a short introduction into some of the exciting molecular effects induced by neurotoxins isolated from black widow and funnel-web spiders.
Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors
Szikra, Tamas; Cusato, Karen; Thoreson, Wallace B; Barabas, Peter; Bartoletti, Theodore M; Krizaj, David
2008-01-01
Tonic synapses are specialized for sustained calcium entry and transmitter release, allowing them to operate in a graded fashion over a wide dynamic range. We identified a novel plasma membrane calcium entry mechanism that extends the range of rod photoreceptor signalling into light-adapted conditions. The mechanism, which shares molecular and physiological characteristics with store-operated calcium entry (SOCE), is required to maintain baseline [Ca2+]i in rod inner segments and synaptic terminals. Sustained Ca2+ entry into rod cytosol is augmented by store depletion, blocked by La3+ and Gd3+ and suppressed by organic antagonists MRS-1845 and SKF-96365. Store depletion and the subsequent Ca2+ influx directly stimulated exocytosis in terminals of light-adapted rods loaded with the activity-dependent dye FM1–43. Moreover, SOCE blockers suppressed rod-mediated synaptic inputs to horizontal cells without affecting presynaptic voltage-operated Ca2+ entry. Silencing of TRPC1 expression with small interference RNA disrupted SOCE in rods, but had no effect on cone Ca2+ signalling. Rods were immunopositive for TRPC1 whereas cone inner segments immunostained with TRPC6 channel antibodies. Thus, SOCE modulates Ca2+ homeostasis and light-evoked neurotransmission at the rod photoreceptor synapse mediated by TRPC1. PMID:18755743
Ohno-Shosaku, T; Maejima, T; Kano, M
2001-03-01
Endogenous cannabinoids are considered to function as diffusible and short-lived modulators that may transmit signals retrogradely from postsynaptic to presynaptic neurons. To evaluate this possibility, we have made a paired whole-cell recording from cultured hippocampal neurons with inhibitory synaptic connections. In about 60% of pairs, a cannabinoid agonist greatly reduced the release of the inhibitory neurotransmitter GABA from presynaptic terminals. In most of such pairs but not in those insensitive to the agonist, depolarization of postsynaptic neurons and the resultant elevation of intracellular Ca2+ concentration caused transient suppression of inhibitory synaptic currents, which is mainly due to reduction of GABA release. This depolarization-induced suppression was completely blocked by selective cannabinoid antagonists. Our results reveal that endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals to cause the reduction of transmitter release.
Gioia, Dominic A.; Alexander, Nancy; McCool, Brian A.
2017-01-01
Chronic exposure to alcohol produces adaptations within the basolateral amygdala (BLA) that are associated with the development of anxiety-like behaviors during withdrawal. In part, these adaptations are mediated by plasticity in glutamatergic synapses occurring through an AMPA receptor mediated form of post-synaptic facilitation in addition to a unique form of presynaptic facilitation. In comparison to the post-synaptic compartment, relatively less is understood about the mechanisms involved in the acute and chronic effects of ethanol in the presynaptic terminal. Previous research has demonstrated that glutamatergic terminals in the mouse BLA are sensitive to ethanol mediated inhibition of synaptic vesicle recycling in a strain-dependent fashion. Importantly, the strain-dependent differences in presynaptic ethanol sensitivity are in accordance with known strain-dependent differences in ethanol/anxiety interactions. In the present study, we have used a short-hairpin RNA to knockdown the expression of the presynaptic Munc13-2 protein in C57BL/6J mice, whose BLA glutamate terminals are normally ethanol-insensitive. We injected this shRNA, or a scrambled control virus, into the medial prefrontal cortex (mPFC) which sends dense projections to the BLA. Accordingly, this knockdown strategy reduces the expression of the Munc13-2 isoform in mPFC terminals within the BLA and alters presynaptic terminal function in C57BL/6J mice in a manner that phenocopies DBA/2J glutamate terminals which are normally ethanol-sensitive. Here, we provide evidence that manipulation of this single protein, Munc13-2, renders C57BL/6J terminals sensitive to ethanol mediated inhibition of synaptic vesicle recycling and post-tetanic potentiation. Furthermore, we found that this ethanol inhibition was dose dependent. Considering the important role of Munc13 proteins in synaptic plasticity, this study potentially identifies a molecular mechanism regulating the acute presynaptic effects of ethanol to the long lasting adaptations in the BLA that occur during chronic ethanol exposure. PMID:28785200
Actions of Acute and Chronic Ethanol on Presynaptic Terminals
Roberto, Marisa; Treistman, Steven N.; Pietrzykowski, Andrzej Z.; Weiner, Jeff; Galindo, Rafael; Mameli, Manuel; Valenzuela, Fernando; Zhu, Ping Jun; Lovinger, David; Zhang, Tao A.; Hendricson, Adam H.; Morrisett, Richard; Siggins, George Robert
2014-01-01
This article presents the proceedings of a symposium entitled “The Tipsy Terminal: Presynaptic Effects of Ethanol” (held at the annual meeting of the Research Society on Alcoholism, in Santa Barbara, CA, June 27, 2005). The objective of this symposium was to focus on a cellular site of ethanol action underrepresented in the alcohol literature, but quickly becoming a “hot” topic. The chairs of the session were Marisa Roberto and George Robert Siggins. Our speakers were chosen on the basis of the diverse electrophysiological and other methods used to discern the effects of acute and chronic ethanol on presynaptic terminals and on the basis of significant insights that their data provide for understanding ethanol actions on neurons in general, as mechanisms underlying problematic behavioral effects of alcohol. The 5 presenters drew from their recent studies examining the effects of acute and chronic ethanol using a range of sophisticated methods from electrophysiological analysis of paired-pulse facilitation and spontaneous and miniature synaptic currents (Drs. Weiner, Valenzuela, Zhu, and Morrisett), to direct recording of ion channel activity and peptide release from acutely isolated synaptic terminals (Dr. Treistman), to direct microscopic observation of vesicular release (Dr. Morrisett). They showed that ethanol administration could both increase and decrease the probability of release of different transmitters from synaptic terminals. The effects of ethanol on synaptic terminals could often be correlated with important behavioral or developmental actions of alcohol. These and other novel findings suggest that future analyses of synaptic effects of ethanol should attempt to ascertain, in multiple brain regions, the role of presynaptic terminals, relevant presynaptic receptors and signal transduction linkages, exocytotic mechanisms, and their involvement in alcohol’s behavioral actions. Such studies could lead to new treatment strategies for alcohol intoxication, alcohol abuse, and alcoholism. PMID:16441271
Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets
Li, Ying C.
2017-01-01
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle—such as exocytosis and endocytosis—require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders. PMID:28265000
Lunardi, N; Oklopcic, A; Prillaman, M; Erisir, A; Jevtovic-Todorovic, V
2015-10-01
Exposure to general anesthesia (GA) during critical stages of brain development induces widespread neuronal apoptosis and causes long-lasting behavioral deficits in numerous animal species. Although several studies have focused on the morphological fate of neurons dying acutely by GA-induced developmental neuroapoptosis, the effects of an early exposure to GA on the surviving synapses remain unclear. The aim of this study is to study whether exposure to GA disrupts the fine regulation of the dynamic spatial organization and trafficking of synaptic vesicles in presynaptic terminals. We exposed postnatal day 7 (PND7) rat pups to a clinically relevant anesthetic combination of midazolam, nitrous oxide, and isoflurane and performed a detailed ultrastructural analysis of the synaptic vesicle architecture at presynaptic terminals in the subiculum of rats at PND 12. In addition to a significant decrease in the density of presynaptic vesicles, we observed a reduction of docked vesicles, as well as a reduction of vesicles located within 100 nm from the active zone, in animals 5 days after an initial exposure to GA. We also found that the synaptic vesicles of animals exposed to GA are located more distally with respect to the plasma membrane than those of sham control animals and that the distance between presynaptic vesicles is increased in GA-exposed animals compared to sham controls. We report that exposure of immature rats to GA during critical stages of brain development causes significant disruption of the strategic topography of presynaptic vesicles within the nerve terminals of the subiculum.
Jackson, M B
1995-01-01
Based on functional characterizations with electrophysiological techniques, the channels in nerve terminals appear to be as diverse as channels in nerve cell bodies (Table I). While most presynaptic Ca2+ channels superficially resemble either N-type or L-type channels, variations in detail have necessitated the use of subscripts and other notations to indicate a nerve terminal-specific subtype (e.g., Wang et al., 1993). Variations such as these pose a serious obstacle to the identification of presynaptic channels based solely on the effects of channel blockers on synaptic transmission. Pharmacological sensitivity alone is not likely to help in determining functional properties. Crucial details, such as voltage sensitivity and inactivation, require direct examination. It goes without saying that every nerve terminal membrane contains Ca2+ channels as an entry pathway so that Ca2+ can trigger secretion. However, there appears to be no general specification of channel type, other than the exclusion of T-type Ca2+ channels. T-type Ca2+ channels are defined functionally by strong inactivation and low threshold. Some presynaptic Ca2+ channels inactivate (posterior pituitary and Xenopus nerve terminals), and others have a somewhat reduced voltage threshold (retinal bipolar neurons and squid giant synapse). Perhaps it is just a matter of time before a nerve terminal Ca2+ channel is found with both of these properties. The high threshold and strong inactivation of T-type Ca2+ channels are thought to be adaptations for oscillations and the regulation of bursting activity in nerve cell bodies. The nerve terminals thus far examined have no endogenous electrical activity, but rather are driven by the cell body. On functional grounds, it is then reasonable to anticipate finding T-type Ca2+ channels in nerve terminals that can generate electrical activity on their own. The rarity of such behavior in nerve terminals may be associated with the rarity of presynaptic T-type Ca2+ channels. In four of the five preparations reviewed in this chapter--motor nerve, squid giant synapse, ciliary ganglion, and retina bipolar neurons--evidence was presented that supports a location for Ca2+ channels that is very close to active zones of secretion. All of these synapses secrete from clear vesicles, and the speed and specificity of transduction provided by proximity may be a common feature of these rapid synapses. In contrast, the posterior pituitary secretion apparatus may be triggered by higher-affinity Ca2+ receptors and lower concentrations of Ca2+ (Lindau et al., 1992). This would correspond with the slower performance of peptidergic secretion, but because of the large stimuli needed to evoke release from neurosecretosomes, the possibility remains that the threshold for secretion is higher than that reported. While the role of Ca2+ as a trigger of secretion dictates a requirement for voltage-activated Ca2+ channels as universal components of the presynaptic membrane, the presence of other channels is more difficult to predict. Depolarizations caused by voltage-activated Na+ channels activate the presynaptic Ca2+ channels, but whether this depolarization requires Na+ channels in the presynaptic membrane itself may depend on the electrotonic length of the nerve terminal. Variations in density between motor nerve terminals may reflect species differences in geometry. The high Na+ channel density in the posterior pituitary reflects the great electrotonic length of this terminal arbor. Whether Na+ channels are abundant or not in a presynaptic membrane, K+ channels provide the most robust mechanism for limiting depolarization-induced Ca2+ entry. K+ channel blockers enhance transmission at most synapses. In general, K+ channels are abundant in nerve terminals, although their apparent lower priority compared to Ca2+ channels in the eyes of many investigators leaves us with fewer detailed investigations in some preparations. Most nerve terminals have more than
Enríquez-Denton, M; Nielsen, J; Perreault, M-C; Morita, H; Petersen, N; Hultborn, H
2000-01-01
In cat lumbar motoneurones, disynaptic inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of antagonist motor nerves were depressed for at least 150 ms following conditioning stimulation of flexor (1.7-2 times threshold (T)) and ankle extensor (5T) nerves. The aim of the present study was to investigate the possibility that this depression is caused by presynaptic inhibitory mechanisms acting at the terminals of group I afferent fibres projecting to the Ia inhibitory interneurones and/or the terminals of these interneurones to the target motoneurones. Conditioning stimulation of flexor, but not ankle extensor, nerves evoked a depression of the monosynaptic Ia excitatory postsynaptic potentials (EPSPs) recorded intracellularly in Ia inhibitory interneurones. This depression lasted between 200 and 700 ms and was not accompanied by a depression of the monosynaptic EPSPs evoked by stimulation of descending pathways. These results suggest that flexor, but not ankle extensor, group I afferent fibres can modulate sensory transmission at the synapse between Ia afferent fibres and Ia inhibitory interneurones. Conditioning stimulation of flexor muscle nerves, extensor muscle nerves and cutaneous nerves produced a long-lasting increase in excitability of the terminals of the Ia inhibitory interneurones. The increase in the excitability of the terminals was not secondary to an electrotonic spread of synaptic excitation at the soma. Indeed, concomitant with the excitability increase of the terminals there were signs of synaptic inhibition in the soma. The unitary IPSPs induced in target motoneurones following the spike activity of single Ia inhibitory interneurones were depressed by conditioning stimulation of muscle and cutaneous nerves. Since the conditioning stimulation also evoked compound IPSPs in those motoneurones, a firm conclusion as to whether unitary IPSP depression involved presynaptic inhibitory mechanism of the terminals of the interneurones could not be reached. The possibility that the changes in excitability of the Ia interneuronal terminals reflect the presence of a presynaptic inhibitory mechanism similar to that operating at the terminals of the afferent fibres (presynaptic inhibition) is discussed.1. In cat lumbar motoneurones, disynaptic inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of antagonist motor nerves were depressed for at least 150 ms following conditioning stimulation of flexor (1.7-2 times threshold (T)) and ankle extensor (5T) nerves. The aim of the present study was to investigate the possibility that this depression is caused by presynaptic inhibitory mechanisms acting at the terminals of group I afferent fibres projecting to the Ia inhibitory interneurones and/or the terminals of these interneurones to the target motoneurones. PMID:10922013
Hosoi, Nobutake; Arai, Itaru; Tachibana, Masao
2005-04-20
Light responses of photoreceptors (rods and cones) are transmitted to the second-order neurons (bipolar cells and horizontal cells) via glutamatergic synapses located in the outer plexiform layer of the retina. Although it has been well established that postsynaptic group III metabotropic glutamate receptors (mGluRs) of ON bipolar cells contribute to generating the ON signal, presynaptic roles of group III mGluRs remain to be elucidated at this synaptic connection. We addressed this issue by applying the slice patch-clamp technique to the newt retina. OFF bipolar cells and horizontal cells generate a steady inward current in the dark and a transient inward current at light offset, both of which are mediated via postsynaptic non-NMDA receptors. A group III mGluR-specific agonist, L-2-amino-4-phosphonobutyric acid (L-AP-4), inhibited both the steady and off-transient inward currents but did not affect the glutamate-induced current in these postsynaptic neurons. L-AP-4 inhibited the presynaptic L-type calcium current (ICa) in cones by shifting the voltage dependence of activation to more positive membrane potentials. The inhibition of ICa was most prominent around the physiological range of cone membrane potentials. In contrast, L-AP-4 did not affect L-type ICa in rods. Paired recordings from photoreceptors and the synaptically connected second-order neurons confirmed that L-AP-4 inhibited both ICa and glutamate release in cones but not in rods. Furthermore, we found that exocytosed protons also inhibited ICa in cones but not in rods. Selective modulation of ICa in cones may help broaden the dynamic range of synaptic transfer by controlling the amount of transmitter release from cones.
Lamy, Jean-Charles; Russmann, Heike; Shamim, Ejaz A; Meunier, Sabine; Hallett, Mark
2010-08-01
Enhancements in the strength of corticospinal projections to muscles are induced in conscious humans by paired associative stimulation (PAS) to the motor cortex. Although most of the previous studies support the hypothesis that the increase of the amplitude of motor evoked potentials (MEPs) by PAS involves long-term potentiation (LTP)-like mechanism in cortical synapses, changes in spinal excitability after PAS have been reported, suggestive of parallel modifications in both cortical and spinal excitability. In a first series of experiments (experiment 1), we confirmed that both flexor carpi radialis (FCR) MEPs and FCR H reflex recruitment curves are enhanced by PAS. To elucidate the mechanism responsible for this change in the H reflex amplitude, we tested, using the same subjects, the hypothesis that enhanced H reflexes are caused by a down-regulation of the efficacy of mechanisms controlling Ia afferent discharge, including presynaptic Ia inhibition and postactivation depression. To address this question, amounts of both presynaptic Ia inhibition of FCR Ia terminals (D1 and D2 inhibitions methods; experiment 2) and postactivation depression (experiment 3) were determined before and after PAS. Results showed that PAS induces a significant decrease of presynaptic Ia inhibition of FCR terminals, which was concomitant with the facilitation of the H reflex. Postactivation depression was unaffected by PAS. It is argued that enhancement of segmental excitation by PAS relies on a selective effect of PAS on the interneurons controlling presynaptic inhibition of Ia terminals.
Na+ current in presynaptic terminals of the crayfish opener cannot initiate action potentials.
Lin, Jen-Wei
2016-01-01
Action potential (AP) propagation in presynaptic axons of the crayfish opener neuromuscular junction (NMJ) was investigated by simultaneously recording from a terminal varicosity and a proximal branch. Although orthodromically conducting APs could be recorded in terminals with amplitudes up to 70 mV, depolarizing steps in terminals to -20 mV or higher failed to fire APs. Patch-clamp recordings did detect Na(+) current (INa) in most terminals. The INa exhibited a high threshold and fast activation rate. Local perfusion of Na(+)-free saline showed that terminal INa contributed to AP waveform by slightly accelerating the rising phase and increasing the peak amplitude. These findings suggest that terminal INa functions to "touch up" but not to generate APs. Copyright © 2016 the American Physiological Society.
Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa.
Phillips, M Joseph; Otteson, Deborah C; Sherry, David M
2010-06-01
The Pde6b(rd10) (rd10) mouse has a moderate rate of photoreceptor degeneration and serves as a valuable model for human autosomal recessive retinitis pigmentosa (RP). We evaluated the progression of neuronal remodeling of second- and third-order retinal cells and their synaptic terminals in retinas from Pde6b(rd10) (rd10) mice at varying stages of degeneration ranging from postnatal day 30 (P30) to postnatal month 9.5 (PNM9.5) using immunolabeling for well-known cell- and synapse-specific markers. Following photoreceptor loss, changes occurred progressively from outer to inner retina. Horizontal cells and rod and cone bipolar cells underwent morphological remodeling that included loss of dendrites, cell body migration, and the sprouting of ectopic processes. Gliosis, characterized by translocation of Müller cell bodies to the outer retina and thickening of their processes, was evident by P30 and became more pronounced as degeneration progressed. Following rod degeneration, continued expression of VGluT1 in the outer retina was associated with survival and expression of synaptic proteins by nearby second-order neurons. Rod bipolar cell terminals showed a progressive reduction in size and ectopic bipolar cell processes extended into the inner nuclear layer and ganglion cell layer by PNM3.5. Putative ectopic conventional synapses, likely arising from amacrine cells, were present in the inner nuclear layer by PNM9.5. Despite these changes, the laminar organization of bipolar and amacrine cells and the ON-OFF organization in the inner plexiform layer was largely preserved. Surviving cone and bipolar cell terminals continued to express the appropriate cell-specific presynaptic proteins needed for synaptic function up to PNM9.5. (c) 2010 Wiley-Liss, Inc.
Progression of Neuronal and Synaptic Remodeling in the rd10 Mouse Model of Retinitis Pigmentosa
Phillips, M. Joseph; Otteson, Deborah C.; Sherry, David M.
2010-01-01
The Pde6brd10 (rd10) mouse has a moderate rate of photoreceptor degeneration and serves as a valuable model for human autosomal recessive retinitis pigmentosa (RP). We evaluated the progression of neuronal remodeling of second- and third-order retinal cells and their synaptic terminals in retinas from Pde6brd10 (rd10) mice at varying stages of degeneration ranging from postnatal day 30 (P30) to postnatal month 9.5 (PNM9.5) using immunolabeling for well known cell- and synapse-specific markers. Following photoreceptor loss, changes occurred progressively from outer to inner retina. Horizontal cells and rod and cone bipolar cells underwent morphological remodeling that included loss of dendrites, cell body migration, and the sprouting of ectopic processes. Gliosis, characterized by translocation of Müller cell bodies to the outer retina and thickening of their processes, was evident by P30 and became more pronounced as degeneration progressed. Following rod degeneration, continued expression of VGluT1 in the outer retina was associated with survival and expression of synaptic proteins by nearby second-order neurons. Rod bipolar cell terminals showed a progressive reduction in size and ectopic bipolar cell processes extended into the inner nuclear layer and ganglion cell layer by PNM3.5. Putative ectopic conventional synapses, likely arising from amacrine cells, were present in the inner nuclear layer by PNM9.5. Despite these changes, the laminar organization of bipolar and amacrine cells and the ON-OFF organization in the inner plexiform layer was largely preserved. Surviving cone and bipolar cell terminals continued to express the appropriate cell-specific presynaptic proteins needed for synaptic function up to PNM9.5. PMID:20394059
The Role of Neurotrophins in Neurotransmitter Release
Tyler, William J.; Perrett, Stephen P.; Pozzo-Miller, Lucas D.
2009-01-01
The neurotrophins (NTs) have recently been shown to elicit pronounced effects on quantal neurotransmitter release at both central and peripheral nervous system synapses. Due to their activity-dependent release, as well as the subcellular localization of both protein and receptor, NTs are ideally suited to modify the strength of neuronal connections by “fine-tuning” synaptic activity through direct actions at presynaptic terminals. Here, using BDNF as a prototypical example, the authors provide an update of recent evidence demonstrating that NTs enhance quantal neurotransmitter release at synapses through presynaptic mechanisms. The authors further propose that a potential target for NT actions at presynaptic terminals is the mechanism by which terminals retrieve synaptic vesicles after exocytosis. Depending on the temporal demands placed on synapses during high-frequency synaptic transmission, synapses may use two alternative modes of synaptic vesicle retrieval, the conventional slow endosomal recycling or a faster rapid retrieval at the active zone, referred to as “kiss-and-run.” By modulating Ca2+ microdomains associated with voltage-gated Ca2+ channels at active zones, NTs may elicit a switch from the slow to the fast mode of endocytosis of vesicles at presynaptic terminals during high-frequency synaptic transmission, allowing more reliable information transfer and neuronal signaling in the central nervous system. PMID:12467374
The role of neurotrophins in neurotransmitter release.
Tyler, William J; Perrett, Stephen P; Pozzo-Miller, Lucas D
2002-12-01
The neurotrophins (NTs) have recently been shown to elicit pronounced effects on quantal neurotransmitter release at both central and peripheral nervous system synapses. Due to their activity-dependent release, as well as the subcellular localization of both protein and receptor, NTs are ideally suited to modify the strength of neuronal connections by "fine-tuning" synaptic activity through direct actions at presynaptic terminals. Here, using BDNF as a prototypical example, the authors provide an update of recent evidence demonstrating that NTs enhance quantal neurotransmitter release at synapses through presynaptic mechanisms. The authors further propose that a potential target for NT actions at presynaptic terminals is the mechanism by which terminals retrieve synaptic vesicles after exocytosis. Depending on the temporal demands placed on synapses during high-frequency synaptic transmission, synapses may use two alternative modes of synaptic vesicle retrieval, the conventional slow endosomal recycling or a faster rapid retrieval at the active zone, referred to as "kiss-and-run." By modulating Ca2+ microdomains associated with voltage-gated Ca2+ channels at active zones, NTs may elicit a switch from the slow to the fast mode of endocytosis of vesicles at presynaptic terminals during high-frequency synaptic transmission, allowing more reliable information transfer and neuronal signaling in the central nervous system.
Miledi, R; Parker, I
1981-05-22
Transient changes in free intracellular Ca2+ concentration were monitored in the presynaptic terminal of the giant synapse of the squid, by means of the Ca2+-sensitive dye arsenazo III. Calibration experiments showed a linear relation between the amount of Ca2+ injected by iontophoresis into the terminal, and the peak size of the arsenazo light absorbance record. A light signal could be detected on tetanic stimulation of the presynaptic axon bathed in sea water containing 45 mM Ca2+. During a 1 s tetanus the light signal rose approximately linearly, even though transmitter release declined rapidly and the light signal subsequently declined with a half-time of 2-6 s. The Ca2+ transient elicited by single nerve impulses was recorded by signal averaging, and showed a time course very much slower than the duration of transmitter release.
Glucose and lactate as metabolic constraints on presynaptic transmission at an excitatory synapse.
Lucas, Sarah J; Michel, Christophe B; Marra, Vincenzo; Smalley, Joshua L; Hennig, Matthias H; Graham, Bruce P; Forsythe, Ian D
2018-05-01
Synapses have high energy demands which increase during intense activity. We show that presynaptic terminals can utilise extracellular glucose or lactate to generate energy to maintain synaptic transmission. Reducing energy substrates induces a metabolic stress: presynaptic ATP depletion impaired synaptic transmission through a reduction in the number of functional synaptic vesicle release sites and a slowing of vesicle pool replenishment, without a consistent change in release probability. Metabolic function is compromised in many pathological conditions (e.g. stroke, traumatic brain injury and neurodegeneration). Knowledge of how synaptic transmission is constrained by metabolic stress, especially during intense brain activity, will provide insights to improve cognition following pathological insults. The synapse has high energy demands, which increase during intense activity. Presynaptic ATP production depends on substrate availability and usage will increase during activity, which in turn could influence transmitter release and information transmission. We investigated transmitter release at the mouse calyx of Held synapse using glucose or lactate (10, 1 or 0 mm) as the extracellular substrates while inducing metabolic stress. High-frequency stimulation (HFS) and recovery paradigms evoked trains of EPSCs monitored under voltage-clamp. Whilst postsynaptic intracellular ATP was stabilised by diffusion from the patch pipette, depletion of glucose increased EPSC depression during HFS and impaired subsequent recovery. Computational modelling of these data demonstrated a reduction in the number of functional release sites and slowed vesicle pool replenishment during metabolic stress, with little change in release probability. Directly depleting presynaptic terminal ATP impaired transmitter release in an analogous manner to glucose depletion. In the absence of glucose, presynaptic terminal metabolism could utilise lactate from the aCSF and this was blocked by inhibition of monocarboxylate transporters (MCTs). MCT inhibitors significantly suppressed transmission in low glucose, implying that lactate is a presynaptic substrate. Additionally, block of glycogenolysis accelerated synaptic transmission failure in the absence of extracellular glucose, consistent with supplemental supply of lactate by local astrocytes. We conclude that both glucose and lactate support presynaptic metabolism and that limited availability, exacerbated by high-intensity firing, constrains presynaptic ATP, impeding transmission through a reduction in functional presynaptic release sites as vesicle recycling slows when ATP levels are low. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Desai, C J; Garrity, P A; Keshishian, H; Zipursky, S L; Zinn, K
1999-04-01
The Dock SH2-SH3 domain adapter protein, a homolog of the mammalian Nck oncoprotein, is required for axon guidance and target recognition by photoreceptor axons in Drosophila larvae. Here we show that Dock is widely expressed in neurons and at muscle attachment sites in the embryo, and that this expression pattern has both maternal and zygotic components. In motoneurons, Dock is concentrated in growth cones. Loss of zygotic dock function causes a selective delay in synapse formation by the RP3 motoneuron at the cleft between muscles 7 and 6. These muscles often completely lack innervation in late stage 16 dock mutant embryos. RP3 does form a synapse later in development, however, because muscles 7 and 6 are normally innervated in third-instar mutant larvae. The absence of zygotically expressed Dock also results in subtle defects in a longitudinal axon pathway in the embryonic central nervous system. Concomitant loss of both maternally and zygotically derived Dock dramatically enhances these central nervous system defects, but does not increase the delay in RP3 synaptogenesis. These results indicate that Dock facilitates synapse formation by the RP3 motoneuron and is also required for guidance of some interneuronal axons The involvement of Dock in the conversion of the RP3 growth cone into a presynaptic terminal may reflect a role for Dock-mediated signaling in remodeling of the growth cone's cytoskeleton.
Dendritic position is a major determinant of presynaptic strength
de Jong, Arthur P.H.; Schmitz, Sabine K.; Toonen, Ruud F.G.
2012-01-01
Different regulatory principles influence synaptic coupling between neurons, including positional principles. In dendrites of pyramidal neurons, postsynaptic sensitivity depends on synapse location, with distal synapses having the highest gain. In this paper, we investigate whether similar rules exist for presynaptic terminals in mixed networks of pyramidal and dentate gyrus (DG) neurons. Unexpectedly, distal synapses had the lowest staining intensities for vesicular proteins vGlut, vGAT, Synaptotagmin, and VAMP and for many nonvesicular proteins, including Bassoon, Munc18, and Syntaxin. Concomitantly, distal synapses displayed less vesicle release upon stimulation. This dependence of presynaptic strength on dendritic position persisted after chronically blocking action potential firing and postsynaptic receptors but was markedly reduced on DG dendrites compared with pyramidal dendrites. These data reveal a novel rule, independent of neuronal activity, which regulates presynaptic strength according to dendritic position, with the strongest terminals closest to the soma. This gradient is opposite to postsynaptic gradients observed in pyramidal dendrites, and different cell types apply this rule to a different extent. PMID:22492722
Parker, J Alex; Metzler, Martina; Georgiou, John; Mage, Marilyne; Roder, John C; Rose, Ann M; Hayden, Michael R; Néri, Christian
2007-10-10
Huntingtin-interacting protein 1 (HIP1) was identified through its interaction with htt (huntingtin), the Huntington's disease (HD) protein. HIP1 is an endocytic protein that influences transport and function of AMPA and NMDA receptors in the brain. However, little is known about its contribution to neuronal dysfunction in HD. We report that the Caenorhabditis elegans HIP1 homolog hipr-1 modulates presynaptic activity and the abundance of synaptobrevin, a protein involved in synaptic vesicle fusion. Presynaptic function was also altered in hippocampal brain slices of HIP1-/- mice demonstrating delayed recovery from synaptic depression and a reduction in paired-pulse facilitation, a form of presynaptic plasticity. Interestingly, neuronal dysfunction in transgenic nematodes expressing mutant N-terminal huntingtin was specifically enhanced by hipr-1 loss of function. A similar effect was observed with several other mutant proteins that are expressed at the synapse and involved in endocytosis, such as unc-11/AP180, unc-26/synaptojanin, and unc-57/endophilin. Thus, HIP1 is involved in presynaptic nerve terminal activity and modulation of mutant polyglutamine-induced neuronal dysfunction. Moreover, synaptic proteins involved in endocytosis may protect neurons against amino acid homopolymer expansion.
Action potential broadening in a presynaptic channelopathy
NASA Astrophysics Data System (ADS)
Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.
2016-07-01
Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.
Region-specific changes in presynaptic agmatine and glutamate levels in the aged rat brain.
Jing, Y; Liu, P; Leitch, B
2016-01-15
During the normal aging process, the brain undergoes a range of biochemical and structural alterations, which may contribute to deterioration of sensory and cognitive functions. Age-related deficits are associated with altered efficacy of synaptic neurotransmission. Emerging evidence indicates that levels of agmatine, a putative neurotransmitter in the mammalian brain, are altered in a region-specific manner during the aging process. The gross tissue content of agmatine in the prefrontal cortex (PFC) of aged rat brains is decreased whereas levels in the temporal cortex (TE) are increased. However, it is not known whether these changes in gross tissue levels are also mirrored by changes in agmatine levels at synapses and thus could potentially contribute to altered synaptic function with age. In the present study, agmatine levels in presynaptic terminals in the PFC and TE regions (300 terminals/region) of young (3month; n=3) and aged (24month; n=3) brains of male Sprague-Dawley rats were compared using quantitative post-embedding immunogold electron-microscopy. Presynaptic levels of agmatine were significantly increased in the TE region (60%; p<0.001) of aged rats compared to young rats, however no significant differences were detected in synaptic levels in the PFC region. Double immunogold labeling indicated that agmatine and glutamate were co-localized in the same synaptic terminals, and quantitative analyses revealed significantly reduced glutamate levels in agmatine-immunopositive synaptic terminals in both regions in aged rats compared to young animals. This study, for the first time, demonstrates differential effects of aging on agmatine and glutamate in the presynaptic terminals of PFC and TE. Future research is required to understand the functional significance of these changes and the underlying mechanisms. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Fatehi, M; Rowan, E G; Harvey, A L; Moya, E; Blagbrough, I S
1997-02-01
FTX-3.3 is the proposed structure of a calcium-channel blocking toxin that has been isolated from the funnel web spider (Agelenopsis aperta). The effects of FTX-3.3 and one of its analogues, sFTX-3.3, on acetylcholine release, on presynaptic currents at mouse motor nerve terminals and on whole-cell sodium currents in SK.N.SH cells (a human neuroblastoma cell line) have been studied. FTX-3.3 (10-30 microM) and sFTX-3.3 (100-300 microM) reversibly reduced release of acetylcholine by approximately 70-90% and 40-60%, respectively. FTX-3.3 (10 microM) blocked the fast component of presynaptic calcium currents by approximately 60%. sFTX-3.3 (100 microM) reduced the duration of the slow component of presynaptic calcium currents by about 50% of the control and also reduced presynaptic sodium current by approximately 20% of the control. sFTX-3.3 (100 microM) reduced whole-cell sodium current recorded from SK.N.SH cells by approximately 15%, whereas FTX-3.3, even at 200 microM, did not affect this current. Since the only difference in chemical structures of these toxins is that sFTX-3.3 has an amide function which is absent in FTX-3.3, the amide function may be responsible for the reduced potency and selectivity of sFTX-3.3. This study also provides further support for the existence of P-type calcium channels at mouse motor nerve terminals.
Oh, Myongkeun; Zhao, Shunbing; Matveev, Victor; Nadim, Farzan
2012-12-01
Although synaptic output is known to be modulated by changes in presynaptic calcium channels, additional pathways for calcium entry into the presynaptic terminal, such as non-selective channels, could contribute to modulation of short term synaptic dynamics. We address this issue using computational modeling. The neuropeptide proctolin modulates the inhibitory synapse from the lateral pyloric (LP) to the pyloric dilator (PD) neuron, two slow-wave bursting neurons in the pyloric network of the crab Cancer borealis. Proctolin enhances the strength of this synapse and also changes its dynamics. Whereas in control saline the synapse shows depression independent of the amplitude of the presynaptic LP signal, in proctolin, with high-amplitude presynaptic LP stimulation the synapse remains depressing while low-amplitude stimulation causes facilitation. We use simple calcium-dependent release models to explore two alternative mechanisms underlying these modulatory effects. In the first model, proctolin directly targets calcium channels by changing their activation kinetics which results in gradual accumulation of calcium with low-amplitude presynaptic stimulation, leading to facilitation. The second model uses the fact that proctolin is known to activate a non-specific cation current I ( MI ). In this model, we assume that the MI channels have some permeability to calcium, modeled to be a result of slow conformation change after binding calcium. This generates a gradual increase in calcium influx into the presynaptic terminals through the modulatory channel similar to that described in the first model. Each of these models can explain the modulation of the synapse by proctolin but with different consequences for network activity.
Profiling Synaptic Proteins Identifies Regulators of Insulin Secretion and Lifespan
Kaplan, Joshua M.
2008-01-01
Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling. PMID:19043554
Lee, Dong Kun; Jeong, Jae Hoon; Chun, Sung-Kun; Chua, Streamson; Jo, Young-Hwan
2015-01-01
Regulation of GABAergic inhibitory inputs and alterations in POMC neuron activity by nutrients and adiposity signals regulate energy and glucose homeostasis. Thus, understanding how POMC neurons integrate these two signal molecules at the synaptic level is important. Here we show that leptin’s action on GABA release to POMC neurons is influenced by glucose levels. Leptin stimulates the JAK2-PI3K pathway in both presynaptic GABAergic terminals and postsynaptic POMC neurons. Inhibition of AMPK activity in presynaptic terminals decreases GABA release at 10 mM glucose. However, postsynaptic TRPC channel opening by the PI3K-PLC signaling pathway in POMC neurons enhances spontaneous GABA release via activation of presynaptic MC3/4 and mGlu receptors at 2.5 mM glucose. High-fat feeding blunts AMPK-dependent presynaptic inhibition, whereas PLC-mediated GABAergic feedback inhibition remains responsive to leptin. Our data indicate that the interplay between glucose and leptin signaling in glutamatergic POMC neurons is critical for determining the strength of inhibitory tone towards POMC neurons. PMID:25808323
Lee, Dong Kun; Jeong, Jae Hoon; Chun, Sung-Kun; Chua, Streamson; Jo, Young-Hwan
2015-03-26
Regulation of GABAergic inhibitory inputs and alterations in POMC neuron activity by nutrients and adiposity signals regulate energy and glucose homeostasis. Thus, understanding how POMC neurons integrate these two signal molecules at the synaptic level is important. Here we show that leptin's action on GABA release to POMC neurons is influenced by glucose levels. Leptin stimulates the JAK2-PI3K pathway in both presynaptic GABAergic terminals and postsynaptic POMC neurons. Inhibition of AMPK activity in presynaptic terminals decreases GABA release at 10 mM glucose. However, postsynaptic TRPC channel opening by the PI3K-PLC signalling pathway in POMC neurons enhances spontaneous GABA release via activation of presynaptic MC3/4 and mGlu receptors at 2.5 mM glucose. High-fat feeding blunts AMPK-dependent presynaptic inhibition, whereas PLC-mediated GABAergic feedback inhibition remains responsive to leptin. Our data indicate that the interplay between glucose and leptin signalling in glutamatergic POMC neurons is critical for determining the strength of inhibitory tone towards POMC neurons.
Florenzano, Fulvio; Veronica, Corsetti; Ciasca, Gabriele; Ciotti, Maria Teresa; Pittaluga, Anna; Olivero, Gunedalina; Feligioni, Marco; Iannuzzi, Filomena; Latina, Valentina; Maria Sciacca, Michele Francesco; Sinopoli, Alessandro; Milardi, Danilo; Pappalardo, Giuseppe; Marco, De Spirito; Papi, Massimiliano; Atlante, Anna; Bobba, Antonella; Borreca, Antonella; Calissano, Pietro; Amadoro, Giuseppina
2017-01-01
The largest part of tau secreted from AD nerve terminals and released in cerebral spinal fluid (CSF) is C-terminally truncated, soluble and unaggregated supporting potential extracellular role(s) of NH2 -derived fragments of protein on synaptic dysfunction underlying neurodegenerative tauopathies, including Alzheimer’s disease (AD). Here we show that sub-toxic doses of extracellular-applied human NH2 tau 26-44 (aka NH 2 htau) -which is the minimal active moiety of neurotoxic 20-22kDa peptide accumulating in vivo at AD synapses and secreted into parenchyma- acutely provokes presynaptic deficit in K+ -evoked glutamate release on hippocampal synaptosomes along with alteration in local Ca2+ dynamics. Neuritic dystrophy, microtubules breakdown, deregulation in presynaptic proteins and loss of mitochondria located at nerve endings are detected in hippocampal cultures only after prolonged exposure to NH 2 htau. The specificity of these biological effects is supported by the lack of any significant change, either on neuronal activity or on cellular integrity, shown by administration of its reverse sequence counterpart which behaves as an inactive control, likely due to a poor conformational flexibility which makes it unable to dynamically perturb biomembrane-like environments. Our results demonstrate that one of the AD-relevant, soluble and secreted N-terminally truncated tau forms can early contribute to pathology outside of neurons causing alterations in synaptic activity at presynaptic level, independently of overt neurodegeneration. PMID:29029390
Choi, Sung W.; Gerencser, Akos A.; Ng, Ryan; Flynn, James M.; Melov, Simon; Danielson, Steven R.; Gibson, Bradford W.; Nicholls, David G.; Bredesen, Dale E.; Brand, Martin D.
2012-01-01
Depressed cortical energy supply and impaired synaptic function are predominant associations of Alzheimer’s disease (AD). To test the hypothesis that presynaptic bioenergetic deficits are associated with the progression of AD pathogenesis, we compared bioenergetic variables of cortical and hippocampal presynaptic nerve terminals (synaptosomes) from commonly used mouse models with AD-like phenotypes (J20 age 6 months, Tg2576 age 16 months and APP/PS age 9 and 14 months) to age-matched controls. No consistent bioenergetic deficiencies were detected in synaptosomes from the three models, only APP/PS cortical synaptosomes from 14 month old mice showed an increase in respiration associated with proton leak. J20 mice were chosen for a highly stringent investigation of mitochondrial function and content. There were no significant differences in the quality of the synaptosomal preparations or the mitochondrial volume fraction. Furthermore, respiratory variables, calcium handling, and membrane potentials of synaptosomes from symptomatic J20 mice under calcium-imposed stress were not consistently impaired. The recovery of marker proteins during synaptosome preparation was the same, ruling out the possibility that the lack of functional bioenergetic defects in synaptosomes from J20 mice was due to the selective loss of damaged synaptosomes during sample preparation. Our results support the conclusion that the intrinsic bioenergetic capacities of presynaptic nerve terminals are maintained in these symptomatic AD mouse models. PMID:23175831
Minami, Akira; Sakurada, Naomi; Fuke, Sayuri; Kikuchi, Kazuya; Nagano, Tetsuo; Oku, Naoto; Takeda, Atsushi
2006-01-01
Zinc exists in high densities in the giant boutons of hippocampal mossy fibers. On the basis of the evidence that zinc decreases extracellular glutamate concentration in the hippocampus, the presynaptic action of zinc released from mossy fibers during high-frequency (tetanic) stimulation was examined using hippocampal slices. The increase in zinc-specific fluorescent signals was observed in both extracellular and intracellular compartments in the mossy fiber terminals during the delivery of tetanic stimuli (100 Hz, 1 sec) to the dentate granule cell layer, suggesting that zinc released from mossy fibers is immediately retaken up by mossy fibers. When mossy fiber terminals were preferentially double-stained with zinc and calcium indicators and tetanic stimuli (100 Hz, 1 sec) were delivered to the dentate granule cell layer, the increase in calcium orange signal during the stimulation was enhanced in mossy fiber terminals by addition of CaEDTA, a membrane-impermeable zinc chelator, and was suppressed by addition of zinc. The decrease in FM4-64 signal (vesicular exocytosis) during tetanic stimulation (10 Hz, 180 sec), which induced mossy fiber long-term potentiation, was also enhanced in mossy fiber terminals by addition of CaEDTA and was suppressed by addition of zinc. The present study demonstrates that zinc released from mossy fibers may be a negative-feedback factor against presynaptic activity during tetanic stimulation.
Lawrence, James L M; Tong, Mei; Alfulaij, Naghum; Sherrin, Tessi; Contarino, Mark; White, Michael M; Bellinger, Frederick P; Todorovic, Cedomir; Nichols, Robert A
2014-10-22
Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator. Copyright © 2014 the authors 0270-6474/14/3414210-09$15.00/0.
Gonzalez-Cordero, Anai; Kruczek, Kamil; Naeem, Arifa; Fernando, Milan; Kloc, Magdalena; Ribeiro, Joana; Goh, Debbie; Duran, Yanai; Blackford, Samuel J I; Abelleira-Hervas, Laura; Sampson, Robert D; Shum, Ian O; Branch, Matthew J; Gardner, Peter J; Sowden, Jane C; Bainbridge, James W B; Smith, Alexander J; West, Emma L; Pearson, Rachael A; Ali, Robin R
2017-09-12
Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Halbedl, Sonja; Schoen, Michael; Feiler, Marisa S; Boeckers, Tobias M; Schmeisser, Michael J
2016-04-01
Autism-related Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses. A few studies, however, have already indicated that within a neuron, the presence of Shank family members is not limited to the postsynaptic density. By separating axons from dendrites of developing hippocampal neurons in microfluidic chambers, we show that RNA of all three Shank family members is present within axons. Immunostaining confirms these findings as all three Shanks are indeed found within separated axons and further co-localize with well-known proteins of the presynaptic specialization in axon terminals. Therefore, Shank proteins might not only serve as postsynaptic scaffold proteins, but also play a crucial role during axonal outgrowth and presynaptic development and function. This is supported by our findings that shRNA-mediated knockdown of Shank3 results in up-regulation of the NMDA receptor subunit GluN1 in axon terminals. Taken together, our findings will have major implications for the future analysis of neuronal Shank biology in both health and disease. Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses strongly related to several neuropsychiatric disorders. However, a few studies have already implicated a functional role of the Shanks beyond the postsynaptic density (PSD). We here show that all three Shanks are localized in both axons and pre-synaptic specializiations of developing hippocampal neurons in culture. We further provide evidence that Shank3 is involved in the modulation of NMDA receptor levels at axon terminals. Taken together, our study will open up novel avenues for the future analysis of neuronal Shank biology in both health and disease. © 2016 International Society for Neurochemistry.
Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime
2015-09-01
Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.
Zhang, Xiao-Lei; Guariglia, Sara R; McGlothan, Jennifer L; Stansfield, Kirstie H; Stanton, Patric K; Guilarte, Tomás R
2015-01-01
Childhood lead (Pb2+) intoxication is a global public health problem and accounts for 0.6% of the global burden of disease associated with intellectual disabilities. Despite the recognition that childhood Pb2+ intoxication contributes significantly to intellectual disabilities, there is a fundamental lack of knowledge on presynaptic mechanisms by which Pb2+ disrupts synaptic function. In this study, using a well-characterized rodent model of developmental Pb2+ neurotoxicity, we show that Pb2+ exposure markedly inhibits presynaptic vesicular release in hippocampal Schaffer collateral-CA1 synapses in young adult rats. This effect was associated with ultrastructural changes which revealed a reduction in vesicle number in the readily releasable/docked vesicle pool, disperse vesicle clusters in the resting pool, and a reduced number of presynaptic terminals with multiple mitochondria with no change in presynaptic calcium influx. These studies provide fundamental knowledge on mechanisms by which Pb2+ produces profound inhibition of presynaptic vesicular release that contribute to deficits in synaptic plasticity and intellectual development.
Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons
Mosca, Timothy J; Luginbuhl, David J; Wang, Irving E; Luo, Liqun
2017-01-01
Precise coordination of synaptic connections ensures proper information flow within circuits. The activity of presynaptic organizing molecules signaling to downstream pathways is essential for such coordination, though such entities remain incompletely known. We show that LRP4, a conserved transmembrane protein known for its postsynaptic roles, functions presynaptically as an organizing molecule. In the Drosophila brain, LRP4 localizes to the nerve terminals at or near active zones. Loss of presynaptic LRP4 reduces excitatory (not inhibitory) synapse number, impairs active zone architecture, and abolishes olfactory attraction - the latter of which can be suppressed by reducing presynaptic GABAB receptors. LRP4 overexpression increases synapse number in excitatory and inhibitory neurons, suggesting an instructive role and a common downstream synapse addition pathway. Mechanistically, LRP4 functions via the conserved kinase SRPK79D to ensure normal synapse number and behavior. This highlights a presynaptic function for LRP4, enabling deeper understanding of how synapse organization is coordinated. DOI: http://dx.doi.org/10.7554/eLife.27347.001 PMID:28606304
Xu, Jianhua; Morris, Lynsie M; Michalakis, Stylianos; Biel, Martin; Fliesler, Steven J; Sherry, David M; Ding, Xi-Qin
2012-03-01
To investigate rod function and survival after cone dysfunction and degeneration in a mouse model of cone cyclic nucleotide-gated (CNG) channel deficiency. Rod function and survival in mice with cone CNG channel subunit CNGA3 deficiency (CNGA3-/- mice) were evaluated by electroretinographic (ERG), morphometric, and Western blot analyses. The arrangement, integrity, and ultrastructure of photoreceptor terminals were investigated by immunohistochemistry and electron microscopy. The authors found loss of cone function and cone death accompanied by impairment of rods and rod-driven signaling in CNGA3-/- mice. Scotopic ERG b-wave amplitudes were reduced by 15% at 1 month, 30% at 6 months, and 40% at 9 months and older, while scotopic a-wave amplitudes were decreased by 20% at 9 months, compared with ERGs of age-matched wild-type mice. Outer nuclear layer thickness in CNGA3-/- retina was reduced by 15% at 12 months compared with age-matched wild-type controls. This was accompanied by a 30%-40% reduction in expression of rod-specific proteins, including rhodopsin, rod transducin α-subunit, and glutamic acid-rich protein (GARP). Cone terminals in the CNGA3-/- retina showed a progressive loss of neurochemical and ultrastructural integrity. Abnormalities were observed as early as 1 month. Disorganized rod terminal ultrastructure was noted by 12 months. These findings demonstrate secondary rod impairment and degeneration after cone degeneration in mice with cone CNG channel deficiency. Loss of cone phototransduction accompanies the compromised integrity of cone terminals. With time, rod synaptic structure, function, and viability also become compromised.
Ding, Shengyuan; Li, Li
2015-01-01
The striatonigral projection is a striatal output pathway critical to motor control, cognition, and emotion regulation. Its axon terminals in the substantia nigra pars reticulata (SNr) express a high level of serotonin (5-HT) type 1B receptors (5-HT1BRs), whereas the SNr also receives an intense 5-HT innervation that expresses 5-HT transporters, providing an anatomic substrate for 5-HT and selective 5-HT reuptake inhibitor (SSRI)-based antidepressant treatment to regulate the striatonigral output. In this article we show that 5-HT, by activating presynaptic 5-HT1BRs on the striatonigral axon terminals, potently inhibited the striatonigral GABA output, as reflected in the reduction of the striatonigral inhibitory postsynaptic currents in SNr GABA neurons. Functionally, 5-HT1BR agonism reduced the striatonigral GABA output-induced pause of the spontaneous high-frequency firing in SNr GABA neurons. Equally important, chronic SSRI treatment with fluoxetine enhanced this presynaptic 5-HT1BR-mediated pause reduction in SNr GABA neurons. Taken together, these results indicate that activation of the 5-HT1BRs on the striatonigral axon terminals can limit the motor-promoting GABA output. Furthermore, in contrast to the desensitization of 5-HT1 autoreceptors, chronic SSRI-based antidepressant treatment sensitizes this presynaptic 5-HT1BR-mediated effect in the SNr, a novel cellular mechanism that alters the striatonigral information transfer, potentially contributing to the behavioral effects of chronic SSRI treatment. PMID:25787955
Delaney, K R; Zucker, R S
1990-07-01
1. Transmitter release at the squid giant synapse was stimulated by photolytic release of Ca2+ from the 'caged' Ca2+ compound DM-nitrophen (Kaplan & Ellis-Davies, 1988) inserted into presynaptic terminals. 2. Competing binding reactions cause the amount of Ca2+ released by DM-nitrophen photolysis to depend on the concentrations of DM-nitrophen, total Ca2+, Mg+, ATP and native cytoplasmic Ca2+ buffer. Measurements of presynaptic [Ca2+] changes by co-injection of the fluorescent indicator dye Fura-2 show that DM-nitrophen photolysis causes a transient rise in Ca2+ followed by decay within about 150 ms to an increased steady-state level. 3. Rapid photolysis of Ca2(+)-loaded nitrophen within the presynaptic terminal was followed in less than a millisecond by depolarization of the postsynaptic membrane. As with action potential-evoked excitatory postsynaptic potentials (EPSPs), the light-evoked response was partially and reversibly blocked by 1-3 mM-kainic acid which desensitizes postsynaptic glutamate receptors. 4. Release was similar in magnitude and rate to normal action potential-mediated EPSPs. 5. The release of transmitter by photolysis of Ca2(+)-loaded DM-nitrophen was not affected by removal of Ca2+ from the saline or addition of tetrodotoxin. Photolysis of DM-nitrophen injected into presynaptic terminals without added Ca2+ did not stimulate release of transmitter nor did it interfere with normal action potential-mediated release. 6. Stimulation of presynaptic action potentials in Ca2(+)-free saline during the light-evoked response did not elicit increased release of transmitter if the ganglion was bathed in Ca2(+)-free saline, i.e. in the absence of Ca2+ influx. Increasing the intensity of the light or stimulating presynaptic action potentials in Ca2(+)-containing saline increased the release of transmitter. Therefore the failure of presynaptic voltage change to increase transmitter release resulting from release of caged Ca2+ was not due to saturation or inhibition of the release mechanism by light-released Ca2+. 7. Decreasing the temperature of the preparation increased the delay to onset of the light-evoked response and reduced its amplitude and rate of rise to an extent similar to that observed for action potential-evoked EPSPs.
Xu, Jianhua; Morris, Lynsie M.; Michalakis, Stylianos; Biel, Martin; Fliesler, Steven J.; Sherry, David M.
2012-01-01
Purpose. To investigate rod function and survival after cone dysfunction and degeneration in a mouse model of cone cyclic nucleotide-gated (CNG) channel deficiency. Methods. Rod function and survival in mice with cone CNG channel subunit CNGA3 deficiency (CNGA3−/− mice) were evaluated by electroretinographic (ERG), morphometric, and Western blot analyses. The arrangement, integrity, and ultrastructure of photoreceptor terminals were investigated by immunohistochemistry and electron microscopy. Results. The authors found loss of cone function and cone death accompanied by impairment of rods and rod-driven signaling in CNGA3−/− mice. Scotopic ERG b-wave amplitudes were reduced by 15% at 1 month, 30% at 6 months, and 40% at 9 months and older, while scotopic a-wave amplitudes were decreased by 20% at 9 months, compared with ERGs of age-matched wild-type mice. Outer nuclear layer thickness in CNGA3−/− retina was reduced by 15% at 12 months compared with age-matched wild-type controls. This was accompanied by a 30%–40% reduction in expression of rod-specific proteins, including rhodopsin, rod transducin α-subunit, and glutamic acid-rich protein (GARP). Cone terminals in the CNGA3−/− retina showed a progressive loss of neurochemical and ultrastructural integrity. Abnormalities were observed as early as 1 month. Disorganized rod terminal ultrastructure was noted by 12 months. Conclusions. These findings demonstrate secondary rod impairment and degeneration after cone degeneration in mice with cone CNG channel deficiency. Loss of cone phototransduction accompanies the compromised integrity of cone terminals. With time, rod synaptic structure, function, and viability also become compromised. PMID:22247469
Target-specific expression of presynaptic NMDA receptors in neocortical microcircuits.
Buchanan, Katherine A; Blackman, Arne V; Moreau, Alexandre W; Elgar, Dale; Costa, Rui P; Lalanne, Txomin; Tudor Jones, Adam A; Oyrer, Julia; Sjöström, P Jesper
2012-08-09
Traditionally, NMDA receptors are located postsynaptically; yet, putatively presynaptic NMDA receptors (preNMDARs) have been reported. Although implicated in controlling synaptic plasticity, their function is not well understood and their expression patterns are debated. We demonstrate that, in layer 5 of developing mouse visual cortex, preNMDARs specifically control synaptic transmission at pyramidal cell inputs to other pyramidal cells and to Martinotti cells, while leaving those to basket cells unaffected. We also reveal a type of interneuron that mediates ascending inhibition. In agreement with synapse-specific expression, we find preNMDAR-mediated calcium signals in a subset of pyramidal cell terminals. A tuned network model predicts that preNMDARs specifically reroute information flow in local circuits during high-frequency firing, in particular by impacting frequency-dependent disynaptic inhibition mediated by Martinotti cells, a finding that we experimentally verify. We conclude that postsynaptic cell type determines presynaptic terminal molecular identity and that preNMDARs govern information processing in neocortical columns. Copyright © 2012 Elsevier Inc. All rights reserved.
James, Rebecca E; Hoover, Kendall M; Bulgari, Dinara; McLaughlin, Colleen N; Wilson, Christopher G; Wharton, Kristi A; Levitan, Edwin S; Broihier, Heather T
2014-12-08
Distinct pools of the bone morphogenetic protein (BMP) Glass bottom boat (Gbb) control structure and function of the Drosophila neuromuscular junction. Specifically, motoneuron-derived Gbb regulates baseline neurotransmitter release, whereas muscle-derived Gbb regulates neuromuscular junction growth. Yet how cells differentiate between these ligand pools is not known. Here we present evidence that the neuronal Gbb-binding protein Crimpy (Cmpy) permits discrimination of pre- and postsynaptic ligand by serving sequential functions in Gbb signaling. Cmpy first delivers Gbb to dense core vesicles (DCVs) for activity-dependent release from presynaptic terminals. In the absence of Cmpy, Gbb is no longer associated with DCVs and is not released by activity. Electrophysiological analyses demonstrate that Cmpy promotes Gbb's proneurotransmission function. Surprisingly, the Cmpy ectodomain is itself released upon DCV exocytosis, arguing that Cmpy serves a second function in BMP signaling. In addition to trafficking Gbb to DCVs, we propose that Gbb/Cmpy corelease from presynaptic terminals defines a neuronal protransmission signal. Copyright © 2014 Elsevier Inc. All rights reserved.
Xu, Wei; Tse, Yiu Chung; Dobie, Frederick A; Baudry, Michel; Craig, Ann Marie; Wong, Tak Pan; Wang, Yu Tian
2013-03-27
Although the contribution of postsynaptic mechanisms to long-term synaptic plasticity has been studied extensively, understanding the contribution of presynaptic modifications to this process lags behind, primarily because of a lack of techniques with which to directly and quantifiably measure neurotransmitter release from synaptic terminals. Here, we developed a method to measure presynaptic activity through the biotinylation of vesicular transporters in vesicles fused with presynaptic membranes during neurotransmitter release. This method allowed us for the first time to selectively quantify the spontaneous or evoked release of glutamate or GABA at their respective synapses. Using this method to investigate presynaptic changes during the expression of group I metabotropic glutamate receptor (mGluR1/5)-mediated long-term depression (LTD) in cultured rat hippocampal neurons, we discovered that this form of LTD was associated with increased presynaptic release of glutamate, despite reduced miniature EPSCs measured with whole-cell recording. Moreover, we found that specific blockade of AMPA receptor (AMPAR) endocytosis with a membrane-permeable GluR2-derived peptide not only prevented the expression of LTD but also eliminated LTD-associated increase in presynaptic release. Thus, our work not only demonstrates that mGluR1/5-mediated LTD is associated with increased endocytosis of postsynaptic AMPARs but also reveals an unexpected homeostatic/compensatory increase in presynaptic release. In addition, this study indicates that biotinylation of vesicular transporters in live cultured neurons is a valuable tool for studying presynaptic function.
Bergeron, Adam L; Schrader, Angela; Yang, Dan; Osman, Abdullah A; Simmons, Dwayne D
2005-12-01
To gain further insights into the cholinergic differentiation of presynaptic efferent terminals in the inner ear, we investigated the expression of the high-affinity choline transporter (ChT1) in comparison to other presynaptic and cholinergic markers. In the adult mammalian cochlea, cholinergic axons from medial olivocochlear (OC) neurons form axosomatic synapses with outer hair cells (OHCs), whereas axons from lateral OC neurons form axodendritic synapses on afferent fibers below inner hair cells (IHCs). Mouse brain and cochlea homogenates reveal at least two ChT1 isoforms: a nonglycosylated approximately 73 kDa protein and a glycosylated approximately 45 kDa protein. In mouse brain, ChT1 is preferentially expressed by neurons in periolivary regions of the superior olive consistent with the location of medial OC neurons. In the adult mouse cochlea, ChT1-positive terminals are located almost exclusively below OHCs consistent with a medial OC innervation. Between postnatal day 2 (P2) and P4, ChT1-positive terminals are below IHCs and occur after the expression of growth-associated protein 43, synapsin, and the vesicular acetylcholine transporter. By P15, ChT1-positive terminals are mostly on OHCs. Accounting for differences in gestational age, the developmental expression of ChT1 in the rat cochlea is similar to the mouse. However, in older rats ChT1-positive terminals are below IHCs and OHCs. In both rat and mouse, our observations indicate that the onset of ChT1 expression occurs after efferent terminals are below IHCs and express other presynaptic and cholinergic markers. In the mouse, but not in the rat, ChT1 may preferentially identify medial OC neurons.
Watabe, Ayako M; Nagase, Masashi; Hagiwara, Akari; Hida, Yamato; Tsuji, Megumi; Ochiai, Toshitaka; Kato, Fusao; Ohtsuka, Toshihisa
2016-01-01
Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, such as axon specifications and maturation in central and peripheral nervous systems. At mature pre-synaptic terminals, SAD-B is associated with synaptic vesicles and the active zone cytomatrix; however, how SAD-B regulates neurotransmission and synaptic plasticity in vivo remains unclear. Thus, we used SAD-B knockout (KO) mice to study the function of this pre-synaptic kinase in the brain. We found that the paired-pulse ratio was significantly enhanced at Shaffer collateral synapses in the hippocampal CA1 region in SAD-B KO mice compared with wild-type littermates. We also found that the frequency of the miniature excitatory post-synaptic current was decreased in SAD-B KO mice. Moreover, synaptic depression following prolonged low-frequency synaptic stimulation was significantly enhanced in SAD-B KO mice. These results suggest that SAD-B kinase regulates vesicular release probability at pre-synaptic terminals and is involved in vesicular trafficking and/or regulation of the readily releasable pool size. Finally, we found that hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice. These observations suggest that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, but their roles in mature brains were only partially known. Here, we demonstrated, at mature pre-synaptic terminals, that SAD-B regulates vesicular release probability and synaptic plasticity. Moreover, hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice, suggesting that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. © 2015 International Society for Neurochemistry.
Modulation of the Cholinergic Mechanisms in the Bronchial Smooth Muscle.
1984-06-01
after addition of the muscarinic agonist oxotremorine . Presynaptic Ach receptors were first reported to occur on nor- adrenergic terminals...muscarinic agonist, oxotremorine , reduced the output of [3H,-Ach by only 20% (Paper IV, Figure 4). This is a strong indication for the existence of...presynaptic muscarinic receptors, which modulate the release of Ach. The oxotremorine reduced release of [3H]-Ach upon stimulation was not mediated by a
Fedder, Karlie N; Sabo, Shasta L
2015-12-14
Proper formation and maturation of synapses during development is a crucial step in building the functional neural circuits that underlie perception and behavior. It is well established that experience modifies circuit development. Therefore, understanding how synapse formation is controlled by synaptic activity is a key question in neuroscience. In this review, we focus on the regulation of excitatory presynaptic terminal development by glutamate, the predominant excitatory neurotransmitter in the brain. We discuss the evidence that NMDA receptor activation mediates these effects of glutamate and present the hypothesis that local activation of presynaptic NMDA receptors (preNMDARs) contributes to glutamate-dependent control of presynaptic development. Abnormal glutamate signaling and aberrant synapse development are both thought to contribute to the pathogenesis of a variety of neurodevelopmental disorders, including autism spectrum disorders, intellectual disability, epilepsy, anxiety, depression, and schizophrenia. Therefore, understanding how glutamate signaling and synapse development are linked is important for understanding the etiology of these diseases.
Lee, Suho; Jung, Kyung Jin; Jung, Hyun Suk; Chang, Sunghoe
2012-01-01
Although quantum dots (QDs) have provided invaluable information regarding the diffusive behaviors of postsynaptic receptors, their application in presynaptic terminals has been rather limited. In addition, the diffraction-limited nature of the presynaptic bouton has hampered detailed analyses of the behaviors of synaptic vesicles (SVs) at synapses. Here, we created a quantum-dot based presynaptic probe and characterized the dynamic behaviors of individual SVs. As previously reported, the SVs exhibited multiple exchanges between neighboring boutons. Actin disruption induced a dramatic decrease in the diffusive behaviors of SVs at synapses while microtubule disruption only reduced extrasynaptic mobility. Glycine-induced synaptic potentiation produced significant increases in synaptic and inter-boutonal trafficking of SVs, which were NMDA receptor- and actin-dependent while NMDA-induced synaptic depression decreased the mobility of the SVs at synapses. Together, our results show that sPH-AP-QD revealed previously unobserved trafficking properties of SVs around synapses, and the dynamic modulation of SV mobility could regulate presynaptic efficacy during synaptic activity. PMID:22666444
Kinetics of Exocytosis Is Faster in Cones Than in Rods
Rabl, Katalin; Cadetti, Lucia; Thoreson, Wallace B.
2006-01-01
Cone-driven responses of second-order retinal neurons are considerably faster than rod-driven responses. We examined whether differences in the kinetics of synaptic transmitter release from rods and cones may contribute to differences in postsynaptic response kinetics. Exocytosis from rods and cones was triggered by membrane depolarization and monitored in two ways: (1) by measuring EPSCs evoked in second-order neurons by depolarizing steps applied to presynaptic rods or cones during simultaneous paired whole-cell recordings or (2) by direct measurements of exocytotic increases in membrane capacitance. The kinetics of release was assessed by varying the length of the depolarizing test step. Both measures of release revealed two kinetic components to the increase in exocytosis as a function of the duration of a step depolarization. In addition to slow sustained components in both cell types, the initial fast component of exocytosis had a time constant of <5 ms in cones, >10-fold faster than that of rods. Rod/cone differences in the kinetics of release were substantiated by a linear correlation between depolarization-evoked capacitance increases and EPSC charge transfer. Experiments on isolated rods indicate that the slower kinetics of exocytosis from rods was not a result of rod–rod coupling. The initial rapid release of vesicles from cones can shape the postsynaptic response and may contribute to the faster responses of cone-driven cells observed at light offset. PMID:15872111
Role of different types of Ca2+ channels and a reticulum-like Ca2+ pump in neurotransmitter release.
Fossier, P; Baux, G; Tauc, L
1993-01-01
The factors controlling the Ca2+ concentration directly responsible for triggering acetylcholine (ACh) release were investigated at an identified neuro-neuronal synapse of the Aplysia buccal ganglion. The types of presynaptic voltage-gated Ca2+ channels associated with transmitter release were determined by using selective blockers such as nifedipine, omega-conotoxin and a partially purified extract from the venom of a funnel web spider (FTx). L-type, N-type and P-type Ca2+ channels are present in the presynaptic neuron. The influx of Ca2+ through both N- and P-types induces the release of ACh whereas Ca2+ flowing through L-type channels modulates the duration of the presynaptic action potential by controlling the Ca(2+)-dependent K+ current. tBuBHQ, a blocker of the reticulum Ca2+ pump, induces a potentiation of evoked release without modifying the presynaptic Ca2+ influx. This seems to indicate that a part of the Ca2+ entering the presynaptic terminal through N- and P-type Ca2+ channels is sequestered in a presynaptic reticulum-like Ca2+ buffer preventing these ions from contributing to ACh release. To exert its control, this Ca2+ buffer must be located close to both the presynaptic Ca2+ channels and the transmitter release mechanism.
Oltedal, Leif; Hartveit, Espen
2010-05-01
Presynaptic transmitter release has mostly been studied through measurements of postsynaptic responses, but a few synapses offer direct access to the presynaptic terminal, thereby allowing capacitance measurements of exocytosis. For mammalian rod bipolar cells, synaptic transmission has been investigated in great detail by recording postsynaptic currents in AII amacrine cells. Presynaptic measurements of the dynamics of vesicular cycling have so far been limited to isolated rod bipolar cells in dissociated preparations. Here, we first used computer simulations of compartmental models of morphologically reconstructed rod bipolar cells to adapt the 'Sine + DC' technique for capacitance measurements of exocytosis at axon terminals of intact rod bipolar cells in retinal slices. In subsequent physiological recordings, voltage pulses that triggered presynaptic Ca(2+) influx evoked capacitance increases that were proportional to the pulse duration. With pulse durations 100 ms, the increase saturated at 10 fF, corresponding to the size of a readily releasable pool of vesicles. Pulse durations 400 ms evoked additional capacitance increases, probably reflecting recruitment from additional pools of vesicles. By using Ca(2+) tail current stimuli, we separated Ca(2+) influx from Ca(2+) channel activation kinetics, allowing us to estimate the intrinsic release kinetics of the readily releasable pool, yielding a time constant of 1.1 ms and a maximum release rate of 2-3 vesicles (release site)(1) ms(1). Following exocytosis, we observed endocytosis with time constants ranging from 0.7 to 17 s. Under physiological conditions, it is likely that release will be transient, with the kinetics limited by the activation kinetics of the voltage-gated Ca(2+) channels.
Fung, Samantha J.; Sivagnanasundaram, Sinthuja; Shannon Weickert, Cynthia
2010-01-01
Background Reduced synaptic connectivity in frontal cortex may contribute to schizophrenia symptoms. While altered mRNA and protein expression of various synaptic genes has been found, discrepancies between studies mean a generalisable synaptic pathology in schizophrenia has not been identified. Methods We determined if mRNAs encoding presynaptic proteins enriched in inhibitory [vesicular GABA transporter (VGAT) and complexin 1] and/or excitatory [vesicular glutamate transporter (VGluT1) and complexin 2] terminals are altered in the dorsolateral prefrontal cortex of subjects with schizophrenia (n=37 patients, n=37 controls). We also measured mRNA expression of markers associated with synaptic plasticity/neurite outgrowth [growth associated protein 43 (GAP43) and neuronal navigators 1 and 2 (NAV1 and NAV2)]; and mRNAs of other synaptic-associated proteins previously implicated in schizophrenia: dysbindin and vesicle-associated membrane protein (VAMP1) mRNAs using quantitative RT-PCR. Results No significant changes in complexin 1, VGAT, complexin 2, VGluT1, dysbindin, NAV2, or VAMP1 mRNA expression were found, however we observed reduced expression of mRNAs associated with plasticity/cytoskeletal modification (GAP43 and NAV1) in schizophrenia. Although dysbindin mRNA did not differ in schizophrenia compared to controls, dysbindin mRNA positively correlated with GAP-43 and NAV1 in schizophrenia, but not in controls, suggesting low levels of dysbindin may be linked to reduced plasticity in the disease state. No relationships between three dysbindin genetic polymorphisms previously associated with dysbindin mRNA levels were found. Conclusions A reduction in the plasticity of synaptic terminals supports the hypothesis that reduced modifiability of synaptic terminals may contribute to neuropathology and working memory deficits in schizophrenia. PMID:21145444
NASA Astrophysics Data System (ADS)
Ferron, Laurent; Nieto-Rostro, Manuela; Cassidy, John S.; Dolphin, Annette C.
2014-04-01
Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here we show that the functional expression of neuronal N-type CaV channels (CaV2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases CaV channel density in somata and in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain of FMRP and domains of CaV2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via CaV2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS.
Cellular projections from sensory hair cells form polarity-specific scaffolds during synaptogenesis
Dow, Eliot; Siletti, Kimberly
2015-01-01
The assembly of a nervous system requires the extension of axons and dendrites to specific regions where they are matched with appropriate synaptic targets. Although the cues that guide long-range outgrowth have been characterized extensively, additional mechanisms are required to explain short-range guidance in neural development. Using a complementary combination of time-lapse imaging by fluorescence confocal microscopy and serial block-face electron microscopy, we identified a novel type of presynaptic projection that participates in the assembly of the vertebrate nervous system. Synapse formation by each hair cell of the zebrafish's lateral line occurs during a particular interval after the cell's birth. During the same period, projections emerge from the cellular soma, extending toward a specific subpopulation of mature hair cells and interacting with polarity-specific afferent nerve terminals. The terminals then extend along the projections to reach appropriately matched presynaptic sites, after which the projections recede. Our results suggest that presynaptic projections act as transient scaffolds for short-range partner matching, a mechanism that may occur elsewhere in the nervous system. PMID:25995190
Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation
Li, Xiling; Goel, Pragya; Chen, Catherine; Angajala, Varun; Chen, Xun
2018-01-01
Postsynaptic compartments can be specifically modulated during various forms of synaptic plasticity, but it is unclear whether this precision is shared at presynaptic terminals. Presynaptic homeostatic plasticity (PHP) stabilizes neurotransmission at the Drosophila neuromuscular junction, where a retrograde enhancement of presynaptic neurotransmitter release compensates for diminished postsynaptic receptor functionality. To test the specificity of PHP induction and expression, we have developed a genetic manipulation to reduce postsynaptic receptor expression at one of the two muscles innervated by a single motor neuron. We find that PHP can be induced and expressed at a subset of synapses, over both acute and chronic time scales, without influencing transmission at adjacent release sites. Further, homeostatic modulations to CaMKII, vesicle pools, and functional release sites are compartmentalized and do not spread to neighboring pre- or post-synaptic structures. Thus, both PHP induction and expression mechanisms are locally transmitted and restricted to specific synaptic compartments. PMID:29620520
Early changes in synaptic connectivity following progressive photoreceptor degeneration in RCS rats.
Cuenca, Nicolás; Pinilla, Isabel; Sauvé, Yves; Lund, Raymond
2005-09-01
The Royal College of Surgeons (RCS) rat has a retinal pigment epithelial cell defect that causes progressive loss of photoreceptors. Although it is extensively used in retinal degeneration and repair studies, how photoreceptor degeneration affects retinal circuitry has not been fully explored. This study examined the changes in synaptic connectivity between photoreceptors and their target cells using immunocytochemistry and correlated these changes with retinal function using the electroretinogram (ERG). Immunostaining with bassoon and synaptophysin (as presynaptic markers) and metabotropic glutamate receptor (mGluR6, a postsynaptic marker for ON-bipolar dendrites) was already impaired at postnatal day (P) 21 and progressively lost with infrequent pairing of presynaptic and postsynaptic elements at P60. By P90 to P120, staining became increasingly patchy and was eventually restricted to sparsely and irregularly distributed foci in which the normal pairing of presynaptic and postsynaptic markers was lost. ERG results showed that mixed scotopic a-waves and b-waves were already reduced by P21 but not oscillatory potentials. While cone-driven responses (photopic b-wave) reached normal levels at P30, they were impaired by P60 but could still be recorded at P120, although with reduced amplitude; rod responses never reached normal amplitudes. Thus, only cone-driven activity attained normal levels, but declined rapidly thereafter. In conclusion, the synaptic markers associated with photoreceptors and processes of bipolar and horizontal cells show abnormalities prior to significant photoreceptor loss. These changes are paralleled with the deterioration of specific aspects of ERG responsiveness with age. Besides providing information on the effects of photoreceptor dysfunction and loss on connection patterns in the retina, the work addresses the more general issue of how disorder of input neurons affects downstream circuitry.
Presynaptic Protein Synthesis Is Required for Long-Term Plasticity of GABA Release.
Younts, Thomas J; Monday, Hannah R; Dudok, Barna; Klein, Matthew E; Jordan, Bryen A; Katona, István; Castillo, Pablo E
2016-10-19
Long-term changes of neurotransmitter release are critical for proper brain function. However, the molecular mechanisms underlying these changes are poorly understood. While protein synthesis is crucial for the consolidation of postsynaptic plasticity, whether and how protein synthesis regulates presynaptic plasticity in the mature mammalian brain remain unclear. Here, using paired whole-cell recordings in rodent hippocampal slices, we report that presynaptic protein synthesis is required for long-term, but not short-term, plasticity of GABA release from type 1 cannabinoid receptor (CB 1 )-expressing axons. This long-term depression of inhibitory transmission (iLTD) involves cap-dependent protein synthesis in presynaptic interneuron axons, but not somata. Translation is required during the induction, but not maintenance, of iLTD. Mechanistically, CB 1 activation enhances protein synthesis via the mTOR pathway. Furthermore, using super-resolution STORM microscopy, we revealed eukaryotic ribosomes in CB 1 -expressing axon terminals. These findings suggest that presynaptic local protein synthesis controls neurotransmitter release during long-term plasticity in the mature mammalian brain. Copyright © 2016 Elsevier Inc. All rights reserved.
Lisboa, Antonio; Melaré, Rodolfo; Franco, Junia R B; Bis, Carolina V; Gracia, Marta; Ponce-Soto, Luis A; Marangoni, Sérgio; Rodrigues-Simioni, Léa; da Cruz-Höfling, Maria Alice; Rocha, Thalita
2016-01-01
Neuromuscular preparations exposed to B. marajoensis venom show increases in the frequency of miniature end-plate potentials and twitch tension facilitation followed by presynaptic neuromuscular paralysis, without evidences of muscle damage. Considering that presynaptic toxins interfere into the machinery involved in neurotransmitter release (synaptophysin, synaptobrevin, and SNAP25 proteins), the main objective of this communication is to analyze, by immunofluorescence and western blotting, the expression of the synaptic proteins, synaptophysin, synaptobrevin, and SNAP25 and by myography, light, and transmission electron microscopy the pathology of motor nerve terminals and skeletal muscle fibres of chick biventer cervicis preparations (CBC) exposed in vitro to BmjeTX-I and BmjeTX-II toxins from B. marajoensis venom. CBC incubated with toxins showed irreversible twitch tension blockade and unaffected KCl- and ACh-evoked contractures, and the positive colabelling of acetylcholine receptors confirmed that their action was primarily at the motor nerve terminal. Hypercontraction and loose myofilaments and synaptic vesicle depletion and motor nerve damage indicated that the toxins displayed both myotoxic and neurotoxic effect. The blockade resulted from interference on synaptophysin, synaptobrevin, and SNAP25 proteins leading to the conclusion that BmjeTX-I and BmjeTX-II affected neurotransmitter release machinery by preventing the docking of synaptic vesicles to the axolemma of the nerve terminal.
Presynaptic Active Zone Density during Development and Synaptic Plasticity.
Clarke, Gwenaëlle L; Chen, Jie; Nishimune, Hiroshi
2012-01-01
Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.
Presynaptic Active Zone Density during Development and Synaptic Plasticity
Clarke, Gwenaëlle L.; Chen, Jie; Nishimune, Hiroshi
2012-01-01
Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated. PMID:22438837
Adaptations of Presynaptic Dopamine Terminals Induced by Psychostimulant Self-Administration
2015-01-01
A great deal of research has focused on investigating neurobiological alterations induced by chronic psychostimulant use in an effort to describe, understand, and treat the pathology of psychostimulant addiction. It has been known for several decades that dopamine neurotransmission in the nucleus accumbens is integrally involved in the selection and execution of motivated and goal-directed behaviors, and that psychostimulants act on this system to exert many of their effects. As such, a large body of work has focused on defining the consequences of psychostimulant use on dopamine signaling in the striatum as it relates to addictive behaviors. Here, we review presynaptic dopamine terminal alterations observed following self-administration of cocaine and amphetamine, as well as possible mechanisms by which these alterations occur and their impact on the progression of addiction. PMID:25491345
Del Prete, Dolores; Lombino, Franco; Liu, Xinran; D'Adamio, Luciano
2014-01-01
Amyloid Precursor Protein (APP) is a type I membrane protein that undergoes extensive processing by secretases, including BACE1. Although mutations in APP and genes that regulate processing of APP, such as PSENs and BRI2/ITM2B, cause dementias, the normal function of APP in synaptic transmission, synaptic plasticity and memory formation is poorly understood. To grasp the biochemical mechanisms underlying the function of APP in the central nervous system, it is important to first define the sub-cellular localization of APP in synapses and the synaptic interactome of APP. Using biochemical and electron microscopy approaches, we have found that APP is localized in pre-synaptic vesicles, where it is processed by Bace1. By means of a proteomic approach, we have characterized the synaptic interactome of the APP intracellular domain. We focused on this region of APP because in vivo data underline the central functional and pathological role of the intracellular domain of APP. Consistent with the expression of APP in pre-synaptic vesicles, the synaptic APP intracellular domain interactome is predominantly constituted by pre-synaptic, rather than post-synaptic, proteins. This pre-synaptic interactome of the APP intracellular domain includes proteins expressed on pre-synaptic vesicles such as the vesicular SNARE Vamp2/Vamp1 and the Ca2+ sensors Synaptotagmin-1/Synaptotagmin-2, and non-vesicular pre-synaptic proteins that regulate exocytosis, endocytosis and recycling of pre-synaptic vesicles, such as target-membrane-SNAREs (Syntaxin-1b, Syntaxin-1a, Snap25 and Snap47), Munc-18, Nsf, α/β/γ-Snaps and complexin. These data are consistent with a functional role for APP, via its carboxyl-terminal domain, in exocytosis, endocytosis and/or recycling of pre-synaptic vesicles.
Neuromodulation of activity-dependent synaptic enhancement at crayfish neuromuscular junction.
Qian, S M; Delaney, K R
1997-10-17
Action potential-evoked transmitter release is enhanced for many seconds after moderate-frequency stimulation (e.g. 15 Hz for 30 s) at the excitor motorneuron synapse of the crayfish dactyl opener muscle. Beginning about 1.5 s after a train, activity-dependent synaptic enhancement (ADSE) is dominated by a process termed augmentation (G.D. Bittner, D.A. Baxter, Synaptic plasticity at crayfish neuromuscular junctions: facilitation and augmentation, Synapse 7 (1991) 235-243'[4]; K.L. Magleby, Short-term changes in synaptic efficacy, in: G.M. Edelman, L.E. Gall, C.W. Maxwell (Eds.), Synaptic Function, John Wiley and Sons, New York, 1987, pp. 21-56; K.L. Magleby; J.E. Zengel, Augmentation: a process that acts to increase transmitter release at the frog neuromuscular junction, J. Physiol. (Lond.) 257 (1976) 449-470) which decays approximately exponentially with a time constant of about 10 s at 16 degrees C, reflecting the removal of Ca2+ which accumulates during the train in presynaptic terminals (K.R. Delaney, D.W. Tank, R.S. Zucker, Serotonin-mediated enhancement of transmission at crayfish neuromuscular junction is independent of changes in calcium, J. Neurosci. 11 (1991) 2631-2643). Serotonin (5-HT, 1 microM) increases evoked and spontaneous transmitter release several-fold (D. Dixon, H.L. Atwood, Crayfish motor nerve terminal's response to serotonin examined by intracellular microelectrode, J. Neurobiol. 16 (1985) 409-424; J. Dudel, Modulation of quantal synaptic release by serotonin and forskolin in crayfish motor nerve terminals, in: Modulation of Synaptic Transmission and Plasticity in Nervous Systems, G. Hertting, H.-C. Spatz (Eds.), Springer-Verlag, Berlin, 1988; S. Glusman, E.A. Kravitz. The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations, J. Physiol. (Lond.) 325 (1982) 223-241). We found that ADSE persists about 2-3 times longer after moderate-frequency presynaptic stimulation in the presence of 5-HT. This slowing of the decay of ADSE by 5-HT was not accompanied by significant changes in the initial amplitude of activity-dependent components of enhancement 1.5 s after the train. Measurements of presynaptic [Ca2+] indicated that the time course of Ca2+ removal from the presynaptic terminals after trains was not altered by 5-HT. Changes in presynaptic action potential shape, resting membrane potential or postsynaptic impedance after trains cannot account for slower recovery of ADSE. Axonal injection of EDTA slows the removal of residual Ca2+ and the decay of synaptic augmentation after trains of action potentials (K.R. Delaney, D.W. Tank, A quantitative measure of the dependence of short-term synaptic enhancement on presynaptic residual calcium, J. Neurosci. 14 (1994) 5885-5902), but has little or no effect on the 5-HT-induced persistence of ADSE. This also suggests that the time course of ADSE in the presence of 5-HT is not determined primarily by residual Ca2+ removal kinetics. The slowing of ADSE recovery after trains by 5-HT reverses with washing in 5-HT-free saline along with the 5-HT-mediated enhancement of release.
Ubiquitin–Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice
Liu, Yun; Li, Hongqiao; Sugiura, Yoshie; Han, Weiping; Gallardo, Gilbert; Khvotchev, Mikhail; Zhang, Yinan; Kavalali, Ege T.; Südhof, Thomas C.
2015-01-01
Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a “noncleavable” N-terminal ubiquitin moiety (UbG76V). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) UbG76V, GFP, and a synaptic vesicle protein synaptobrevin-2 (UbG76V-GFP-Syb2); (2) GFP-Syb2; or (3) UbG76V-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, UbG76V-GFP-Syb2, GFP-Syb2, and UbG76V-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, UbG76V-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and UbG76V-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in UbG76V-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that UbG76V-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in UbG76V-GFP-Syb2 mice. These findings indicate that UbG76V-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve terminals. SIGNIFICANCE STATEMENT Degeneration of motor nerve terminals occurs in amyotrophic lateral sclerosis (ALS) patients as well as in mouse models of ALS, leading to progressive paralysis. What causes a motor nerve terminal to degenerate remains unknown. Here we report on transgenic mice expressing a ubiquitinated synaptic vesicle protein (UbG76V-GFP-Syb2) that develop progressive degeneration of motor nerve terminals. These mice may serve as a model for further elucidating the underlying cellular and molecular mechanisms of presynaptic nerve terminal degeneration. PMID:26290230
Zucker, Robert S.
1974-01-01
1. Experiments were conducted to test the hypothesis that facilitation of transmitter release in response to repetitive stimulation of the exciter motor axon to the crayfish claw opener muscle is due to an increase in the amplitude or duration of the action potential in presynaptic terminals. No consistent changes were found in the nerve terminal potential (n.t.p.) recorded extracellularly at synaptic sites on the surface of muscle fibres. 2. Apparent changes in n.t.p. are attributed to three causes. (i) Some recordings are shown to be contaminated by non-specific muscle responses which grow during facilitation. (ii) Some averaged n.t.p.s exhibit opposite changes in amplitude and duration which suggest a change in the synchrony of presynaptic nerve impulses at different frequencies. (iii) Some changes in n.t.p. are blocked by γ-methyl glutamate, an antagonist of the post-synaptic receptor, which suggests that these changes are caused by small muscle movements. 3. The only change in n.t.p. believed to represent an actual change in the intracellular signal is a reduction in n.t.p. amplitude to the second of two stimuli separated by a brief interval. 4. Tetra-ethyl ammonium ions increase synaptic transmission about 20% and prolong the n.t.p. about 15%. This result suggests that an increase in n.t.p. large enough to increase transmission by the several hundred per cent occurring during facilitation would be detected. 5. The nerve terminals are electrically excitable, and most synaptic sites have a diphasic or triphasic n.t.p., which suggests that the motor neurone terminals are actively invaded by nerve impulses. 6. When nerve impulses are blocked in tetrodotoxin, depolarization of nerve terminals increases the frequency of miniature excitatory junctional potentials (e.j.p.s), and a phasic e.j.p. can be evoked by large, brief depolarizing pulses. Responses to repetitive or paired depolarizations of constant amplitude and duration exhibit a facilitation similar to that of e.j.p.s evoked by nerve impulses. 7. It is concluded that facilitation in the crayfish claw opener is not due to a change in the presynaptic action potential, but is due to some change at a later step in the depolarization—secretion process. PMID:4153766
Zucker, R S
1974-08-01
1. Experiments were conducted to test the hypothesis that facilitation of transmitter release in response to repetitive stimulation of the exciter motor axon to the crayfish claw opener muscle is due to an increase in the amplitude or duration of the action potential in presynaptic terminals. No consistent changes were found in the nerve terminal potential (n.t.p.) recorded extracellularly at synaptic sites on the surface of muscle fibres.2. Apparent changes in n.t.p. are attributed to three causes.(i) Some recordings are shown to be contaminated by non-specific muscle responses which grow during facilitation.(ii) Some averaged n.t.p.s exhibit opposite changes in amplitude and duration which suggest a change in the synchrony of presynaptic nerve impulses at different frequencies.(iii) Some changes in n.t.p. are blocked by gamma-methyl glutamate, an antagonist of the post-synaptic receptor, which suggests that these changes are caused by small muscle movements.3. The only change in n.t.p. believed to represent an actual change in the intracellular signal is a reduction in n.t.p. amplitude to the second of two stimuli separated by a brief interval.4. Tetra-ethyl ammonium ions increase synaptic transmission about 20% and prolong the n.t.p. about 15%. This result suggests that an increase in n.t.p. large enough to increase transmission by the several hundred per cent occurring during facilitation would be detected.5. The nerve terminals are electrically excitable, and most synaptic sites have a diphasic or triphasic n.t.p., which suggests that the motor neurone terminals are actively invaded by nerve impulses.6. When nerve impulses are blocked in tetrodotoxin, depolarization of nerve terminals increases the frequency of miniature excitatory junctional potentials (e.j.p.s), and a phasic e.j.p. can be evoked by large, brief depolarizing pulses. Responses to repetitive or paired depolarizations of constant amplitude and duration exhibit a facilitation similar to that of e.j.p.s evoked by nerve impulses.7. It is concluded that facilitation in the crayfish claw opener is not due to a change in the presynaptic action potential, but is due to some change at a later step in the depolarization-secretion process.
Ye, Xuan; Chang, Qing; Jeong, Yu Young; Cai, Huaibin; Kusnecov, Alexander
2017-01-01
Amyloid-β (Aβ) peptides play a key role in synaptic damage and memory deficits in the early pathogenesis of Alzheimer's disease (AD). Abnormal accumulation of Aβ at nerve terminals leads to synaptic pathology and ultimately to neurodegeneration. β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the major neuronal β-secretase for Aβ generation. However, the mechanisms regulating BACE1 distribution in axons and β cleavage of APP at synapses remain largely unknown. Here, we reveal that dynein–Snapin-mediated retrograde transport regulates BACE1 trafficking in axons and APP processing at presynaptic terminals. BACE1 is predominantly accumulated within late endosomes at the synapses of AD-related mutant human APP (hAPP) transgenic (Tg) mice and patient brains. Defective retrograde transport by genetic ablation of snapin in mice recapitulates late endocytic retention of BACE1 and increased APP processing at presynaptic sites. Conversely, overexpressing Snapin facilitates BACE1 trafficking and reduces synaptic BACE1 accumulation by enhancing the removal of BACE1 from distal AD axons and presynaptic terminals. Moreover, elevated Snapin expression via stereotactic hippocampal injections of adeno-associated virus particles in mutant hAPP Tg mouse brains decreases synaptic Aβ levels and ameliorates synapse loss, thus rescuing cognitive impairments associated with hAPP mice. Altogether, our study provides new mechanistic insights into the complex regulation of BACE1 trafficking and presynaptic localization through Snapin-mediated dynein-driven retrograde axonal transport, thereby suggesting a potential approach of modulating Aβ levels and attenuating synaptic deficits in AD. SIGNIFICANCE STATEMENT β-Site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) trafficking and synaptic localization significantly influence its β secretase activity and amyloid-β (Aβ) production. In AD brains, BACE1 is accumulated within dystrophic neurites, which is thought to augment Aβ-induced synaptotoxicity by Aβ overproduction. However, it remains largely unknown whether axonal transport regulates synaptic APP processing. Here, we demonstrate that Snapin-mediated retrograde transport plays a critical role in removing BACE1 from presynaptic terminals toward the soma, thus reducing synaptic Aβ production. Adeno-associated virus–mediated Snapin overexpression in the hippocampus of mutant hAPP mice significantly decreases synaptic Aβ levels, attenuates synapse loss, and thus rescues cognitive deficits. Our study uncovers a new pathway that controls synaptic APP processing by enhancing axonal BACE1 trafficking, thereby advancing our fundamental knowledge critical for ameliorating Aβ-linked synaptic pathology. PMID:28159908
Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina
Haq, Wadood; Arango-Gonzalez, Blanca; Zrenner, Eberhart; Euler, Thomas; Schubert, Timm
2014-01-01
During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs) establish contacts with remnant cone photoreceptors (cones) as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca2+ imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs), we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from interneurons such as HCs and/or possibly interplexiform cells. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type) cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates) the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells. PMID:25249942
Rotary high power transfer apparatus
NASA Technical Reports Server (NTRS)
Jacobson, Peter E. (Inventor); Porter, Ryan S. (Inventor)
1987-01-01
An apparatus for reducing terminal-to-terminal circuit resistance and enhancing heat transfer in a rotary power transfer apparatus of the roll ring type comprising a connecting thimble for attaching an external power cable to a cone shaped terminal which is attached to a tab integral to an outer ring. An inner ring having a spherical recess mates with the spherical end of a tie connector. A cone shaped terminal is fitted to a second connecting thimble for attaching a second external power cable.
The synaptic terminations of certain midbrain-olivary fibers in the opossum.
King, J S; Hamos, J E; Maley, B E
1978-11-15
The nuclear origin and distribution of midbrain-olivary fibers has been described in a previous study utilizing axonal transport techniques (Linauts and Martin, '78a). The present report extends their results to the electron microscopic level and details the postsynaptic distribution of such fibers. Lesions within the ventral periaqueductal grey and adjacent tegmentum, the red nucleus or the nucleus subparafascicularis result in electron dense axon terminals within the olive at survival times of 48, 72 and 96 hours. At 72 hours, many degenerating presynaptic profiles shrink, become irregular in shape and are totally or partially surrounded by glial processes. The principal olivary nucleus contains the majority of these profiles. However, the subparafascicular terminals are more abundant in the rostral and intermediate parts of the medial accessory nucleus and the rubral terminals are concentrated within the dorsal lamella of the principal nucleus. The nuclear location of the degenerating terminals was determined by examination of 1 micrometer plastic sections cut in the transverse plane from each block face prior to thin sectioning. Degenerating terminals were counted in three cases, one from each of the three lesion sites described above. When taken together these cases show that just over 50% of the degenerating terminals are presynaptic to spiny appendages and are located within the synaptic clusters (glomeruli) described previously (King, '76). The percentage of degenerating terminals in the glomeruli increases to 70% when the lesion is in the ventral periaqueductal grey and adjacent tegmentum. The remaining degenerating terminals contact dendritic shafts outside the astrocytic boundaries of the synaptic clusters. The synpatic vesicle populations within the degenerating terminals vary with the location of the lesion. Lesions in the ventral periaqueductal grey and the adjacent tegmentum result in the degeneration of terminals with either clear spherical vesicles or endings with both clear spherical vesicles and a variable number of large dense core vesicles. In contrast, the primary degenerative changes that occur after destruction of the red nucleus or the nucleus subparafascicularis are in terminals with clear spherical vesicles. When the synaptic complex was present in the plane of section, regardless of the site of the lesion, the degenerating terminals could be classified as Gray's type I. Thus, we have demonstrated that afferents from the mesencephalon terminate within synpatic clusters located in the principal and medial accessory (part A) subnuclei of the inferior olive. Although the mesencephalic afferents have multiple origins (Linauts and Martin, '78a), many of their synaptic terminals contact spiny appendages within the synaptic clusters. This postsynaptic site also receives cerebellar terminals (King et al., '76). The origin of presynaptic profiles within the synaptic clusters that contain clear pleomorphlic vesicles is yet to be determined.
Gervasi, Noreen M; Scott, Shane S; Aschrafi, Armaz; Gale, Jenna; Vohra, Sanah N; MacGibeny, Margaret A; Kar, Amar N; Gioio, Anthony E; Kaplan, Barry B
2016-06-01
Synthesis and regulation of catecholamine neurotransmitters in the central nervous system are implicated in the pathogenesis of a number of neuropsychiatric disorders. To identify factors that regulate the presynaptic synthesis of catecholamines, we tested the hypothesis that the rate-limiting enzyme of the catecholamine biosynthetic pathway, tyrosine hydroxylase (TH), is locally synthesized in axons and presynaptic nerve terminals of noradrenergic neurons. To isolate pure axonal mRNA and protein, rat superior cervical ganglion sympathetic neurons were cultured in compartmentalized Campenot chambers. qRT-PCR and RNA in situ hybridization analyses showed that TH mRNA is present in distal axons. Colocalization experiments with nerve terminal marker proteins suggested that both TH mRNA and protein localize in regions of the axon that resemble nerve terminals (i.e., synaptic boutons). Analysis of polysome-bound RNA showed that TH mRNA is present in polysomes isolated from distal axons. Metabolic labeling of axonally synthesized proteins labeled with the methionine analog, L-azidohomoalanine, showed that TH is locally synthesized in axons. Moreover, the local transfection and translation of exogenous TH mRNA into distal axons facilitated axonal dopamine synthesis. Finally, using chimeric td-Tomato-tagged constructs, we identified a sequence element within the TH 3'UTR that is required for the axonal localization of the reporter mRNA. Taken together, our results provide the first direct evidence that TH mRNA is trafficked to the axon and that the mRNA is locally translated. These findings raise the interesting possibility that the biosynthesis of the catecholamine neurotransmitters is locally regulated in the axon and/or presynaptic nerve terminal. Published by Cold Spring Harbor Laboratory Press for the RNA Society.
High pressure, high current, low inductance, high reliability sealed terminals
Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN
2010-03-23
The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.
Imai, Fumiyasu; Ladle, David R.; Leslie, Jennifer R.; Duan, Xin; Rizvi, Tilat A.; Ciraolo, Georgianne M.; Zheng, Yi
2016-01-01
Spinal reflex circuit development requires the precise regulation of axon trajectories, synaptic specificity, and synapse formation. Of these three crucial steps, the molecular mechanisms underlying synapse formation between group Ia proprioceptive sensory neurons and motor neurons is the least understood. Here, we show that the Rho GTPase Cdc42 controls synapse formation in monosynaptic sensory–motor connections in presynaptic, but not postsynaptic, neurons. In mice lacking Cdc42 in presynaptic sensory neurons, proprioceptive sensory axons appropriately reach the ventral spinal cord, but significantly fewer synapses are formed with motor neurons compared with wild-type mice. Concordantly, electrophysiological analyses show diminished EPSP amplitudes in monosynaptic sensory–motor circuits in these mutants. Temporally targeted deletion of Cdc42 in sensory neurons after sensory–motor circuit establishment reveals that Cdc42 does not affect synaptic transmission. Furthermore, addition of the synaptic organizers, neuroligins, induces presynaptic differentiation of wild-type, but not Cdc42-deficient, proprioceptive sensory neurons in vitro. Together, our findings demonstrate that Cdc42 in presynaptic neurons is required for synapse formation in monosynaptic sensory–motor circuits. SIGNIFICANCE STATEMENT Group Ia proprioceptive sensory neurons form direct synapses with motor neurons, but the molecular mechanisms underlying synapse formation in these monosynaptic sensory–motor connections are unknown. We show that deleting Cdc42 in sensory neurons does not affect proprioceptive sensory axon targeting because axons reach the ventral spinal cord appropriately, but these neurons form significantly fewer presynaptic terminals on motor neurons. Electrophysiological analysis further shows that EPSPs are decreased in these mice. Finally, we demonstrate that Cdc42 is involved in neuroligin-dependent presynaptic differentiation of proprioceptive sensory neurons in vitro. These data suggest that Cdc42 in presynaptic sensory neurons is essential for proper synapse formation in the development of monosynaptic sensory–motor circuits. PMID:27225763
ON Cone Bipolar Cell Axonal Synapses in the OFF Inner Plexiform Layer of the Rabbit Retina
Lauritzen, J. Scott; Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Mohammed, Shoeb; Hoang, John V.; Marc, Robert E.
2012-01-01
Analysis of the rabbit retinal connectome RC1 reveals that the division between the ON and OFF inner plexiform layer (IPL) is not structurally absolute. ON cone bipolar cells make non-canonical axonal synapses onto specific targets and receive amacrine cell synapses in the nominal OFF layer, creating novel motifs, including inhibitory crossover networks. Automated transmission electron microscope (ATEM) imaging, molecular tagging, tracing, and rendering of ≈ 400 bipolar cells reveals axonal ribbons in 36% of ON cone bipolar cells, throughout the OFF IPL. The targets include GABA-positive amacrine cells (γACs), glycine-positive amacrine cells (GACs) and ganglion cells. Most ON cone bipolar cell axonal contacts target GACs driven by OFF cone bipolar cells, forming new architectures for generating ON-OFF amacrine cells. Many of these ON-OFF GACs target ON cone bipolar cell axons, ON γACs and/or ON-OFF ganglion cells, representing widespread mechanisms for OFF to ON crossover inhibition. Other targets include OFF γACs presynaptic to OFF bipolar cells, forming γAC-mediated crossover motifs. ON cone bipolar cell axonal ribbons drive bistratified ON-OFF ganglion cells in the OFF layer and provide ON drive to polarity-appropriate targets such as bistratified diving ganglion cells (bsdGCs). The targeting precision of ON cone bipolar cell axonal synapses shows that this drive incidence is necessarily a joint distribution of cone bipolar cell axonal frequency and target cell trajectories through a given volume of the OFF layer. Such joint distribution sampling is likely common when targets are sparser than sources and when sources are coupled, as are ON cone bipolar cells. PMID:23042441
Clarke, Stephen G.; Scarnati, Matthew S.
2016-01-01
At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. SIGNIFICANCE STATEMENT The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. PMID:27911759
Clarke, Stephen G; Scarnati, Matthew S; Paradiso, Kenneth G
2016-11-09
At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. Copyright © 2016 the authors 0270-6474/16/3611559-14$15.00/0.
Acute hyperbilirubinaemia induces presynaptic neurodegeneration at a central glutamatergic synapse
Haustein, Martin D; Read, David J; Steinert, Joern R; Pilati, Nadia; Dinsdale, David; Forsythe, Ian D
2010-01-01
There is a well-established link between hyperbilirubinaemia and hearing loss in paediatrics, but the cellular mechanisms have not been elucidated. Here we used the Gunn rat model of hyperbilirubinaemia to investigate bilirubin-induced hearing loss. In vivo auditory brainstem responses revealed that Gunn rats have severe auditory deficits within 18 h of exposure to high bilirubin levels. Using an in vitro preparation of the auditory brainstem from these rats, extracellular multi-electrode array recording from the medial nucleus of the trapezoid body (MNTB) showed longer latency and decreased amplitude of evoked field potentials following bilirubin exposure, suggestive of transmission failure at this synaptic relay. Whole-cell patch-clamp recordings confirmed that the electrophysiological properties of the postsynaptic MNTB neurons were unaffected by bilirubin, with no change in action potential waveforms or current–voltage relationships. However, stimulation of the trapezoid body was unable to elicit large calyceal EPSCs in MNTB neurons of hyperbilirubinaemic rats, indicative of damage at a presynaptic site. Multi-photon imaging of anterograde-labelled calyceal projections revealed axonal staining and presynaptic profiles around MNTB principal neuron somata. Following induction of hyperbilirubinaemia the giant synapses were largely destroyed. Electron microscopy confirmed loss of presynaptic calyceal terminals and supported the electrophysiological evidence for healthy postsynaptic neurons. MNTB neurons express high levels of neuronal nitric oxide synthase (nNOS). Nitric oxide has been implicated in mechanisms of bilirubin toxicity elsewhere in the brain, and antagonism of nNOS by 7-nitroindazole protected hearing during bilirubin exposure. We conclude that bilirubin-induced deafness is caused by degeneration of excitatory synaptic terminals in the auditory brainstem. PMID:20937712
Acute hyperbilirubinaemia induces presynaptic neurodegeneration at a central glutamatergic synapse.
Haustein, Martin D; Read, David J; Steinert, Joern R; Pilati, Nadia; Dinsdale, David; Forsythe, Ian D
2010-12-01
There is a well-established link between hyperbilirubinaemia and hearing loss in paediatrics, but the cellular mechanisms have not been elucidated. Here we used the Gunn rat model of hyperbilirubinaemia to investigate bilirubin-induced hearing loss. In vivo auditory brainstem responses revealed that Gunn rats have severe auditory deficits within 18 h of exposure to high bilirubin levels. Using an in vitro preparation of the auditory brainstem from these rats, extracellular multi-electrode array recording from the medial nucleus of the trapezoid body (MNTB) showed longer latency and decreased amplitude of evoked field potentials following bilirubin exposure, suggestive of transmission failure at this synaptic relay. Whole-cell patch-clamp recordings confirmed that the electrophysiological properties of the postsynaptic MNTB neurons were unaffected by bilirubin, with no change in action potential waveforms or current-voltage relationships. However, stimulation of the trapezoid body was unable to elicit large calyceal EPSCs in MNTB neurons of hyperbilirubinaemic rats, indicative of damage at a presynaptic site. Multi-photon imaging of anterograde-labelled calyceal projections revealed axonal staining and presynaptic profiles around MNTB principal neuron somata. Following induction of hyperbilirubinaemia the giant synapses were largely destroyed. Electron microscopy confirmed loss of presynaptic calyceal terminals and supported the electrophysiological evidence for healthy postsynaptic neurons. MNTB neurons express high levels of neuronal nitric oxide synthase (nNOS). Nitric oxide has been implicated in mechanisms of bilirubin toxicity elsewhere in the brain, and antagonism of nNOS by 7-nitroindazole protected hearing during bilirubin exposure. We conclude that bilirubin-induced deafness is caused by degeneration of excitatory synaptic terminals in the auditory brainstem.
Omori, Yoshihiro; Araki, Fumiyuki; Chaya, Taro; Kajimura, Naoko; Irie, Shoichi; Terada, Koji; Muranishi, Yuki; Tsujii, Toshinori; Ueno, Shinji; Koyasu, Toshiyuki; Tamaki, Yasuhiro; Kondo, Mineo; Amano, Shiro; Furukawa, Takahisa
2012-05-02
Dystroglycan (DG) is a key component of the dystrophin-glycoprotein complex (DGC) at the neuromuscular junction postsynapse. In the mouse retina, the DGC is localized at the presynapse of photoreceptor cells, however, the function of presynaptic DGC is poorly understood. Here, we developed and analyzed retinal photoreceptor-specific DG conditional knock-out (DG CKO) mice. We found that the DG CKO retina showed a reduced amplitude and a prolonged implicit time of the ERG b-wave. Electron microscopic analysis revealed that bipolar dendrite invagination into the photoreceptor terminus is perturbed in the DG CKO retina. In the DG CKO retina, pikachurin, a DG ligand in the retina, is markedly decreased at photoreceptor synapses. Interestingly, in the Pikachurin(-/-) retina, the DG signal at the ribbon synaptic terminus was severely reduced, suggesting that pikachurin is required for the presynaptic accumulation of DG at the photoreceptor synaptic terminus, and conversely DG is required for pikachurin accumulation. Furthermore, we found that overexpression of pikachurin induces formation and clustering of a DG-pikachurin complex on the cell surface. The Laminin G repeats of pikachurin, which are critical for its oligomerization and interaction with DG, were essential for the clustering of the DG-pikachurin complex as well. These results suggest that oligomerization of pikachurin and its interaction with DG causes DG assembly on the synapse surface of the photoreceptor synaptic terminals. Our results reveal that the presynaptic interaction of pikachurin with DG at photoreceptor terminals is essential for both the formation of proper photoreceptor ribbon synaptic structures and normal retinal electrophysiology.
Pittaluga, Anna; Feligioni, Marco; Longordo, Fabio; Luccini, Elisa; Raiteri, Maurizio
2006-03-01
Postsynaptic glutamate AMPA receptors (AMPARs) can recycle between plasma membrane and intracellular pools. In contrast, trafficking of presynaptic AMPARs has not been investigated. AMPAR surface expression involves interactions between the GluR2 carboxy tail and various proteins including glutamate receptor-interacting protein (GRIP), AMPA receptor-binding protein (ABP), protein interacting with C kinase 1 (PICK1), N-ethyl-maleimide-sensitive fusion protein (NSF). Here, peptides known to selectively block the above interactions were entrapped into synaptosomes to study the effects on the AMPA-evoked release of [3H]noradrenaline ([3H]NA) and [3H]acetylcholine ([3H]ACh) from rat hippocampal and cortical synaptosomes, respectively. Internalization of pep2-SVKI to prevent GluR2-GRIP/ABP/PICK1 interactions potentiated the AMPA-evoked release of [3H]NA but left unmodified that of [3H]ACh. Similar potentiation was caused by pep2-AVKI, the blocker of GluR2-PICK1 interaction. Conversely, a decrease in the AMPA-evoked release of [3H]NA, but not of [3H]ACh, was caused by pep2m, a selective blocker of the GluR2-NSF interaction. In the presence of pep2-SVKI the presynaptic AMPARs on noradrenergic terminals lost sensitivity to cyclothiazide. AMPARs releasing [3H]ACh, but not those releasing [3H]NA, were sensitive to spermine, suggesting that they are GluR2-lacking AMPARs. To conclude: (i) release-regulating presynaptic AMPARs constitutively cycle in isolated nerve terminals; (ii) the process exhibits neuronal selectivity; (iii) AMPAR trafficking and desensitization may be interrelated.
Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory.
Sindreu, Carlos; Palmiter, Richard D; Storm, Daniel R
2011-02-22
The physiological role of vesicular zinc at central glutamatergic synapses remains poorly understood. Here we show that mice lacking the synapse-specific vesicular zinc transporter ZnT3 (ZnT3KO mice) have reduced activation of the Erk1/2 MAPK in hippocampal mossy fiber terminals, disinhibition of zinc-sensitive MAPK tyrosine phosphatase activity, and impaired MAPK signaling during hippocampus-dependent learning. Activity-dependent exocytosis is required for the effect of zinc on presynaptic MAPK and phosphatase activity. ZnT3KO mice have complete deficits in contextual discrimination and spatial working memory. Local blockade of zinc or MAPK in the mossy fiber pathway of wild-type mice impairs contextual discrimination. We conclude that ZnT3 is important for zinc homeostasis modulating presynaptic MAPK signaling and is required for hippocampus-dependent memory.
Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory
Sindreu, Carlos; Palmiter, Richard D.; Storm, Daniel R.
2011-01-01
The physiological role of vesicular zinc at central glutamatergic synapses remains poorly understood. Here we show that mice lacking the synapse-specific vesicular zinc transporter ZnT3 (ZnT3KO mice) have reduced activation of the Erk1/2 MAPK in hippocampal mossy fiber terminals, disinhibition of zinc-sensitive MAPK tyrosine phosphatase activity, and impaired MAPK signaling during hippocampus-dependent learning. Activity-dependent exocytosis is required for the effect of zinc on presynaptic MAPK and phosphatase activity. ZnT3KO mice have complete deficits in contextual discrimination and spatial working memory. Local blockade of zinc or MAPK in the mossy fiber pathway of wild-type mice impairs contextual discrimination. We conclude that ZnT3 is important for zinc homeostasis modulating presynaptic MAPK signaling and is required for hippocampus-dependent memory. PMID:21245308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Our research efforts in the first funding year concentrated on animal and clinical studies validating {sup 11}C-hydroxyephedrine as a marker for norepinephrine uptake and storage in presynaptic sympathetic nerve terminals. In addition to kinetic studies in animals, the first clinical studies have been performed. {sup 11}C-hydroxyephedrine provides excellent image quality in the human heart with high myocardium to blood ratios. A canine model with transient intracoronary occlusion of the left anterior descending aorta was used to show decreased retention of tracer with ischemia. Clinical studies of patients with acute myocardial infarction showed an area of decreased retention of tracer exceedingmore » the infarct territory as defined by {sup 82}Rb blood flow imaging. We are also developing tracers for the parasympathetic nervous system. It appears that methyl-TRB is a specific tracer for this system. Studies of {sup 11}C- or {sup 18}F-benzovesamicol as a potential tracer for parasympathetic presynaptic nerve terminals are under way. (MHB)« less
TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piao, L.-H.; Fujita, Tsugumi; Jiang, C.-Y.
2009-02-20
We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na{sup +}-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement.more » These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.« less
Moldavan, Mykhaylo G; Allen, Charles N
2013-01-01
Light is the most important environmental signal that entrains the circadian clock located in the hypothalamic suprachiasmatic nucleus (SCN). The retinohypothalamic tract (RHT) was stimulated to simulate the light intensity-dependent discharges of intrinsically photosensitive retinal ganglion cells projecting axons to the hypothalamus. EPSCs were evoked by paired-pulse stimulation or by application of stimulus trains, and recorded from SCN neurons in rat brain slices. Initial release probability (Pr) and synaptic plasticity changes depended on the strength of GABAB receptor (GABABR)-mediated presynaptic inhibition and could be different at the same GABABR agonist concentration. Facilitation caused by frequency-dependent relief of GABABR-mediated inhibition was observed when the initial Pr was decreased to less than 15% of control during strong activation of presynaptic GABAB receptors by (±)baclofen (10 μm), GABA (≥2 mm) or by GABA uptake inhibitor nipecotic acid (≥5 mm). In contrast, short-term synaptic depression appeared during baclofen (10 μm) application when initial Pr was greater than 30% of control. Block of 4-aminopyridine-sensitive K+ currents increased the amplitude and time constant of decay of evoked EPSCs (eEPSCs), and decreased the GABABR-mediated presynaptic inhibition. The GABAB receptor antagonist CGP55845 (3 μm) increased the eEPSCs amplitude 30% throughout the light−dark cycle. During light and dark phases the RHT inputs to 55% and 33% of recorded neurons, respectively, were under GABAB inhibitory control indicating that the tonic inhibition induced by local changes of endogenous GABA concentration contributes to the circadian variation of RHT transmitter release. We conclude that GABABR-mediated presynaptic inhibition decreased with increasing frequency and broadening of presynaptic action potentials, and depended on the sensitivity of RHT terminals to GABABR agonists, and diurnal changes of the extracellular GABA concentration around RHT axon terminals in the SCN. PMID:23401614
Sierra, F; Lorenzo, D; Macadar, O; Buño, W
1995-06-19
The effects of omega-conotoxin-GVIA (omega-CgTX) on synaptic transmission were studied in the electromotoneuron-electrocyte synapses of the electric organ (EO) of the weakly electric fish Gymnotus carapo. omega-CgTX selectively and irreversibly blocked excitatory postsynaptic potentials (EPSPs) in a dose dependent-manner. The toxin had no effect on: (a) resting postsynaptic membrane potential and conductance; (b) postsynaptic action potentials elicited by depolarizing transmembrane current pulses; (c) the action potential conduction in the presynaptic fiber; (d) acetylcholine (ACh)-induced postsynaptic responses. Nifedipine - a selective dihydropyridine antagonist of the L-type voltage-dependent Ca2+ channels (VDCCs) - did not affect synaptic transmission. Transmission was also undisturbed by the peptide omega-Agatoxin (omega-Aga-IVA), the low molecular weight polyamine, funnel-web toxin (FTX) - both included in the venom of the spider Agelenopsis aperta - and its synthetic analog sFTX, all selective blockers of P-type VDCCs. Since omega-CgTX irreversibly blocks the N-type VDCCs, we conclude that presynaptic N-type VDCCs mediate transmitter release at electromotoneuron terminals. The VDCCs involved in fish peripheral electromotoneuron-electrocyte presynaptic transmitter release are therefore similar to those in amphibian, reptilian and avian peripheral synapses, but differ from mammalian and invertebrate motoneuron terminals.
Astrocyte lipid metabolism is critical for synapse development and function in vivo.
van Deijk, Anne-Lieke F; Camargo, Nutabi; Timmerman, Jaap; Heistek, Tim; Brouwers, Jos F; Mogavero, Floriana; Mansvelder, Huibert D; Smit, August B; Verheijen, Mark H G
2017-04-01
The brain is considered to be autonomous in lipid synthesis with astrocytes producing lipids far more efficiently than neurons. Accordingly, it is generally assumed that astrocyte-derived lipids are taken up by neurons to support synapse formation and function. Initial confirmation of this assumption has been obtained in cell cultures, but whether astrocyte-derived lipids support synapses in vivo is not known. Here, we address this issue and determined the role of astrocyte lipid metabolism in hippocampal synapse formation and function in vivo. Hippocampal protein expression for the sterol regulatory element-binding protein (SREBP) and its target gene fatty acid synthase (Fasn) was found in astrocytes but not in neurons. Diminishing SREBP activity in astrocytes using mice in which the SREBP cleavage-activating protein (SCAP) was deleted from GFAP-expressing cells resulted in decreased cholesterol and phospholipid secretion by astrocytes. Interestingly, SCAP mutant mice showed more immature synapses, lower presynaptic protein SNAP-25 levels as well as reduced numbers of synaptic vesicles, indicating impaired development of the presynaptic terminal. Accordingly, hippocampal short-term and long-term synaptic plasticity were defective in mutant mice. These findings establish a critical role for astrocyte lipid metabolism in presynaptic terminal development and function in vivo. GLIA 2017;65:670-682. © 2017 Wiley Periodicals, Inc.
Molecular organization of excitatory chemical synapses in the mammalian brain
NASA Astrophysics Data System (ADS)
Gundelfinger, E. D.; tom Dieck, S.
Chemical synapses are highly specialized cell-cell junctions designed for efficient signaling between nerve cells. Distinct cytoskeletal matrices are assembled at either side of the synaptic junction. The presynaptic cytomatrix at the active zone (CAZ) defines and organizes the site of neurotransmitter release from presynaptic nerve terminals. The postsynaptic density (PSD) tethers neurotransmitter receptors and the postsynaptic signal transduction machinery. Recent progress in the identification and characterization of novel CAZ and PSD components has revealed new insights into the molecular organization and assembly mechanisms of the synaptic neurotransmission apparatus. On the presynaptic side, Bassoon and Piccolo, two related giant proteins, are crucially involved in scaffolding the CAZ. On the postsynaptic side, two families of multi-domain adaptor proteins, the MAGuKs (membrane-associated guanylate kinase homologs) and the ProSAP (proline-rich synapse-associated protein, also termed Shank) family members are thought to be major organizing molecules of the PSD.
Locomotor training improves premotoneuronal control after chronic spinal cord injury.
Knikou, Maria; Mummidisetty, Chaithanya K
2014-06-01
Spinal inhibition is significantly reduced after spinal cord injury (SCI) in humans. In this work, we examined if locomotor training can improve spinal inhibition exerted at a presynaptic level. Sixteen people with chronic SCI received an average of 45 training sessions, 5 days/wk, 1 h/day. The soleus H-reflex depression in response to low-frequency stimulation, presynaptic inhibition of soleus Ia afferent terminals following stimulation of the common peroneal nerve, and bilateral EMG recovery patterns were assessed before and after locomotor training. The soleus H reflexes evoked at 1.0, 0.33, 0.20, 0.14, and 0.11 Hz were normalized to the H reflex evoked at 0.09 Hz. Conditioned H reflexes were normalized to the associated unconditioned H reflex evoked with subjects seated, while during stepping both H reflexes were normalized to the maximal M wave evoked after the test H reflex at each bin of the step cycle. Locomotor training potentiated homosynaptic depression in all participants regardless the type of the SCI. Presynaptic facilitation of soleus Ia afferents remained unaltered in motor complete SCI patients. In motor incomplete SCIs, locomotor training either reduced presynaptic facilitation or replaced presynaptic facilitation with presynaptic inhibition at rest. During stepping, presynaptic inhibition was modulated in a phase-dependent manner. Locomotor training changed the amplitude of locomotor EMG excitability, promoted intralimb and interlimb coordination, and altered cocontraction between knee and ankle antagonistic muscles differently in the more impaired leg compared with the less impaired leg. The results provide strong evidence that locomotor training improves premotoneuronal control after SCI in humans at rest and during walking. Copyright © 2014 the American Physiological Society.
de Jesús Aceves, José; Rueda-Orozco, Pavel E.; Hernández, Ricardo; Plata, Víctor; Ibañez-Sandoval, Osvaldo; Galarraga, Elvira; Bargas, José
2011-01-01
Previous work has shown the functions associated with activation of dopamine presynaptic receptors in some substantia nigra pars reticulata (SNr) afferents: (i) striatonigral terminals (direct pathway) posses presynaptic dopamine D1-class receptors whose action is to enhance inhibitory postsynaptic currents (IPSCs) and GABA transmission. (ii) Subthalamonigral terminals posses D1- and D2-class receptors where D1-class receptor activation enhances and D2-class receptor activation decreases excitatory postsynaptic currents. Here we report that pallidonigral afferents posses D2-class receptors (D3 and D4 types) that decrease inhibitory synaptic transmission via presynaptic modulation. No action of D1-class agonists was found on pallidonigral synapses. In contrast, administration of D1-receptor antagonists greatly decreased striatonigral IPSCs in the same preparation, suggesting that tonic dopamine levels help in maintaining the function of the striatonigral (direct) pathway. When both D3 and D4 type receptors were blocked, pallidonigral IPSCs increased in amplitude while striatonigral connections had no significant change, suggesting that tonic dopamine levels are repressing a powerful inhibition conveyed by pallidonigral synapses (a branch of the indirect pathway). We then blocked both D1- and D2-class receptors to acutely decrease direct pathway (striatonigral) and enhance indirect pathways (subthalamonigral and pallidonigral) synaptic force. The result was that most SNr projection neurons entered a recurrent bursting firing mode similar to that observed during Parkinsonism in both patients and animal models. These results raise the question as to whether the lack of dopamine in basal ganglia output nuclei is enough to generate some pathological signs of Parkinsonism. PMID:21347219
Jijón-Lorenzo, Rafael; Caballero-Florán, Isaac Hiram; Recillas-Morales, Sergio; Cortés, Hernán; Avalos-Fuentes, José Arturo; Paz-Bermúdez, Francisco Javier; Erlij, David; Florán, Benjamín
2018-02-21
Striatal dopamine D2 receptors activate the PLC → IP3 → Calcineurin-signaling pathway to modulate the neural excitability of En+ Medium-sized Spiny GABAergic neurons (MSN) through the regulation of L-type Ca 2+ channels. Presynaptic dopaminergic D2 receptors modulate GABA release at striatopallidal terminals through L-type Ca 2+ channels as well, but their signaling pathway is still undetermined. Since D2 receptors are Gi/o-coupled and negatively modulate adenylyl cyclase (AC), we investigated whether presynaptic D2 receptors modulate GABA release through the same signaling cascade that controls excitability in the striatum or by the inhibition of AC and decreased PKA activity. Activation of D2 receptors stimulated formation of [ 3 H]IP 1 and decreased Forskolin-stimulated [ 3 H]cAMP accumulation in synaptosomes from rat Globus Pallidus. D2 receptor activation with Quinpirole in the presence of L 745,870 decreased, in a dose-dependent manner, K + -induced [ 3 H]GABA release in pallidal slices. The effect was prevented by the pharmacological blockade of Gi/o βγ subunit effects with Gallein, PLC with U 73122, IP3 receptor activation with 4-APB, Calcineurin with FK506. In addition, when release was stimulated with Forskolin to activate AC, D2 receptors also decreased K + -induced [ 3 H]GABA release, an effect occluded with the effect of the blockade of PKA with H89 or stimulation of release with the cAMP analog 8-Br-cAMP. These data indicate that D2 receptors modulate [ 3 H]GABA release at striatopallidal terminals by activating the PLC → IP3 → Calcineurin-signaling cascade, the same one that modulates excitability in soma. Additionally, D2 receptors inhibit release when AC is active. Both mechanisms appear to converge to regulate the activity of presynaptic L-type Ca 2+ channels. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Eguchi, Kohgaku; Taoufiq, Zacharie; Thorn-Seshold, Oliver; Trauner, Dirk; Hasegawa, Masato; Takahashi, Tomoyuki
2017-06-21
α-Synuclein is a presynaptic protein the function of which has yet to be identified, but its neuronal content increases in patients of synucleinopathies including Parkinson's disease. Chronic overexpression of α-synuclein reportedly expresses various phenotypes of synaptic dysfunction, but the primary target of its toxicity has not been determined. To investigate this, we acutely loaded human recombinant α-synuclein or its pathological mutants in their monomeric forms into the calyces of Held presynaptic terminals in slices from auditorily mature and immature rats of either sex. Membrane capacitance measurements revealed significant and specific inhibitory effects of WT monomeric α-synuclein on vesicle endocytosis throughout development. However, the α-synuclein A53T mutant affected vesicle endocytosis only at immature calyces, whereas the A30P mutant had no effect throughout. The endocytic impairment by WT α-synuclein was rescued by intraterminal coloading of the microtubule (MT) polymerization blocker nocodazole. Furthermore, it was reversibly rescued by presynaptically loaded photostatin-1, a photoswitcheable inhibitor of MT polymerization, in a light-wavelength-dependent manner. In contrast, endocytic inhibition by the A53T mutant at immature calyces was not rescued by nocodazole. Functionally, presynaptically loaded WT α-synuclein had no effect on basal synaptic transmission evoked at a low frequency, but significantly attenuated exocytosis and impaired the fidelity of neurotransmission during prolonged high-frequency stimulation. We conclude that monomeric WT α-synuclein primarily inhibits vesicle endocytosis via MT overassembly, thereby impairing high-frequency neurotransmission. SIGNIFICANCE STATEMENT Abnormal α-synuclein abundance is associated with synucleinopathies including Parkinson's disease, but neither the primary target of α-synuclein toxicity nor its mechanism is identified. Here, we loaded monomeric α-synuclein directly into mammalian glutamatergic nerve terminals and found that it primarily inhibits vesicle endocytosis and subsequently impairs exocytosis and neurotransmission fidelity during prolonged high-frequency stimulation. Such α-synuclein toxicity could be rescued by blocking microtubule polymerization, suggesting that microtubule overassembly underlies the toxicity of acutely elevated α-synuclein in the nerve terminal. Copyright © 2017 the authors 0270-6474/17/376043-10$15.00/0.
Nunes, Paula; Haines, Nicola; Kuppuswamy, Venkat; Fleet, David J.
2006-01-01
N-ethylmaleimide sensitive factor (NSF) can dissociate the soluble NSF attachment receptor (SNARE) complex, but NSF also participates in other intracellular trafficking functions by virtue of SNARE-independent activity. Drosophila that express a neural transgene encoding a dominant-negative form of NSF2 show an 80% reduction in the size of releasable synaptic vesicle pool, but no change in the number of vesicles in nerve terminal boutons. Here we tested the hypothesis that vesicles in the NSF2 mutant terminal are less mobile. Using a combination of genetics, pharmacology, and imaging we find a substantial reduction in vesicle mobility within the nerve terminal boutons of Drosophila NSF2 mutant larvae. Subsequent analysis revealed a decrease of filamentous actin in both NSF2 dominant-negative and loss-of-function mutants. Lastly, actin-filament disrupting drugs also decrease vesicle movement. We conclude that a factor contributing to the NSF mutant phenotype is a reduction in vesicle mobility, which is associated with decreased presynaptic F-actin. Our data are consistent with a model in which actin filaments promote vesicle mobility and suggest that NSF participates in establishing or maintaining this population of actin. PMID:16914524
Xu, Jianhua; Morris, Lynsie; Fliesler, Steven J; Sherry, David M; Ding, Xi-Qin
2011-06-01
To investigate the progression of cone dysfunction and degeneration in CNG channel subunit CNGB3 deficiency. Retinal structure and function in CNGB3(-/-) and wild-type (WT) mice were evaluated by electroretinography (ERG), lectin cytochemistry, and correlative Western blot analysis of cone-specific proteins. Cone and rod terminal integrity was assessed by electron microscopy and synaptic protein immunohistochemical distribution. Cone ERG amplitudes (photopic b-wave) in CNGB3(-/-) mice were reduced to approximately 50% of WT levels by postnatal day 15, decreasing further to approximately 30% of WT levels by 1 month and to approximately 20% by 12 months of age. Rod ERG responses (scotopic a-wave) were not affected in CNGB3(-/-) mice. Average CNGB3(-/-) cone densities were approximately 80% of WT levels at 1 month and declined slowly thereafter to only approximately 50% of WT levels by 12 months. Expression levels of M-opsin, cone transducin α-subunit, and cone arrestin in CNGB3(-/-) mice were reduced by 50% to 60% by 1 month and declined to 35% to 45% of WT levels by 9 months. In addition, cone opsin mislocalized to the outer nuclear layer and the outer plexiform layer in the CNGB3(-/-) retina. Cone and rod synaptic marker expression and terminal ultrastructure were normal in the CNGB3(-/-) retina. These findings are consistent with an early-onset, slow progression of cone functional defects and cone loss in CNGB3(-/-) mice, with the cone signaling deficits arising from disrupted phototransduction and cone loss rather than from synaptic defects.
Fyk-Kolodziej, Bozena; Qin, Pu; Pourcho, Roberta G
2003-09-08
It has been generally accepted that rod photoreceptor cells in the mammalian retina make synaptic contact with only a single population of rod bipolar cells, whereas cone photoreceptors contact a variety of cone bipolar cells. This assumption has been challenged in rodents by reports of a type of cone bipolar cell which receives input from both rods and cones. Questions remained as to whether similar pathways are present in other mammals. We have used an antiserum against the glutamate transporter GLT1-B to visualize a population of cone bipolar cells in the cat retina which make flat contacts with axon terminals of both rod and cone photoreceptor cells. These cells are identified as OFF-cone bipolar cells and correspond morphologically to type cb1 (CBa2) cone bipolar cells which are a major source of input to OFF-beta ganglion cells in the cat retina. The GLT1-B transporter was also localized to processes making flat contacts with photoreceptor terminals in rat and rabbit retinas. Examination of tissue processed for the GluR1 glutamate receptor subunit showed that cb1 cone bipolar cells, like their rodent counterparts, express this alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-selective receptor at their contacts with rod spherules. Thus, a direct excitatory pathway from rod photoreceptors to OFF-cone bipolar cells appears to be a common feature of mammalian retinas. Copyright 2003 Wiley-Liss, Inc.
Merega, Elisa; Di Prisco, Silvia; Padolecchia, Cristina; Grilli, Massimo; Milanese, Marco; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Bonanno, Giambattista; Marchi, Mario
2017-01-01
Fingolimod, the first oral, disease-modifying therapy for MS, has been recently proposed to modulate glutamate transmission in the central nervous system (CNS) of mice suffering from Experimental Autoimmune Encephalomyelitis (EAE) and in MS patients. Our study aims at investigating whether oral fingolimod recovers presynaptic defects that occur at different stages of disease in the CNS of EAE mice. In vivo prophylactic (0.3 mg/kg for 14 days, from the 7th day post immunization, d.p.i, the drug dissolved in the drinking water) fingolimod significantly reduced the clinical symptoms and the anxiety-related behaviour in EAE mice. Spinal cord inflammation, demyelination and glial cell activation are markers of EAE progression. These signs were ameliorated following oral fingolimod administration. Glutamate exocytosis was shown to be impaired in cortical and spinal cord terminals isolated from EAE mice at 21 ± 1 d.p.i., while GABA alteration emerged only at the spinal cord level. Prophylactic fingolimod recovered these presynaptic defects, restoring altered glutamate and GABA release efficiency. The beneficial effect occurred in a dose-dependent, region-specific manner, since lower (0.1–0.03 mg/kg) doses restored, although to a different extent, synaptic defects in cortical but not spinal cord terminals. A delayed reduction of glutamate, but not of GABA, exocytosis was observed in hippocampal terminals of EAE mice at 35 d.p.i. Therapeutic (0.3 mg/kg, from 21 d.p.i. for 14 days) fingolimod restored glutamate exocytosis in the cortex and in the hippocampus of EAE mice at 35 ± 1 d.p.i. but not in the spinal cord, where also GABAergic defects remained unmodified. These results improve our knowledge of the molecular events accounting for the beneficial effects elicited by fingolimod in demyelinating disorders. PMID:28125677
Kharlamova, A S; Barabanov, V M; Saveliev, S V
2015-01-01
We provide the data of the olfactory bulbs (OB) development in the human fetuses on the stages from 8 week to birth. Immunochistochemical markers of presynaptic terminals (anti-SNAP-25, -synapsin-I, -synaptophysin) were used to evaluate the maturation of the OB. Differentiation of the OB layers begins from periphery, which implicitly evidences that growth of the olfactory nerves fibers induses not only anatomical differentiation of the OB, but also differentiation of its functional layers. The sites of the developing glomerulus are revealed using the immunochistochemical prosedure on the stage before distinct glomerulus can be identified with common histological procedure. OB conductive system demonstrates immunoreactivity with the antibodies to the presynaptic proteins on the all stages from 10-11 weeks of fetus development. Four stages of the OB development are described. All functional layers of the OB are mature at the 22-weeks stage. Further differentiation of the OB neuroblasts, including lamina formation of the internal granular leyer, glomerular layer development, OB growth continue after 20-22 weeks stage until 38-40 weeks of the fetus develoment. Patterns of the immunoreactivity with antibodies to SNAP-25, synapsin-I and synaptophysin are completely appropriate to those of adult's OB on the 38-40 weeks of the prenatal development. Complete maturity of the human OB is achived at 38-40 weeks of the prenatal development.
The PLC/IP3R/PKC Pathway is Required for Ethanol-enhanced GABA Release
Kelm, M. Katherine; Weinberg, Richard J.; Criswell, Hugh E.; Breese, George R.
2010-01-01
Summary Research on the actions of ethanol at the GABAergic synapse has traditionally focused on postsynaptic mechanisms, but recent data demonstrate that ethanol also increases both evoked and spontaneous GABA release in many brain regions. Using whole-cell voltage-clamp recordings, we previously showed that ethanol increases spontaneous GABA release at the rat interneuron-Purkinje cell synapse. This presynaptic ethanol effect is dependent on calcium release from internal stores, possibly through activation of inositol 1,4,5-trisphosphate receptors (IP3Rs). After confirming that ethanol targets vesicular GABA release, in the present study we used electron microscopic immunohistochemistry to demonstrate that IP3Rs are located in presynaptic terminals of cerebellar interneurons. Activation of IP3Rs requires binding of IP3, generated through activation of phospholipase C (PLC). We find that the PLC antagonist edelfosine prevents ethanol from increasing spontaneous GABA release. Diacylglycerol generated by PLC and calcium released by activation of the IP3R activate protein kinase C (PKC). Ethanol-enhanced GABA release was blocked by two PKC antagonists, chelerythrine and calphostin C. When a membrane impermeable PKC antagonist, PKC (19-36), was delivered intracellularly to the postsynaptic neuron, ethanol continued to increase spontaneous GABA release. Overall, these results suggest that activation of the PLC/IP3R/PKC pathway is necessary for ethanol to increase spontaneous GABA release from presynaptic terminals onto Purkinje cells. PMID:20206640
Contributions of SERCA pump and ryanodine-sensitive stores to presynaptic residual Ca2+
Scullin, Chessa S.; Partridge, L. Donald
2010-01-01
The presynaptic Ca2+ signal, which triggers vesicle release, disperses to a broadly distributed residual [Ca2+] ([Ca2+]res) that plays an important role in synaptic plasticity. We have previously reported a slowing in the decay timecourse of [Ca2+]res during the second of paired pulses. In this study, we investigated the contributions of organelle and plasma membrane Ca2+ flux pathways to the reduction of effectiveness of [Ca2+]res clearance during short-term plasticity in Schaffer collateral terminals in the CA1 field of the hippocampus. We show that the slowed decay timecourse is mainly the result of a transport-dependent Ca2+ clearance process; that presynaptic caffeine-sensitive Ca2+ stores are not functionally loaded in the unstimulated terminal, but that these stores can effectively take up Ca2+ even during high frequency trains of stimuli; and that a rate limiting step of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) kinetics following the first pulse is responsible for a large portion of the observed slowing of [Ca2+]res clearance during the second pulse. We were able to accurately fit our [Ca2+]res data with a kinetic model based on these observations and this model predicted a reduction in availability of unbound SERCA during paired pulses, but no saturation of Ca2+ buffer in the endoplasmic reticulum. PMID:20153896
Synaptic noise is an information bottleneck in the inner retina during dynamic visual stimulation
Freed, Michael A; Liang, Zhiyin
2014-01-01
In daylight, noise generated by cones determines the fidelity with which visual signals are initially encoded. Subsequent stages of visual processing require synapses from bipolar cells to ganglion cells, but whether these synapses generate a significant amount of noise was unknown. To characterize noise generated by these synapses, we recorded excitatory postsynaptic currents from mammalian retinal ganglion cells and subjected them to a computational noise analysis. The release of transmitter quanta at bipolar cell synapses contributed substantially to the noise variance found in the ganglion cell, causing a significant loss of fidelity from bipolar cell array to postsynaptic ganglion cell. Virtually all the remaining noise variance originated in the presynaptic circuit. Circuit noise had a frequency content similar to noise shared by ganglion cells but a very different frequency content from noise from bipolar cell synapses, indicating that these synapses constitute a source of independent noise not shared by ganglion cells. These findings contribute a picture of daylight retinal circuits where noise from cones and noise generated by synaptic transmission of cone signals significantly limit visual fidelity. PMID:24297850
Rohrbough, Jeffrey; Rushton, Emma; Woodruff, Elvin; Fergestad, Tim; Vigneswaran, Krishanthan; Broadie, Kendal
2007-01-01
Formation and regulation of excitatory glutamatergic synapses is essential for shaping neural circuits throughout development. In a Drosophila genetic screen for synaptogenesis mutants, we identified mind the gap (mtg), which encodes a secreted, extracellular N-glycosaminoglycan-binding protein. MTG is expressed neuronally and detected in the synaptic cleft, and is required to form the specialized transsynaptic matrix that links the presynaptic active zone with the post-synaptic glutamate receptor (GluR) domain. Null mtg embryonic mutant synapses exhibit greatly reduced GluR function, and a corresponding loss of localized GluR domains. All known post-synaptic signaling/scaffold proteins functioning upstream of GluR localization are also grossly reduced or mislocalized in mtg mutants, including the dPix–dPak–Dock cascade and the Dlg/PSD-95 scaffold. Ubiquitous or neuronally targeted mtg RNA interference (RNAi) similarly reduce post-synaptic assembly, whereas post-synaptically targeted RNAi has no effect, indicating that presynaptic MTG induces and maintains the post-synaptic pathways driving GluR domain formation. These findings suggest that MTG is secreted from the presynaptic terminal to shape the extracellular synaptic cleft domain, and that the cleft domain functions to mediate transsynaptic signals required for post-synaptic development. PMID:17901219
Crimpy enables discrimination of pre and postsynaptic pools of a BMP at the Drosophila NMJ
James, Rebecca E.; Hoover, Kendall M.; Bulgari, Dinara; McLaughlin, Colleen N.; Wilson, Christopher G.; Wharton, Kristi A.; Levitan, Edwin S.; Broihier, Heather T.
2014-01-01
Summary Distinct pools of the BMP Glass bottom boat (Gbb) control structure and function of the Drosophila neuromuscular junction. Specifically, motoneuron-derived Gbb regulates baseline neurotransmitter release, while muscle-derived Gbb regulates NMJ growth. Yet how cells differentiate between these ligand pools is not known. Here we present evidence that the neuronal Gbb-binding protein Crimpy (Cmpy) permits discrimination of pre and postsynaptic ligand by serving sequential functions in Gbb signaling. Cmpy first delivers Gbb to dense core vesicles (DCVs) for activity-dependent release from presynaptic terminals. In the absence of Cmpy, Gbb is no longer associated with DCVs and is not released by activity. Electrophysiological analyses demonstrate that Cmpy promotes Gbb's pro-neurotransmission function. Surprisingly, the Cmpy ectodomain is itself released upon DCV exocytosis, arguing that Cmpy serves a second function in BMP signaling. In addition to trafficking Gbb to DCVs, we propose that Gbb/Cmpy co-release from presynaptic terminals defines a neuronal pro-transmission signal. PMID:25453556
Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release
Nelson, Jessica; Richmond, Janet E; Colón-Ramos, Daniel A; Shen, Kang
2017-01-01
Active zone proteins cluster synaptic vesicles at presynaptic terminals and coordinate their release. In forward genetic screens, we isolated a novel Caenorhabditis elegans active zone gene, clarinet (cla-1). cla-1 mutants exhibit defects in synaptic vesicle clustering, active zone structure and synapse number. As a result, they have reduced spontaneous vesicle release and increased synaptic depression. cla-1 mutants show defects in vesicle distribution near the presynaptic dense projection, with fewer undocked vesicles contacting the dense projection and more docked vesicles at the plasma membrane. cla-1 encodes three isoforms containing common C-terminal PDZ and C2 domains with homology to vertebrate active zone proteins Piccolo and RIM. The C-termini of all isoforms localize to the active zone. Specific loss of the ~9000 amino acid long isoform results in vesicle clustering defects and increased synaptic depression. Our data indicate that specific isoforms of clarinet serve distinct functions, regulating synapse development, vesicle clustering and release. PMID:29160205
Mechanisms of α-Synuclein Induced Synaptopathy in Parkinson's Disease
Bridi, Jessika C.; Hirth, Frank
2018-01-01
Parkinson's disease (PD) is characterized by intracellular inclusions of aggregated and misfolded α-Synuclein (α-Syn), and the loss of dopaminergic (DA) neurons in the brain. The resulting motor abnormalities mark the progression of PD, while non-motor symptoms can already be identified during early, prodromal stages of disease. Recent studies provide evidence that during this early prodromal phase, synaptic and axonal abnormalities occur before the degenerative loss of neuronal cell bodies. These early phenotypes can be attributed to synaptic accumulation of toxic α-Syn. Under physiological conditions, α-Syn functions in its native conformation as a soluble monomer. However, PD patient brains are characterized by intracellular inclusions of insoluble fibrils. Yet, oligomers and protofibrils of α-Syn have been identified to be the most toxic species, with their accumulation at presynaptic terminals affecting several steps of neurotransmitter release. First, high levels of α-Syn alter the size of synaptic vesicle pools and impair their trafficking. Second, α-Syn overexpression can either misregulate or redistribute proteins of the presynaptic SNARE complex. This leads to deficient tethering, docking, priming and fusion of synaptic vesicles at the active zone (AZ). Third, α-Syn inclusions are found within the presynaptic AZ, accompanied by a decrease in AZ protein levels. Furthermore, α-Syn overexpression reduces the endocytic retrieval of synaptic vesicle membranes during vesicle recycling. These presynaptic alterations mediated by accumulation of α-Syn, together impair neurotransmitter exocytosis and neuronal communication. Although α-Syn is expressed throughout the brain and enriched at presynaptic terminals, DA neurons are the most vulnerable in PD, likely because α-Syn directly regulates dopamine levels. Indeed, evidence suggests that α-Syn is a negative modulator of dopamine by inhibiting enzymes responsible for its synthesis. In addition, α-Syn is able to interact with and reduce the activity of VMAT2 and DAT. The resulting dysregulation of dopamine levels directly contributes to the formation of toxic α-Syn oligomers. Together these data suggest a vicious cycle of accumulating α-Syn and deregulated dopamine that triggers synaptic dysfunction and impaired neuronal communication, ultimately causing synaptopathy and progressive neurodegeneration in Parkinson's disease. PMID:29515354
Xu, Jianhua; Morris, Lynsie; Fliesler, Steven J.; Sherry, David M.
2011-01-01
Purpose. To investigate the progression of cone dysfunction and degeneration in CNG channel subunit CNGB3 deficiency. Methods. Retinal structure and function in CNGB3−/− and wild-type (WT) mice were evaluated by electroretinography (ERG), lectin cytochemistry, and correlative Western blot analysis of cone-specific proteins. Cone and rod terminal integrity was assessed by electron microscopy and synaptic protein immunohistochemical distribution. Results. Cone ERG amplitudes (photopic b-wave) in CNGB3−/− mice were reduced to approximately 50% of WT levels by postnatal day 15, decreasing further to approximately 30% of WT levels by 1 month and to approximately 20% by 12 months of age. Rod ERG responses (scotopic a-wave) were not affected in CNGB3−/− mice. Average CNGB3−/− cone densities were approximately 80% of WT levels at 1 month and declined slowly thereafter to only approximately 50% of WT levels by 12 months. Expression levels of M-opsin, cone transducin α-subunit, and cone arrestin in CNGB3−/− mice were reduced by 50% to 60% by 1 month and declined to 35% to 45% of WT levels by 9 months. In addition, cone opsin mislocalized to the outer nuclear layer and the outer plexiform layer in the CNGB3−/− retina. Cone and rod synaptic marker expression and terminal ultrastructure were normal in the CNGB3−/− retina. Conclusions. These findings are consistent with an early-onset, slow progression of cone functional defects and cone loss in CNGB3−/− mice, with the cone signaling deficits arising from disrupted phototransduction and cone loss rather than from synaptic defects. PMID:21273547
Astorga, César; Jorquera, Ramón A.; Ramírez, Mauricio; Kohler, Andrés; López, Estefanía; Delgado, Ricardo; Córdova, Alex; Olguín, Patricio; Sierralta, Jimena
2016-01-01
The DLG-MAGUK subfamily of proteins plays a role on the recycling and clustering of glutamate receptors (GLUR) at the postsynaptic density. discs-large1 (dlg) is the only DLG-MAGUK gene in Drosophila and originates two main products, DLGA and DLGS97 which differ by the presence of an L27 domain. Combining electrophysiology, immunostaining and genetic manipulation at the pre and postsynaptic compartments we study the DLG contribution to the basal synaptic-function at the Drosophila larval neuromuscular junction. Our results reveal a specific function of DLGS97 in the regulation of the size of GLUR fields and their subunit composition. Strikingly the absence of any of DLG proteins at the presynaptic terminal disrupts the clustering and localization of the calcium channel DmCa1A subunit (Cacophony), decreases the action potential-evoked release probability and alters short-term plasticity. Our results show for the first time a crucial role of DLG proteins in the presynaptic function in vivo. PMID:27573697
Astorga, César; Jorquera, Ramón A; Ramírez, Mauricio; Kohler, Andrés; López, Estefanía; Delgado, Ricardo; Córdova, Alex; Olguín, Patricio; Sierralta, Jimena
2016-08-30
The DLG-MAGUK subfamily of proteins plays a role on the recycling and clustering of glutamate receptors (GLUR) at the postsynaptic density. discs-large1 (dlg) is the only DLG-MAGUK gene in Drosophila and originates two main products, DLGA and DLGS97 which differ by the presence of an L27 domain. Combining electrophysiology, immunostaining and genetic manipulation at the pre and postsynaptic compartments we study the DLG contribution to the basal synaptic-function at the Drosophila larval neuromuscular junction. Our results reveal a specific function of DLGS97 in the regulation of the size of GLUR fields and their subunit composition. Strikingly the absence of any of DLG proteins at the presynaptic terminal disrupts the clustering and localization of the calcium channel DmCa1A subunit (Cacophony), decreases the action potential-evoked release probability and alters short-term plasticity. Our results show for the first time a crucial role of DLG proteins in the presynaptic function in vivo.
Genç, Özgür; Dickman, Dion K; Ma, Wenpei; Tong, Amy; Fetter, Richard D; Davis, Graeme W
2017-01-01
Presynaptic homeostatic plasticity (PHP) controls synaptic transmission in organisms from Drosophila to human and is hypothesized to be relevant to the cause of human disease. However, the underlying molecular mechanisms of PHP are just emerging and direct disease associations remain obscure. In a forward genetic screen for mutations that block PHP we identified mctp (Multiple C2 Domain Proteins with Two Transmembrane Regions). Here we show that MCTP localizes to the membranes of the endoplasmic reticulum (ER) that elaborate throughout the soma, dendrites, axon and presynaptic terminal. Then, we demonstrate that MCTP functions downstream of presynaptic calcium influx with separable activities to stabilize baseline transmission, short-term release dynamics and PHP. Notably, PHP specifically requires the calcium coordinating residues in each of the three C2 domains of MCTP. Thus, we propose MCTP as a novel, ER-localized calcium sensor and a source of calcium-dependent feedback for the homeostatic stabilization of neurotransmission. DOI: http://dx.doi.org/10.7554/eLife.22904.001 PMID:28485711
Endogenous calcium buffering at photoreceptor synaptic terminals in salamander retina
Van Hook, Matthew J.; Thoreson, Wallace B.
2014-01-01
Calcium operates by several mechanisms to regulate glutamate release at rod and cone synaptic terminals. In addition to serving as the exocytotic trigger, Ca2+ accelerates replenishment of vesicles in cones and triggers Ca2+-induced Ca2+ release (CICR) in rods. Ca2+ thereby amplifies sustained exocytosis, enabling photoreceptor synapses to encode constant and changing light. A complete picture of the role of Ca2+ in regulating synaptic transmission requires an understanding of the endogenous Ca2+ handling mechanisms at the synapse. We therefore used the “added buffer” approach to measure the endogenous Ca2+ binding ratio (κendo) and extrusion rate constant (γ) in synaptic terminals of photoreceptors in retinal slices from tiger salamander. We found that κendo was similar in both cell types - approximately 25 and 50 in rods and cones, respectively. Using measurements of the decay time constants of Ca2+ transients, we found that γ was also similar, with values of approximately 100 s−1 and 160 s−1 in rods and cones, respectively. The measurements of κendo differ considerably from measurements in retinal bipolar cells, another ribbon-bearing class of retinal neurons, but are comparable to similar measurements at other conventional synapses. The values of γ are slower than at other synapses, suggesting that Ca2+ ions linger longer in photoreceptor terminals, supporting sustained exocytosis, CICR, and Ca2+-dependent ribbon replenishment. The mechanisms of endogenous Ca2+ handling in photoreceptors are thus well-suited for supporting tonic neurotransmission. Similarities between rod and cone Ca2+ handling suggest that neither buffering nor extrusion underlie differences in synaptic transmission kinetics. PMID:25049035
Study of axonal dystrophy. II Dystrophy and atrophy of the presynaptic boutons: a dual pathology.
Fujisawa, K; Shiraki, H
1980-01-01
In succession to the previous quantitative work, a qualitative study has been carried out on the nature of a dual pathology affecting presynaptic boutons in the posterior tract nuclei of ageing rats. Based on the morphology of dystrophic boutons in early stage, it is concluded that the initial and therefore essential characteristic of dystrophic process is an abnormal increase of normal axonal components within the presynaptic boutons, and that various abnormal substructures of spheroids hitherto reported in the literature are probably the results of their secondary metamorphosis. The dystrophic process within the posterior tract nuclei is a selective one, involving presynaptic boutons and preterminal axons only of the posterior tract fibres. Comparison of the frequency of early dystrophic boutons and of fully grown-up spheroids indicates that a small percentage of boutons deriving from posterior tract fibres become dystrophic and of these dystrophic boutons only a small percentage again continue to develop unto large spheroids, throughout lifespan of the animals. On the other hand, in search of a morphological counterpart for the age-related decrease of volume ratio of presynaptic boutons to the neuropil, some dubious atrophic changes were also found in presynaptic boutons, which could have been easily missed from observation if studied qualitatively alone. Accordingly, no less numerous boutons other than dystrophic ones are supposed to atrophy 'independently' and to disappear 'silently' during the same period. The dystrophic and the atrophic changes involve different boutons (of different or the same terminal axons) within the same gray matter. This dual pathology of boutons needs further elucidation of its neurocytopathological as well as neurobiological background in the future.
Bonsall, David R; Kokkinou, Michelle; Veronese, Mattia; Coello, Christopher; Wells, Lisa A; Howes, Oliver D
2017-12-01
Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre-synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre- and post-synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre-synaptic dopamine function remain unclear. Non-invasive imaging techniques such as positron emission tomography have revealed impaired pre-synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre-synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15-20 min post treatment (p < 0.001). However, dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (KiCer: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l-amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre-treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre-synaptic dopaminergic neurons are not initiated following a single exposure to the drug. © 2017 International Society for Neurochemistry.
Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala.
Du, Jianyang; Reznikov, Leah R; Price, Margaret P; Zha, Xiang-ming; Lu, Yuan; Moninger, Thomas O; Wemmie, John A; Welsh, Michael J
2014-06-17
Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na(+)- and Ca(2+)-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory.
Mechanisms creating transient and sustained photoresponses in mammalian retinal ganglion cells
Zhao, Xiwu; Jaeckel, Elizabeth R.; Chervenak, Andrew P.
2017-01-01
Retinal neurons use sustained and transient light responses to encode visual stimuli of different frequency ranges, but the underlying mechanisms remain poorly understood. In particular, although earlier studies in retinal ganglion cells (RGCs) proposed seven potential mechanisms, all seven have since been disputed, and it remains unknown whether different RGC types use different mechanisms or how many mechanisms are used by each type. Here, we conduct a comprehensive survey in mice and rats of 12 candidate mechanisms that could conceivably produce tonic rod/cone-driven ON responses in intrinsically photosensitive RGCs (ipRGCs) and transient ON responses in three types of direction-selective RGCs (TRHR+, Hoxd10+ ON, and Hoxd10+ ON-OFF cells). We find that the tonic kinetics of ipRGCs arises from their substantially above-threshold resting potentials, input from sustained ON bipolar cells, absence of amacrine cell inhibition of presynaptic ON bipolar cells, and mGluR7-mediated maintenance of light-evoked glutamatergic input. All three types of direction-selective RGCs receive input from transient ON bipolar cells, and each type uses additional strategies to promote photoresponse transience: presynaptic inhibition and dopaminergic modulation for TRHR+ cells, center/surround antagonism and relatively negative resting potentials for Hoxd10+ ON cells, and presynaptic inhibition for Hoxd10+ ON-OFF cells. We find that the sustained nature of ipRGCs’ rod/cone-driven responses depends neither on melanopsin nor on N-methyl-d-aspartate (NMDA) receptors, whereas the transience of the direction-selective cells’ responses is influenced neither by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor desensitization nor by glutamate uptake. For all cells, we further rule out spike frequency adaptation and intracellular Ca2+ as determinants of photoresponse kinetics. In conclusion, different RGC types use diverse mechanisms to produce sustained or transient light responses. Parenthetically, we find evidence in both mice and rats that the kinetics of light-induced mGluR6 deactivation determines whether an ON bipolar cell responds tonically or transiently to light. PMID:28153865
Ramírez-Franco, Jorge; Bartolomé-Martín, David; Alonso, Beatris; Torres, Magdalena; Sánchez-Prieto, José
2014-01-01
Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent activation of cannabinoid type 1 receptors (CB1Rs) mutes GABAergic terminals, although it is unclear if CB1Rs can also induce silencing at glutamatergic synapses. Cerebellar granule cells were transfected with VGLUT1-pHluorin to visualise the exo-endocytotic cycle. We found that prolonged stimulation (10 min) of cannabinoid receptors with the agonist HU-210 induces the silencing of previously active synapses. However, the presynaptic silencing induced by HU-210 is transient as it reverses after 20 min. cAMP with forskolin prevented CB1R-induced synaptic silencing, via activation of the Exchange Protein directly Activated by cAMP (Epac). Furthermore, Epac activation accelerated awakening of already silent boutons. Electron microscopy revealed that silencing was associated with synaptic vesicle (SV) redistribution within the nerve terminal, which diminished the number of vesicles close to the active zone of the plasma membrane. Finally, by combining functional and immunocytochemical approaches, we observed a strong correlation between the release capacity of the nerve terminals and RIM1α protein content, but not that of Munc13-1 protein. These results suggest that prolonged stimulation of cannabinoid receptors can transiently silence glutamatergic nerve terminals. PMID:24533119
Petralia, Ronald S.; Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.
2015-01-01
Neurons and especially their synapses often project long thin processes that can invaginate neighboring neuronal or glial cells. These “invaginating projections” can occur in almost any combination of postsynaptic, presynaptic, and glial processes. Invaginating projections provide a precise mechanism for one neuron to communicate or exchange material exclusively at a highly localized site on another neuron, e.g., to regulate synaptic plasticity. The best-known types are postsynaptic projections called “spinules” that invaginate into presynaptic terminals. Spinules seem to be most prevalent at large very active synapses. Here, we present a comprehensive review of all kinds of invaginating projections associated with both neurons in general and more specifically with synapses; we describe them in all animals including simple, basal metazoans. These structures may have evolved into more elaborate structures in some higher animal groups exhibiting greater synaptic plasticity. In addition to classic spinules and filopodial invaginations, we describe a variety of lesser-known structures such as amphid microvilli, spinules in giant mossy terminals and en marron/brush synapses, the highly specialized fish retinal spinules, the trophospongium, capitate projections, and fly gnarls, as well as examples in which the entire presynaptic or postsynaptic process is invaginated. These various invaginating projections have evolved to modify the function of a particular synapse, or to channel an effect to one specific synapse or neuron, without affecting those nearby. We discuss how they function in membrane recycling, nourishment, and cell signaling and explore how they might change in aging and disease. PMID:26007200
Tarnow, Eugen
2009-09-01
The Tagging/Retagging model of short term memory was introduced earlier (Tarnow in Cogn Neurodyn 2(4):347-353, 2008) to explain the linear relationship between response time and correct response probability for word recall and recognition: At the initial stimulus presentation the words displayed tag the corresponding long term memory locations. The tagging process is linear in time and takes about one second to reach a tagging level of 100%. After stimulus presentation the tagging level decays logarithmically with time to 50% after 14 s and to 20% after 220 s. If a probe word is reintroduced the tagging level has to return to 100% for the word to be properly identified, which leads to a delay in response time. This delay is proportional to the tagging loss. The tagging level is directly related to the probability of correct word recall and recognition. Evidence presented suggests that the tagging level is the level of depletion of the Readily Releasable Pool (RRP) of neurotransmitter vesicles at presynaptic terminals. The evidence includes the initial linear relationship between tagging level and time as well as the subsequent logarithmic decay of the tagging level. The activation of a short term memory may thus be the depletion of RRP (exocytosis) and short term memory decay may be the ensuing recycling of the neurotransmitter vesicles (endocytosis). The pattern of depleted presynaptic terminals corresponds to the long term memory trace.
Blocking Effects of Human Tau on Squid Giant Synapse Transmission and Its Prevention by T-817 MA
Moreno, Herman; Choi, Soonwook; Yu, Eunah; Brusco, Janaina; Avila, Jesus; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.
2011-01-01
Filamentous tau inclusions are hallmarks of Alzheimer's disease and related neurodegenerative tauopathies, but the molecular mechanisms involved in tau-mediated changes in neuronal function and their possible effects on synaptic transmission are unknown. We have evaluated the effects of human tau protein injected directly into the presynaptic terminal axon of the squid giant synapse, which affords functional, structural, and biochemical analysis of its action on the synaptic release process. Indeed, we have found that at physiological concentration recombinant human tau (h-tau42) becomes phosphorylated, produces a rapid synaptic transmission block, and induces the formation of clusters of aggregated synaptic vesicles in the vicinity of the active zone. Presynaptic voltage clamp recordings demonstrate that h-tau42 does not modify the presynaptic calcium current amplitude or kinetics. Analysis of synaptic noise at the post-synaptic axon following presynaptic h-tau42 microinjection revealed an initial phase of increase spontaneous transmitter release followed by a marked reduction in noise. Finally, systemic administration of T-817MA, a proposed neuro-protective agent, rescued tau-induced synaptic abnormalities. Our results show novel mechanisms of h-tau42 mediated synaptic transmission failure and identify a potential therapeutic agent to treat tau-related neurotoxicity. PMID:21629767
Rozov, A; Burnashev, N; Sakmann, B; Neher, E
2001-01-01
In connections formed by nerve terminals of layer 2/3 pyramidal cells onto bitufted interneurones in young (postnatal day (P)14–15) rat somatosensory cortex, the efficacy and reliability of synaptic transmission were low. At these connections release was facilitated by paired-pulse stimulation (at 10 Hz). In connections formed by terminals of layer 2/3 pyramids with multipolar interneurones efficacy and reliability were high and release was depressed by paired-pulse stimulation. In both types of terminal, however, the voltage-dependent Ca2+ channels that controlled transmitter release were predominantly of the P/Q- and N-subtypes. The relationship between unitary EPSP amplitude and extracellular calcium concentration ([Ca2+]o) was steeper for facilitating than for depressing terminals. Fits to a Hill equation with nH= 4 indicated that the apparent KD of the Ca2+ sensor for vesicle release was two- to threefold lower in depressing terminals than in facilitating ones. Intracellular loading of pyramidal neurones with the fast and slowly acting Ca2+ buffers BAPTA and EGTA differentially reduced transmitter release in these two types of terminal. Unitary EPSPs evoked by pyramidal cell stimulation in bitufted cells were reduced by presynaptic BAPTA and EGTA with half-effective concentrations of ∼0.1 and ∼1 mm, respectively. Unitary EPSPs evoked in multipolar cells were reduced to one-half of control at higher concentrations of presynaptic BAPTA and EGTA (∼0.5 and ∼7 mm, respectively). Frequency-dependent facilitation of EPSPs in bitufted cells was abolished by EGTA at concentrations of > 0.2 mm, suggesting that accumulation of free Ca2+ is essential for facilitation in the terminals contacting bitufted cells. In contrast, facilitation was unaffected or even slightly increased in the terminals loaded with BAPTA in the concentration range 0.02–0.5 mm. This is attributed to partial saturation of exogenously added BAPTA. However, BAPTA at concentrations > 1 mm also abolished facilitation. Frequency-dependent depression of EPSPs in multipolar cells was not significantly reduced by EGTA. With BAPTA, the depression decreased at concentrations > 0.5 mm, concomitant with a reduction in amplitude of the first EPSP in a train. An analysis is presented that interprets the effects of EGTA and BAPTA on synaptic efficacy and its short-term modification during paired-pulse stimulation in terms of changes in [Ca2+] at the release site ([Ca2+]RS) and that infers the affinity of the Ca2+ sensor from the dependence of unitary EPSPs on [Ca2+]o. The results suggest that the target cell-specific difference in release from the terminals on bitufted or multipolar cells can be explained by a longer diffusional distance between Ca2+ channels and release sites and/or lower Ca2+ channels density in the terminals that contact bitufted cells. This would lead to a lower [Ca2+] at release sites and would also explain the higher apparent KD of the Ca2+ sensor in facilitating terminals. PMID:11251060
Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles
Cavolo, Samantha L.; Bulgari, Dinara; Deitcher, David L.
2016-01-01
Synaptic neuropeptide and neurotrophin stores are maintained by constitutive bidirectional capture of dense-core vesicles (DCVs) as they circulate in and out of the nerve terminal. Activity increases DCV capture to rapidly replenish synaptic neuropeptide stores following release. However, it is not known whether this is due to enhanced bidirectional capture. Here experiments at the Drosophila neuromuscular junction, where DCVs contain neuropeptides and a bone morphogenic protein, show that activity-dependent replenishment of synaptic neuropeptides following release is evident after inhibiting the retrograde transport with the dynactin disruptor mycalolide B or photobleaching DCVs entering a synaptic bouton by retrograde transport. In contrast, photobleaching anterograde transport vesicles entering a bouton inhibits neuropeptide replenishment after activity. Furthermore, tracking of individual DCVs moving through boutons shows that activity selectively increases capture of DCVs undergoing anterograde transport. Finally, upregulating fragile X mental retardation 1 protein (Fmr1, also called FMRP) acts independently of futsch/MAP-1B to abolish activity-dependent, but not constitutive, capture. Fmr1 also reduces presynaptic neuropeptide stores without affecting activity-independent delivery and evoked release. Therefore, presynaptic motoneuron neuropeptide storage is increased by a vesicle capture mechanism that is distinguished from constitutive bidirectional capture by activity dependence, anterograde selectivity, and Fmr1 sensitivity. These results show that activity recruits a separate mechanism than used at rest to stimulate additional synaptic capture of DCVs for future release of neuropeptides and neurotrophins. SIGNIFICANCE STATEMENT Synaptic release of neuropeptides and neurotrophins depends on presynaptic accumulation of dense-core vesicles (DCVs). At rest, DCVs are captured bidirectionally as they circulate through Drosophila motoneuron terminals by anterograde and retrograde transport. Here we show that activity stimulates further synaptic capture that is distinguished from basal capture by its selectivity for anterograde DCVs and its inhibition by overexpression of the fragile X retardation protein Fmr1. Fmr1 dramatically lowers DCV numbers in synaptic boutons. Therefore, activity-dependent anterograde capture is a major determinant of presynaptic peptide stores. PMID:27852784
GLT-1: The elusive presynaptic glutamate transporter
Rimmele, Theresa S.; Rosenberg, Paul A.
2016-01-01
Historically, glutamate uptake in the CNS was mainly attributed to glial cells for three reasons: 1) none of the glutamate transporters were found to be located in presynaptic terminals of excitatory synapses; 2) the putative glial transporters, GLT-1 and GLAST are expressed at high levels in astrocytes; 3) studies of the constitutive GLT-1 knockout as well as pharmacological studies demonstrated that >90% of glutamate uptake into forebrain synaptosomes is mediated by the operation of GLT-1. Here we summarize the history leading up to the recognition of GLT-1a as a presynaptic glutamate transporter. A major issue now is understanding the physiological and pathophysiologial significance of the expression of GLT-1 in presynaptic terminals. To elucidate the cell-type specific functions of GLT-1, a conditional knockout was generated with which to inactivate the GLT-1 gene in different cell types using Cre/lox technology. Astrocytic knockout led to an 80% reduction of GLT-1 expression, resulting in intractable seizures and early mortality as seen also in the constitutive knockout. Neuronal knockout was associated with no obvious phenotype. Surprisingly, synaptosomal uptake capacity (Vmax) was found to be significantly reduced, by 40%, in the neuronal knockout, indicating that the contribution of neuronal GLT-1 to synaptosomal uptake is disproportionate to its protein expression (5–10%). Conversely, the contribution of astrocytic GLT-1 to synaptosomal uptake was much lower than expected. In contrast, the loss of uptake into liposomes prepared from brain protein from astrocyte and neuronal knockouts was proportionate with the loss of GLT-1 protein, suggesting that a large portion of GLT-1 in astrocytic membranes in synaptosomal preparations is not functional, possibly because of a failure to reseal. These results suggest the need to reinterpret many previous studies using synaptosomal uptake to investigate glutamate transport itself as well as changes in glutamate homeostasis associated with normal functions, neurodegeneration, and response to drugs. PMID:27129805
Ohana, Ora; Sakmann, Bert
1998-01-01
Dual whole-cell voltage recordings were made from synaptically connected layer 5 (L5) pyramidal neurones in slices of the young (P14-P16) rat neocortex. The Ca2+ buffers BAPTA or EGTA were loaded into the presynaptic neurone via the pipette recording from the presynaptic neurone to examine their effect on the mean and the coefficient of variation (c.v.) of single fibre EPSP amplitudes, referred to as unitary EPSPs. The fast Ca2+ buffer BAPTA reduced unitary EPSP amplitudes in a concentration dependent way. With 0.1 mm BAPTA in the pipette, the mean EPSP amplitude was reduced by 14 ± 2.8% (mean ±s.e.m., n = 7) compared with control pipette solution, whereas with 1.5 mm BAPTA, the mean EPSP amplitude was reduced by 72 ± 1.5% (n = 5). The concentration of BAPTA that reduced mean EPSP amplitudes to one-half of control was close to 0.7 mm. Saturation of BAPTA during evoked release was tested by comparing the effect of loading the presynaptic neurone with 0.1 mm BAPTA at 2 and 1 mm[Ca2+]o. Reducing [Ca2+]o from 2 to 1 mm, thereby reducing Ca2+ influx into the terminals, decreased the mean EPSP amplitude by 60 ± 2.2% with control pipette solution and by 62 ± 1.9% after loading with 0.1 mm BAPTA (n = 7). The slow Ca2+ buffer EGTA at 1 mm reduced mean EPSP amplitudes by 15 ± 2.5% (n = 5). With 10 mm EGTA mean EPSP amplitudes were reduced by 56 ± 2.3% (n = 4). With both Ca2+ buffers, the reduction in mean EPSP amplitudes was associated with an increase in the c.v. of peak EPSP amplitudes, consistent with a reduction of the transmitter release probability as the major mechanism underlying the reduction of the EPSP amplitude. The results suggest that in nerve terminals of thick tufted L5 pyramidal cells the endogenous mobile Ca2+ buffer is equivalent to less than 0.1 mm BAPTA and that at many release sites of pyramidal cell terminals the Ca2+ channel domains overlap, a situation comparable with that at large calyx-type terminals in the brainstem. PMID:9782165
Singh, Rishabh; Su, Jianmin; Brooks, Justin; Terauchi, Akiko; Umemori, Hisashi; Fox, Michael A.
2012-01-01
At least three forms of signaling between pre- and postsynaptic partners are necessary during synapse formation. First, “targeting” signals instruct presynaptic axons to recognize and adhere to the correct portion of a postsynaptic target cell. Second, trans-synaptic “organizing” signals induce differentiation in their synaptic partner so that each side of the synapse is specialized for synaptic transmission. Finally, in many regions of the nervous system an excess of synapses are initially formed, therefore “refinement” signals must either stabilize or destabilize the synapse to reinforce or eliminate connections, respectively. Because of both their importance in processing visual information and their accessibility, retinogeniculate synapses have served as a model for studying synaptic development. Molecular signals that drive retinogeniculate “targeting” and “refinement” have been identified, however, little is known about what “organizing” cues are necessary for the differentiation of retinal axons into presynaptic terminals. To identify such “organizing” cues, we used microarray analysis to assess whether any target-derived “synaptic organizers” were enriched in the mouse dorsal lateral geniculate nucleus (dLGN) during retinogeniculate synapse formation. One candidate “organizing” molecule enriched in perinatal dLGN was FGF22, a secreted cue that induces the formation of excitatory nerve terminals in muscle, hippocampus, and cerebellum. In FGF22 knockout mice, the development of retinal terminals in dLGN was impaired. Thus, FGF22 is an important “organizing” cue for the timely development of retinogeniculate synapses. PMID:22363257
What Is Transmitted in "Synaptic Transmission"?
ERIC Educational Resources Information Center
Montagna, Erik; de Azevedo, Adriana M. S.; Romano, Camilla; Ranvaud, Ronald
2010-01-01
Even students that obtain a high grade in neurophysiology often carry away a serious misconception concerning the final result of the complex set of events that follows the arrival of an action potential at the presynaptic terminal. The misconception consists in considering that "at a synapse, information is passed on from one neuron to the next"…
THE EFFECT OF GESTATIONAL MERCURY VAPOR EXPOSURE ON RAT BRAIN A-SYNUCLEIN EXPRESSION.
Alpha-synuclein is a highly conserved protein that localizes to pre-synaptic terminals and is thought to play a role in neuronal plasticity. It is upregulated developmentally and continues to be expressed at high levels in the adult brain. Its presence in a number of neuronal (A...
Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala
Du, Jianyang; Reznikov, Leah R.; Price, Margaret P.; Zha, Xiang-ming; Lu, Yuan; Moninger, Thomas O.; Wemmie, John A.; Welsh, Michael J.
2014-01-01
Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na+- and Ca2+-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory. PMID:24889629
Passive Diffusion as a Mechanism Underlying Ribbon Synapse Vesicle Release and Resupply
Graydon, Cole W.; Zhang, Jun; Oesch, Nicholas W.; Sousa, Alioscka A.; Leapman, Richard D.
2014-01-01
Synaptic ribbons are presynaptic protein structures found at many synapses that convey graded, “analog” sensory signals in the visual, auditory, and vestibular pathways. Ribbons, typically anchored to the presynaptic membrane and surrounded by tethered synaptic vesicles, are thought to regulate or facilitate vesicle delivery to the presynaptic membrane. No direct evidence exists, however, to indicate how vesicles interact with the ribbon or, once attached, move along the ribbon's surface to reach the presynaptic release sites at its base. To address these questions, we have created, validated, and tested a passive vesicle diffusion model of retinal rod bipolar cell ribbon synapses. We used axial (bright-field) electron tomography in the scanning transmission electron microscopy to obtain 3D structures of rat rod bipolar cell terminals in 1-μm-thick sections of retinal tissue at an isotropic spatial resolution of ∼3 nm. The resulting structures were then incorporated with previously published estimates of vesicle diffusion dynamics into numerical simulations that accurately reproduced electrophysiologically measured vesicle release/replenishment rates and vesicle pool sizes. The simulations suggest that, under physiologically realistic conditions, diffusion of vesicles crowded on the ribbon surface gives rise to a flow field that enhances delivery of vesicles to the presynaptic membrane without requiring an active transport mechanism. Numerical simulations of ribbon–vesicle interactions predict that transient binding and unbinding of multiple tethers to each synaptic vesicle may achieve sufficiently tight association of vesicles to the ribbon while permitting the fast diffusion along the ribbon that is required to sustain high release rates. PMID:24990916
Passive diffusion as a mechanism underlying ribbon synapse vesicle release and resupply.
Graydon, Cole W; Zhang, Jun; Oesch, Nicholas W; Sousa, Alioscka A; Leapman, Richard D; Diamond, Jeffrey S
2014-07-02
Synaptic ribbons are presynaptic protein structures found at many synapses that convey graded, "analog" sensory signals in the visual, auditory, and vestibular pathways. Ribbons, typically anchored to the presynaptic membrane and surrounded by tethered synaptic vesicles, are thought to regulate or facilitate vesicle delivery to the presynaptic membrane. No direct evidence exists, however, to indicate how vesicles interact with the ribbon or, once attached, move along the ribbon's surface to reach the presynaptic release sites at its base. To address these questions, we have created, validated, and tested a passive vesicle diffusion model of retinal rod bipolar cell ribbon synapses. We used axial (bright-field) electron tomography in the scanning transmission electron microscopy to obtain 3D structures of rat rod bipolar cell terminals in 1-μm-thick sections of retinal tissue at an isotropic spatial resolution of ∼3 nm. The resulting structures were then incorporated with previously published estimates of vesicle diffusion dynamics into numerical simulations that accurately reproduced electrophysiologically measured vesicle release/replenishment rates and vesicle pool sizes. The simulations suggest that, under physiologically realistic conditions, diffusion of vesicles crowded on the ribbon surface gives rise to a flow field that enhances delivery of vesicles to the presynaptic membrane without requiring an active transport mechanism. Numerical simulations of ribbon-vesicle interactions predict that transient binding and unbinding of multiple tethers to each synaptic vesicle may achieve sufficiently tight association of vesicles to the ribbon while permitting the fast diffusion along the ribbon that is required to sustain high release rates. Copyright © 2014 the authors 0270-6474/14/348948-15$15.00/0.
Sinakevitch, Irina T.; Daskalova, Sasha M.; Smith, Brian H.
2017-01-01
This article describes the cellular sources for tyramine and the cellular targets of tyramine via the Tyramine Receptor 1 (AmTyr1) in the olfactory learning and memory neuropils of the honey bee brain. Clusters of approximately 160 tyramine immunoreactive neurons are the source of tyraminergic fibers with small varicosities in the optic lobes, antennal lobes, lateral protocerebrum, mushroom body (calyces and gamma lobes), tritocerebrum and subesophageal ganglion (SEG). Our tyramine mapping study shows that the primary sources of tyramine in the antennal lobe and calyx of the mushroom body are from at least two Ventral Unpaired Median neurons (VUMmd and VUMmx) with cell bodies in the SEG. To reveal AmTyr1 receptors in the brain, we used newly characterized anti-AmTyr1 antibodies. Immunolocalization studies in the antennal lobe with anti-AmTyr1 antibodies showed that the AmTyr1 expression pattern is mostly in the presynaptic sites of olfactory receptor neurons (ORNs). In the mushroom body calyx, anti-AmTyr1 mapped the presynaptic sites of uniglomerular Projection Neurons (PNs) located primarily in the microglomeruli of the lip and basal ring calyx area. Release of tyramine/octopamine from VUM (md and mx) neurons in the antennal lobe and mushroom body calyx would target AmTyr1 expressed on ORN and uniglomerular PN presynaptic terminals. The presynaptic location of AmTyr1, its structural similarity with vertebrate alpha-2 adrenergic receptors, and previous pharmacological evidence suggests that it has an important role in the presynaptic inhibitory control of neurotransmitter release. PMID:29114209
A dynamic formin-dependent deep F-actin network in axons
Ganguly, Archan; Tang, Yong; Wang, Lina; Ladt, Kelsey; Loi, Jonathan; Dargent, Bénédicte; Leterrier, Christophe
2015-01-01
Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal “actin hotspots” along axons—spaced ∼3–4 µm apart—where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons—a phenomenon we call “actin trails.” Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal “actin rings” described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin—but not Arp2/3—dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable “actin rings” providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles. PMID:26216902
Bipolar Cell-Photoreceptor Connectivity in the Zebrafish (Danio rerio) Retina
Li, Yong N.; Tsujimura, Taro; Kawamura, Shoji; Dowling, John E.
2013-01-01
Bipolar cells convey luminance, spatial and color information from photoreceptors to amacrine and ganglion cells. We studied the photoreceptor connectivity of 321 bipolar cells in the adult zebrafish retina. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was inserted into whole-mounted transgenic zebrafish retinas to label bipolar cells. The photoreceptors that connect to these DiI-labeled cells were identified by transgenic fluorescence or their positions relative to the fluorescent cones, as cones are arranged in a highly-ordered mosaic: rows of alternating blue- (B) and ultraviolet-sensitive (UV) single cones alternate with rows of red- (R) and green-sensitive (G) double cones. Rod terminals intersperse among cone terminals. As many as 18 connectivity subtypes were observed, 9 of which – G, GBUV, RG, RGB, RGBUV, RGRod, RGBRod, RGBUVRod and RRod bipolar cells – accounted for 96% of the population. Based on their axon terminal stratification, these bipolar cells could be further sub-divided into ON, OFF, and ON-OFF cells. The dendritic spread size, soma depth and size, and photoreceptor connections of the 308 bipolar cells within the 9 common connectivity subtypes were determined, and their dendritic tree morphologies and axonal stratification patterns compared. We found that bipolar cells with the same axonal stratification patterns could have heterogeneous photoreceptor connectivity whereas bipolar cells with the same dendritic tree morphology usually had the same photoreceptor connectivity, although their axons might stratify on different levels. PMID:22907678
Uchitel, O D; Protti, D A; Sanchez, V; Cherksey, B D; Sugimori, M; Llinás, R
1992-01-01
We have studied the effect of the purified toxin from the funnel-web spider venom (FTX) and its synthetic analog (sFTX) on transmitter release and presynaptic currents at the mouse neuromuscular junction. FTX specifically blocks the omega-conotoxin- and dihydropyridine-insensitive P-type voltage-dependent Ca2+ channel (VDCC) in cerebellar Purkinje cells. Mammalian neuromuscular transmission, which is insensitive to N- or L-type Ca2+ channel blockers, was effectively abolished by FTX and sFTX. These substances blocked the muscle contraction and the neurotransmitter release evoked by nerve stimulation. Moreover, presynaptic Ca2+ currents recorded extracellularly from the interior of the perineural sheaths of nerves innervating the mouse levator auris muscle were specifically blocked by both natural toxin and synthetic analogue. In a parallel set of experiments, K(+)-induced Ca45 uptake by brain synaptosomes was also shown to be blocked or greatly diminished by FTX and sFTX. These results indicate that the predominant VDCC in the motor nerve terminals, and possibly in a significant percentage of brain synapses, is the P-type channel. Images PMID:1348859
Uchitel, O D; Protti, D A; Sanchez, V; Cherksey, B D; Sugimori, M; Llinás, R
1992-04-15
We have studied the effect of the purified toxin from the funnel-web spider venom (FTX) and its synthetic analog (sFTX) on transmitter release and presynaptic currents at the mouse neuromuscular junction. FTX specifically blocks the omega-conotoxin- and dihydropyridine-insensitive P-type voltage-dependent Ca2+ channel (VDCC) in cerebellar Purkinje cells. Mammalian neuromuscular transmission, which is insensitive to N- or L-type Ca2+ channel blockers, was effectively abolished by FTX and sFTX. These substances blocked the muscle contraction and the neurotransmitter release evoked by nerve stimulation. Moreover, presynaptic Ca2+ currents recorded extracellularly from the interior of the perineural sheaths of nerves innervating the mouse levator auris muscle were specifically blocked by both natural toxin and synthetic analogue. In a parallel set of experiments, K(+)-induced Ca45 uptake by brain synaptosomes was also shown to be blocked or greatly diminished by FTX and sFTX. These results indicate that the predominant VDCC in the motor nerve terminals, and possibly in a significant percentage of brain synapses, is the P-type channel.
Presynaptic Disorders: Lambert-Eaton Myasthenic Syndrome and Botulism.
Gable, Karissa L; Massey, Janice M
2015-08-01
Lambert-Eaton myasthenic syndrome (LEMS) and botulism are acquired presynaptic nerve terminal disorders of the neuromuscular junction. Lambert-Eaton myasthenic syndrome is an idiopathic or paraneoplastic autoimmune syndrome in which autoantibodies of the P/Q-type voltage-gated calcium channel play a role in decreasing the release of acetylcholine, resulting in clinical symptoms of skeletal muscle weakness, diminished reflexes, and autonomic symptoms. Paraneoplastic LEMS is most often associated with small cell lung cancer. Diagnosis is confirmed by positive serologic testing and electrophysiological studies, which display characteristic features of low compound muscle action potentials, a decrement at 3Hz repetitive nerve stimulation, and facilitation with exercise or high-frequency repetitive stimulation. Treatment involves cancer monitoring and treatment, 3,4-diaminopyridine, immunosuppressive medications, and acetylcholinesterase inhibitors. Botulism is another presynaptic disorder of neuromuscular transmission. Clinical features classically involve cranial and bulbar palsies followed by descending weakness of the limbs, respiratory failure, and autonomic dysfunction. Electrodiagnostic testing is important in the evaluation and diagnosis. Treatment is supportive, and administration of antitoxin is beneficial in selected cases. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Jeans, Alexander F; van Heusden, Fran C; Al-Mubarak, Bashayer; Padamsey, Zahid; Emptage, Nigel J
2017-10-10
Voltage-dependent Ca 2+ channels (VGCC) represent the principal source of Ca 2+ ions driving evoked neurotransmitter release at presynaptic boutons. In mammals, presynaptic Ca 2+ influx is mediated mainly via P/Q-type and N-type VGCC, which differ in their properties. Changes in their relative contributions tune neurotransmission both during development and in Hebbian plasticity. However, whether this represents a functional motif also present in other forms of activity-dependent regulation is unknown. Here, we study the role of VGCC in homeostatic plasticity (HSP) in mammalian hippocampal neurons using optical techniques. We find that changes in evoked Ca 2+ currents specifically through P/Q-type, but not N-type, VGCC mediate bidirectional homeostatic regulation of both neurotransmitter release efficacy and the size of the major synaptic vesicle pools. Selective dependence of HSP on P/Q-type VGCC in mammalian terminals has important implications for phenotypes associated with P/Q-type channelopathies, including migraine and epilepsy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Schulte, Uwe; Thumfart, Jörg-Oliver; Klöcker, Nikolaj; Sailer, Claudia A; Bildl, Wolfgang; Biniossek, Martin; Dehn, Doris; Deller, Thomas; Eble, Silke; Abbass, Karen; Wangler, Tanja; Knaus, Hans-Günther; Fakler, Bernd
2006-03-02
The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe epilepsy (ADLTE). In the hippocampal formation, both Kv1.1 and Lgi1 are coassembled with Kv1.4 and Kvbeta1 in axonal terminals. In A-type channels composed of these subunits, Lgi1 selectively prevents N-type inactivation mediated by the Kvbeta1 subunit. In contrast, defective Lgi1 molecules identified in ADLTE patients fail to exert this effect resulting in channels with rapid inactivation kinetics. The results establish Lgi1 as a novel subunit of Kv1.1-associated protein complexes and suggest that changes in inactivation gating of presynaptic A-type channels may promote epileptic activity.
Peng, S-C; Wu, J; Zhang, D-Y; Jiang, C-Y; Xie, C-N; Liu, T
2017-09-01
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pathological pain-associated voltage-gated ion channels. They are widely expressed in central nervous system including spinal lamina II (also named the substantia gelatinosa, SG). Here, we examined the distribution of HCN channels in glutamatergic synaptic terminals as well as their role in the modulation of synaptic transmission in SG neurons from SD rats and glutamic acid decarboxylase-67 (GAD67)-GFP mice. We found that the expression of the HCN channel isoforms was varied in SG. The HCN4 isoform showed the highest level of co-localization with VGLUT2 (23±3%). In 53% (n=21/40 neurons) of the SG neurons examined in SD rats, application of HCN channel blocker, ZD7288 (10μM), decreased the frequency of spontaneous (s) and miniature (m) excitatory postsynaptic currents (EPSCs) by 37±4% and 33±4%, respectively. Consistently, forskolin (FSK) (an activator of adenylate cyclase) significantly increased the frequency of mEPSCs by 225±34%, which could be partially inhibited by ZD7288. Interestingly, the effects of ZD7288 and FSK on sEPSC frequency were replicated in non-GFP-expressing neurons, but not in GFP-expressing GABAergic SG neurons, in GAD67-GFP transgenic C57/BL6 mice. In summary, our results represent a previously unknown cellular mechanism by which presynaptic HCN channels, especially HCN4, regulate the glutamate release from presynaptic terminals that target excitatory, but not inhibitory SG interneurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
A Role for Synapsin in Associative Learning: The "Drosophila" Larva as a Study Case
ERIC Educational Resources Information Center
Michels, Birgit; Diegelmann, Soren; Tanimoto, Hiromu; Schwenkert, Isabell; Buchner, Erich; Gerber, Bertram
2005-01-01
Synapsins are evolutionarily conserved, highly abundant vesicular phosphoproteins in presynaptic terminals. They are thought to regulate the recruitment of synaptic vesicles from the reserve pool to the readily-releasable pool, in particular when vesicle release is to be maintained at high spiking rates. As regulation of transmitter release is a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as wellmore » as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data.« less
Talbot, Konrad; Eidem, Wess L.; Tinsley, Caroline L.; Benson, Matthew A.; Thompson, Edward W.; Smith, Rachel J.; Hahn, Chang-Gyu; Siegel, Steven J.; Trojanowski, John Q.; Gur, Raquel E.; Blake, Derek J.; Arnold, Steven E.
2004-01-01
Eleven studies now report significant associations between schizophrenia and certain haplotypes of single-nucleotide polymorphisms in the gene encoding dysbindin-1 at 6p22.3. Dysbindin-1 is best known as dystrobrevin-binding protein 1 (DTNBP1) and may thus be associated with the dystrophin glycoprotein complex found at certain postsynaptic sites in the brain. Contrary to expectations, however, we found that when compared to matched, nonpsychiatric controls, 73–93% of cases in two schizophrenia populations displayed presynaptic dysbindin-1 reductions averaging 18–42% (P = 0.027–0.0001) at hippocampal formation sites lacking neuronal dystrobrevin (i.e., β-dystrobrevin). The reductions, which were not observed in the anterior cingulate of the same schizophrenia cases, occurred specifically in terminal fields of intrinsic, glutamatergic afferents of the subiculum, the hippocampus proper, and especially the inner molecular layer of the dentate gyrus (DGiml). An inversely correlated increase in vesicular glutamate transporter-1 (VGluT-1) occurred in DGiml of the same schizophrenia cases. Those changes occurred without evidence of axon terminal loss or neuroleptic effects on dysbindin-1 or VGluT-1. Our findings indicate that presynaptic dysbindin-1 reductions independent of the dystrophin glycoprotein complex are frequent in schizophrenia and are related to glutamatergic alterations in intrinsic hippocampal formation connections. Such changes may contribute to the cognitive deficits common in schizophrenia. PMID:15124027
Talbot, Konrad; Eidem, Wess L; Tinsley, Caroline L; Benson, Matthew A; Thompson, Edward W; Smith, Rachel J; Hahn, Chang-Gyu; Siegel, Steven J; Trojanowski, John Q; Gur, Raquel E; Blake, Derek J; Arnold, Steven E
2004-05-01
Eleven studies now report significant associations between schizophrenia and certain haplotypes of single-nucleotide polymorphisms in the gene encoding dysbindin-1 at 6p22.3. Dysbindin-1 is best known as dystrobrevin-binding protein 1 (DTNBP1) and may thus be associated with the dystrophin glycoprotein complex found at certain postsynaptic sites in the brain. Contrary to expectations, however, we found that when compared to matched, nonpsychiatric controls, 73-93% of cases in two schizophrenia populations displayed presynaptic dysbindin-1 reductions averaging 18-42% (P = 0.027-0.0001) at hippocampal formation sites lacking neuronal dystrobrevin (i.e., beta-dystrobrevin). The reductions, which were not observed in the anterior cingulate of the same schizophrenia cases, occurred specifically in terminal fields of intrinsic, glutamatergic afferents of the subiculum, the hippocampus proper, and especially the inner molecular layer of the dentate gyrus (DGiml). An inversely correlated increase in vesicular glutamate transporter-1 (VGluT-1) occurred in DGiml of the same schizophrenia cases. Those changes occurred without evidence of axon terminal loss or neuroleptic effects on dysbindin-1 or VGluT-1. Our findings indicate that presynaptic dysbindin-1 reductions independent of the dystrophin glycoprotein complex are frequent in schizophrenia and are related to glutamatergic alterations in intrinsic hippocampal formation connections. Such changes may contribute to the cognitive deficits common in schizophrenia.
Bornia, Elaine Cs; Correia-de-Sá, Paulo; Alves-Do-Prado, Wilson
2011-03-01
1. Pancuronium, cisatracurium and vecuronium are antinicotinic agents that, in contrast with d-tubocurarine and hexamethonium, exhibit anticholinesterase activity. Pancuronium-, cisatracurium- and vecuronium-induced fade results from blockade of facilitatory nicotinic receptors on motor nerves, but fade produced by such agents also depends on the presynaptic activation of inhibitory muscarinic M2 receptors by acetylcholine released from motor nerve terminals and activation of inhibitory adenosine A1 receptors by adenosine released from motor nerves and muscles. The participation of presynaptic facilitatory A2A receptors in fade caused by pancuronium, cisatracurium and vecuronium has not yet been investigated. In the present study, we determined the effects of ZM241385, an antagonist of presynaptic facilitatory A2A receptors, on fade produced by these neuromuscular relaxants in the rat phrenic nerve-diaphragm (PND) preparation. 2. The muscles were stimulated indirectly at 75±3Hz to induce a sustained tetanizing muscular contraction. The lowest concentration at which each antinicotinic agent produced fade without modifying initial tetanic tension (presynaptic action) was determined. 3. d-Tubocurarine-induced fade occurred only at 55 nmol/L, a concentration that also reduced maximal tetanic tension (post-synaptic action). At 10 nmol/L, ZM 241385 alone did not produce fade, but it did attenuate pancuronium (0.32 μmol/L)-, cisatracurium (0.32 μmol/L)- and vecuronium (0.36 μmol/L)-induced fade. 4. The fade induced by the 'pure' antinicotinic agents d-tubocurarine (55 nmol/L) and hexamethonium (413 μmol/L) was not altered by 10 nmol/L ZM 241385, indicating that presynaptic adenosine A2A receptors play a significant role in the fade produced by antinicotinic agents when such agents have anticholinesterase activity. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.
Cyfip1 Regulates Presynaptic Activity during Development.
Hsiao, Kuangfu; Harony-Nicolas, Hala; Buxbaum, Joseph D; Bozdagi-Gunal, Ozlem; Benson, Deanna L
2016-02-03
Copy number variations encompassing the gene encoding Cyfip1 have been associated with a variety of human diseases, including autism and schizophrenia. Here we show that juvenile mice hemizygous for Cyfip1 have altered presynaptic function, enhanced protein translation, and increased levels of F-actin. In developing hippocampus, reduced Cyfip1 levels serve to decrease paired pulse facilitation and increase miniature EPSC frequency without a change in amplitude. Higher-resolution examination shows these changes to be caused primarily by an increase in presynaptic terminal size and enhanced vesicle release probability. Short hairpin-mediated knockdown of Cyfip1 coupled with expression of mutant Cyfip1 proteins indicates that the presynaptic alterations are caused by dysregulation of the WAVE regulatory complex. Such dysregulation occurs downstream of Rac1 as acute exposure to Rac1 inhibitors rescues presynaptic responses in culture and in hippocampal slices. The data serve to highlight an early and essential role for Cyfip1 in the generation of normally functioning synapses and suggest a means by which changes in Cyfip1 levels could impact the generation of neural networks and contribute to abnormal and maladaptive behaviors. Several developmental brain disorders have been associated with gene duplications and deletions that serve to increase or decrease levels of encoded proteins. Cyfip1 is one such protein, but the role it plays in brain development is poorly understood. We asked whether decreased Cyfip1 levels altered the function of developing synapses. The data show that synapses with reduced Cyfip1 are larger and release neurotransmitter more rapidly. These effects are due to Cyfip1's role in actin polymerization and are reversed by expression of a Cyfip1 mutant protein retaining actin regulatory function or by inhibiting Rac1. Thus, Cyfip1 has a more prominent early role regulating presynaptic activity during a stage of development when activity helps to define neural pathways. Copyright © 2016 the authors 0270-6474/16/361564-13$15.00/0.
Kaczmarek, D.; Ristikankare, J.
2017-01-01
Key points Trans‐spinal polarization was recently introduced as a means to improve deficient spinal functions. However, only a few attempts have been made to examine the mechanisms underlying DC actions. We have now examined the effects of DC on two spinal modulatory systems, presynaptic inhibition and post‐activation depression, considering whether they might weaken exaggerated spinal reflexes and enhance excessively weakened ones.Direct current effects were evoked by using local intraspinal DC application (0.3–0.4 μA) in deeply anaesthetized rats and were compared with the effects of trans‐spinal polarization (0.8–1.0 mA).Effects of local intraspinal DC were found to be polarity dependent, as locally applied cathodal polarization enhanced presynaptic inhibition and post‐activation depression, whereas anodal polarization weakened them. In contrast, both cathodal and anodal trans‐spinal polarization facilitated them.The results suggest some common DC‐sensitive mechanisms of presynaptic inhibition and post‐activation depression, because both were facilitated or depressed by DC in parallel. Abstract Direct current (DC) polarization has been demonstrated to alleviate the effects of various deficits in the operation of the central nervous system. However, the effects of trans‐spinal DC stimulation (tsDCS) have been investigated less extensively than the effects of transcranial DC stimulation, and their cellular mechanisms have not been elucidated. The main objectives of this study were, therefore, to extend our previous analysis of DC effects on the excitability of primary afferents and synaptic transmission by examining the effects of DC on two spinal modulatory feedback systems, presynaptic inhibition and post‐activation depression, in an anaesthetized rat preparation. Other objectives were to compare the effects of locally and trans‐spinally applied DC (locDC and tsDCS). Local polarization at the sites of terminal branching of afferent fibres was found to induce polarity‐dependent actions on presynaptic inhibition and post‐activation depression, as cathodal locDC enhanced them and anodal locDC depressed them. In contrast, tsDCS modulated presynaptic inhibition and post‐activation depression in a polarity‐independent fashion because both cathodal and anodal tsDCS facilitated them. The results show that the local presynaptic actions of DC might counteract both excessively strong and excessively weak monosynaptic actions of group Ia and cutaneous afferents. However, they indicate that trans‐spinally applied DC might counteract the exaggerated spinal reflexes but have an adverse effect on pathologically weakened spinal activity by additional presynaptic weakening. The results are also relevant for the analysis of the basic properties of presynaptic inhibition and post‐activation depression because they indicate that some common DC‐sensitive mechanisms contribute to them. PMID:27891626
Synaptic transmission block by presynaptic injection of oligomeric amyloid beta
Moreno, Herman; Yu, Eunah; Pigino, Gustavo; Hernandez, Alejandro I.; Kim, Natalia; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.
2009-01-01
Early Alzheimer's disease (AD) pathophysiology is characterized by synaptic changes induced by degradation products of amyloid precursor protein (APP). The exact mechanisms of such modulation are unknown. Here, we report that nanomolar concentrations of intraaxonal oligomeric (o)Aβ42, but not oAβ40 or extracellular oAβ42, acutely inhibited synaptic transmission at the squid giant synapse. Further characterization of this phenotype demonstrated that presynaptic calcium currents were unaffected. However, electron microscopy experiments revealed diminished docked synaptic vesicles in oAβ42-microinjected terminals, without affecting clathrin-coated vesicles. The molecular events of this modulation involved casein kinase 2 and the synaptic vesicle rapid endocytosis pathway. These findings open the possibility of a new therapeutic target aimed at ameliorating synaptic dysfunction in AD. PMID:19304802
Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons.
Bischofberger, Josef; Geiger, Jörg R P; Jonas, Peter
2002-12-15
The presynaptic Ca2+ signal is a key determinant of transmitter release at chemical synapses. In cortical synaptic terminals, however, little is known about the kinetic properties of the presynaptic Ca2+ channels. To investigate the timing and magnitude of the presynaptic Ca2+ inflow, we performed whole-cell patch-clamp recordings from mossy fiber boutons (MFBs) in rat hippocampus. MFBs showed large high-voltage-activated Ca(2+) currents, with a maximal amplitude of approximately 100 pA at a membrane potential of 0 mV. Both activation and deactivation were fast, with time constants in the submillisecond range at a temperature of approximately 23 degrees C. An MFB action potential (AP) applied as a voltage-clamp command evoked a transient Ca2+ current with an average amplitude of approximately 170 pA and a half-duration of 580 microsec. A prepulse to +40 mV had only minimal effects on the AP-evoked Ca2+ current, indicating that presynaptic APs open the voltage-gated Ca2+ channels very effectively. On the basis of the experimental data, we developed a kinetic model with four closed states and one open state, linked by voltage-dependent rate constants. Simulations of the Ca2+ current could reproduce the experimental data, including the large amplitude and rapid time course of the current evoked by MFB APs. Furthermore, the simulations indicate that the shape of the presynaptic AP and the gating kinetics of the Ca2+ channels are tuned to produce a maximal Ca2+ influx during a minimal period of time. The precise timing and high efficacy of Ca2+ channel activation at this cortical glutamatergic synapse may be important for synchronous transmitter release and temporal information processing.
Morphological evidence for local microcircuits in rat vestibular maculae
NASA Technical Reports Server (NTRS)
Ross, M. D.
1997-01-01
Previous studies suggested that intramacular, unmyelinated segments of vestibular afferent nerve fibers and their large afferent endings (calyces) on type I hair cells branch. Many of the branches (processes) contain vesicles and are presynaptic to type II hair cells, other processes, intramacular nerve fibers, and calyces. This study used serial section transmission electron microscopy and three-dimensional reconstruction methods to document the origins and distributions of presynaptic processes of afferents in the medial part of the adult rat utricular macula. The ultrastructural research focused on presynaptic processes whose origin and termination could be observed in a single micrograph. Results showed that calyces had 1) vesiculated, spine-like processes that invaginated type I cells and 2) other, elongate processes that ended on type II cells pre- as well as postsynaptically. Intramacular, unmyelinated segments of afferent nerve fibers gave origin to branches that were presynaptic to type II cells, calyces, calyceal processes, and other nerve fibers in the macula. Synapses with type II cells occurred opposite subsynaptic cisternae (C synapses); all other synapses were asymmetric. Vesicles were pleomorphic but were differentially distributed according to process origin. Small, clear-centered vesicles, approximately 40-60 nm in diameter, predominated in processes originating from afferent nerve fibers and basal parts of calyces. Larger vesicles approximately 70-120 nm in diameter having approximately 40-80 nm electron-opaque cores were dominant in processes originating from the necks of calyces. Results are interpreted to indicate the existence of a complex system of intrinsic feedforward (postsynaptic)-feedback (presynaptic) connections in a network of direct and local microcircuits. The morphological findings support the concept that maculae dynamically preprocess linear acceleratory information before its transmission to the central nervous system.
Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.
Michaelis, Mary L; Jiang, Lei; Michaelis, Elias K
2017-01-01
Isolation of synaptic nerve terminals or synaptosomes provides an opportunity to study the process of neurotransmission at many levels and with a variety of approaches. For example, structural features of the synaptic terminals and the organelles within them, such as synaptic vesicles and mitochondria, have been elucidated with electron microscopy. The postsynaptic membranes are joined to the presynaptic "active zone" of transmitter release through cell adhesion molecules and remain attached throughout the isolation of synaptosomes. These "post synaptic densities" or "PSDs" contain the receptors for the transmitters released from the nerve terminals and can easily be seen with electron microscopy. Biochemical and cell biological studies with synaptosomes have revealed which proteins and lipids are most actively involved in synaptic release of neurotransmitters. The functional properties of the nerve terminals, such as responses to depolarization and the uptake or release of signaling molecules, have also been characterized through the use of fluorescent dyes, tagged transmitters, and transporter substrates. In addition, isolated synaptosomes can serve as the starting material for the isolation of relatively pure synaptic plasma membranes (SPMs) that are devoid of organelles from the internal environment of the nerve terminal, such as mitochondria and synaptic vesicles. The isolated SPMs can reseal and form vesicular structures in which transport of ions such as sodium and calcium, as well as solutes such as neurotransmitters can be studied. The PSDs also remain associated with the presynaptic membranes during isolation of SPM fractions, making it possible to isolate the synaptic junctional complexes (SJCs) devoid of the rest of the plasma membranes of the nerve terminals and postsynaptic membrane components. Isolated SJCs can be used to identify the proteins that constitute this highly specialized region of neurons. In this chapter, we describe the steps involved in isolating synaptosomes, SPMs, and SJCs from brain so that these preparations can be used with new technological advances to address many as yet unanswered questions about the synapse and its remarkable activities in neuronal cell communication.
Thoreson, Wallace B.; Van Hook, Matthew J.; Parmelee, Caitlyn; Curto, Carina
2015-01-01
Post-synaptic responses are a product of quantal amplitude (Q), size of the releasable vesicle pool (N), and release probability (P). Voltage-dependent changes in presynaptic Ca2+ entry alter post-synaptic responses primarily by changing P but have also been shown to influence N. With simultaneous whole cell recordings from cone photoreceptors and horizontal cells in tiger salamander retinal slices, we measured N and P at cone ribbon synapses by using a train of depolarizing pulses to stimulate release and deplete the pool. We developed an analytical model that calculates the total pool size contributing to release under different stimulus conditions by taking into account the prior history of release and empirically-determined properties of replenishment. The model provided a formula that calculates vesicle pool size from measurements of the initial post-synaptic response and limiting rate of release evoked by a train of pulses, the fraction of release sites available for replenishment, and the time constant for replenishment. Results of the model showed that weak and strong depolarizing stimuli evoked release with differing probabilities but the same size vesicle pool. Enhancing intraterminal Ca2+ spread by lowering Ca2+ buffering or applying BayK8644 did not increase PSCs evoked with strong test steps showing there is a fixed upper limit to pool size. Together, these results suggest that light-evoked changes in cone membrane potential alter synaptic release solely by changing release probability. PMID:26541100
2013-01-01
Background Growing compelling evidence from clinical and preclinical studies has demonstrated the primary role of alterations of glutamatergic transmission in cortical and limbic areas in the pathophysiology of mood disorders. Chronic antidepressants have been shown to dampen endogenous glutamate release from rat hippocampal synaptic terminals and to prevent the marked increase of glutamate overflow induced by acute behavioral stress in frontal/prefrontal cortex. Agomelatine, a new antidepressant endowed with MT1/MT2 agonist and 5-HT2C serotonergic antagonist properties, has shown efficacy at both preclinical and clinical levels. Results Chronic treatment with agomelatine, or with the reference drug venlafaxine, induced a marked decrease of depolarization-evoked endogenous glutamate release from purified hippocampal synaptic terminals in superfusion. No changes were observed in GABA release. This effect was accompanied by reduced accumulation of SNARE protein complexes, the key molecular effector of vesicle docking, priming and fusion at presynaptic membranes. Conclusions Our data suggest that the novel antidepressant agomelatine share with other classes of antidepressants the ability to modulate glutamatergic transmission in hippocampus. Its action seems to be mediated by molecular mechanisms located on the presynaptic membrane and related with the size of the vesicle pool ready for release. PMID:23895555
Domain requirements for the Dock adapter protein in growth- cone signaling.
Rao, Y; Zipursky, S L
1998-03-03
Tyrosine phosphorylation has been implicated in growth-cone guidance through genetic, biochemical, and pharmacological studies. Adapter proteins containing src homology 2 (SH2) domains and src homology 3 (SH3) domains provide a means of linking guidance signaling through phosphotyrosine to downstream effectors regulating growth-cone motility. The Drosophila adapter, Dreadlocks (Dock), the homolog of mammalian Nck containing three N-terminal SH3 domains and a single SH2 domain, is highly specialized for growth-cone guidance. In this paper, we demonstrate that Dock can couple signals in either an SH2-dependent or an SH2-independent fashion in photoreceptor (R cell) growth cones, and that Dock displays different domain requirements in different neurons.
Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles.
Cavolo, Samantha L; Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S
2016-11-16
Synaptic neuropeptide and neurotrophin stores are maintained by constitutive bidirectional capture of dense-core vesicles (DCVs) as they circulate in and out of the nerve terminal. Activity increases DCV capture to rapidly replenish synaptic neuropeptide stores following release. However, it is not known whether this is due to enhanced bidirectional capture. Here experiments at the Drosophila neuromuscular junction, where DCVs contain neuropeptides and a bone morphogenic protein, show that activity-dependent replenishment of synaptic neuropeptides following release is evident after inhibiting the retrograde transport with the dynactin disruptor mycalolide B or photobleaching DCVs entering a synaptic bouton by retrograde transport. In contrast, photobleaching anterograde transport vesicles entering a bouton inhibits neuropeptide replenishment after activity. Furthermore, tracking of individual DCVs moving through boutons shows that activity selectively increases capture of DCVs undergoing anterograde transport. Finally, upregulating fragile X mental retardation 1 protein (Fmr1, also called FMRP) acts independently of futsch/MAP-1B to abolish activity-dependent, but not constitutive, capture. Fmr1 also reduces presynaptic neuropeptide stores without affecting activity-independent delivery and evoked release. Therefore, presynaptic motoneuron neuropeptide storage is increased by a vesicle capture mechanism that is distinguished from constitutive bidirectional capture by activity dependence, anterograde selectivity, and Fmr1 sensitivity. These results show that activity recruits a separate mechanism than used at rest to stimulate additional synaptic capture of DCVs for future release of neuropeptides and neurotrophins. Synaptic release of neuropeptides and neurotrophins depends on presynaptic accumulation of dense-core vesicles (DCVs). At rest, DCVs are captured bidirectionally as they circulate through Drosophila motoneuron terminals by anterograde and retrograde transport. Here we show that activity stimulates further synaptic capture that is distinguished from basal capture by its selectivity for anterograde DCVs and its inhibition by overexpression of the fragile X retardation protein Fmr1. Fmr1 dramatically lowers DCV numbers in synaptic boutons. Therefore, activity-dependent anterograde capture is a major determinant of presynaptic peptide stores. Copyright © 2016 the authors 0270-6474/16/3611781-07$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biegon, A.; Rainbow, T.C.
1983-05-01
The high affinity binding sites for the antidepressant desmethlyimipramine (DMI) have been localized in rat brain by quantitative autoradiography. There are high concentrations of binding sites in the locus ceruleus, the anterior ventral thalamus, the ventral portion of the bed nucleus of the stria terminalis, the paraventricular and the dorsomedial nuclei of the hypothalamus. The distribution of DMI binding sites is in striking accord with the distribution of norepinephrine terminals. Pretreatment of rats with the neurotoxin 6-hydroxydopamine, which causes a selective degeneration of catecholamine terminals, results in 60 to 90% decrease in DMI binding. These data support the idea thatmore » high affinity binding sites for DMI are located on presynaptic noradrenergic terminals.« less
Musante, Veronica; Summa, Maria; Cunha, Rodrigo A; Raiteri, Maurizio; Pittaluga, Anna
2011-05-01
Rat hippocampal glutamatergic terminals possess NMDA autoreceptors whose activation by low micromolar NMDA elicits glutamate exocytosis in the presence of physiological Mg(2+) (1.2 mM), the release of glutamate being significantly reduced when compared to that in Mg(2+)-free condition. Both glutamate and glycine were required to evoke glutamate exocytosis in 1.2 mM Mg(2+), while dizocilpine, cis-4-[phosphomethyl]-piperidine-2-carboxylic acid and 7-Cl-kynurenic acid prevented it, indicating that occupation of both agonist sites is needed for receptor activation. D-serine mimicked glycine but also inhibited the NMDA/glycine-induced release of [(3H]D-aspartate, thus behaving as a partial agonist. The NMDA/glycine-induced release in 1.2 mM Mg(2+) strictly depended on glycine uptake through the glycine transporter type 1 (GlyT1), because the GlyT1 blocker N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine hydrochloride, but not the GlyT2 blocker Org 25534, prevented it. Accordingly, [(3)H]glycine was taken up during superfusion, while lowering the external concentration of Na(+), the monovalent cation co-transported with glycine by GlyT1, abrogated the NMDA-induced effect. Western blot analysis of subsynaptic fractions confirms that GlyT1 and NMDA autoreceptors co-localize at the pre-synaptic level, where GluN3A subunits immunoreactivity was also recovered. It is proposed that GlyT1s coexist with NMDA autoreceptors on rat hippocampal glutamatergic terminals and that glycine taken up by GlyT1 may permit physiological activation of NMDA pre-synaptic autoreceptors. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
PACAP/PAC1R signaling modulates acetylcholine release at neuronal nicotinic synapses
Pugh, Phyllis C.; Jayakar, Selwyn S.; Margiotta, Joseph F.
2009-01-01
Neuropeptides collaborate with conventional neurotransmitters to regulate synaptic output. Pituitary adenylate cyclase-activating polypeptide (PACAP) co-localizes with acetylcholine in presynaptic nerve terminals, is released by stimulation, and enhances nicotinic acetylcholine receptor- (nAChR-) mediated responses. Such findings implicate PACAP in modulating nicotinic neurotransmission, but relevant synaptic mechanisms have not been explored. We show here that PACAP acts via selective high-affinity G-protein coupled receptors (PAC1Rs) to enhance transmission at nicotinic synapses on parasympathetic ciliary ganglion (CG) neurons by rapidly and persistently increasing the frequency and amplitude of spontaneous, impulse-dependent nicotinic excitatory postsynaptic currents (sEPSCs). Of the canonical adenylate cyclase (AC) and phospholipase-C (PLC) transduction cascades stimulated by PACAP/PAC1R signaling, only AC-generated signals are critical for synaptic modulation since the increases in sEPSC frequency and amplitude were mimicked by 8-Bromo-cAMP, blocked by inhibiting AC or cAMP-dependent protein kinase (PKA), and unaffected by inhibiting PLC. Despite its ability to increase agonist-induced nAChR currents, PACAP failed to influence nAChR-mediated impulse-independent miniature EPSC amplitudes (quantal size). Instead, evoked transmission assays reveal that PACAP/PAC1R signaling increased quantal content, indicating it modulates synaptic function by increasing vesicular ACh release from presynaptic terminals. Lastly, signals generated by the retrograde messenger, nitric oxide- (NO-) are critical for the synaptic modulation since the PACAP-induced increases in spontaneous EPSC frequency, amplitude and quantal content were mimicked by NO donor and absent after inhibiting NO synthase (NOS). These results indicate that PACAP/PAC1R activation recruits AC-dependent signaling that stimulates NOS to increase NO production and control presynaptic transmitter output at neuronal nicotinic synapses. PMID:19958833
Datyner, M. E.; Gage, P. W.
1973-01-01
1. Crude venom (TSV) from the Australian tiger snake (Notechis scutatus scutatus) has both presynaptic and postsynaptic effects at the neuromuscular junctions of toads. 2. TSV (50 μg/ml) rapidly blocked indirectly elicited muscle twitches without affecting the compound action potential in the sciatic nerve or twitches elicited by direct stimulation. 3. Low concentrations of the venom (1-10 μg/ml) reduced the amplitude of miniature endplate potentials (m.e.p.ps) and inhibited the depolarization of muscle fibres normally caused by carbachol. It was concluded that a fraction of the venom binds to acetylcholine receptors. 4. The frequency of m.e.p.ps was at first increased by TSV at a concentration of 1 μg/ml. Occasional, high frequency `bursts' of m.e.p.ps were recorded in some preparations. The mean frequency of m.e.p.ps appeared to fall after several hours in the venom. 5. The quantal content of endplate potentials (e.p.ps) was reduced by the venom. With low concentrations (1 μg/ml), an initial increase in quantal content was often seen. When the quantal content was markedly depressed there was no parallel reduction in the amplitude of nerve terminal spikes recorded extracellularly, though a later fall in size and slowing of time course was often seen. 6. There was evidence that TSV eventually changed the normal Poisson characteristics of the spontaneous release of quanta and this may be correlated with electronmicroscopic changes in nerve terminals. 7. Tiger snake antivenene counteracted the postsynaptic, but not the presynaptic effects of TSV when they had developed. PMID:4367126
Activation of inactivation process initiates rapid eye movement sleep.
Mallick, Birendra Nath; Singh, Abhishek; Khanday, Mudasir Ahmad
2012-06-01
Interactions among REM-ON and REM-OFF neurons form the basic scaffold for rapid eye movement sleep (REMS) regulation; however, precise mechanism of their activation and cessation, respectively, was unclear. Locus coeruleus (LC) noradrenalin (NA)-ergic neurons are REM-OFF type and receive GABA-ergic inputs among others. GABA acts postsynaptically on the NA-ergic REM-OFF neurons in the LC and presynaptically on the latter's projection terminals and modulates NA-release on the REM-ON neurons. Normally during wakefulness and non-REMS continuous release of NA from the REM-OFF neurons, which however, is reduced during the latter phase, inhibits the REM-ON neurons and prevents REMS. At this stage GABA from substantia nigra pars reticulate acting presynaptically on NA-ergic terminals on REM-ON neurons withdraws NA-release causing the REM-ON neurons to escape inhibition and being active, may be even momentarily. A working-model showing neurochemical-map explaining activation of inactivation process, showing contribution of GABA-ergic presynaptic inhibition in withdrawing NA-release and dis-inhibition induced activation of REM-ON neurons, which in turn activates other GABA-ergic neurons and shutting-off REM-OFF neurons for the initiation of REMS-generation has been explained. Our model satisfactorily explains yet unexplained puzzles (i) why normally REMS does not appear during waking, rather, appears following non-REMS; (ii) why cessation of LC-NA-ergic-REM-OFF neurons is essential for REMS-generation; (iii) factor(s) which does not allow cessation of REM-OFF neurons causes REMS-loss; (iv) the association of changes in levels of GABA and NA in the brain during REMS and its deprivation and associated symptoms; v) why often dreams are associated with REMS. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sottile, Sarah Y; Hackett, Troy A; Cai, Rui; Ling, Lynne; Llano, Daniel A; Caspary, Donald M
2017-11-22
Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic ACh receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. In vitro electrophysiological/optogenetic methods were used to examine responses of MGB neurons after activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. In situ hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving the signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear to be affected negatively by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal. SIGNIFICANCE STATEMENT The pedunculopontine tegmental nucleus is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system that controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body, MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely increasing gain selectively and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may affect speech understanding negatively in the elderly population. Copyright © 2017 the authors 0270-6474/17/3711378-13$15.00/0.
Sottile, Sarah Y.; Hackett, Troy A.
2017-01-01
Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic ACh receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. In vitro electrophysiological/optogenetic methods were used to examine responses of MGB neurons after activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. In situ hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving the signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear to be affected negatively by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal. SIGNIFICANCE STATEMENT The pedunculopontine tegmental nucleus is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system that controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body, MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely increasing gain selectively and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may affect speech understanding negatively in the elderly population. PMID:29061702
Whole-body vibration induces distinct reflex patterns in human soleus muscle.
Karacan, Ilhan; Cidem, Muharrem; Cidem, Mehmet; Türker, Kemal S
2017-06-01
The neuronal mechanisms underlying whole body vibration (WBV)-induced muscular reflex (WBV-IMR) are not well understood. To define a possible pathway for WBV-IMR, this study investigated the effects of WBV amplitude on WBV-IMR latency by surface electromyography analysis of the soleus muscle in human adult volunteers. The tendon (T) reflex was also induced to evaluate the level of presynaptic Ia inhibition during WBV. WBV-IMR latency was shorter when induced by low- as compared to medium- or high-amplitude WBV (33.9±5.3msvs. 43.8±3.6 and 44.1±4.2ms, respectively). There was no difference in latencies between T-reflex elicited before WBV (33.8±2.4ms) and WBV-IMR induced by low-amplitude WBV. Presynaptic Ia inhibition was absent during low-amplitude WBV but was present during medium- and high-amplitude WBV. Consequently, WBV induces short- or long-latency reflexes depending on the vibration amplitude. During low-amplitude WBV, muscle spindle activation may induce the short- but not the long-latency WBV-IMR. Furthermore, unlike the higher amplitude WBV, low-amplitude WBV does not induce presynaptic inhibition at the Ia synaptic terminals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Drosophila Atlastin in motor neurons is required for locomotion and presynaptic function.
De Gregorio, Cristian; Delgado, Ricardo; Ibacache, Andrés; Sierralta, Jimena; Couve, Andrés
2017-10-15
Hereditary spastic paraplegias (HSPs) are characterized by spasticity and weakness of the lower limbs, resulting from length-dependent axonopathy of the corticospinal tracts. In humans, the HSP-related atlastin genes ATL1 - ATL3 catalyze homotypic membrane fusion of endoplasmic reticulum (ER) tubules. How defects in neuronal Atlastin contribute to axonal degeneration has not been explained satisfactorily. Using Drosophila , we demonstrate that downregulation or overexpression of Atlastin in motor neurons results in decreased crawling speed and contraction frequency in larvae, while adult flies show progressive decline in climbing ability. Broad expression in the nervous system is required to rescue the atlastin -null Drosophila mutant ( atl 2 ) phenotype. Importantly, both spontaneous release and the reserve pool of synaptic vesicles are affected. Additionally, axonal secretory organelles are abnormally distributed, whereas presynaptic proteins diminish at terminals and accumulate in distal axons, possibly in lysosomes. Our findings suggest that trafficking defects produced by Atlastin dysfunction in motor neurons result in redistribution of presynaptic components and aberrant mobilization of synaptic vesicles, stressing the importance of ER-shaping proteins and the susceptibility of motor neurons to their mutations or depletion. © 2017. Published by The Company of Biologists Ltd.
The effect of coniine on presynaptic nicotinic receptors.
Erkent, Ulkem; Iskit, Alper B; Onur, Rustu; Ilhan, Mustafa
2016-01-01
Toxicity of coniine, an alkaloid of Conium maculatum (poison hemlock), is manifested by characteristic nicotinic clinical signs including excitement, depression, hypermetria, seizures, opisthotonos via postsynaptic nicotinic receptors. There is limited knowledge about the role of presynaptic nicotinic receptors on the pharmacological and toxicological effects of coniine in the literature. The present study was undertaken to evaluate the possible role of presynaptic nicotinic receptors on the pharmacological and toxicological effects of coniine. For this purpose, the rat anococcygeus muscle and guinea-pig atria were used in vitro. Nicotine (100 μM) elicited a biphasic response composed of a relaxation followed by contraction through the activation of nitrergic and noradrenergic nerve terminals in the phenylephrine-contracted rat anococcygeus muscle. Coniine inhibited both the nitrergic and noradrenergic response in the muscle (-logIC(50) = 3.79 ± 0.11 and -logIC(50) = 4.57 ± 0.12 M, respectively). The effect of coniine on nicotinic receptor-mediated noradrenergic transmission was also evaluated in the guinea-pig atrium (-logIC(50) = 4.47 ± 0.12 M) and did not differ from the -logIC(50) value obtained in the rat anococcygeus muscle. This study demonstrated that coniine exerts inhibitory effects on nicotinic receptor-mediated nitrergic and noradrenergic transmitter response.
Regulation of synaptic activity by snapin-mediated endolysosomal transport and sorting
Di Giovanni, Jerome; Sheng, Zu-Hang
2015-01-01
Recycling synaptic vesicles (SVs) transit through early endosomal sorting stations, which raises a fundamental question: are SVs sorted toward endolysosomal pathways? Here, we used snapin mutants as tools to assess how endolysosomal sorting and trafficking impact presynaptic activity in wild-type and snapin−/− neurons. Snapin acts as a dynein adaptor that mediates the retrograde transport of late endosomes (LEs) and interacts with dysbindin, a subunit of the endosomal sorting complex BLOC-1. Expressing dynein-binding defective snapin mutants induced SV accumulation at presynaptic terminals, mimicking the snapin−/− phenotype. Conversely, over-expressing snapin reduced SV pool size by enhancing SV trafficking to the endolysosomal pathway. Using a SV-targeted Ca2+ sensor, we demonstrate that snapin–dysbindin interaction regulates SV positional priming through BLOC-1/AP-3-dependent sorting. Our study reveals a bipartite regulation of presynaptic activity by endolysosomal trafficking and sorting: LE transport regulates SV pool size, and BLOC-1/AP-3-dependent sorting fine-tunes the Ca2+ sensitivity of SV release. Therefore, our study provides new mechanistic insights into the maintenance and regulation of SV pool size and synchronized SV fusion through snapin-mediated LE trafficking and endosomal sorting. PMID:26108535
Magupalli, Venkat G.; Mochida, Sumiko; Yan, Jin; Jiang, Xin; Westenbroek, Ruth E.; Nairn, Angus C.; Scheuer, Todd; Catterall, William A.
2013-01-01
Ca2+/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of CaV2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca2+/CaM stimulus. Autophosphorylated CaMKII can bind the CaV2.1 channel and synapsin-1 simultaneously. CaMKII binding to CaV2.1 channels induces Ca2+-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of CaV2.1 channels by binding of Ca2+/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to CaV2.1 channels. These results define the functional properties of a signaling complex of CaMKII and CaV2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity. PMID:23255606
Action potentials reliably invade axonal arbors of rat neocortical neurons
Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel
2000-01-01
Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon excitation laser scanning microscopy to directly image action-potential-mediated calcium influx in single varicosities of layer 2/3 pyramidal neurons in acute brain slices. Our data show that single action potentials or bursts of action potentials reliably invade axonal arbors over a range of developmental ages (postnatal 10–24 days) and temperatures (24°C-30°C). Hyperpolarizing current steps preceding action potential initiation, protocols that had previously been observed to produce failures of action potential propagation in cultured preparations, were ineffective in modulating the spread of action potentials in acute slices. Our data show that action potentials reliably invade the axonal arbors of neocortical pyramidal neurons. Failures in synaptic transmission must therefore originate downstream of action potential invasion. We also explored the function of modulators that inhibit presynaptic calcium influx. Consistent with previous studies, we find that adenosine reduces action-potential-mediated calcium influx in presynaptic terminals. This reduction was observed in all terminals tested, suggesting that some modulatory systems are expressed homogeneously in most terminals of the same neuron. PMID:10931955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, S.S.
1989-01-01
The author has characterized pertussis toxin-sensitive G proteins in the nervous systems of the gastropod mollusc Aplysia and the cephalopod Loligo using ({sup 32}P)ADP-ribosylation and immunoblotting with G protein specific antisera. As in vertebrates, this class of G protein is associated with membranes and enriched in nervous tissue in Aplysia. Analysis of dissected Aplysia ganglia reveal that it is enriched in neuropil, a region containing most of the central nervous system synapses. Because both Aplysia and Loligo synaptosomes are enriched in pertussis toxin-sensitive G proteins, it is likely that they are found in synaptic terminals. Fractionation of Aplysia synaptosomes intomore » membrane and vesicle fractions reveals that, although the majority of G protein is recovered in the plasma membrane fraction, a small proportion is recovered in the vesicle fraction. He shows that G proteins are on intracellular membranes by ADP-ribosylating extruded axoplasm with pertussis toxin. A plausible explanation for vesicular localization of G protein in axoplasm is that G proteins are transported to terminals on vesicles. He has shown, using ligature experiments with Aplysia connectives and temperature block experiments in the giant axon of Loligo, that G proteins move by anterograde fast axonal transport. Injection of pertussis toxin into the identified Aplysia neuron L10 blocks histamine-induced presynaptic inhibition of transmitter release. This suggests that pertussis toxin sensitive G proteins play a role in modulating transmitter release at synaptic terminals. In the giant synapse of Loligo, he presents preliminary data that demonstrates that the activation of G proteins in the presynaptic terminal results in decreased transmitter release.« less
Liu, Chiung-Hui; Chang, Hung-Ming; Tseng, To-Jung; Lan, Chyn-Tair; Chen, Li-You; Youn, Su-Chung; Lee, Jian-Jr; Mai, Fu-Der; Chou, Jui-Feng; Liao, Wen-Chieh
2016-11-01
The P/Q-type voltage-dependent calcium channel (Cav2.1) in the presynaptic membranes of motor nerve terminals plays an important role in regulating Ca 2+ transport, resulting in transmitter release within the nervous system. The recovery of Ca 2+ -dependent signal transduction on motor end plates (MEPs) and innervated muscle may directly reflect nerve regeneration following peripheral nerve injury. Although the functional significance of calcium channels and the levels of Ca 2+ signalling in nerve regeneration are well documented, little is known about calcium channel expression and its relation with the dynamic Ca 2+ ion distribution at regenerating MEPs. In the present study, end-to-side neurorrhaphy (ESN) was performed as an in vivo model of peripheral nerve injury. The distribution of Ca 2+ at regenerating MEPs following ESN was first detected by time-of-flight secondary ion mass spectrometry, and the specific localization and expression of Cav2.1 channels were examined by confocal microscopy and western blotting. Compared with other fundamental ions, such as Na + and K + , dramatic changes in the Ca 2+ distribution were detected along with the progression of MEP regeneration. The re-establishment of Ca 2+ distribution and intensity were correlated with the functional recovery of muscle in ESN rats. Furthermore, the re-clustering of Cav2.1 channels after ESN at the nerve terminals corresponded with changes in the Ca 2+ distribution. These results indicated that renewal of the Cav2.1 distribution within the presynaptic nerve terminals may be necessary for initiating a proper Ca 2+ influx and shortening the latency of muscle contraction during nerve regeneration.
Dai, Gucan; Sherpa, Tshering; Varnum, Michael D.
2014-01-01
Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides. PMID:24675082
Dai, Gucan; Sherpa, Tshering; Varnum, Michael D
2014-05-09
Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides.
Domain requirements for the Dock adapter protein in growth- cone signaling
Rao, Yong; Zipursky, S. Lawrence
1998-01-01
Tyrosine phosphorylation has been implicated in growth-cone guidance through genetic, biochemical, and pharmacological studies. Adapter proteins containing src homology 2 (SH2) domains and src homology 3 (SH3) domains provide a means of linking guidance signaling through phosphotyrosine to downstream effectors regulating growth-cone motility. The Drosophila adapter, Dreadlocks (Dock), the homolog of mammalian Nck containing three N-terminal SH3 domains and a single SH2 domain, is highly specialized for growth-cone guidance. In this paper, we demonstrate that Dock can couple signals in either an SH2-dependent or an SH2-independent fashion in photoreceptor (R cell) growth cones, and that Dock displays different domain requirements in different neurons. PMID:9482841
Chamberland, Simon; Evstratova, Alesya; Tóth, Katalin
2017-05-10
Neuronal calcium elevations are shaped by several key parameters, including the properties, density, and the spatial location of voltage-gated calcium channels (VGCCs). These features allow presynaptic terminals to translate complex firing frequencies and tune the amount of neurotransmitter released. Although synchronous neurotransmitter release relies on both P/Q- and N-type VGCCs at hippocampal mossy fiber-CA3 synapses, the specific contribution of VGCCs to calcium dynamics, neurotransmitter release, and short-term facilitation remains unknown. Here, we used random-access two-photon calcium imaging together with electrophysiology in acute mouse hippocampal slices to dissect the roles of P/Q- and N-type VGCCs. Our results show that N-type VGCCs control glutamate release at a limited number of release sites through highly localized Ca 2+ elevations and support short-term facilitation by enhancing multivesicular release. In contrast, Ca 2+ entry via P/Q-type VGCCs promotes the recruitment of additional release sites through spatially homogeneous Ca 2+ elevations. Altogether, our results highlight the specialized contribution of P/Q- and N-types VGCCs to neurotransmitter release. SIGNIFICANCE STATEMENT In presynaptic terminals, neurotransmitter release is dynamically regulated by the transient opening of different types of voltage-gated calcium channels. Hippocampal giant mossy fiber terminals display extensive short-term facilitation during repetitive activity, with a large several fold postsynaptic response increase. Though, how giant mossy fiber terminals leverage distinct types of voltage-gated calcium channels to mediate short-term facilitation remains unexplored. Here, we find that P/Q- and N-type VGCCs generate different spatial patterns of calcium elevations in giant mossy fiber terminals and support short-term facilitation through specific participation in two mechanisms. Whereas N-type VGCCs contribute only to the synchronization of multivesicular release, P/Q-type VGCCs act through microdomain signaling to recruit additional release sites. Copyright © 2017 the authors 0270-6474/17/374913-15$15.00/0.
77 FR 14584 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... square yards). Modify supplemental wind cones. Runway 8/26 pavement rejuvenation. Purchase snow removal equipment--high-speed snow plow. Master plan/land use. Design passenger terminal remodel. Install runway... lighting and cable rehabilitation. Construct improvements of terminal building. Design reconstruction of...
Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina
Van Hook, Matthew J.; Thoreson, Wallace B.
2013-01-01
Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (<100 ms) to cones evoked exocytosis followed by rapid endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726
Iwata, M; Shirayama, Y; Ishida, H; Kawahara, R
2006-09-01
Learned helplessness rats are thought to be an animal model of depression. To study the role of synapse plasticity in depression, we examined the effects of learned helplessness and antidepressant treatments on synapsin I (a marker of presynaptic terminals), growth-associated protein-43 (GAP-43; a marker of growth cones), and microtubule-associated protein-2 (MAP-2; a marker of dendrites) in the hippocampus by immunolabeling. (1) Learned helplessness rats showed significant increases in the expression of synapsin I two days after the attainment of learned helplessness, and significant decreases in the protein expression eight days after the achievement of learned helplessness. Subchronic treatment of naïve rats with imipramine or fluvoxamine significantly decreased the expression of synapsin I. (2) Learned helplessness increased the expression of GAP-43 two days and eight days after learned helplessness training. Subchronic treatment of naïve rats with fluvoxamine but not imipramine showed a tendency to decrease the expression of synapsin I. (3) Learned helplessness rats showed increased expression of MAP-2 eight days after the attainment of learned helplessness. Naïve rats subchronically treated with imipramine showed a tendency toward increased expression of MAP-2, but those treated with fluvoxamine did not. These results indicate that the neuroplasticity-related proteins synapsin I, GAP-43, and MAP-2 may play a role in the pathophysiology of depression and the mechanisms of antidepressants.
Ueno, Akiko; Omori, Yoshihiro; Sugita, Yuko; Watanabe, Satoshi; Chaya, Taro; Kozuka, Takashi; Kon, Tetsuo; Yoshida, Satoyo; Matsushita, Kenji; Kuwahara, Ryusuke; Kajimura, Naoko; Okada, Yasushi; Furukawa, Takahisa
2018-03-27
In the vertebrate retina, cone photoreceptors play crucial roles in photopic vision by transmitting light-evoked signals to ON- and/or OFF-bipolar cells. However, the mechanisms underlying selective synapse formation in the cone photoreceptor pathway remain poorly understood. Here, we found that Lrit1, a leucine-rich transmembrane protein, localizes to the photoreceptor synaptic terminal and regulates the synaptic connection between cone photoreceptors and cone ON-bipolar cells. Lrit1-deficient retinas exhibit an aberrant morphology of cone photoreceptor pedicles, as well as an impairment of signal transmission from cone photoreceptors to cone ON-bipolar cells. Furthermore, we demonstrated that Lrit1 interacts with Frmpd2, a photoreceptor scaffold protein, and with mGluR6, an ON-bipolar cell-specific glutamate receptor. Additionally, Lrit1-null mice showed visual acuity impairments in their optokinetic responses. These results suggest that the Frmpd2-Lrit1-mGluR6 axis regulates selective synapse formation in cone photoreceptors and is essential for normal visual function. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
1984-03-06
study was conducted to determine the presynaptic morphological changes due to neural activity in rapidly stimulated neuromuscular junctions...Control preparations were unstimulated and preserved either by chemical fixation or rapid-freezing. This study provides evidence that most of the...tissue. The rapid-frozen preparations in the present study showed, in addition, that rapid stimulation produces an increase in synaptic vesicle
Presynaptic muscarinic control of glutamatergic synaptic transmission.
Buño, W; Cabezas, C; Fernández de Sevilla, D
2006-01-01
The hippocampus receives cholinergic projections from the medial septal nucleus and Broca's diagonal band that terminate in the CA1, CA3, and dentate gyrus regions (Frotscher and Leranth, 1985). Glutamatergic synapses between CA3 and CA1 pyramidal neurons are presynaptically inhibited by acetylcholine (ACh), via activation of muscarinic ACh receptors (mAChRs) at the terminals of Schaffer collaterals (SCs) (Hounsgaard, 1978; Fernández de Sevilla et al., 2002, 2003). There are two types of SC-CA1 pyramidal neuron synapses. One type, called functional synapse, shows postsynaptic alpha- amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-receptor mediated currents at resting potential (Vm) and both AMPA and N-methyl-D-aspartate receptor (NMDAR)-mediated currents when depolarized. The other type, termed silent synapse, only displays postsynaptic NMDAR-mediated currents at depolarized Vms, but does not respond at the resting Vm (Isaac et al., 1995). Using hippocampal slices obtained from young Wistar rats, we examined the effects of activation of cholinergic afferents at the stratum oriens/alveus on excitatory postsynaptic currents (EPSCs) evoked in CA1 pyramidal neurons by stimulation of SCs. We also tested the action of the nonhydrolyzable cholinergic agonist carbamylcholine chloride (CCh) on EPSCs evoked by minimal stimulation of SCs (which activates a single or very few synapses) in functional and silent synapses.
Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Lanuza, Maria A; Tomàs, Josep
2008-03-01
The beta-amyloid (AB) peptide25-35 contains the functional domain of the AB precursor protein that is both required for neurotrophic effects in normal neural tissues and is involved in the neurotoxic effects in Alzheimer disease. We demonstrated the presence of the amyloid precursor protein/AB peptide in intramuscular axons, presynaptic motor nerve terminals, terminal and myelinating Schwann cells, and the postsynaptic and subsarcolemmal region in the Levator auris longus muscle of adult rats by immunocytochemistry. Using intracellular recording, we investigated possible short-term functional effects of the AB fragment (0.1-10 micromol/L) on acetylcholine release in adult and newborn motor end plates. We found no change in evoked, spontaneous transmitter release or resting membrane potential of the muscle cells. A previous block of the presynaptic muscarinic receptor subtypes and a previous block or stimulation of protein kinase C revealed no masked effect of the peptide on the regulation of transmitter release. The aggregated form of AB peptide25-35, however, interfered acutely with acetylcholine release (quantal content reduction) when synaptic activity was maintained by electric stimulation. The possible relevance of this inhibition of neurotransmission by AB peptide25-35 to the pathogenesis of Alzheimer remains to be determined.
Chang, Yi; Huang, Shu-Kuei; Wang, Su-Jane
2012-12-05
This study investigates the effects and possible mechanism of coenzyme Q10 (CoQ10) on endogenous glutamate release in the cerebral cortex nerve terminals of rats. CoQ10 inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). CoQ10 reduced the depolarization-induced increase in cytosolic [Ca2+]c but did not alter the 4-AP-mediated depolarization. The effect of CoQ10 on evoked glutamate release was abolished by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels and mitogen-activated protein kinase kinase (MEK). In addition, CoQ10 decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK. Moreover, the inhibition of glutamate release by CoQ10 was strongly attenuated in mice without synapsin I. These results suggest that CoQ10 inhibits glutamate release from cortical synaptosomes in rats through the suppression of the presynaptic voltage-dependent Ca2+ entry and ERK/synapsin I signaling pathway.
Leao, Richardson N; Leao, Fabricio N; Walmsley, Bruce
2005-01-01
A change in the spontaneous release of neurotransmitter is a useful indicator of processes occurring within presynaptic terminals. Linear techniques (e.g. Fourier transform) have been used to analyse spontaneous synaptic events in previous studies, but such methods are inappropriate if the timing pattern is complex. We have investigated spontaneous glycinergic miniature synaptic currents (mIPSCs) in principal cells of the medial nucleus of the trapezoid body. The random versus deterministic (or periodic) nature of mIPSCs was assessed using recurrence quantification analysis. Nonlinear methods were then used to quantify any detected determinism in spontaneous release, and to test for chaotic or fractal patterns. Modelling demonstrated that this procedure is much more sensitive in detecting periodicities than conventional techniques. mIPSCs were found to exhibit periodicities that were abolished by blockade of internal calcium stores with ryanodine, suggesting calcium oscillations in the presynaptic inhibitory terminals. Analysis indicated that mIPSC occurrences were chaotic in nature. Furthermore, periodicities were less evident in congenitally deaf mice than in normal mice, indicating that appropriate neural activity during development is necessary for the expression of deterministic chaos in mIPSC patterns. We suggest that chaotic oscillations of mIPSC occurrences play a physiological role in signal processing in the auditory brainstem. PMID:16271982
Ruan, W; Pang, P; Rao, Y
1999-11-01
Recent studies suggest that the SH2/SH3 adaptor Dock/Nck transduces tyrosine phosphorylation signals to the actin cytoskeleton in regulating growth cone motility. The signaling cascade linking the action of Dock/Nck to the reorganization of cytoskeleton is poorly understood. We now demonstrate that Dock interacts with the Ste20-like kinase Misshapen (Msn) in the Drosophila photoreceptor (R cell) growth cones. Loss of msn causes a failure of growth cones to stop at the target, a phenotype similar to loss of dock, whereas overexpression of msn induces pretarget growth cone termination. Physical and genetic interactions between Msn and Dock indicate a role for Msn in the Dock signaling pathway. We propose that Msn functions as a key controller of growth cone cytoskeleton in response to Dock-mediated signals.
NASA Technical Reports Server (NTRS)
Kudritzki, R. P.; Pauldrach, A.; Puls, J.; Abbott, D. C.
1989-01-01
Analytical solutions for radiation-driven winds of hot stars including the important finite cone angle effect (see Pauldrach et al., 1986; Friend and Abbott, 1986) are derived which approximate the detailed numerical solutions of the exact wind equation of motion very well. They allow a detailed discussion of the finite cone angle effect and provide for given line force parameters k, alpha, delta definite formulas for mass-loss rate M and terminal velocity v-alpha as function of stellar parameters.
Neuronal activity-dependent membrane traffic at the neuromuscular junction
Miana-Mena, Francisco Javier; Roux, Sylvie; Benichou, Jean-Claude; Osta, Rosario; Brûlet, Philippe
2002-01-01
During development and also in adulthood, synaptic connections are modulated by neuronal activity. To follow such modifications in vivo, new genetic tools are designed. The nontoxic C-terminal fragment of tetanus toxin (TTC) fused to a reporter gene such as LacZ retains the retrograde and transsynaptic transport abilities of the holotoxin itself. In this work, the hybrid protein is injected intramuscularly to analyze in vivo the mechanisms of intracellular and transneuronal traffics at the neuromuscular junction (NMJ). Traffic on both sides of the synapse are strongly dependent on presynaptic neural cell activity. In muscle, a directional membrane traffic concentrates β-galactosidase-TTC hybrid protein into the NMJ postsynaptic side. In neurons, the probe is sorted across the cell to dendrites and subsequently to an interconnected neuron. Such fusion protein, sensitive to presynaptic neuronal activity, would be extremely useful to analyze morphological changes and plasticity at the NMJ. PMID:11880654
Fusion competent synaptic vesicles persist upon active zone disruption and loss of vesicle docking
Wang, Shan Shan H.; Held, Richard G.; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S.
2016-01-01
In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. PMID:27537483
BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons
Dieni, Sandra; Matsumoto, Tomoya; Dekkers, Martijn; Rauskolb, Stefanie; Ionescu, Mihai S.; Deogracias, Ruben; Gundelfinger, Eckart D.; Kojima, Masami; Nestel, Sigrun; Frotscher, Michael
2012-01-01
Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ∼10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system. PMID:22412021
Stan, Ana D; Lewis, David A
2012-06-01
Altered markers of cortical GABA neurotransmission are among the most consistently observed abnormalities in postmortem studies of schizophrenia. The altered markers are particularly evident between the chandelier class of GABA neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons. For example, in the dorsolateral prefrontal cortex of subjects with schizophrenia immunoreactivity for the GABA membrane transporter is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. Both of these molecular changes appear to be compensatory responses to a presynaptic deficit in GABA synthesis, and thus could represent targets for novel therapeutic strategies intended to augment the brain's own compensatory mechanisms. Recent findings that GABA inputs from neocortical chandelier neurons can be powerfully excitatory provide new ideas about the role of these neurons in the pathophysiology of cortical dysfunction in schizophrenia, and consequently in the design of pharmacological interventions.
Lateral presynaptic inhibition mediates gain control in an olfactory circuit.
Olsen, Shawn R; Wilson, Rachel I
2008-04-24
Olfactory signals are transduced by a large family of odorant receptor proteins, each of which corresponds to a unique glomerulus in the first olfactory relay of the brain. Crosstalk between glomeruli has been proposed to be important in olfactory processing, but it is not clear how these interactions shape the odour responses of second-order neurons. In the Drosophila antennal lobe (a region analogous to the vertebrate olfactory bulb), we selectively removed most interglomerular input to genetically identified second-order olfactory neurons. Here we show that this broadens the odour tuning of these neurons, implying that interglomerular inhibition dominates over interglomerular excitation. The strength of this inhibitory signal scales with total feedforward input to the entire antennal lobe, and has similar tuning in different glomeruli. A substantial portion of this interglomerular inhibition acts at a presynaptic locus, and our results imply that this is mediated by both ionotropic and metabotropic receptors on the same nerve terminal.
Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.
Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary
2017-08-30
The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.
Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT
Aguilar, Jenny I.; Dunn, Matthew; Mingote, Susana; Karam, Caline S.; Farino, Zachary J.; Sonders, Mark S.; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J.; McCabe, Brian D.; Mosharov, Eugene V.; Krantz, David E.; Javitch, Jonathan A.; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary
2017-01-01
SUMMARY The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. PMID:28823729
Annamneedi, Anil; Caliskan, Gürsel; Müller, Sabrina; Montag, Dirk; Budinger, Eike; Angenstein, Frank; Fejtova, Anna; Tischmeyer, Wolfgang; Gundelfinger, Eckart D; Stork, Oliver
2018-06-18
Bassoon is a large scaffolding protein of the presynaptic active zone involved in the development of presynaptic terminals and in the regulation of neurotransmitter release at both excitatory and inhibitory brain synapses. Mice with constitutive ablation of the Bassoon (Bsn) gene display impaired presynaptic function, show sensory deficits and develop severe seizures. To specifically study the role of Bassoon at excitatory forebrain synapses and its relevance for control of behavior, we generated conditional knockout (Bsn cKO) mice by gene ablation through an Emx1 promoter-driven Cre recombinase. In these animals, we confirm selective loss of Bassoon from glutamatergic neurons of the forebrain. Behavioral assessment revealed that, in comparison to wild-type littermates, Bsn cKO mice display selectively enhanced contextual fear memory and increased novelty preference in a spatial discrimination/pattern separation task. These changes are accompanied by an augmentation of baseline synaptic transmission at medial perforant path to dentate gyrus (DG) synapses, as indicated by increased ratios of field excitatory postsynaptic potential slope to fiber volley amplitude. At the structural level, an increased complexity of apical dendrites of DG granule cells can be detected in Bsn cKO mice. In addition, alterations in the expression of cellular maturation markers and a lack of age-dependent decrease in excitability between juvenile and adult Bsn cKO mice are observed. Our data suggest that expression of Bassoon in excitatory forebrain neurons is required for the normal maturation of the DG and important for spatial and contextual memory.
Zhang, Weirong; Mifflin, Steve
2010-01-01
The selective γ-aminobutyric acid B-subtype receptor agonist baclofen activates both pre- and post-synaptic receptors in the brain. Microinjection of baclofen into the nucleus of the solitary tract increases arterial pressure, heart rate and sympathetic nerve discharge consistent with inhibition of the arterial baroreflex. The magnitude of these responses is enhanced in hypertension and is associated with increased post-synaptic GABAB receptor function. We tested whether a pre-synaptic mechanism contributes to the enhanced baclofen inhibition in hypertension. Whole-cell recordings of second-order baroreceptor neurons, identified by 4-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodide labeling of aortic nerve, were obtained in brainstem slices from normotensive control and renal-wrap hypertensive rats. After 4 weeks, arterial blood pressure was 162±9 mmHg in hypertensive (n=6) and 107±3 mmHg in control rats (n=6/11, p<0.001). Baclofen reduced the amplitude of excitatory post-synaptic currents evoked by solitary tract stimulation and the EC50 of this inhibition was greater in control (1.5±0.5 µmol/L, n=6) than hypertensive cells (0.6±0.1 µmol/L, n=9, p<0.05). Baclofen (1 µmol/L) elicited greater inhibition on evoked response in hypertensive (58±6%, n=9) than control cells (40±6%, n=8, p<0.05). Another index of pre-synaptic inhibition, the paired-pulse ratio (ratio of second to first evoked response amplitudes at stimulus intervals of 40 ms), was greater in hypertensive (0.60±0.08, n=8) than control cells (0.48±0.06. n=5, p<0.05). The results suggest that in renal-wrap hypertensive rats, baclofen causes an enhanced pre-synaptic inhibition of glutamate release from baroreceptor afferent terminals to second-order neurons in the nucleus of the solitary tract. This enhanced pre-synaptic inhibition could contribute to altered baroreflex function in hypertension. PMID:20038748
Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L; Lanuza, Maria A; Tomàs, Josep
2017-01-01
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.
Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M.; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L.; Lanuza, Maria A.; Tomàs, Josep
2017-01-01
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function. PMID:28572757
Strontium, barium, and manganese metabolism in isolated presynaptic nerve terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasgado-Flores, H.; Sanchez-Armass, S.; Blaustein, M.P.
1987-06-01
To gain insight into the mechanisms by which the divalent cations Sr, Ba, and Mn affect neurotransmitter release from presynaptic nerve terminals, the authors examined the sequestration of these cations, ion comparison to Ca, by mitochondrial and nonmitochondrial organelles and the extrusion of these cations from isolated nerve terminals. Sequestration was studied in synaptosomes made leaky to small ions by treatment with saponin; efflux was examined in intact synaptosomes that were preloaded with the divalent cations by incubation in depolarizing (K rich) media. The selectivity sequence for ATP-dependent mitochondrial uptake that they observed was Mn>>Ca>Sr>>Ba, whereas that for the SERmore » was Ca greater than or equal to Mn>Sr>>Ba. When synaptosomes that were preloaded with divalent cations were incubated in Na- and Ca-free media, there was little efflux of /sup 45/Ca, /sup 133/Ba, /sup 85/Sr, or /sup 54/Mn. When the incubation was carried out in media containing Na without Ca, there was substantial stimulation of Ca and Sr efflux, but only slight stimulation of Ba or Mn efflux. In Na-free media, the addition of 1 mM Ca promoted the efflux of all four divalent cations, probably via Ca-divalent cation exchange. In summary, the sequestration and extrusion data suggest that, with equal loads, Mn will be buffered to the greatest extent, whereas Ba will be least well buffered. These results may help to explain why Mn has a very long-lasting effect on transmitter release, while the effect of Sr is much briefer.« less
Wang, Wengang; Darvas, Martin; Storey, Granville P.; Bamford, Ian J.; Gibbs, Jeffrey T.; Palmiter, Richard D.
2013-01-01
Locomotion and cue-dependent behaviors are modified through corticostriatal signaling whereby short-term increases in dopamine availability can provoke persistent changes in glutamate release that contribute to neuropsychiatric disorders, including Parkinson's disease and drug dependence. We found that withdrawal of mice from repeated amphetamine treatment caused a chronic presynaptic depression (CPD) in glutamate release that was most pronounced in corticostriatal terminals with a low probability of release and lasted >50 d in treated mice. An amphetamine challenge reversed CPD via a dopamine D1-receptor-dependent paradoxical presynaptic potentiation (PPP) that increased corticostriatal activity in direct pathway medium spiny neurons. This PPP was correlated with locomotor responses after a drug challenge, suggesting that it may underlie the sensitization process. Experiments in brain slices and in vivo indicated that dopamine regulation of acetylcholine release from tonically active interneurons contributes to CPD, PPP, locomotor sensitization, and cognitive ability. Therefore, a chronic decrease in corticostriatal activity during withdrawal is regulated around a new physiological range by tonically active interneurons and returns to normal upon reexposure to amphetamine, suggesting that this paradoxical return of striatal activity to a more stable, normalized state may represent an additional source of drug motivation during abstinence. PMID:23785153
Nguyen, Ha Minh Ky; Cahill, Catherine M; McPherson, Peter S; Beaudet, Alain
2002-06-01
Following its binding to somatodendritic receptors, the neuropeptide neurotensin (NT) internalizes via a clathrin-mediated process. In the present study, we investigated whether NT also internalizes presynaptically using synaptosomes from rat neostriatum, a region in which NT1 receptors are virtually all presynaptic. Binding of [(3)H]-NT to striatal synaptosomes in the presence of levocabastine to block NT2 receptors is specific, saturable, and has NT1 binding properties. A significant fraction of the bound radioactivity is resistant to hypertonic acid wash indicating that it is internalized. Internalization of [(3)H]-NT, like that of [(125)I]-transferrin, is blocked by sucrose and low temperature, consistent with endocytosis occurring via a clathrin-dependent pathway. However, contrary to what was reported at the somatodendritic level, neither [(3)H]-NT nor [(125)I]-transferrin internalization in synaptosomes is sensitive to the endocytosis inhibitor phenylarsine oxide. Moreover, treatment of synaptosomes with monensin, which prevents internalized receptors from recycling to the plasma membrane, reduces [(3)H]-NT binding and internalization, suggesting that presynaptic NT1 receptors, in contrast to somatodendritic ones, are recycled back to the plasma membrane. Taken together, these results suggest that NT internalizes in nerve terminals via an endocytic pathway that is related to, but is mechanistically distinct from that responsible for NT internalization in nerve cell bodies.
NASA Technical Reports Server (NTRS)
Callantine, Todd J.; Bienert, Nancy; Borade, Abhay; Gabriel, Conrad; Gujral, Vimmy; Jobe, Kim; Martin, Lynne; Omar, Faisal; Prevot, Thomas; Mercer, Joey
2016-01-01
A human-in-the-loop simulation study addressed terminal-area controller-workstation interface variations for interoperability between three new capabilities being introduced by the FAA. The capabilities are Terminal Sequencing and Spacing (TSAS), Automated Terminal Proximity Alert (ATPA), and wake-separation recategorization, or 'RECAT.' TSAS provides controllers with Controller-Managed Spacing (CMS) tools, including slot markers, speed advisories, and early/late indications, together with runway assignments and sequence numbers. ATPA provides automatic monitor, warning, and alert cones to inform controllers about spacing between aircraft on approach. ATPA cones are sized according to RECAT, an improved method of specifying wake-separation standards. The objective of the study was to identify potential issues and provide recommendations for integrating TSAS with ATPA and RECAT. Participants controlled arrival traffic under seven different display configurations, then tested an 'exploratory' configuration developed with participant input. All the display conditions were workable and acceptable, but controllers strongly preferred having the CMS tools available on Feeder positions, and both CMS tools and ATPA available on Final positions. Controllers found the integrated systems favorable and liked being able to tailor configurations to individual preferences.
Lelyanova, V G; Thomson, D; Ribchester, R R; Tonevitsky, E A; Ushkaryov, Y A
2009-06-01
The mechanisms of acetylcholine release in presynaptic terminals of motoneurons induced by mutant alpha-latrotoxin (LT(N4C)) were analyzed. In contrast to wild-type alpha-latrotoxin that causes both continuous and splash secretion of acetylcholine and necessarity block neuromuscular transmission, LT(N4C) causes only splash release lasting over many hours. Thus, activation of alpha-latrotoxin receptors controls long-lasting enhanced secretion of acetylcholine.
NASA Technical Reports Server (NTRS)
Zahlava, B. A. (Inventor)
1973-01-01
A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.
2016-01-01
The central terminals of primary afferent fibers experience depolarization upon activation of GABAA receptors (GABAAR) because their intracellular chloride concentration is maintained above electrochemical equilibrium. Primary afferent depolarization (PAD) normally mediates inhibition via sodium channel inactivation and shunting but can evoke spikes under certain conditions. Antidromic (centrifugal) conduction of these spikes may contribute to neurogenic inflammation while orthodromic (centripetal) conduction could contribute to pain in the case of nociceptive fibers. PAD-induced spiking is assumed to override presynaptic inhibition. Using computer simulations and dynamic clamp experiments, we sought to identify which biophysical changes are required to enable PAD-induced spiking and whether those changes necessarily compromise PAD-mediated inhibition. According to computational modeling, a depolarizing shift in GABA reversal potential (EGABA) and increased intrinsic excitability (manifest as altered spike initiation properties) were necessary for PAD-induced spiking, whereas increased GABAAR conductance density (ḡGABA) had mixed effects. We tested our predictions experimentally by using dynamic clamp to insert virtual GABAAR conductances with different EGABA and kinetics into acutely dissociated dorsal root ganglion (DRG) neuron somata. Comparable experiments in central axon terminals are prohibitively difficult but the biophysical requirements for PAD-induced spiking are arguably similar in soma and axon. Neurons from naïve (i.e. uninjured) rats were compared before and after pharmacological manipulation of intrinsic excitability, and against neurons from nerve-injured rats. Experimental data confirmed that, in most neurons, both predicted changes were necessary to yield PAD-induced spiking. Importantly, such changes did not prevent PAD from inhibiting other spiking or from blocking spike propagation. In fact, since the high value of ḡGABA required for PAD-induced spiking still mediates strong inhibition, we conclude that PAD-induced spiking does not represent failure of presynaptic inhibition. Instead, diminished PAD caused by reduction of ḡGABA poses a greater risk to presynaptic inhibition and the sensory processing that relies upon it. PMID:27835641
IL-1β impairs retrograde flow of BDNF signaling by attenuating endosome trafficking.
Carlos, Anthony J; Tong, Liqi; Prieto, G Aleph; Cotman, Carl W
2017-02-02
Pro-inflammatory cytokines accumulate in the brain with age and Alzheimer's disease and can impair neuron health and cognitive function. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin that supports neuron health, function, and synaptic plasticity. The pro-inflammatory cytokine interleukin-1β (IL-1β) impairs BDNF signaling but whether it affects BDNF signaling endosome trafficking has not been studied. This study uses an in vitro approach in primary hippocampal neurons to evaluate the effect of IL-1β on BDNF signaling endosome trafficking. Neurons were cultured in microfluidic chambers that separate the environments of the cell body and its axon terminal, enabling us to specifically treat in axon compartments and trace vesicle trafficking in real-time. We found that IL-1β attenuates BDNF signaling endosomes throughout networks in cultures. In IL-1β-treated cells, overall BDNF endosomal density was decreased, and the colocalization of BDNF endosomes with presynaptic terminals was found to be more than two times higher than in control cultures. Selective IL-1β treatment to the presynaptic compartment in microfluidic chamber attenuated BDNF endosome flux, as measured by reduced BDNF-GFP endosome counts in the somal compartment. Further, IL-1β decreased the BDNF-induced phosphorylation of Erk5, a known BDNF retrograde trafficking target. Mechanistically, the deficiency in trafficking was not due to impaired endocytosis of the BDNF-TrkB complex, or impaired transport rate, since BDNF endosomes traveled at the same rate in both control and IL-1β treatment groups. Among the regulators of presynaptic endosome sorting is the post-translational modification, ubiquitination. In support of this possibility, the IL-1β-mediated suppression of BDNF-induced Erk5 phosphorylation can be rescued by exogenous ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that regulates ubiquitin and endosomal trafficking. We observed a state of neurotrophic resistance whereby, in the prolonged presence of IL-1β, BDNF is not effective in delivering long-distance signaling via the retrograde transport of signaling endosomes. Since IL-1β accumulation is an invariant feature across many neurodegenerative diseases, our study suggest that compromised BDNF retrograde transport-dependent signaling may have important implications in neurodegenerative diseases.
Presynaptic strontium dynamics and synaptic transmission.
Xu-Friedman, M A; Regehr, W G
1999-01-01
Strontium can replace calcium in triggering neurotransmitter release, although peak release is reduced and the duration of release is prolonged. Strontium has therefore become useful in probing release, but its mechanism of action is not well understood. Here we study the action of strontium at the granule cell to Purkinje cell synapse in mouse cerebellar slices. Presynaptic residual strontium levels were monitored with fluorescent indicators, which all responded to strontium (fura-2, calcium orange, fura-2FF, magnesium green, and mag-fura-5). When calcium was replaced by equimolar concentrations of strontium in the external bath, strontium and calcium both entered presynaptic terminals. Contaminating calcium was eliminated by including EGTA in the extracellular bath, or by loading parallel fibers with EGTA, enabling the actions of strontium to be studied in isolation. After a single stimulus, strontium reached higher peak free levels than did calcium (approximately 1.7 times greater), and decayed more slowly (half-decay time 189 ms for strontium and 32 ms for calcium). These differences in calcium and strontium dynamics are likely a consequence of greater strontium permeability through calcium channels, lower affinity of the endogenous buffer for strontium, and less efficient extrusion of strontium. Measurements of presynaptic divalent levels help to explain properties of release evoked by strontium. Parallel fiber synaptic currents triggered by strontium are smaller in amplitude and longer in duration than those triggered by calcium. In both calcium and strontium, release consists of two components, one more steeply dependent on divalent levels than the other. Strontium drives both components less effectively than does calcium, suggesting that the affinities of the sensors involved in both phases of release are lower for strontium than for calcium. Thus, the larger and slower strontium transients account for the prominent slow component of release triggered by strontium. PMID:10096899
Guo, Ji-Dong; Hazra, Rimi; Dabrowska, Joanna; Muly, E. Chris; Wess, Jürgen; Rainnie, Donald G.
2012-01-01
The anterolateral cell group of the bed nucleus of the stria terminalis (BNSTALG) serves as an important relay station in stress circuitry. Limbic inputs to the BNSTALG are primarily glutamatergic and activity-dependent changes in this input have been implicated in abnormal behaviors associated with chronic stress and addiction. Significantly, local infusion of acetylcholine (ACh) receptor agonists into the BNST trigger stress-like cardiovascular responses, however, little is known about the effects of these agents on glutamatergic transmission in the BNSTALG. Here, we show that glutamate- and ACh-containing fibers are found in close association in the BNSTALG. Moreover, in the presence of the acetylcholinesterase inhibitor, eserine, endogenous ACh release evoked a long-lasting reduction of the amplitude of stimulus-evoked EPSCs. This effect was mimicked by exogenous application of the ACh analogue, carbachol, which caused a reversible, dose-dependent, reduction of the evoked EPSC amplitude, and an increase in both the paired pulse ratio and coefficient of variation, suggesting a presynaptic site of action. Uncoupling of postsynaptic G-proteins with intracellular GDP-β-S, or application of the nicotinic receptor antagonist, tubocurarine, failed to block the carbachol effect. In contrast, the carbachol effect was blocked by prior application of atropine or M2 receptor-preferring antagonists, and was absent in M2/M4 receptor knockout mice, suggesting that presynaptic M2 receptors mediate the effect of ACh. Immuno-electron microscopy studies further revealed the presence of M2 receptors on axon terminals that formed asymmetric synapses with BNST neurons. Our findings suggest that presynaptic M2 receptors might be an important modulator of the stress circuit and hence a novel target for drug development. PMID:22166222
Wang, Weiwei; Townes-Anderson, Ellen
2015-01-01
Purpose Rod photoreceptors retract their axon terminals and develop neuritic sprouts in response to retinal detachment and reattachment, respectively. This study examines the role of LIM kinase (LIMK), a component of RhoA and Rac pathways, in the presynaptic structural remodeling of rod photoreceptors. Methods Phosphorylated LIMK (p-LIMK), the active form of LIMK, was examined in salamander retina with Western blot and confocal microscopy. Axon length within the first 7 hours and process growth after 3 days of culture were assessed in isolated rod photoreceptors treated with inhibitors of upstream regulators ROCK and p21-activated kinase (Pak) (Y27632 and IPA-3) and a direct LIMK inhibitor (BMS-5). Porcine retinal explants were also treated with BMS-5 and analyzed 24 hours after detachment. Because Ca2+ influx contributes to axonal retraction, L-type channels were blocked in some experiments with nicardipine. Results Phosphorylated LIMK is present in rod terminals during retraction and in newly formed processes. Axonal retraction over 7 hours was significantly reduced by inhibition of LIMK or its regulators, ROCK and Pak. Process growth was reduced by LIMK or Pak inhibition especially at the basal (axon-bearing) region of the rod cells. Combining Ca2+ channel and LIMK inhibition had no additional effect on retraction but did further inhibit sprouting after 3 days. In detached porcine retina, LIMK inhibition reduced rod axonal retraction and improved retinal morphology. Conclusions Thus structural remodeling, in the form of either axonal retraction or neuritic growth, requires LIMK activity. LIM kinase inhibition may have therapeutic potential for reducing pathologic rod terminal plasticity after retinal injury. PMID:26658506
St. John’s Wort enhances the synaptic activity of the nucleus of the solitary tract
Vance, Katie M.; Ribnicky, David M.; Hermann, Gerlinda E.; Rogers, Richard C.
2014-01-01
Objective St. John’s Wort extract, which is commonly used to treat depression, inhibits the reuptake of several neurotransmitters, including glutamate, serotonin, norepinephrine, and dopamine. Glutamatergic visceral vagal afferents synapse upon neurons of the solitary tract (NST); thus, we evaluated whether St. John’s Wort extract modulates glutamatergic neurotransmission within the NST. Materials and Methods We used live cell calcium imaging to evaluate whether St. John’s Wort and its isolated components hypericin and hyperforin increase the excitability of pre-labeled vagal afferent terminals synapsing upon the NST. We used voltage-clamp recordings of spontaneous miniature excitatory postsynaptic currents (mEPSCs) to evaluate whether St. John’s Wort alters glutamate release from vagal afferents onto NST neurons. Results Our imaging data show that St. John’s Wort (50 μg/mL) increased the intracellular calcium levels of stimulated vagal afferent terminals compared to the bath control. This increase in presynaptic vagal afferent calcium by the extract coincides with an increase in neurotransmitter release within the nucleus of the solitary tract, as the frequency of mEPSCs is significantly higher in the presence of the extract compared to the control. Finally, our imaging data show that hyperforin, a known component of St. John’s Wort extract, also significantly increases terminal calcium levels. Conclusion These data suggest that St. John’s Wort extract can significantly increase the probability of glutamate release from vagal afferents onto the NST by increasing presynaptic calcium. The in vitro vagal afferent synapse with NST neurons is an ideal model system to examine the mechanism of action of botanical agents on glutamatergic neurotransmission. PMID:24985104
Trigo, Federico F; Chat, Mireille; Marty, Alain
2007-11-14
Recent evidence indicates the presence of presynaptic GABA(A) receptors (GABA(A)Rs) in the axon domain of several classes of central neurons, including cerebellar basket and stellate cells. Here, we investigate the possibility that these receptors could be activated in the absence of electrical or chemical stimulation. We find that low concentrations of GABA increase the frequency of miniature GABAergic synaptic currents. Submaximal concentrations of a GABA(A)R blocker, gabazine, decrease both the miniature current frequency and the probability of evoked GABA release. Zolpidem, an agonist of the benzodiazepine binding site, and NO-711 (1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride), a blocker of GABA uptake, both increase the frequency of miniature currents. These effects occur up to postnatal day 14, but not later. Immunohistochemistry indicates the presence of alpha1-containing GABA(A)Rs in interneuron presynaptic terminals with a similar age dependence. We conclude that, under resting conditions, axonal GABA(A)Rs are significantly activated, that this activation results in enhanced GABA release, and that it can be augmented by increasing the affinity of GABA(A)Rs or reducing GABA uptake. Our findings suggest the existence of a positive-feedback mechanism involving presynaptic GABA(A)Rs that maintains a high release rate and a high local GABA concentration in the immature cerebellar network.
Stereotyped initiation of retinal waves by bipolar cells via presynaptic NMDA autoreceptors
Zhang, Rong-wei; Li, Xiao-quan; Kawakami, Koichi; Du, Jiu-lin
2016-01-01
Glutamatergic retinal waves, the spontaneous patterned neural activities propagating among developing retinal ganglion cells (RGCs), instruct the activity-dependent refinement of visuotopic maps. However, its initiation and underlying mechanism remain largely elusive. Here using larval zebrafish and multiple in vivo approaches, we discover that bipolar cells (BCs) are responsible for the generation of glutamatergic retinal waves. The wave originates from BC axon terminals (ATs) and propagates laterally to nearby BCs and vertically to downstream RGCs and the optic tectum. Its initiation is triggered by the activation of and consequent glutamate release from BC ATs, and is mediated by the N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) expressed at these ATs. Intercellular asymmetry of NMDAR expression at BC ATs enables the preferential initiation of waves at the temporal retina, where BC ATs express more NMDARs. Thus, our findings indicate that glutamatergic retinal waves are initiated by BCs through a presynaptic NMDA autoreceptor-dependent process. PMID:27586999
Flow Cytometric Analysis of Presynaptic Nerve Terminals Isolated from Rats Subjected to Hypergravity
NASA Astrophysics Data System (ADS)
Borisova, Tatiana
2008-06-01
Flow cytometric studies revealed an insignificant decrease in cell size heterogeneity and cytoplasmic granularity of rat brain nerve terminals (synaptosomes) isolated from animals subjected to centrifuge-induced hypergravity as compared to control ones. The analysis of plasma membrane potential using the potentiometric optical dye rhodamine 6G showed a decrease in fluorescence intensity by 10 % at steady state level in hypergravity synaptosomes. To monitor synaptic vesicle acidification we used pH-sensitive fluorescent dye acridine orange and demonstrated a lower fluorescence intensity level at steady state (10%) after hypergravity as compared to controls. Thus, exposure to hypergravity resulted in depolarization of the synaptosomal plasma membrane and diminution in synaptic vesicle acidification that may be a cause leading to altered synaptic neurotransmission.
Cone arrestin confers cone vision of high temporal resolution in zebrafish larvae.
Renninger, Sabine L; Gesemann, Matthias; Neuhauss, Stephan C F
2011-02-01
Vision of high temporal resolution depends on careful regulation of photoresponse kinetics, beginning with the lifetime of activated photopigment. The activity of rhodopsin is quenched by high-affinity binding of arrestin to photoexcited phosphorylated photopigment, which effectively terminates the visual transduction cascade. This regulation mechanism is well established for rod photoreceptors, yet its role for cone vision is still controversial. In this study we therefore analyzed arrestin function in the cone-dominated vision of larval zebrafish. For both rod (arrS ) and cone (arr3 ) arrestin we isolated two paralogs, each expressed in the respective subset of photoreceptors. Labeling with paralog-specific antibodies revealed subfunctionalized expression of Arr3a in M- and L-cones, and Arr3b in S- and UV-cones. The inactivation of arr3a by morpholino knockdown technology resulted in a severe delay in photoresponse recovery which, under bright light conditions, was rate-limiting. Comparison to opsin phosphorylation-deficient animals confirmed the role of cone arrestin in late cone response recovery. Arr3a activity partially overlapped with the function of the cone-specific kinase Grk7a involved in initial response recovery. Behavioral measurements further revealed Arr3a deficiency to be sufficient to reduce temporal contrast sensitivity, providing evidence for the importance of arrestin in cone vision of high temporal resolution. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Horizontal cryogenic bushing for the termination of a superconducting power-transmission line
Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.
1982-07-29
A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.
Termination for a superconducting power transmission line including a horizontal cryogenic bushing
Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix
1984-01-01
A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.
ERM proteins regulate growth cone responses to Sema3A.
Mintz, C David; Carcea, Ioana; McNickle, Daniel G; Dickson, Tracey C; Ge, Yongchao; Salton, Stephen R J; Benson, Deanna L
2008-10-01
Axonal growth cones initiate and sustain directed growth in response to cues in their environment. A variety of events such as receptor internalization, kinase activation, and actin rearrangement can be stimulated by guidance cues and are essential for mediating targeted growth cone behavior. Surprisingly little is known about how such disparate actions are coordinated. Our data suggest that ezrin, radixin, and moesin (ERMs), a family of highly homologous, multifunctional proteins may be able to coordinate growth cone responses to the guidance cue Semaphorin 3A (Sema3A). We show that active ERMs concentrate asymmetrically in neocortical growth cones, are rapidly and transiently inactivated by Sema3A, and are required for Sema3A-mediated growth cone collapse and guidance. The FERM domain of active ERMs regulates internalization of the Sema3A receptor, Npn1, and its coreceptor, L1CAM, while the ERM C-terminal domain binds and caps F-actin. Our data support a model in which ERMs can coordinate membrane and actin dynamics in response to Sema3A.
Revisiting chemoaffinity theory: Chemotactic implementation of topographic axonal projection
2017-01-01
Neural circuits are wired by chemotactic migration of growth cones guided by extracellular guidance cue gradients. How growth cone chemotaxis builds the macroscopic structure of the neural circuit is a fundamental question in neuroscience. I addressed this issue in the case of the ordered axonal projections called topographic maps in the retinotectal system. In the retina and tectum, the erythropoietin-producing hepatocellular (Eph) receptors and their ligands, the ephrins, are expressed in gradients. According to Sperry’s chemoaffinity theory, gradients in both the source and target areas enable projecting axons to recognize their proper terminals, but how axons chemotactically decode their destinations is largely unknown. To identify the chemotactic mechanism of topographic mapping, I developed a mathematical model of intracellular signaling in the growth cone that focuses on the growth cone’s unique chemotactic property of being attracted or repelled by the same guidance cues in different biological situations. The model presented mechanism by which the retinal growth cone reaches the correct terminal zone in the tectum through alternating chemotactic response between attraction and repulsion around a preferred concentration. The model also provided a unified understanding of the contrasting relationships between receptor expression levels and preferred ligand concentrations in EphA/ephrinA- and EphB/ephrinB-encoded topographic mappings. Thus, this study redefines the chemoaffinity theory in chemotactic terms. PMID:28792499
Harris, W A; Holt, C E; Bonhoeffer, F
1987-09-01
Time-lapse video recordings were made of individual retinal ganglion cell fibres growing to and terminating in the optic tectum of Xenopus embryos. The fibres were stained by inserting a crystal of the lipophilic fluorescent dye, DiI, into the developing retina. Growth cones were observed in the optic tract and tectum using 20 ms flashes of light to induce fluorescence approximately once every minute. Fluorescent images were captured with a SIT camera, processed and saved on a time-lapse video recorder. The main conclusions from observing normal growing fibres are as follows. (1) Axons in the optic tract grow at a steady rate directly toward their targets without retracting or branching. (2) As axons approach the tectum they slow down and their growth cones become more complex. (3) Most terminal branches in the tectum are formed by back branching rather than by bifurcation of leading growth cones. In a second experiment, labelled growing axons were separated from their cell bodies by removing the retina. Such isolated axons continued to grow for up to 3 h in vivo and were capable of recognizing the tectum and arborizing there. This result shows that growth cones must contain the machinery needed to sense and respond to their specific pathways and targets.
Dai, Gucan
2013-01-01
Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the L633P mutation. PMID:23552282
Dai, Gucan; Varnum, Michael D
2013-07-15
Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the L633P mutation.
López Soto, Eduardo Javier; Agosti, Francina; Cabral, Agustina; Mustafa, Emilio Roman; Damonte, Valentina Martínez; Gandini, Maria Alejandra; Rodríguez, Silvia; Castrogiovanni, Daniel; Felix, Ricardo; Perelló, Mario
2015-01-01
The growth hormone secretagogue receptor type 1a (GHSR1a) has the highest known constitutive activity of any G protein–coupled receptor (GPCR). GHSR1a mediates the action of the hormone ghrelin, and its activation increases transcriptional and electrical activity in hypothalamic neurons. Although GHSR1a is present at GABAergic presynaptic terminals, its effect on neurotransmitter release remains unclear. The activities of the voltage-gated calcium channels, CaV2.1 and CaV2.2, which mediate neurotransmitter release at presynaptic terminals, are modulated by many GPCRs. Here, we show that both constitutive and agonist-dependent GHSR1a activity elicit a strong impairment of CaV2.1 and CaV2.2 currents in rat and mouse hypothalamic neurons and in a heterologous expression system. Constitutive GHSR1a activity reduces CaV2 currents by a Gi/o-dependent mechanism that involves persistent reduction in channel density at the plasma membrane, whereas ghrelin-dependent GHSR1a inhibition is reversible and involves altered CaV2 gating via a Gq-dependent pathway. Thus, GHSR1a differentially inhibits CaV2 channels by Gi/o or Gq protein pathways depending on its mode of activation. Moreover, we present evidence suggesting that GHSR1a-mediated inhibition of CaV2 attenuates GABA release in hypothalamic neurons, a mechanism that could contribute to neuronal activation through the disinhibition of postsynaptic neurons. PMID:26283199
Shapiro, E; Castellucci, V F; Kandel, E R
1980-01-01
We have examined the relationships between the modulation of transmitter release and of specific ionic currents by membrane potential in the cholinergic interneuron L10 of the abdominal ganglion of Aplysia californica. The presynaptic cell body was voltage-clamped under various pharmacological conditions and transmitter release from the terminals was assayed simultaneously by recording the synaptic potentials in the postsynaptic cell. When cell L10 was voltage-clamped from a holding potential of -60 mV in the presence of tetrodotoxin, graded transmitter release was evoked by depolarizing command pulses in the membrane voltage range (-35 mV to + 10 mV) in which the Ca(2+) current was also increasing. Depolarizing the holding potential of L10 results in increased transmitter output. Two ionic mechanisms contribute to this form of plasticity. First, depolarization inactivates some K(+) channels so that depolarizing command pulses recruit a smaller K(+) current. In unclamped cells the decreased K(+) conductance causes spike-broadening and increased influx of Ca(2+) during each spike. Second, small depolarizations around resting potential (-55 mV to -35 mV) activate a steady-state Ca(2+) current that also contributes to the modulation of transmitter release, because, even with most presynaptic K(+) currents blocked pharmacologically, depolarizing the holding potential still increases transmitter release. In contrast to the steady-state Ca(2+) current, the transient inward Ca(2+) current evoked by depolarizing clamp steps is relatively unchanged from various holding potentials.
Lau, Chi-Fai; Ho, Yuen-Shan; Hung, Clara Hiu-Ling; Poon, Chun-Hei; Chiu, Kin; Yang, Xifei
2014-01-01
Increasing lines of evidence support that testosterone may have neuroprotective effects. While observational studies reported an association between higher bioavailable testosterone or brain testosterone levels and reduced risk of Alzheimer's disease (AD), there is limited understanding of the underlying neuroprotective mechanisms. Previous studies demonstrated that testosterone could alleviate neurotoxicity induced by β-amyloid (Aβ), but these findings mainly focused on neuronal apoptosis. Since synaptic dysfunction and degeneration are early events during the pathogenesis of AD, we aim to investigate the effects of testosterone on oligomeric Aβ-induced synaptic changes. Our data suggested that exposure of primary cultured hippocampal neurons to oligomeric Aβ could reduce the length of neurites and decrease the expression of presynaptic proteins including synaptophysin, synaptotagmin, and synapsin-1. Aβ also disrupted synaptic vesicle recycling and protein folding machinery. Testosterone preserved the integrity of neurites and the expression of presynaptic proteins. It also attenuated Aβ-induced impairment of synaptic exocytosis. By using letrozole as an aromatase antagonist, we further demonstrated that the effects of testosterone on exocytosis were unlikely to be mediated through the estrogen receptor pathway. Furthermore, we showed that testosterone could attenuate Aβ-induced reduction of HSP70, which suggests a novel mechanism that links testosterone and its protective function on Aβ-induced synaptic damage. Taken together, our data provide further evidence on the beneficial effects of testosterone, which may be useful for future drug development for AD. PMID:25045655
Silverman, A J; Hou-Yu, A; Zimmerman, E A
1983-05-01
The ultrastructure of the vasopressin neurons of the paraventricular nucleus of the hypothalamus was studied by immunocytochemical techniques. Tissue antigen was detected in unembedded tissue sections using a monoclonal antibody that recognizes vasopressin but not oxytocin or vasotocin. At the light-microscopic level, reaction product was seen to fill the cytoplasm of the neuron cell body as well as large portions of the dendrite and axon. Immunoreactive spines were seen on both somatic and dendritic surfaces and their presence was confirmed at the ultrastructural level. In the light-microscope, axonal processes do not have spines and are thinner and more varicose than dendritic processes. At the electron-microscopic level, both axons and dendrites of the vasopressin cells are filled with reactive neurosecretory granules. The presence of large numbers of these organelles made it difficult to distinguish proximal dendrites from Herring bodies (axonal swellings). At the ultrastructural level, reaction product was also observed in the cytoplasm of all segments of the vasopressin cells. The presence of reaction product outside of membranous compartments is undoubtably due to disruption of membranes by detergent treatment or exposure to basic pH. However, the staining procedure used did allow us to examine the synaptic input to the vasopressin cells. All portions of the vasopressin neuron receive a diverse innervation. The somata have synapses on their surfaces and on spines. These axo-somatic terminals are primarily, but not exclusively, symmetrical and the presynaptic elements contain spherical or elongate vesicles. On the dendrites, terminals again were observed on the surface or on spines. these axo-dendritic synapses were usually asymmetrical. The presynaptic elements contained clear spherical, elongate or pleomorphic vesicles. Occasional varicosities with dense-core granules were seen to make en passant contacts with dendrites; these contacts did not have obvious membrane specializations. Input to vasopressin axons was studied both along the paraventricular-neurohypophysial tract and in the median eminence. Vasopressin axons receive a synaptic input (axo-axonic), predominately of the asymmetric variety with clear, spherical vesicles in the presynaptic element. These findings demonstrate that the vasopressin neurons of the paraventricular nucleus receive a diverse innervation.
Borgen, Melissa; Rowland, Kimberly; Boerner, Jana; Lloyd, Brandon; Khan, Aruna; Murphey, Rodney
2017-03-01
The ubiquitin ligase Highwire has a conserved role in synapse formation. Here, we show that Highwire coordinates several facets of central synapse formation in the Drosophila melanogaster giant fiber system, including axon termination, axon pruning, and synaptic function. Despite the similarities to the fly neuromuscular junction, the role of Highwire and the underlying signaling pathways are distinct in the fly's giant fiber system. During development, branching of the giant fiber presynaptic terminal occurs and, normally, the transient branches are pruned away. However, in highwire mutants these ectopic branches persist, indicating that Highwire promotes axon pruning. highwire mutants also exhibit defects in synaptic function. Highwire promotes axon pruning and synaptic function cell-autonomously by attenuating a mitogen-activated protein kinase pathway including Wallenda, c-Jun N-terminal kinase/Basket, and the transcription factor Jun. We also show a novel role for Highwire in non-cell autonomous promotion of synaptic function from the midline glia. Highwire also regulates axon termination in the giant fibers, as highwire mutant axons exhibit severe overgrowth beyond the pruning defect. This excessive axon growth is increased by manipulating Fos expression in the cells surrounding the giant fiber terminal, suggesting that Fos regulates a trans -synaptic signal that promotes giant fiber axon growth. Copyright © 2017 by the Genetics Society of America.
Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.
2015-01-01
The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081
Katz, E; Ferro, P A; Cherksey, B D; Sugimori, M; Llinás, R; Uchitel, O D
1995-01-01
1. The effects of the calcium channel blockers, funnel-web spider toxin (FTX), omega-agatoxin IVA (omega-Aga IVA) and omega-conotoxin GVIA (omega-CgTX), were tested on transmitter release and presynaptic currents in frog motor nerve endings. 2. Evoked transmitter release was blocked by FTX (IC50 = 0.02 microliter ml-1) and omega-CgTX (1 microM) but was not affected by omega-Aga IVA (0.5 microM). When FTX (0.1 microliter ml-1) was assayed on spontaneous release either in normal Ringer solution or in low Ca(2+)-high Mg2+ solution, it was found not to affect miniature endplate potential (MEPP) amplitude but to increase MEPP frequency by approximately 2-fold in both conditions. 3. Presynaptic calcium currents (ICa), measured by the perineurial technique in the presence of 10 mM tetraethylammonium chloride (TEA) and 200 microM BaCl2 to block K+ currents, were blocked by omega-CgTX (5 microM), partially blocked by FTX (1 microliter ml-1) and not affected by omega-Aga IVA (0.5 microM). 4. The presynaptic calcium-activated potassium current (IK(Ca)) measured by the perineurial technique in the presence of 0.5 microM 3,4-aminopyridine (DAP) to block voltage-dependent K+ currents, was strongly affected by charybdotoxin (ChTX) (300 nM) and completely abolished by BaCl2 (200 microM). This current was also blocked by omega-CgTX (5 microM) and by CdCl2 (200 microM) but was not affected by FTX (1 microliter ml-1). The blockade by omega-CgTX could not be reversed by elevating [Ca]o to 10 mM. 5. The results suggest that in frog synaptic terminals two omega-CgTX-sensitive populations might coexist. The transmitter release process seems to be mediated by calcium influx through a omega-CgTX- and FTX-sensitive population. PMID:7473230
Katz, E; Ferro, P A; Cherksey, B D; Sugimori, M; Llinás, R; Uchitel, O D
1995-08-01
1. The effects of the calcium channel blockers, funnel-web spider toxin (FTX), omega-agatoxin IVA (omega-Aga IVA) and omega-conotoxin GVIA (omega-CgTX), were tested on transmitter release and presynaptic currents in frog motor nerve endings. 2. Evoked transmitter release was blocked by FTX (IC50 = 0.02 microliter ml-1) and omega-CgTX (1 microM) but was not affected by omega-Aga IVA (0.5 microM). When FTX (0.1 microliter ml-1) was assayed on spontaneous release either in normal Ringer solution or in low Ca(2+)-high Mg2+ solution, it was found not to affect miniature endplate potential (MEPP) amplitude but to increase MEPP frequency by approximately 2-fold in both conditions. 3. Presynaptic calcium currents (ICa), measured by the perineurial technique in the presence of 10 mM tetraethylammonium chloride (TEA) and 200 microM BaCl2 to block K+ currents, were blocked by omega-CgTX (5 microM), partially blocked by FTX (1 microliter ml-1) and not affected by omega-Aga IVA (0.5 microM). 4. The presynaptic calcium-activated potassium current (IK(Ca)) measured by the perineurial technique in the presence of 0.5 microM 3,4-aminopyridine (DAP) to block voltage-dependent K+ currents, was strongly affected by charybdotoxin (ChTX) (300 nM) and completely abolished by BaCl2 (200 microM). This current was also blocked by omega-CgTX (5 microM) and by CdCl2 (200 microM) but was not affected by FTX (1 microliter ml-1). The blockade by omega-CgTX could not be reversed by elevating [Ca]o to 10 mM. 5. The results suggest that in frog synaptic terminals two omega-CgTX-sensitive populations might coexist. The transmitter release process seems to be mediated by calcium influx through a omega-CgTX- and FTX-sensitive population.
The effect of potassium on exocytosis of transmitter at the frog neuromuscular junction.
Ceccarelli, B; Fesce, R; Grohovaz, F; Haimann, C
1988-01-01
1. Electrophysiology and morphology have been combined to investigate the time course of the exocytosis of quanta of neurotransmitter induced by elevated concentrations of K+ at the frog neuromuscular junction. 2. Replicas of freeze-fractured resting nerve terminals fixed in the presence of 20 mM-K+ showed images of fusion of synaptic vesicles with the presynaptic axolemma which were closely associated with the active zones. After 1 min in 20 nM-K+ fusions appeared also outside the active zones, and by 5 min they became uniformly distributed over the presynaptic membrane. 3. The average total density of fusions was not significantly different at the various times examined since it decreased at the active zones while it increased over the rest of the membrane. 4. Resting terminals fixed in 20 mM-K+ released 33,000-45,000 quanta after the addition of fixative; terminals stimulated by 20 mM-K+ for 1-5 min released 50,000-100,000 quanta during fixation. The fixative potentiated K+-induced transmitter release. 5. Fusions were uniformly distributed in terminals pre-incubated for 5 min in 20 mM-K+ without added Ca2+, stimulated by adding Ca2+ for 30 s, and then fixed. Conversely, after 5 min stimulation in hypertonic Ringer solution fusions remained predominantly located near the active zones. A similar distribution was observed after 15 min stimulation by a lower concentration of K+ (15 mM). 6. At all concentrations of K+ tested (10, 15, 20, 25 mM) miniature end-plate potential (MEPP) rate attained a steady-state value within 10-15 min. Values from a single junction were generally lower at higher concentrations of K+, which indicates partial inactivation of the secretion-recycling process. 7. The data indicate that K+ initially activates exocytosis at the active zones. Subsequently, ectopic exocytosis is activated while sites at the active zones appear to undergo partial inactivation. These phenomena are not related to the intensity or to the amount of previous secretion. Images Fig. 1 Fig. 2 Fig. 3 Fig. 8 Fig. 10 PMID:2902217
[Targeted inactivation of gamma-synuclein gene affects anxiety and exploratory behaviour of mice].
Kokhan, V S; Bolkunov, A V; Ustiugov, A A; Van'kin, G I; Shelkovnikova, T A; Redkozubova, O M; Strekalova, T V; Bukhman, V L; Ninkina, N N; Bachurin, S O
2011-01-01
Gamma(gamma)-synuclein is a member of synuclein family of cytoplasmic and predominantly neuronal proteins found only in vertebrates. Gamma-synuclein is abundant in axons and presynaptic terminals of neurons localized in brain regions involved in emotions, learning and memory. However, the role of gamma-synuclein in these brain functions was not previously assessed. We have demonstrated for the first time that the loss of gamma-synuclein results in a significant increase in the level of orientation response in novel environment and decrease in the level of state anxiety.
Transfer characteristics of the hair cell's afferent synapse
NASA Astrophysics Data System (ADS)
Keen, Erica C.; Hudspeth, A. J.
2006-04-01
The sense of hearing depends on fast, finely graded neurotransmission at the ribbon synapses connecting hair cells to afferent nerve fibers. The processing that occurs at this first chemical synapse in the auditory pathway determines the quality and extent of the information conveyed to the central nervous system. Knowledge of the synapse's input-output function is therefore essential for understanding how auditory stimuli are encoded. To investigate the transfer function at the hair cell's synapse, we developed a preparation of the bullfrog's amphibian papilla. In the portion of this receptor organ representing stimuli of 400-800 Hz, each afferent nerve fiber forms several synaptic terminals onto one to three hair cells. By performing simultaneous voltage-clamp recordings from presynaptic hair cells and postsynaptic afferent fibers, we established that the rate of evoked vesicle release, as determined from the average postsynaptic current, depends linearly on the amplitude of the presynaptic Ca2+ current. This result implies that, for receptor potentials in the physiological range, the hair cell's synapse transmits information with high fidelity. auditory system | exocytosis | glutamate | ribbon synapse | synaptic vesicle
Wagner-Schuman, Melissa; Neitz, Jay; Rha, Jungtae; Williams, David R.; Neitz, Maureen; Carroll, Joseph
2010-01-01
Our understanding of the etiology of red-green color vision defects is evolving. While missense mutations within the long- (L-) and middle-wavelength sensitive (M-) photopigments and gross rearrangements within the L/M-opsin gene array are commonly associated with red-green defects, recent work using adaptive optics retinal imaging has shown that different genotypes can have distinct consequences for the cone mosaic. Here we examined the cone mosaic in red-green color deficient individuals with multiple X-chromosome opsin genes that encode L opsin, as well as individuals with a single X-chromosome opsin gene that encodes L opsin and a single patient with a novel premature termination codon in his M-opsin gene and a normal L-opsin gene. We observed no difference in cone density between normal trichomats and multiple or single gene dichromats. In addition, we demonstrate different phenotypic effects of a nonsense mutation versus the previously described deleterious polymorphism, (LIAVA), both of which differ from multiple and single gene dichromats. Our results help refine the relationship between opsin genotype and cone photoreceptor mosaic phenotype. PMID:20854834
Evidence for presynaptically silent synapses in the immature hippocampus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Jae Young; Choi, Sukwoo
Silent synapses show NMDA receptor (NMDAR)-mediated synaptic responses, but not AMPAR-mediated synaptic responses. A prevailing hypothesis states that silent synapses contain NMDARs, but not AMPARs. However, alternative presynaptic hypotheses, according to which AMPARs are present at silent synapses, have been proposed; silent synapses show slow glutamate release via a fusion pore, and glutamate spillover from the neighboring synaptic terminals. Consistent with these presynaptic hypotheses, the peak glutamate concentrations at silent synapses have been estimated to be ≪170 μM, much lower than those seen at functional synapses. Glutamate transients predicted based on the two presynaptic mechanisms have been shown to activate onlymore » high-affinity NMDARs, but not low-affinity AMPARs. Interestingly, a previous study has developed a new approach to distinguish between the two presynaptic mechanisms using dextran, an inert macromolecule that reduces the diffusivity of released glutamate: postsynaptic responses through the fusion pore mechanism, but not through the spillover mechanism, are potentiated by reduced glutamate diffusivity. Therefore, we reasoned that if the fusion pore mechanism underlies silent synapses, dextran application would reveal AMPAR-mediated synaptic responses at silent synapses. In the present study, we recorded AMPAR-mediated synaptic responses at the CA3-CA1 synapses in neonatal rats in the presence of blockers for NMDARs and GABAARs. Bath application of dextran revealed synaptic responses at silent synapses. GYKI53655, a selective AMPAR-antagonist, completely inhibited the unsilenced synaptic responses, indicating that the unsilenced synaptic responses are mediated by AMPARs. The dextran-mediated reduction in glutamate diffusivity would also lead to the activation of metabotropic glutamate receptors (mGluRs), which might induce unsilencing via the activation of unknown intracellular signaling. Hence, we determined whether mGluR-blockers alter the dextran-induced unsilencing. However, dextran application continued to produce significant synaptic unsilencing in the presence of a cocktail of the blockers for all subtypes of mGluRs. Our findings provide evidence that slowed glutamate diffusion produces synaptic unsilencing by enhancing the peak glutamate occupancy of pre-existing AMPARs, supporting the fusion pore mechanism of silent synapses. - Highlights: • Slowed glutamate diffusion by dextran reveals synaptic responses at silent synapses. • Unsilenced synaptic responses are mediated by AMPA receptors. • Dextran-induced unsilencing is independent of metabotropic glutamate receptors.« less
Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.
Cho, In Ha; Panzera, Lauren C; Chin, Morven; Hoppa, Michael B
2017-09-27
Neurotransmitter release depends on voltage-gated Na + channels (Na v s) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na + channels. Using optical recordings of Ca 2+ and membrane voltage, we demonstrate here that Na + channel β2 subunits (Na v β2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Na v β2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca 2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Na v β2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. SIGNIFICANCE STATEMENT Voltage-gated Ca 2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na + channel β2 subunits modulate AP-evoked Ca 2+ -influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the brain. Copyright © 2017 the authors 0270-6474/17/379519-15$15.00/0.
Hurtado, Erica; Cilleros, Víctor; Just, Laia; Simó, Anna; Nadal, Laura; Tomàs, Marta; Garcia, Neus; Lanuza, Maria A; Tomàs, Josep
2017-01-01
Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release.
Hurtado, Erica; Cilleros, Víctor; Just, Laia; Simó, Anna; Nadal, Laura; Tomàs, Marta; Garcia, Neus; Lanuza, Maria A.; Tomàs, Josep
2017-01-01
Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release. PMID:28890686
Roche, N; Lackmy, A; Achache, V; Bussel, B; Katz, R
2011-01-01
Abstract In recent years, two techniques have become available for the non-invasive stimulation of human motor cortex: transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). The effects of TMS and tDCS when applied over motor cortex should be considered with regard not only to cortical circuits but also to spinal motor circuits. The different modes of action and specificity of TMS and tDCS suggest that their effects on spinal network excitability may be different from that in the cortex. Until now, the effects of tDCS on lumbar spinal network excitability have never been studied. In this series of experiments, on healthy subjects, we studied the effects of anodal tDCS over the lower limb motor cortex on (i) reciprocal Ia inhibition projecting from the tibialis anterior muscle (TA) to the soleus (SOL), (ii) presynaptic inhibition of SOL Ia terminals, (iii) homonymous SOL recurrent inhibition, and (iv) SOL H-reflex recruitment curves. The results show that anodal tDCS decreases reciprocal Ia inhibition, increases recurrent inhibition and induces no modification of presynaptic inhibition of SOL Ia terminals and of SOL-H reflex recruitment curves. Our results indicate therefore that the effects of tDCS are the opposite of those previously described for TMS on spinal network excitability. They also indicate that anodal tDCS induces effects on spinal network excitability similar to those observed during co-contraction suggesting that anodal tDCS activates descending corticospinal projections mainly involved in co-contractions. PMID:21502292
Rodrigues, Ricardo J; Almeida, Teresa; de Mendonça, Alexandre; Cunha, Rodrigo A
2006-01-01
Nicotinic acetylcholine receptors (nAChRs [constituted by pentameric association of alpha2-10 and beta2-4 subunits]) and P2X receptors (P2XRs [activated by ATP and constituted by multimeric association of P2X1-7 subunits]) are both ionotropic receptors permeable to cations, which have in common the disparity between the wealth of data showing their presence in the brain and little evidence of their participation in mediating synaptic transmission. This has led to the proposal that both nAChRs and P2XRs might primarily modulate rather than directly mediate synaptic transmission, which is in accordance with the predominant presynaptic localization of both receptor subtypes (Role and Berg, 1996; Cunha and Ribeiro, 2000). Interestingly, both functional neurochemical (Allgaier et al., 1995; Salgado et al., 2000; Diáz-Hernández et al., 2002) and electrophysiological studies (Barajas-Lopez et al., 1998; Searl et al., 1998; Zhou and Calligan, 1998; Khakh et al., 2000) indicated a close interaction between nAChRs and P2XRs, which is paralleled by a co-release of ATPand ACh from central terminals (e.g., Richardson and Brown, 1987). Because glutamate release in the hippocampus is controlled by both nAChRs (e.g., McGehee et al., 1995) and P2XRs (Khakh et al., 2003; Rodrigues et al., 2005), we investigated if there was a functional interaction between these two presynaptic ionotropic receptors in the control of glutamate release in the rat hippocampus.
Hamatake, Michiko; Miyazaki, Noriko; Sudo, Kaori; Matsuda, Motoko; Sadakata, Tetsushi; Furuya, Asako; Ichisaka, Satoshi; Hata, Yoshio; Nakagawa, Chiaki; Nagata, Koh-ichi; Furuichi, Teiichi; Katoh-Semba, Ritsuko
2011-01-01
In adult rat brains, brain-derived neurotrophic factor (BDNF) rhythmically oscillates according to the light-dark cycle and exhibits unique functions in particular brain regions. However, little is known of this subject in juvenile rats. Here, we examined diurnal variation in BDNF and neurotrophin-3 (NT-3) levels in 14-day-old rats. BDNF levels were high in the dark phase and low in the light phase in a majority of brain regions. In contrast, NT-3 levels demonstrated an inverse phase relationship that was limited to the cerebral neocortex, including the visual cortex, and was most prominent on postnatal day 14. An 8-h phase advance of the light-dark cycle and sleep deprivation induced an increase in BDNF levels and a decrease in NT-3 levels in the neocortex, and the former treatment reduced synaptophysin expression and the numbers of synaptophysin-positive presynaptic terminals in cortical layer IV and caused abnormal BDNF and NT-3 rhythms 1 week after treatment. A similar reduction of synaptophysin expression was observed in the cortices of Bdnf gene-deficient mice and Ca2+-dependent activator protein for secretion 2 gene-deficient mice with abnormal free-running rhythm and autistic-like phenotypes. In the latter mice, no diurnal variation in BDNF levels was observed. These results indicate that regular rhythms of BDNF and NT-3 are essential for correct cortical network formation in juvenile rodents. PMID:21527636
Hamatake, Michiko; Miyazaki, Noriko; Sudo, Kaori; Matsuda, Motoko; Sadakata, Tetsushi; Furuya, Asako; Ichisaka, Satoshi; Hata, Yoshio; Nakagawa, Chiaki; Nagata, Koh-ichi; Furuichi, Teiichi; Katoh-Semba, Ritsuko
2011-06-17
In adult rat brains, brain-derived neurotrophic factor (BDNF) rhythmically oscillates according to the light-dark cycle and exhibits unique functions in particular brain regions. However, little is known of this subject in juvenile rats. Here, we examined diurnal variation in BDNF and neurotrophin-3 (NT-3) levels in 14-day-old rats. BDNF levels were high in the dark phase and low in the light phase in a majority of brain regions. In contrast, NT-3 levels demonstrated an inverse phase relationship that was limited to the cerebral neocortex, including the visual cortex, and was most prominent on postnatal day 14. An 8-h phase advance of the light-dark cycle and sleep deprivation induced an increase in BDNF levels and a decrease in NT-3 levels in the neocortex, and the former treatment reduced synaptophysin expression and the numbers of synaptophysin-positive presynaptic terminals in cortical layer IV and caused abnormal BDNF and NT-3 rhythms 1 week after treatment. A similar reduction of synaptophysin expression was observed in the cortices of Bdnf gene-deficient mice and Ca(2+)-dependent activator protein for secretion 2 gene-deficient mice with abnormal free-running rhythm and autistic-like phenotypes. In the latter mice, no diurnal variation in BDNF levels was observed. These results indicate that regular rhythms of BDNF and NT-3 are essential for correct cortical network formation in juvenile rodents.
The translational regulator Cup controls NMJ presynaptic terminal morphology.
Menon, Kaushiki P; Carrillo, Robert A; Zinn, Kai
2015-07-01
During oogenesis and early embryonic development in Drosophila, translation of proteins from maternally deposited mRNAs is tightly controlled. We and others have previously shown that translational regulatory proteins that function during oogenesis also have essential roles in the nervous system. Here we examine the role of Cup in neuromuscular system development. Maternal Cup controls translation of localized mRNAs encoding the Oskar and Nanos proteins and binds to the general translation initiation factor eIF4E. In this paper, we show that zygotic Cup protein is localized to presynaptic terminals at larval neuromuscular junctions (NMJs). cup mutant NMJs have strong phenotypes characterized by the presence of small clustered boutons called satellite boutons. They also exhibit an increase in the frequency of spontaneous glutamate release events (mEPSPs). Reduction of eIF4E expression synergizes with partial loss of Cup expression to produce satellite bouton phenotypes. The presence of satellite boutons is often associated with increases in retrograde bone morphogenetic protein (BMP) signaling, and we show that synaptic BMP signaling is elevated in cup mutants. cup genetically interacts with two genes, EndoA and Dap160, that encode proteins involved in endocytosis that are also neuronal modulators of the BMP pathway. Endophilin protein, encoded by the EndoA gene, is downregulated in a cup mutant. Our results are consistent with a model in which Cup and eIF4E work together to ensure efficient localization and translation of endocytosis proteins in motor neurons and control the strength of the retrograde BMP signal. Copyright © 2015 Elsevier Inc. All rights reserved.
The translational regulator Cup controls NMJ presynaptic terminal morphology
Menon, Kaushiki P.; Carrillo, Robert A.; Zinn, Kai
2015-01-01
During oogenesis and early embryonic development in Drosophila, translation of proteins from maternally deposited mRNAs is tightly controlled. We and others have previously shown that translational regulatory proteins that function during oogenesis also have essential roles in the nervous system. Here we examine the role of Cup in neuromuscular system development. Maternal Cup controls translation of localized mRNAs encoding the Oskar and Nanos proteins and binds to the general translation initiation factor eIF4E. In this paper, we show that zygotic Cup protein is localized to presynaptic terminals at larval neuromuscular junctions (NMJs). cup mutant NMJs have strong phenotypes characterized by the presence of small clustered boutons called satellite boutons. They also exhibit an increase in the frequency of spontaneous glutamate release events (mEPSPs). Reduction of eIF4E expression synergizes with partial loss of Cup expression to produce satellite bouton phenotypes. The presence of satellite boutons is often associated with increases in retrograde bone morphogenetic protein (BMP) signaling, and we show that synaptic BMP signaling is elevated in cup mutants. cup genetically interacts with four genes (EndoA, WASp, Dap160, and Synj) encoding proteins involved in endocytosis that are also neuronal modulators of the BMP pathway. Endophilin protein, encoded by the EndoA gene, is downregulated in a cup mutant. Our results are consistent with a model in which Cup and eIF4E work together to ensure efficient localization and translation of endocytosis proteins in motor neurons and control the strength of the retrograde BMP signal. PMID:26102195
Donnelly, William T.; Bartlett, Donald; Leiter, J.C.
2017-01-01
The laryngeal chemoreflex (LCR), an airway protective reflex that causes apnea and bradycardia, has long been suspected as an initiating event in the sudden infant death syndrome (SIDS). Serotonin (5-HT) and 5-HT receptors may be deficient in the brainstems of babies who die of SIDS, and 5-HT seems to be important in terminating apneas directly or in causing arousals or as part of the process of autoresuscitation. We hypothesized that 5-HT in the brainstem would limit the duration of the LCR. We studied anesthetized rat pups between 7 and 21 days of age and made microinjections into the cisterna magna or into the nucleus of the solitary tract (NTS). Focal, bilateral microinjections of 5-HT into the caudal NTS significantly shortened the LCR. The 5-HT 1a receptor antagonist, WAY 100635, did not affect the LCR consistently, nor did a 5-HT2 receptor antagonist, ketanserin, alter the duration of the LCR. The 5-HT3 specific agonist, 1-(3-chlorophenyl)-biguanide, microinjected bilaterally into the caudal NTS significantly shortened the LCR. Thus, endogenous 5-HT released within the NTS may curtail the respiratory depression that is part of the LCR, and serotonergic shortening of the LCR may be attributed to activation of 5-HT3 receptors within the NTS. 5-HT3 receptors are expressed presynaptically on C-fiber afferents of the superior laryngeal nerve, and serotonergic shortening of the LCR may be mediated presynaptically by enhanced activation of inhibitory interneurons within the NTS that terminate during the LCR. PMID:27121960
Structure activity relationship of synaptic and junctional neurotransmission.
Goyal, Raj K; Chaudhury, Arun
2013-06-01
Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between 'bare' portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasingly recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable of ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the 'closed' synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is 'open' to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into 'close' and 'wide' junctions. Functionally, the 'close' and the 'wide' junctions can be distinguished by postjunctional potentials lasting ~1s and tens of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors. Published by Elsevier B.V.
Structure activity relationship of synaptic and junctional neurotransmission
Goyal, Raj K; Chaudhury, Arun
2013-01-01
Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between ‘bare’ portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasing recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable for ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the ‘closed’ synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting in milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is ‘open’ to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into ‘close’ and ‘wide’ junctions. Functionally, the ‘close’ and the ‘wide’ junctions can be distinguished by postjunctional potentials lasting ~1 second and 10s of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors. PMID:23535140
Sato, Toshihide; Nishishita, Kazushisa; Okada, Yukio; Toda, Kazuo
2007-05-01
Strong electrical stimulation (ES) of the frog glossopharyngeal (GP) efferent nerve induced slow depolarizing potentials (DPs) in taste cells under hypoxia. This study aimed to elucidate whether the slow DPs were postsynaptically induced in taste cells. After a block of parasympathetic nerve (PSN) ganglia by tubocurarine, ES of GP nerve never induced slow DPs in the taste cells, so slow DPs were induced by PSN. When Ca(2+) in the blood plasma under hypoxia was decreased to approximately 0.5 mM, the slow DPs reduced in amplitude and lengthened in latency. Increasing the normal Ca(2+) to approximately 20 mM increased the amplitude of slow DPs and shortened the latency. Addition of Cd(2+) to the plasma greatly reduced the amplitude of slow DPs and lengthened the latency. These data suggest that the slow DPs depend on Ca(2+) and Cd(2+) concentration at the presynaptic PSN terminals of taste disk. Antagonists, [D-Arg(1), D-Trp(7,9), Leu(11)]-substance P and L-703 606, of neurotransmitter substance P neurokinin(1) receptor completely blocked the slow DPs. Intravenous application of substance P induced a DP of approximately 7 mV and a reduction of membrane resistance of approximately 48% in taste cells. A nonselective cation channel antagonist, flufenamic acid, completely blocked the slow DPs. These findings suggest that the slow DPs are postsynaptically initiated in frog taste cells under hypoxia by opening nonselective cation channels on the postsynaptic membrane after substance P is probably released from the presynaptic PSN axon terminals.
Batchwise growth of silica cone patterns via self-assembly of aligned nanowires.
Luo, Shudong; Zhou, Weiya; Chu, Weiguo; Shen, Jun; Zhang, Zengxing; Liu, Lifeng; Liu, Dongfang; Xiang, Yanjuan; Ma, Wenjun; Xie, Sishen
2007-03-01
Silica-cone patterns self-assembled from well-aligned nanowires are synthesized using gallium droplets as the catalyst and silicon wafers as the silicon source. The cones form a triangular pattern array radially on almost the whole surface of the molten Ga ball. Detailed field-emission scanning electron microscopy (SEM) analysis shows that the cone-pattern pieces frequently slide off and are detached from the molten Ga ball surface, which leads to the exposure of the catalyst surface and the growth of a new batch of silicon oxide nanowires as well as the cone patterns. The processes of growth and detachment alternate, giving rise to the formation of a volcano-like or a flower-like structure with bulk-quantity pieces of cone patterns piled up around the Ga ball. Consequently, the cone-patterned layer grows batch by batch until the reaction is terminated. Different to the conventional metal-catalyzed growth model, the batch-by-batch growth of the triangular cone patterns proceeds on the molten Ga balls via alternate growth on and detachment from the catalyst surface of the patterns; the Ga droplet can be used continuously and circularly as an effective catalyst for the growth of amorphous SiO(x) nanowires during the whole growth period. The intriguing batchwise growth phenomena may enrich our understanding of the vapour-liquid-solid (VLS) growth mechanism for the catalyst growth of nanowires or other nanostructures and may offer a different way of self-assembling novel silica nanostructures.
Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides.
Dai, Gucan; Peng, Changhong; Liu, Chunming; Varnum, Michael D
2013-04-01
Cyclic nucleotide-gated (CNG) channels in retinal photoreceptors play a crucial role in vertebrate phototransduction. The ligand sensitivity of photoreceptor CNG channels is adjusted during adaptation and in response to paracrine signals, but the mechanisms involved in channel regulation are only partly understood. Heteromeric cone CNGA3 (A3) + CNGB3 (B3) channels are inhibited by membrane phosphoinositides (PIP(n)), including phosphatidylinositol 3,4,5-triphosphate (PIP(3)) and phosphatidylinositol 4,5-bisphosphate (PIP(2)), demonstrating a decrease in apparent affinity for cyclic guanosine monophosphate (cGMP). Unlike homomeric A1 or A2 channels, A3-only channels paradoxically did not show a decrease in apparent affinity for cGMP after PIP(n) application. However, PIP(n) induced an ∼2.5-fold increase in cAMP efficacy for A3 channels. The PIP(n)-dependent change in cAMP efficacy was abolished by mutations in the C-terminal region (R643Q/R646Q) or by truncation distal to the cyclic nucleotide-binding domain (613X). In addition, A3-613X unmasked a threefold decrease in apparent cGMP affinity with PIP(n) application to homomeric channels, and this effect was dependent on conserved arginines within the N-terminal region of A3. Together, these results indicate that regulation of A3 subunits by phosphoinositides exhibits two separable components, which depend on structural elements within the N- and C-terminal regions, respectively. Furthermore, both N and C regulatory modules in A3 supported PIP(n) regulation of heteromeric A3+B3 channels. B3 subunits were not sufficient to confer PIP(n) sensitivity to heteromeric channels formed with PIP(n)-insensitive A subunits. Finally, channels formed by mixtures of PIP(n)-insensitive A3 subunits, having complementary mutations in N- and/or C-terminal regions, restored PIP(n) regulation, implying that intersubunit N-C interactions help control the phosphoinositide sensitivity of cone CNG channels.
Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides
Dai, Gucan; Peng, Changhong; Liu, Chunming
2013-01-01
Cyclic nucleotide-gated (CNG) channels in retinal photoreceptors play a crucial role in vertebrate phototransduction. The ligand sensitivity of photoreceptor CNG channels is adjusted during adaptation and in response to paracrine signals, but the mechanisms involved in channel regulation are only partly understood. Heteromeric cone CNGA3 (A3) + CNGB3 (B3) channels are inhibited by membrane phosphoinositides (PIPn), including phosphatidylinositol 3,4,5-triphosphate (PIP3) and phosphatidylinositol 4,5-bisphosphate (PIP2), demonstrating a decrease in apparent affinity for cyclic guanosine monophosphate (cGMP). Unlike homomeric A1 or A2 channels, A3-only channels paradoxically did not show a decrease in apparent affinity for cGMP after PIPn application. However, PIPn induced an ∼2.5-fold increase in cAMP efficacy for A3 channels. The PIPn-dependent change in cAMP efficacy was abolished by mutations in the C-terminal region (R643Q/R646Q) or by truncation distal to the cyclic nucleotide-binding domain (613X). In addition, A3-613X unmasked a threefold decrease in apparent cGMP affinity with PIPn application to homomeric channels, and this effect was dependent on conserved arginines within the N-terminal region of A3. Together, these results indicate that regulation of A3 subunits by phosphoinositides exhibits two separable components, which depend on structural elements within the N- and C-terminal regions, respectively. Furthermore, both N and C regulatory modules in A3 supported PIPn regulation of heteromeric A3+B3 channels. B3 subunits were not sufficient to confer PIPn sensitivity to heteromeric channels formed with PIPn-insensitive A subunits. Finally, channels formed by mixtures of PIPn-insensitive A3 subunits, having complementary mutations in N- and/or C-terminal regions, restored PIPn regulation, implying that intersubunit N–C interactions help control the phosphoinositide sensitivity of cone CNG channels. PMID:23530136
Kaethner, R J; Stuermer, C A
1992-08-01
In a variety of species, developing retinal axons branch initially more widely in their visual target centers and only gradually restrict their terminal arbors to smaller and defined territories. Retinotectal axons in fish, however, appeared to grow in a directed manner and to arborize only at their retinotopic target sites. To visualize the dynamics of retinal axon growth and arbor formation in fish, time-lapse recordings were made of individual retinal ganglion cell axons in the tectum in live zebrafish embryos. Axons were labeled with the fluorescent carbocyanine dyes Dil or DiO inserted as crystals into defined regions of the retina, viewed with 40x and 100x objectives with an SIT camera, and recorded, with exposure times of 200 msec at 30 or 60 sec intervals, over time periods of up to 13 hr. (1) Growth cones advanced rapidly, but the advance was punctuated by periods of rest. During the rest periods, the growth cones broadened and developed filopodia, but during extension they were more streamlined. (2) Growth cones traveled unerringly into the direction of their retinotopic targets without branching en route. At their target and only there, the axons began to form terminal arborizations, a process that involved the emission and retraction of numerous short side branches. The area that was permanently occupied or touched by transient branches of the terminal arbor--"the exploration field"--was small and almost circular and covered not more than 5.3% of the entire tectal surface area, but represented up to six times the size of the arbor at any one time. These findings are consistent with the idea that retinal axons are guided to their retinotopic target sites by sets of positional markers, with a graded distribution over the axes of the tectum.
Nishimune, Hiroshi; Numata, Tomohiro; Chen, Jie; Aoki, Yudai; Wang, Yonghong; Starr, Miranda P; Mori, Yasuo; Stanford, John A
2012-01-01
The P/Q-type voltage-dependent calcium channels (VDCCs) are essential for synaptic transmission at adult mammalian neuromuscular junctions (NMJs); however, the subsynaptic location of VDCCs relative to active zones in rodent NMJs, and the functional modification of VDCCs by the interaction with active zone protein Bassoon remain unknown. Here, we show that P/Q-type VDCCs distribute in a punctate pattern within the NMJ presynaptic terminals and align in three dimensions with Bassoon. This distribution pattern of P/Q-type VDCCs and Bassoon in NMJs is consistent with our previous study demonstrating the binding of VDCCs and Bassoon. In addition, we now show that the interaction between P/Q-type VDCCs and Bassoon significantly suppressed the inactivation property of P/Q-type VDCCs, suggesting that the Ca(2+) influx may be augmented by Bassoon for efficient synaptic transmission at NMJs. However, presynaptic Bassoon level was significantly attenuated in aged rat NMJs, which suggests an attenuation of VDCC function due to a lack of this interaction between VDCC and Bassoon. Importantly, the decreased Bassoon level in aged NMJs was ameliorated by isometric strength training of muscles for two months. The training increased Bassoon immunoreactivity in NMJs without affecting synapse size. These results demonstrated that the P/Q-type VDCCs preferentially accumulate at NMJ active zones and play essential role in synaptic transmission in conjunction with the active zone protein Bassoon. This molecular mechanism becomes impaired by aging, which suggests altered synaptic function in aged NMJs. However, Bassoon level in aged NMJs can be improved by muscle exercise.
Distribution of protein kinase C isoforms in the cat retina.
Fyk-Kolodziej, Bozena; Cai, Wenhui; Pourcho, Roberta G
2002-01-01
Immunocytochemical localization was carried out for five isoforms of protein kinase C (PKC) in the cat retina. In common with other mammalian species, PKCalpha was found in rod bipolar cells. Staining was also seen in a small population of cone bipolar cells with axon terminals ramifying near the middle of the inner plexiform layer (IPL). PKCbetaI was localized to rod bipolar cells, one class of cone bipolar cell, and numerous amacrine and displaced amacrine cells. Staining for PKCbetaI was seen in three types of cone bipolar cells as well as in amacrine and ganglion cells. Immunoreactivity for both PKCepsilon and PKCzeta was found in rod bipolar cells; PKCepsilon was also seen in a population of cone bipolar cells and a few amacrine and ganglion cells whereas PKCzeta was found in all ganglion cells. Double-label immunofluorescence studies showed that dendrites of the two PKCbetaII-positive OFF-cone bipolar cells exhibit immmunoreactivity for the kainate-selective glutamate receptor GluR5. The third PKCbetaII cone bipolar is an ON-type cell and did not stain for GluR5. The retinal distribution of these isoforms of PKC is consistent with a role in modulation of various aspects of neurotransmission including synaptic vesicle release and regulation of receptor molecules.
Human Factors Evaluation of Conflict Detection Tool for Terminal Area
NASA Technical Reports Server (NTRS)
Verma, Savita Arora; Tang, Huabin; Ballinger, Deborah; Chinn, Fay Cherie; Kozon, Thomas E.
2013-01-01
A conflict detection and resolution tool, Terminal-area Tactical Separation-Assured Flight Environment (T-TSAFE), is being developed to improve the timeliness and accuracy of alerts and reduce the false alert rate observed with the currently deployed technology. The legacy system in use today, Conflict Alert, relies primarily on a dead reckoning algorithm, whereas T-TSAFE uses intent information to augment dead reckoning. In previous experiments, T-TSAFE was found to reduce the rate of false alerts and increase time between the alert to the controller and a loss of separation over the legacy system. In the present study, T-TSAFE was tested under two meteorological conditions, 1) all aircraft operated under instrument flight regimen, and 2) some aircraft operated under mixed operating conditions. The tool was used to visually alert controllers to predicted Losses of separation throughout the terminal airspace, and show compression errors, on final approach. The performance of T-TSAFE on final approach was compared with Automated Terminal Proximity Alert (ATPA), a tool recently deployed by the FAA. Results show that controllers did not report differences in workload or situational awareness between the T-TSAFE and ATPA cones but did prefer T-TSAFE features over ATPA functionality. T-TSAFE will provide one tool that shows alerts in the data blocks and compression errors via cones on the final approach, implementing all tactical conflict detection and alerting via one tool in TRACON airspace.
Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing
2014-05-07
Ionic/electronic hybrid devices with synaptic functions are considered to be the essential building blocks for neuromorphic systems and brain-inspired computing. Here, artificial synapses based on indium-zinc-oxide (IZO) transistors gated by nanogranular SiO2 proton-conducting electrolyte films are fabricated on glass substrates. Spike-timing dependent plasticity and paired-pulse facilitation are successfully mimicked in an individual bottom-gate transistor. Most importantly, dynamic logic and dendritic integration established by spatiotemporally correlated spikes are also mimicked in dendritic transistors with two in-plane gates as the presynaptic input terminals.
The Synaptic Function of α-Synuclein
Burré, Jacqueline
2015-01-01
α-Synuclein is an abundant neuronal protein which localizes predominantly to presynaptic terminals, and is strongly linked genetically and pathologically to Parkinson’s disease and other neurodegenerative diseases. While the accumulation of α-synuclein in the form of misfolded oligomers and large aggregates defines multiple neurodegenerative diseases called “synucleinopathies”, its cellular function has remained largely unclear, and is the subject of intense investigation. In this review, I focus on the structural characteristics of α-synuclein, its cellular and subcellular localization, and discuss how this relates to its function in neurons, in particular at the neuronal synapse. PMID:26407041
RIC-7 Promotes Neuropeptide Secretion
Hao, Yingsong; Hu, Zhitao; Sieburth, Derek; Kaplan, Joshua M.
2012-01-01
Secretion of neurotransmitters and neuropeptides is mediated by exocytosis of distinct secretory organelles, synaptic vesicles (SVs) and dense core vesicles (DCVs) respectively. Relatively little is known about factors that differentially regulate SV and DCV secretion. Here we identify a novel protein RIC-7 that is required for neuropeptide secretion in Caenorhabditis elegans. The RIC-7 protein is expressed in all neurons and is localized to presynaptic terminals. Imaging, electrophysiology, and behavioral analysis of ric-7 mutants indicates that acetylcholine release occurs normally, while neuropeptide release is significantly decreased. These results suggest that RIC-7 promotes DCV–mediated secretion. PMID:22275875
Hayashi, Mariko Kato
2018-04-12
Many kinds of transporters contribute to glutamatergic excitatory synaptic transmission. Glutamate is loaded into synaptic vesicles by vesicular glutamate transporters to be released from presynaptic terminals. After synaptic vesicle release, glutamate is taken up by neurons or astrocytes to terminate the signal and to prepare for the next signal. Glutamate transporters on the plasma membrane are responsible for transporting glutamate from extracellular fluid to cytoplasm. Glutamate taken up by astrocyte is converted to glutamine by glutamine synthetase and transported back to neurons through glutamine transporters on the plasma membranes of the astrocytes and then on neurons. Glutamine is converted back to glutamate by glutaminase in the neuronal cytoplasm and then loaded into synaptic vesicles again. Here, the structures of glutamate transporters and glutamine transporters, their conformational changes, and how they use electrochemical gradients of various ions for substrate transport are summarized. Pharmacological regulations of these transporters are also discussed.
The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective
Hugh Perry, V; O'Connor, Vincent
2010-01-01
Chronic neurodegenerative diseases of the CNS (central nervous system) are characterized by the loss of neurons. There is, however, growing evidence to show that an early stage of this process involves degeneration of presynaptic terminals prior to the loss of the cell body. Synaptic plasticity in CNS pathology has been associated with microglia and the phenomenon of synaptic stripping. We review here the evidence for the involvement of microglia in synaptic stripping and synapse degeneration and we conclude that this is a case of guilt by association. In disease models of chronic neurodegeneration, there is no evidence that microglia play an active role in either synaptic stripping or synapse degeneration, but the degeneration of the synapse and the envelopment of a degenerating terminal appears to be a neuron autonomous event. We highlight here some of the gaps in our understanding of synapse degeneration in chronic neurodegenerative disease. PMID:20967131
Haglerød, C; Hussain, S; Nakamura, Y; Xia, J; Haug, F-M S; Ottersen, O P; Henley, J M; Davanger, S
2017-03-06
Previous studies have indicated that presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) contribute to the regulation of neurotransmitter release. In hippocampal synapses, the presynaptic surface expression of several AMPAR subunits, including GluA2, is regulated in a ligand-dependent manner. However, the molecular mechanisms underlying the presynaptic trafficking of AMPARs are still unknown. Here, using bright-field immunocytochemistry, western blots, and quantitative immunogold electron microscopy of the hippocampal CA1 area from intact adult rat brain, we demonstrate the association of AMPA receptors with the presynaptic active zone and with small presynaptic vesicles, in Schaffer collateral synapses in CA1 of the hippocampus. Furthermore, we show that GluA2 and protein interacting with C kinase 1 (PICK1) are colocalized at presynaptic vesicles. Similar to postsynaptic mechanisms, overexpression of either PICK1 or pep2m, which inhibit the N-ethylmaleimide sensitive fusion protein (NSF)-GluA2 interaction, decreases the concentration of GluA2 in the presynaptic active zone membrane. These data suggest that the interacting proteins PICK1 and NSF act as regulators of presynaptic GluA2-containing AMPAR trafficking between the active zone and a vesicle pool that may provide the basis of presynaptic components of synaptic plasticity. Copyright © 2017 IBRO. All rights reserved.
Devaraju, P; Yu, J; Eddins, D; Mellado-Lagarde, M M; Earls, L R; Westmoreland, J J; Quarato, G; Green, D R; Zakharenko, S S
2017-09-01
Hemizygous deletion of a 1.5- to 3-megabase region on chromosome 22 causes 22q11.2 deletion syndrome (22q11DS), which constitutes one of the strongest genetic risks for schizophrenia. Mouse models of 22q11DS have abnormal short-term synaptic plasticity that contributes to working-memory deficiencies similar to those in schizophrenia. We screened mutant mice carrying hemizygous deletions of 22q11DS genes and identified haploinsufficiency of Mrpl40 (mitochondrial large ribosomal subunit protein 40) as a contributor to abnormal short-term potentiation (STP), a major form of short-term synaptic plasticity. Two-photon imaging of the genetically encoded fluorescent calcium indicator GCaMP6, expressed in presynaptic cytosol or mitochondria, showed that Mrpl40 haploinsufficiency deregulates STP via impaired calcium extrusion from the mitochondrial matrix through the mitochondrial permeability transition pore. This led to abnormally high cytosolic calcium transients in presynaptic terminals and deficient working memory but did not affect long-term spatial memory. Thus, we propose that mitochondrial calcium deregulation is a novel pathogenic mechanism of cognitive deficiencies in schizophrenia.
Computational Systems Analysis of Dopamine Metabolism
Qi, Zhen; Miller, Gary W.; Voit, Eberhard O.
2008-01-01
A prominent feature of Parkinson's disease (PD) is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease. PMID:18568086
Eleftheriadou, I; Trabalza, A; Ellison, SM; Gharun, K; Mazarakis, ND
2014-01-01
To understand how receptors are involved in neuronal trafficking and to be able to utilize them for specific targeting via the peripheral route would be of great benefit. Here, we describe the generation of novel lentiviral vectors with tropism to motor neurons that were made by coexpressing onto the lentiviral surface a fusogenic glycoprotein (mutated sindbis G) and an antibody against a cell-surface receptor (Thy1.1, p75NTR, or coxsackievirus and adenovirus receptor) on the presynaptic terminal of the neuromuscular junction. These vectors exhibit binding specificity and efficient transduction of receptor positive cell lines and primary motor neurons in vitro. Targeting of each of these receptors conferred to these vectors the capability of being transported retrogradely from the axonal tip, leading to transduction of motor neurons in vitro in compartmented microfluidic cultures. In vivo delivery of coxsackievirus and adenovirus receptor-targeted vectors in leg muscles of mice resulted in predicted patterns of motor neuron labeling in lumbar spinal cord. This opens up the clinical potential of these vectors for minimally invasive administration of central nervous system-targeted therapeutics in motor neuron diseases. PMID:24670531
Tomàs, Josep; Garcia, Neus; Lanuza, Maria A; Santafé, Manel M; Tomàs, Marta; Nadal, Laura; Hurtado, Erica; Simó, Anna; Cilleros, Víctor
2017-01-01
During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ) are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon. This peripheral synapse has long been used as a convenient model for synapse development. In the last few years, we have studied transmitter release and the local involvement of the presynaptic muscarinic acetylcholine autoreceptors (mAChR), adenosine autoreceptors (AR) and trophic factor receptors (TFR, for neurotrophins and trophic cytokines) during the development of NMJ and in the adult. This review article brings together previously published data and proposes a molecular background for developmental axonal competition and loss. At the end of the first week postnatal, these receptors modulate transmitter release in the various nerve terminals on polyinnervated NMJ and contribute to axonal competition and synapse elimination.
Synaptic Ribbon Active Zones in Cone Photoreceptors Operate Independently from One Another
Grassmeyer, Justin J.; Thoreson, Wallace B.
2017-01-01
Cone photoreceptors depolarize in darkness to release glutamate-laden synaptic vesicles. Essential to release is the synaptic ribbon, a structure that helps organize active zones by clustering vesicles near proteins that mediate exocytosis, including voltage-gated Ca2+ channels. Cone terminals have many ribbon-style active zones at which second-order neurons receive input. We asked whether there are functionally significant differences in local Ca2+ influx among ribbons in individual cones. We combined confocal Ca2+ imaging to measure Ca2+ influx at individual ribbons and patch clamp recordings to record whole-cell ICa in salamander cones. We found that the voltage for half-maximal activation (V50) of whole cell ICa in cones averaged −38.1 mV ± 3.05 mV (standard deviation [SD]), close to the cone membrane potential in darkness of ca. −40 mV. Ca2+ signals at individual ribbons varied in amplitude from one another and showed greater variability in V50 values than whole-cell ICa, suggesting that Ca2+ signals can differ significantly among ribbons within cones. After accounting for potential sources of technical variability in measurements of Ca2+ signals and for contributions from cone-to-cone differences in ICa, we found that the variability in V50 values for ribbon Ca2+ signals within individual cones showed a SD of 2.5 mV. Simulating local differences in Ca2+ channel activity at two ribbons by shifting the V50 value of ICa by ±2.5 mV (1 SD) about the mean suggests that when the membrane depolarizes to −40 mV, two ribbons could experience differences in Ca2+ influx of >45%. Further evidence that local Ca2+ changes at ribbons can be regulated independently was obtained in experiments showing that activation of inhibitory feedback from horizontal cells (HCs) to cones in paired recordings changed both amplitude and V50 of Ca2+ signals at individual ribbons. By varying the strength of synaptic output, differences in voltage dependence and amplitude of Ca2+ signals at individual ribbons shape the information transmitted from cones to downstream neurons in vision. PMID:28744203
Poulain, B; Baux, G; Tauc, L
1986-01-01
Transmitter release was studied with respect to the presynaptic acetylcholine (ACh) content at a central identified inhibitory synapse (Cl- conductance) of Aplysia californica. Statistical analysis of the synaptic noise evoked by sustained depolarization of the presynaptic neuron allowed us to calculate the quantal parameters of the postsynaptic responses. Loading of the presynaptic neurone with injected ACh led to an increase in the postsynaptic responses whereas the calculated miniature postsynaptic current (MPSC) was unmodified. Destruction of choline by choline oxidase either applied extracellularly and coupled to intense stimulations of the presynaptic cell or injected into the presynaptic neuron induced a depression of the postsynaptic response although the amplitude of the calculated MPSC remained constant. As the size of the MPSC, i.e. the size of the quantum, did not change in these experiments, it was concluded that the presynaptic ACh content controls the number of quanta released by a given presynaptic depolarization. As additional evidence, effects of abrupt increase in tonicity of the external medium were studied. The observed transient enhancement of the quantal content of the postsynaptic response could be attributed to an increase in the presynaptic concentration of ACh, resulting from the reduction in cellular volume.
Characterization and regulation of (/sup 3/H)-serotonin uptake and release in rodent spinal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauderman, K.A.
1986-01-01
The uptake and release of (/sup 3/H)-serotonin were investigated in rat spinal cord synaptosomes. In the uptake experiments, sodium-dependent and sodium-independent (/sup 3/H)-serotonin accumulation processes were found. Sodium-dependent (/sup 3/H)-serotonin accumulation was: linear with sodium concentrations up to 180 mM; decreased by disruption of membrane integrity or ionic gradients; associated with purified synaptosomal fractions; and reduced after description of descending serotonergic neurons in the spinal cord. Of the uptake inhibitors tested, the most potent was fluoxetine (IC/sub 50/ 75 nM), followed by desipramine (IC/sub 50/ 430 nM) and nomifensine (IC/sub 50/ 950 nM). The sodium-independent (/sup 3/H)-serotonin accumulation process wasmore » insensitive to most treatments and probably represents nonspecific membrane binding. Thus, only sodium-dependent (/sup 3/H)-serotonin uptake represents the uptake process of serotonergic nerve terminals in rat spinal cord homogenates. In the release experiments, K/sup +/-induced release of previously accumulated (/sup 3/H)-serotonin was Ca/sup 2 +/-dependent, and originated from serotonergic synaptosomes. Exogenous serotonin and 5-methyoxy-N,N-dimethyltryptamine inhibited (/sup 3/H)-serotonin release in a concentration-dependent way. Of the antagonists tested, only methiothepin effectively blocked the effect of serotonin. These data support the existence of presynaptic serotonin autoreceptors on serotonergic nerve terminals in the rat spinal cord that act to inhibit a voltage and Ca/sup 2 +/-sensitive process linked to serotonin release. Alteration of spinai cord serotonergic function may therefore be possible by drugs acting on presynaptic serotonin autoreceptors in the spinal cord.« less
Sanchez, Ana B; Varano, Giuseppe P; de Rozieres, Cyrus M; Maung, Ricky; Catalan, Irene C; Dowling, Cari C; Sejbuk, Natalia E; Hoefer, Melanie M; Kaul, Marcus
2016-01-01
HIV-1 infection frequently causes HIV-associated neurocognitive disorders (HAND) despite combination antiretroviral therapy (cART). Evidence is accumulating that components of cART can themselves be neurotoxic upon long-term exposure. In addition, abuse of psychostimulants, such as methamphetamine, seems to aggravate HAND and compromise antiretroviral therapy. However, the combined effect of virus and recreational and therapeutic drugs on the brain is poorly understood. Therefore, we exposed mixed neuronal-glial cerebrocortical cells to antiretrovirals (ARVs) (zidovudine [AZT], nevirapine [NVP], saquinavir [SQV], and 118-D-24) of four different pharmacological categories and to methamphetamine and, in some experiments, the HIV-1 gp120 protein for 24 h and 7 days. Subsequently, we assessed neuronal injury by fluorescence microscopy, using specific markers for neuronal dendrites and presynaptic terminals. We also analyzed the disturbance of neuronal ATP levels and assessed the involvement of autophagy by using immunofluorescence and Western blotting. ARVs caused alterations of neurites and presynaptic terminals primarily during the 7-day incubation and depending on the specific compounds and their combinations with and without methamphetamine. Similarly, the loss of neuronal ATP was context specific for each of the drugs or combinations thereof, with and without methamphetamine or viral gp120. Loss of ATP was associated with activation of AMP-activated protein kinase (AMPK) and autophagy, which, however, failed to restore normal levels of neuronal ATP. In contrast, boosting autophagy with rapamycin prevented the long-term drop of ATP during exposure to cART in combination with methamphetamine or gp120. Our findings indicate that the overall positive effect of cART on HIV infection is accompanied by detectable neurotoxicity, which in turn may be aggravated by methamphetamine. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Heterotypic gap junctions at glutamatergic mixed synapses are abundant in goldfish brain
Rash, John E.; Kamasawa, Naomi; Vanderpool, Kimberly G.; Yasumura, Thomas; O'Brien, John; Nannapaneni, Srikant; Pereda, Alberto E.; Nagy, James I.
2014-01-01
Gap junctions provide for direct intercellular electrical and metabolic coupling. The abundance of gap junctions at “large myelinated club ending” synapses on Mauthner cells of the teleost brain provided a convenient model to correlate anatomical and physiological properties of electrical synapses. There, presynaptic action potentials were found to evoke short-latency electrical “pre-potentials” immediately preceding their accompanying glutamate-induced depolarizations, making these the first unambiguously identified “mixed” (i.e., chemical plus electrical) synapses in the vertebrate CNS. We recently showed that gap junctions at these synapses exhibit asymmetric electrical resistance (i.e., electrical rectification), which we correlated with total molecular asymmetry of connexin composition in their apposing gap junction hemiplaques, with Cx35 restricted to axon terminal hemiplaques and Cx34.7 restricted to apposing Mauthner cell plasma membranes. We now show that similarly heterotypic neuronal gap junctions are abundant throughout goldfish brain, with labeling exclusively for Cx35 in presynaptic hemiplaques and exclusively for Cx34.7 in postsynaptic hemiplaques. Moreover, the vast majority of these asymmetric gap junctions occur at glutamatergic axon terminals. The widespread distribution of heterotypic gap junctions at glutamatergic mixed synapses throughout goldfish brain and spinal cord implies that pre- vs. postsynaptic asymmetry at electrical synapses evolved early in the chordate lineage. We propose that the advantages of the molecular and functional asymmetry of connexins at electrical synapses that are so prominently expressed in the teleost CNS are unlikely to have been abandoned in higher vertebrates. However, to create asymmetric coupling in mammals, where most gap junctions are composed of Cx36 on both sides, would require some other mechanism, such as differential phosphorylation of connexins on opposite sides of the same gap junction or on asymmetric differences in the complement of their scaffolding and regulatory proteins. PMID:25451276
Expression of the P/Q (Cav2.1) calcium channel in nodose sensory neurons and arterial baroreceptors.
Tatalovic, Milos; Glazebrook, Patricia A; Kunze, Diana L
2012-06-27
The predominant calcium current in nodose sensory neurons, including the subpopulation of baroreceptor neurons, is the N-type channel, Cav2.2. It is also the primary calcium channel responsible for transmitter release at their presynaptic terminals in the nucleus of the solitary tract in the brainstem. The P/Q channel, Cav2.1, the other major calcium channel responsible for transmitter release at mammalian synapses, represents only 15-20% of total calcium current in the general population of sensory neurons and makes a minor contribution to transmitter release at the presynaptic terminal. In the present study we identified a subpopulation of the largest nodose neurons (capacitance>50pF) in which, surprisingly, Cav2.1 represents over 50% of the total calcium current, differing from the remainder of the population. Consistent with these electrophysiological data, anti-Cav2.1 antibody labeling was more membrane delimited in a subgroup of the large neurons in slices of nodose ganglia. Data reported in other synapses in the central nervous system assign different roles in synaptic information transfer to the P/Q-type versus N-type calcium channels. The study raises the possibility that the P/Q channel which has been associated with high fidelity transmission at other central synapses serves a similar function in this group of large myelinated sensory afferents, including arterial baroreceptors where a high frequency regular discharge pattern signals the pressure pulse. This contrasts to the irregular lower frequency discharge of the unmyelinated fibers that make up the majority of the sensory population and that utilize the N-type channel in synaptic transmission. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Gioio, Anthony E.
2017-01-01
Abstract Tyrosine hydroxylase (TH) is the enzyme that catalyzes the rate-limiting step in the biosynthesis of the catecholamine neurotransmitters. In a previous communication, evidence was provided that TH mRNA is trafficked to the axon, where it is locally translated. In addition, a 50-bp sequence element in the 3′untranslated region (3’UTR) of TH mRNA was identified that directs TH mRNA to distal axons (i.e., zip-code). In the present study, the hypothesis was tested that local translation of TH plays an important role in the biosynthesis of the catecholamine neurotransmitters in the axon and/or presynaptic nerve terminal. Toward this end, a targeted deletion of the axonal transport sequence element was developed, using the lentiviral delivery of the CRISPR/Cas9 system, and two guide RNA (gRNA) sequences flanking the 50-bp cis-acting regulatory element in rat superior cervical ganglion (SCG) neurons. Deletion of the axonal transport element reduced TH mRNA levels in the distal axons and reduced the axonal protein levels of TH and TH activity as measured by phosphorylation of SER40 in SCG neurons. Moreover, deletion of the zip-code diminished the axonal levels of dopamine (DA) and norepinephrine (NE). Conversely, the local translation of exogenous TH mRNA in the distal axon enhanced TH levels and activity, and elevated axonal NE levels. Taken together, these results provide direct evidence to support the hypothesis that TH mRNA trafficking and local synthesis of TH play an important role in the synthesis of catecholamines in the axon and presynaptic terminal. PMID:28630892
Aschrafi, Armaz; Gioio, Anthony E; Dong, Lijin; Kaplan, Barry B
2017-01-01
Tyrosine hydroxylase (TH) is the enzyme that catalyzes the rate-limiting step in the biosynthesis of the catecholamine neurotransmitters. In a previous communication, evidence was provided that TH mRNA is trafficked to the axon, where it is locally translated. In addition, a 50-bp sequence element in the 3'untranslated region (3'UTR) of TH mRNA was identified that directs TH mRNA to distal axons (i.e., zip-code). In the present study, the hypothesis was tested that local translation of TH plays an important role in the biosynthesis of the catecholamine neurotransmitters in the axon and/or presynaptic nerve terminal. Toward this end, a targeted deletion of the axonal transport sequence element was developed, using the lentiviral delivery of the CRISPR/Cas9 system, and two guide RNA (gRNA) sequences flanking the 50-bp cis- acting regulatory element in rat superior cervical ganglion (SCG) neurons. Deletion of the axonal transport element reduced TH mRNA levels in the distal axons and reduced the axonal protein levels of TH and TH activity as measured by phosphorylation of SER40 in SCG neurons. Moreover, deletion of the zip-code diminished the axonal levels of dopamine (DA) and norepinephrine (NE). Conversely, the local translation of exogenous TH mRNA in the distal axon enhanced TH levels and activity, and elevated axonal NE levels. Taken together, these results provide direct evidence to support the hypothesis that TH mRNA trafficking and local synthesis of TH play an important role in the synthesis of catecholamines in the axon and presynaptic terminal.
Nava, Nicoletta; Chen, Fenghua; Wegener, Gregers; Popoli, Maurizio; Nyengaard, Jens Randel
2014-02-01
Communication between neurons is mediated by the release of neurotransmitter-containing vesicles from presynaptic terminals. Quantitative characterization of synaptic vesicles can be highly valuable for understanding mechanisms underlying synaptic function and plasticity. We performed a quantitative ultrastructural analysis of cortical excitatory synapses by mean of a new, efficient method, as an alternative to three-dimensional (3D) reconstruction. Based on a hierarchical sampling strategy and unequivocal identification of the region of interest, serial sections from excitatory synapses of medial prefrontal cortex (mPFC) of six Sprague-Dawley rats were acquired with a transmission electron microscope. Unbiased estimates of total 3D volume of synaptic terminals were obtained through the Cavalieri estimator, and adequate correction factors for vesicle profile number estimation were applied for final vesicle quantification. Our analysis was based on 79 excitatory synapses, nonperforated (NPSs) and perforated (PSs) subtypes. We found that total number of docked and reserve-pool vesicles in PSs significantly exceeded that in NPSs (by, respectively, 77% and 78%). These differences were found to be related to changes in size between the two subtypes (active zone area by 86%; bouton volume by 105%) rather than to postsynaptic density shape. Positive significant correlations were found between number of docked and reserve-pool vesicles, active zone area and docked vesicles, and bouton volume and reserve pool vesicles. Our method confirmed the large size of mPFC PSs and a linear correlation between presynaptic features of typical hippocampal synapses. Moreover, a greater number of docked vesicles in PSs may promote a high synaptic strength of these synapses. Copyright © 2013 Wiley Periodicals, Inc.
Sekizawa, Shin-ichi; Joad, Jesse P; Bonham, Ann C
2003-01-01
Substance P modulates the reflex regulation of respiratory function by its actions both peripherally and in the CNS, particularly in the nucleus tractus solitarii (NTS), the first central site for synaptic contact of the lung and airway afferent fibres. There is considerable evidence that the actions of substance P in the NTS augment respiratory reflex output, but the precise effects on synaptic transmission have not yet been determined. Therefore, we determined the effects of substance P on synaptic transmission at the first central synapses by using whole-cell voltage clamping in an NTS slice preparation. Studies were performed on second-order neurons in the slice anatomically identified as receiving monosynaptic input from sensory nerves in the lungs and airways. This was done by the fluorescent labelling of terminal boutons after 1,1′-dioctadecyl-3,3,3′,3′-tetra-methylindocarbo-cyanine perchlorate (DiI) was applied via tracheal instillation. Substance P (1.0, 0.3 and 0.1 μM) significantly decreased the amplitude of excitatory postsynaptic currents (eEPSCs) evoked by stimulation of the tractus solitarius, in a concentration-dependent manner. The decrease was accompanied by an increase in the paired-pulse ratio of two consecutive eEPSCs, and a decrease in the frequency, but not the amplitude, of spontaneous EPSCs and miniature EPSCs, findings consistent with a presynaptic site of action. The effects were consistently and significantly attenuated by a neurokinin-1 (NK1) receptor antagonist (SR140333, 3 μM). The data suggest a new site of action for substance P in the NTS (NK1 receptors on the central terminals of sensory fibres) and a new mechanism (depression of synaptic transmission) for regulating respiratory reflex function. PMID:14561836
Granovsky, A E; Artemyev, N O
2001-11-06
In response to light, a photoreceptor G protein, transducin, activates cGMP-phosphodiesterase (PDE6) by displacing the inhibitory gamma-subunits (Pgamma) from the enzyme's catalytic sites. Evidence suggests that the activation of PDE6 involves a conformational change of the key inhibitory C-terminal domain of Pgamma. In this study, the C-terminal region of Pgamma, Pgamma-73-85, has been targeted for Ala-scanning mutagenesis to identify the point-to-point interactions between Pgamma and the PDE6 catalytic subunits and to probe the nature of the conformational change. Pgamma mutants were tested for their ability to inhibit PDE6 and a chimeric PDE5-conePDE6 enzyme containing the Pgamma C-terminus-binding site of cone PDE. This analysis has revealed that in addition to previously characterized Ile86 and Ile87, important inhibitory contact residues of Pgamma include Asn74, His75, and Leu78. The patterns of mutant PDE5-conePDE6 enzyme inhibition suggest the interaction between the PgammaAsn74/His75 sequence and Met758 of the cone PDE6alpha' catalytic subunit. This interaction, and the interaction between the PgammaIle86/Ile87 and PDE6alpha'Phe777/Phe781 residues, is most consistent with an alpha-helical structure of the Pgamma C-terminus. The analysis of activation of PDE6 enzymes containing Pgamma mutants with Ala-substituted transducin-contact residues demonstrated the critical role of PgammaLeu76. Accordingly, we hypothesize that the initial step in PDE6 activation involves an interaction of transducin-alpha with PgammaLeu76. This interaction introduces a bend into the alpha-helical structure of the Pgamma C-terminus, allowing transducin-alpha to further twist the C-terminus thereby uncovering the catalytic pocket of PDE6.
Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling
Pearcey, Gregory E. P.; Noble, Steven A.; Munro, Bridget; Zehr, E. Paul
2017-01-01
Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation (CONTROL + STIM), sprints with sensory stimulation (SPRINT + STIM) and sprints without stimulation (SPRINT). Seven participants also performed a fourth session (CONTROL), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM, participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM, participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints. PMID:29326570
Farhan, Sali M K; Nixon, Kevin C J; Everest, Michelle; Edwards, Tara N; Long, Shirley; Segal, Dmitri; Knip, Maria J; Arts, Heleen H; Chakrabarti, Rana; Wang, Jian; Robinson, John F; Lee, Donald; Mirsattari, Seyed M; Rupar, C Anthony; Siu, Victoria M; Poulter, Michael O; Hegele, Robert A; Kramer, Jamie M
2017-01-01
Abstract Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p. Leu729ThrfsTer6) in TMTC3, encoding transmembrane and tetratricopeptide repeat containing 3, in four siblings with nocturnal seizures and ID. Three of the four siblings have periventricular nodular heterotopia (PVNH), a common brain malformation caused by failure of neurons to migrate from the ventricular zone to the cortex. Expression analysis using patient-derived cells confirmed reduced TMTC3 transcript levels and loss of the TMTC3 protein compared to parental and control cells. As TMTC3 function is currently unexplored in the brain, we gathered support for a neurobiological role for TMTC3 by generating flies with post-mitotic neuron-specific knockdown of the highly conserved Drosophila melanogaster TMTC3 ortholog, CG4050/tmtc3. Neuron-specific knockdown of tmtc3 in flies resulted in increased susceptibility to induced seizures. Importantly, this phenotype was rescued by neuron-specific expression of human TMTC3, suggesting a role for TMTC3 in seizure biology. In addition, we observed co-localization of TMTC3 in the rat brain with vesicular GABA transporter (VGAT), a presynaptic marker for inhibitory synapses. TMTC3 is localized at VGAT positive pre-synaptic terminals and boutons in the rat hypothalamus and piriform cortex, suggesting a role for TMTC3 in the regulation of GABAergic inhibitory synapses. TMTC3 did not co-localize with Vglut2, a presynaptic marker for excitatory neurons. Our data identified TMTC3 as a synaptic protein that is involved in PVNH with ID and epilepsy, in addition to its previously described association with cobblestone lissencephaly. PMID:28973161
Bolzoni, F; Jankowska, E
2015-01-01
The present study aimed to compare presynaptic and postsynaptic actions of direct current polarization in the spinal cord, focusing on DC effects on primary afferents and motoneurons. To reduce the directly affected spinal cord region, a weak polarizing direct current (0.1–0.3 μA) was applied locally in deeply anaesthetized cats and rats; within the hindlimb motor nuclei in the caudal lumbar segments, or in the dorsal horn within the terminal projection area of low threshold skin afferents. Changes in the excitability of primary afferents activated by intraspinal stimuli (20–50 μA) were estimated using increases or decreases in compound action potentials recorded from the dorsal roots or peripheral nerves as their measure. Changes in the postsynaptic actions of the afferents were assessed from intracellularly recorded monosynaptic EPSPs in hindlimb motoneurons and monosynaptic extracellular field potentials (evoked by group Ia afferents in motor nuclei, or by low threshold cutaneous afferents in the dorsal horn). The excitability of motoneurons activated by intraspinal stimuli was assessed using intracellular records or motoneuronal discharges recorded from a ventral root or a muscle nerve. Cathodal polarization was found to affect motoneurons and afferents providing input to them to a different extent. The excitability of both was markedly increased during DC application, although post-polarization facilitation was found to involve presynaptic afferents and some of their postsynaptic actions, but only negligibly motoneurons themselves. Taken together, these results indicate that long-lasting post-polarization facilitation of spinal activity induced by locally applied cathodal current primarily reflects the facilitation of synaptic transmission. PMID:25416625
Escobar, Angélica P; González, Marcela P; Meza, Rodrigo C; Noches, Verónica; Henny, Pablo; Gysling, Katia; España, Rodrigo A; Fuentealba, José A; Andrés, María E
2017-08-01
Increased locomotor activity in response to the same stimulus is an index of behavioral sensitization observed in preclinical models of drug addiction and compulsive behaviors. Repeated administration of quinpirole, a D2/D3 dopamine agonist, induces locomotor sensitization. This effect is potentiated and accelerated by co-administration of U69593, a kappa opioid receptor agonist. The mechanism underlying kappa opioid receptor potentiation of quinpirole-induced locomotor sensitization remains to be elucidated. Immunofluorescence anatomical studies were undertaken in mice brain slices and rat presynaptic synaptosomes to reveal kappa opioid receptor and D2R pre- and postsynaptic colocalization in the nucleus accumbens. Tonic and phasic dopamine release in the nucleus accumbens of rats repeatedly treated with U69593 and quinpirole was assessed by microdialysis and fast scan cyclic voltammetry. Anatomical data show that kappa opioid receptor and D2R colocalize postsynaptically in medium spiny neurons of the nucleus accumbens and the highest presynaptic colocalization occurs on the same dopamine terminals. Significantly reduced dopamine levels were observed in quinpirole, and U69593-quinpirole treated rats, explaining sensitization of D2R. Presynaptic inhibition induced by kappa opioid receptor and D2R of electrically evoked dopamine release was faster in U69593-quinpirole compared with quinpirole-repeatedly treated rats. Pre- and postsynaptic colocalization of kappa opioid receptor and D2R supports a role for kappa opioid receptor potentiating both the D2R inhibitory autoreceptor function and the inhibitory action of D2R on efferent medium spiny neurons. Kappa opioid receptor co-activation accelerates D2R sensitization by contributing to decrease dopamine release in the nucleus accumbens. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling.
Pearcey, Gregory E P; Noble, Steven A; Munro, Bridget; Zehr, E Paul
2017-01-01
Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation ( CONTROL + STIM ), sprints with sensory stimulation ( SPRINT + STIM ) and sprints without stimulation ( SPRINT ). Seven participants also performed a fourth session ( CONTROL ), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM , participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM , participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints.
Antivenom for Neuromuscular Paralysis Resulting From Snake Envenoming
Silva, Anjana; Hodgson, Wayne C.; Isbister, Geoffrey K.
2017-01-01
Antivenom therapy is currently the standard practice for treating neuromuscular dysfunction in snake envenoming. We reviewed the clinical and experimental evidence-base for the efficacy and effectiveness of antivenom in snakebite neurotoxicity. The main site of snake neurotoxins is the neuromuscular junction, and the majority are either: (1) pre-synaptic neurotoxins irreversibly damaging the presynaptic terminal; or (2) post-synaptic neurotoxins that bind to the nicotinic acetylcholine receptor. Pre-clinical tests of antivenom efficacy for neurotoxicity include rodent lethality tests, which are problematic, and in vitro pharmacological tests such as nerve-muscle preparation studies, that appear to provide more clinically meaningful information. We searched MEDLINE (from 1946) and EMBASE (from 1947) until March 2017 for clinical studies. The search yielded no randomised placebo-controlled trials of antivenom for neuromuscular dysfunction. There were several randomised and non-randomised comparative trials that compared two or more doses of the same or different antivenom, and numerous cohort studies and case reports. The majority of studies available had deficiencies including poor case definition, poor study design, small sample size or no objective measures of paralysis. A number of studies demonstrated the efficacy of antivenom in human envenoming by clearing circulating venom. Studies of snakes with primarily pre-synaptic neurotoxins, such as kraits (Bungarus spp.) and taipans (Oxyuranus spp.) suggest that antivenom does not reverse established neurotoxicity, but early administration may be associated with decreased severity or prevent neurotoxicity. Small studies of snakes with mainly post-synaptic neurotoxins, including some cobra species (Naja spp.), provide preliminary evidence that neurotoxicity may be reversed with antivenom, but placebo controlled studies with objective outcome measures are required to confirm this. PMID:28422078
Hong, Ingie; Song, Beomjong; Lee, Sukwon; Kim, Jihye; Kim, Jeongyeon; Choi, Sukwoo
2009-12-03
The amygdala is known to be a critical storage site of conditioned fear memory. Among the two major pathways to the lateral amygdala (LA), the cortical pathway is known to display a presynaptic long-term potentiation which is occluded with fear conditioning. Here we show that fear extinction results in a net depression of conditioning-induced potentiation at cortical input synapses onto the LA (C-LA synapses). Fear conditioning induced a significant potentiation of excitatory postsynaptic currents at C-LA synapses compared with naïve and unpaired controls, whereas extinction apparently reversed this potentiation. Paired-pulse low-frequency stimulation (pp-LFS) induced synaptic depression in the C-LA pathway of fear-conditioned rats, but not in naïve or unpaired controls, indicating that the pp-LFS-induced depression is specific to associative learning-induced changes (pp-LFS-induced depotentiation(ex vivo)). Importantly, extinction occluded pp-LFS-induced depotentiation(ex vivo), suggesting that extinction shares some mechanisms with the depotentiation. pp-LFS-induced depotentiation(ex vivo) required NMDA receptor (NMDAR) activity, consistent with a previous finding that blockade of amygdala NMDARs impaired fear extinction. In addition, pp-LFS-induced depotentiation(ex vivo) required activity of group II metabotropic glutamate receptors (mGluRs), known to be present at presynaptic terminals, but not AMPAR internalization, consistent with a presynaptic mechanism for pp-LFS-induced depotentiation(ex vivo). This result is in contrast with another form of ex vivo depotentiation in the thalamic pathway that requires both group I mGluR activity and AMPAR internalization. We thus suggest that extinction of conditioned fear involves a distinct form of depotentiation at C-LA synapses, which depends upon both NMDARs and group II mGluRs.
Seol, Min; Kuner, Thomas
2015-12-01
The properties and molecular determinants of synaptic transmission at giant synapses connecting layer 5B (L5B) neurons of the somatosensory cortex (S1) with relay neurons of the posteriomedial nucleus (POm) of the thalamus have not been investigated in mice. We addressed this by using direct electrical stimulation of fluorescently labelled single corticothalamic terminals combined with molecular perturbations and whole-cell recordings from POm relay neurons. Consistent with their function as drivers, we found large-amplitude excitatory postsynaptic currents (EPSCs) and multiple postsynaptic action potentials triggered by a single presynaptic action potential. To study the molecular basis of these two features, ionotropic glutamate receptors and low voltage-gated T-type calcium channels were probed by virus-mediated genetic perturbation. Loss of GluA4 almost abolished the EPSC amplitude, strongly delaying the onset of action potential generation, but maintaining the number of action potentials generated per presynaptic action potential. In contrast, knockdown of the Cav 3.1 subunit abrogated the driver function of the synapse at a typical resting membrane potential of -70 mV. However, when depolarizing the membrane potential to -60 mV, the synapse relayed single action potentials. Hence, GluA4 subunits are required to produce an EPSC sufficiently large to trigger postsynaptic action potentials within a defined time window after the presynaptic action potential, while Cav 3.1 expression is essential to establish the driver function of L5B-POm synapses at hyperpolarized membrane potentials. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Farhan, Sali M K; Nixon, Kevin C J; Everest, Michelle; Edwards, Tara N; Long, Shirley; Segal, Dmitri; Knip, Maria J; Arts, Heleen H; Chakrabarti, Rana; Wang, Jian; Robinson, John F; Lee, Donald; Mirsattari, Seyed M; Rupar, C Anthony; Siu, Victoria M; Poulter, Michael O; Hegele, Robert A; Kramer, Jamie M
2017-11-01
Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p. Leu729ThrfsTer6) in TMTC3, encoding transmembrane and tetratricopeptide repeat containing 3, in four siblings with nocturnal seizures and ID. Three of the four siblings have periventricular nodular heterotopia (PVNH), a common brain malformation caused by failure of neurons to migrate from the ventricular zone to the cortex. Expression analysis using patient-derived cells confirmed reduced TMTC3 transcript levels and loss of the TMTC3 protein compared to parental and control cells. As TMTC3 function is currently unexplored in the brain, we gathered support for a neurobiological role for TMTC3 by generating flies with post-mitotic neuron-specific knockdown of the highly conserved Drosophila melanogaster TMTC3 ortholog, CG4050/tmtc3. Neuron-specific knockdown of tmtc3 in flies resulted in increased susceptibility to induced seizures. Importantly, this phenotype was rescued by neuron-specific expression of human TMTC3, suggesting a role for TMTC3 in seizure biology. In addition, we observed co-localization of TMTC3 in the rat brain with vesicular GABA transporter (VGAT), a presynaptic marker for inhibitory synapses. TMTC3 is localized at VGAT positive pre-synaptic terminals and boutons in the rat hypothalamus and piriform cortex, suggesting a role for TMTC3 in the regulation of GABAergic inhibitory synapses. TMTC3 did not co-localize with Vglut2, a presynaptic marker for excitatory neurons. Our data identified TMTC3 as a synaptic protein that is involved in PVNH with ID and epilepsy, in addition to its previously described association with cobblestone lissencephaly. © The Author 2017. Published by Oxford University Press.
Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels.
Jarvis, Scott E; Zamponi, Gerald W
2005-05-01
Calcium entry through presynaptic voltage-gated calcium channels is essential for neurotransmitter release. The two major types of presynaptic calcium channels contain a synaptic protein interaction site that physically interacts with synaptic vesicle release proteins. This is thought to tighten the coupling between the sources of calcium entry and the neurotransmitter release machinery. Conversely, the binding of synaptic proteins to presynaptic calcium channels regulates calcium channel activity. Hence, presynaptic calcium channels act not only as the masters of the synaptic release process, but also as key targets for feedback inhibition.
Brennenstuhl, Christina; Tanimoto, Naoyuki; Burkard, Markus; Wagner, Rebecca; Bolz, Sylvia; Trifunovic, Dragana; Kabagema-Bilan, Clement; Paquet-Durand, Francois; Beck, Susanne C.; Huber, Gesine; Seeliger, Mathias W.; Ruth, Peter; Wissinger, Bernd; Lukowski, Robert
2015-01-01
Phosphodiesterase-6 (PDE6) is a multisubunit enzyme that plays a key role in the visual transduction cascade in rod and cone photoreceptors. Each type of photoreceptor utilizes discrete catalytic and inhibitory PDE6 subunits to fulfill its physiological tasks, i.e. the degradation of cyclic guanosine-3′,5′-monophosphate at specifically tuned rates and kinetics. Recently, the human PDE6H gene was identified as a novel locus for autosomal recessive (incomplete) color blindness. However, the three different classes of cones were not affected to the same extent. Short wave cone function was more preserved than middle and long wave cone function indicating that some basic regulation of the PDE6 multisubunit enzyme was maintained albeit by a unknown mechanism. To study normal and disease-related functions of cone Pde6h in vivo, we generated Pde6h knock-out (Pde6h−/−) mice. Expression of PDE6H in murine eyes was restricted to both outer segments and synaptic terminals of short and long/middle cone photoreceptors, whereas Pde6h−/− retinae remained PDE6H-negative. Combined in vivo assessment of retinal morphology with histomorphological analyses revealed a normal overall integrity of the retinal organization and an unaltered distribution of the different cone photoreceptor subtypes upon Pde6h ablation. In contrast to human patients, our electroretinographic examinations of Pde6h−/− mice suggest no defects in cone/rod-driven retinal signaling and therefore preserved visual functions. To this end, we were able to demonstrate the presence of rod PDE6G in cones indicating functional substitution of PDE6. The disparities between human and murine phenotypes caused by mutant Pde6h/PDE6H suggest species-to-species differences in the vulnerability of biochemical and neurosensory pathways of the visual signal transduction system. PMID:25739440
The prenyl-binding protein PrBP/δ: a chaperone participating in intracellular trafficking
Zhang, Houbin; Constantine, Ryan; Frederick, Jeanne M.; Baehr, Wolfgang
2012-01-01
Expressed ubiquitously, PrBP/δ functions as chaperone/co-factor in the transport of a subset of prenylated proteins. PrBP/δ features an immunoglobulin-like β-sandwich fold for lipid binding, and interacts with diverse partners. PrBP/δ binds both C-terminal C15 and C20 prenyl side chains of phototransduction polypeptides and small GTP-binding (G) proteins of the Ras superfamily. PrBP/δ also interacts with the small GTPases, ARL2 and ARL3, which act as release factors (GDFs) for prenylated cargo. Targeted deletion of the mouse Pde6d gene encoding PrBP/δ resulted in impeded trafficking to the outer segments of GRK1 and cone PDE6 which are predicted to be farnesylated and geranylgeranylated, respectively. Rod and cone transducin trafficking was largely unaffected. These trafficking defects produce progressive cone-rod dystrophy in the Pde6d−/− mouse. PMID:22960045
Hayes, Heather Brant; Chang, Young-Hui
2012-01-01
Presynaptic inhibition is a powerful mechanism for selectively and dynamically gating sensory inputs entering the spinal cord. We investigated how hindlimb mechanics influence presynaptic inhibition during locomotion using pioneering approaches in an in vitro spinal cord–hindlimb preparation. We recorded lumbar dorsal root potentials to measure primary afferent depolarization-mediated presynaptic inhibition and compared their dependence on hindlimb endpoint forces, motor output, and joint kinematics. We found that stance-phase force on the opposite limb, particularly at toe contact, strongly influenced the magnitude and timing of afferent presynaptic inhibition in the swinging limb. Presynaptic inhibition increased in proportion to opposite limb force, as well as locomotor frequency. This form of presynaptic inhibition binds the sensorimotor states of the two limbs, adjusting sensory inflow to the swing limb based on forces generated by the stance limb. Functionally, it may serve to adjust swing-phase sensory transmission based on locomotor task, speed, and step-to-step environmental perturbations. PMID:22442562
Notsu, Kazuki; Tsumori, Toshiko; Yokota, Shigefumi; Sekine, Joji; Yasui, Yukihiko
2008-12-09
This study was performed to understand the anatomical substrates of hypothalamic modulation of jaw movements. After cholera toxin B subunit (CTb) injection into the parvicellular reticular formation (RFp) of the rat medulla oblongata, where many trigeminal premotor neurons have been known to exist, numerous CTb-labeled neurons were found in the posterior lateral hypothalamus (PLH) bilaterally with a clear-cut ipsilateral dominance. After ipsilateral injections of biotinylated dextran amine (BDA) into the PLH and CTb into the motor trigeminal nucleus (Vm), the prominent distribution of BDA-labeled axon terminals around CTb-labeled neurons was found in the RFp region just ventral to the nucleus of the solitary tract and medial to the spinal trigeminal nucleus ipsilateral to the injection sites. Within the neuropil of the RFp, BDA-labeled axon terminals made an asymmetrical synaptic contact predominantly with dendrites and additionally with somata of the RFp neurons, some of which were labeled with CTb. It was further revealed that these BDA-labeled axon terminals were immunoreactive for vesicular glutamate transporter 2. The present data suggest that the PLH plays an important role in the control of jaw movements by exerting its glutamatergic excitatory action upon RFp neurons presynaptic to trigeminal motoneurons.
Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden.
Andersson, Magnus; Almqvist, Bjarne S G; Burchardt, Steffi; Troll, Valentin R; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz
2016-06-10
Magma transport through the Earth's crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics.
Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden
Andersson, Magnus; Almqvist, Bjarne S. G.; Burchardt, Steffi; Troll, Valentin R.; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz
2016-01-01
Magma transport through the Earth’s crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics. PMID:27282420
Suzuki-Kerr, Haruna; Iwagawa, Toshiro; Sagara, Hiroshi; Mizota, Atsushi; Suzuki, Yutaka; Watanabe, Sumiko
2018-06-01
During development of the retina, common retinal progenitor cells give rise to six classes of neurons that subsequently further diversify into more than 55 subtypes of neuronal subtypes. Here, we have investigated the expression and function of Fezf2, Fez zinc finger family of protein, in the developing mouse retina. Expression of Fezf2 transcripts was strongly observed in the embryonic retinal progenitors at E14.5 and declined quickly in subsequent development of retina. Then, in postnatal stage at around day 8, Fezf2 was transiently expressed then declined again. Loss-of-function analysis using retinas from mice in which Fezf2 coding region was substituted with β-galactosidase showed that Fezf2 is expressed in a subset of cone OFF bipolar cells and required for their differentiation. Using electroretinogram, we found that Fezf2 knockout retina exhibited significantly reduced photopic b-wave, suggesting functional abnormality of cone ON bipolar cells. Furthermore, reduced expression of synaptic protein Trpm1 and structural alteration of ON bipolar cell invagination, both of which affected cone photoreceptor terminal synaptic activity, was identified by transmission electron microscopy and immunohistochemistry, respectively. Taken together, our results show that Fezf2 is indispensable in differentiation of bipolar precursors into cone OFF bipolar cells and in functional maturation of cone ON bipolar cells during development of mouse retina. These results contribute to our understanding of how diversity of neuronal subtypes and hence specificity of neuronal connections are established in the retina by intrinsic cues. Copyright © 2018 Elsevier Ltd. All rights reserved.
Warren, Ted J.; Van Hook, Matthew J.; Tranchina, Daniel
2016-01-01
Inhibitory feedback from horizontal cells (HCs) to cones generates center-surround receptive fields and color opponency in the retina. Mechanisms of HC feedback remain unsettled, but one hypothesis proposes that an ephaptic mechanism may alter the extracellular electrical field surrounding photoreceptor synaptic terminals, thereby altering Ca2+ channel activity and photoreceptor output. An ephaptic voltage change produced by current flowing through open channels in the HC membrane should occur with no delay. To test for this mechanism, we measured kinetics of inhibitory feedback currents in Ambystoma tigrinum cones and rods evoked by hyperpolarizing steps applied to synaptically coupled HCs. Hyperpolarizing HCs stimulated inward feedback currents in cones that averaged 8–9 pA and exhibited a biexponential time course with time constants averaging 14–17 ms and 120–220 ms. Measurement of feedback-current kinetics was limited by three factors: (1) HC voltage-clamp speed, (2) cone voltage-clamp speed, and (3) kinetics of Ca2+ channel activation or deactivation in the photoreceptor terminal. These factors totaled ∼4–5 ms in cones meaning that the true fast time constants for HC-to-cone feedback currents were 9–13 ms, slower than expected for ephaptic voltage changes. We also compared speed of feedback to feedforward glutamate release measured at the same cone/HC synapses and found a latency for feedback of 11–14 ms. Inhibitory feedback from HCs to rods was also significantly slower than either measurement kinetics or feedforward release. The finding that inhibitory feedback from HCs to photoreceptors involves a significant delay indicates that it is not due to previously proposed ephaptic mechanisms. SIGNIFICANCE STATEMENT Lateral inhibitory feedback from horizontal cells (HCs) to photoreceptors creates center-surround receptive fields and color-opponent interactions. Although underlying mechanisms remain unsettled, a longstanding hypothesis proposes that feedback is due to ephaptic voltage changes that regulate photoreceptor synaptic output by altering Ca2+ channel activity. Ephaptic processes should occur with no delay. We measured kinetics of inhibitory feedback currents evoked in photoreceptors with voltage steps applied to synaptically coupled HCs and found that feedback is too slow to be explained by ephaptic voltage changes generated by current flowing through continuously open channels in HC membranes. By eliminating the proposed ephaptic mechanism for HC feedback regulation of photoreceptor Ca2+ channels, our data support earlier proposals that synaptic cleft pH changes are more likely responsible. PMID:27683904
Musante, Veronica; Neri, Elisa; Feligioni, Marco; Puliti, Aldamaria; Pedrazzi, Marco; Conti, Valerio; Usai, Cesare; Diaspro, Alberto; Ravazzolo, Roberto; Henley, Jeremy M; Battaglia, Giuseppe; Pittaluga, Anna
2008-09-01
The effects of mGlu1 and mGlu5 receptor activation on the depolarization-evoked release of [3H]d-aspartate ([3H]D-ASP) from mouse cortical synaptosomes were investigated. The mGlu1/5 receptor agonist 3,5-DHPG (0.1-100microM) potentiated the K+(12mM)-evoked [3H]D-ASP overflow. The potentiation occurred in a concentration-dependent manner showing a biphasic pattern. The agonist potentiated [3H]D-ASP exocytosis when applied at 0.3microM; the efficacy of 3,5-DHPG then rapidly declined and reappeared at 30-100microM. The fall of efficacy of agonist at intermediate concentration may be consistent with 3,5-DHPG-induced receptor desensitization. Facilitation of [3H]D-ASP exocytosis caused by 0.3microM 3,5-DHPG was prevented by the selective mGlu5 receptor antagonist MPEP, but was insensitive to the selective mGlu1 receptor antagonist CPCCOEt. In contrast, CPCCOEt prevented the potentiation by 50microM 3,5-DHPG, while MPEP had minimal effect. Unexpectedly, LY 367385 antagonized both the 3,5-DHPG-induced effects. A total of 0.3microM 3,5-DHPG failed to facilitate the K+-evoked [3H]D-ASP overflow from mGlu5 receptor knockout (mGlu5-/-) cortical synaptosomes, but not from nerve terminals prepared from the cortex of animals lacking the mGlu1 receptors, the crv4/crv4 mice. On the contrary, 50microM 3,5-DHPG failed to affect the [3H]D-ASP exocytosis from cortical synaptosomes obtained from crv4/crv4 and mGlu5-/-mice. Western blot analyses in subsynaptic fractions support the existence of both mGlu1 and mGlu5 autoreceptors located presynaptically, while immunocytochemistry revealed their presence at glutamatergic terminals. We propose that mGlu1 and mGlu5 autoreceptors exist on mouse glutamatergic cortical terminals; mGlu5 receptors may represent the "high affinity" binding sites for 3,5-DHPG, while mGlu1 autoreceptors represent the "low affinity" binding sites.
Andrade-Talavera, Yuniesky; Duque-Feria, Paloma; Sihra, Talvinder S; Rodríguez-Moreno, Antonio
2013-09-01
We have investigated the mechanisms underlying the facilitatory modulation mediated by kainate receptor (KAR) activation in the cortex, using isolated nerve terminals (synaptosomes) and slice preparations. In cortical nerve terminals, kainate (KA, 100 μM) produced an increase in 4-aminopyridine (4-AP)-evoked glutamate release. In thalamocortical slices, KA (1 μM) produced an increase in the amplitude of evoked excitatory post-synaptic currents (eEPSCs) at synapses established between thalamic axon terminals from the ventrobasal nucleus onto stellate neurons of L4 of the somatosensory cortex. In both, synaptosomes and slices, the effect of KA was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione, and persisted after pre-treatment with a cocktail of antagonists of other receptors whose activation could potentially have produced facilitation of release indirectly. Mechanistically, the observed effects of KA appear to be congruent in synaptosomal and slice preparations. Thus, the facilitation by KA of synaptosomal glutamate release and thalamocortical synaptic transmission were suppressed by the inhibition of protein kinase A and occluded by the stimulation of adenylyl cyclase. Dissecting this G-protein-independent regulation further in thalamocortical slices, the KAR-mediated facilitation of synaptic transmission was found to be sensitive to the block of Ca(2+) permeant KARs by philanthotoxin. Intriguingly, the synaptic facilitation was abrogated by depletion of intracellular Ca(2+) stores by thapsigargin, or inhibition of Ca(2+) -induced Ca(2+) -release by ryanodine. Thus, the KA-mediated modulation was contingent on both Ca(2+) entry through Ca(2+) -permeable KARs and liberation of intracellular Ca(2+) stores. Finally, sensitivity to W-7 indicated that the increased cytosolic [Ca(2+) ] underpinning KAR-mediated regulation of synaptic transmission at thalamocortical synapses, requires downstream activation of calmodulin. We conclude that neocortical pre-synaptic KARs mediate the facilitation of glutamate release and synaptic transmission by a Ca(2+) -calmodulin dependent activation of an adenylyl cyclase/cAMP/protein kinase A signalling cascade, independent of G-protein involvement. © 2013 International Society for Neurochemistry.
Overexpression of GAP-43 reveals unexpected properties of hippocampal mossy fibers.
Rekart, Jerome L; Routtenberg, Aryeh
2010-01-01
The mossy fiber (MF) system targets the apical dendrites of CA3 pyramidal cells in the stratum lucidum (SL). In mice overexpressing the growth-associated protein GAP-43 there is an apparent ectopic growth of these MFs into the stratum oriens (SO) targeting the basal dendrites of these same pyramidal cells (Aigner et al. (1995) Cell 83:269-278). This is the first evidence to our knowledge that links increased GAP-43 expression with growth of central axons. Here we studied the Aigner et al. transgenic mice but were unable to confirm such growth into SO. However, using quantitative methods we did observe enhanced growth within the regions normally targeted by MFs, for example, the SL in the CA3a region. These contrasting results led us to study MFs with double-immunostaining using an immunohistochemical marker for MFs, the zinc transporter, ZnT3, to visualize the colocalization of transgenic GAP-43 within MFs. Unexpectedly, using both fluorescence and confocal microscopy, we were unable to detect colocalization of GAP-43-positive axons with ZnT3-positive MF axons within the MF pathways, either in the region of the MF axons or in the SL, where MF terminals are abundant. In contrast, the plasma membrane-associated presynaptic marker SNAP-25 did colocalize with transgenic GAP-43-positive terminals in the SL. Synaptophysin, the vesicle-associated presynaptic terminal marker, colocalized with ZnT3 but did not appear to colocalize with GAP-43. The present findings raise important questions about the properties of granule cells and the MF mechanisms that differentially regulate axonal remodeling in the adult hippocampus: (1) Because there appears to be at least two populations of granule cells defined by their differential protein expression, this points to the existence of an intrinsic heterogeneity of granule cell expression beyond that contributed by adult neurogenesis; (2) Giventhe present evidence that growth is induced in mice overexpressing GAP-43 in adjacent non-GAP-43 containing MFs, the potential exists for a heretofore unexplored interaxonal communication mechanism. Copyright 2009 Wiley-Liss, Inc.
Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex
Lu, Cheng-Wei; Huang, Shu-Kuei; Wang, Su-Jane
2013-01-01
Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes) and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP), and this phenomenon was prevented by the chelating extracellular Ca2+ ions and the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Inhibition of glutamate release by berberine was not due to it decreasing synaptosomal excitability, because berberine did not alter 4-AP-mediated depolarization. The inhibitory effect of berberine on glutamate release was associated with a reduction in the depolarization-induced increase in cytosolic free Ca2+ concentration. Involvement of the Cav2.1 (P/Q-type) channels in the berberine action was confirmed by blockade of the berberine-mediated inhibition of glutamate release by the Cav2.1 (P/Q-type) channel blocker ω-agatoxin IVA. In addition, the inhibitory effect of berberine on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase kinase (MEK) inhibitors. Berberine decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synapsin I, the main presynaptic target of ERK; this decrease was also blocked by the MEK inhibition. Moreover, the inhibitory effect of berberine on evoked glutamate release was prevented in nerve terminals from mice lacking synapsin I. Together, these results indicated that berberine inhibits glutamate release from rats cortical synaptosomes, through the suppression of presynaptic Cav2.1 channels and ERK/synapsin I signaling cascade. This finding may provide further understanding of the mode of berberine action in the brain and highlights the therapeutic potential of this compound in the treatment of a wide range of neurological disorders. PMID:23840629
Bautista, W.; McCrea, D. A.; Nagy, J. I.
2014-01-01
Morphologically mixed chemical/electrical synapses at axon terminals, with the electrical component formed by gap junctions, is common in the CNS of lower vertebrates. In mammalian CNS, evidence for morphologically mixed synapses has been obtained in only a few locations. Here, we used immunofluorescence approaches to examine the localization of the neuronally expressed gap junction forming protein connexin36 (Cx36) in relation to the axon terminal marker vesicular glutamate transporter1 (vglut1) in spinal cord and trigeminal motor nucleus (Mo5) of rat and mouse. In adult rodents, immunolabelling for Cx36 appeared exclusively as Cx36-puncta, and was widely distributed at all rostro-caudal levels in most spinal cord laminae and in the Mo5. A high proportion of Cx36-puncta was co-localized with vglut1, forming morphologically mixed synapses on motoneurons, in intermediate spinal cord lamina, and in regions of medial lamina VII, where vglut1-containing terminals associated with Cx36 converged on neurons adjacent to the central canal. Unilateral transection of lumbar dorsal roots reduced immunolabelling of both vglut1 and Cx36 in intermediate laminae and lamina IX. Further, vglut1-terminals displaying Cx36-puncta were contacted by terminals labelled for glutamic acid decarboxylase65, which is known to be contained in presynaptic terminals on large diameter primary afferents. Developmentally, mixed synapses begin to emerge in the spinal cord only after the second to third postnatal week and thereafter increase to adult levels. Our findings demonstrate that axon terminals of primary afferent origin form morphologically mixed synapses containing Cx36 in broadly distributed areas of adult rodent spinal cord and Mo5. PMID:24406437
Presynaptic GABAergic inhibition regulated by BDNF contributes to neuropathic pain induction
Chen, Jeremy Tsung-chieh; Guo, Da; Campanelli, Dario; Frattini, Flavia; Mayer, Florian; Zhou, Luming; Kuner, Rohini; Heppenstall, Paul A.; Knipper, Marlies; Hu, Jing
2014-01-01
The gate control theory proposes the importance of both pre- and post-synaptic inhibition in processing pain signal in the spinal cord. However, although postsynaptic disinhibition caused by brain-derived neurotrophic factor (BDNF) has been proved as a crucial mechanism underlying neuropathic pain, the function of presynaptic inhibition in acute and neuropathic pain remains elusive. Here we show that a transient shift in the reversal potential (EGABA) together with a decline in the conductance of presynaptic GABAA receptor result in a reduction of presynaptic inhibition after nerve injury. BDNF mimics, whereas blockade of BDNF signalling reverses, the alteration in GABAA receptor function and the neuropathic pain syndrome. Finally, genetic disruption of presynaptic inhibition leads to spontaneous development of behavioural hypersensitivity, which cannot be further sensitized by nerve lesions or BDNF. Our results reveal a novel effect of BDNF on presynaptic GABAergic inhibition after nerve injury and may represent new strategy for treating neuropathic pain. PMID:25354791
Lu, Yao; Driscoll, Nicolette; Ozden, Ilker; Yu, Zeyang; Nurmikko, Arto V.
2015-01-01
Abstract. Dopamine (DA) release and uptake dynamics in the nucleus accumbens (NAc) have important implications for neurological diseases and mammalian animal behaviors. We demonstrate here the use of cell-type-specific optogenetic targeting in conjunction with fast-scan cyclic voltammetry applied to brain slices prepared from specifically tailored transgenic mice, which conditionally express channelrhodopsin-2 (ChR2) through dopamine transporter (DAT)-Cre. Terminal dopaminergic dynamics and the direct manipulation of induced DA release level by controlling light intensity, pulse width, and the shape of stimulation waveforms were studied. Effective cell terminal-targeting optogenetic induction of DA release at physiological levels in NAc is demonstrated and discussed. It was found that delivering more light energy by increasing stimulation intensity and length is not the only way to control DA release; the temporal shape of the stimulus waveform at light onset is also critically related to induced DA concentrations. In addition, DA uptake dynamics as well as the recovery of the presynaptic releasable DA pool are studied and modeled. More broadly, our experimental findings provide important further evidence for effectively applying optogenetics to induce neurotransmitter release in the behaviorally relevant region of the brain in a highly cell-type selective context. PMID:26171413
Potentiation in the first visual synapse of the fly compound eye.
Uusitalo, R O; Weckström, M
2000-04-01
In the first visual synapse of the insect compound eye, both the presynaptic and postsynaptic signals are graded, nonspiking changes in membrane voltage. The synapse exhibits tonic transmitter release (even in dark) and strong adaptation to long-lasting light backgrounds, leading to changes also in the dynamics of signal transmission. We have studied these adaptational properties of the first visual synapse of the blowfly Calliphora vicina. Investigations were done in situ by intracellular recordings from the presynaptic photoreceptors, photoreceptor axon terminals, and the postsynaptic first order visual interneurons (LMCs). The dark recovery, the shifts in intensity dependence, and the underlying processes were studied by stimulating the visual system with various adapting stimuli while observing the recovery (i.e., dark adaptation). The findings show a transient potentiation in the postsynaptic responses after intense light adaptation, and the underlying mechanisms seem to be the changes in the equilibrium potential of the transmitter-gated conductance (chloride) of the postsynaptic neurons. The potentiation by itself serves as a mechanism that after light adaptation rapidly recovers the sensitivity loss of the visual system. However, this kind of mechanism, being an intrinsic property of graded potential transmission, may be quite widespread among graded synapses, and the phenomenon demonstrates that functional plasticity is also a property of graded synaptic transmission.
Deleuze, C; Alonso, G; Lefevre, I A; Duvoid-Guillou, A; Hussy, N
2005-01-01
Neurons of the rat supraoptic nucleus (SON) express glycine receptors (GlyRs), which are implicated in the osmoregulation of neuronal activity. The endogenous agonist of the receptors has been postulated to be taurine, shown to be released from astrocytes. We here provide additional pieces of evidence supporting the absence of functional glycinergic synapses in the SON. First, we show that blockade of GlyRs with strychnine has no effect on either the amplitude or frequency of miniature inhibitory postsynaptic currents recorded in SON neurons, whereas they were all suppressed by the GABA(A) antagonist gabazine. Then, double immunostaining of sections with presynaptic markers and either GlyR or GABA(A) receptor (GABA(A)R) antibodies indicates that, in contrast with GABA(A)Rs, most GlyR membrane clusters are not localized facing presynaptic terminals, indicative of their extrasynaptic localization. Moreover, we found a striking anatomical association between SON GlyR clusters and glial fibrillary acidic protein (GFAP)-positive astroglial processes, which contain high levels of taurine. This type of correlation is specific to GlyRs, since GABA(A)R clusters show no association with GFAP-positive structures. These results substantiate and strengthen the concept of extrasynaptic GlyRs mediating a paracrine communication between astrocytes and neurons in the SON.
Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease
Lohr, Kelly M.; Masoud, Shababa T.; Salahpour, Ali; Miller, Gary W.
2016-01-01
Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are two regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move transmitter efficiently throughout the neuron. The accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine. PMID:27520881
Synaptic Vesicle Recycling Is Unaffected in the Ts65Dn Mouse Model of Down Syndrome.
Marland, Jamie R K; Smillie, Karen J; Cousin, Michael A
2016-01-01
Down syndrome (DS) is the most common genetic cause of intellectual disability, and arises from trisomy of human chromosome 21. Accumulating evidence from studies of both DS patient tissue and mouse models has suggested that synaptic dysfunction is a key factor in the disorder. The presence of several genes within the DS trisomy that are either directly or indirectly linked to synaptic vesicle (SV) endocytosis suggested that presynaptic dysfunction could underlie some of these synaptic defects. Therefore we determined whether SV recycling was altered in neurons from the Ts65Dn mouse, the best characterised model of DS to date. We found that SV exocytosis, the size of the SV recycling pool, clathrin-mediated endocytosis, activity-dependent bulk endocytosis and SV generation from bulk endosomes were all unaffected by the presence of the Ts65Dn trisomy. These results were obtained using battery of complementary assays employing genetically-encoded fluorescent reporters of SV cargo trafficking, and fluorescent and morphological assays of fluid-phase uptake in primary neuronal culture. The absence of presynaptic dysfunction in central nerve terminals of the Ts65Dn mouse suggests that future research should focus on the established alterations in excitatory / inhibitory balance as a potential route for future pharmacotherapy.
Synaptic Vesicle Recycling Is Unaffected in the Ts65Dn Mouse Model of Down Syndrome
Marland, Jamie R. K.; Smillie, Karen J.; Cousin, Michael A.
2016-01-01
Down syndrome (DS) is the most common genetic cause of intellectual disability, and arises from trisomy of human chromosome 21. Accumulating evidence from studies of both DS patient tissue and mouse models has suggested that synaptic dysfunction is a key factor in the disorder. The presence of several genes within the DS trisomy that are either directly or indirectly linked to synaptic vesicle (SV) endocytosis suggested that presynaptic dysfunction could underlie some of these synaptic defects. Therefore we determined whether SV recycling was altered in neurons from the Ts65Dn mouse, the best characterised model of DS to date. We found that SV exocytosis, the size of the SV recycling pool, clathrin-mediated endocytosis, activity-dependent bulk endocytosis and SV generation from bulk endosomes were all unaffected by the presence of the Ts65Dn trisomy. These results were obtained using battery of complementary assays employing genetically-encoded fluorescent reporters of SV cargo trafficking, and fluorescent and morphological assays of fluid-phase uptake in primary neuronal culture. The absence of presynaptic dysfunction in central nerve terminals of the Ts65Dn mouse suggests that future research should focus on the established alterations in excitatory / inhibitory balance as a potential route for future pharmacotherapy. PMID:26808141
Santafe, M M; Garcia, N; Lanuza, M A; Tomàs, M; Besalduch, N; Tomàs, J
2009-04-01
We studied the relation among calcium inflows, voltage-dependent calcium channels (VDCC), presynaptic muscarinic acetylcholine receptors (mAChRs), and protein kinase C (PKC) activity in the modulation of synapse elimination. We used intracellular recording to determine the synaptic efficacy in dually innervated endplates of the levator auris longus muscle of newborn rats during axonal competition in the postnatal synaptic elimination period. In these dual junctions, the weak nerve terminal was potentiated by partially reducing calcium entry (P/Q-, N-, or L-type VDCC-specific block or 500 muM magnesium ions), M1- or M4-type selective mAChR block, or PKC block. Moreover, reducing calcium entry or blocking PKC or mAChRs results in unmasking functionally silent nerve endings that now recover neurotransmitter release. Our results show interactions between these molecules and indicate that there is a release inhibition mechanism based on an mAChR-PKC-VDCC intracellular cascade. When it is fully active in certain weak motor axons, it can depress ACh release and even disconnect synapses. We suggest that this mechanism plays a central role in the elimination of redundant neonatal synapses, because functional axonal withdrawal can indeed be reversed by mAChRs, VDCCs, or PKC block.
GLUT4 Mobilization Supports Energetic Demands of Active Synapses.
Ashrafi, Ghazaleh; Wu, Zhuhao; Farrell, Ryan J; Ryan, Timothy A
2017-02-08
The brain is highly sensitive to proper fuel availability as evidenced by the rapid decline in neuronal function during ischemic attacks and acute severe hypoglycemia. We previously showed that sustained presynaptic function requires activity-driven glycolysis. Here, we provide strong evidence that during action potential (AP) firing, nerve terminals rely on the glucose transporter GLUT4 as a glycolytic regulatory system to meet the activity-driven increase in energy demands. Activity at synapses triggers insertion of GLUT4 into the axonal plasma membrane driven by activation of the metabolic sensor AMP kinase. Furthermore, we show that genetic ablation of GLUT4 leads to an arrest of synaptic vesicle recycling during sustained AP firing, similar to what is observed during acute glucose deprivation. The reliance on this biochemical regulatory system for "exercising" synapses is reminiscent of that occurring in exercising muscle to sustain cellular function and identifies nerve terminals as critical sites of proper metabolic control. Copyright © 2017 Elsevier Inc. All rights reserved.
Noradrenergic System in Down Syndrome and Alzheimer's Disease A Target for Therapy.
Phillips, Cristy; Fahimi, Atoossa; Das, Devsmita; Mojabi, Fatemeh S; Ponnusamy, Ravikumar; Salehi, Ahmad
2016-01-01
Locus coeruleus (LC) neurons in the brainstem send extensive noradrenergic (NE)-ergic terminals to the majority of brain regions, particularly those involved in cognitive function. Both Alzheimer's disease (AD) and Down syndrome (DS) are characterized by similar pathology including significant LC degeneration and dysfunction of the NE-ergic system. Extensive loss of NE-ergic terminals has been linked to alterations in brain regions vital for cognition, mood, and executive function. While the mechanisms by which NE-ergic abnormalities contribute to cognitive dysfunction are not fully understood, emergent evidence suggests that rescue of NE-ergic system can attenuate neuropathology and cognitive decline in both AD and DS. Therapeutic strategies to enhance NE neurotransmission have undergone limited testing. Among those deployed to date are NE reuptake inhibitors, presynaptic α-adrenergic receptor antagonists, NE prodrugs, and β-adrenergic agonists. Here we examine alterations in the NE-ergic system in AD and DS and suggest that NE-ergic system rescue is a plausible treatment strategy for targeting cognitive decline in both disorders.
Gai, Yunchao; Liu, Ze; Cervantes-Sandoval, Isaac; Davis, Ronald L.
2016-01-01
SUMMARY The mechanisms that constrain memory formation are of special interest because they provide insights into the brain’s memory management systems and potential avenues for correcting cognitive disorders. RNAi knockdown in the Drosophila mushroom body neurons (MBn) of a newly discovered memory suppressor gene, Solute Carrier DmSLC22A, a member of the organic cation transporter family, enhances olfactory memory expression, while overexpression inhibits it. The protein localizes to the dendrites of the MBn, surrounding the presynaptic terminals of cholinergic afferent fibers from projection neurons (Pn). Cell-based expression assays show that this plasma membrane protein transports cholinergic compounds with the highest affinity among several in vitro substrates. Feeding flies choline or inhibiting acetylcholinesterase in Pn enhances memory; an effect blocked by overexpression of the transporter in the MBn. The data argue that DmSLC22A is a memory suppressor protein that limits memory formation by helping to terminate cholinergic neurotransmission at the Pn:MBn synapse. PMID:27146270
Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.
Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N
2009-06-17
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.
Je, H Shawn; Yang, Feng; Ji, Yuanyuan; Potluri, Srilatha; Fu, Xiu-Qing; Luo, Zhen-Ge; Nagappan, Guhan; Chan, Jia Pei; Hempstead, Barbara; Son, Young-Jin; Lu, Bai
2013-06-12
During development, mammalian neuromuscular junctions (NMJs) transit from multiple-innervation to single-innervation through axonal competition via unknown molecular mechanisms. Previously, using an in vitro model system, we demonstrated that the postsynaptic secretion of pro-brain-derived neurotrophic factor (proBDNF) stabilizes or eliminates presynaptic axon terminals, depending on its proteolytic conversion at synapses. Here, using developing mouse NMJs, we obtained in vivo evidence that proBDNF and mature BDNF (mBDNF) play roles in synapse elimination. We observed that exogenous proBDNF promoted synapse elimination, whereas mBDNF infusion substantially delayed synapse elimination. In addition, pharmacological inhibition of the proteolytic conversion of proBDNF to mBDNF accelerated synapse elimination via activation of p75 neurotrophin receptor (p75(NTR)). Furthermore, the inhibition of both p75(NTR) and sortilin signaling attenuated synapse elimination. We propose a model in which proBDNF and mBDNF serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, in vivo.
Horák, Daniel; Beneš, Milan; Procházková, Zuzana; Trchová, Miroslava; Borysov, Arsenii; Pastukhov, Artem; Paliienko, Konstantin; Borisova, Tatiana
2017-01-01
Changes in cholesterol concentration in the plasma membrane of presynaptic nerve terminals nonspecifically modulate glutamate transport and homeostasis in the central nervous system. Reduction of the cholesterol content in isolated rat brain nerve terminals (synaptosomes) using cholesterol-depleting agents decreases the glutamate uptake and increases the extracellular level of glutamate in nerve terminals. Extraction of cholesterol from the plasma membrane and its further removal from the synaptosomes by external magnetic field can be achieved by means of magnetic nanoparticles with immobilized cholesterol-depleting agent such as O-methyl-β-cyclodextrin (MCD). A simple approach is developed for preparation of maghemite (γ-Fe 2 O 3 ) nanoparticles containing chemically bonded MCD. The method is based on preparation of a silanization agent containing MCD. It is synthesized by the reaction of triethoxy(3-isocyanatopropyl)silane with MCD. Base-catalyzed silanization of superparamagnetic γ-Fe 2 O 3 provides a relatively stable colloid product containing 48μmol of MCDg -1 . MCD-modified γ-Fe 2 O 3 nanoparticles decrease the initial rate of the uptake and accumulation of l-[ 14 C]glutamate and increase the extracellular l-[ 14 C]glutamate level in the preparation of nerve terminals. The effect of MCD-immobilized nanoparticles is the same as that of MCD solution; moreover, magnetic manipulation of the nanoparticles enables removal of bonded cholesterol. Copyright © 2016 Elsevier B.V. All rights reserved.
Hirata, H; Ladenheim, B; Carlson, E; Epstein, C; Cadet, J L
1996-04-01
Methamphetamine (METH) has long-lasting neurotoxic effects on the nigrostriatal dopamine (DA) system of rodents. METH-induced neurotoxicity is thought to involve release of DA in presynaptic DA terminals, which is associated with increased formation of oxygen-based free radicals. We have recently shown that METH-induced striatal DA depletion is attenuated in transgenic (Tg) mice that express the human CuZn-superoxide dismutase (SOD) enzyme. That study did not specifically address the issue of loss of DA terminals. In the present study, we have used receptor autoradiographic studies of [(125)I]RTI-121-labeled DA uptake sites to evaluate the effects of several doses of METH on striatal DA terminals of Non-Tg as well as of heterozygous and homozygous SOD-Tg mice. In Non-Tg mice, METH caused decreases in striatal DA uptake sites in a dose-dependent fashion. The loss of DA terminals was more prominent in the lateral region than in the medial subdivisions of the striatum. In SOD-Tg mice, the loss of DA terminals caused by METH was attenuated in a gene dosage-dependent fashion, with the homozygous mice showing the greatest protection. Female mice were somewhat more resistant than male mice against these deleterious effects of METH. These results provide further evidence for a role of superoxide radicals in the long-term effects of METH. They also suggest the notion of a gender-specific handling of oxidative stress.
Clinical toxicology: a tropical Australian perspective.
Currie, B J
2000-02-01
Tropical Australia has an amazing diversity of venomous fauna, from "the world's most venomous creature," the multi-tentacled (chirodropid) box jellyfish Chironex fleckeri, to aggressive spiders whose venom remains to be characterized. All genera of highly venomous Australasian elapid snakes are present, except for tiger snakes. Most notable is the taipan (Oxyuranus scutellatus), with the most efficient "snap-release" biting mechanism of any snake and venom components causing the full constellation of clinical envenoming features: coagulopathy from fibrinogen depletion (procoagulant), neurotoxicity (predominantly presynaptic neurotoxin) and rhabdomyolysis (myotoxin). Brown snakes (Pseudonaja textilis and P. nuchalis) now account for most snake bite fatalities in Australia, as a result of severe coagulopathy and a poorly defined early scenario of collapse, postulated to be caused by profound hypotension caused by transient myocardial dysfunction associated with prothrombin activation. Other venomous entities include paralyzing ticks, the blue-ringed octopus, stone fish and other marine animals with venomous spines, paralyzing cone shells, and a wide range of jellyfish including Carukia barnesi and possibly other four-tentacled (carybdeid) box jellyfish causing the Irukandji syndrome.
Oizumi, Masafumi; Satoh, Ryota; Kazama, Hokto; Okada, Masato
2012-01-01
The Drosophila antennal lobe is subdivided into multiple glomeruli, each of which represents a unique olfactory information processing channel. In each glomerulus, feedforward input from olfactory receptor neurons (ORNs) is transformed into activity of projection neurons (PNs), which represent the output. Recent investigations have indicated that lateral presynaptic inhibitory input from other glomeruli controls the gain of this transformation. Here, we address why this gain control acts "pre"-synaptically rather than "post"-synaptically. Postsynaptic inhibition could work similarly to presynaptic inhibition with regard to regulating the firing rates of PNs depending on the stimulus intensity. We investigate the differences between pre- and postsynaptic gain control in terms of odor discriminability by simulating a network model of the Drosophila antennal lobe with experimental data. We first demonstrate that only presynaptic inhibition can reproduce the type of gain control observed in experiments. We next show that presynaptic inhibition decorrelates PN responses whereas postsynaptic inhibition does not. Due to this effect, presynaptic gain control enhances the accuracy of odor discrimination by a linear decoder while its postsynaptic counterpart only diminishes it. Our results provide the reason gain control operates "pre"-synaptically but not "post"-synaptically in the Drosophila antennal lobe.
Berta, Ágnes I.; Boesze-Battaglia, Kathleen; Genini, Sem; Goldstein, Orly; O'Brien, Paul J.; Szél, Ágoston; Acland, Gregory M.; Beltran, William A.; Aguirre, Gustavo D.
2011-01-01
A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7–14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labeling, and do not label with markers specific for macrophages/microglia (CD18) or Müller cells (glutamine synthetase, PAX6). Nestin labeling is absent from the ONL although it labels the peripheral retina and ciliary marginal zone equally in normals and mutants. Cell proliferation is associated with increased cyclin A1 and LATS1 mRNA expression, but CRX protein expression is unchanged. Coincident with photoreceptor proliferation is a change in the photoreceptor population. Prior to cell death the photoreceptor mosaic is composed of L/M- and S-cones, and rods. After proliferation, both cone types remain, but the majority of rods are now hybrid photoreceptors that express rod opsin and, to a lesser extent, cone S-opsin, and lack NR2E3 expression. The hybrid photoreceptors renew their outer segments diffusely, a characteristic of cones. The results indicate the capacity for terminally differentiated, albeit mutant, photoreceptors to divide with mutations in this novel retinal degeneration gene. PMID:21980341
Predicting Presynaptic and Postsynaptic Neurotoxins by Developing Feature Selection Technique
Yang, Yunchun; Zhang, Chunmei; Chen, Rong; Huang, Po
2017-01-01
Presynaptic and postsynaptic neurotoxins are proteins which act at the presynaptic and postsynaptic membrane. Correctly predicting presynaptic and postsynaptic neurotoxins will provide important clues for drug-target discovery and drug design. In this study, we developed a theoretical method to discriminate presynaptic neurotoxins from postsynaptic neurotoxins. A strict and objective benchmark dataset was constructed to train and test our proposed model. The dipeptide composition was used to formulate neurotoxin samples. The analysis of variance (ANOVA) was proposed to find out the optimal feature set which can produce the maximum accuracy. In the jackknife cross-validation test, the overall accuracy of 94.9% was achieved. We believe that the proposed model will provide important information to study neurotoxins. PMID:28303250
Parikh, V; Sarter, M
2006-04-01
The capacity of the high-affinity choline transporter (CHT) to import choline into presynaptic terminals is essential for acetylcholine synthesis. Ceramic-based microelectrodes, coated at recording sites with choline oxidase to detect extracellular choline concentration changes, were attached to multibarrel glass micropipettes and implanted into the rat frontoparietal cortex. Pressure ejections of hemicholinium-3 (HC-3), a selective CHT blocker, dose-dependently reduced the uptake rate of exogenous choline as well as that of choline generated in response to terminal depolarization. Following the removal of CHTs, choline signal recordings confirmed that the demonstration of potassium-induced choline signals and HC-3-induced decreases in choline clearance require the presence of cholinergic terminals. The results obtained from lesioned animals also confirmed the selectivity of the effects of HC-3 on choline clearance in intact animals. Residual cortical choline clearance correlated significantly with CHT-immunoreactivity in lesioned and intact animals. Finally, synaptosomal choline uptake assays were conducted under conditions reflecting in vivo basal extracellular choline concentrations. Results from these assays confirmed the capacity of CHTs measured in vivo and indicated that diffusion of substrate away from the electrode did not confound the in vivo findings. Collectively, these results indicate that increases in extracellular choline concentrations, irrespective of source, are rapidly cleared by CHTs.
Neurotrophin trafficking by anterograde transport.
Altar, C A; DiStefano, P S
1998-10-01
The ever-unfolding biology of NGF is consistent with a target-derived retrograde mode of action in peripheral and central neurons. However, another member of the neurotrophin family, brain-derived neurotrophic factor (BDNF), is present within nerve terminals in certain regions of the brain and PNS that do not contain the corresponding mRNA. Recent studies have shown that the endogenous neurotrophins, BDNF and neurotrophin-3 (NT-3), are transported anterogradely by central and peripheral neurons. The supply of BDNF by afferents is consistent with their presynaptic synthesis, vesicular storage, release and postsynaptic actions. Anterograde axonal transport provides an 'afferent supply' of BDNF and NT-3 to neurons and target tissues, where they function as trophic factors and as neurotransmitters.
Van de Berg, W D; Blokland, A; Cuello, A C; Schmitz, C; Vreuls, W; Steinbusch, H W; Blanco, C E
2000-10-01
Deficits in cognitive function have been related to quantitative changes in synaptic population, particularly in the cerebral cortex. Here, we used an established model of perinatal asphyxia that induces morphological changes, i.e. neuron loss in the cerebral cortex and striatum, as well as behavioural deficits. We hypothesized that perinatal asphyxia may lead to a neurodegenerative process resulting in cognitive impairment and altered presynaptic bouton numbers in adult rats. We studied cognitive performance at 18 months and presynaptic bouton numbers at 22 months following perinatal asphyxia. Data of the spatial Morris water escape task did not reveal clear memory or learning deficits in aged asphyctic rats compared to aged control rats. However, a memory impairment in aged rats versus young rats was observed, which was more pronounced in asphyctic rats. We found an increase in presynaptic bouton density in the parietal cortex, whereas no changes were found in striatum and frontal cortex in asphyctic rats. An increase of striatal volume was observed in asphyctic rats, leading to an increase in presynaptic bouton numbers in this area. These findings stress the issue that volume measurements have to be taken into account when determining presynaptic bouton density. Furthermore, perinatal asphyxia led to region-specific changes in presynaptic bouton numbers and it worsened the age-related cognitive impairment. These results suggest that perinatal asphyxia induced neuronal loss, which is compensated for by an increase in presynaptic bouton numbers.
The prenyl-binding protein PrBP/δ: a chaperone participating in intracellular trafficking.
Zhang, Houbin; Constantine, Ryan; Frederick, Jeanne M; Baehr, Wolfgang
2012-12-15
Expressed ubiquitously, PrBP/δ functions as chaperone/co-factor in the transport of a subset of prenylated proteins. PrBP/δ features an immunoglobulin-like β-sandwich fold for lipid binding, and interacts with diverse partners. PrBP/δ binds both C-terminal C15 and C20 prenyl side chains of phototransduction polypeptides and small GTP-binding (G) proteins of the Ras superfamily. PrBP/δ also interacts with the small GTPases, ARL2 and ARL3, which act as release factors (GDFs) for prenylated cargo. Targeted deletion of the mouse Pde6d gene encoding PrBP/δ resulted in impeded trafficking to the outer segments of GRK1 and cone PDE6 which are predicted to be farnesylated and geranylgeranylated, respectively. Rod and cone transducin trafficking was largely unaffected. These trafficking defects produce progressive cone-rod dystrophy in the Pde6d(-/-) mouse. Copyright © 2012 Elsevier Ltd. All rights reserved.
Robust syntaxin-4 immunoreactivity in mammalian horizontal cell processes
HIRANO, ARLENE A.; BRANDSTÄTTER, JOHANN HELMUT; VILA, ALEJANDRO; BRECHA, NICHOLAS C.
2009-01-01
Horizontal cells mediate inhibitory feed-forward and feedback communication in the outer retina; however, mechanisms that underlie transmitter release from mammalian horizontal cells are poorly understood. Toward determining whether the molecular machinery for exocytosis is present in horizontal cells, we investigated the localization of syntaxin-4, a SNARE protein involved in targeting vesicles to the plasma membrane, in mouse, rat, and rabbit retinae using immunocytochemistry. We report robust expression of syntaxin-4 in the outer plexiform layer of all three species. Syntaxin-4 occurred in processes and tips of horizontal cells, with regularly spaced, thicker sandwich-like structures along the processes. Double labeling with syntaxin-4 and calbindin antibodies, a horizontal cell marker, demonstrated syntaxin-4 localization to horizontal cell processes; whereas, double labeling with PKC antibodies, a rod bipolar cell (RBC) marker, showed a lack of co-localization, with syntaxin-4 immunolabeling occurring just distal to RBC dendritic tips. Syntaxin-4 immunolabeling occurred within VGLUT-1-immunoreactive photoreceptor terminals and underneath synaptic ribbons, labeled by CtBP2/RIBEYE antibodies, consistent with localization in invaginating horizontal cell tips at photoreceptor triad synapses. Vertical sections of retina immunostained for syntaxin-4 and peanut agglutinin (PNA) established that the prominent patches of syntaxin-4 immunoreactivity were adjacent to the base of cone pedicles. Horizontal sections through the OPL indicate a one-to-one co-localization of syntaxin-4 densities at likely all cone pedicles, with syntaxin-4 immunoreactivity interdigitating with PNA labeling. Pre-embedding immuno-electron microscopy confirmed the subcellular localization of syntaxin-4 labeling to lateral elements at both rod and cone triad synapses. Finally, co-localization with SNAP-25, a possible binding partner of syntaxin-4, indicated co-expression of these SNARE proteins in the same subcellular compartment of the horizontal cell. Taken together, the strong expression of these two SNARE proteins in the processes and endings of horizontal cells at rod and cone terminals suggests that horizontal cell axons and dendrites are likely sites of exocytotic activity. PMID:17640443
Kniss, Jonathan S.; Holbrook, Scott
2013-01-01
Work on axon growth has classically focused on understanding how extrinsic cues control growth cone dynamics independent of the cell body. However, more recently, neuron-intrinsic transcription factors have been shown to influence both normal and regenerative axon growth, suggesting that understanding their mechanism of action is of clinical importance. We are studying axon targeting in the Drosophila visual system and here show that the BTB/POZ zinc-finger transcription factor Tramtrack69 (Ttk69) plays an instructive role in inhibiting the growth of R7 photoreceptor axon terminals. Although ttk69 mutant R7 axons project to the correct medullar target layer, M6, their terminals fail to remain retinotopically restricted and instead grow laterally within M6. This overgrowth is not caused by an inability to be repelled by neighboring R7 axons or by an inability to recognize and initiate synapse formation with postsynaptic targets. The overgrowth is progressive and occurs even if contact between ttk69 mutant R7 axons and their normal target layer is disrupted. Ttk69 is first expressed in wild-type R7s after their axons have reached the medulla; ttk69 mutant R7 axon terminal overgrowth begins shortly after this time point. We find that expressing Ttk69 prematurely in R7s collapses their growth cones and disrupts axon extension, indicating that Ttk69 plays an instructive role in this process. A TGF-β/Activin pathway was shown previously to inhibit R7 axon terminal growth. We find that Ttk69 is required for normal activation of this pathway but that Ttk69 likely also inhibits R7 axon growth by a TGF-β/Activin-independent mechanism. PMID:23345225
The impact of short term synaptic depression and stochastic vesicle dynamics on neuronal variability
Reich, Steven
2014-01-01
Neuronal variability plays a central role in neural coding and impacts the dynamics of neuronal networks. Unreliability of synaptic transmission is a major source of neural variability: synaptic neurotransmitter vesicles are released probabilistically in response to presynaptic action potentials and are recovered stochastically in time. The dynamics of this process of vesicle release and recovery interacts with variability in the arrival times of presynaptic spikes to shape the variability of the postsynaptic response. We use continuous time Markov chain methods to analyze a model of short term synaptic depression with stochastic vesicle dynamics coupled with three different models of presynaptic spiking: one model in which the timing of presynaptic action potentials are modeled as a Poisson process, one in which action potentials occur more regularly than a Poisson process (sub-Poisson) and one in which action potentials occur more irregularly (super-Poisson). We use this analysis to investigate how variability in a presynaptic spike train is transformed by short term depression and stochastic vesicle dynamics to determine the variability of the postsynaptic response. We find that sub-Poisson presynaptic spiking increases the average rate at which vesicles are released, that the number of vesicles released over a time window is more variable for smaller time windows than larger time windows and that fast presynaptic spiking gives rise to Poisson-like variability of the postsynaptic response even when presynaptic spike times are non-Poisson. Our results complement and extend previously reported theoretical results and provide possible explanations for some trends observed in recorded data. PMID:23354693
Rossano, Adam J; Chouhan, Amit K; Macleod, Gregory T
2013-01-01
All biochemical processes, including those underlying synaptic function and plasticity, are pH sensitive. Cytosolic pH (pHcyto) shifts are known to accompany nerve activity in situ, but technological limitations have prevented characterization of such shifts in vivo. Genetically encoded pH-indicators (GEpHIs) allow for tissue-specific in vivo measurement of pH. We expressed three different GEpHIs in the cytosol of Drosophila larval motor neurons and observed substantial presynaptic acidification in nerve termini during nerve stimulation in situ. SuperEcliptic pHluorin was the most useful GEpHI for studying pHcyto shifts in this model system. We determined the resting pH of the nerve terminal cytosol to be 7.30 ± 0.02, and observed a decrease of 0.16 ± 0.01 pH units when the axon was stimulated at 40 Hz for 4 s. Realkalinization occurred upon cessation of stimulation with a time course of 20.54 ± 1.05 s (τ). The chemical pH-indicator 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein corroborated these changes in pHcyto. Bicarbonate-derived buffering did not contribute to buffering of acid loads from short (≤4 s) trains of action potentials but did buffer slow (∼60 s) acid loads. The magnitude of cytosolic acid transients correlated with cytosolic Ca2+ increase upon stimulation, and partial inhibition of the plasma membrane Ca2+-ATPase, a Ca2+/H+ exchanger, attenuated pHcyto shifts. Repeated stimulus trains mimicking motor patterns generated greater cytosolic acidification (∼0.30 pH units). Imaging through the cuticle of intact larvae revealed spontaneous pHcyto shifts in presynaptic termini in vivo, similar to those seen in situ during fictive locomotion, indicating that presynaptic pHcyto shifts cannot be dismissed as artifacts of ex vivo preparations. PMID:23401611
Ibañez-Sandoval, Osvaldo; Hernández, Adán; Florán, Benjamin; Galarraga, Elvira; Tapia, Dagoberto; Valdiosera, Rene; Erlij, David; Aceves, Jorge; Bargas, José
2006-03-01
The effects of activating dopaminergic D1 and D2 class receptors of the subthalamic projections that innervate the pars reticulata of the subtantia nigra (SNr) were explored in slices of the rat brain using the whole cell patch-clamp technique. Excitatory postsynaptic currents (EPSCs) that could be blocked by 6-cyano-7-nitroquinoxalene-2,3-dione and D-(-)-2-amino-5-phosphonopentanoic acid were evoked onto reticulata GABAergic projection neurons by local field stimulation inside the subthalamic nucleus in the presence of bicuculline. Bath application of (RS)-2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine hydrochloride (SKF-38393), a dopaminergic D1-class receptor agonist, increased evoked EPSCs by approximately 30% whereas the D2-class receptor agonist, trans-(-)-4aR-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo(3,4-g)quinoline (quinpirole), reduced EPSCs by approximately 25%. These apparently opposing actions were blocked by the specific D1- and D2-class receptor antagonists: R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetra-hydro-1H-3-benzazepinehydrochloride (SCH 23390) and S-(-)-5-amino-sulfonyl-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride), respectively. Both effects were accompanied by changes in the paired-pulse ratio, indicative of a presynaptic site of action. The presynaptic location of dopamine receptors at the subthalamonigral projections was confirmed by mean-variance analysis. The effects of both SKF-38393 and quinpirole could be observed on terminals contacting the same postsynaptic neuron. Sulpiride and SCH 23390 enhanced and reduced the evoked EPSC, respectively, suggesting a constitutive receptor activation probably arising from endogenous dopamine. These data suggest that dopamine presynaptically modulates the subthalamic projection that targets GABAergic neurons of the SNr. Implications of this modulation for basal ganglia function are discussed.
Loss of syd-1 from R7 Neurons Disrupts Two Distinct Phases of Presynaptic Development
Holbrook, Scott; Finley, Jennifer K.; Lyons, Eric L.
2012-01-01
Genetic analyses in both worm and fly have identified the RhoGAP-like protein Syd-1 as a key positive regulator of presynaptic assembly. In worm, loss of syd-1 can be fully rescued by overexpressing wild-type Liprin-α, suggesting that the primary function of Syd-1 in this process is to recruit Liprin-α. We show that loss of syd-1 from Drosophila R7 photoreceptors causes two morphological defects that occur at distinct developmental time points. First, syd-1 mutant R7 axons often fail to form terminal boutons in their normal M6 target layer. Later, those mutant axons that do contact M6 often project thin extensions beyond it. We find that the earlier defect coincides with a failure to localize synaptic vesicles, suggesting that it reflects a failure in presynaptic assembly. We then analyze the relationship between syd-1 and Liprin-α in R7s. We find that loss of Liprin-α causes a stronger early R7 defect and provide a possible explanation for this disparity: we show that Liprin-α promotes Kinesin-3/Unc-104/Imac-mediated axon transport independently of Syd-1 and that Kinesin-3/Unc-104/Imac is required for normal R7 bouton formation. Unlike loss of syd-1, loss of Liprin-α does not cause late R7 extensions. We show that overexpressing Liprin-α partly rescues the early but not the late syd-1 mutant R7 defect. We therefore conclude that the two defects are caused by distinct molecular mechanisms. We find that Trio overexpression rescues both syd-1 defects and that trio and syd-1 have similar loss- and gain-of-function phenotypes, suggesting that the primary function of Syd-1 in R7s may be to promote Trio activity. PMID:23238725
Nazarian, A; Gu, G; Gracias, N G; Wilkinson, K; Hua, X Y; Vasko, M R; Yaksh, T L
2008-03-03
Dorsal horn N-methyl-D-aspartate (NMDA) receptors contribute significantly to spinal nociceptive processing through an effect postsynaptic to non-primary glutamatergic axons, and perhaps presynaptic to the primary afferent terminals. The present study sought to examine the regulatory effects of NMDA receptors on primary afferent release of substance P (SP), as measured by neurokinin 1 receptor (NK1r) internalization in the spinal dorsal horn of rats. The effects of intrathecal NMDA alone or in combination with D-serine (a glycine site agonist) were initially examined on basal levels of NK1r internalization. NMDA alone or when co-administered with D-serine failed to induce NK1r internalization, whereas activation of spinal TRPV1 receptors by capsaicin resulted in a notable NK1r internalization. To determine whether NMDA receptor activation could potentiate NK1r internalization or pain behavior induced by a peripheral noxious stimulus, intrathecal NMDA was given prior to an intraplantar injection of formalin. NMDA did not alter the formalin-induced NK1r internalization nor did it enhance the formalin paw flinching behavior. To further characterize the effects of presynaptic NMDA receptors, the NMDA antagonists DL-2-amino-5-phosphonopentanoic acid (AP-5) and MK-801 were intrathecally administered to assess their regulatory effects on formalin-induced NK1r internalization and pain behavior. AP-5 had no effect on formalin-induced NK1r internalization, whereas MK-801 produced only a modest reduction. Both antagonists, however, reduced the formalin paw flinching behavior. In subsequent in vitro experiments, perfusion of NMDA in spinal cord slice preparations did not evoke basal release of SP or calcitonin gene-related peptide (CGRP). Likewise, perfusion of NMDA did not enhance capsaicin-evoked release of the two peptides. These results suggest that presynaptic NMDA receptors in the spinal cord play little if any role on the primary afferent release of SP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanley, M.R.
1978-11-01
The crude venom of the Formosan banded krait, Bungarus multicinctus, was separated into eleven lethal protein fractions. Nine fractions were purified to final homogeneous toxins, designated ..cap alpha..-bungarotoxin, ..beta..-bungarotoxin, and toxins 7, 8, 9A, 11, 12, 13, and 14. Three of the toxins, ..cap alpha..-bungarotoxin, 7, and 8, were identified as post-synaptic curarimimetic neurotoxins. The remaining toxins were identified as pre-synaptic neurotoxins. ..cap alpha..-Bungarotoxin, toxin 7, and toxin 8 are all highly stable basic polypeptides of approx. 8000 daltons molecular weight. The pre-synaptic toxins fell into two structural groups: toxin 9A and 14 which were single basic chains of approx.more » 14,000 daltons, and ..beta..-bungarotoxin, and toxins 11 thru 13 which were composed of two chains of approx. 8000 and approx. 13,000 daltons covalently linked by disulfides. All the pre-synaptic neurotoxins were shown to have intrinsic calcium-dependent phospholipase A activities. Under certain conditions, intact synaptic membranes were hydrolyzed more rapidly than protein-free extracted synaptic-lipid liposomes which, in turn, were hydrolyzed more rapidly than any other tested liposomes. It was speculated that cell-surface arrays of phosphatidyl serine/glycolipids created high affinity target sites for ..beta..-bungarotoxin. Single-chain toxins were found to be qualitatively different from the two-chain toxins in their ability to block the functioning of acetylcholine receptors, and were quantitatively different in their enzymatic and membrane disruptive activities. ..beta..-Bungarotoxin was shown to be an extremely potent neuronal lesioning agent. There was no apparent selectivity for cholinergic over non-cholinergic neurons, nor for nerve terminals over cell bodies. It was suggested that ..beta..-bungarotoxin can be considered a useful new histological tool, which may exhibit some regional selectivity.« less
Kwon, Seok-Kyu; Sando, Richard; Lewis, Tommy L; Hirabayashi, Yusuke; Maximov, Anton; Polleux, Franck
2016-07-01
Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance.
Yang, Jian; Wetterstrand, Caroline; Jones, Roland S.G.
2007-01-01
Summary We have shown that a number of anticonvulsant drugs can reduce glutamate release at synapses in the rat entorhinal cortex (EC) in vitro. We have also shown that presynaptic NMDA receptors (NMDAr) tonically facilitate glutamate release at these synapses. In the present study we determined whether, phenytoin, gabapentin and felbamate may reduce glutamate release by blocking the presynaptic NMDAr. Whole cell patch clamp recordings of spontaneous excitatory postsynaptic currents (sEPSCs) were used as a monitor of presynaptic glutamate release. Postsynaptic NMDAr were blocked with internal dialysis with an NMDAr channel blocker. The antagonist, 2-AP5, reduced the frequency of sEPSCs by blocking the presynaptic facilitatory NMDAr, but did not occlude a reduction in sEPSC frequency by gabapentin or phenytoin. Felbamate also reduced sEPSC frequency, but this effect was occluded by prior application of 2-AP5. Thus, whilst all three drugs can reduce glutamate release, only the action of felbamate seems to be due to interaction with presynaptic NMDAr. PMID:17980555
Bonifacino, Tiziana; Musazzi, Laura; Milanese, Marco; Seguini, Mara; Marte, Antonella; Gallia, Elena; Cattaneo, Luca; Onofri, Franco; Popoli, Maurizio; Bonanno, Giambattista
2016-11-01
Abnormal Glu release occurs in the spinal cord of SOD1(G93A) mice, a transgenic animal model for human ALS. Here we studied the mechanisms underlying Glu release in spinal cord nerve terminals of SOD1(G93A) mice at a pre-symptomatic disease stage (30days) and found that the basal release of Glu was more elevated in SOD1(G93A) with respect to SOD1 mice, and that the surplus of release relies on synaptic vesicle exocytosis. Exposure to high KCl or ionomycin provoked Ca(2+)-dependent Glu release that was likewise augmented in SOD1(G93A) mice. Equally, the Ca(2+)-independent hypertonic sucrose-induced Glu release was abnormally elevated in SOD1(G93A) mice. Also in this case, the surplus of Glu release was exocytotic in nature. We could determine elevated cytosolic Ca(2+) levels, increased phosphorylation of Synapsin-I, which was causally related to the abnormal Glu release measured in spinal cord synaptosomes of pre-symptomatic SOD1(G93A) mice, and increased phosphorylation of glycogen synthase kinase-3 at the inhibitory sites, an event that favours SNARE protein assembly. Western blot experiments revealed an increased number of SNARE protein complexes at the nerve terminal membrane, with no changes of the three SNARE proteins and increased expression of synaptotagmin-1 and β-Actin, but not of an array of other release-related presynaptic proteins. These results indicate that the abnormal exocytotic Glu release in spinal cord of pre-symptomatic SOD1(G93A) mice is mainly based on the increased size of the readily releasable pool of vesicles and release facilitation, supported by plastic changes of specific presynaptic mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Xiao-Lei; McGlothan, Jennifer L; Miry, Omid; Stansfield, Kirstie H; Loth, Meredith K; Stanton, Patric K; Guilarte, Tomás R
2018-01-01
Childhood lead (Pb2+) intoxication is a public health problem of global proportion. Lead exposure during development produces multiple effects on the central nervous system including impaired synapse formation, altered synaptic plasticity, and learning deficits. In primary hippocampal neurons in culture and hippocampal slices, Pb2+ exposure inhibits vesicular release and reduces the number of fast-releasing sites, an effect associated with Pb2+ inhibition of NMDA receptor-mediated trans-synaptic Brain-Derived Neurotrophic Factor (BDNF) signaling. The objective of this study was to determine if activation of TrkB, the cognate receptor for BDNF, would rescue Pb2+-induced impairments of vesicular release. Rats were chronically exposed to Pb2+ prenatally and postnatally until 50 days of age. This chronic Pb2+ exposure paradigm enhanced paired-pulse facilitation of synaptic potentials in Schaffer collateral-CA1 synapses in the hippocampus, a phenomenon indicative of reduced vesicular release probability. Decreased vesicular release probability was confirmed by both mean-variance analysis and direct 2-photon imaging of vesicular release from hippocampal slices of rats exposed to Pb2+in vivo. We also found a Pb2+-induced impairment of calcium influx in Schaffer collateral-CA1 synaptic terminals. Intraperitoneal injections of Pb2+ rats with the TrkB receptor agonist 7,8-dihydroxyflavone (5 mg/kg) for 14-15 days starting at postnatal day 35, reversed all Pb2+-induced impairments of presynaptic transmitter release at Schaffer collateral-CA1 synapses. This study demonstrates for the first time that in vivo pharmacological activation of TrkB receptors by small molecules such as 7,8-dihydroxyflavone can reverse long-term effects of chronic Pb2+ exposure on presynaptic terminals, pointing to TrkB receptor activation as a promising therapeutic intervention in Pb2+-intoxicated children. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kopke, Danielle L; Broadie, Kendal
2018-05-24
FM dyes are used to study the synaptic vesicle (SV) cycle. These amphipathic probes have a hydrophilic head and hydrophobic tail, making them water-soluble with the ability to reversibly enter and exit membrane lipid bilayers. These styryl dyes are relatively non-fluorescent in aqueous medium, but insertion into the outer leaflet of the plasma membrane causes a >40X increase in fluorescence. In neuronal synapses, FM dyes are internalized during SV endocytosis, trafficked both within and between SV pools, and released with SV exocytosis, providing a powerful tool to visualize presynaptic stages of neurotransmission. A primary genetic model of glutamatergic synapse development and function is the Drosophila neuromuscular junction (NMJ), where FM dye imaging has been used extensively to quantify SV dynamics in a wide range of mutant conditions. The NMJ synaptic terminal is easily accessible, with a beautiful array of large synaptic boutons ideal for imaging applications. Here, we compare and contrast the three ways to stimulate the Drosophila NMJ to drive activity-dependent FM1-43 dye uptake/release: 1) bath application of high [K + ] to depolarize neuromuscular tissues, 2) suction electrode motor nerve stimulation to depolarize the presynaptic nerve terminal, and 3) targeted transgenic expression of channelrhodopsin variants for light-stimulated, spatial control of depolarization. Each of these methods has benefits and disadvantages for the study of genetic mutation effects on the SV cycle at the Drosophila NMJ. We will discuss these advantages and disadvantages to assist the selection of the stimulation approach, together with the methodologies specific to each strategy. In addition to fluorescent imaging, FM dyes can be photoconverted to electron-dense signals visualized using transmission electron microscopy (TEM) to study SV cycle mechanisms at an ultrastructural level. We provide the comparisons of confocal and electron microscopy imaging from the different methods of Drosophila NMJ stimulation, to help guide the selection of future experimental paradigms.
Garcia, Neus; Tomàs, Marta; Santafé, Manel M; Besalduch, Nuria; Lanuza, Maria A; Tomàs, Josep
2010-12-08
The neurotrophin brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4) and the receptors tropomyosin-related kinase B (trkB) and p75(NTR) are present in the nerve terminals on the neuromuscular junctions (NMJs) of the levator auris longus muscle of the adult mouse. Exogenously added BDNF or NT-4 increased evoked ACh release after 3 h. This presynaptic effect (the size of the spontaneous potentials is not affected) is specific because it is not produced by neurotrophin-3 (NT-3) and is prevented by preincubation with trkB-IgG chimera or by pharmacological block of trkB [K-252a (C₂₇H₂₁N₃O₅)] or p75(NTR) [Pep5 (C₈₆H₁₁₁N₂₅O₁₉S₂] signaling. The effect of BDNF depends on the M₁ and M₂ muscarinic acetylcholine autoreceptors (mAChRs) because it is prevented by atropine, pirenzepine and methoctramine. We found that K-252a incubation reduces ACh release (~50%) in a short time (1 h), but the p75(NTR) signaling inhibitor Pep5 does not have this effect. The specificity of the K-252a blocking effect on trkB was confirmed with the anti-trkB antibody 47/trkB, which reduces evoked ACh release, like K-252a, whereas the nonpermeant tyrosine kinase blocker K-252b does not. Neither does incubation with the fusion protein trkB-IgG (to chelate endogenous BDNF/NT-4), anti-BDNF or anti-NT-4 change ACh release. Thus, the trkB receptor normally seems to be coupled to ACh release when there is no short-term local effect of neurotrophins at the NMJ. The normal function of the mAChR mechanism is a permissive prerequisite for the trkB pathway to couple to ACh release. Reciprocally, the normal function of trkB modulates M₁- and M₂-subtype muscarinic pathways.
Massari, V J; Shirahata, M; Johnson, T A; Lauenstein, J M; Gatti, P J
1998-03-02
Physiological and light microscopic evidence suggest that substance P (SP) may be a neurotransmitter contained in first-order sensory baroreceptor afferents; however, ultrastructural support for this hypothesis is lacking. We have traced the central projections of the carotid sinus nerve (CSN) in the cat by utilizing the transganglionic transport of horseradish peroxidase (HRP). The dorsolateral subnucleus of the nucleus tractus solitarius (dlNTS) was processed for the histochemical visualization of transganglionically labeled CSN afferents and for the immunocytochemical visualization of SP by dual labeling light and electron microscopic methods. Either HRP or SP was readily identified in single-labeled unmyelinated axons, myelinated axons, and nerve terminals in the dlNTS. SP immunoreactivity was also identified in unmyelinated axons, myelinated axons, and nerve terminals in the dlNTS, which were simultaneously identified as CSN primary afferents. However, only 15% of CSN terminals in the dlNTS were immunoreactive for SP. Therefore, while the ultrastructural data support the hypothesis that SP immunoreactive first-order neurons are involved in the origination of the baroreceptor reflex, they suggest that only a modest part of the total sensory input conveyed from the carotid sinus baroreceptors to the dlNTS is mediated by SP immunoreactive CSN terminals. Five types of axo-axonic synapses were observed in the dlNTS. SP immunoreactive CSN afferents were very rarely involved in these synapses. Furthermore, SP terminals were never observed to form the presynaptic element in an axo-axonic synapse with a CSN afferent. Therefore, SP does not appear to be involved in the modulation of the baroreceptor reflex in the dlNTS. Copyright 1998 Elsevier Science B.V.
Bunce, Jamie G; Zikopoulos, Basilis; Feinberg, Marcia; Barbas, Helen
2013-12-15
To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases. Copyright © 2013 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Jin, Iksung; Kandel, Eric R.; Hawkins, Robert D.
2011-01-01
Whereas short-term plasticity involves covalent modifications that are generally restricted to either presynaptic or postsynaptic structures, long-term plasticity involves the growth of new synapses, which by its nature involves both pre- and postsynaptic alterations. In addition, an intermediate-term stage of plasticity has been identified that…
Grill, Warren M; Cantrell, Meredith B; Robertson, Matthew S
2008-02-01
Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents-sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as "re-orthodromically" into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.
Synapsin- and Actin-Dependent Frequency Enhancement in Mouse Hippocampal Mossy Fiber Synapses
Owe, Simen G.; Jensen, Vidar; Evergren, Emma; Ruiz, Arnaud; Shupliakov, Oleg; Kullmann, Dimitri M.; Storm-Mathisen, Jon; Walaas, S. Ivar; Hvalby, Øivind
2009-01-01
The synapsin proteins have different roles in excitatory and inhibitory synaptic terminals. We demonstrate a differential role between types of excitatory terminals. Structural and functional aspects of the hippocampal mossy fiber (MF) synapses were studied in wild-type (WT) mice and in synapsin double-knockout mice (DKO). A severe reduction in the number of synaptic vesicles situated more than 100 nm away from the presynaptic membrane active zone was found in the synapsin DKO animals. The ultrastructural level gave concomitant reduction in F-actin immunoreactivity observed at the periactive endocytic zone of the MF terminals. Frequency facilitation was normal in synapsin DKO mice at low firing rates (∼0.1 Hz) but was impaired at firing rates within the physiological range (∼2 Hz). Synapses made by associational/commissural fibers showed comparatively small frequency facilitation at the same frequencies. Synapsin-dependent facilitation in MF synapses of WT mice was attenuated by blocking F-actin polymerization with cytochalasin B in hippocampal slices. Synapsin III, selectively seen in MF synapses, is enriched specifically in the area adjacent to the synaptic cleft. This may underlie the ability of synapsin III to promote synaptic depression, contributing to the reduced frequency facilitation observed in the absence of synapsins I and II. PMID:18550596
Abbas, Yawar; Jeon, Yu-Rim; Sokolov, Andrey Sergeevich; Kim, Sohyeon; Ku, Boncheol; Choi, Changhwan
2018-01-19
A two terminal semiconducting device like a memristor is indispensable to emulate the function of synapse in the working memory. The analog switching characteristics of memristor play a vital role in the emulation of biological synapses. The application of consecutive voltage sweeps or pulses (action potentials) changes the conductivity of the memristor which is considered as the fundamental cause of the synaptic plasticity. In this study, a neuromorphic device using an in-situ growth of sub-tantalum oxide switching layer is fabricated, which exhibits the digital SET and analog RESET switching with an electroforming process without any compliance current (compliance free). The process of electroforming and SET is observed at the positive sweeps of +2.4 V and +0.86 V, respectively, while multilevel RESET is observed with the consecutive negative sweeps in the range of 0 V to -1.2 V. The movement of oxygen vacancies and gradual change in the anatomy of the filament is attributed to digital SET and analog RESET switching characteristics. For the Ti/Ta 2 O 3-x /Pt neuromorphic device, the Ti top and Pt bottom electrodes are considered as counterparts of the pre-synaptic input terminal and a post-synaptic output terminal, respectively.
Distinct sets of FGF receptors sculpt excitatory and inhibitory synaptogenesis.
Dabrowski, Ania; Terauchi, Akiko; Strong, Cameron; Umemori, Hisashi
2015-05-15
Neurons in the brain must establish a balanced network of excitatory and inhibitory synapses during development for the brain to function properly. An imbalance between these synapses underlies various neurological and psychiatric disorders. The formation of excitatory and inhibitory synapses requires precise molecular control. In the hippocampus, the structure crucial for learning and memory, fibroblast growth factor 22 (FGF22) and FGF7 specifically promote excitatory or inhibitory synapse formation, respectively. Knockout of either Fgf gene leads to excitatory-inhibitory imbalance in the mouse hippocampus and manifests in an altered susceptibility to epileptic seizures, underscoring the importance of FGF-dependent synapse formation. However, the receptors and signaling mechanisms by which FGF22 and FGF7 induce excitatory and inhibitory synapse differentiation are unknown. Here, we show that distinct sets of overlapping FGF receptors (FGFRs), FGFR2b and FGFR1b, mediate excitatory or inhibitory presynaptic differentiation in response to FGF22 and FGF7. Excitatory presynaptic differentiation is impaired in Fgfr2b and Fgfr1b mutant mice; however, inhibitory presynaptic defects are only found in Fgfr2b mutants. FGFR2b and FGFR1b are required for an excitatory presynaptic response to FGF22, whereas only FGFR2b is required for an inhibitory presynaptic response to FGF7. We further find that FGFRs are required in the presynaptic neuron to respond to FGF22, and that FRS2 and PI3K, but not PLCγ, mediate FGF22-dependent presynaptic differentiation. Our results reveal the specific receptors and signaling pathways that mediate FGF-dependent presynaptic differentiation, and thereby provide a mechanistic understanding of precise excitatory and inhibitory synapse formation in the mammalian brain. © 2015. Published by The Company of Biologists Ltd.
Active zone density is conserved during synaptic growth but impaired in aged mice
Chen, Jie; Mizushige, Takafumi; Nishimune, Hiroshi
2013-01-01
Presynaptic active zones are essential structures for synaptic vesicle release, but the developmental regulation of their number and maintenance during aging at mammalian neuromuscular junctions (NMJs) remains unknown. Here, we analyzed the distribution of active zones in developing, mature, and aged mouse NMJs by immunohistochemical detection of the active zone-specific protein Bassoon. Bassoon is a cytosolic scaffolding protein essential for the active zone assembly in ribbon synapses and some brain synapses. Bassoon staining showed a punctate pattern in nerve terminals and axons at the nascent NMJ on embryonic days 16.5–18.5. Three-dimensional reconstruction of NMJs revealed that the majority of Bassoon puncta within an NMJ were attached to the presynaptic membrane from postnatal day 0 to adulthood, and colocalized with another active zone protein Piccolo. During postnatal development, the number of Bassoon puncta increased as the size of the synapses increased. Importantly, the density of Bassoon puncta remained relatively constant from postnatal day 0 to 54 at 2.3 puncta/μm2, while the synapse size increased 3.3-fold. However, Bassoon puncta density and signal intensity were significantly attenuated at the NMJs of 27-month-old aged mice. These results suggest that synapses maintain the density of synaptic vesicle release sites while the synapse size changes, but this density becomes impaired during aging. PMID:21935939
Tohda, Chihiro; Nakada, Rie; Urano, Takuya; Okonogi, Akira; Kuboyama, Tomoharu
2011-12-01
Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder. Current agents for AD are employed for symptomatic therapy and insufficient to cure. We consider that this is quite necessary for AD treatment and have investigated axon/synapse formation-promoting activity. The aim of this study is to investigate the effects of Kamikihi-to [KKT; traditional Japanese (Kampo) medicine] on memory deficits in an AD model, 5XFAD. KKT (200 mg/kg, p.o.) was administered for 15 days to 5XFAD mice. Object recognition memory was tested in vehicle-treated wild-type and 5XFAD mice and KKT-treated 5XFAD mice. KKT-treated 5XFAD mice showed significant improvement of object recognition memory. KKT treatment significantly reduced the number of amyloid plaques in the frontal cortex and hippocampus. Only inside of amyloid plaques were abnormal structures such as bulb-like axons and swollen presynaptic boutons observed. These degenerated axons and presynaptic terminals were significantly reduced by KKT treatment in the frontal cortex. In primary cortical neurons, KKT treatment significantly increased axon length when applied after Aβ(25-35)-induced axonal atrophy had progressed. In conclusion, KKT improved object recognition memory deficit in an AD model 5XFAD mice. Restoration of degenerated axons and synapses may be associated with the memory recovery by KKT.
Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease.
Lohr, Kelly M; Masoud, Shababa T; Salahpour, Ali; Miller, Gary W
2017-01-01
Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move the transmitter efficiently throughout the neuron. Accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here, we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Fornander, Louise H.; Renodon-Cornière, Axelle; Kuwabara, Naoyuki; Ito, Kentaro; Tsutsui, Yasuhiro; Shimizu, Toshiyuki; Iwasaki, Hiroshi; Nordén, Bengt; Takahashi, Masayuki
2014-01-01
The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction. PMID:24304898
Fornander, Louise H; Renodon-Cornière, Axelle; Kuwabara, Naoyuki; Ito, Kentaro; Tsutsui, Yasuhiro; Shimizu, Toshiyuki; Iwasaki, Hiroshi; Nordén, Bengt; Takahashi, Masayuki
2014-02-01
The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction.
Targeting Chronic and Neuropathic Pain: The N-type Calcium Channel Comes of Age
Snutch, Terrance P.
2005-01-01
Summary: The rapid entry of calcium into cells through activation of voltage-gated calcium channels directly affects membrane potential and contributes to electrical excitability, repetitive firing patterns, excitation-contraction coupling, and gene expression. At presynaptic nerve terminals, calcium entry is the initial trigger mediating the release of neurotransmitters via the calcium-dependent fusion of synaptic vesicles and involves interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex of synaptic release proteins. Physiological factors or drugs that affect either presynaptic calcium channel activity or the efficacy of calcium-dependent vesicle fusion have dramatic consequences on synaptic transmission, including that mediating pain signaling. The N-type calcium channel exhibits a number of characteristics that make it an attractive target for therapeutic intervention concerning chronic and neuropathic pain conditions. Within the past year, both U.S. and European regulatory agencies have approved the use of the cationic peptide Prialt for the treatment of intractable pain. Prialt is the first N-type calcium channel blocker approved for clinical use and represents the first new proven mechanism of action for chronic pain intervention in many years. The present review discusses the rationale behind targeting the N-type calcium channel, some of the limitations confronting the widespread clinical application of Prialt, and outlines possible strategies to improve upon Prialt's relatively narrow therapeutic window. PMID:16489373
Mergy, Marc A; Gowrishankar, Raajaram; Gresch, Paul J; Gantz, Stephanie C; Williams, John; Davis, Gwynne L; Wheeler, C Austin; Stanwood, Gregg D; Hahn, Maureen K; Blakely, Randy D
2014-11-04
Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness.
Mergy, Marc A.; Gowrishankar, Raajaram; Gresch, Paul J.; Gantz, Stephanie C.; Williams, John; Davis, Gwynne L.; Wheeler, C. Austin; Stanwood, Gregg D.; Hahn, Maureen K.; Blakely, Randy D.
2014-01-01
Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness. PMID:25331903
Meneses, David; Vega, Ana V.; Torres-Cruz, Francisco Miguel; Barral, Jaime
2016-01-01
In the last years it has been increasingly clear that KV-channel activity modulates neurotransmitter release. The subcellular localization and composition of potassium channels are crucial to understanding its influence on neurotransmitter release. To investigate the role of KV in corticostriatal synapses modulation, we combined extracellular recording of population-spike and pharmacological blockage with specific and nonspecific blockers to identify several families of KV channels. We induced paired-pulse facilitation (PPF) and studied the changes in paired-pulse ratio (PPR) before and after the addition of specific KV blockers to determine whether particular KV subtypes were located pre- or postsynaptically. Initially, the presence of KV channels was tested by exposing brain slices to tetraethylammonium or 4-aminopyridine; in both cases we observed a decrease in PPR that was dose dependent. Further experiments with tityustoxin, margatoxin, hongotoxin, agitoxin, dendrotoxin, and BDS-I toxins all rendered a reduction in PPR. In contrast heteropodatoxin and phrixotoxin had no effect. Our results reveal that corticostriatal presynaptic KV channels have a complex stoichiometry, including heterologous combinations KV1.1, KV1.2, KV1.3, and KV1.6 isoforms, as well as KV3.4, but not KV4 channels. The variety of KV channels offers a wide spectrum of possibilities to regulate neurotransmitter release, providing fine-tuning mechanisms to modulate synaptic strength. PMID:27379187
Presynaptic Kainate Receptor Mediation of Frequency Facilitation at Hippocampal Mossy Fiber Synapses
NASA Astrophysics Data System (ADS)
Schmitz, Dietmar; Mellor, Jack; Nicoll, Roger A.
2001-03-01
Inhibition of transmitter release by presynaptic receptors is widespread in the central nervous system and is typically mediated via metabotropic receptors. In contrast, very little is known about facilitatory receptors, and synaptic activation of a facilitatory autoreceptor has not been established. Here we show that activation of presynaptic kainate receptors can facilitate transmitter release from hippocampal mossy fiber synapses. Synaptic activation of these presumed ionotropic kainate receptors is very fast (<10 ms) and lasts for seconds. Thus, these presynaptic kainate receptors contribute to the short-term plasticity characteristics of mossy fiber synapses, which were previously thought to be an intrinsic property of the synapse.
Fossier, P; Baux, G; Poulain, B; Tauc, L
1990-09-01
1. Possible interactions of contrathion (pralidoxime sulfomethylate), a reactivator of phosphorylated acetylcholinesterase (AChE), with the regulation of cholinergic transmission were investigated on an identified synapse in the buccal ganglion of Aplysia californica. 2. Transmitter release was evoked either by a presynaptic action potential or, under voltage clamp, by a long depolarization of the presynaptic cell. At concentrations higher than 10(-5) M, bath-applied contrathion decreased the amplitude of miniature postsynaptic currents and increased their decay time. At the same time, the quantal release of ACh was transiently facilitated. The facilitatory effect of contrathion was prevented by tubocurarine but not by atropine. Because in this preparation, these drugs block, respectively, the presynaptic nicotinic-like and muscarinic-like receptors involved in positive and negative feedback of ACh release, we proposed that contrathion activates presynaptic nicotinic-like receptors. 3. Differential desensitization of the presynaptic receptors is proposed to explain the transience of the facilitatory action of contrathion on ACh release. 4. The complexity of the synaptic action of contrathion raises the possibility that its therapeutic effects in AChE poisonings are not limited to AChE reactivation.
Kupferschmidt, David A; Lovinger, David M
2015-01-01
Cortical inputs to the dorsolateral striatum (DLS) are dynamically regulated during skill learning and habit formation, and are dysregulated in disorders characterized by impaired action control. Therefore, a mechanistic investigation of the processes regulating corticostriatal transmission is key to understanding DLS-associated circuit function, behaviour and pathology. Presynaptic GABAB and group II metabotropic glutamate (mGlu2/3) receptors exert marked inhibitory control over corticostriatal glutamate release in the DLS, yet the signalling pathways through which they do so are unclear. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 to assess presynaptic Ca2+ in corticostriatal projections to the DLS. Using simultaneous photometric presynaptic Ca2+ and striatal field potential recordings, we report that relative to P/Q-type Ca2+ channels, N-type channels preferentially contributed to evoked presynaptic Ca2+ influx in motor cortex projections to, and excitatory transmission in, the DLS. Activation of GABAB or mGlu2/3 receptors inhibited both evoked presynaptic Ca2+ transients and striatal field potentials. mGlu2/3 receptor-mediated depression did not require functional N-type Ca2+ channels, but was attenuated by blockade of P/Q-type channels. These findings reveal presynaptic mechanisms of inhibitory modulation of corticostriatal function that probably contribute to the selection and shaping of behavioural repertoires. Key points Plastic changes at cortical inputs to the dorsolateral striatum (DLS) underlie skill learning and habit formation, so characterizing the mechanisms by which these inputs are regulated is important for understanding the neural basis of action control. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 and brain slice photometry to assess evoked presynaptic Ca2+ transients in cortical inputs to the DLS and study their regulation by GABAB and mGlu2/3 receptors. GABAB and mGlu2/3 receptor activation caused clear reductions in electrical stimulus-evoked presynaptic Ca2+ transients in corticostriatal inputs to the DLS. Functional P/Q-type voltage-gated Ca2+ channels were required for the normal inhibitory action of corticostriatal mGlu2/3 receptors. We provide direct evidence of presynaptic Ca2+ inhibition by G protein-coupled receptors at corticostriatal projections. PMID:25781000
Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse.
Yamashita, Takayuki; Hige, Toshihide; Takahashi, Tomoyuki
2005-01-07
Molecular dependence of vesicular endocytosis was investigated with capacitance measurements at the calyx of Held terminal in brainstem slices. Intraterminal loading of botulinum toxin E revealed that the rapid capacitance transient implicated as "kiss-and-run" was unrelated to transmitter release. The release-related capacitance change decayed with an endocytotic time constant of 10 to 25 seconds, depending on the magnitude of exocytosis. Presynaptic loading of the nonhydrolyzable guanosine 5'-triphosphate (GTP) analog GTPgS or dynamin-1 proline-rich domain peptide abolished endocytosis. These compounds had no immediate effect on exocytosis, but caused a use-dependent rundown of exocytosis. Thus, the guanosine triphosphatase dynamin-1 is indispensable for vesicle endocytosis at this fast central nervous system (CNS) synapse.
Tammineni, Prasad; Ye, Xuan; Feng, Tuancheng; Aikal, Daniyal; Cai, Qian
2017-01-01
Neurons face unique challenges of transporting nascent autophagic vacuoles (AVs) from distal axons toward the soma, where mature lysosomes are mainly located. Autophagy defects have been linked to Alzheimer’s disease (AD). However, the mechanisms underlying altered autophagy remain unknown. Here, we demonstrate that defective retrograde transport contributes to autophagic stress in AD axons. Amphisomes predominantly accumulate at axonal terminals of mutant hAPP mice and AD patient brains. Amyloid-β (Aβ) oligomers associate with AVs in AD axons and interact with dynein motors. This interaction impairs dynein recruitment to amphisomes through competitive interruption of dynein-Snapin motor-adaptor coupling, thus immobilizing them in distal axons. Consistently, deletion of Snapin in mice causes AD-like axonal autophagic stress, whereas overexpressing Snapin in hAPP neurons reduces autophagic accumulation at presynaptic terminals by enhancing AV retrograde transport. Altogether, our study provides new mechanistic insight into AD-associated autophagic stress, thus establishing a foundation for ameliorating axonal pathology in AD. DOI: http://dx.doi.org/10.7554/eLife.21776.001 PMID:28085665
Lin, Tzu Yu; Lu, Cheng Wei; Huang, Shu-Kuei
2013-01-01
Abstract This study investigated the effects and possible mechanism of ferulic acid, a naturally occurring phenolic compound, on endogenous glutamate release in the nerve terminals of the cerebral cortex in rats. Results show that ferulic acid inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). The effect of ferulic acid on the evoked glutamate release was prevented by chelating the extracellular Ca2+ ions, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Ferulic acid suppressed the depolarization-induced increase in a cytosolic-free Ca2+ concentration, but did not alter 4-AP–mediated depolarization. Furthermore, the effect of ferulic acid on evoked glutamate release was abolished by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na+/Ca2+ exchange. These results show that ferulic acid inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca2+ entry. PMID:23342970
Bassoon-disruption slows vesicle replenishment and induces homeostatic plasticity at a CNS synapse
Mendoza Schulz, Alejandro; Jing, Zhizi; María Sánchez Caro, Juan; Wetzel, Friederike; Dresbach, Thomas; Strenzke, Nicola; Wichmann, Carolin; Moser, Tobias
2014-01-01
Endbulb of Held terminals of auditory nerve fibers (ANF) transmit auditory information at hundreds per second to bushy cells (BCs) in the anteroventral cochlear nucleus (AVCN). Here, we studied the structure and function of endbulb synapses in mice that lack the presynaptic scaffold bassoon and exhibit reduced ANF input into the AVCN. Endbulb terminals and active zones were normal in number and vesicle complement. Postsynaptic densities, quantal size and vesicular release probability were increased while vesicle replenishment and the standing pool of readily releasable vesicles were reduced. These opposing effects canceled each other out for the first evoked EPSC, which showed unaltered amplitude. We propose that ANF activity deprivation drives homeostatic plasticity in the AVCN involving synaptic upscaling and increased intrinsic BC excitability. In vivo recordings from individual mutant BCs demonstrated a slightly improved response at sound onset compared to ANF, likely reflecting the combined effects of ANF convergence and homeostatic plasticity. Further, we conclude that bassoon promotes vesicular replenishment and, consequently, a large standing pool of readily releasable synaptic vesicles at the endbulb synapse. PMID:24442636
Lu, Cheng-Wei; Hung, Chi-Feng; Jean, Wei-Horng; Lin, Tzu-Yu; Huang, Shu-Kuei; Wang, Su-Jane
2018-05-01
Lycopene is a natural dietary carotenoid that was reported to exhibit a neuroprotective profile. Considering that excitotoxicity and cell death induced by glutamate are involved in many brain disorders, the effect of lycopene on glutamate release in rat cerebrocortical nerve terminals and the possible mechanism involved in such effect was investigated. We observed here that lycopene inhibited 4-aminopyridine (4-AP)-evoked glutamate release and intrasynaptosomal Ca 2+ concentration elevation. The inhibitory effect of lycopene on 4-AP-evoked glutamate release was markedly reduced in the presence of the Ca v 2.2 (N-type) and Ca v 2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was insensitive to the intracellular Ca 2+ -release inhibitors dantrolene and CGP37157. Furthermore, in the presence of the protein kinase C inhibitors GF109203X and Go6976, the action of lycopene on evoked glutamate release was prevented. These results are the first to suggest that lycopene inhibits glutamate release from rat cortical synaptosomes by suppressing presynaptic Ca 2+ entry and protein kinase C activity.
Electric field control in DC cable test termination by nano silicone rubber composite
NASA Astrophysics Data System (ADS)
Song, Shu-Wei; Li, Zhongyuan; Zhao, Hong; Zhang, Peihong; Han, Baozhong; Fu, Mingli; Hou, Shuai
2017-07-01
The electric field distributions in high voltage direct current cable termination are investigated with silicone rubber nanocomposite being the electric stress control insulator. The nanocomposite is composed of silicone rubber, nanoscale carbon black and graphitic carbon. The experimental results show that the physical parameters of the nanocomposite, such as thermal activation energy and nonlinearity-relevant coefficient, can be manipulated by varying the proportion of the nanoscale fillers. The numerical simulation shows that safe electric field distribution calls for certain parametric region of the thermal activation energy and nonlinearity-relevant coefficient. Outside the safe parametric region, local maximum of electric field strength around the stress cone appears in the termination insulator, enhancing the breakdown of the cable termination. In the presence of the temperature gradient, thermal activation energy and nonlinearity-relevant coefficient work as complementary factors to produce a reasonable electric field distribution. The field maximum in the termination insulator show complicate variation in the transient processes. The stationary field distribution favors the increase of the nonlinearity-relevant coefficient; for the transient field distribution in the process of negative lighting impulse, however, an optimized value of the nonlinearity-relevant coefficient is necessary to equalize the electric field in the termination.
NASA Astrophysics Data System (ADS)
Kruse, S. E.; McNiff, C. M.; Marshall, A. M.; Courtland, L. M.; Connor, C.; Charbonnier, S. J.; Abdollahzadeh, M.; Connor, L.; Farrell, A. K.; Harburger, A.; Kiflu, H. G.; Malservisi, R.; Njoroge, M.; Nushart, N.; Richardson, J. A.; Rookey, K.
2013-12-01
Numerous recent studies have demonstrated that detailed investigation of scoria cone and maar morphology can reveal rich details the eruptive and erosion histories of these volcanoes. A suite of geophysical surveys were conducted to images Rattlesnake Crater in the San Francisco Volcanic Field, AZ, US. We report here the results of ~3.4 km of ground penetrating radar (GPR) surveys that target the processes of deposition and erosion on the pair of cinder cones that overprint the southeast edge of Rattlesnake crater and on the tuff ring that forms the crater rim. Data were collected with 500, 250, 100, and 50 MHz antennas. The profiles were run in a radial direction down the northeast flanks of the cones (~1 km diameter, ~120 meters height) , and on the inner and outer margins of the oblong maar rim (~20-80 meters height). A maximum depth of penetration of GPR signal of ~15m was achieved high on the flanks of scoria cones. A minimum depth of essentially zero penetration occurred in the central crater. We speculate that maximum penetration occurs near the peaks of the cones and crater rim because ongoing erosion limits new soil formation. Soil formation would tend to increase surface conductivity and hence decrease GPR penetration. Soil is probably better developed within the crater, precluding significant radar penetration there. On the northeast side of the gently flattened rim of the easternmost scoria cone, the GPR profile shows internal layering that dips ~20 degrees northeast relative to the current ground surface. This clearly indicates that the current gently dipping surface is not a stratigraphic horizon, but reflects instead an erosive surface into cone strata that formed close to the angle of repose. Along much of the cone flanks GPR profiles show strata dipping ~4-5 degrees more steeply than the current surface, suggesting erosion has occurred over most of the height of the cone. An abrupt change in strata attitude is observed at the gradual slope diminishment at the base of the scoria cone, where the dip of GPR reflectors changes from radially out from the cone to horizontal or radially inward toward the cone. These changes suggest that grain avalanche packages thin at the base of the slope or that cone strata terminate against the pre-existing surface. We do not identify continuous tephra fall deposits extending from the base of the cone, which would be indicative of violent strombolian activity. On one profile strong diffractors at the base of the cone suggest the presence of now-buried ballistics that rolled to the bottom of the slope. A major question to be addressed with the GPR data is whether the scoria cone erosion by downslope granular flow can be modeled using the diffusion-advection equation with constant diffusivity and advection terms, and in contrast, how much of the profile is explained by downslope movement at the time of the eruption. GPR reflecting horizons on the maar rim are smoother in appearance than those on the scoria cone, perhaps indicating finer-grained material and the absence of diffracting blocks. On the west rim layers suggest indicated a paleo-rim with a flat top ~50 meters wide, surrounded on both sides by strata dipping more steeply than the current surface. Radar stratgraphy outside the northeastern maar rim is much more complex.
Sokolow, Sophie; Luu, Sanh H; Nandy, Karabi; Miller, Carol A; Vinters, Harry V; Poon, Wayne W; Gylys, Karen H
2012-01-01
Amyloid-beta (Aβ) is thought to play a central role in synaptic dysfunction (e.g. neurotransmitter release) and synapse loss. Glutamatergic dysfunction is involved in the pathology of Alzheimer's disease (AD) and perhaps plays a central role in age-related cognitive impairment. Yet, it is largely unknown whether Aβ accumulates in excitatory boutons. To assess the possibility that glutamatergic terminals are lost in AD patients, control and AD synaptosomes were immunolabeled for the most abundant vesicular glutamate transporters (VGluT1 and VGluT2) and quantified by flow cytometry and immunoblot methods. In post-mortem parietal cortex from aged control subjects, glutamatergic boutons are fairly abundant as approximately 40% were immunoreactive for VGluT1 (37%) and VGluT2 (39%). However, the levels of these specific markers of glutamatergic synapses were not significantly different among control and AD cases. To test the hypothesis that Aβ is associated with excitatory terminals, AD synaptosomes were double-labeled for Aβ and for VGluT1 and VGluT2, and analyzed by flow cytometry and confocal microscopy. Our study demonstrated that Aβ immunoreactivity (IR) was present in glutamatergic terminals of AD patients. Quantification of Aβ and VGluT1 in a large population of glutamatergic nerve terminals was performed by flow cytometry, showing that 42% of VGluT1 synaptosomes were immunoreactive for Aβ compared to 9% of VGluT1 synaptosomes lacking Aβ-IR. Percentage of VGluT2 synaptosomes immunoreactive for Aβ (21%) was significantly higher than VGluT2 synaptosomes lacking Aβ-IR (9%). Moreover, Aβ preferentially affects VGluT1 (42% positive) compared to VGluT2 terminals (21%). These data represent the first evidence of high levels of Aβ in excitatory boutons in AD cortex and support the hypothesis that Aβ may play a role in modulating glutamate transmission in AD terminals. Copyright © 2011 Elsevier Inc. All rights reserved.
Sokolow, Sophie; Luu, Sanh H.; Nandy, Karabi; Miller, Carol A.; Vinters, Harry V.; Poon, Wayne W.; Gylys, Karen H.
2011-01-01
Amyloid-beta (Aβ) is thought to play a central role in synaptic dysfunction (e.g. neurotransmitter release) and synapse loss. Glutamatergic dysfunction is involved in the pathology of Alzheimer’s disease (AD) and perhaps plays a central role in age-related cognitive impairment. Yet, it is largely unknown whether Aβ accumulates in excitatory boutons. To assess the possibility that glutamatergic terminals are lost in AD patients, control and AD synaptosomes were immunolabeled for the most abundant vesicular glutamate transporters (VGluT1 and VGluT2) and quantified by flow cytometry and immunoblot methods. In post-mortem parietal cortex from aged control subjects, glutamatergic boutons are fairly abundant as approximately 40% were immunoreactive for VGluT1 (37%) and VGluT2 (39%). However, the levels of these specific markers of glutamatergic synapses were not significantly different among control and AD cases. To test the hypothesis that Aβ is associated with excitatory terminals, AD synaptosomes were double-labeled for Aβ and for VGluT1 and VGluT2, and analyzed by flow cytometry and confocal microscopy. Our study demonstrated that Aβ immunoreactivity (IR) was present in glutamatergic terminals of AD patients. Quantification of Aβ and VGluT1 in a large population of glutamatergic nerve terminals was performed by flow cytometry, showing that 42% of VGluT1 synaptosomes were immunoreactive for Aβ compared to 9% of VGluT1 synaptosomes lacking Aβ-IR. Percentage of VGluT2 synaptosomes immunoreactive for Aβ (21%) was significantly higher than VGluT2 synaptosomes lacking Aβ-IR (9%). Moreover, Aβ preferentially affects VGluT1 (42% positive) compared to VGluT2 terminals (21%). These data represent the first evidence of high levels of Aβ in excitatory boutons in AD cortex and support the hypothesis that Aβ may play a role in modulating glutamate transmission in AD terminals. PMID:21914482
A Dynamic Analysis of Secretory Granules Containing Proteins Involved In Learning
NASA Astrophysics Data System (ADS)
Prahl, Louis; Simon, Alex; Jacobs, Conor; Fulwiler, Audrey; Hilken, Lindsay; Scalettar, Bethe; Lochner, Janis
2010-10-01
Formation and encoding of long-term memories requires a series of structural changes at synapses, or sites of neuronal communication, in the hippocampus; these changes are mediated by neuromodulatory proteins and serve to strengthen synapses to improve communication. Two prominent neuromodulators, tissue plasminogen activator (tPA) and brain-derived neurotrophic factor (BDNF), are copackaged into secretory granules (SGs) in the body of nerve cells and are transported to distal synapses by motor proteins. At synapses, particularly presynaptic sites, the fate of tPA and BDNF is largely unknown. Motivated by this, and by recent data implicating presynaptic BDNF in early phases of learning, we used fluorescence microscopy to elucidate dynamic properties of presynaptic tPA and BDNF. We find that presynaptic SGs containing tPA and/or BDNF undergo Brownian and anomalous diffusive motion that, in 75% of cases, is so slow that it typically would be classified as immobility. These results suggest that tPA and BDNF are retained at presynaptic sites to facilitate their corelease and role in learning.
2012-01-01
Action potentials at the neurons and graded signals at the synapses are primary codes in the brain. In terms of their functional interaction, the studies were focused on the influence of presynaptic spike patterns on synaptic activities. How the synapse dynamics quantitatively regulates the encoding of postsynaptic digital spikes remains unclear. We investigated this question at unitary glutamatergic synapses on cortical GABAergic neurons, especially the quantitative influences of release probability on synapse dynamics and neuronal encoding. Glutamate release probability and synaptic strength are proportionally upregulated by presynaptic sequential spikes. The upregulation of release probability and the efficiency of probability-driven synaptic facilitation are strengthened by elevating presynaptic spike frequency and Ca2+. The upregulation of release probability improves spike capacity and timing precision at postsynaptic neuron. These results suggest that the upregulation of presynaptic glutamate release facilitates a conversion of synaptic analogue signals into digital spikes in postsynaptic neurons, i.e., a functional compatibility between presynaptic and postsynaptic partners. PMID:22852823
Protein dynamics during presynaptic complex assembly on individual ssDNA molecules
Gibb, Bryan; Ye, Ling F.; Kwon, YoungHo; Niu, Hengyao; Sung, Patrick; Greene, Eric C.
2014-01-01
Homologous recombination is a conserved pathway for repairing double–stranded breaks, which are processed to yield single–stranded DNA overhangs that serve as platforms for presynaptic complex assembly. Here we use single–molecule imaging to reveal the interplay between Saccharomyce cerevisiae RPA, Rad52, and Rad51 during presynaptic complex assembly. We show that Rad52 binds RPA–ssDNA and suppresses RPA turnover, highlighting an unanticipated regulatory influence on protein dynamics. Rad51 binding extends the ssDNA, and Rad52–RPA clusters remain interspersed along the presynaptic complex. These clusters promote additional binding of RPA and Rad52. Together, our work illustrates the spatial and temporal progression of RPA and Rad52 association with the presynaptic complex, and reveals a novel RPA–Rad52–Rad51–ssDNA intermediate, which has implications for understanding how the activities of Rad52 and RPA are coordinated with Rad51 during the later stages recombination. PMID:25195049
A Presynaptic Gain Control Mechanism Fine-Tunes Olfactory Behavior
Root, Cory M.; Masuyama, Kaoru; Green, David S.; Enell, Lina E.; Nässel, Dick R.; Lee, Chi-Hon; Wang, Jing W.
2008-01-01
Early sensory processing can play a critical role in sensing environmental cues. We have investigated the physiological and behavioral function of gain control at the first synapse of olfactory processing in Drosophila. We report that olfactory receptor neurons (ORNs) express the GABAB receptor (GABABR) and its expression expands the dynamic range of ORN synaptic transmission that is preserved in projection neuron responses. Strikingly, we find that different ORN channels have unique baseline levels of GABABR expression. ORNs that sense the aversive odorant CO2 do not express GABABRs nor exhibit any presynaptic inhibition. In contrast, pheromone-sensing ORNs express a high level of GABABRs and exhibit strong presynaptic inhibition. Furthermore, a behavioral significance of presynaptic inhibition was revealed by a courtship behavior in which pheromone-dependent mate localization is impaired in flies that lack GABABRs in specific ORNs. Together, these findings indicate that different olfactory receptor channels may employ heterogeneous presynaptic gain control as a mechanism to allow an animal’s innate behavioral responses to match its ecological needs. PMID:18667158
Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks
Letellier, Mathieu; Park, Yun Kyung; Chater, Thomas E.; Chipman, Peter H.; Gautam, Sunita Ghimire; Oshima-Takago, Tomoko; Goda, Yukiko
2016-01-01
Dendrites are neuronal structures specialized for receiving and processing information through their many synaptic inputs. How input strengths are modified across dendrites in ways that are crucial for synaptic integration and plasticity remains unclear. We examined in single hippocampal neurons the mechanism of heterosynaptic interactions and the heterogeneity of synaptic strengths of pyramidal cell inputs. Heterosynaptic presynaptic plasticity that counterbalances input strengths requires N-methyl-d-aspartate receptors (NMDARs) and astrocytes. Importantly, this mechanism is shared with the mechanism for maintaining highly heterogeneous basal presynaptic strengths, which requires astrocyte Ca2+ signaling involving NMDAR activation, astrocyte membrane depolarization, and L-type Ca2+ channels. Intracellular infusion of NMDARs or Ca2+-channel blockers into astrocytes, conditionally ablating the GluN1 NMDAR subunit, or optogenetically hyperpolarizing astrocytes with archaerhodopsin promotes homogenization of convergent presynaptic inputs. Our findings support the presence of an astrocyte-dependent cellular mechanism that enhances the heterogeneity of presynaptic strengths of convergent connections, which may help boost the computational power of dendrites. PMID:27118849
Corlew, Rebekah; Wang, Yun; Ghermazien, Haben; Erisir, Alev; Philpot, Benjamin D.
2010-01-01
NMDA receptor (NMDAR) activation is required for many forms of learning and memory as well as sensory system receptive field plasticity, yet the relative contribution of pre- and postsynaptic NMDARs over cortical development remains unknown. Here we demonstrate a rapid developmental loss of functional presynaptic NMDARs in the neocortex. Presynaptic NMDARs enhance neurotransmitter release at synapses onto visual cortex pyramidal cells in young mice (< postnatal day 20; P20), but they have no apparent effect after the onset of the critical period for receptive field plasticity (>P21). Immuno-electron microscopy revealed that the loss of presynaptic NMDAR function is likely due in part to a 50% reduction in the prevalence of presynaptic NMDARs. Coincident with the observed loss of presynaptic NMDAR function, there is an abrupt change in the mechanisms of timing-dependent long-term depression (tLTD). Induction of tLTD before the onset of the critical period requires activation of pre- but not postsynaptic NMDARs, while the induction of tLTD in older mice requires activation of postsynaptic NMDARs. By demonstrating that both pre- and postsynaptic NMDARs contribute to the induction of synaptic plasticity, and that their relative roles shift over development, our findings define a novel, and perhaps general, property of synaptic plasticity in emerging cortical circuits. PMID:17855598
Fei, G-H; Feng, Z-P
2008-04-22
Chronic hypoxia causes neural dysfunction. Oxygen (O(2)) supplements have been commonly used to increase the O(2) supply, yet the therapeutic benefit of this treatment remains controversial due to a lack of cellular and molecular evidence. In this study, we examined the effects of short-burst O(2) supplementation on neural behavior and presynaptic protein expression profiles in a simple chronic hypoxia model of snail Lymnaea stagnalis. We reported that hypoxia delayed the animal response to light stimuli, suppressed locomotory activity, induced expression of stress-response proteins, hypoxia inducible factor-1alpha (HIF-1alpha) and heat shock protein 70 (HSP70), repressed syntaxin-1 (a membrane-bound presynaptic protein) and elevated vesicle-associated membrane protein-1 (VAMP-1) (a vesicle-bound presynaptic protein) level. O(2) supplements relieved suppression of neural behaviors, and corrected hypoxia-induced protein alterations in a dose-dependent manner. The effectiveness of supplemental O(2) was further evaluated by determining time courses for recovery of neural behaviors and expression of stress response proteins and presynaptic proteins after relief from hypoxia conditions. Our findings suggest that O(2) supplement improves hypoxia-induced adverse alterations of presynaptic protein expression and neurobehaviors, however, the optimal level of O(2) required for improvement is protein specific and system specific.
Developmental changes in Ca2+ channel subtypes regulating endocytosis at the calyx of Held
Midorikawa, Mitsuharu; Okamoto, Yuji; Sakaba, Takeshi
2014-01-01
At the mammalian central synapse, Ca2+ influx through Ca2+ channels triggers neurotransmitter release by exocytosis of synaptic vesicles, which fuse with the presynaptic membrane and are subsequently retrieved by endocytosis. At the calyx of Held terminal, P/Q-type Ca2+ channels mainly mediate exocytosis, while N- and R-type channels have a minor role in young terminals (postnatal days 8–11). The role of each Ca2+ channel subtype in endocytosis remains to be elucidated; therefore, we examined the role of each type of Ca2+ channel in endocytosis, by using whole-cell patch-clamp recordings in conjunction with capacitance measurement techniques. We found that at the young calyx terminal, when R-type Ca2+ channels were blocked, the slow mode of endocytosis was further slowed, while blocking of either P/Q- or N-type Ca2+ channels had no major effect. In more mature terminals (postnatal days 14–17), the slow mode of endocytosis was mainly triggered by P/Q-type Ca2+ channels, suggesting developmental changes in the regulation of the slow mode of endocytosis by different Ca2+ channel subtypes. In contrast, a fast mode of endocytosis was observed after strong stimulation in young terminals that was mediated mainly by P/Q-type, but not R- or N-type Ca2+ channels. These results suggest that different types of Ca2+ channels regulate the two different modes of endocytosis. The results may also suggest that exo- and endocytosis are regulated independently at different sites in young animals but are more tightly coupled in older animals, allowing more efficient synaptic vesicle cycling adapted for fast signalling. PMID:24907302
Song, Xiufeng; Gurevich, Eugenia V.; Gurevich, Vsevolod V.
2008-01-01
Arrestins are multi-functional regulators of G protein-coupled receptors. Receptor-bound arrestins interact with >30 remarkably diverse proteins and redirect the signaling to G protein-independent pathways. The functions of free arrestins are poorly understood, and the interaction sites of the non-receptor arrestin partners are largely unknown. In this study, we show that cone arrestin, the least studied member of the family, binds c-Jun N-terminal kinase (JNK3) and Mdm2 and regulates their subcellular distribution. Using arrestin mutants with increased or reduced structural flexibility, we demonstrate that arrestin in all conformations binds JNK3 comparably, whereas Mdm2 preferentially binds cone arrestin ‘frozen’ in the basal state. To localize the interaction sites, we expressed separate N- and C-domains of cone and rod arrestins and found that individual domains bind JNK3 and remove it from the nucleus as efficiently as full-length proteins. Thus, the arrestin binding site for JNK3 includes elements in both domains with the affinity of partial sites on individual domains sufficient for JNK3 relocalization. N-domain of rod arrestin binds Mdm2, which localizes its main interaction site to this region. Comparable binding of JNK3 and Mdm2 to four arrestin subtypes allowed us to identify conserved residues likely involved in these interactions. PMID:17680991
High-temperature geothermal cableheads
NASA Astrophysics Data System (ADS)
Coquat, J. A.; Eifert, R. W.
1981-11-01
Two high temperature, corrosion resistant logging cable heads which use metal seals and a stable fluid to achieve proper electrical terminations and cable sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable sonde interface were absent during demonstration hostile environment loggings in which these cable heads were used.
Growth of Megaspherulites In a Rhyolitic Vitrophyre
NASA Technical Reports Server (NTRS)
Smith, Robert K.; Tremallo, Robin L.; Lofgren, Gary E.
2000-01-01
Megaspherulites occur in the middle zone of a thick sequence of rhyolitic vitrophyre that occupies a small, late Eocene to early Oligocene volcanic-tectonic basin near Silver Cliff, Custer County, Colorado. Diameters of the megaspherulites range from 0.3 m to over 3.66 m, including a clay envelope. The megaspherulites are compound spherulites. consisting of an extremely large number (3.8 x 10(exp 9) to 9.9 x 10(exp 9)) of individual growth cones averaging 3 mm long by 1.25 mm wide at their termination. They are holocrystalline, very fine- to fine-grained, composed of disordered to ordered sanidine (orthoclase) and quartz, and surrounded by a thin K-feldspar, quartz rich rind, an inner clay layer with mordenite, and an outer clay layer composed wholly of 15 A montmorillonite. Whole rock analyses of the megaspherulites show a restricted composition from their core to their outer edge, with an average analyses of 76.3% SiO2, 0.34% CaO, 2.17% Na2O, 6.92% K2O, 0.83% H2O+ compared to the rhyolitic vitrophyre from which they crystallize with 71.07% SiO2, 0.57% CaO, 4.06% Na2O,4.l0% K2O, and 6.40% H2O+. The remaining oxides of Fe2O3 (total Fe), A12O3, MnO,MgO, TiO2, P2O5, Cr2O3, and trace elements show uniform distribution between the megaspherulites and the rhyolitic vitrophyre. Megaspherulite crystallization began soon after the rhyolitic lava ceased to flow as the result of sparse heterogeneous nucleation, under nonequilibrium conditions, due to a high degree of undercooling, delta T. The crystals grow with a fibrous habit which is favored by a large delta T ranging between 245 C and 295 C, despite lowered viscosity, and enhanced diffusion due to the high H2O content, ranging between 5% and 7%. Therefore, megaspherulite growth proceeded in a diffusion controlled manner, where the diffusion, rate lags behind the crystal growth rate at the crystal-liquid interface, restricting fibril lengths and diameters to the 10 micron to 15 micron and 3 micron and 8 micron ranges respectively. Once diffusion reestablishes itself at the crystallization front, a new nucleation event occurs at the terminated tips of the fibril cones and a new cone begins to develop with a similar orientation (small angle branching) to the earlier cones. During crystallization, these fibril cones impinge upon each other, resulting in fibril cone-free areas. These cone-free areas consist of coarser, fine-grained phases, dominated by quartz, which crystallized from the melt as it accumulated between the crystallizing K-feldspar fibrils of the cones. The anhydrous nature of the disordered to ordered sanidine (orthoclase) and quartz, suggests that water in the vitrophyre moved ahead of the crystallization front, resulting in a water rich fluid being enriched in Si, K, Na, Mg, Ca, Sr, Ba, and Y. The clay layers associated with the megaspherulites are therefore, the result of the deuteric alteration between the fractionated water and the vitrophyre, as indicated by the presence of the minerals mordenite and montmorillonite. This silica rich fluid also resulted in the total silicification of the megaspherulites within the upper 3 m of the vitrophyre.
Nuclear-Encoded Mitochondrial mRNAs: A Powerful Force in Axonal Growth and Development.
Gale, Jenna R; Aschrafi, Armaz; Gioio, Anthony E; Kaplan, Barry B
2018-04-01
Axons, their growth cones, and synaptic nerve terminals are neuronal subcompartments that have high energetic needs. As such, they are enriched in mitochondria, which supply the ATP necessary to meet these demands. To date, a heterogeneous population of nuclear-encoded mitochondrial mRNAs has been identified in distal axons and growth cones. Accumulating evidence suggests that the local translation of these mRNAs is required for mitochondrial maintenance and axonal viability. Here, we review evidence that suggests a critical role for axonal translation of nuclear-encoded mitochondrial mRNAs in axonal growth and development. Additionally, we explore the role that site-specific translation at the mitochondria itself may play in this process. Finally, we briefly review the clinical implications of dysregulation of local translation of mitochondrial-related mRNAs in neurodevelopmental disorders.
Kurakata, Y; Sakagami, H; Takeda, M; Konno, K; Kitajima, K; Ichikawa, S; Hata, N; Sato, T
1989-01-01
An acidic pine cone extract, Fr. V. of Pinus parviflora Sieb. et Zucc. significantly stimulated DNA synthesis of isolated splenocytes from both mice and rats, but only marginally affected the DNA synthesis of leukemic cell lines. The maximum stimulation level attained by Fr. V slightly exceeded that of plant lectins, whereas much weaker stimulating activity was found in natural and chemically modified antitumor polysaccharides, sialic acid-rich glycoproteins, and polyphenolic compounds such as lignin and tannic acid. In mice with subcutaneously transplanted sarcoma-180, responses of splenocytes against Con A declines in the terminal stage of tumor development, whereas responses against Fr. V remained relatively constant throughout all periods of tumor progression. The suppression of Fr. V activity by acetylation or methylation suggests the importance of the hydroxyl group in the expression of its stimulation activity.
Assignment of the human GABA transporter gene (GABATHG) locus to chromosome 3p24-p25
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Fang; Fei, Jian; Guo, Li-He
1995-09-01
An essential regulatory process of synaptic transmission is the inactivation of released neurotransmitters by the transmitter-specific uptake mechanism, {gamma}-Aminobutyric acid (GABA) is an inhibitory transmitter in the vertebrate central nervous system; its activity is terminated by a high-affinity Na{sup +} and Cl{sup -} -dependent specific GABA transporter (GAT), which carries the neurotransmitter to the presynaptic neuron and/or glial elements surrounding the synaptic cleft. Deficiency of the transporter may cause epilepsy and some other nervous diseases. The human GAT gene (GABATHG), approximately 25 kb in length, has been cloned and sequenced by our colleagues (7). Here the results of the inmore » situ hybridization mapping with the gene are presented. 10 refs., 1 fig.« less
Besalduch, Núria; Lanuza, Maria A; Garcia, Neus; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Priego, Mercedes; Tomàs, Josep
2013-11-27
Several classic and novel protein kinase C (PKC) isoforms are selectively distributed in specific cell types of the adult neuromuscular junction (NMJ), in the neuron, glia and muscle components, and are involved in many functions, including neurotransmission. Here, we investigate the presence in this paradigmatic synapse of atypical PKCs, full-length atypical PKC zeta (aPKCζ), its separated catalytic part (PKMζ) and atypical lambda-iota PKC (aPKCλ/ι). High resolution immunohistochemistry was performed using a pan-atypical PKC antibody. Our results show moderate immunolabeling on the three cells (presynaptic motor nerve terminal, teloglial Schwann cell and postsynaptic muscle cell) suggesting the complex involvement of atypical PKCs in synaptic function. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Jokic, Natasa; Gonzalez de Aguilar, Jose-Luis; Dimou, Leda; Lin, Shuo; Fergani, Anissa; Ruegg, Markus A; Schwab, Martin E; Dupuis, Luc; Loeffler, Jean-Philippe
2006-01-01
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss and muscle wasting. In muscles of ALS patients, Nogo-A—a protein known to inhibit axon regeneration—is ectopically expressed at levels that correlate with the severity of the clinical symptoms. We now show that the genetic ablation of Nogo-A extends survival and reduces muscle denervation in a mouse model of ALS. In turn, overexpression of Nogo-A in wild-type muscle fibres leads to shrinkage of the postsynapse and retraction of the presynaptic motor ending. This suggests that the expression of Nogo-A occurring early in ALS skeletal muscle could cause repulsion and destabilization of the motor nerve terminals, and subsequent dying back of the axons and motor neurons. PMID:17039253
Choi, Soonwook; Yu, Eunah; Rabello, Guilherme; Merlo, Suelen; Zemmar, Ajmal; Walton, Kerry D.; Moreno, Herman; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.
2014-01-01
Superfusion of the squid giant synapse with artificial seawater (ASW) based on isotonic saline containing oxygen nanobubbles (RNS60 ASW) generates an enhancement of synaptic transmission. This was determined by examining the postsynaptic response to single and repetitive presynaptic spike activation, spontaneous transmitter release, and presynaptic voltage clamp studies. In the presence of RNS60 ASW single presynaptic stimulation elicited larger postsynaptic potentials (PSP) and more robust recovery from high frequency stimulation than in control ASW. Analysis of postsynaptic noise revealed an increase in spontaneous transmitter release with modified noise kinetics in RNS60 ASW. Presynaptic voltage clamp demonstrated an increased EPSP, without an increase in presynaptic ICa++ amplitude during RNS60 ASW superfusion. Synaptic release enhancement reached stable maxima within 5–10 min of RNS60 ASW superfusion and was maintained for the entire recording time, up to 1 h. Electronmicroscopic morphometry indicated a decrease in synaptic vesicle density and the number at active zones with an increase in the number of clathrin-coated vesicles (CCV) and large endosome-like vesicles near junctional sites. Block of mitochondrial ATP synthesis by presynaptic injection of oligomycin reduced spontaneous release and prevented the synaptic noise increase seen in RNS60 ASW. After ATP block the number of vesicles at the active zone and CCV was reduced, with an increase in large vesicles. The possibility that RNS60 ASW acts by increasing mitochondrial ATP synthesis was tested by direct determination of ATP levels in both presynaptic and postsynaptic structures. This was implemented using luciferin/luciferase photon emission, which demonstrated a marked increase in ATP synthesis following RNS60 administration. It is concluded that RNS60 positively modulates synaptic transmission by up-regulating ATP synthesis, thus leading to synaptic transmission enhancement. PMID:24575037
Liu, Jie; Berger, Christopher L; Morrical, Scott W
2013-11-12
Enzymes of the RecA/Rad51 family catalyze DNA strand exchange reactions that are important for homologous recombination and for the accurate repair of DNA double-strand breaks. RecA/Rad51 recombinases are activated by their assembly into presynaptic filaments on single-stranded DNA (ssDNA), a process that is regulated by ssDNA binding protein (SSB) and mediator proteins. Mediator proteins stimulate strand exchange by accelerating the rate-limiting displacement of SSB from ssDNA by the incoming recombinase. The use of mediators is a highly conserved strategy in recombination, but the precise mechanism of mediator activity is unknown. In this study, the well-defined bacteriophage T4 recombination system (UvsX recombinase, Gp32 SSB, and UvsY mediator) is used to examine the kinetics of presynaptic filament assembly on native ssDNA in vitro. Results indicate that the ATP-dependent assembly of UvsX presynaptic filaments on Gp32-covered ssDNA is limited by a salt-sensitive nucleation step in the absence of mediator. Filament nucleation is selectively enhanced and rendered salt-resistant by mediator protein UvsY, which appears to stabilize a prenucleation complex. This mechanism potentially explains how UvsY promotes presynaptic filament assembly at physiologically relevant ionic strengths and Gp32 concentrations. Other data suggest that presynaptic filament assembly involves multiple nucleation events, resulting in many short UvsX-ssDNA filaments or clusters, which may be the relevant form for recombination in vivo. Together, these findings provide the first detailed kinetic model for presynaptic filament assembly involving all three major protein components (recombinase, mediator, and SSB) on native ssDNA.
Zhang, C.; Rompani, S. B.; Roska, B.
2014-01-01
In the central nervous system, inhibition shapes neuronal excitation. In spinal cord glycinergic inhibition predominates, whereas GABAergic inhibition predominates in the brain. The retina uses GABA and glycine in approximately equal proportions. Glycinergic crossover inhibition, initiated in the On retinal pathway, controls glutamate release from presynaptic OFF cone bipolar cells (CBCs) and directly shapes temporal response properties of OFF retinal ganglion cells (RGCs). In the retina, four glycine receptor (GlyR) α-subunit isoforms are expressed in different sublaminae and their synaptic currents differ in decay kinetics. GlyRα1, expressed in both On and Off sublaminae of the inner plexiform layer, could be the glycinergic isoform that mediates On-to-Off crossover inhibition. However, subunit-selective glycine contributions remain unknown because we lack selective antagonists or cell class-specific subunit knockouts. To examine the role of GlyRα1 in direct inhibition in mature RGCs, we used retrogradely transported adeno-associated virus (AAV) that performed RNAi and eliminated almost all glycinergic spontaneous and visually evoked responses in PV5 (OFFαTransient) RGCs. Comparisons of responses in PV5 RGCs infected with AAV-scrambled-short hairpin RNA (shRNA) or AAV-Glra1-shRNA confirm a role for GlyRα1 in crossover inhibition in cone-driven circuits. Our results also define a role for direct GlyRα1 inhibition in setting the resting membrane potential of PV5 RGCs. The absence of GlyRα1 input unmasked a serial and a direct feedforward GABAAergic modulation in PV5 RGCs, reflecting a complex interaction between glycinergic and GABAAergic inhibition. PMID:25231618
Mei, Juan; Zhao, Ji
2018-06-14
Presynaptic neurotoxins and postsynaptic neurotoxins are two important neurotoxins isolated from venoms of venomous animals and have been proven to be potential effective in neurosciences and pharmacology. With the number of toxin sequences appeared in the public databases, there was a need for developing a computational method for fast and accurate identification and classification of the novel presynaptic neurotoxins and postsynaptic neurotoxins in the large databases. In this study, the Multinomial Naive Bayes Classifier (MNBC) had been developed to discriminate the presynaptic neurotoxins and postsynaptic neurotoxins based on the different kinds of features. The Minimum Redundancy Maximum Relevance (MRMR) feature selection method was used for ranking 400 pseudo amino acid (PseAA) compositions and 50 top ranked PseAA compositions were selected for improving the prediction results. The motif features, 400 PseAA compositions and 50 PseAA compositions were combined together, and selected as the input parameters of MNBC. The best correlation coefficient (CC) value of 0.8213 was obtained when the prediction quality was evaluated by the jackknife test. It was anticipated that the algorithm presented in this study may become a useful tool for identification of presynaptic neurotoxin and postsynaptic neurotoxin sequences and may provide some useful help for in-depth investigation into the biological mechanism of presynaptic neurotoxins and postsynaptic neurotoxins. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neal, April P.; Stansfield, Kirstie H.; Guilarte, Tomás R.
2012-01-01
We have previously reported that lead (Pb2+) exposure results in both presynaptic and postsynaptic changes in developing neurons as a result of inhibition of the N-methyl-D-aspartate receptor (NMDAR). NMDAR inhibition by Pb2+ during synaptogenesis disrupts downstream trans-synaptic signaling of brain-derived neurotrophic factor (BDNF) and exogenous addition of BDNF can recover the effects of Pb2+ on both presynaptic protein expression and presynaptic vesicular release. NMDAR activity can modulate other trans-synaptic signaling pathways, such as nitric oxide (NO) signaling. Thus, it is possible that other trans-synaptic pathways in addition to BDNF signaling may be disrupted by Pb2+ exposure. The current study investigated whether exogenous addition of NO could recover the presynaptic vesicular proteins lost as a result of Pb2+ exposure during synaptogenesis, namely Synaptophysin (Syn) and Synaptobrevin (Syb). We observed that exogenous addition of NO during Pb2+ exposure results in complete recovery of whole-cell Syn levels and partial recovery of Syn and Syb synaptic targeting in Pb2+-exposed neurons. PMID:22265330
Retrograde Semaphorin-Plexin Signaling Drives Homeostatic Synaptic Plasticity
Orr, Brian O.; Fetter, Richard D.; Davis, Graeme W.
2017-01-01
Homeostatic signaling systems ensure stable, yet flexible neural activity and animal behavior1–4. Defining the underlying molecular mechanisms of neuronal homeostatic signaling will be essential in order to establish clear connections to the causes and progression of neurological disease. Presynaptic homeostatic plasticity (PHP) is a conserved form of neuronal homeostatic signaling, observed in organisms ranging from Drosophila to human1,5. Here, we demonstrate that Semaphorin2b (Sema2b) is target-derived signal that acts upon presynaptic PlexinB (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the Drosophila neuromuscular junction. Sema2b-PlexB signaling regulates the expression of PHP via the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin6,7. During neural development, Semaphorin-Plexin signaling instructs axon guidance and neuronal morphogenesis8–10. Yet, Semaphorins and Plexins are also expressed in the adult brain11–16. Here we demonstrate that Semaphorin-Plexin signaling controls presynaptic neurotransmitter release. We propose that Sema2b-PlexB signaling is an essential platform for the stabilization of synaptic transmission throughout life. PMID:28953869
Monday, Hannah R; Younts, Thomas J; Castillo, Pablo E
2018-04-25
Long-lasting changes of brain function in response to experience rely on diverse forms of activity-dependent synaptic plasticity. Chief among them are long-term potentiation and long-term depression of neurotransmitter release, which are widely expressed by excitatory and inhibitory synapses throughout the central nervous system and can dynamically regulate information flow in neural circuits. This review article explores recent advances in presynaptic long-term plasticity mechanisms and contributions to circuit function. Growing evidence indicates that presynaptic plasticity may involve structural changes, presynaptic protein synthesis, and transsynaptic signaling. Presynaptic long-term plasticity can alter the short-term dynamics of neurotransmitter release, thereby contributing to circuit computations such as novelty detection, modifications of the excitatory/inhibitory balance, and sensory adaptation. In addition, presynaptic long-term plasticity underlies forms of learning and its dysregulation participates in several neuropsychiatric conditions, including schizophrenia, autism, intellectual disabilities, neurodegenerative diseases, and drug abuse. Expected final online publication date for the Annual Review of Neuroscience Volume 41 is July 8, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Tryptophan circuit in fatigue: From blood to brain and cognition.
Yamashita, Masatoshi; Yamamoto, Takanobu
2017-11-15
Brain tryptophan and its neuroactive metabolites play key roles in central fatigue. However, previous brain function analysis targets may have included both glia and neurons together. Here, we clarified the fatigue-cognitive circuit of the central-peripheral linkage, including the role of glial-neuronal interaction in cognition. Using a rat model of central fatigue induced by chronic sleep disorder (CFSD), we isolated presynaptic terminals and oligodendrocytes. Results showed that compared to control group, presynaptic levels of tryptophan, kynurenine, and kynurenic acid, but not serotonin, in the CFSD group were higher in the hypothalamus and hippocampus. Moreover, CFSD group had higher oligodendrocytic levels of tryptophan, and impaired spatial cognitive memory accuracy and increased hyperactivity and impulsivity. These findings suggest that dynamic change in glial-neuronal interactions within the hypothalamus-hippocampal circuit causes central fatigue, and increased tryptophan-kynurenic acid pathway activity in this circuit causes reduced cognitive function. Additionally, CFSD group had 1.5 times higher plasma levels of tryptophan and kynurenine. Furthermore, in rats undergoing intraperitoneal administration of kynurenine (100mg/kg) versus vehicle, kynurenine-treated rats showed enhanced production of kynurenic acid in the hippocampus, with suppressed recall of retained spatial cognitive memory. The study revealed that uptake of periphery-derived kynurenine and tryptophan into the brain enhances kynurenic acid production in the brain, and the three factors produce amplification effect involved in the role of central-peripheral linkage in central fatigue, triggering cognitive dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.
Rohrbough, Jeffrey; Broadie, Kendal
2010-10-01
Bidirectional trans-synaptic signals induce synaptogenesis and regulate subsequent synaptic maturation. Presynaptically secreted Mind the gap (Mtg) molds the synaptic cleft extracellular matrix, leading us to hypothesize that Mtg functions to generate the intercellular environment required for efficient signaling. We show in Drosophila that secreted Jelly belly (Jeb) and its receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) are localized to developing synapses. Jeb localizes to punctate aggregates in central synaptic neuropil and neuromuscular junction (NMJ) presynaptic terminals. Secreted Jeb and Mtg accumulate and colocalize extracellularly in surrounding synaptic boutons. Alk concentrates in postsynaptic domains, consistent with an anterograde, trans-synaptic Jeb-Alk signaling pathway at developing synapses. Jeb synaptic expression is increased in Alk mutants, consistent with a requirement for Alk receptor function in Jeb uptake. In mtg null mutants, Alk NMJ synaptic levels are reduced and Jeb expression is dramatically increased. NMJ synapse morphology and molecular assembly appear largely normal in jeb and Alk mutants, but larvae exhibit greatly reduced movement, suggesting impaired functional synaptic development. jeb mutant movement is significantly rescued by neuronal Jeb expression. jeb and Alk mutants display normal NMJ postsynaptic responses, but a near loss of patterned, activity-dependent NMJ transmission driven by central excitatory output. We conclude that Jeb-Alk expression and anterograde trans-synaptic signaling are modulated by Mtg and play a key role in establishing functional synaptic connectivity in the developing motor circuit.
Margolis, Elyssa B; Fields, Howard L; Hjelmstad, Gregory O; Mitchell, Jennifer M
2008-11-26
Alcoholism is a complex and debilitating syndrome affecting approximately 140 million people worldwide. However, not everyone who consumes ethanol develops abuse, raising the possibility that some individuals have a protective mechanism that inhibits elevated alcohol consumption. We tested the hypothesis that the delta-opioid receptor (DOR) plays such a protective role. Here we show that DOR activity in the ventral tegmental area (VTA) robustly decreases ethanol consumption in rats and that these effects depend on baseline ethanol consumption. Intra-VTA microinjection of the DOR agonist DPDPE decreases drinking, particularly in low-drinking animals. Furthermore, VTA microinjection of the DOR selective antagonist TIPP-Psi increases drinking in low, but not high, drinkers and this increase is blocked by comicroinjection of the GABA(A) antagonist bicuculline. Using electrophysiological techniques we found that in VTA brain slices from drinking rats DPDPE presynaptically inhibits GABA(A) receptor mediated IPSCs in low drinkers, but not in high drinkers or naive animals, most likely through activation of DORs on GABA terminals. This DOR-mediated inhibition of IPSCs also correlates inversely with behavioral correlates of anxiety measured in the elevated plus maze. In contrast, presynaptic inhibition of VTA GABA(A) IPSCs by the mu-opioid receptor agonist DAMGO is significantly reduced in both high- and low-drinking rats (<30%) compared with age-matched nondrinking controls (>70%). Together, our findings demonstrate the protective nature of VTA DORs and identify an important new target for therapeutic intervention for alcoholism.
Aschrafi, Armaz; Kar, Amar N; Gale, Jenna R; Elkahloun, Abdel G; Vargas, Jose Noberto S; Sales, Naomi; Wilson, Gabriel; Tompkins, Miranda; Gioio, Anthony E; Kaplan, Barry B
2016-09-01
Mitochondria are enriched in subcellular regions of high energy consumption, such as axons and pre-synaptic nerve endings. Accumulating evidence suggests that mitochondrial maintenance in these distal structural/functional domains of the neuron depends on the "in-situ" translation of nuclear-encoded mitochondrial mRNAs. In support of this notion, we recently provided evidence for the axonal targeting of several nuclear-encoded mRNAs, such as cytochrome c oxidase, subunit 4 (COXIV) and ATP synthase, H+ transporting and mitochondrial Fo complex, subunit C1 (ATP5G1). Furthermore, we showed that axonal trafficking and local translation of these mRNAs plays a critical role in the generation of axonal ATP. Using a global gene expression analysis, this study identified a highly diverse population of nuclear-encoded mRNAs that were enriched in the axon and presynaptic nerve terminals. Among this population of mRNAs, fifty seven were found to be at least two-fold more abundant in distal axons, as compared with the parental cell bodies. Gene ontology analysis of the nuclear-encoded mitochondrial mRNAs suggested functions for these gene products in molecular and biological processes, including but not limited to oxidoreductase and electron carrier activity and proton transport. Based on these results, we postulate that local translation of nuclear-encoded mitochondrial mRNAs present in the axons may play an essential role in local energy production and maintenance of mitochondrial function. Published by Elsevier B.V.
Shaping Neuronal Network Activity by Presynaptic Mechanisms
Ashery, Uri
2015-01-01
Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level. PMID:26372048
Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J
2012-06-20
The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.
Astakhova, Luba; Firsov, Michael
2015-01-01
Purpose To experimentally identify and quantify factors responsible for the lower sensitivity of retinal cones compared to rods. Methods Electrical responses of frog rods and fish (Carassius) cones to short flashes of light were recorded using the suction pipette technique. A fast solution changer was used to apply a solution that fixed intracellular Ca2+ concentration at the prestimulus level, thereby disabling Ca2+ feedback, to the outer segment (OS). The results were analyzed with a specially designed mathematical model of phototransduction. The model included all basic processes of activation and quenching of the phototransduction cascade but omitted unnecessary mechanistic details of each step. Results Judging from the response versus intensity curves, Carassius cones were two to three orders of magnitude less sensitive than frog rods. There was a large scatter in sensitivity among individual cones, with red-sensitive cones being on average approximately two times less sensitive than green-sensitive ones. The scatter was mostly due to different signal amplification, since the kinetic parameters of the responses among cones were far less variable than sensitivity. We argue that the generally accepted definition of the biochemical amplification in phototransduction cannot be used for comparing amplification in rods and cones, since it depends on an irrelevant factor, that is, the cell’s volume. We also show that the routinely used simplified parabolic curve fitting to an initial phase of the response leads to a few-fold underestimate of the amplification. We suggest a new definition of the amplification that only includes molecular parameters of the cascade activation, and show how it can be derived from experimental data. We found that the mathematical model with unrestrained parameters can yield an excellent fit to experimental responses. However, the fits with wildly different sets of parameters can be virtually indistinguishable, and therefore cannot provide meaningful data on underlying mechanisms. Based on results of Ca2+-clamp experiments, we developed an approach to strongly constrain the values of many key parameters that set the time course and sensitivity of the photoresponse (such as the dark turnover rate of cGMP, rates of turnoffs of the photoactivated visual pigment and phosphodiesterase, and kinetics of Ca2+ feedback). We show that applying these constraints to our mathematical model enables accurate determination of the biochemical amplification in phototransduction. It appeared that, contrary to many suggestions, maximum biochemical amplification derived for “best” Carassius cones was as high as in frog rods. On the other hand, all turnoff and recovery reactions in cones proceeded approximately 10 times faster than in rods. Conclusions The main cause of the differing sensitivity of rods and cones is cones’ ability to terminate their photoresponse faster. PMID:25866462
Saul, Anika; Lashley, Tammaryn; Revesz, Tamas; Holton, Janice; Ghiso, Jorge A; Coomaraswamy, Janaky; Wirths, Oliver
2013-05-01
Familial British and familial Danish dementia (FDD) are progressive neurodegenerative disorders characterized by cerebral deposition of the amyloidogenic peptides ABri and ADan, respectively. These amyloid peptides start with an N-terminal glutamate residue, which can be posttranslationally converted into a pyroglutamate (pGlu) modified form, a mechanism which has been extensively described to be relevant for amyloid-beta (Aβ) peptides in Alzheimer's disease. Like pGlu-Aβ peptides, pGlu-ABri peptides have an increased aggregation propensity and show higher toxicity on human neuroblastoma cells as their nonmodified counterparts. We have generated novel N-terminal specific antibodies detecting the pGlu-modified forms of ABri and ADan peptides. With these antibodies we were able to identify abundant extracellular amyloid plaques, vascular, and parenchymal deposits in human familial British dementia and FDD brain tissue, and in a mouse model for FDD. Double-stainings using C-terminal specific antibodies in human samples revealed that highly aggregated pGlu-ABri and pGlu-ADan peptides are mainly present in plaque cores and central vascular deposits, leading to the assumption that these peptides have seeding properties. Furthermore, in an FDD-mouse model ADan peptides were detected in presynaptic terminals of the hippocampus where they might contribute to impaired synaptic transmission. These similarities of ABri and ADan to Aβ in Alzheimer's disease suggest that the posttranslational pGlu-modification of amyloid peptides might represent a general pathological mechanism leading to increased aggregation and toxicity in these forms of degenerative dementias. Copyright © 2013 Elsevier Inc. All rights reserved.
Saul, Anika; Lashley, Tammaryn; Revesz, Tamas; Holton, Janice; Ghiso, Jorge A.; Coomaraswamy, Janaky; Wirths, Oliver
2013-01-01
Familial British (FBD) and familial Danish dementia (FDD) are progressive neurodegenerative disorders characterized by cerebral deposition of the amyloidogenic peptides ABri and ADan. These amyloid peptides start with an N-terminal glutamate residue, which can be posttranslationally converted into a pyroglutamate (pGlu-) modified form, a mechanism which has been extensively described to be relevant for Aβ peptides in Alzheimer’s disease (AD). Like pGlu-Aβ peptides, pGlu-ABri peptides have an increased aggregation propensity and show higher toxicity on human neuroblastoma cells as their non-modified counterparts. We have generated novel N-terminal specific antibodies detecting the pGlu-modified forms of ABri and ADan peptides. With these antibodies we were able to identify abundant extracellular amyloid plaques, vascular and parenchymal deposits in human FBD and FDD brain tissue, as well as in a mouse model for FDD. Double-stainings using C-terminal specific antibodies in human samples revealed that highly aggregated pGlu-ABri and pGlu-ADan peptides are mainly present in plaque cores and central vascular deposits, leading to the assumption that these peptides have seeding properties. Furthermore, in an FDD-mouse model ADan peptides were detected in pre-synaptic terminals of the hippocampus where they might contribute to impaired synaptic transmission. These similarities of ABri and ADan to Aβ in AD suggest that the posttranslational pGlu-modification of amyloid peptides might represent a general pathological mechanism leading to increased aggregation and toxicity in these forms of degenerative dementias. PMID:23261769
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Cheng-Wei; Lin, Tzu-Yu
2017-03-15
Ciproxifan is an H{sub 3} receptor antagonist and inverse agonist with antipsychotic effects in several preclinical models; its effect on glutamate release has been investigated in the rat hippocampus. In a synaptosomal preparation, ciproxifan reduced 4-aminopyridine (4-AP)-evoked Ca{sup 2+}-dependent glutamate release and cytosolic Ca{sup 2+} concentration elevation but did not affect the membrane potential. The inhibitory effect of ciproxifan on 4-AP-evoked glutamate release was prevented by the Gi/Go-protein inhibitor pertussis toxin and Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was not affected by the intracellular Ca{sup 2+}-release inhibitors dantrolene and CGP37157. Furthermore, the phospholipase A{submore » 2} (PLA{sub 2}) inhibitor OBAA, prostaglandin E{sub 2} (PGE{sub 2}), PGE2 subtype 2 (EP{sub 2}) receptor antagonist PF04418948, and extracellular signal-regulated kinase (ERK) inhibitor FR180204 eliminated the inhibitory effect of ciproxifan on glutamate release. Ciproxifan reduced the 4-AP-evoked phosphorylation of ERK and synapsin I, a presynaptic target of ERK. The ciproxifan-mediated inhibition of glutamate release was prevented in synaptosomes from synapsin I-deficient mice. Moreover, ciproxifan reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude in hippocampal slices. Our data suggest that ciproxifan, acting through the blockade of Gi/Go protein-coupled H{sub 3} receptors present on hippocampal nerve terminals, reduces voltage-dependent Ca{sup 2+} entry by diminishing PLA{sub 2}/PGE{sub 2}/EP{sub 2} receptor pathway, which subsequently suppresses the ERK/synapsin I cascade to decrease the evoked glutamate release. - Highlights: • Ciproxifan presynaptically reduces glutamate release in the hippocampus in vitro. • Decrease in voltage-dependent Ca{sup 2+} influx is involved. • A role for the PLA{sub 2}/PGE{sub 2}/EP{sub 2} pathway in the action of ciproxifan is suggested. • Decreased ERK and synapsin I activity is also involved. • This study provides new insight into the mode by which ciproxifan acts in the brain.« less
Chang, H. Ming; Berde, Charles B.; Holz, George G.; Steward, Grieg F.; Kream, Richard M.
2010-01-01
An in vitro model system for analysis of presynaptic inhibitory actions of spinal opioids has been applied. Embryonic sensory neurons derived from chick dorsal root ganglia were grown in primary cell culture, and the release of substance P was evoked by electrical field stimulation during exposure to drugs with well-demonstrated affinity for opioid receptors. This allowed a pharmacologic characterization of the inhibitory actions of specific opioid agonists on the release of substance P as measured by radioimmunoassay (RIA). Sufentanil (0.5 µm), a high affinity µ receptor agonist, U-50,488H (25 µm), a selective κ receptor agonist, and morphine (10 µm), an agonist with high affinity for µ and δ receptors, inhibited the evoked release of substance P by approximately 60%, 40%, and 50%, respectively. For sufentanil the response was demonstrated to be dose-dependent. As is the case for its analgesic action in vivo, morphine was approximately 50-fold less potent than sufentanil on a molar basis in this assay. The actions of sufentanil, U-50-488H and morphine were mimicked by the endogenous opioid peptide met-enkephalin, and its stable synthetic analog D-ala2-met5-enkephalinamide (DAME). Naloxone (25 µm), an opioid receptor antagonist, blocked the inhibitory action of sufentanil (0.5 µm), morphine (5 µm), and DAME (5 µm), but not U-50,488H (10 µm). The action of U-50,488H was partially blocked by the antagonist naltrexone (25 µm). Stereo-selectivity of agonist action was confirmed by the failure of dextrorphan (50 µm), an inactive opioid isomer, to inhibit the release of substance P. Actions mediated by specific opioid receptors were thus demonstrated by high affinity responses to agonists, blockade of agonist responses by opioid antagonists, and stereoselectivity. These findings suggest that in the spinal cord presynaptic inhibition of evoked substance P release is mediated by µ, K and δ opioid receptors located on primary sensory nerve terminals. Activation of these receptors may explain, at least in part, the spinal analgesic actions of specific opioid agonists. PMID:2467589
Murphy-Baum, Benjamin L; Taylor, W Rowland
2015-09-30
Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells. Significance statement: The retina comprises numerous excitatory and inhibitory circuits that encode specific features in the visual scene, such as orientation, contrast, or motion. Here, we identify a wide-field inhibitory neuron that responds to visual stimuli of a particular orientation, a feature selectivity that is primarily due to the elongated shape of the dendritic arbor. Integration of convergent excitatory and inhibitory inputs from the ON and OFF visual pathways suppress responses to small objects and fine textures, thus enhancing selectivity for larger objects. Feedback inhibition regulates the strength and speed of excitation on both local and wide-field spatial scales. This study demonstrates how different synaptic inputs are regulated to tune a neuron to respond to specific features in the visual scene. Copyright © 2015 the authors 0270-6474/15/3513336-15$15.00/0.
Multimodal Imaging of Photoreceptor Structure in Choroideremia
Johnson, Ryan D.; Williams, Vesper; Summerfelt, Phyllis; Dubra, Alfredo; Weinberg, David V.; Stepien, Kimberly E.; Fishman, Gerald A.; Carroll, Joseph
2016-01-01
Purpose Choroideremia is a progressive X-linked recessive dystrophy, characterized by degeneration of the retinal pigment epithelium (RPE), choroid, choriocapillaris, and photoreceptors. We examined photoreceptor structure in a series of subjects with choroideremia with particular attention to areas bordering atrophic lesions. Methods Twelve males with clinically-diagnosed choroideremia and confirmed hemizygous mutations in the CHM gene were examined. High-resolution images of the retina were obtained using spectral domain optical coherence tomography (SD-OCT) and both confocal and non-confocal split-detector adaptive optics scanning light ophthalmoscope (AOSLO) techniques. Results Eleven CHM gene mutations (3 novel) were identified; three subjects had the same mutation and one subject had two mutations. SD-OCT findings included interdigitation zone (IZ) attenuation or loss in 10/12 subjects, often in areas with intact ellipsoid zones; RPE thinning in all subjects; interlaminar bridges in the imaged areas of 10/12 subjects; and outer retinal tubulations (ORTs) in 10/12 subjects. Only split-detector AOSLO could reliably resolve cones near lesion borders, and such cones were abnormally heterogeneous in morphology, diameter and density. On split-detector imaging, the cone mosaic terminated sharply at lesion borders in 5/5 cases examined. Split-detector imaging detected remnant cone inner segments within ORTs, which were generally contiguous with a central patch of preserved retina. Conclusions Early IZ dropout and RPE thinning on SD-OCT are consistent with previously published results. Evidence of remnant cone inner segments within ORTs and the continuity of the ORTs with preserved retina suggests that these may represent an intermediate state of retinal degeneration prior to complete atrophy. Taken together, these results supports a model of choroideremia in which the RPE degenerates before photoreceptors. PMID:27936069
Multimodal Imaging of Photoreceptor Structure in Choroideremia.
Sun, Lynn W; Johnson, Ryan D; Williams, Vesper; Summerfelt, Phyllis; Dubra, Alfredo; Weinberg, David V; Stepien, Kimberly E; Fishman, Gerald A; Carroll, Joseph
2016-01-01
Choroideremia is a progressive X-linked recessive dystrophy, characterized by degeneration of the retinal pigment epithelium (RPE), choroid, choriocapillaris, and photoreceptors. We examined photoreceptor structure in a series of subjects with choroideremia with particular attention to areas bordering atrophic lesions. Twelve males with clinically-diagnosed choroideremia and confirmed hemizygous mutations in the CHM gene were examined. High-resolution images of the retina were obtained using spectral domain optical coherence tomography (SD-OCT) and both confocal and non-confocal split-detector adaptive optics scanning light ophthalmoscope (AOSLO) techniques. Eleven CHM gene mutations (3 novel) were identified; three subjects had the same mutation and one subject had two mutations. SD-OCT findings included interdigitation zone (IZ) attenuation or loss in 10/12 subjects, often in areas with intact ellipsoid zones; RPE thinning in all subjects; interlaminar bridges in the imaged areas of 10/12 subjects; and outer retinal tubulations (ORTs) in 10/12 subjects. Only split-detector AOSLO could reliably resolve cones near lesion borders, and such cones were abnormally heterogeneous in morphology, diameter and density. On split-detector imaging, the cone mosaic terminated sharply at lesion borders in 5/5 cases examined. Split-detector imaging detected remnant cone inner segments within ORTs, which were generally contiguous with a central patch of preserved retina. Early IZ dropout and RPE thinning on SD-OCT are consistent with previously published results. Evidence of remnant cone inner segments within ORTs and the continuity of the ORTs with preserved retina suggests that these may represent an intermediate state of retinal degeneration prior to complete atrophy. Taken together, these results supports a model of choroideremia in which the RPE degenerates before photoreceptors.
Development of Ca2+ hotspots between Lymnaea neurons during synaptogenesis
Feng, Zhong-Ping; Grigoriev, Nikita; Munno, David; Lukowiak, Ken; MacVicar, Brian A; Goldberg, Jeffrey I; Syed, Naweed I
2002-01-01
Calcium (Ca2+) channel clustering at specific presynaptic sites is a hallmark of mature synapses. However, the spatial distribution patterns of Ca2+ channels at newly formed synapses have not yet been demonstrated. Similarly, it is unclear whether Ca2+ ‘hotspots’ often observed at the presynaptic sites are indeed target cell contact specific and represent a specialized mechanism by which Ca2+ channels are targeted to select synaptic sites. Utilizing both soma–soma paired (synapsed) and single neurons from the mollusk Lymnaea, we have tested the hypothesis that differential gradients of voltage-dependent Ca2+ signals develop in presynaptic neuron at its contact point with the postsynaptic neuron; and that these Ca2+ hotspots are target cell contact specific. Fura-2 imaging, or two-photon laser scanning microscopy of Calcium Green, was coupled with electrophysiological techniques to demonstrate that voltage-induced Ca2+ gradients (hotspots) develop in the presynaptic cell at its contact point with the postsynaptic neuron, but not in unpaired single cells. The incidence of Ca2+ hotspots coincided with the appearance of synaptic transmission between the paired cells, and these gradients were target cell contact specific. In contrast, the voltage-induced Ca2+ signal in unpaired neurons was uniformly distributed throughout the somata; a similar pattern of Ca2+ gradient was observed in the presynaptic neuron when it was soma–soma paired with a non-synaptic partner cell. Moreover, voltage clamp recording techniques, in conjunction with a fast, optical differential perfusion system, were used to demonstrate that the total whole-cell Ca2+ (or Ba2+) current density in single and paired cells was not significantly different. However, the amplitude of Ba2+ current was significantly higher in the presynaptic cell at its contact side with the postsynaptic neurons, compared with non-contacted regions. In summary, this study demonstrates that voltage-induced Ca2+ hotspots develop in the presynaptic cell, concomitant with the appearance of synaptic transmission between the soma–soma paired cells. The appearance of Ca2+ gradients in presynaptic neurons is target cell contact specific and is probably due to a spatial redistribution of existing channels during synaptogenesis. PMID:11850501
Particle trap for compressed gas insulated transmission systems
Cookson, A.H.
1984-04-26
A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.
Particle trap for compressed gas insulated transmission systems
Cookson, Alan H.
1985-01-01
A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.
Miyazaki, Takaaki; Lin, Tzu-Yang; Ito, Kei; Lee, Chi-Hon; Stopfer, Mark
2016-01-01
Although the gustatory system provides animals with sensory cues important for food choice and other critical behaviors, little is known about neural circuitry immediately following gustatory sensory neurons (GSNs). Here, we identify and characterize a bilateral pair of gustatory second-order neurons in Drosophila. Previous studies identified GSNs that relay taste information to distinct subregions of the primary gustatory center (PGC) in the gnathal ganglia (GNG). To identify candidate gustatory second-order neurons (G2Ns) we screened ~5,000 GAL4 driver strains for lines that label neural fibers innervating the PGC. We then combined GRASP (GFP reconstitution across synaptic partners) with presynaptic labeling to visualize potential synaptic contacts between the dendrites of the candidate G2Ns and the axonal terminals of Gr5a-expressing GSNs, which are known to respond to sucrose. Results of the GRASP analysis, followed by a single cell analysis by FLPout recombination, revealed a pair of neurons that contact Gr5a axon terminals in both brain hemispheres, and send axonal arborizations to a distinct region outside the PGC but within the GNG. To characterize the input and output branches, respectively, we expressed fluorescence-tagged acetylcholine receptor subunit (Dα7) and active-zone marker (Brp) in the G2Ns. We found that G2N input sites overlaid GRASP-labeled synaptic contacts to Gr5a neurons, while presynaptic sites were broadly distributed throughout the neurons’ arborizations. GRASP analysis and further tests with the Syb-GRASP method suggested that the identified G2Ns receive synaptic inputs from Gr5a-expressing GSNs, but not Gr66a-expressing GSNs, which respond to caffeine. The identified G2Ns relay information from Gr5a-expressing GSNs to distinct regions in the GNG, and are distinct from other, recently identified gustatory projection neurons, which relay information about sugars to a brain region called the antennal mechanosensory and motor center (AMMC). Our findings suggest unexpected complexity for taste information processing in the first relay of the gustatory system. PMID:26004543
Miyazaki, Takaaki; Lin, Tzu-Yang; Ito, Kei; Lee, Chi-Hon; Stopfer, Mark
2015-01-01
Although the gustatory system provides animals with sensory cues important for food choice and other critical behaviors, little is known about neural circuitry immediately following gustatory sensory neurons (GSNs). Here, we identify and characterize a bilateral pair of gustatory second-order neurons (G2Ns) in Drosophila. Previous studies identified GSNs that relay taste information to distinct subregions of the primary gustatory center (PGC) in the gnathal ganglia (GNG). To identify candidate G2Ns, we screened ∼5,000 GAL4 driver strains for lines that label neural fibers innervating the PGC. We then combined GRASP (GFP reconstitution across synaptic partners) with presynaptic labeling to visualize potential synaptic contacts between the dendrites of the candidate G2Ns and the axonal terminals of Gr5a-expressing GSNs, which are known to respond to sucrose. Results of the GRASP analysis, followed by a single-cell analysis by FLP-out recombination, revealed a pair of neurons that contact Gr5a axon terminals in both brain hemispheres and send axonal arborizations to a distinct region outside the PGC but within the GNG. To characterize the input and output branches, respectively, we expressed fluorescence-tagged acetylcholine receptor subunit (Dα7) and active-zone marker (Brp) in the G2Ns. We found that G2N input sites overlaid GRASP-labeled synaptic contacts to Gr5a neurons, while presynaptic sites were broadly distributed throughout the neurons' arborizations. GRASP analysis and further tests with the Syb-GRASP method suggested that the identified G2Ns receive synaptic inputs from Gr5a-expressing GSNs, but not Gr66a-expressing GSNs, which respond to caffeine. The identified G2Ns relay information from Gr5a-expressing GSNs to distinct regions in the GNG, and are distinct from other, recently identified gustatory projection neurons, which relay information about sugars to a brain region called the antennal mechanosensory and motor center (AMMC). Our findings suggest unexpected complexity for taste information processing in the first relay of the gustatory system.
Molecular Mechanism of Active Zone Organization at Vertebrate Neuromuscular Junctions
Nishimune, Hiroshi
2013-01-01
Organization of presynaptic active zones is essential for development, plasticity, and pathology of the nervous system. Recent studies indicate a trans-synaptic molecular mechanism that organizes the active zones by connecting the pre- and the postsynaptic specialization. The presynaptic component of this trans-synaptic mechanism is comprised of cytosolic active zone proteins bound to the cytosolic domains of voltage-dependent calcium channels (P/Q-, N-, and L-type) on the presynaptic membrane. The postsynaptic component of this mechanism is the synapse organizer (laminin β2) that is expressed by the postsynaptic cell and accumulates specifically on top of the postsynaptic specialization. The pre- and the postsynaptic components interact directly between the extracellular domains of calcium channels and laminin β2 to anchor the presynaptic protein complex in front of the postsynaptic specialization. Hence, the presynaptic calcium channel functions as a scaffolding protein for active zone organization and as an ion-conducting channel for synaptic transmission. In contrast to the requirement of calcium influx for synaptic transmission, the formation of the active zone does not require the calcium influx through the calcium channels. Importantly, the active zones of adult synapses are not stable structures and require maintenance for their integrity. Furthermore, aging or diseases of the central and peripheral nervous system impair the active zones. This review will focus on the molecular mechanisms that organize the presynaptic active zones and summarize recent findings at the neuromuscular junctions and other synapses. PMID:22135013
Wülbeck, Corinna; Grieshaber, Eva; Helfrich-Förster, Charlotte
2009-10-01
The neuropeptide pigment-dispersing factor (PDF) plays an essential role in the circadian clock of the fruit fly Drosophila melanogaster, but many details of PDF signaling in the clock network are still unknown. We tried to interfere with PDF signaling by blocking the GTPase Shibire in PDF neurons. Shibire is an ortholog of the mammalian Dynamins and is essential for endocytosis of clathrin-coated vesicles at the plasma membrane. Such endocytosis is used for neurotransmitter reuptake by presynaptic neurons, which is a prerequisite of synaptic vesicle recycling, and receptor-mediated endocytosis in the postsynaptic neuron, which leads to signal termination. By blocking Shibire function via overexpression of a dominant negative mutant form of Shibire in PDF neurons, we slowed down the behavioral rhythm by 3 h. This effect was absent in PDF receptor null mutants, indicating that we interfered with PDF receptor-mediated endocytosis. Because we obtained similar behavioral phenotypes by increasing the PDF level in regions close to PDF neurons, we conclude that blocking Shibire did prolong PDF signaling in the neurons that respond to PDF. Obviously, terminating the PDF signaling via receptor-mediated endocytosis is a crucial step in determining the period of behavioral rhythms.
Central projections and entries of capsaicin-sensitive muscle afferents.
Della Torre, G; Lucchi, M L; Brunetti, O; Pettorossi, V E; Clavenzani, P; Bortolami, R
1996-03-25
The entry pathway and central distribution of A delta and C muscle afferents within the central nervous system (CNS) were investigated by combining electron microscopy and electrophysiological analysis after intramuscular injection of capsaicin. The drug was injected into the rat lateral gastrocnemius (LG) and extraocular (EO) muscles. The compound action potentials of LG nerve and the evoked field potentials recorded in semilunar ganglion showed an immediate and permanent reduction in A delta and C components. The morphological data revealed degenerating unmyelinated axons and terminals in the inner sublamina II and in the border of laminae I-II of the dorsal horn at L4-L5 and C1-C2 (subnucleus caudalis trigemini) spinal cord segments. Most degenerating terminals were the central bouton (C) of type I and II synaptic glomeruli. Furthermore, degenerating peripheral axonal endings (V2) presynaptic to normal C were found. Since V2 were previously found degenerated after cutting the oculomotor nerve (ON) or L4 ventral root, we conclude that some A delta and C afferents from LG and EO muscles entering the CNS by ON or ventral roots make axoaxonic synapses on other primary afferents to promote an afferent control of sensory input.
Curcumin Treatment Improves Motor Behavior in α-Synuclein Transgenic Mice
Spinelli, Kateri J.; Osterberg, Valerie R.; Meshul, Charles K.; Soumyanath, Amala; Unni, Vivek K.
2015-01-01
The curry spice curcumin plays a protective role in mouse models of neurodegenerative diseases, and can also directly modulate aggregation of α-synuclein protein in vitro, yet no studies have described the interaction of curcumin and α-synuclein in genetic synucleinopathy mouse models. Here we examined the effect of chronic and acute curcumin treatment in the Syn-GFP mouse line, which overexpresses wild-type human α-synuclein protein. We discovered that curcumin diet intervention significantly improved gait impairments and resulted in an increase in phosphorylated forms of α-synuclein at cortical presynaptic terminals. Acute curcumin treatment also caused an increase in phosphorylated α-synuclein in terminals, but had no direct effect on α-synuclein aggregation, as measured by in vivo multiphoton imaging and Proteinase-K digestion. Using LC-MS/MS, we detected ~5 ng/mL and ~12 ng/mL free curcumin in the plasma of chronic or acutely treated mice, with a glucuronidation rate of 94% and 97%, respectively. Despite the low plasma levels and extensive metabolism of curcumin, these results show that dietary curcumin intervention correlates with significant behavioral and molecular changes in a genetic synucleinopathy mouse model that mimics human disease. PMID:26035833
HIRANO, ARLENE A.; HACK, IRIS; WÄSSLE, HEINZ; DUVOISIN, ROBERT M.
2010-01-01
Cyclic nucleotide–gated channels (CNGC) are ligand-gated ion channels that open and close in response to changes in the intracellular concentration of the second messengers, 3′,5′-cyclic adenosine monophosphate and 3′,5′-cyclic guanosine monophosphate. Most notably, they transduce the chemical signal produced by the absorption of light in photoreceptors into a membrane potential change, which is then transmitted to the ascending visual pathway. CNGCs have also been implicated in the signal transduction of other neurons downstream of the photoreceptors, in particular the ON-bipolar cells, as well as in other areas of the central nervous system. We therefore undertook a search for additional cyclic nucleotide–gated channels expressed in the retina. Following a degenerate reverse transcription polymerase chain reaction approach to amplify low-copy number messages, a cDNA encoding a new splice variant of CNGC α-subunit was isolated from mouse retina and classified as mCNG3. An antiserum raised against the carboxy-terminal sequence identified the retinal cell type expressing mCNG3 as cone photoreceptors. Preembedding immunoelectron microscopy demonstrated its membrane localization in the outer segments, consistent with its role in phototransduction. Double-labeling experiments with cone-specific markers indicated that all cone photoreceptors in the murid retina use the same or a highly conserved cyclic nucleotide–gated channel. Therefore, defects in this channel would be predicted to severely impair photopic vision. PMID:10813773
Neal, April P; Stansfield, Kirstie H; Guilarte, Tomás R
2012-02-23
We have previously reported that lead (Pb(2+)) exposure results in both presynaptic and postsynaptic changes in developing neurons as a result of inhibition of the N-methyl-d-aspartate receptor (NMDAR). NMDAR inhibition by Pb(2+) during synaptogenesis disrupts downstream trans-synaptic signaling of brain-derived neurotrophic factor (BDNF) and exogenous addition of BDNF can recover the effects of Pb(2+) on both presynaptic protein expression and presynaptic vesicular release. NMDAR activity can modulate other trans-synaptic signaling pathways, such as nitric oxide (NO) signaling. Thus, it is possible that other trans-synaptic pathways in addition to BDNF signaling may be disrupted by Pb(2+) exposure. The current study investigated whether exogenous addition of NO could recover the presynaptic vesicular proteins lost as a result of Pb(2+) exposure during synaptogenesis, namely Synaptophysin (Syn) and Synaptobrevin (Syb). We observed that exogenous addition of NO during Pb(2+) exposure results in complete recovery of whole-cell Syn levels and partial recovery of Syn and Syb synaptic targeting in Pb(2+)-exposed neurons. Copyright © 2011 Elsevier B.V. All rights reserved.
Innervation of taste buds revealed with Brainbow-labeling in mouse.
Zaidi, Faisal N; Cicchini, Vanessa; Kaufman, Daniel; Ko, Elizabeth; Ko, Abraham; Van Tassel, Heather; Whitehead, Mark C
2016-12-01
Nerve fibers that surround and innervate the taste bud were visualized with inherent fluorescence using Brainbow transgenic mice that were generated by mating the founder line L with nestin-cre mice. Multicolor fluorescence revealed perigemmal fibers as branched within the non-taste epithelium and ending in clusters of multiple rounded swellings surrounding the taste pore. Brainbow-labeling also revealed the morphology and branching pattern of single intragemmal fibers. These taste bud fibers frequently innervated both the peripheral bud, where immature gemmal cells are located, and the central bud, where mature, differentiated cells are located. The fibers typically bore preterminal and terminal swellings, growth cones with filopodia, swellings, and rounded retraction bulbs. These results establish an anatomical substrate for taste nerve fibers to contact and remodel among receptor cells at all stages of their differentiation, an interpretation that was supported by staining with GAP-43, a marker for growing fibers and growth cones. © 2016 Anatomical Society.
Gleich, Tobias; Deserno, Lorenz; Lorenz, Robert Christian; Boehme, Rebecca; Pankow, Anne; Buchert, Ralph; Kühn, Simone; Heinz, Andreas; Schlagenhauf, Florian; Gallinat, Jürgen
2015-07-01
Theoretical and animal work has proposed that prefrontal cortex (PFC) glutamate inhibits dopaminergic inputs to the ventral striatum (VS) indirectly, whereas direct VS glutamatergic afferents have been suggested to enhance dopaminergic inputs to the VS. In the present study, we aimed to investigate relationships of glutamate and dopamine measures in prefrontostriatal circuitries of healthy humans. We hypothesized that PFC and VS glutamate, as well as their balance, are differently associated with VS dopamine. Glutamate concentrations in the left lateral PFC and left striatum were assessed using 3-Tesla proton magnetic resonance spectroscopy. Striatal presynaptic dopamine synthesis capacity was measured by fluorine-18-l-dihydroxyphenylalanine (F-18-FDOPA) positron emission tomography. First, a negative relationship was observed between glutamate concentrations in lateral PFC and VS dopamine synthesis capacity (n = 28). Second, a positive relationship was revealed between striatal glutamate and VS dopamine synthesis capacity (n = 26). Additionally, the intraindividual difference between PFC and striatal glutamate concentrations correlated negatively with VS dopamine synthesis capacity (n = 24). The present results indicate an involvement of a balance in PFC and striatal glutamate in the regulation of VS dopamine synthesis capacity. This notion points toward a potential mechanism how VS presynaptic dopamine levels are kept in a fine-tuned range. A disruption of this mechanism may account for alterations in striatal dopamine turnover as observed in mental diseases (e.g., in schizophrenia). The present work demonstrates complementary relationships between prefrontal and striatal glutamate and ventral striatal presynaptic dopamine using human imaging measures: a negative correlation between prefrontal glutamate and presynaptic dopamine and a positive relationship between striatal glutamate and presynaptic dopamine are revealed. The results may reflect a regulatory role of prefrontal and striatal glutamate for ventral striatal presynaptic dopamine levels. Such glutamate-dopamine relationships improve our understanding of neurochemical interactions in prefrontostriatal circuits and have implications for the neurobiology of mental disease. Copyright © 2015 the authors 0270-6474/15/359615-07$15.00/0.
Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins
Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker
2015-01-01
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier. PMID:26399746
Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins
NASA Astrophysics Data System (ADS)
Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker
2015-09-01
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier.
Cell Biology and Pathophysiology of α-Synuclein
Burré, Jacqueline; Sharma, Manu; Südhof, Thomas C.
2017-01-01
α-Synuclein is an abundant neuronal protein that is highly enriched in presynaptic nerve terminals. Genetics and neuropathology studies link α-synuclein to Parkinson’s disease (PD) and other neurodegenerative disorders. Accumulation of misfolded oligomers and larger aggregates of α-synuclein defines multiple neurodegenerative diseases called synucleino-pathies, but the mechanisms by which α-synuclein acts in neurodegeneration are unknown. Moreover, the normal cellular function of α-synuclein remains debated. In this perspective, we review the structural characteristics of α-synuclein, its developmental expression pattern, its cellular and subcellular localization, and its function in neurons. We also discuss recent progress on secretion of α-synuclein, which may contribute to its interneuronal spread in a prion-like fashion, and describe the neurotoxic effects of α-synuclein that are thought to be responsible for its role in neurodegeneration. PMID:28108534
Synaptic inhibition and γ-aminobutyric acid in the mammalian central nervous system
OBATA, Kunihiko
2013-01-01
Signal transmission through synapses connecting two neurons is mediated by release of neurotransmitter from the presynaptic axon terminals and activation of its receptor at the postsynaptic neurons. γ-Aminobutyric acid (GABA), non-protein amino acid formed by decarboxylation of glutamic acid, is a principal neurotransmitter at inhibitory synapses of vertebrate and invertebrate nervous system. On one hand glutamic acid serves as a principal excitatory neurotransmitter. This article reviews GABA researches on; (1) synaptic inhibition by membrane hyperpolarization, (2) exclusive localization in inhibitory neurons, (3) release from inhibitory neurons, (4) excitatory action at developmental stage, (5) phenotype of GABA-deficient mouse produced by gene-targeting, (6) developmental adjustment of neural network and (7) neurological/psychiatric disorder. In the end, GABA functions in simple nervous system and plants, and non-amino acid neurotransmitters were supplemented. PMID:23574805
Krill, Jennifer L; Dawson-Scully, Ken
2016-01-01
While the mammalian brain functions within a very narrow range of oxygen concentrations and temperatures, the fruit fly, Drosophila melanogaster, has employed strategies to deal with a much wider range of acute environmental stressors. The foraging (for) gene encodes the cGMP-dependent protein kinase (PKG), has been shown to regulate thermotolerance in many stress-adapted species, including Drosophila, and could be a potential therapeutic target in the treatment of hyperthermia in mammals. Whereas previous thermotolerance studies have looked at the effects of PKG variation on Drosophila behavior or excitatory postsynaptic potentials at the neuromuscular junction (NMJ), little is known about PKG effects on presynaptic mechanisms. In this study, we characterize presynaptic calcium ([Ca2+]i) dynamics at the Drosophila larval NMJ to determine the effects of high temperature stress on synaptic transmission. We investigated the neuroprotective role of PKG modulation both genetically using RNA interference (RNAi), and pharmacologically, to determine if and how PKG affects presynaptic [Ca2+]i dynamics during hyperthermia. We found that PKG activity modulates presynaptic neuronal Ca2+ responses during acute hyperthermia, where PKG activation makes neurons more sensitive to temperature-induced failure of Ca2+ flux and PKG inhibition confers thermotolerance and maintains normal Ca2+ dynamics under the same conditions. Targeted motoneuronal knockdown of PKG using RNAi demonstrated that decreased PKG expression was sufficient to confer thermoprotection. These results demonstrate that the PKG pathway regulates presynaptic motoneuronal Ca2+ signaling to influence thermotolerance of presynaptic function during acute hyperthermia.
Scalettar, B. A.; Jacobs, C.; Fulwiler, A.; Prahl, L.; Simon, A.; Hilken, L.; Lochner, J. E.
2012-01-01
Dense-core granules (DCGs) are organelles found in neuroendocrine cells and neurons that house, transport, and release a number of important peptides and proteins. In neurons, DCG cargo can include the secreted neuromodulatory proteins tissue plasminogen activator (tPA) and/or brain-derived neurotrophic factor (BDNF), which play a key role in modulating synaptic efficacy in the hippocampus. This function has spurred interest in DCGs that localize to synaptic contacts between hippocampal neurons, and several studies recently have established that DCGs localize to, and undergo regulated exocytosis from, postsynaptic sites. To complement this work, we have studied presynaptically-localized DCGs in hippocampal neurons, which are much more poorly understood than their postsynaptic analogs. Moreover, to enhance relevance, we visualized DCGs via fluorescence labeling of exogenous and endogenous tPA and BDNF. Using single-particle tracking, we determined trajectories of more than 150 presynaptically-localized DCGs. These trajectories reveal that mobility of DCGs in presynaptic boutons is highly hindered and that storage is long-lived. We also computed mean-squared displacement curves, which can be used to elucidate mechanisms of transport. Over shorter time windows, most curves are linear, demonstrating that DCG transport in boutons is driven predominantly by diffusion. The remaining curves plateau with time, consistent with motion constrained by a submicron-sized corral. These results have relevance to recent models of presynaptic organization and to recent hypotheses about DCG cargo function. The results also provide estimates for transit times to the presynaptic plasma membrane that are consistent with measured times for onset of neurotrophin release from synaptically-localized DCGs. PMID:21976424
Caputo, Antonella; Piano, Ilaria; Demontis, Gian Carlo; Bacchi, Niccolò; Casarosa, Simona; Santina, Luca Della; Gargini, Claudia
2015-01-01
Photoreceptors rely upon highly specialized synapses to efficiently transmit signals to multiple postsynaptic targets. Calcium influx in the presynaptic terminal is mediated by voltage-gated calcium channels (VGCC). This event triggers neurotransmitter release, but also gates calcium-activated chloride channels (TMEM), which in turn regulate VGCC activity. In order to investigate the relationship between VGCC and TMEM channels, we analyzed the retina of wild type (WT) and Cacna2d4 mutant mice, in which the VGCC auxiliary α2δ4 subunit carries a nonsense mutation, disrupting the normal channel function. Synaptic terminals of mutant photoreceptors are disarranged and synaptic proteins as well as TMEM16A channels lose their characteristic localization. In parallel, calcium-activated chloride currents are impaired in rods, despite unaltered TMEM16A protein levels. Co-immunoprecipitation revealed the interaction between VGCC and TMEM16A channels in the retina. Heterologous expression of these channels in tsA-201 cells showed that TMEM16A associates with the CaV1.4 subunit, and the association persists upon expression of the mutant α2δ4 subunit. Collectively, our experiments show association between TMEM16A and the α1 subunit of VGCC. Close proximity of these channels allows optimal function of the photoreceptor synaptic terminal under physiological conditions, but also makes TMEM16A channels susceptible to changes occurring to calcium channels. PMID:26557056
Graham, M Dean; Pfaus, James G
2013-10-02
Ascorbic acid (AA), also known as Vitamin C, enhances dopamine (DA) transmission in mesolimbic and nigrostriatal terminals and augments DA-mediated behaviors. It is not yet known whether AA has a similar influence in other DA terminals, in particular terminals of the incertohypothalamic system that modulate the function of the medial preoptic area (mPOA). In female rats, DA in the mPOA plays a critical role in the generation of appetitive sexual responses, notably solicitations, hops, and darts, and we have shown previously that the role of DA in this region on female sexual behavior changes depending on the hormonal profile of the female. Since AA has often been used as a vehicle control in the examination of rat sexual behavior, the present study examined the effect of infusions of AA to the mPOA of sexual experienced ovariectomized rats under two hormonal conditions: partially-primed with estradiol benzoate (EB) alone or fully-primed with EB and progesterone. Relative to saline baselines, females under both hormonal conditions displayed a significant increase in appetitive sexual behaviors following infusions of AA. No difference in lordosis behavior was observed following AA infusions relative to saline baselines. We suggest that the mechanism by which AA infusions to the mPOA increase appetitive sexual behaviors in female rats may be through dose-dependent DA receptor interactions, possibly through both presynaptic release mechanisms and postsynaptic DA D1-related messenger systems. © 2013.
Vesicular Glutamate Transporters: Spatio-Temporal Plasticity following Hearing Loss
Fyk-Kolodziej, Bozena; Shimano, Takashi; Gong, Tzy-Wen; Holt, Avril Genene
2011-01-01
An immunocytochemical comparison of vGluT1 and vGluT3 in the cochlear nucleus (CN) of deafened versus normal hearing rats showed the first example of vGluT3 immunostaining in the dorsal and ventral CN and revealed temporal and spatial changes in vGluT1 localization in the CN after cochlear injury. In normal hearing rats vGluT1 immunostaining was restricted to terminals on CN neurons while vGluT3 immunolabeled the somata of the neurons. This changed in the VCN three days following deafness, where vGluT1 immunostaining was no longer seen in large auditory nerve terminals but was instead found in somata of VCN neurons. In the DCN, while vGluT1 labeling of terminals decreased, there was no labeling of neuronal somata. Therefore, loss of peripheral excitatory input results in co-localization of vGluT1 and vGluT3 in VCN neuronal somata. Postsynaptic glutamatergic neurons can use retrograde signaling to control their presynaptic inputs and these results suggest vGluTs could play a role in regulating retrograde signaling in the CN under different conditions of excitatory input. Changes in vGluT gene expression in CN neurons were found three weeks following deafness using qRT-PCR with significant increases in vGluT1 gene expression in both ventral and dorsal CN while vGluT3 gene expression decreased in VCN but increased in DCN. PMID:21211553
Tulgren, Erik D.; Turgeon, Shane M.; Opperman, Karla J.; Grill, Brock
2014-01-01
Mutations in Nesprin-1 and 2 (also called Syne-1 and 2) are associated with numerous diseases including autism, cerebellar ataxia, cancer, and Emery-Dreifuss muscular dystrophy. Nesprin-1 and 2 have conserved orthologs in flies and worms called MSP-300 and abnormal nuclear Anchorage 1 (ANC-1), respectively. The Nesprin protein family mediates nuclear and organelle anchorage and positioning. In the nervous system, the only known function of Nesprin-1 and 2 is in regulation of neurogenesis and neural migration. It remains unclear if Nesprin-1 and 2 regulate other functions in neurons. Using a proteomic approach in C. elegans, we have found that ANC-1 binds to the Regulator of Presynaptic Morphology 1 (RPM-1). RPM-1 is part of a conserved family of signaling molecules called Pam/Highwire/RPM-1 (PHR) proteins that are important regulators of neuronal development. We have found that ANC-1, like RPM-1, regulates axon termination and synapse formation. Our genetic analysis indicates that ANC-1 functions via the β-catenin BAR-1, and the ANC-1/BAR-1 pathway functions cell autonomously, downstream of RPM-1 to regulate neuronal development. Further, ANC-1 binding to the nucleus is required for its function in axon termination and synapse formation. We identify variable roles for four different Wnts (LIN-44, EGL-20, CWN-1 and CWN-2) that function through BAR-1 to regulate axon termination. Our study highlights an emerging, broad role for ANC-1 in neuronal development, and unveils a new and unexpected mechanism by which RPM-1 functions. PMID:25010424
Tulgren, Erik D; Turgeon, Shane M; Opperman, Karla J; Grill, Brock
2014-07-01
Mutations in Nesprin-1 and 2 (also called Syne-1 and 2) are associated with numerous diseases including autism, cerebellar ataxia, cancer, and Emery-Dreifuss muscular dystrophy. Nesprin-1 and 2 have conserved orthologs in flies and worms called MSP-300 and abnormal nuclear Anchorage 1 (ANC-1), respectively. The Nesprin protein family mediates nuclear and organelle anchorage and positioning. In the nervous system, the only known function of Nesprin-1 and 2 is in regulation of neurogenesis and neural migration. It remains unclear if Nesprin-1 and 2 regulate other functions in neurons. Using a proteomic approach in C. elegans, we have found that ANC-1 binds to the Regulator of Presynaptic Morphology 1 (RPM-1). RPM-1 is part of a conserved family of signaling molecules called Pam/Highwire/RPM-1 (PHR) proteins that are important regulators of neuronal development. We have found that ANC-1, like RPM-1, regulates axon termination and synapse formation. Our genetic analysis indicates that ANC-1 functions via the β-catenin BAR-1, and the ANC-1/BAR-1 pathway functions cell autonomously, downstream of RPM-1 to regulate neuronal development. Further, ANC-1 binding to the nucleus is required for its function in axon termination and synapse formation. We identify variable roles for four different Wnts (LIN-44, EGL-20, CWN-1 and CWN-2) that function through BAR-1 to regulate axon termination. Our study highlights an emerging, broad role for ANC-1 in neuronal development, and unveils a new and unexpected mechanism by which RPM-1 functions.
Goyer, David; Fensky, Luisa; Hilverling, Anna Maria; Kurth, Stefanie; Kuenzel, Thomas
2015-05-01
In the avian nucleus magnocellularis (NM) endbulb of Held giant synapses develop from temporary bouton terminals. The molecular regulation of this process is not well understood. Furthermore, it is unknown how the postsynaptic specialization of the endbulb synapses develops. We therefore analysed expression of the postsynaptic scaffold protein PSD-95 during the transition from bouton-to-endbulb synapses. PSD-95 has been implicated in the regulation of the strength of glutamatergic synapses and could accordingly be of functional relevance for giant synapse formation. PSD-95 protein was expressed at synaptic sites in embryonic chicken auditory brainstem and upregulated between embryonic days (E)12 and E16. We applied immunofluorescence staining and confocal microscopy to quantify pre-and postsynaptic protein signals during bouton-to-endbulb transition. Giant terminal formation progressed along the tonotopic axis in NM, but was absent in low-frequency NM. We found a tonotopic gradient of postsynaptic PSD-95 signals in NM. Furthermore, PSD-95 immunosignals showed the greatest increase between E12 and E15, temporally preceding the bouton-to-endbulb transition. We then applied whole-cell electrophysiology to measure synaptic currents elicited by synaptic terminals during bouton-to-endbulb transition. With progressing endbulb formation postsynaptic currents rose more rapidly and synapses were less susceptible to short-term depression, but currents were not different in amplitude or decay-time constant. We conclude that development of presynaptic specializations follows postsynaptic development and speculate that the early PSD-95 increase could play a functional role in endbulb formation. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Coseismic rupturing stopped by Aso volcano during the 2016 Mw 7.1 Kumamoto earthquake, Japan.
Lin, A; Satsukawa, T; Wang, M; Mohammadi Asl, Z; Fueta, R; Nakajima, F
2016-11-18
Field investigations and seismic data show that the 16 April 2016 moment magnitude (M w ) 7.1 Kumamoto earthquake produced a ~40-kilometer-long surface rupture zone along the northeast-southwest-striking Hinagu-Futagawa strike-slip fault zone and newly identified faults on the western side of Aso caldera, Kyushu Island, Japan. The coseismic surface ruptures cut Aso caldera, including two volcanic cones inside it, but terminate therein. The data show that northeastward propagation of coseismic rupturing terminated in Aso caldera because of the presence of magma beneath the Aso volcanic cluster. The seismogenic faults of the 2016 Kumamoto earthquake may require reassessment of the volcanic hazard in the vicinity of Aso volcano. Copyright © 2016, American Association for the Advancement of Science.
Myrick, Leila K.; Deng, Pan-Yue; Hashimoto, Hideharu; Oh, Young Mi; Cho, Yongcheol; Poidevin, Mickael J.; Suhl, Joshua A.; Visootsak, Jeannie; Cavalli, Valeria; Jin, Peng; Cheng, Xiaodong; Warren, Stephen T.; Klyachko, Vitaly A.
2015-01-01
Fragile X syndrome (FXS) results in intellectual disability (ID) most often caused by silencing of the fragile X mental retardation 1 (FMR1) gene. The resulting absence of fragile X mental retardation protein 1 (FMRP) leads to both pre- and postsynaptic defects, yet whether the pre- and postsynaptic functions of FMRP are independent and have distinct roles in FXS neuropathology remain poorly understood. Here, we demonstrate an independent presynaptic function for FMRP through the study of an ID patient with an FMR1 missense mutation. This mutation, c.413G > A (R138Q), preserves FMRP’s canonical functions in RNA binding and translational regulation, which are traditionally associated with postsynaptic compartments. However, neuronally driven expression of the mutant FMRP is unable to rescue structural defects at the neuromuscular junction in fragile x mental retardation 1 (dfmr1)-deficient Drosophila, suggesting a presynaptic-specific impairment. Furthermore, mutant FMRP loses the ability to rescue presynaptic action potential (AP) broadening in Fmr1 KO mice. The R138Q mutation also disrupts FMRP’s interaction with the large-conductance calcium-activated potassium (BK) channels that modulate AP width. These results reveal a presynaptic- and translation-independent function of FMRP that is linked to a specific subset of FXS phenotypes. PMID:25561520
Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome
O'Grady, Gina L.; Verschuuren, Corien; Yuen, Michaela; Webster, Richard; Menezes, Manoj; Fock, Johanna M.; Pride, Natalie; Best, Heather A.; Benavides Damm, Tatiana; Turner, Christian; Lek, Monkol; Engel, Andrew G.; North, Kathryn N.; Clarke, Nigel F.; MacArthur, Daniel G.; Kamsteeg, Erik-Jan
2016-01-01
Objective: To describe the clinical and genetic characteristics of presynaptic congenital myasthenic syndrome secondary to biallelic variants in SLC18A3. Methods: Individuals from 2 families were identified with biallelic variants in SLC18A3, the gene encoding the vesicular acetylcholine transporter (VAChT), through whole-exome sequencing. Results: The patients demonstrated features seen in presynaptic congenital myasthenic syndrome, including ptosis, ophthalmoplegia, fatigable weakness, apneic crises, and deterioration of symptoms in cold water for patient 1. Both patients demonstrated moderate clinical improvement on pyridostigmine. Patient 1 had a broader phenotype, including learning difficulties and left ventricular dysfunction. Electrophysiologic studies were typical for a presynaptic defect. Both patients showed profound electrodecrement on low-frequency repetitive stimulation followed by a prolonged period of postactivation exhaustion. In patient 1, this was unmasked only after isometric contraction, a recognized feature of presynaptic disease, emphasizing the importance of activation procedures. Conclusions: VAChT is responsible for uptake of acetylcholine into presynaptic vesicles. The clinical and electrographic characteristics of the patients described are consistent with previously reported mouse models of VAChT deficiency. These findings make it very likely that defects in VAChT due to variants in SLC18A3 are a cause of congenital myasthenic syndrome in humans. PMID:27590285
GABA, its receptors, and GABAergic inhibition in mouse taste buds
Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D.
2012-01-01
Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals — glial-like Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Using a combination of Ca2+ imaging, single cell RT-PCR, and immunostaining, we show that γ-amino butyric acid (GABA) is an inhibitory transmitter in mouse taste buds, acting on GABA-A and GABA-B receptors to suppress transmitter (ATP) secretion from Receptor cells during taste stimulation. Specifically, Receptor cells express GABA-A receptor subunits β2, δ, π, as well as GABA-B receptors. In contrast, Presynaptic cells express the GABA-Aβ3 subunit and only occasionally GABA-B receptors. In keeping with the distinct expression pattern of GABA receptors in Presynaptic cells, we detected no GABAergic suppression of transmitter release from Presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in Type I taste cells as well as by GAD67 in Presynaptic (Type III) taste cells and is stored in both those two cell types. We conclude that GABA is released during taste stimulation and possibly also during growth and differentiation of taste buds. PMID:21490220
GABA, its receptors, and GABAergic inhibition in mouse taste buds.
Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D
2011-04-13
Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits β2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) β3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.
Proteomic comparison of two fractions derived from the transsynaptic scaffold.
Phillips, Greg R; Florens, Laurence; Tanaka, Hidekazu; Khaing, Zin Z; Fidler, Lazar; Yates, John R; Colman, David R
2005-09-15
A fraction derived from presynaptic specializations (presynaptic particle fraction; PPF) can be separated from postsynaptic densities (PSD) by adjusting the pH of Triton X-100 (TX-100) extraction of isolated transsynaptic scaffolds. Solubilization of the PPF corresponds to disruption of the presynaptic specialization. We show that the PPF is insoluble to repeated TX-100 extraction at pH 6.0 but becomes soluble in detergent at pH 8.0. By immunolocalization, we find that the major proteins of the PPF, clathrin and dynamin, are concentrated in the presynaptic compartment. By using multidimensional protein identification technology, we compared the protein compositions of the PPF and the PSD fraction. We identified a total of 341 proteins, 50 of which were uniquely found in the PPF, 231 in the PSD fraction, and 60 in both fractions. Comparison of the two fractions revealed a relatively low proportion of actin and associated proteins and a high proportion of vesicle or intracellular compartment proteins in the PPF. We conclude that the PPF consists of presynaptic proteins not connected to the actin-based synaptic framework; its insolubility in pH 6 and solubility in pH 8 buffered detergent suggests that clathrin might be an anchorage scaffold for many proteins in the PPF. (c) 2005 Wiley-Liss, Inc.
Molecular Mechanism of Acrylamide Neurotoxicity: Lessons Learned from Organic Chemistry
Gavin, Terrence
2012-01-01
Background: Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function. Objectives: In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the recognition that the α,β-unsaturated carbonyl structure of ACR is a soft electrophile that preferentially forms covalent bonds with soft nucleophiles. Methods: In vivo proteomic and in chemico studies demonstrated that ACR formed covalent adducts with highly nucleophilic cysteine thiolate groups located within active sites of presynaptic proteins. Additional research showed that resulting protein inactivation disrupted nerve terminal processes and impaired neurotransmission. Discussion: ACR is a type-2 alkene, a chemical class that includes structurally related electrophilic environmental pollutants (e.g., acrolein) and endogenous mediators of cellular oxidative stress (e.g., 4-hydroxy-2-nonenal). Members of this chemical family produce toxicity via a common molecular mechanism. Although individual environmental concentrations might not be toxicologically relevant, exposure to an ambient mixture of type-2 alkene pollutants could pose a significant risk to human health. Furthermore, environmentally derived type-2 alkenes might act synergistically with endogenously generated unsaturated aldehydes to amplify cellular damage and thereby accelerate human disease/injury processes that involve oxidative stress. Conclusions: These possibilities have substantial implications for environmental risk assessment and were realized through an understanding of ACR adduct chemistry. The approach delineated here can be broadly applied because many toxicants of different chemical classes are electrophiles that produce toxicity by interacting with cellular proteins. PMID:23060388
Kim, Eunyoung; Owen, Benjamin; Holmes, William R.
2012-01-01
Long-term potentiation (LTP) is often induced experimentally by continuous high-frequency afferent stimulation (HFS), typically at 100 Hz for 1 s. Induction of LTP requires postsynaptic depolarization and voltage-dependent calcium influx. Induction is more effective if the same number of stimuli are given as a series of short bursts rather than as continuous HFS, in part because excitatory postsynaptic potentials (EPSPs) become strongly depressed during HFS, reducing postsynaptic depolarization. In this study, we examined mechanisms of EPSP depression during HFS in area CA1 of rat hippocampal brain slices. We tested for presynaptic terminal vesicle depletion by examining minimal stimulation-evoked excitatory postsynaptic currents (EPSCs) during 100-Hz HFS. While transmission failures increased, consistent with vesicle depletion, EPSC latencies also increased during HFS, suggesting a decrease in afferent excitability. Extracellular recordings of Schaffer collateral fiber volleys confirmed a decrease in afferent excitability, with decreased fiber volley amplitudes and increased latencies during HFS. To determine the mechanism responsible for fiber volley changes, we recorded antidromic action potentials in single CA3 pyramidal neurons evoked by stimulating Schaffer collateral axons. During HFS, individual action potentials decreased in amplitude and increased in latency, and these changes were accompanied by a large increase in the probability of action potential failure. Time derivative and phase-plane analyses indicated decreases in both axon initial segment and somato-dendritic components of CA3 neuron action potentials. Our results indicate that decreased presynaptic axon excitability contributes to depression of excitatory synaptic transmission during HFS at synapses between Schaffer collaterals and CA1 pyramidal neurons. PMID:22773781
Muscle-derived collagen XIII regulates maturation of the skeletal neuromuscular junction.
Latvanlehto, Anne; Fox, Michael A; Sormunen, Raija; Tu, Hongmin; Oikarainen, Tuomo; Koski, Anu; Naumenko, Nikolay; Shakirzyanova, Anastasia; Kallio, Mika; Ilves, Mika; Giniatullin, Rashid; Sanes, Joshua R; Pihlajaniemi, Taina
2010-09-15
Formation, maturation, stabilization, and functional efficacy of the neuromuscular junction (NMJ) are orchestrated by transsynaptic and autocrine signals embedded within the synaptic cleft. Here, we demonstrate that collagen XIII, a nonfibrillar transmembrane collagen, is another such signal. We show that collagen XIII is expressed by muscle and its ectodomain can be proteolytically shed into the extracellular matrix. The collagen XIII protein was found present in the postsynaptic membrane and synaptic basement membrane. To identify a role for collagen XIII at the NMJ, mice were generated lacking this collagen. Morphological and ultrastructural analysis of the NMJ revealed incomplete adhesion of presynaptic and postsynaptic specializations in collagen XIII-deficient mice of both genders. Strikingly, Schwann cells erroneously enwrapped nerve terminals and invaginated into the synaptic cleft, resulting in a decreased contact surface for neurotransmission. Consistent with morphological findings, electrophysiological studies indicated both postsynaptic and presynaptic defects in Col13a1(-/-) mice, such as decreased amplitude of postsynaptic potentials, diminished probabilities of spontaneous release and reduced readily releasable neurotransmitter pool. To identify the role of collagen XIII at the NMJ, shed ectodomain of collagen XIII was applied to cultured myotubes, and it was found to advance acetylcholine receptor (AChR) cluster maturation. Together with the delay in AChR cluster development observed in collagen XIII-deficient mutants in vivo, these results suggest that collagen XIII plays an autocrine role in postsynaptic maturation of the NMJ. Altogether, the results presented here reveal that collagen XIII is a novel muscle-derived cue necessary for the maturation and function of the vertebrate NMJ.
Ledonne, Ada; Sebastianelli, Luca; Federici, Mauro; Bernardi, Giorgio; Mercuri, Nicola Biagio
2009-01-01
Background and purpose Nutrition is the result of a complex interaction among environmental, homeostatic and reward-related processes. Accumulating evidence supports key roles for the dopaminergic neurons of the ventral midbrain in regulating feeding behaviour. For this reason, in the present study, we have investigated the electrophysiological effects of two centrally acting anorexic agents, fenfluramine and sibutramine, on these cells. Experimental approach Rat midbrain slices were used to make intracellular recordings from dopaminergic neurons of the substantia nigra and the ventral tegmental area. Gamma-aminobutyric acid (GABA)-mediated synaptic transmission was assessed from the inhibitory postsynaptic potentials (IPSPs) mediated by GABAA and GABAB receptors. Key results Fenfluramine and sibutramine reduced, concentration-dependently, the GABAB IPSPs, without affecting the GABAA-mediated potentials. This effect is presynaptic, as postsynaptic membrane responses induced by application of a GABAB receptor agonist, baclofen, were not affected by the two drugs. Furthermore, the selective 5-hydroxytriptamine 1B (5-HT1B) receptor antagonist, SB216641, blocked the reduction of GABAB IPSPs caused by fenfluramine and sibutramine, indicating that the receptor mediating this effect is 5-HT1B. Conclusions and implications Two anorexic agents, fenfluramine and sibutramine, induced the activation of 5-HT1B receptors located on presynaptic GABAergic terminals, thus reducing the release of GABA. This action can alter the strength of synaptic afferents that modify the activity of dopaminergic neurons, inducing neuronal excitation. Our results reveal an additional mechanism of action for fenfluramine and sibutramine that might contribute to reducing food intake, by influencing the pleasurable and motor aspects of feeding behaviour. PMID:19298257
Robinson, Stacey L.; Alexander, Nancy J.; Bluett, Rebecca J.; Patel, Sachin; McCool, Brian A.
2016-01-01
The endogenous cannabinoid (eCB) system has been suggested to play a key role in ethanol preference and intake, the acute effects of ethanol, and in the development of withdrawal symptoms following ethanol dependence. Ethanol-dependent alterations in glutamatergic signaling within the lateral/basolateral nucleus of the amygdala (BLA) are critical for the development and expression of withdrawal-induced anxiety. Notably, the eCB system significantly regulates both glutamatergic and GABAergic synaptic activity within the BLA. Chronic ethanol exposure significantly alters eCB system expression within regions critical to the expression of emotionality and anxiety-related behavior, including the BLA. Here, we investigated specific interactions between the BLA eCB system and its functional regulation of synaptic activity during acute and chronic ethanol exposure. In tissue from ethanol naïve-rats, a prolonged acute ethanol exposure caused a dose dependent inhibition of glutamatergic synaptic activity via a presynaptic mechanism that was occluded by CB1 antagonist/inverse agonists SR141716a and AM251. Importantly, this acute ethanol inhibition was attenuated following 10 day chronic intermittent ethanol vapor exposure (CIE). CIE exposure also significantly down-regulated CB1-mediated presynaptic inhibition at glutamatergic afferent terminals but spared CB1-inhibition of GABAergic synapses arising from local inhibitory-interneurons. CIE also significantly elevated BLA N-arachidonoylethanolamine (AEA or anandamide) levels and decreased CB1 receptor protein levels. Collectively, these data suggest a dynamic regulation of the BLA eCB system by acute and chronic ethanol. PMID:26707595
Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses.
Helassa, Nordine; Dürst, Céline D; Coates, Catherine; Kerruth, Silke; Arif, Urwa; Schulze, Christian; Wiegert, J Simon; Geeves, Michael; Oertner, Thomas G; Török, Katalin
2018-05-22
Glutamatergic synapses display a rich repertoire of plasticity mechanisms on many different time scales, involving dynamic changes in the efficacy of transmitter release as well as changes in the number and function of postsynaptic glutamate receptors. The genetically encoded glutamate sensor iGluSnFR enables visualization of glutamate release from presynaptic terminals at frequencies up to ∼10 Hz. However, to resolve glutamate dynamics during high-frequency bursts, faster indicators are required. Here, we report the development of fast (iGlu f ) and ultrafast (iGlu u ) variants with comparable brightness but increased K d for glutamate (137 μM and 600 μM, respectively). Compared with iGluSnFR, iGlu u has a sixfold faster dissociation rate in vitro and fivefold faster kinetics in synapses. Fitting a three-state model to kinetic data, we identify the large conformational change after glutamate binding as the rate-limiting step. In rat hippocampal slice culture stimulated at 100 Hz, we find that iGlu u is sufficiently fast to resolve individual glutamate release events, revealing that glutamate is rapidly cleared from the synaptic cleft. Depression of iGlu u responses during 100-Hz trains correlates with depression of postsynaptic EPSPs, indicating that depression during high-frequency stimulation is purely presynaptic in origin. At individual boutons, the recovery from depression could be predicted from the amount of glutamate released on the second pulse (paired pulse facilitation/depression), demonstrating differential frequency-dependent filtering of spike trains at Schaffer collateral boutons. Copyright © 2018 the Author(s). Published by PNAS.
Ji, Haoran; Wang, Chengshan; Li, Peng; ...
2017-09-20
The integration of distributed generators (DGs) exacerbates the feeder power flow fluctuation and load unbalanced condition in active distribution networks (ADNs). The unbalanced feeder load causes inefficient use of network assets and network congestion during system operation. The flexible interconnection based on the multi-terminal soft open point (SOP) significantly benefits the operation of ADNs. The multi-terminal SOP, which is a controllable power electronic device installed to replace the normally open point, provides accurate active and reactive power flow control to enable the flexible connection of feeders. An enhanced SOCP-based method for feeder load balancing using the multi-terminal SOP is proposedmore » in this paper. Furthermore, by regulating the operation of the multi-terminal SOP, the proposed method can mitigate the unbalanced condition of feeder load and simultaneously reduce the power losses of ADNs. Then, the original non-convex model is converted into a second-order cone programming (SOCP) model using convex relaxation. In order to tighten the SOCP relaxation and improve the computation efficiency, an enhanced SOCP-based approach is developed to solve the proposed model. Finally, case studies are performed on the modified IEEE 33-node system to verify the effectiveness and efficiency of the proposed method.« less
Correa-Gillieron, E M; Cavalcante, L A
1999-08-01
The maturation of the neuropil and synapse formation were examined in the retino-receptive layers of the superior colliculus (SCr-r) in the opossum from a period prior to the onset of arborization of retinocollicular fibers (postnatal day 22 - P22), at 44% of the coecal period (CP), to the end of the fast phase of optic fiber myelination and weaning time (P81 - 118% CP). Development of the SCr-r neuropil follows a protracted time course and can be divided into three broad stages, which are characterized by (I) Large extracellular spaces, numerous growth cones that participate rarely in synaptic junctions, vesicles-poor immature synapses (P22-P30), (II) Synapses of varied morphology with abundant synaptic vesicles, and small terminals with dark mitochondria and round synaptic vesicles (RSD terminals) synapsing mostly onto dendritic shafts, flat-vesicles (F) terminals (P40-P56), (III) Sequential appearance of retinal (R) and pleomorphic-vesicles (P) terminals and of RSD terminals synapsing onto spine or spine-like processes, appearance of glomerulus-like synaptic arrays (synaptic islets) (P61-P81). The advancement of synaptogenesis in SCr-r from stage I to II and from stage II to III correlates closely with the differentiation of astrocytes and oligodendrocytes, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Haoran; Wang, Chengshan; Li, Peng
The integration of distributed generators (DGs) exacerbates the feeder power flow fluctuation and load unbalanced condition in active distribution networks (ADNs). The unbalanced feeder load causes inefficient use of network assets and network congestion during system operation. The flexible interconnection based on the multi-terminal soft open point (SOP) significantly benefits the operation of ADNs. The multi-terminal SOP, which is a controllable power electronic device installed to replace the normally open point, provides accurate active and reactive power flow control to enable the flexible connection of feeders. An enhanced SOCP-based method for feeder load balancing using the multi-terminal SOP is proposedmore » in this paper. Furthermore, by regulating the operation of the multi-terminal SOP, the proposed method can mitigate the unbalanced condition of feeder load and simultaneously reduce the power losses of ADNs. Then, the original non-convex model is converted into a second-order cone programming (SOCP) model using convex relaxation. In order to tighten the SOCP relaxation and improve the computation efficiency, an enhanced SOCP-based approach is developed to solve the proposed model. Finally, case studies are performed on the modified IEEE 33-node system to verify the effectiveness and efficiency of the proposed method.« less
Two R7 RGS proteins shape retinal bipolar cell signaling
Mojumder, Deb Kumar; Qian, Yan; Wensel, Theodore G.
2009-01-01
RGS7, RGS11, and their binding partner Gβ5 are localized to the dendritic tips of retinal ON bipolar cells (ON-BPC), where mGluR6 responds to glutamate released from photoreceptor terminals by activation of the RGS7/RGS11 substrate, Gαo. To determine their functions in retinal signaling, we investigated cell-specific expression patterns of RGS7 and RGS11 by immunostaining, and measured light responses by electroretinography (ERG) in mice with targeted disruptions of the genes encoding them. RGS7 staining is present in dendritic tips of all rod ON-BPC, but missing in those for subsets of cone ON-BPC, whereas the converse was true for RGS11 staining. Genetic disruption of either RGS7 or RGS11 produced delays in the ON-BPC-derived electroretinogram b-wave, but no changes in the photoreceptor-derived a-wave. Homozygous RGS7 mutant mice had delays in rod-driven b-waves, whereas, RGS11 mutant mice had delays in rod-driven, and especially in cone-driven b-waves. The b-wave delays were further enhanced in mice homozygous for both RGS7 and RGS11 gene disruptions. Thus, RGS7 and RGS11 act in parallel to regulate the kinetics of ON bipolar cell responses, with differential impacts on the rod and cone pathways. PMID:19535587
Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity
Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.
2012-01-01
Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208
Scalettar, B A; Jacobs, C; Fulwiler, A; Prahl, L; Simon, A; Hilken, L; Lochner, J E
2012-09-01
Dense-core granules (DCGs) are organelles found in neuroendocrine cells and neurons that house, transport, and release a number of important peptides and proteins. In neurons, DCG cargo can include the secreted neuromodulatory proteins tissue plasminogen activator (tPA) and/or brain-derived neurotrophic factor (BDNF), which play a key role in modulating synaptic efficacy in the hippocampus. This function has spurred interest in DCGs that localize to synaptic contacts between hippocampal neurons, and several studies recently have established that DCGs localize to, and undergo regulated exocytosis from, postsynaptic sites. To complement this work, we have studied presynaptically localized DCGs in hippocampal neurons, which are much more poorly understood than their postsynaptic analogs. Moreover, to enhance relevance, we visualized DCGs via fluorescence labeling of exogenous and endogenous tPA and BDNF. Using single-particle tracking, we determined trajectories of more than 150 presynaptically localized DCGs. These trajectories reveal that mobility of DCGs in presynaptic boutons is highly hindered and that storage is long-lived. We also computed mean-squared displacement curves, which can be used to elucidate mechanisms of transport. Over shorter time windows, most curves are linear, demonstrating that DCG transport in boutons is driven predominantly by diffusion. The remaining curves plateau with time, consistent with motion constrained by a submicron-sized corral. These results have relevance to recent models of presynaptic organization and to recent hypotheses about DCG cargo function. The results also provide estimates for transit times to the presynaptic plasma membrane that are consistent with measured times for onset of neurotrophin release from synaptically localized DCGs. Copyright © 2011 Wiley Periodicals, Inc.
Saijo, Takeaki; Maeda, Jun; Okauchi, Takashi; Maeda, Jun-ichi; Morio, Yasunori; Kuwahara, Yasuhiro; Suzuki, Masayuki; Goto, Nobuharu; Fukumura, Toshimitsu; Suhara, Tetsuya; Higuchi, Makoto
2012-01-01
A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT(1A)) receptor, called Wf-516 (structural formula: (2S)-1-[4-(3,4-dichlorophenyl)piperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-yl)benzo[b]furan-4-yloxy]propan-2-ol monohydrochloride), has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET) and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT(1A) receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT(1A) receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT(1A) receptors. In addition, [(35)S]guanosine 5'-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT(1A) receptors. This finding has lent support to reports that diverse partial agonists for 5-HT(1A) receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants.
Okauchi, Takashi; Maeda, Jun-ichi; Morio, Yasunori; Kuwahara, Yasuhiro; Suzuki, Masayuki; Goto, Nobuharu; Fukumura, Toshimitsu; Suhara, Tetsuya; Higuchi, Makoto
2012-01-01
A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT1A) receptor, called Wf-516 (structural formula: (2S)-1-[4-(3,4-dichlorophenyl)piperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-yl)benzo[b]furan-4-yloxy]propan-2-ol monohydrochloride), has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET) and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT1A receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT1A receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT1A receptors. In addition, [35S]guanosine 5′-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT1A receptors. This finding has lent support to reports that diverse partial agonists for 5-HT1A receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants. PMID:22880045
Badawi, Yomna; Nishimune, Hiroshi
2018-02-01
Neurotransmitter release occurs at active zones, which are specialized regions of the presynaptic membrane. A dense collection of proteins at the active zone provides a platform for molecular interactions that promote recruitment, docking, and priming of synaptic vesicles. At mammalian neuromuscular junctions (NMJs), muscle-derived laminin β2 interacts with presynaptic voltage-gated calcium channels to organize active zones. The molecular architecture of presynaptic active zones has been revealed using super-resolution microscopy techniques that combine nanoscale resolution and multiple molecular identification. Interestingly, the active zones of adult NMJs are not stable structures and thus become impaired during aging due to the selective degeneration of specific active zone proteins. This review will discuss recent progress in the understanding of active zone nanoarchitecture and the mechanisms underlying active zone organization in mammalian NMJs. Furthermore, we will summarize the age-related degeneration of active zones at NMJs, and the role of exercise in maintaining active zones. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Smith, Heather L; Bourne, Jennifer N; Cao, Guan; Chirillo, Michael A; Ostroff, Linnaea E; Watson, Deborah J; Harris, Kristen M
2016-01-01
Mitochondria support synaptic transmission through production of ATP, sequestration of calcium, synthesis of glutamate, and other vital functions. Surprisingly, less than 50% of hippocampal CA1 presynaptic boutons contain mitochondria, raising the question of whether synapses without mitochondria can sustain changes in efficacy. To address this question, we analyzed synapses from postnatal day 15 (P15) and adult rat hippocampus that had undergone theta-burst stimulation to produce long-term potentiation (TBS-LTP) and compared them to control or no stimulation. At 30 and 120 min after TBS-LTP, vesicles were decreased only in presynaptic boutons that contained mitochondria at P15, and vesicle decrement was greatest in adult boutons containing mitochondria. Presynaptic mitochondrial cristae were widened, suggesting a sustained energy demand. Thus, mitochondrial proximity reflected enhanced vesicle mobilization well after potentiation reached asymptote, in parallel with the apparently silent addition of new dendritic spines at P15 or the silent enlargement of synapses in adults. DOI: http://dx.doi.org/10.7554/eLife.15275.001 PMID:27991850
Gaviño, Michael A; Ford, Kevin J; Archila, Santiago; Davis, Graeme W
2015-01-01
Homeostatic signaling stabilizes synaptic transmission at the neuromuscular junction (NMJ) of Drosophila, mice, and human. It is believed that homeostatic signaling at the NMJ is bi-directional and considerable progress has been made identifying mechanisms underlying the homeostatic potentiation of neurotransmitter release. However, very little is understood mechanistically about the opposing process, homeostatic depression, and how bi-directional plasticity is achieved. Here, we show that homeostatic potentiation and depression can be simultaneously induced, demonstrating true bi-directional plasticity. Next, we show that mutations that block homeostatic potentiation do not alter homeostatic depression, demonstrating that these are genetically separable processes. Finally, we show that homeostatic depression is achieved by decreased presynaptic calcium channel abundance and calcium influx, changes that are independent of the presynaptic action potential waveform. Thus, we identify a novel mechanism of homeostatic synaptic plasticity and propose a model that can account for the observed bi-directional, homeostatic control of presynaptic neurotransmitter release. DOI: http://dx.doi.org/10.7554/eLife.05473.001 PMID:25884248
Myasthenic decrement and myasthenic myopathy. A study on the effects of thymectomy.
Pinelli, P; Arrigo, A; Moglia, A
1975-01-01
Motor unit action potentials, M responses to repetitive nerve stimulation, and anticholinesterase tests were investigated in 12 myasthenic patients before and after thymectomy. In six of them the endarterial acetylcholine test was also carried out. Responsiveness to ACTH or to prednisone treatment was evaluated before and after thymectomy. The typical myasthenic presynaptic disorders were improved by thymectomy, while signs of myasthenic myopathy (according to Rowland's definition) were apparently increased. This process of 'functional myopathophanerosis' is discussed and explained in terms of a previous presynaptic disorder blocking the voluntary recruitment threshold of those motor units which are most affected at both presynaptic and postsynaptic level. Images PMID:168321
Cenci, M Angela
2014-01-01
The dopamine (DA) precursor l-DOPA has been the most effective treatment for Parkinson's disease (PD) for over 40 years. However, the response to this treatment changes with disease progression, and most patients develop dyskinesias (abnormal involuntary movements) and motor fluctuations within a few years of l-DOPA therapy. There is wide consensus that these motor complications depend on both pre- and post-synaptic disturbances of nigrostriatal DA transmission. Several presynaptic mechanisms converge to generate large DA swings in the brain concomitant with the peaks-and-troughs of plasma l-DOPA levels, while post-synaptic changes engender abnormal functional responses in dopaminoceptive neurons. While this general picture is well-accepted, the relative contribution of different factors remains a matter of debate. A particularly animated debate has been growing around putative players on the presynaptic side of the cascade. To what extent do presynaptic disturbances in DA transmission depend on deficiency/dysfunction of the DA transporter, aberrant release of DA from serotonin neurons, or gliovascular mechanisms? And does noradrenaline (which is synthetized from DA) play a role? This review article will summarize key findings, controversies, and pending questions regarding the presynaptic mechanisms of l-DOPA-induced dyskinesia. Intriguingly, the debate around these mechanisms has spurred research into previously unexplored facets of brain plasticity that have far-reaching implications to the treatment of neuropsychiatric disease.
Mitroi, Daniel N; Deutschmann, André U; Raucamp, Maren; Karunakaran, Indulekha; Glebov, Konstantine; Hans, Michael; Walter, Jochen; Saba, Julie; Gräler, Markus; Ehninger, Dan; Sopova, Elena; Shupliakov, Oleg; Swandulla, Dieter; van Echten-Deckert, Gerhild
2016-11-24
The bioactive lipid sphingosine 1-phosphate (S1P) is a degradation product of sphingolipids that are particularly abundant in neurons. We have shown previously that neuronal S1P accumulation is toxic leading to ER-stress and an increase in intracellular calcium. To clarify the neuronal function of S1P, we generated brain-specific knockout mouse models in which S1P-lyase (SPL), the enzyme responsible for irreversible S1P cleavage was inactivated. Constitutive ablation of SPL in the brain (SPL fl/fl/Nes ) but not postnatal neuronal forebrain-restricted SPL deletion (SPL fl/fl/CaMK ) caused marked accumulation of S1P. Hence, altered presynaptic architecture including a significant decrease in number and density of synaptic vesicles, decreased expression of several presynaptic proteins, and impaired synaptic short term plasticity were observed in hippocampal neurons from SPL fl/fl/Nes mice. Accordingly, these mice displayed cognitive deficits. At the molecular level, an activation of the ubiquitin-proteasome system (UPS) was detected which resulted in a decreased expression of the deubiquitinating enzyme USP14 and several presynaptic proteins. Upon inhibition of proteasomal activity, USP14 levels, expression of presynaptic proteins and synaptic function were restored. These findings identify S1P metabolism as a novel player in modulating synaptic architecture and plasticity.
ELKS active zone proteins as multitasking scaffolds for secretion
Held, Richard G.
2018-01-01
Synaptic vesicle exocytosis relies on the tethering of release ready vesicles close to voltage-gated Ca2+ channels and specific lipids at the future site of fusion. This enables rapid and efficient neurotransmitter secretion during presynaptic depolarization by an action potential. Extensive research has revealed that this tethering is mediated by an active zone, a protein dense structure that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Although roles of individual active zone proteins in exocytosis are in part understood, the molecular mechanisms that hold the protein scaffold at the active zone together and link it to the presynaptic plasma membrane have remained unknown. This is largely due to redundancy within and across scaffolding protein families at the active zone. Recent studies, however, have uncovered that ELKS proteins, also called ERC, Rab6IP2 or CAST, act as active zone scaffolds redundant with RIMs. This redundancy has led to diverse synaptic phenotypes in studies of ELKS knockout mice, perhaps because different synapses rely to a variable extent on scaffolding redundancy. In this review, we first evaluate the need for presynaptic scaffolding, and we then discuss how the diverse synaptic and non-synaptic functional roles of ELKS support the hypothesis that ELKS provides molecular scaffolding for organizing vesicle traffic at the presynaptic active zone and in other cellular compartments. PMID:29491150
Vail, Graham; Cheng, Aifang; Han, Yu Ray; Zhao, Teng; Du, Shengwang; Loy, Michael M T; Herrup, Karl; Plummer, Mark R
2016-07-01
Ataxia telangiectasia is a multisystemic disorder that includes a devastating neurodegeneration phenotype. The ATM (ataxia-telangiectasia mutated) protein is well-known for its role in the DNA damage response, yet ATM is also found in association with cytoplasmic vesicular structures: endosomes and lysosomes, as well as neuronal synaptic vesicles. In keeping with this latter association, electrical stimulation of the Schaffer collateral pathway in hippocampal slices from ATM-deficient mice does not elicit normal long-term potentiation (LTP). The current study was undertaken to assess the nature of this deficit. Theta burst-induced LTP was reduced in Atm(-/-) animals, with the reduction most pronounced at burst stimuli that included 6 or greater trains. To assess whether the deficit was associated with a pre- or postsynaptic failure, we analyzed paired-pulse facilitation and found that it too was significantly reduced in Atm(-/-) mice. This indicates a deficit in presynaptic function. As further evidence that these synaptic effects of ATM deficiency were presynaptic, we used stochastic optical reconstruction microscopy. Three-dimensional reconstruction revealed that ATM is significantly more closely associated with Piccolo (a presynaptic marker) than with Homer1 (a postsynaptic marker). These results underline how, in addition to its nuclear functions, ATM plays an important functional role in the neuronal synapse where it participates in the regulation of presynaptic vesicle physiology. Copyright © 2016 the American Physiological Society.
Vail, Graham; Cheng, Aifang; Han, Yu Ray; Zhao, Teng; Du, Shengwang; Loy, Michael M. T.; Herrup, Karl
2016-01-01
Ataxia telangiectasia is a multisystemic disorder that includes a devastating neurodegeneration phenotype. The ATM (ataxia-telangiectasia mutated) protein is well-known for its role in the DNA damage response, yet ATM is also found in association with cytoplasmic vesicular structures: endosomes and lysosomes, as well as neuronal synaptic vesicles. In keeping with this latter association, electrical stimulation of the Schaffer collateral pathway in hippocampal slices from ATM-deficient mice does not elicit normal long-term potentiation (LTP). The current study was undertaken to assess the nature of this deficit. Theta burst-induced LTP was reduced in Atm−/− animals, with the reduction most pronounced at burst stimuli that included 6 or greater trains. To assess whether the deficit was associated with a pre- or postsynaptic failure, we analyzed paired-pulse facilitation and found that it too was significantly reduced in Atm−/− mice. This indicates a deficit in presynaptic function. As further evidence that these synaptic effects of ATM deficiency were presynaptic, we used stochastic optical reconstruction microscopy. Three-dimensional reconstruction revealed that ATM is significantly more closely associated with Piccolo (a presynaptic marker) than with Homer1 (a postsynaptic marker). These results underline how, in addition to its nuclear functions, ATM plays an important functional role in the neuronal synapse where it participates in the regulation of presynaptic vesicle physiology. PMID:27075534
Presynaptic neurones may contribute a unique glycoprotein to the extracellular matrix at the synapse
NASA Astrophysics Data System (ADS)
Caroni, Pico; Carlson, Steven S.; Schweitzer, Erik; Kelly, Regis B.
1985-04-01
As the extracellular matrix at the original site of a neuromuscular junction seems to play a major part in the specificity of synaptic regeneration1-5, considerable attention has been paid to unique molecules localized to this region6-11. Here we describe an extracellular matrix glycoprotein of the elasmobranch electric organ that is localized near the nerve endings. By immunological criteria, it is synthesized in the cell bodies, transported down the axons and is related to a glycoprotein in the synaptic vesicles of the neurones that innervate the electric organ. It is apparently specific for these neurones, as it cannot be detected elsewhere in the nervous system of the fish. Therefore, neurones seem to contribute unique extracellular matrix glycoproteins to the synaptic region. Synaptic vesicles could be involved in transporting these glycoproteins to or from the nerve terminal surface.
NASA Astrophysics Data System (ADS)
Brown, James W. P.; Buell, Alexander K.; Michaels, Thomas C. T.; Meisl, Georg; Carozza, Jacqueline; Flagmeier, Patrick; Vendruscolo, Michele; Knowles, Tuomas P. J.; Dobson, Christopher M.; Galvagnion, Céline
2016-11-01
α-Synuclein is an intrinsically disordered protein that is associated with the pathogenesis of Parkinson’s disease through the processes involved in the formation of amyloid fibrils. α and β-synuclein are homologous proteins found at comparable levels in presynaptic terminals but β-synuclein has a greatly reduced propensity to aggregate and indeed has been found to inhibit α-synuclein aggregation. In this paper, we describe how sequence differences between α- and β-synuclein affect individual microscopic processes in amyloid formation. In particular, we show that β-synuclein strongly suppresses both lipid-induced aggregation and secondary nucleation of α-synuclein by competing for binding sites at the surfaces of lipid vesicles and fibrils, respectively. These results suggest that β-synuclein can act as a natural inhibitor of α-synuclein aggregation by reducing both the initiation of its self-assembly and the proliferation of its aggregates.
Regulation of neuronal communication by G protein-coupled receptors.
Huang, Yunhong; Thathiah, Amantha
2015-06-22
Neuronal communication plays an essential role in the propagation of information in the brain and requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mechanism through which neurons communicate with each other. It is a strictly regulated process which involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the function of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in regulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of astrocytic GPCRs in the regulation of neuronal communication. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Gerhard, Stephan; Andrade, Ingrid; Fetter, Richard D; Cardona, Albert; Schneider-Mizell, Casey M
2017-10-23
During postembryonic development, the nervous system must adapt to a growing body. How changes in neuronal structure and connectivity contribute to the maintenance of appropriate circuit function remains unclear. Previously , we measured the cellular neuroanatomy underlying synaptic connectivity in Drosophila (Schneider-Mizell et al., 2016). Here, we examined how neuronal morphology and connectivity change between first instar and third instar larval stages using serial section electron microscopy. We reconstructed nociceptive circuits in a larva of each stage and found consistent topographically arranged connectivity between identified neurons. Five-fold increases in each size, number of terminal dendritic branches, and total number of synaptic inputs were accompanied by cell type-specific connectivity changes that preserved the fraction of total synaptic input associated with each pre-synaptic partner. We propose that precise patterns of structural growth act to conserve the computational function of a circuit, for example determining the location of a dangerous stimulus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, J.; Williams, J.; Asherson, P.
1995-02-27
It has been suggested that the cytochrome P450 mono-oxygenase, debrisoquine 4-hydroxylase, is involved in the catabolism and processing of neurotransmitters subsequent to their reuptake into target cells. It is also thought to be related to the dopamine transporter that acts to take released dopamine back up into presynaptic terminals. The present study used the association approach to test the hypothesis that mutations in the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT) confer susceptibility to schizophrenia. There were no differences in allele or genotype frequencies between patients and controls in the mutations causing the poor metaboliser phenotype inmore » CYP2D6. In addition there was no association found between schizophrenia and a 48 bp repeat within the 3{prime} untranslated region of DAT. 18 refs., 2 tabs.« less
Myasthenia gravis and related disorders: Pathology and molecular pathogenesis.
Ha, James C; Richman, David P
2015-04-01
Disorders affecting the presynaptic, synaptic, and postsynaptic portions of the neuromuscular junction arise from various mechanisms in children and adults, including acquired autoimmune or toxic processes as well as genetic mutations. Disorders include autoimmune myasthenia gravis associated with acetylcholine receptor, muscle specific kinase or Lrp4 antibodies, Lambert-Eaton myasthenic syndrome, nerve terminal hyperexcitability syndromes, Guillain Barré syndrome, botulism, organophosphate poisoning and a number of congenital myasthenic syndromes. This review focuses on the various molecular and pathophysiological mechanisms of these disorders, characterization of which has been crucial to the development of treatment strategies specific for each pathogenic mechanism. In the future, further understanding of the underlying processes may lead to more effective and targeted therapies of these disorders. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.
PRRT2 Is a Key Component of the Ca2+-Dependent Neurotransmitter Release Machinery
Valente, Pierluigi; Castroflorio, Enrico; Rossi, Pia; Fadda, Manuela; Sterlini, Bruno; Cervigni, Romina Ines; Prestigio, Cosimo; Giovedì, Silvia; Onofri, Franco; Mura, Elisa; Guarnieri, Fabrizia C.; Marte, Antonella; Orlando, Marta; Zara, Federico; Fassio, Anna; Valtorta, Flavia; Baldelli, Pietro; Corradi, Anna; Benfenati, Fabio
2016-01-01
Summary Heterozygous mutations in proline-rich transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders, including epilepsy, kinesigenic dyskinesia, and migraine. Most of the mutations lead to impaired PRRT2 expression, suggesting that loss of PRRT2 function may contribute to pathogenesis. We show that PRRT2 is enriched in presynaptic terminals and that its silencing decreases the number of synapses and increases the number of docked synaptic vesicles at rest. PRRT2-silenced neurons exhibit a severe impairment of synchronous release, attributable to a sharp decrease in release probability and Ca2+ sensitivity and associated with a marked increase of the asynchronous/synchronous release ratio. PRRT2 interacts with the synaptic proteins SNAP-25 and synaptotagmin 1/2. The results indicate that PRRT2 is intimately connected with the Ca2+-sensing machinery and that it plays an important role in the final steps of neurotransmitter release. PMID:27052163
Structural insight into the mechanism of synergistic autoinhibition of SAD kinases
Wu, Jing-Xiang; Cheng, Yun-Sheng; Wang, Jue; Chen, Lei; Ding, Mei; Wu, Jia-Wei
2015-01-01
The SAD/BRSK kinases participate in various important life processes, including neural development, cell cycle and energy metabolism. Like other members of the AMPK family, SAD contains an N-terminal kinase domain followed by the characteristic UBA and KA1 domains. Here we identify a unique autoinhibitory sequence (AIS) in SAD kinases, which exerts autoregulation in cooperation with UBA. Structural studies of mouse SAD-A revealed that UBA binds to the kinase domain in a distinct mode and, more importantly, AIS nestles specifically into the KD-UBA junction. The cooperative action of AIS and UBA results in an ‘αC-out' inactive kinase, which is conserved across species and essential for presynaptic vesicle clustering in C. elegans. In addition, the AIS, along with the KA1 domain, is indispensable for phospholipid binding. Taken together, these data suggest a model for synergistic autoinhibition and membrane activation of SAD kinases. PMID:26626945
Structural insight into the mechanism of synergistic autoinhibition of SAD kinases.
Wu, Jing-Xiang; Cheng, Yun-Sheng; Wang, Jue; Chen, Lei; Ding, Mei; Wu, Jia-Wei
2015-12-02
The SAD/BRSK kinases participate in various important life processes, including neural development, cell cycle and energy metabolism. Like other members of the AMPK family, SAD contains an N-terminal kinase domain followed by the characteristic UBA and KA1 domains. Here we identify a unique autoinhibitory sequence (AIS) in SAD kinases, which exerts autoregulation in cooperation with UBA. Structural studies of mouse SAD-A revealed that UBA binds to the kinase domain in a distinct mode and, more importantly, AIS nestles specifically into the KD-UBA junction. The cooperative action of AIS and UBA results in an 'αC-out' inactive kinase, which is conserved across species and essential for presynaptic vesicle clustering in C. elegans. In addition, the AIS, along with the KA1 domain, is indispensable for phospholipid binding. Taken together, these data suggest a model for synergistic autoinhibition and membrane activation of SAD kinases.
A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds
Goldberg, Jesse H.
2012-01-01
The pallido-recipient thalamus transmits information from the basal ganglia (BG) to the cortex and plays a critical role motor initiation and learning. Thalamic activity is strongly inhibited by pallidal inputs from the BG, but the role of non-pallidal inputs, such as excitatory inputs from cortex, is unclear. We have recorded simultaneously from presynaptic pallidal axon terminals and postsynaptic thalamocortical neurons in a BG-recipient thalamic nucleus necessary for vocal variability and learning in zebra finches. We found that song-locked rate modulations in the thalamus could not be explained by pallidal inputs alone, and persisted following pallidal lesion. Instead, thalamic activity was likely driven by inputs from a motor ‘cortical’ nucleus also necessary for singing. These findings suggest a role for cortical inputs to the pallido-recipient thalamus in driving premotor signals important for exploratory behavior and learning. PMID:22327474
Calcitonin Gene-Related Peptide Reduces Taste-Evoked ATP Secretion from Mouse Taste Buds.
Huang, Anthony Y; Wu, Sandy Y
2015-09-16
Immunoelectron microscopy revealed that peripheral afferent nerve fibers innervating taste buds contain calcitonin gene-related peptide (CGRP), which may be as an efferent transmitter released from peripheral axon terminals. In this report, we determined the targets of CGRP within taste buds and studied what effect CGRP exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura-2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings showed that a subset of Presynaptic (Type III) taste cells (53%) responded to 0.1 μm CGRP with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 0.1 μm CGRP. Using pharmacological tools, the actions of CGRP were probed and elucidated by the CGRP receptor antagonist CGRP(8-37). We demonstrated that this effect of CGRP was dependent on phospholipase C activation and was prevented by the inhibitor U73122. Moreover, applying CGRP caused taste buds to secrete serotonin (5-HT), a Presynaptic (Type III) cell transmitter, but not ATP, a Receptor (Type II) cell transmitter. Further, our previous studies showed that 5-HT released from Presynaptic (Type III) cells provides negative paracrine feedback onto Receptor (Type II) cells by activating 5-HT1A receptors, and reducing ATP secretion. Our data showed that CGRP-evoked 5-HT release reduced taste-evoked ATP secretion. The findings are consistent with a role for CGRP as an inhibitory transmitter that shapes peripheral taste signals via serotonergic signaling during processing gustatory information in taste buds. The taste sensation is initiated with a highly complex set of interactions between a variety of cells located within the taste buds before signal propagation to the brain. Afferent signals from the oral cavity are carried to the brain in chemosensory fibers that contribute to chemesthesis, the general chemical sensitivity of the mucus membranes in the oronasal cavities and being perceived as pungency, irritation, or heat. This is a study of a fundamental question in neurobiology: how are signals processed in sensory end organs, taste buds? More specifically, taste-modifying interactions, via transmitters, between gustatory and chemosensory afferents inside taste buds will help explain how a coherent output is formed before being transmitted to the brain. Copyright © 2015 the authors 0270-6474/15/3512714-11$15.00/0.
Electrical coupling between A17 cells enhances reciprocal inhibitory feedback to rod bipolar cells.
Elgueta, Claudio; Leroy, Felix; Vielma, Alex H; Schmachtenberg, Oliver; Palacios, Adrian G
2018-02-15
A17 amacrine cells are an important part of the scotopic pathway. Their synaptic varicosities receive glutamatergic inputs from rod bipolar cells (RBC) and release GABA onto the same RBC terminal, forming a reciprocal feedback that shapes RBC depolarization. Here, using patch-clamp recordings, we characterized electrical coupling between A17 cells of the rat retina and report the presence of strongly interconnected and non-coupled A17 cells. In coupled A17 cells, evoked currents preferentially flow out of the cell through GJs and cross-synchronization of presynaptic signals in a pair of A17 cells is correlated to their coupling degree. Moreover, we demonstrate that stimulation of one A17 cell can induce electrical and calcium transients in neighboring A17 cells, thus confirming a functional flow of information through electrical synapses in the A17 coupled network. Finally, blocking GJs caused a strong decrease in the amplitude of the inhibitory feedback onto RBCs. We therefore propose that electrical coupling between A17 cells enhances feedback onto RBCs by synchronizing and facilitating GABA release from inhibitory varicosities surrounding each RBC axon terminal. GJs between A17 cells are therefore critical in shaping the visual flow through the scotopic pathway.
Donoso, M Veronica; Carvajal, Andrés; Paredes, Alfonso; Tomic, Alexander; Koenig, Cecilia S; Huidobro-Toro, J Pablo
2002-09-01
Neuropeptide Y (NPY) and noradrenaline (NA) are co-transmitters at many sympathetic synapses, but it is not yet clear if their release is independently regulated. To address this question, we quantified the electrically evoked release of these co-transmitters from perivascular nerve terminals to the mesenteric circulation in control and drug-treated rats. 6-Hydroxydopamine reduced the tissue content and the electrically evoked release of ir-NPY and NA as well as the rise in perfusion pressure. A 0.001 mg/kg reserpine reduced the content of ir-NPY and NA, but did not modify their release nor altered the rise in perfusion pressure elicited by the electrical stimuli. However, 0.1mg/kg reserpine reduced both the content and release of NA but decreased only the content but not the release of ir-NPY; the rise in perfusion pressure was halved. Clonidine did not affect the release of ir-NPY while it lowered the outflow of NA, not altering the rise in perfusion pressure elicited by the electrical stimuli. Yohimbine, did not modify the release of ir-NPY but increased the NA outflow, it antagonized the clonidine effect. Therefore, presynaptic alpha2-adrenoceptors modulate the release of NA but not NPY, implying separate regulatory mechanisms.
Cove, Joshua; Blinder, Pablo; Abi-Jaoude, Elia; Lafrenière-Roula, Myriam; Devroye, Luc; Baranes, Danny
2006-01-01
The integrative properties of dendrites are determined by several factors, including their morphology and the spatio-temporal patterning of their synaptic inputs. One of the great challenges is to discover the interdependency of these two factors and the mechanisms which sculpt dendrites' fine morphological details. We found a novel form of neurite growth behavior in neuronal cultures of the hippocampus and cortex, when axons and dendrites grew directly toward neurite-neurite contact sites and crossed them, forming multi-neurite intersections (MNIs). MNIs were found at a frequency higher than obtained by computer simulations of randomly distributed dendrites, involved many of the dendrites and were stable for days. They were formed specifically by neurites originating from different neurons and were extremely rare among neurites of individual neurons or among astrocytic processes. Axonal terminals were clustered at MNIs and exhibited higher synaptophysin content and release capability than in those located elsewhere. MNI formation, as well as enhancement of axonal terminal clustering and secretion at MNIs, was disrupted by inhibitors of synaptic activity. Thus, convergence of axons and dendrites to form MNIs is a non-random activity-regulated wiring behavior which shapes dendritic trees and affects the location, clustering level and strength of their presynaptic inputs.
Pilar, Guillermo; Tuttle, Jeremy; Vaca, Ken
1981-01-01
1. The transformation of easily fatigued embryonic neuromuscular junctions into highly reliable mature terminals was examined by studying functional and morphological changes during development of the avian iris. The mature ability to follow repetitive electrical nerve stimulation was correlated with the rate of acetylcholine (ACh) synthesis and choline uptake, and with the fine structure of the nerve terminals and the post-synaptic elements. 2. The terminals of the ciliary nerve of the chick initially form functional synaptic contacts with the iris muscle at embryonic St. 34-40. At the onset of this period, no Na+-dependent high affinity choline uptake can be demonstrated, and the low level of ACh synthesis present is sensitive to Na+ removal. At St. 36 [3H]ACh synthesis begins to increase, the increment being Na+-dependent. 3. ACh synthesis in the embryonic iris was insensitive to a conditioning [K+]o depolarization even as late as St. 43. Just before hatching, depolarization elicits some augmentation in synthesis, but by 2 days ex ovo this release-induced response has increased by an order of magnitude. 4. Concurrently with the acquisition of the ability to respond to depolarization with accelerated synthesis, neuromuscular transmission in the iris becomes reliable and secure during stimulation at 20 Hz. Embryonic junctions rapidly block during such stimulation, and the failure is shown to be presynaptic in origin, resulting most probably from failure to sustain adequate levels of transmitter release. 5. Ultrastructural examination of the developing ciliary terminals revealed few synaptic vesicles at early stages, and a dearth of other specializations. The sequence of development from these small structurally undistinguished endings to large en plaque junctions completely filled with vesicles was reconstructed and compared to other neuromuscular junctions. Morphological maturation appears progressive with little evidence of discontinuity signalling functional status, but it is only after the terminals enlarge and become closely packed with vesicles that mature synaptic reliability is found. 6. The temporal correlation between responsiveness of transmitter synthesis to depolarization and reliable neuromuscular transmission suggests that modulation of neurotransmitter metabolism in response to demand signals the achievement of junctional maturity. ImagesABPlate 2Plate 3Plate 4 PMID:6279822
Extra projection data identification method for fast-continuous-rotation industrial cone-beam CT.
Yang, Min; Duan, Shengling; Duan, Jinghui; Wang, Xiaolong; Li, Xingdong; Meng, Fanyong; Zhang, Jianhai
2013-01-01
Fast-continuous-rotation is an effective measure to improve the scanning speed and decrease the radiation dose for cone-beam CT. However, because of acceleration and deceleration of the motor, as well as the response lag of the scanning control terminals to the host PC, uneven-distributed and redundant projections are inevitably created, which seriously decrease the quality of the reconstruction images. In this paper, we first analyzed the aspects of the theoretical sequence chart of the fast-continuous-rotation mode. Then, an optimized sequence chart was proposed by extending the rotation angle span to ensure the effective 2π-span projections were situated in the stable rotation stage. In order to match the rotation angle with the projection image accurately, structure similarity (SSIM) index was used as a control parameter for extraction of the effective projection sequence which was exactly the complete projection data for image reconstruction. The experimental results showed that SSIM based method had a high accuracy of projection view locating and was easy to realize.
Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Tzu-Yu; Department of Mechanical Engineering, Yuan Ze University, Taoyuan, 320, Taiwan; Lu, Cheng-Wei
2012-09-01
Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K{sup +} channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca{sup 2+} ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect onmore » hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca{sup 2+} concentration ([Ca{sup 2+}]{sub C}), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na{sup +}/Ca{sup 2+} exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca{sup 2+} entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat cerebrocortical synaptosomes. ► This action did not involve the participation of GABA{sub A} receptors. ► A decrease in the Ca{sup 2+} influx through Ca{sub v}2.2 and Ca{sub v}2.1 channels was involved. ► A role for the MAPK/ERK/synapsin I pathway in the action of hispidulin was suggested. ► This study provided further understanding of the mode of hispidulin action in the brain.« less
Donnelly, William T; Bartlett, Donald; Leiter, J C
2016-07-01
What is the central question of this study? Failure to terminate apnoea and arouse is likely to contribute to sudden infant death syndrome (SIDS). Serotonin is deficient in the brainstems of babies who died of SIDS. Therefore, we tested the hypothesis that serotonin in the nucleus of the solitary tract (NTS) would shorten reflex apnoea. What is the main finding and its importance? Serotonin microinjected into the NTS shortened the apnoea and respiratory inhibition associated with the laryngeal chemoreflex. Moreover, this effect was achieved through a 5-HT3 receptor. This is a new insight that is likely to be relevant to the pathogenesis of SIDS. The laryngeal chemoreflex (LCR), an airway-protective reflex that causes apnoea and bradycardia, has long been suspected as an initiating event in the sudden infant death syndrome. Serotonin (5-HT) and 5-HT receptors may be deficient in the brainstems of babies who die of sudden infant death syndrome, and 5-HT seems to be important in terminating apnoeas directly or in causing arousals or as part of the process of autoresuscitation. We hypothesized that 5-HT in the brainstem would limit the duration of the LCR. We studied anaesthetized rat pups between 7 and 21 days of age and made microinjections into the cisterna magna or into the nucleus of the solitary tract (NTS). Focal, bilateral microinjections of 5-HT into the caudal NTS significantly shortened the LCR. The 5-HT1a receptor antagonist, WAY 100635, did not affect the LCR consistently, nor did a 5-HT2 receptor antagonist, ketanserin, alter the duration of the LCR. The 5-HT3 specific agonist, 1-(3-chlorophenyl)-biguanide, microinjected bilaterally into the caudal NTS significantly shortened the LCR. Thus, endogenous 5-HT released within the NTS may curtail the respiratory depression that is part of the LCR, and serotonergic shortening of the LCR may be attributed to activation of 5-HT3 receptors within the NTS. 5-HT3 receptors are expressed presynaptically on C fibre afferents of the superior laryngeal nerve, and serotonergic shortening of the LCR may be mediated presynaptically by enhanced activation of inhibitory interneurons within the NTS. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
A Presynaptic Role for FMRP during Protein Synthesis-Dependent Long-Term Plasticity in "Aplysia"
ERIC Educational Resources Information Center
Till, Sally M.; Li, Hsiu-Ling; Miniaci, Maria Concetta; Kandel, Eric R.; Choi, Yun-Beom
2011-01-01
Loss of the Fragile X mental retardation protein (FMRP) is associated with presumed postsynaptic deficits in mouse models of Fragile X syndrome. However, the possible presynaptic roles of FMRP in learning-related plasticity have received little attention. As a result, the mechanisms whereby FMRP influences synaptic function remain poorly…
Slit2 as a β-catenin/Ctnnb1-dependent retrograde signal for presynaptic differentiation
Wu, Haitao; Barik, Arnab; Lu, Yisheng; Shen, Chengyong; Bowman, Andrew; Li, Lei; Sathyamurthy, Anupama; Lin, Thiri W; Xiong, Wen-Cheng; Mei, Lin
2015-01-01
Neuromuscular junction formation requires proper interaction between motoneurons and muscle cells. β-Catenin (Ctnnb1) in muscle is critical for motoneuron differentiation; however, little is known about the relevant retrograde signal. In this paper, we dissected which functions of muscle Ctnnb1 are critical by an in vivo transgenic approach. We show that Ctnnb1 mutant without the transactivation domain was unable to rescue presynaptic deficits of Ctnnb1 mutation, indicating the involvement of transcription regulation. On the other hand, the cell-adhesion function of Ctnnb1 is dispensable. We screened for proteins that may serve as a Ctnnb1-directed retrograde factor and identified Slit2. Transgenic expression of Slit2 specifically in the muscle was able to diminish presynaptic deficits by Ctnnb1 mutation in mice. Slit2 immobilized on beads was able to induce synaptophysin puncta in axons of spinal cord explants. Together, these observations suggest that Slit2 serves as a factor utilized by muscle Ctnnb1 to direct presynaptic differentiation. DOI: http://dx.doi.org/10.7554/eLife.07266.001 PMID:26159615
Postsynaptic Regulation of Long-Term Facilitation in Aplysia
Cai, Diancai; Chen, Shanping; Glanzman, David L.
2009-01-01
Summary Repeated exposure to serotonin (5-HT), an endogenous neurotransmitter that mediates behavioral sensitization in Aplysia [1–3], induces long-term facilitation (LTF) of the Aplysia sensorimotor synapse [4]. LTF, a prominent form of invertebrate synaptic plasticity, is believed to play a major role in long-term learning in Aplysia [5]. Until now, LTF has been thought to be due predominantly to cellular processes activated by 5-HT within the presynaptic sensory neuron [6]. Recent work indicates that LTF depends on the increased expression and release of a sensory neuron-specific neuropeptide, sensorin [7]. Sensorin released during LTF appears to bind to autoreceptors on the sensory neuron, thereby activating critical presynaptic signals, including mitogen-activated protein kinase (MAPK) [8, 9]. Here, we show that LTF depends on elevated postsynaptic Ca2+ and postsynaptic protein synthesis. Furthermore, we find that the increased expression of presynaptic sensorin due to 5-HT stimulation requires elevation of postsynaptic intracellular Ca2+. Our results represent perhaps the strongest evidence to date that the increased expression of a specific presynaptic neuropeptide during LTF is regulated by retrograde signals. PMID:18571411
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yoosoo; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791; Kim, Se-Hyun
Highlights: • Membrane fusion driven by SNARE complex is hindered by several polyphenols. • Distinctive inhibitory effect of each polyphenol on SNARE zippering in neuron was examined. • FRET between fluorescence protein-tagged SNAREs probed well SNARE zippering in PC12 cells. • Delphinidin and cyanidin inhibit N-terminal SNARE nucleation in Ca{sup 2+}-independent manner. • Myricetin inhibits Ca{sup 2+}-dependent transmembrane association of SNARE complex. - Abstract: Fusion of synaptic vesicles with the presynaptic plasma membrane in the neuron is mediated by soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) proteins. SNARE complex formation is a zippering-like process which initiates at the N-terminus andmore » proceeds to the C-terminal membrane-proximal region. Previously, we showed that this zippering-like process is regulated by several polyphenols, leading to the arrest of membrane fusion and the inhibition of neuroexocytosis. In vitro studies using purified SNARE proteins reconstituted in liposomes revealed that each polyphenol uniquely regulates SNARE zippering. However, the unique regulatory effect of each polyphenol in cells has not yet been examined. In the present study, we observed SNARE zippering in neuronal PC12 cells by measuring the fluorescence resonance energy transfer (FRET) changes of a cyan fluorescence protein (CFP) and a yellow fluorescence protein (YFP) fused to the N-termini or C-termini of SNARE proteins. We show that delphinidin and cyanidin inhibit the initial N-terminal nucleation of SNARE complex formation in a Ca{sup 2+}-independent manner, while myricetin inhibits Ca{sup 2+}-dependent transmembrane domain association of the SNARE complex in the cell. This result explains how polyphenols exhibit botulinum neurotoxin-like activity in vivo.« less
Presynaptic Filament Dynamics in Homologous Recombination and DNA Repair
Liu, Jie; Ehmsen, Kirk T.; Heyer, Wolf-Dietrich; Morrical, Scott W.
2014-01-01
Homologous Recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments—helical filaments of a recombinase enzyme bound to single-stranded DNA. Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we review the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments: some intrinsic such as recombinase ATP binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examine dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examine the biochemical properties of recombination proteins from four model systems (T4 phage, E. coli, S. cerevisiae, and H. sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We propose that the presynaptic filament has evolved to rely on multiple external factors for increased multi-level regulation of HR processes in genomes with greater structural and sequence complexity. PMID:21599536
McClure-Begley, Tristan D; Esterlis, Irina; Stone, Kathryn L; Lam, TuKiet T; Grady, Sharon R; Colangelo, Christopher M; Lindstrom, Jon M; Marks, Michael J; Picciotto, Marina R
2016-01-01
Nicotinic acetylcholine receptors (nAChRs) support the initiation and maintenance of smoking, but the long-term changes occurring in the protein complex as a result of smoking and the nicotine in tobacco are not known. Human studies and animal models have also demonstrated that increasing cholinergic tone increases behaviors related to depression, suggesting that the nAChR-associated proteome could be altered in individuals with mood disorders. We therefore immunopurified nAChRs and associated proteins for quantitative proteomic assessment of changes in protein-protein interactions of high-affinity nAChRs containing the β2 subunit (β2*-nAChRs) from either cortex of mice treated with saline or nicotine, or postmortem human temporal cortex tissue from tobacco-exposed and nonexposed individuals, with a further comparison of diagnosed mood disorder to control subjects. We observed significant effects of nicotine exposure on the β2*-nAChR-associated proteome in human and mouse cortex, particularly in the abundance of the nAChR subunits themselves, as well as putative interacting proteins that make up core components of neuronal excitability (Na/K ATPase subunits), presynaptic neurotransmitter release (syntaxins, SNAP25, synaptotagmin), and a member of a known nAChR protein chaperone family (14-3-3ζ). These findings identify candidate-signaling proteins that could mediate changes in cholinergic signaling via nicotine or tobacco use. Further analysis of identified proteins will determine whether these interactions are essential for primary function of nAChRs at presynaptic terminals. The identification of differences in the nAChR-associated proteome and downstream signaling in subjects with various mood disorders may also identify novel etiological mechanisms and reveal new treatment targets.
Suh, Sang Won
2009-02-15
Translocation of the endogenous cation zinc from presynaptic terminals to postsynaptic neurons after brain insult has been implicated as a potential neurotoxic event. Several studies have previously demonstrated that a brief electrical stimulation is sufficient to induce the translocation of zinc from presynaptic vesicles into the cytoplasm (soma) of postsynaptic neurons. In the present work I have extended those findings in three ways: (i) providing evidence that zinc translocation occurs into apical dendrites, (ii) presenting data that there is an apparent translocation into apical dendrites when only a zinc-containing synaptic input is stimulated, and (iii) presenting data that there is no zinc translocation into apical dendrite of ZnT3 KO mice following electrical stimulation. Hippocampal slices were preloaded with the "trappable" zinc fluorescent probe, Newport Green. After washout, a single apical dendrite in the stratum radiatum of hippocampal CA1 area was selected and focused on. Burst stimulation (100Hz, 500microA, 0.2ms, monopolar) was delivered to either the adjacent Schaffer-collateral inputs (zinc-containing) or to the adjacent temporo-ammonic inputs (zinc-free) to the CA1 dendrites. Stimulation of the Schaffer collaterals increased the dendritic fluorescence, which was blocked by TTX, low-Ca medium, or the extracellular zinc chelator, CaEDTA. Stimulation of the temporo-ammonic pathway caused no significant rise in the fluorescence. Genetic depletion of vesicular zinc by ZnT3 KO showed no stimulation-induced apical dendrite zinc rise. The present study provides evidence that synaptically released zinc translocates into postsynaptic neurons through the apical dendrites of CA1 pyramidal neurons during physiological synaptic activity.
Facilitation through Buffer Saturation: Constraints on Endogenous Buffering Properties
Matveev, Victor; Zucker, Robert S.; Sherman, Arthur
2004-01-01
Synaptic facilitation (SF) is a ubiquitous form of short-term plasticity, regulating synaptic dynamics on fast timescales. Although SF is known to depend on the presynaptic accumulation of Ca2+, its precise mechanism is still under debate. Recently it has been shown that at certain central synapses SF results at least in part from the progressive saturation of an endogenous Ca2+ buffer (Blatow et al., 2003), as proposed by Klingauf and Neher (1997). Using computer simulations, we study the magnitude of SF that can be achieved by a buffer saturation mechanism (BSM), and explore its dependence on the endogenous buffering properties. We find that a high SF magnitude can be obtained either by a global saturation of a highly mobile buffer in the entire presynaptic terminal, or a local saturation of a completely immobilized buffer. A characteristic feature of BSM in both cases is that SF magnitude depends nonmonotonically on the buffer concentration. In agreement with results of Blatow et al. (2003), we find that SF grows with increasing distance from the Ca2+ channel cluster, and increases with increasing external Ca2+, [Ca2+]ext, for small levels of [Ca2+]ext. We compare our modeling results with the experimental properties of SF at the crayfish neuromuscular junction, and find that the saturation of an endogenous mobile buffer can explain the observed SF magnitude and its supralinear accumulation time course. However, we show that the BSM predicts slowing of the SF decay rate in the presence of exogenous Ca2+ buffers, contrary to experimental observations at the crayfish neuromuscular junction. Further modeling and data are required to resolve this aspect of the BSM. PMID:15111389
Schmitt, Franziska; Stieb, Sara Mae; Wehner, Rüdiger; Rössler, Wolfgang
2016-04-01
Cataglyphis desert ants undergo an age-related polyethism from interior workers to relatively short-lived foragers with remarkable visual navigation capabilities, predominantly achieved by path integration using a polarized skylight-based sun compass and a stride-integrating odometer. Behavioral and physiological experiments revealed that the polarization (POL) pattern is processed via specialized UV-photoreceptors in the dorsal rim area of the compound eye and POL sensitive optic lobe neurons. Further information about the neuronal substrate for processing of POL information in the ant brain has remained elusive. This work focuses on the lateral complex (LX), known as an important relay station in the insect sky-compass pathway. Neuroanatomical results in Cataglyphis fortis show that LX giant synapses (GS) connect large presynaptic terminals from anterior optic tubercle neurons with postsynaptic GABAergic profiles of tangential neurons innervating the ellipsoid body of the central complex. At the ultrastructural level, the cup-shaped presynaptic structures comprise many active zones contacting numerous small postsynaptic profiles. Three-dimensional quantification demonstrated a significantly higher number of GS (∼ 13%) in foragers compared with interior workers. Light exposure, as opposed to age, was necessary and sufficient to trigger a similar increase in GS numbers. Furthermore, the increase in GS numbers was sensitive to the exclusion of UV light. As previous experiments have demonstrated the importance of the UV spectrum for sky-compass navigation in Cataglyphis, we conclude that plasticity in LX GS may reflect processes involved in the initial calibration of sky-compass neuronal circuits during orientation walks preceding active foraging. © 2015 Wiley Periodicals, Inc.
Siciliano, Cody A.; Calipari, Erin S.; Yorgason, Jordan T.; Lovinger, David M.; Mateo, Yolanda; Jimenez, Vanessa A.; Helms, Christa M.; Grant, Kathleen A.; Jones, Sara R.
2016-01-01
Rationale Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use, and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are unknown. Objective Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Methods Female rhesus macaques completed one year of daily (22 hr/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa-opioid receptor agonist) induced inhibition of dopamine release. Results Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa-opioid receptors, which both act as negative regulators of presynaptic dopamine release, were moderately and robustly enhanced in ethanol drinkers. Conclusions Greater uptake rates and sensitivity to D2-type autoreceptor and kappa-opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system, and suggest that the dopamine and dynorphin/kappa-opioid receptor systems may be efficacious pharmcotherapeutic targets in the treatment of alcohol use disorders. PMID:26892380
Cortical presynaptic control of dorsal horn C-afferents in the rat.
Moreno-López, Yunuen; Pérez-Sánchez, Jimena; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo
2013-01-01
Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C-fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C-fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C-fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C-fibers by means of GABAergic inhibitory interneurons.
Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat
Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo
2013-01-01
Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory interneurons. PMID:23935924
Purves-Tyson, T D; Owens, S J; Rothmond, D A; Halliday, G M; Double, K L; Stevens, J; McCrossin, T; Shannon Weickert, C
2017-01-01
The dopamine hypothesis of schizophrenia posits that increased subcortical dopamine underpins psychosis. In vivo imaging studies indicate an increased presynaptic dopamine synthesis capacity in striatal terminals and cell bodies in the midbrain in schizophrenia; however, measures of the dopamine-synthesising enzyme, tyrosine hydroxylase (TH), have not identified consistent changes. We hypothesise that dopamine dysregulation in schizophrenia could result from changes in expression of dopamine synthesis enzymes, receptors, transporters or catabolic enzymes. Gene expression of 12 dopamine-related molecules was examined in post-mortem midbrain (28 antipsychotic-treated schizophrenia cases/29 controls) using quantitative PCR. TH and the synaptic dopamine transporter (DAT) proteins were examined in post-mortem midbrain (26 antipsychotic-treated schizophrenia cases per 27 controls) using immunoblotting. TH and aromatic acid decarboxylase (AADC) mRNA and TH protein were unchanged in the midbrain in schizophrenia compared with controls. Dopamine receptor D2 short, vesicular monoamine transporter (VMAT2) and DAT mRNAs were significantly decreased in schizophrenia, with no change in DRD3 mRNA, DRD3nf mRNA and DAT protein between diagnostic groups. However, DAT protein was significantly increased in putatively treatment-resistant cases of schizophrenia compared to putatively treatment-responsive cases. Midbrain monoamine oxidase A (MAOA) mRNA was increased, whereas MAOB and catechol-O-methyl transferase mRNAs were unchanged in schizophrenia. We conclude that, whereas some mRNA changes are consistent with increased dopamine action (decreased DAT mRNA), others suggest reduced dopamine action (increased MAOA mRNA) in the midbrain in schizophrenia. Here, we identify a molecular signature of dopamine dysregulation in the midbrain in schizophrenia that mainly includes gene expression changes of molecules involved in dopamine synthesis and in regulating the time course of dopamine action. PMID:28094812
Sauer, A E; Büschges, A; Stein, W
1997-04-01
The femur-tibia (FT) joint of insects is governed by a neuronal network that controls activity in tibial motoneurons by processing sensory information about tibial position and movement provided by afferents of the femoral chordotonal organ (fCO). We show that central arborizations of fCO afferents receive presynaptic depolarizing synaptic inputs. With an average resting potential of -71.9 +/- 3.72 mV (n = 10), the reversal potential of these potentials is on average -62.8 +/- 2.3 mV (n = 5). These synaptic potentials occur either spontaneously or are related to movements at the fCO. They are thus induced by signals from other fCO afferents. Therefore, the synaptic inputs to fCO afferents are specific and depend on the sensitivity of the individual afferent affected. These potentials reduce the amplitude of concurrent afferent action potentials. Bath application of picrotoxin, a noncompetitive blocker of chloride ion channels, blocks these potentials, which indicates that they are mediated by chloride ions. From these results, it is concluded that these are inhibitory synaptic potentials generated in the central terminals of fCO afferents. Pharmacologic removal of these potentials affects the tuning of the complete FT control system. Following removal, the dependence of the FT control loop on the tibia position increases relative to the dependency on the velocity of tibia movements. This is due to changes in the relative weighting of the position and velocity signals in the parallel interneuronal pathways from the fCO onto tibial motoneurons. Consequently, the FT joint is no longer able to perform twig mimesis (i.e., catalepsy), which is known to rely on a low position compared to the high-velocity dependency of the FT control system.
Wang, Haicui; Salter, Claire G; Refai, Osama; Hardy, Holly; Barwick, Katy E S; Akpulat, Ugur; Kvarnung, Malin; Chioza, Barry A; Harlalka, Gaurav; Taylan, Fulya; Sejersen, Thomas; Wright, Jane; Zimmerman, Holly H; Karakaya, Mert; Stüve, Burkhardt; Weis, Joachim; Schara, Ulrike; Russell, Mark A; Abdul-Rahman, Omar A; Chilton, John; Blakely, Randy D; Baple, Emma L; Cirak, Sebahattin; Crosby, Andrew H
2017-11-01
The presynaptic, high-affinity choline transporter is a critical determinant of signalling by the neurotransmitter acetylcholine at both central and peripheral cholinergic synapses, including the neuromuscular junction. Here we describe an autosomal recessive presynaptic congenital myasthenic syndrome presenting with a broad clinical phenotype due to homozygous choline transporter missense mutations. The clinical phenotype ranges from the classical presentation of a congenital myasthenic syndrome in one patient (p.Pro210Leu), to severe neurodevelopmental delay with brain atrophy (p.Ser94Arg) and extend the clinical outcomes to a more severe spectrum with infantile lethality (p.Val112Glu). Cells transfected with mutant transporter construct revealed a virtually complete loss of transport activity that was paralleled by a reduction in transporter cell surface expression. Consistent with these findings, studies to determine the impact of gene mutations on the trafficking of the Caenorhabditis elegans choline transporter orthologue revealed deficits in transporter export to axons and nerve terminals. These findings contrast with our previous findings in autosomal dominant distal hereditary motor neuropathy of a dominant-negative frameshift mutation at the C-terminus of choline transporter that was associated with significantly reduced, but not completely abrogated choline transporter function. Together our findings define divergent neuropathological outcomes arising from different classes of choline transporter mutation with distinct disease processes and modes of inheritance. These findings underscore the essential role played by the choline transporter in sustaining acetylcholine neurotransmission at both central and neuromuscular synapses, with important implications for treatment and drug selection. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.