Light-cone distribution amplitudes of {xi} and their applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yonglu; Huang Mingqiu
We present the light-cone distribution amplitudes of the {xi} baryons up to twist six on the basis of QCD conformal partial wave expansion to the leading order conformal spin accuracy. The nonperturbative parameters relevant to the DAs are determined in the framework of the QCD sum rule. The light-cone QCD sum rule approach is used to investigate both the electromagnetic form factors of {xi} and the exclusive semileptonic decay of {xi}{sub c} as applications. Our estimations on the magnetic moments are {mu}{sub {xi}{sup 0}}=-(1.92{+-}0.34){mu}{sub N} and {mu}{sub {xi}{sup -}}=-(1.19{+-}0.03){mu}{sub N}. The decay width of the process {xi}{sub c}{yields}{xi}e{sup +}{nu}{sub e}more » is evaluated to be {gamma}=8.73x10{sup -14} GeV, which is in accordance with the experimental measurements and other theoretical approaches.« less
{lambda}{sub b}{yields}p, {lambda} transition form factors from QCD light-cone sum rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yuming; Lue Caidian; Shen Yuelong
2009-10-01
Light-cone sum rules for the {lambda}{sub b}{yields}p, {lambda} transition form factors are derived from the correlation functions expanded by the twist of the distribution amplitudes of the {lambda}{sub b} baryon. In terms of the {lambda}{sub b} three-quark distribution amplitude models constrained by the QCD theory, we calculate the form factors at small momentum transfers and compare the results with those estimated in the conventional light-cone sum rules (LCSR) and perturbative QCD approaches. Our results indicate that the two different versions of sum rules can lead to the consistent numbers of form factors responsible for {lambda}{sub b}{yields}p transition. The {lambda}{sub b}{yields}{lambda}more » transition form factors from LCSR with the asymptotic {lambda} baryon distribution amplitudes are found to be almost 1 order larger than those obtained in the {lambda}{sub b}-baryon LCSR, implying that the preasymptotic corrections to the baryonic distribution amplitudes are of great importance. Moreover, the SU(3) symmetry breaking effects between the form factors f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup p} and f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup {lambda}} are computed as 28{sub -8}{sup +14}% in the framework of {lambda}{sub b}-baryon LCSR.« less
Light-cone distribution amplitudes of light JPC = 2- tensor mesons in QCD
NASA Astrophysics Data System (ADS)
Aliev, T. M.; Bilmis, S.; Yang, Kwei-Chou
2018-06-01
We present a study for two-quark light-cone distribution amplitudes for the 13D2 light tensor meson states with quantum number JPC =2-. Because of the G-parity, the chiral-even two-quark light-cone distribution amplitudes of this tensor meson are antisymmetric under the interchange of momentum fractions of the quark and antiquark in the SU(3) limit, while the chiral-odd ones are symmetric. The asymptotic leading-twist LCDAs with the strange quark mass correction are shown. We estimate the relevant parameters, the decay constants fT and fT⊥, and first Gegenbauer moment a1⊥ , by using the QCD sum rule method. These parameters play a central role in the investigation of B meson decaying into the 2- tensor mesons.
Direct CP asymmetry in D → π-π+ and D → K-K+ in QCD-based approach
NASA Astrophysics Data System (ADS)
Khodjamirian, Alexander; Petrov, Alexey A.
2017-11-01
We present the first QCD-based calculation of hadronic matrix elements with penguin topology determining direct CP-violating asymmetries in D0 →π-π+ and D0 →K-K+ nonleptonic decays. The method is based on the QCD light-cone sum rules and does not rely on any model-inspired amplitude decomposition, instead leaning heavily on quark-hadron duality. We provide a Standard Model estimate of the direct CP-violating asymmetries in both pion and kaon modes and their difference and comment on further improvements of the presented computation.
NASA Astrophysics Data System (ADS)
Fu, Hai-Bing; Zeng, Long; Cheng, Wei; Wu, Xing-Gang; Zhong, Tao
2018-04-01
We make a detailed study on the J /ψ meson longitudinal leading-twist distribution amplitude ϕ2;J /ψ ∥ by using the QCD sum rules within the background field theory. By keeping all the nonperturbative condensates up to dimension 6, we obtain accurate QCD sum rules for the moments ⟨ξn;J /ψ ∥⟩. The first three ones are ⟨ξ2;J /ψ ∥⟩=0.083 (12 ), ⟨ξ4;J /ψ ∥⟩=0.015 (5 ), and ⟨ξ6;J /ψ ∥⟩=0.003 (2 ), respectively. Those values indicate a single peaked behavior for ϕ2;J /ψ ∥. As an application, we adopt the QCD light-cone sum rules to calculate the Bc meson semileptonic decay Bc+→J /ψ ℓ+νℓ. We obtain Γ (Bc+→J /ψ ℓ+νℓ)=(89.67-19.06+24.76)×10-15 GeV and ℜ(J /ψ ℓ+νℓ)=0.21 7-0.057+0.069, which agree with both the extrapolated next-to-leading order pQCD prediction and the new CDF measurement within errors.
New a1(1420 ) state: Structure, mass, and width
NASA Astrophysics Data System (ADS)
Sundu, H.; Agaev, S. S.; Azizi, K.
2018-03-01
The structure, spectroscopic parameters and width of the resonance with quantum numbers JP C=1++ discovered by the COMPASS Collaboration and classified as the a1(1420 ) meson are examined in the context of QCD sum rule method. In the calculations the axial-vector meson a1(1420 ) is treated as a four-quark state with the diquark-antidiquark structure. The mass and current coupling of a1(1420 ) are evaluated using QCD two-point sum rule approach. Its observed decay mode a1(1420 )→f0(980 )π , and kinematically allowed ones, namely a1→K*±K∓ , a1→K*0K¯ 0 and a1→K¯ *0K0 channels are studied employing QCD sum rules on the light-cone. Our prediction for the mass of the a1(1420 ) state ma1=1416-79+81 MeV is in excellent agreement with the experimental result. Width of this state Γ =145.52 ±20.79 MeV within theoretical and experimental errors is also in accord with the COMPASS data.
Electromagnetic multipole moments of the P_c^+(4380) pentaquark in light-cone QCD
NASA Astrophysics Data System (ADS)
Özdem, U.; Azizi, K.
2018-05-01
We calculate the electromagnetic multipole moments of the P_c^+(4380) pentaquark by modeling it as the diquark-diquark-antiquark and {\\bar{D}}^*Σ _c molecular state with quantum numbers J^P = 3/2^-. In particular, the magnetic dipole, electric quadrupole and magnetic octupole moments of this particle are extracted in the framework of light-cone QCD sum rule. The values of the electromagnetic multipole moments obtained via two pictures differ substantially from each other, which can be used to pin down the underlying structure of P_c^+(4380). The comparison of any future experimental data on the electromagnetic multipole moments of the P_c^+(4380) pentaquark with the results of the present work can shed light on the nature and inner quark organization of this state.
Scattering of glue by glue on the light-cone worldsheet. II. Helicity conserving amplitudes
NASA Astrophysics Data System (ADS)
Chakrabarti, D.; Qiu, J.; Thorn, C. B.
2006-08-01
This is the second of a pair of articles on scattering of glue by glue, in which we give the light-cone gauge calculation of the one-loop on-shell helicity conserving scattering amplitudes for gluon-gluon scattering (neglecting quark loops). The 1/p+ factors in the gluon propagator are regulated by replacing p+ integrals with discretized sums omitting the p+=0 terms in each sum. We also employ a novel ultraviolet regulator that is convenient for the light-cone worldsheet description of planar Feynman diagrams. The helicity conserving scattering amplitudes are divergent in the infrared. The infrared divergences in the elastic one-loop amplitude are shown to cancel, in their contribution to cross sections, against ones in the cross section for unseen bremsstrahlung gluons. We include here the explicit calculation of the latter, because it assumes an unfamiliar form due to the peculiar way discretization of p+ regulates infrared divergences. In resolving the infrared divergences we employ a covariant definition of jets, which allows a transparent demonstration of the Lorentz invariance of our final results. Because we use an explicit cutoff of the ultraviolet divergences in exactly four spacetime dimensions, we must introduce explicit counterterms to achieve this final covariant result. These counterterms are polynomials in the external momenta of the precise order dictated by power counting. We discuss the modifications they entail for the light-cone worldsheet action that reproduces the bare planar diagrams of the gluonic sector of QCD. The simplest way to do this is to interpret the QCD string as moving in six spacetime dimensions.
Study of D →a0(980 )e+νe decay in the light-cone sum rules approach
NASA Astrophysics Data System (ADS)
Cheng, Xiao-Dong; Li, Hai-Bo; Wei, Bin; Xu, Yu-Guo; Yang, Mao-Zhi
2017-08-01
Within the QCD light-cone sum rule (LCSR) approach, we investigate the transition form factors of D →a0(980 ) up to the twist-3 light-cone distribution amplitudes (LCDAs) of the scalar meson a0(980 ) in the two-quark picture. Using these form factors, we calculate the differential decay widths and branching ratios of the D →a0(980 )e+νe semileptonic decays. We obtain B (D0→a0-(980 )e+νe)=(4.0 8-1.22+1.37)×10-4 and B (D+→a00(980 )e+νe)=(5.4 0-1.59+1.78)×10-4 . The results are sensitive to the a0(980 ) inner structure. These decays can be searched for at the BESIII experiment, and any experimental observations will be useful to identify internal quark contents of the a0(980 ) meson, which will shed light on understanding theoretical models.
Spectroscopic parameters and decays of the resonance Z_b(10610)
NASA Astrophysics Data System (ADS)
Agaev, S. S.; Azizi, K.; Sundu, H.
2017-12-01
The resonance Z_b(10610) is investigated as the diquark-antidiquark Z_b=[bu][\\overline{bd}] state with spin-parity JP=1+. The mass and current coupling of the resonance Z_b(10610) are evaluated using QCD two-point sum rule and taking into account the vacuum condensates up to ten dimensions. We study the vertices Z_bΥ (nS)π (n=1,2,3) by applying the QCD light-cone sum rule to compute the corresponding strong couplings g_{Z_bΥ (nS)π } and widths of the decays Z_b → Υ (nS)π . We explore also the vertices Z_b hb(mP)π (m=1,2) and calculate the couplings g_{Z_b hb(mP)π } and the widths of the decay channels Z_b → hb(mP)π . To this end, we calculate the mass and decay constants of the h_b(1P) and h_b(2P) mesons. The results obtained are compared with experimental data of the Belle Collaboration.
Form factors and differential branching ratio of B →K μ+μ- in AdS/QCD
NASA Astrophysics Data System (ADS)
Momeni, S.; Khosravi, R.
2018-03-01
The holographic distribution amplitudes (DAs) for the K pseudoscalar meson are derived. For this aim, the light-front wave function (LFWF) of the K meson is extracted within the framework of the anti-de Sitter/quantum chromodynamics (AdS/QCD) correspondence. We consider a momentum-dependent (dynamical) helicity wave function that contains the dynamical spin effects. We use the LFWF to predict the radius and the electromagnetic form factor of the kaon and compare them with the experimental values. Then, the holographic twist-2 DA of K meson ϕK(α ,μ ) is investigated and compared with the result of the light-cone sum rules (LCSR). The transition form factors of the semileptonic B →K ℓ+ℓ- decays are derived from the holographic DAs of the kaon. With the help of these form factors, the differential branching ratio of the B →K μ+μ- on q2 is plotted. A comparison is made between our prediction in AdS/QCD and the results obtained from two models including the LCSR and the lattice QCD as well as the experimental values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabarti, D.; Qiu, J.; Thorn, C. B.
This is the second of a pair of articles on scattering of glue by glue,in which we give the light-cone gauge calculation of the one-loop on-shellhelicity conserving scattering amplitudes for gluon-gluon scattering (neglectingquark loops). The 1/p{sup +} factors in the gluon propagatorare regulated by replacing p{sup +} integrals with discretized sums omitting the p{sup +}=0 terms in each sum. We alsoemploy a novel ultraviolet regulator that is convenient for the light-coneworldsheet description of planar Feynman diagrams. The helicity conservingscattering amplitudes are divergent in the infrared. The infrared divergencesin the elastic one-loop amplitude are shown to cancel, in their contributionto crossmore » sections, against ones in the cross section for unseen bremsstrahlunggluons. We include here the explicit calculation of the latter, because itassumes an unfamiliar form due to the peculiar way discretization of p{sup +} regulates infrared divergences. In resolving the infrareddivergences we employ a covariant definition of jets, which allows a transparentdemonstration of the Lorentz invariance of our final results. Because we usean explicit cutoff of the ultraviolet divergences in exactly four spacetimedimensions, we must introduce explicit counterterms to achieve this finalcovariant result. These counterterms are polynomials in the external momentaof the precise order dictated by power counting. We discuss the modificationsthey entail for the light-cone worldsheet action that reproduces the bareplanar diagrams of the gluonic sector of QCD. The simplest way to do thisis to interpret the QCD string as moving in six spacetime dimensions.« less
Interpretation of the new Ω _c0 states via their mass and width
NASA Astrophysics Data System (ADS)
Agaev, S. S.; Azizi, K.; Sundu, H.
2017-06-01
The masses and pole residues of the ground and first radially excited Ω _c0 states with spin-parities JP=1/2+, 3/2+, as well as P-wave Ω _c0 with JP=1/2-, 3/2- are calculated by means of the two-point QCD sum rules. The strong decays of Ω _c0 baryons are also studied and the widths of these decay channels are computed. The relevant computations are performed in the context of the full QCD sum rules on the light cone. The results obtained for the masses and widths are confronted with recent experimental data of the LHCb Collaboration, which allow us to interpret Ω _c(3000)0, Ω _c(3050)0, and Ω _c(3119)0 as the excited css baryons with the quantum numbers (1P, 1/2-), (1P, 3/2-), and (2S, 3/2+), respectively. The (2S, 1/2+) state can be assigned either to the Ω _c(3066)0 state or the Ω _c(3090)0 excited baryon.
Treating Zc(3900 ) and Z (4430 ) as the ground state and first radially excited tetraquarks
NASA Astrophysics Data System (ADS)
Agaev, S. S.; Azizi, K.; Sundu, H.
2017-08-01
Exploration of the resonances Zc(3900 ) and Z (4430 ) are performed by assuming that they are the ground state and first radial excitation of the same tetraquark with JP=1+. The mass and current coupling of the Zc(3900 ) and Z (4430 ) states are calculated using the QCD two-point sum rule method by taking into account vacuum condensates up to eight dimensions. We investigate the vertices ZcMhMl and Z MhMl, with Mh and Ml being the heavy and light mesons and evaluate the strong couplings gZcMhMl and gZ MhMl using the QCD sum rule on the light cone. The extracted couplings allow us to find the partial width of the decays Zc(3900 )→J /ψ π , ψ'π , ηcρ and Z (4430 )→ψ'π , J /ψ π , ηc'ρ , ηcρ , which may help in comprehensive investigation of these resonances. We compare the width of the decays of Zc(3900 ) and Z (4430 ) resonances with available experimental data as well as existing theoretical predictions.
New QCD sum rules based on canonical commutation relations
NASA Astrophysics Data System (ADS)
Hayata, Tomoya
2012-04-01
New derivation of QCD sum rules by canonical commutators is developed. It is the simple and straightforward generalization of Thomas-Reiche-Kuhn sum rule on the basis of Kugo-Ojima operator formalism of a non-abelian gauge theory and a suitable subtraction of UV divergences. By applying the method to the vector and axial vector current in QCD, the exact Weinberg’s sum rules are examined. Vector current sum rules and new fractional power sum rules are also discussed.
Exploring the resonances X (4140 ) and X (4274 ) through their decay channels
NASA Astrophysics Data System (ADS)
Agaev, S. S.; Azizi, K.; Sundu, H.
2017-06-01
Investigation of the resonances X (4140 ) and X (4274 ), which were recently confirmed by the LHCb Collaboration [1], is carried out by treating them as the color triplet and sextet [c s ][c ¯ s ¯ ] diquark-antidiquark states with the spin-parity JP=1+ , respectively. We calculate the masses and meson-current couplings of these tetraquarks in the context of the QCD two-point sum rule method by taking into account the quark, gluon, and mixed vacuum condensates up to eight dimensions. We also study the vertices X (4140 )J /ψ ϕ and X (4274 )J /ψ ϕ and evaluate corresponding strong couplings gX (4140 )J /ψ ϕ and gX (4274 )J /ψ ϕ by means of the QCD light-cone sum rule method and a technique of the soft-meson approximation. In turn, these couplings contain required information to determine the width of the X (4140 )→J /ψ ϕ and X (4274 )→J /ψ ϕ decay channels. We compare our results for the masses and decay widths of the X (4140 ) and X (4274 ) resonances with the LHCb data and alternative theoretical predictions.
Nucleon QCD sum rules in the instanton medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryskin, M. G.; Drukarev, E. G., E-mail: drukarev@pnpi.spb.ru; Sadovnikova, V. A.
2015-09-15
We try to find grounds for the standard nucleon QCD sum rules, based on a more detailed description of the QCD vacuum. We calculate the polarization operator of the nucleon current in the instanton medium. The medium (QCD vacuum) is assumed to be a composition of the small-size instantons and some long-wave gluon fluctuations. We solve the corresponding QCD sum rule equations and demonstrate that there is a solution with the value of the nucleon mass close to the physical one if the fraction of the small-size instantons contribution is w{sub s} ≈ 2/3.
QCD Sum Rules and Models for Generalized Parton Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anatoly Radyushkin
2004-10-01
I use QCD sum rule ideas to construct models for generalized parton distributions. To this end, the perturbative parts of QCD sum rules for the pion and nucleon electromagnetic form factors are interpreted in terms of GPDs and two models are discussed. One of them takes the double Borel transform at adjusted value of the Borel parameter as a model for nonforward parton densities, and another is based on the local duality relation. Possible ways of improving these Ansaetze are briefly discussed.
NASA Astrophysics Data System (ADS)
Narison, Stephan
2004-05-01
About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.
NASA Astrophysics Data System (ADS)
Narison, Stephan
2007-07-01
About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.
Perturbative corrections to B → D form factors in QCD
NASA Astrophysics Data System (ADS)
Wang, Yu-Ming; Wei, Yan-Bing; Shen, Yue-Long; Lü, Cai-Dian
2017-06-01
We compute perturbative QCD corrections to B → D form factors at leading power in Λ/ m b , at large hadronic recoil, from the light-cone sum rules (LCSR) with B-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to- B-meson correlation function with an interpolating current for the D-meson is demonstrated explicitly at one loop with the power counting scheme {m}_c˜ O(√{Λ {m}_b}) . The jet functions encoding information of the hard-collinear dynamics in the above-mentioned correlation function are complicated by the appearance of an additional hard-collinear scale m c , compared to the counterparts entering the factorization formula of the vacuum-to- B-meson correction function for the construction of B → π from factors. Inspecting the next-to-leading-logarithmic sum rules for the form factors of B → Dℓν indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. We further compute the subleading power correction induced by the three-particle quark-gluon distribution amplitudes of the B-meson at tree level employing the background gluon field approach. The LCSR predictions for the semileptonic B → Dℓν form factors are then extrapolated to the entire kinematic region with the z-series parametrization. Phenomenological implications of our determinations for the form factors f BD +,0 ( q 2) are explored by investigating the (differential) branching fractions and the R( D) ratio of B → Dℓν and by determining the CKM matrix element |V cb | from the total decay rate of B → Dμν μ .
QCD sum rules study of meson-baryon sigma terms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erkol, Gueray; Oka, Makoto; Turan, Guersevil
2008-11-01
The pion-baryon sigma terms and the strange-quark condensates of the octet and the decuplet baryons are calculated by employing the method of QCD sum rules. We evaluate the vacuum-to-vacuum transition matrix elements of two baryon interpolating fields in an external isoscalar-scalar field and use a Monte Carlo-based approach to systematically analyze the sum rules and the uncertainties in the results. We extract the ratios of the sigma terms, which have rather high accuracy and minimal dependence on QCD parameters. We discuss the sources of uncertainties and comment on possible strangeness content of the nucleon and the Delta.
HTL resummation in the light cone gauge
NASA Astrophysics Data System (ADS)
Chen, Qi; Hou, De-fu
2018-04-01
The light cone gauge with light cone variables is often used in pQCD calculations in relativistic heavy-ion collision physics. The Hard Thermal Loops (HTL) resummation is an indispensable technique for hot QCD calculation. It was developed in covariant gauges with conventional Minkowski varaiables; we shall extend this method to the light cone gauge. In the real time formalism, using the Mandelstam-Leibbrant prescription of (n·K)‑1, we calculate the transverse and longitudinal components of the gluon HTL self energy, and prove that there are no infrared divergences. With this HTL self energy, we derive the HTL resummed gluon propagator in the light cone gauge. We also calculate the quark HTL self energy and the resummed quark propagator in the light cone gauge and find it is gauge independent. As application examples, we analytically calculate the damping rates of hard quarks and gluons with the HTL resummed gluon propagator in the light cone gauge and showed that they are gauge independent. The final physical results are identical to those computed in covariant gauge, as they should be. Supported by National Natural Science Foundation of China (11375070, 11735007, 11521064)
Iso-vector form factors of the delta and nucleon in QCD sum rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozpineci, A.
Form factors are important non-perturbative properties of hadrons. They give information about the internal structure of the hadrons. In this work, iso-vector axial-vector and iso-vector tensor form factors of the nucleon and the iso-vector axial-vector {Delta}{yields}N transition form factor calculations in QCD Sum Rules are presented.
The magnetic moment of the Z_c(3900) as an axialvector tetraquark state with QCD sum rules
NASA Astrophysics Data System (ADS)
Wang, Zhi-Gang
2018-04-01
In this article, we assign the Z_c^± (3900) to be the diquark-antidiquark type axialvector tetraquark state, study its magnetic moment with the QCD sum rules in the external weak electromagnetic field by carrying out the operator product expansion up to the vacuum condensates of dimension 8. We pay special attention to matching the hadron side with the QCD side of the correlation function to obtain solid duality, the routine can be applied to study other electromagnetic properties of the exotic particles.
QCD Sum Rules for Magnetically Induced Mixing between ηc and J/ψ
Cho, Sungtae; Hattori, Koichi; Lee, Su Houng; ...
2014-10-20
We investigate the properties of charmonia in strong magnetic fields by using QCD sum rules. We show how to implement the mixing effects between ηc and J/ψ on the basis of field-theoretical approaches, and then show that the sum rules are saturated by the mixing effects with phenomenologically determined parameters. Consequently, we find that the mixing effects are the dominant contribution to the mass shifts of the static charmonia in strong magnetic fields.
The electromagnetic multipole moments of the charged open-flavor {Z}_{\\bar{c}q} states
NASA Astrophysics Data System (ADS)
Azizi, K.; Özdem, U.
2018-05-01
The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are investigated by assuming a diquark–antidiquark picture for their internal structure and quantum numbers {J}{PC}={1}+- for their spin-parity. In particular, their magnetic and quadrupole moments are extracted in the framework of light-cone QCD sum rule by the help of the photon distribution amplitudes. The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are important dynamical observables, which encode valuable information on their underlying structure. The results obtained for the magnetic moments of different structures are considerably large and can be measured in future experiments. We obtain very small values for the quadrupole moments of {Z}\\bar{cq} states indicating a nonspherical charge distribution.
D-Wave Heavy Baryons from QCD Sum Rules
NASA Astrophysics Data System (ADS)
Mao, Qiang; Chen, Hua-Xing; Hosaka, Atsushi; Liu, Xiang; Zhu, Shi-Lin
We study the D-wave heavy baryons using the method of QCD sum rules in the framework of heavy quark effective theory. Our results suggest that the Λc(2860), Λc(2880), Ξc(3055) and Ξc(3080) complete two D-wave SU(3) flavor 3¯F charmed baryon doublets of JP = 3/2+ and 5/2+.
Advances in QCD sum-rule calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melikhov, Dmitri
2016-01-22
We review the recent progress in the applications of QCD sum rules to hadron properties with the emphasis on the following selected problems: (i) development of new algorithms for the extraction of ground-state parameters from two-point correlators; (ii) form factors at large momentum transfers from three-point vacuum correlation functions: (iii) properties of exotic tetraquark hadrons from correlation functions of four-quark currents.
Beauty vector meson decay constants from QCD sum rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucha, Wolfgang; Melikhov, Dmitri; D. V. Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University, 119991, Moscow
We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.
Asymmetries of the B →K*μ+μ- decay and the search of new physics beyond the standard model
NASA Astrophysics Data System (ADS)
Fu, Hai-Bing; Wu, Xing-Gang; Cheng, Wei; Zhong, Tao; Sun, Zhan
2018-03-01
In this paper, we compute the forward-backward asymmetry and the isospin asymmetry of the B →K*μ+μ- decay. The B →K* transition form factors (TFFs) are key components of the decay. To achieve a more accurate QCD prediction, we adopt a chiral correlator for calculating the QCD light cone sum rules for those TFFs with the purpose of suppressing the uncertain high-twist distribution amplitudes. Our predictions show that the asymmetries under the standard model and the minimal supersymmetric standard model with minimal flavor violation are close in shape for q2≥6 GeV2 and are consistent with the Belle, LHCb, and CDF data within errors. When q2<2 GeV2, their predictions behave quite differently. Thus, a careful study on the B →K*μ+μ- decay within the small q2 region could be helpful for searching new physics beyond the standard model. As a further application, we also apply the B →K* TFFs to the branching ratio and longitudinal polarization fraction of the B →K*ν ν ¯ decay within different models.
A comprehensive revisit of the ρ meson with improved Monte-Carlo based QCD sum rules
NASA Astrophysics Data System (ADS)
Wang, Qi-Nan; Zhang, Zhu-Feng; Steele, T. G.; Jin, Hong-Ying; Huang, Zhuo-Ran
2017-07-01
We improve the Monte-Carlo based QCD sum rules by introducing the rigorous Hölder-inequality-determined sum rule window and a Breit-Wigner type parametrization for the phenomenological spectral function. In this improved sum rule analysis methodology, the sum rule analysis window can be determined without any assumptions on OPE convergence or the QCD continuum. Therefore, an unbiased prediction can be obtained for the phenomenological parameters (the hadronic mass and width etc.). We test the new approach in the ρ meson channel with re-examination and inclusion of α s corrections to dimension-4 condensates in the OPE. We obtain results highly consistent with experimental values. We also discuss the possible extension of this method to some other channels. Supported by NSFC (11175153, 11205093, 11347020), Open Foundation of the Most Important Subjects of Zhejiang Province, and K. C. Wong Magna Fund in Ningbo University, TGS is Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Z. F. Zhang and Z. R. Huang are Grateful to the University of Saskatchewan for its Warm Hospitality
Exclusive QCD processes, quark-hadron duality, and the transition to perturbative QCD
NASA Astrophysics Data System (ADS)
Corianò, Claudio; Li, Hsiang-nan; Savkli, Cetin
1998-07-01
Experiments at CEBAF will scan the intermediate-energy region of the QCD dynamics for the nucleon form factors and for Compton Scattering. These experiments will definitely clarify the role of resummed perturbation theory and of quark-hadron duality (QCD sum rules) in this regime. With this perspective in mind, we review the factorization theorem of perturbative QCD for exclusive processes at intermediate energy scales, which embodies the transverse degrees of freedom of a parton and the Sudakov resummation of the corresponding large logarithms. We concentrate on the pion and proton electromagnetic form factors and on pion Compton scattering. New ingredients, such as the evolution of the pion wave function and the complete two-loop expression of the Sudakov factor, are included. The sensitivity of our predictions to the infrared cutoff for the Sudakov evolution is discussed. We also elaborate on QCD sum rule methods for Compton Scattering, which provide an alternative description of this process. We show that, by comparing the local duality analysis to resummed perturbation theory, it is possible to describe the transition of exclusive processes to perturbative QCD.
Large-Nc masses of light mesons from QCD sum rules for nonlinear radial Regge trajectories
NASA Astrophysics Data System (ADS)
Afonin, S. S.; Solomko, T. D.
2018-04-01
The large-Nc masses of light vector, axial, scalar and pseudoscalar mesons are calculated from QCD spectral sum rules for a particular ansatz interpolating the radial Regge trajectories. The ansatz includes a linear part plus exponentially degreasing corrections to the meson masses and residues. The form of corrections was proposed some time ago for consistency with analytical structure of Operator Product Expansion of the two-point correlation functions. We revised that original analysis and found the second solution for the proposed sum rules. The given solution describes better the spectrum of vector and axial mesons.
Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Zhu-Fang, E-mail: phycui@nju.edu.cn; State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190; Hou, Feng-Yao
2015-07-15
The QCD vacuum condensates and various vacuum susceptibilities are all important parameters which characterize the nonperturbative properties of the QCD vacuum. In the QCD sum rules external field formula, various QCD vacuum susceptibilities play important roles in determining the properties of hadrons. In this paper, we review the recent progress in studies of vacuum susceptibilities together with their applications to the chiral phase transition of QCD. The results of the tensor, the vector, the axial–vector, the scalar, and the pseudo-scalar vacuum susceptibilities are shown in detail in the framework of Dyson–Schwinger equations.
Sea-quark distributions in the pion
NASA Astrophysics Data System (ADS)
Hwang, W.-Y. P.; Speth, J.
1992-05-01
Using Sullivan processes with ρππ, K*+K¯ 0π, and K¯ *0K+π vertices, we describe how the sea-quark distributions of a pion may be generated in a quantitative manner. The input valence-quark distributions are obtained using the leading Fock component of the light-cone wave function, which is in accord with results obtained from the QCD sum rules. The sample numerical results appear to be reasonable as far as the existing Drell-Yan production data are concerned, although the distributions as a function of x differs slightly from those obtained by imposing counting rules for x-->0 and x-->1. Our results lend additional support toward the conjecture of Hwang, Speth, and Brown that the sea distributions of a hadron, at low and moderate Q2 (at least up to a few GeV2), may be attributed primarily to generalized Sullivan processes.
On the loop approximation in nucleon QCD sum rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drukarev, E. G., E-mail: drukarev@thd.pnpi.spb.ru; Ryskin, M. G.; Sadovnikova, V. A.
There was a general belief that the nucleon QCD sum rules which include only the quark loops and thus contain only the condensates of dimension d = 3 and d = 4 have only a trivial solution. We demonstrate that there is also a nontrivial solution. We show that it can be treated as the lowest order approximation to the solution which includes the higher terms of the Operator Product Expansion. Inclusion of the radiative corrections improves the convergence of the series.
Aspects of QCD current algebra on a null plane
NASA Astrophysics Data System (ADS)
Beane, S. R.; Hobbs, T. J.
2016-09-01
Consequences of QCD current algebra formulated on a light-like hyperplane are derived for the forward scattering of vector and axial-vector currents on an arbitrary hadronic target. It is shown that current algebra gives rise to a special class of sum rules that are direct consequences of the independent chiral symmetry that exists at every point on the two-dimensional transverse plane orthogonal to the lightlike direction. These sum rules are obtained by exploiting the closed, infinite-dimensional algebra satisfied by the transverse moments of null-plane axial-vector and vector charge distributions. In the special case of a nucleon target, this procedure leads to the Adler-Weisberger, Gerasimov-Drell-Hearn, Cabibbo-Radicati and Fubini-Furlan-Rossetti sum rules. Matching to the dispersion-theoretic language which is usually invoked in deriving these sum rules, the moment sum rules are shown to be equivalent to algebraic constraints on forward S-matrix elements in the Regge limit.
Continuous Advances in QCD 2008
NASA Astrophysics Data System (ADS)
Peloso, Marco M.
2008-12-01
1. High-order calculations in QCD and in general gauge theories. NLO evolution of color dipoles / I. Balitsky. Recent perturbative results on heavy quark decays / J. H. Piclum, M. Dowling, A. Pak. Leading and non-leading singularities in gauge theory hard scattering / G. Sterman. The space-cone gauge, Lorentz invariance and on-shell recursion for one-loop Yang-Mills amplitudes / D. Vaman, Y.-P. Yao -- 2. Heavy flavor physics. Exotic cc¯ mesons / E. Braaten. Search for new physics in B[symbol]-mixing / A. J. Lenz. Implications of D[symbol]-D[symbol] mixing for new physics / A. A. Petrov. Precise determinations of the charm quark mass / M. Steinhauser -- 3. Quark-gluon dynamics at high density and/or high temperature. Crystalline condensate in the chiral Gross-Neveu model / G. V. Dunne, G. Basar. The strong coupling constant at low and high energies / J. H. Kühn. Quarkyonic matter and the phase diagram of QCD / L. McLerran. Statistical QCD with non-positive measure / J. C. Osborn, K. Splittorff, J. J. M. Verbaarschot. From equilibrium to transport properties of strongly correlated fermi liquids / T. Schäfer. Lessons from random matrix theory for QCD at finite density / K. Splittorff, J. J. M. Verbaarschot -- 4. Methods and models of holographic correspondence. Soft-wall dynamics in AdS/QCD / B. Batell. Holographic QCD / N. Evans, E. Threlfall. QCD glueball sum rules and vacuum topology / H. Forkel. The pion form factor in AdS/QCD / H. J. Kwee, R. F. Lebed. The fast life of holographic mesons / R. C. Myers, A. Sinha. Properties of Baryons from D-branes and instantons / S. Sugimoto. The master space of N = 1 quiver gauge theories: counting BPS operators / A. Zaffaroni. Topological field congurations. Skyrmions in theories with massless adjoint quarks / R. Auzzi. Domain walls, localization and confinement: what binds strings inside walls / S. Bolognesi. Static interactions of non-abelian vortices / M. Eto. Vortices which do not abelianize dynamically: semi-classical origin of non-abelian monopoles / K. Konishi. A generalized construction for lumps and non-abelian vortices / W. Vinci -- 6. Dynamics in supersymmetric theories. Cusp anomalous dimension in planar maximally supersymmetric Yang-Mills theory / B. Basso. SO(2M) and USp(2M) (hyper)Kähler quotients and lumps / S. B. Gudnason -- 7. Other developments. Gluinos condensing at the CCNI: 4096 CPUs weigh in / J. Giedt ... [et al.]. Baryon Regge trajectories and the 1/N[symbol] expansion / J. L. Goity, N. Matagne. Infrared behavior of the fermion propagator in unquenched QED[symbol] with finite threshold effects / Y. Hoshino. Gauge fields in accelerated frames / F. Lenz. QCD at complex coupling, large order in perturbation theory and the gluon condensate / Y. Meurice. 511 KeV line and other diffuse emissions as a trace of the dark matter / A. R. Zhitnitsky -- 8. Glimpses of the conference.
Process-independent strong running coupling
Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis; ...
2017-09-25
Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, thismore » reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.« less
Masses of Open-Flavour Heavy-Light Hybrids from QCD Sum Rules
NASA Astrophysics Data System (ADS)
Ho, Jason; Harnett, Derek; Steele, Tom
2017-01-01
Our current understanding of the strong interaction (QCD) permits the construction of colour singlet states with novel structures that do not fit within the traditional quark model, including hybrid mesons. To date, though other exotic structures such as pentaquark and tetraquark states have been confirmed, no unambiguous hybrid meson signals have been observed. However, with data collection at the GlueX experiment ongoing and with the construction of the PANDA experiment at FAIR, the opportunity to observe hybrid states has never been better. As theoretical calculations are a necessary piece for the identification of any observed experimental resonance, we present our mass predictions of heavy-light open-flavour hybrid mesons using QCD Laplace sum-rules for all scalar and vector JP channels, and including non-perturbative condensate contributions up to six-dimensions.
Process-independent strong running coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis
Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, thismore » reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.« less
Chiral dynamics in the low-temperature phase of QCD
NASA Astrophysics Data System (ADS)
Brandt, Bastian B.; Francis, Anthony; Meyer, Harvey B.; Robaina, Daniel
2014-09-01
We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point (T,m=0) in the temperature vs quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. An exact sum rule is derived for the thermal modification of the spectral function associated with the axial charge density; the (dominant) pion pole contribution obeys the sum rule. We determine the two parameters of the pion dispersion relation using lattice QCD simulations and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the maximum entropy method, yielding consistent results. Finally, we test the predictions of the chiral expansion around the point (T=0,m=0) for the temperature dependence of static observables.
Update on ɛK with lattice QCD inputs
NASA Astrophysics Data System (ADS)
Jang, Yong-Chull; Lee, Weonjong; Lee, Sunkyu; Leem, Jaehoon
2018-03-01
We report updated results for ɛK, the indirect CP violation parameter in neutral kaons, which is evaluated directly from the standard model with lattice QCD inputs. We use lattice QCD inputs to fix B\\hatk,|Vcb|,ξ0,ξ2,|Vus|, and mc(mc). Since Lattice 2016, the UTfit group has updated the Wolfenstein parameters in the angle-only-fit method, and the HFLAV group has also updated |Vcb|. Our results show that the evaluation of ɛK with exclusive |Vcb| (lattice QCD inputs) has 4.0σ tension with the experimental value, while that with inclusive |Vcb| (heavy quark expansion based on OPE and QCD sum rules) shows no tension.
Renormalization group analysis of B →π form factors with B -meson light-cone sum rules
NASA Astrophysics Data System (ADS)
Shen, Yue-Long; Wei, Yan-Bing; Lü, Cai-Dian
2018-03-01
Within the framework of the B -meson light-cone sum rules, we review the calculation of radiative corrections to the three B →π transition form factors at leading power in Λ /mb. To resum large logarithmic terms, we perform the complete renormalization group evolution of the correlation function. We employ the integral transformation which diagonalizes evolution equations of the jet function and the B -meson light-cone distribution amplitude to solve these evolution equations and obtain renormalization group improved sum rules for the B →π form factors. Results of the form factors are extrapolated to the whole physical q2 region and are compared with that of other approaches. The effect of B -meson three-particle light-cone distribution amplitudes, which will contribute to the form factors at next-to-leading power in Λ /mb at tree level, is not considered in this paper.
Zanderighi, Giulia
2018-04-27
Modern QCD - Lecture 3 We will introduce processes with initial-state hadrons and discuss parton distributions, sum rules, as well as the need for a factorization scale once radiative corrections are taken into account. We will then discuss the DGLAP equation, the evolution of parton densities, as well as ways in which parton densities are extracted from data.
QCD sum-rules analysis of vector (1-) heavy quarkonium meson-hybrid mixing
NASA Astrophysics Data System (ADS)
Palameta, A.; Ho, J.; Harnett, D.; Steele, T. G.
2018-02-01
We use QCD Laplace sum rules to study meson-hybrid mixing in vector (1-) heavy quarkonium. We compute the QCD cross-correlator between a heavy meson current and a heavy hybrid current within the operator product expansion. In addition to leading-order perturbation theory, we include four- and six-dimensional gluon condensate contributions as well as a six-dimensional quark condensate contribution. We construct several single and multiresonance models that take known hadron masses as inputs. We investigate which resonances couple to both currents and so exhibit meson-hybrid mixing. Compared to single resonance models that include only the ground state, we find that models that also include excited states lead to significantly improved agreement between QCD and experiment. In the charmonium sector, we find that meson-hybrid mixing is consistent with a two-resonance model consisting of the J /ψ and a 4.3 GeV resonance. In the bottomonium sector, we find evidence for meson-hybrid mixing in the ϒ (1 S ) , ϒ (2 S ), ϒ (3 S ), and ϒ (4 S ).
Refactorizing NRQCD short-distance coefficients in exclusive quarkonium production
NASA Astrophysics Data System (ADS)
Jia, Yu; Yang, Deshan
2009-06-01
In a typical exclusive quarkonium production process, when the center-of-mass energy, √{s}, is much greater than the heavy quark mass m, large kinematic logarithms of s/m will unavoidably arise at each order of perturbative expansion in the short-distance coefficients of the nonrelativistic QCD (NRQCD) factorization formalism, which may potentially harm the perturbative expansion. This symptom reflects that the hard regime in NRQCD factorization is too coarse and should be further factorized. We suggest that this regime can be further separated into "hard" and "collinear" degrees of freedom, so that the familiar light-cone approach can be employed to reproduce the NRQCD matching coefficients at the zeroth order of m/s and order by order in α. Taking two simple processes, exclusive η+γ production in ee annihilation and Higgs boson radiative decay into ϒ, as examples, we illustrate how the leading logarithms of s/m in the NRQCD matching coefficients are identified and summed to all orders in α with the aid of Brodsky-Lepage evolution equation.
The generalized scheme-independent Crewther relation in QCD
NASA Astrophysics Data System (ADS)
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.
2017-07-01
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the Adler function, defined from the cross section for electron-positron annihilation into hadrons, has no pQCD radiative corrections. The ;Generalized Crewther Relation; relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at leading twist. A scheme-dependent ΔCSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both Dns and the inverse coefficient CBjp-1 have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, αˆd (Q) =∑i≥1 αˆg1 i (Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.
Gluon structure function of a color dipole in the light-cone limit of lattice QCD
NASA Astrophysics Data System (ADS)
Grünewald, D.; Ilgenfritz, E.-M.; Pirner, H. J.
2009-10-01
We calculate the gluon structure function of a color dipole in near-light-cone SU(2) lattice QCD as a function of xB. The quark and antiquark are external nondynamical degrees of freedom which act as sources of the gluon string configuration defining the dipole. We compute the color dipole matrix element of transversal chromo-electric and chromo-magnetic field operators separated along a direction close to the light cone, the Fourier transform of which is the gluon structure function. As vacuum state in the pure glue sector, we use a variational ground state of the near-light-cone Hamiltonian. We derive a recursion relation for the gluon structure function on the lattice similar to the perturbative Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation. It depends on the number of transversal links assembling the Schwinger string of the dipole. Fixing the mean momentum fraction of the gluons to the “experimental value” in a proton, we compare our gluon structure function for a dipole state with four links with the next-to-leading-order MRST 2002 and the CTEQ AB-0 parametrizations at Q2=1.5GeV2. Within the systematic uncertainty we find rather good agreement. We also discuss the low xB behavior of the gluon structure function in our model calculation.
Diphoton production at the LHC: a QCD study up to NNLO
NASA Astrophysics Data System (ADS)
Catani, Stefano; Cieri, Leandro; de Florian, Daniel; Ferrera, Giancarlo; Grazzini, Massimiliano
2018-04-01
We consider the production of prompt-photon pairs at the LHC and we report on a study of QCD radiative corrections up to the next-to-next-to-leading order (NNLO). We present a detailed comparison of next-to-leading order (NLO) results obtained within the standard and smooth cone isolation criteria, by studying the dependence on the isolation parameters. We highlight the role of different partonic subprocesses within the two isolation criteria, and we show that they produce large radiative corrections for both criteria. Smooth cone isolation is a consistent procedure to compute QCD radiative corrections at NLO and beyond. If photon isolation is sufficiently tight, we show that the NLO results for the two isolation procedures are consistent with each other within their perturbative uncertainties. We then extend our study to NNLO by using smooth cone isolation. We discuss the impact of the NNLO corrections and the corresponding perturbative uncertainties for both fiducial cross sections and distributions, and we comment on the comparison with some LHC data. Throughout our study we remark on the main features that are produced by the kinematical selection cuts that are applied to the photons. In particular, we examine soft-gluon singularities that appear in the perturbative computations of the invariant mass distribution of the photon pair, the transverse-momentum spectra of the photons, and the fiducial cross section with asymmetric and symmetric photon transverse-momentum cuts, and we present their behaviour in analytic form.
Light-cone expansion of the Dirac sea in the presence of chiral and scalar potentials
NASA Astrophysics Data System (ADS)
Finster, Felix
2000-10-01
We study the Dirac sea in the presence of external chiral and scalar/pseudoscalar potentials. In preparation, a method is developed for calculating the advanced and retarded Green's functions in an expansion around the light cone. For this, we first expand all Feynman diagrams and then explicitly sum up the perturbation series. The light-cone expansion expresses the Green's functions as an infinite sum of line integrals over the external potential and its partial derivatives. The Dirac sea is decomposed into a causal and a noncausal contribution. The causal contribution has a light-cone expansion which is closely related to the light-cone expansion of the Green's functions; it describes the singular behavior of the Dirac sea in terms of nested line integrals along the light cone. The noncausal contribution, on the other hand, is, to every order in perturbation theory, a smooth function in position space.
The Boer-Mulders Transverse Momentum Distribution in the Pion and its Evolution in Lattice QCD
NASA Astrophysics Data System (ADS)
Engelhardt, M.; Musch, B.; Hägler, P.; Schäfer, A.; Negele, J.
2015-02-01
Starting from a definition of transverse momentum-dependent parton distributions (TMDs) in terms of hadronic matrix elements of a quark bilocal operator containing a staple-shaped gauge link, selected TMD observables can be evaluated within Lattice QCD. A TMD ratio describing the Boer-Mulders effect in the pion is investigated, with a particular emphasis on its evolution as a function of a Collins-Soper-type parameter which quantifies the proximity of the staple-shaped gauge links to the light cone.
Finite-width Laplace sum rules for 0-+ pseudoscalar glueball in the instanton vacuum model
NASA Astrophysics Data System (ADS)
Wang, Feng; Chen, Junlong; Liu, Jueping
2015-10-01
The correlation function of the 0-+ pseudoscalar glueball current is calculated based on the semiclassical expansion for quantum chromodynamics (QCD) in the instanton liquid background. Besides taking the pure classical contribution from instantons and the perturbative one into account, we calculate the contribution arising from the interaction (or the interference) between instantons and the quantum gluon fields, which is infrared free and more important than the pure perturbative one. Instead of the usual zero-width approximation for the resonances, the Breit-Wigner form with a correct threshold behavior for the spectral function of the finite-width resonance is adopted. The properties of the 0-+ pseudoscalar glueball are investigated via a family of the QCD Laplacian sum rules. A consistency between the subtracted and unsubtracted sum rules is very well justified. The values of the mass, decay width, and coupling constants for the 0-+ resonance in which the glueball fraction is dominant are obtained.
One-loop light-cone QCD, effective action for reggeized gluons and QCD RFT calculus
NASA Astrophysics Data System (ADS)
Bondarenko, S.; Lipatov, L.; Pozdnyakov, S.; Prygarin, A.
2017-09-01
The effective action for reggeized gluons is based on the gluodynamic Yang-Mills Lagrangian with external current for longitudinal gluons added, see Lipatov (Nucl Phys B 452:369, 1995; Phys Rep 286:131, 1997; Subnucl Ser 49:131, 2013; Int J Mod Phys Conf Ser 39:1560082, 2015; Int J Mod Phys A 31(28/29):1645011, 2016; EPJ Web Conf 125:01010, 2016). On the base of classical solutions, obtained in Bondarenko et al. (Eur Phys J C 77(8):527, 2017), the one-loop corrections to this effective action in light-cone gauge are calculated. The RFT calculus for reggeized gluons similarly to the RFT introduced in Gribov (Sov Phys JETP 26:414, 1968) is proposed and discussed. The correctness of the results is verified by calculation of the propagators of A+ and A- reggeized gluons fields and application of the obtained results is discussed as well.
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2018-01-01
We discuss the leptonic decay constants of heavy-light mesons by means of Borel QCD sum rules in the local-duality (LD) limit of infinitely large Borel mass parameter. In this limit, for an appropriate choice of the invariant structures in the QCD correlation functions, all vacuum-condensate contributions vanish and all nonperturbative effects are contained in only one quantity, the effective threshold. We study properties of the LD effective thresholds in the limits of large heavy-quark mass [Formula: see text] and small light-quark mass [Formula: see text]. In the heavy-quark limit, we clarify the role played by the radiative corrections in the effective threshold for reproducing the pQCD expansion of the decay constants of pseudoscalar and vector mesons. We show that the dependence of the meson decay constants on [Formula: see text] arises predominantly (at the level of 70-80%) from the calculable [Formula: see text]-dependence of the perturbative spectral densities. Making use of the lattice QCD results for the decay constants of nonstrange and strange pseudoscalar and vector heavy mesons, we obtain solid predictions for the decay constants of heavy-light mesons as functions of [Formula: see text] in the range from a few to 100 MeV and evaluate the corresponding strong isospin-breaking effects: [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text].
Scalar Hidden-Charm Tetraquark States with QCD Sum Rules
NASA Astrophysics Data System (ADS)
Di, Zun-Yan; Wang, Zhi-Gang; Zhang, Jun-Xia; Yu, Guo-Liang
2018-02-01
In this article, we study the masses and pole residues of the pseudoscalar-diquark-pseudoscalar-antidiquark type and vector-diquark-vector-antidiquark type scalar hidden-charm cu\\bar{c}\\bar{d} (cu\\bar{c}\\bar{s}) tetraquark states with QCD sum rules by taking into account the contributions of the vacuum condensates up to dimension-10 in the operator product expansion. The predicted masses can be confronted with the experimental data in the future. Possible decays of those tetraquark states are also discussed. Supported by the National Natural Science Foundation of China under Grant No. 11375063, the Fundamental Research Funds for the Central Universities under Grant Nos. 2016MS155 and 2016MS133
The generalized scheme-independent Crewther relation in QCD
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; ...
2017-05-10
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Lastly, similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.« less
The generalized scheme-independent Crewther relation in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Lastly, similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.« less
a Holographic Model of Hadrons
NASA Astrophysics Data System (ADS)
Stephanov, M. A.
2007-03-01
This short talk is based on the work with J. Erlich, E. Katz and D. Son, hep-ph/0501128. Inspired by ideas of gauge/string duality, we propose a five-dimensional framework for modeling low energy properties of QCD. The model naturally incorporates properties of QCD dictated by chiral symmetry, which we demonstrate by deriving the Gell-Mann-Oakes-Renner relationship for the pion mass. The couplings and masses of the infinite towers of vector and axial vector mesons described by the model automatically obey QCD sum rules. The phenomenon of vector-meson dominance is a straightforward consequence of the model.
Collective Flow and Mach Cones with transport
NASA Astrophysics Data System (ADS)
Bouras, I.; El, A.; Fochler, O.; Reining, F.; Uphoff, J.; Wesp, C.; Xu, Z.; Greiner, C.
2011-04-01
Fast thermalization and a strong build up of elliptic flow of QCD matter were investigated within the pQCD based 3+1 dimensional parton transport model BAMPS including bremsstrahlung 2 ↔ 3 processes. Within the same framework quenching of gluonic jets in Au+Au collisions at RHIC can be understood. The development of conical structure by gluonic jets is investigated in a static box for the regimes of small and large dissipation. Furthermore we demonstrate two different approaches to extract the shear viscosity coefficient η from a microscopical picture.
Chimera distribution amplitudes for the pion and the longitudinally polarized ρ-meson
NASA Astrophysics Data System (ADS)
Stefanis, N. G.; Pimikov, A. V.
2016-01-01
Using QCD sum rules with nonlocal condensates, we show that the distribution amplitude of the longitudinally polarized ρ-meson may have a shorttailed platykurtic profile in close analogy to our recently proposed platykurtic distribution amplitude for the pion. Such a chimera distribution de facto amalgamates the broad unimodal profile of the distribution amplitude, obtained with a Dyson-Schwinger equations-based computational scheme, with the suppressed tails characterizing the bimodal distribution amplitudes derived from QCD sum rules with nonlocal condensates. We argue that pattern formation, emerging from the collective synchronization of coupled oscillators, can provide a single theoretical scaffolding to study unimodal and bimodal distribution amplitudes of light mesons without recourse to particular computational schemes and the reasons for them.
OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2011-01-01
We present a sum-rule extraction of the decay constants of the charmed mesons D and Ds from the two-point correlator of pseudoscalar currents. First, we compare the perturbative expansion for the correlator and the decay constant performed in terms of the pole and the running MS¯ masses of the charm quark. The perturbative expansion in terms of the pole mass shows no signs of convergence whereas reorganizing this very expansion in terms of the MS¯ mass leads to a distinct hierarchy of the perturbative expansion. Furthermore, the decay constants extracted from the pole-mass correlator turn out to be considerably smaller than those obtained by means of the MS¯-mass correlator. Second, making use of the OPE in terms of the MS¯ mass, we determine the decay constants of both D and Ds mesons with an emphasis on the uncertainties in these quantities related both to the input QCD parameters and to the limited accuracy of the method of sum rules. PMID:21949465
Polarization phenomena in quantum chromodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S.J.
1994-12-01
The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and nonperturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g{sub A} on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shapemore » and normalization of the polarized quark and gluon structure functions of the proton at large and small x{sub bj}; (b) consequences of the principle of hadron retention in high x{sub F} inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. The author also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A{sub NN} observed in large angle proton-proton scattering, the anomalously large {rho}{pi} branching ratio of the J/{psi}, and the rapidly changing polarization dependence of both J/{psi} and continuum lepton pair hadroproduction observed at large x{sub F}. The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron.« less
Large-Nc sum rules for charmed baryons at subleading orders
NASA Astrophysics Data System (ADS)
Heo, Yonggoo; Lutz, Matthias F. M.
2018-05-01
Sum rules for the low-energy constants of the chiral SU(3) Lagrangian with charmed baryons of spin JP=1 /2+ and JP=3 /2+ baryons are derived from large-Nc QCD. We consider the large-Nc operator expansion at subleading orders for current-current correlation functions in the charmed baryon-ground states for two scalar and two axial-vector currents.
Neutron matter within QCD sum rules
NASA Astrophysics Data System (ADS)
Cai, Bao-Jun; Chen, Lie-Wen
2018-05-01
The equation of state (EOS) of pure neutron matter (PNM) is studied in QCD sum rules (QCDSRs ). It is found that the QCDSR results on the EOS of PNM are in good agreement with predictions by current advanced microscopic many-body theories. Moreover, the higher-order density terms in quark condensates are shown to be important to describe the empirical EOS of PNM in the density region around and above nuclear saturation density although they play a minor role at subsaturation densities. The chiral condensates in PNM are also studied, and our results indicate that the higher-order density terms in quark condensates, which are introduced to reasonably describe the empirical EOS of PNM at suprasaturation densities, tend to hinder the appearance of chiral symmetry restoration in PNM at high densities.
Analysis of the strong coupling form factors of ΣbNB and ΣcND in QCD sum rules
NASA Astrophysics Data System (ADS)
Yu, Guo-Liang; Wang, Zhi-Gang; Li, Zhen-Yu
2017-08-01
In this article, we study the strong interaction of the vertices Σ b NB and Σ c ND using the three-point QCD sum rules under two different Dirac structures. Considering the contributions of the vacuum condensates up to dimension 5 in the operation product expansion, the form factors of these vertices are calculated. Then, we fit the form factors into analytical functions and extrapolate them into time-like regions, which gives the coupling constants. Our analysis indicates that the coupling constants for these two vertices are G ΣbNB = 0.43±0.01 GeV-1 and G ΣcND = 3.76±0.05 GeV-1. Supported by Fundamental Research Funds for the Central Universities (2016MS133)
Lattice QCD Calculation of Hadronic Light-by-Light Scattering.
Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B; Pascalutsa, Vladimir
2015-11-27
We perform a lattice QCD calculation of the hadronic light-by-light scattering amplitude in a broad kinematical range. At forward kinematics, the results are compared to a phenomenological analysis based on dispersive sum rules for light-by-light scattering. The size of the pion pole contribution is investigated for momenta of typical hadronic size. The presented numerical methods can be used to compute the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Our calculations are carried out in two-flavor QCD with the pion mass in the range of 270-450 MeV and contain so far only the diagrams with fully connected quark lines.
Regularization of the light-cone gauge gluon propagator singularities using sub-gauge conditions
Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.
2015-12-21
Perturbative QCD calculations in the light-cone gauge have long suffered from the ambiguity associated with the regularization of the poles in the gluon propagator. In this work we study sub-gauge conditions within the light-cone gauge corresponding to several known ways of regulating the gluon propagator. By using the functional integral calculation of the gluon propagator, we rederive the known sub-gauge conditions for the θ-function gauges and identify the sub-gauge condition for the principal value (PV) regularization of the gluon propagator’s light-cone poles. The obtained sub-gauge condition for the PV case is further verified by a sample calculation of the classicalmore » Yang-Mills field of two collinear ultrarelativistic point color charges. Our method does not allow one to construct a sub-gauge condition corresponding to the well-known Mandelstam-Leibbrandt prescription for regulating the gluon propagator poles.« less
Light Quark Mass Ratios (mu:md:ms) from Meson and Baryon Mass Splittings
NASA Astrophysics Data System (ADS)
Minkowski, Peter
2013-08-01
The basis of the material discussed is our work in collaboration with Arnulfo Zepeda from 1979 [Nucl. Phys. B164, 25 (1980)]. The ingredients and consequences of this work will be presented, and compared with results obtained from QCD sum rules and lattice simulations of QCD in accordance with chiral expansions. An up-to-date conclusion will not be possible in this paper, but some comments towards such goal will be given in a concluding section.
On the small-x behavior of the orbital angular momentum distributions in QCD
NASA Astrophysics Data System (ADS)
Hatta, Yoshitaka; Yang, Dong-Jing
2018-06-01
We present the numerical solution of the leading order QCD evolution equation for the orbital angular momentum distributions of quarks and gluons and discuss its implications for the nucleon spin sum rule. We observe that at small-x, the gluon helicity and orbital angular momentum distributions are roughly of the same magnitude but with opposite signs, indicating a significant cancellation between them. A similar cancellation occurs also in the quark sector. We explain analytically the reason for this cancellation.
In-medium pseudoscalar D/B mesons and charmonium decay width
NASA Astrophysics Data System (ADS)
Chhabra, Rahul; Kumar, Arvind
2017-05-01
Using QCD sum rules and the chiral SU(3) model, we investigate the effect of temperature, density, strangeness fraction and isospin asymmetric parameter on the shift in masses and decay constants of the pseudoscalar D and B meson in the hadronic medium, which consist of nucleons and hyperons. The in-medium properties of D and B mesons within the QCD sum rule approach depend upon the quark and gluon condensates. In the chiral SU(3) model, quark and gluon condensates are introduced through the explicit symmetry breaking term and the trace anomaly property of the QCD, respectively and are written in terms of the scalar fields σ, ζ, δ and χ. Hence, through medium modification of σ, ζ, δ and χ fields, we obtain the medium-modified masses and decay constants of D and B mesons. As an application, using {}3P0 model, we calculate the in-medium decay width of the higher charmonium states ψ(3686), ψ(3770) and χ(3556) to the D\\bar{D} pairs, considering the in-medium mass of D mesons. These results may be important to understand the possible outcomes of the high-energy physics experiments, e.g., CBM and PANDA at GSI, Germany.
Thermal behavior of Charmonium in the vector channel from QCD sum rules
NASA Astrophysics Data System (ADS)
Dominguez, C. A.; Loewe, M.; Rojas, J. C.; Zhang, Y.
2010-11-01
The thermal evolution of the hadronic parameters of charmonium in the vector channel, i.e. the J/Ψ resonance mass, coupling (leptonic decay constant), total width, and continuum threshold are analyzed in the framework of thermal Hilbert moment QCD sum rules. The continuum threshold s0 has the same behavior as in all other hadronic channels, i.e. it decreases with increasing temperature until the PQCD threshold s0 = 4mQ2 is reached at T≃1.22Tc (mQ is the charm quark mass). The other hadronic parameters behave in a very different way from those of light-light and heavy-light quark systems. The J/Ψ mass is essentially constant in a wide range of temperatures, while the total width grows with temperature up to T≃1.04Tc beyond which it decreases sharply with increasing T. The resonance coupling is also initially constant beginning to increase monotonically around T≃Tc. This behavior of the total width and of the leptonic decay constant is a strong indication that the J/Ψ resonance might survive beyond the critical temperature for deconfinement, in agreement with some recent lattice QCD results.
A four-dimensional model with the fermionic determinant exactly evaluated
NASA Astrophysics Data System (ADS)
Mignaco, J. A.; Rego Monteiro, M. A.
1986-07-01
A method is presented to compute the fermion determinant of some class of field theories. By this method the following results of the fermion determinant in two dimensions are easily recovered: (i) Schwinger model without reference to a particular gauge. (ii) QCD in the light-cone gauge. (iii) Gauge invariant result of QCD. The method is finally applied to give an analytical solution of the fermion determinant of a four-dimensional, non-abelian, Dirac-like theory with massless fermions interacting with an external vector field through a pseudo-vectorial coupling. Fellow of the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil.
Lattice QCD Studies of Transverse Momentum-Dependent Parton Distribution Functions
NASA Astrophysics Data System (ADS)
Engelhardt, M.; Musch, B.; Hägler, P.; Negele, J.; Schäfer, A.
2015-09-01
Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering and the Drell-Yan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped gauge link. Such a definition opens the possibility of evaluating TMDs within lattice QCD. By parametrizing the aforementioned matrix elements in terms of invariant amplitudes, the problem can be cast in a Lorentz frame suited for the lattice calculation. Results for selected TMD observables are presented, including a particular focus on their dependence on a Collins-Soper-type evolution parameter, which quantifies proximity of the staple-shaped gauge links to the light cone.
Electroproduction of the N*(1535) resonance at large momentum transfer.
Braun, V M; Göckeler, M; Horsley, R; Kaltenbrunner, T; Lenz, A; Nakamura, Y; Pleiter, D; Rakow, P E L; Rohrwild, J; Schäfer, A; Schierholz, G; Stüben, H; Warkentin, N; Zanotti, J M
2009-08-14
We report on the first lattice calculation of light-cone distribution amplitudes of the N*(1535) resonance, which are used to calculate the transition form factors at large momentum transfers using light-cone sum rules. In the region Q2>2 GeV2, where the light-cone expansion is expected to converge, the results appear to be in good agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Kataev, A. L.; Molokoedov, V. S.
2017-12-01
The analytical {\\mathscr{O}}({a}s4) perturbative QCD expression for the flavour non-singlet contribution to the Bjorken polarized sum rule in the rather applicable at present gauge-dependent miniMOM scheme is obtained. For the considered three values of the gauge parameter, namely ξ = 0 (Landau gauge), ξ = -1 (anti-Feynman gauge) and ξ = -3 (Stefanis-Mikhailov gauge), the scheme-dependent coefficients are considerably smaller than the gauge-independent {\\overline{{MS}}} results. It is found that the fundamental property of the factorization of the QCD renormalization group β-function in the generalized Crewther relation, which is valid in the gauge-invariant {\\overline{{MS}}} scheme up to {\\mathscr{O}}({a}s4)-level at least, is unexpectedly valid at the same level in the miniMOM-scheme for ξ = 0, and for ξ = -1 and ξ = -3 in part.
Electroproduction of the N*(1535) Resonance at Large Momentum Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, V. M.; Goeckeler, M.; Kaltenbrunner, T.
2009-08-14
We report on the first lattice calculation of light-cone distribution amplitudes of the N*(1535) resonance, which are used to calculate the transition form factors at large momentum transfers using light-cone sum rules. In the region Q{sup 2}>2 GeV{sup 2}, where the light-cone expansion is expected to converge, the results appear to be in good agreement with the experimental data.
Bjorken unpolarized and polarized sum rules: comparative analysis of large- NF expansions
NASA Astrophysics Data System (ADS)
Broadhurst, D. J.; Kataev, A. L.
2002-09-01
Analytical all-orders results are presented for the one-renormalon-chain contributions to the Bjorken unpolarized sum rule for the F1 structure function of νN deep-inelastic scattering in the large-NF limit. The feasibility of estimating higher order perturbative QCD corrections, by the process of naive nonabelianization (NNA), is studied, in anticipation of measurement of this sum rule at a Neutrino Factory. A comparison is made with similar estimates obtained for the Bjorken polarized sum rule. Application of the NNA procedure to correlators of quark vector and scalar currents, in the euclidean region, is compared with recent analytical results for the O(αs4NF2) terms.
Charmonium ground and excited states at finite temperature from complex Borel sum rules
NASA Astrophysics Data System (ADS)
Araki, Ken-Ji; Suzuki, Kei; Gubler, Philipp; Oka, Makoto
2018-05-01
Charmonium spectral functions in vector and pseudoscalar channels at finite temperature are investigated through the complex Borel sum rules and the maximum entropy method. Our approach enables us to extract the peaks corresponding to the excited charmonia, ψ‧ and ηc‧ , as well as those of the ground states, J / ψ and ηc, which has never been achieved in usual QCD sum rule analyses. We show the spectral functions in vacuum and their thermal modification around the critical temperature, which leads to the almost simultaneous melting (or peak disappearance) of the ground and excited states.
Flavor changing neutral current transition of B to a1 with light-cone sum rules
NASA Astrophysics Data System (ADS)
Momeni, S.; Khosravi, R.; Falahati, F.
2017-01-01
The B →a1ℓ+ℓ- decays occur by the electroweak penguin and box diagrams, which can be performed through the flavor changing neutral current (FCNC). We calculate the form factors of the FCNC B →a1 transitions in the light-cone sum rules approach, up to twist-4 distribution amplitudes of the axial vector meson a1. Forward-backward asymmetry, as well as branching ratios of B →a1ℓ+ℓ-, and B →a1γ decays are considered. A comparison is also made between our results and the predictions of other methods.
Anomalous magnetic moment of the muon: A hybrid approach
NASA Astrophysics Data System (ADS)
Dominguez, C. A.; Horch, H.; Jäger, B.; Nasrallah, N. F.; Schilcher, K.; Spiesberger, H.; Wittig, H.
2017-10-01
A new QCD sum rule determination of the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, aμhvp, is proposed. This approach combines data on e+e- annihilation into hadrons, perturbative QCD and lattice QCD results for the first derivative of the electromagnetic current correlator at zero momentum transfer, ΠEM'(0 ). The idea is based on the observation that, in the relevant kinematic domain, the integration kernel K (s ), entering the formula relating aμhvp to e+e- annihilation data, behaves like 1 /s times a very smooth function of s , the squared energy. We find an expression for aμ in terms of ΠEM'(0 ), which can be calculated in lattice QCD. Using recent lattice results we find a good approximation for aμhvp, but the precision is not yet sufficient to resolve the discrepancy between the R (s ) data-based results and the experimentally measured value.
Implications of the principle of maximum conformality for the QCD strong coupling
Deur, Alexandre; Shen, Jian -Ming; Wu, Xing -Gang; ...
2017-08-14
The Principle of Maximum Conformality (PMC) provides scale-fixed perturbative QCD predictions which are independent of the choice of the renormalization scheme, as well as the choice of the initial renormalization scale. In this article, we will test the PMC by comparing its predictions for the strong couplingmore » $$\\alpha^s_{g_1}(Q)$$, defined from the Bjorken sum rule, with predictions using conventional pQCD scale-setting. The two results are found to be compatible with each other and with the available experimental data. However, the PMC provides a significantly more precise determination, although its domain of applicability ($$Q \\gtrsim 1.5$$ GeV) does not extend to as small values of momentum transfer as that of a conventional pQCD analysis ($$Q \\gtrsim 1$$ GeV). In conclusion, we suggest that the PMC range of applicability could be improved by a modified intermediate scheme choice or using a single effective PMC scale.« less
Dual representation of lattice QCD with worldlines and worldsheets of Abelian color fluxes
NASA Astrophysics Data System (ADS)
Marchis, Carlotta; Gattringer, Christof
2018-02-01
We present a new dual representation for lattice QCD in terms of wordlines and worldsheets. The exact reformulation is carried out using the recently developed Abelian color flux method where the action is decomposed into commuting minimal terms that connect different colors on neighboring sites. Expanding the Boltzmann factors for these commuting terms allows one to reorganize the gauge field contributions according to links such that the gauge fields can be integrated out in closed form. The emerging constraints give the dual variables the structure of worldlines for the fermions and worldsheets for the gauge degrees of freedom. The partition sum has the form of a strong coupling expansion, and with the Abelian color flux approach discussed here all coefficients of the expansion are known in closed form. We present the dual form for three cases: pure SU(3) lattice gauge theory, strong coupling QCD and full QCD, and discuss in detail the constraints for the color fluxes and their physical interpretation.
Experimental determination of the effective strong coupling constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandre Deur; Volker Burkert; Jian-Ping Chen
2007-07-01
We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.
In-medium properties of pseudoscalar D_s and B_s mesons
NASA Astrophysics Data System (ADS)
Chhabra, Rahul; Kumar, Arvind
2017-11-01
We calculate the shift in the masses and decay constants of D_s(1968) and B_s(5370) mesons in hot and dense asymmetric strange hadronic matter using QCD sum rules and chiral SU(3) model. In-medium strange quark condensates < \\bar{s}s> _{ρ _B}, and gluon condensates < α s/π {G^a}_{μ ν } {G^a}^{μ ν } > _{ρ _B}, to be used in the QCD sum rules for pseudoscalar D_s and B_s mesons, are calculated using a chiral SU(3) model. As an application of our present work, we calculate the in-medium decay widths of the excited (c\\bar{s}) states D_s^*(2715) and D_s^*(2860) decaying to (D_s(1968),η ) mesons. The medium effects in their decay widths are incorporated through the mass modification of the D_s(1968) and η mesons. The results of the present investigation may be helpful in understanding the possible outcomes of the future experiments like CBM and PANDA under the FAIR facility.
Baryon bags in strong coupling QCD
NASA Astrophysics Data System (ADS)
Gattringer, Christof
2018-04-01
We discuss lattice QCD with one flavor of staggered fermions and show that in the path integral the baryon contributions can be fully separated from quark and diquark contributions. The baryonic degrees of freedom (d.o.f.) are independent of the gauge field, and the corresponding free fermion action describes the baryons through the joint propagation of three quarks. The nonbaryonic dynamics is described by quark and diquark terms that couple to the gauge field. When evaluating the quark and diquark contributions in the strong coupling limit, the partition function completely factorizes into baryon bags and a complementary domain. Baryon bags are regions in space-time where the dynamics is described by a single free fermion made out of three quarks propagating coherently as a baryon. Outside the baryon bags, the relevant d.o.f. are monomers and dimers for quarks and diquarks. The partition sum is a sum over all baryon bag configurations, and for each bag, a free fermion determinant appears as a weight factor.
Finite-width Laplacian sum rules for 2++ tensor glueball in the instanton vacuum model
NASA Astrophysics Data System (ADS)
Chen, Junlong; Liu, Jueping
2017-01-01
The more carefully defined and more appropriate 2++ tensor glueball current is a S Uc(3 ) gauge-invariant, symmetric, traceless, and conserved Lorentz-irreducible tensor. After Lorentz decomposition, the invariant amplitude of the correlation function is abstracted and calculated based on the semiclassical expansion for quantum chromodynamics (QCD) in the instanton liquid background. In addition to taking the perturbative contribution into account, we calculate the contribution arising from the interaction (or the interference) between instantons and the quantum gluon fields, which is infrared free. Instead of the usual zero-width approximation for the resonances, the Breit-Wigner form with a correct threshold behavior for the spectral function of the finite-width three resonances is adopted. The properties of the 2++ tensor glueball are investigated via a family of the QCD Laplacian sum rules for the invariant amplitude. The values of the mass, decay width, and coupling constants for the 2++ resonance in which the glueball fraction is dominant are obtained.
XYZ-like spectra from Laplace sum rule at N2LO in the chiral limit
NASA Astrophysics Data System (ADS)
Albuquerque, R.; Narison, S.; Fanomezana, F.; Rabemananjara, A.; Rabetiarivony, D.; Randriamanatrika, G.
2016-12-01
We present new compact integrated expressions of QCD spectral functions of heavy-light molecules and four-quark XY Z-like states at lowest order (LO) of perturbative (PT) QCD and up to d = 8 condensates of the Operator Product Expansion (OPE). Then, by including up to next-to-next leading order (N2LO) PT QCD corrections, which we have estimated by assuming the factorization of the four-quark spectral functions, we improve previous LO results from QCD spectral sum rules (QSSR), on the XY Z-like masses and decay constants which suffer from the ill-defined heavy quark mass. PT N3LO corrections are estimated using a geometric growth of the PT series and are included in the systematic errors. Our optimal results based on stability criteria are summarized in Tables 11-14 and compared, in Sec. 10, with experimental candidates and some LO QSSR results. We conclude that the masses of the XZ observed states are compatible with (almost) pure JPC = 1+±, 0++ molecule or/and four-quark states. The ones of the 1-±, 0-± molecule/four-quark states are about 1.5 GeV above the Yc,b mesons experimental candidates and hadronic thresholds. We also find that the couplings of these exotics to the associated interpolating currents are weaker than that of ordinary D,B mesons (fDD ≈ 10-3f D) and may behave numerically as 1/m¯b3/2 (respectively 1/m¯b) for the 1+, 0+ (respectively 1-, 0-) states which can stimulate further theoretical studies of these decay constants.
Diagonalizing Tensor Covariants, Light-Cone Commutators, and Sum Rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, C. Y.
We derive fixed-mass sum rules for virtual Compton scattering the forward direction. We use the methods of both Dicus, Jackiw, and Teplitz (for the absorptive parts) and Heimann, Hey, and Mandula (for the real parts). We find a set of tensor covariansa such that the corresponding scalar amplitudes are proportional to simple t-channel parity-conserving helicity amplitudes. We give a relatively complete discussion of the convergence of the sum rules in a Regge model. (auth)
Sum rule for rate and CP asymmetry in B+ →K+π0
NASA Astrophysics Data System (ADS)
Gronau, Michael; Rosner, Jonathan L.
2007-01-01
A sum rule relating the ratio Rc = 2 Γ (B+ →K+π0) / Γ (B+ →K0π+) and the CP asymmetry ACP (B+ →K+π0) is proved to first order in the ratio of tree to penguin amplitudes. The sum rule explains why it is possible to have Rc consistent with 1 together with a small CP asymmetry in B+ →K+π0. The measured ratio ACP (B+ →K+π0) /ACP (B0 →K+π-) rules out a small strong phase difference between a color-suppressed and a color-favored tree amplitude contributing to B+ →K+π0 as favored by QCD factorization.
Constraining the double gluon distribution by the single gluon distribution
Golec-Biernat, Krzysztof; Lewandowska, Emilia; Serino, Mirko; ...
2015-10-03
We show how to consistently construct initial conditions for the QCD evolution equations for double parton distribution functions in the pure gluon case. We use to momentum sum rule for this purpose and a specific form of the known single gluon distribution function in the MSTW parameterization. The resulting double gluon distribution satisfies exactly the momentum sum rule and is parameter free. Furthermore, we study numerically its evolution with a hard scale and show the approximate factorization into product of two single gluon distributions at small values of x, whereas at large values of x the factorization is always violatedmore » in agreement with the sum rule.« less
τ hadronic spectral function moments in a nonpower QCD perturbation theory
NASA Astrophysics Data System (ADS)
Abbas, Gauhar; Ananthanarayan, B.; Caprini, I.; Fischer, J.
2016-04-01
The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling and other QCD parameters from the hadronic decays of the τ lepton. We consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ;reference model;, including moments that are poorly described by the standard expansions.
Duality between QCD perturbative series and power corrections
NASA Astrophysics Data System (ADS)
Narison, S.; Zakharov, V. I.
2009-08-01
We elaborate on the relation between perturbative and power-like corrections to short-distance sensitive QCD observables. We confront theoretical expectations with explicit perturbative calculations existing in literature. As is expected, the quadratic correction is dual to a long perturbative series and one should use one of them but not both. However, this might be true only for very long perturbative series, with number of terms needed in most cases exceeding the number of terms available. What has not been foreseen, the quartic corrections might also be dual to the perturbative series. If confirmed, this would imply a crucial modification of the dogma. We confront this quadratic correction against existing phenomenology (QCD (spectral) sum rules scales, determinations of light quark masses and of αs from τ-decay). We find no contradiction and (to some extent) better agreement with the data and with recent lattice calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deur, Alexandre; Shen, Jian -Ming; Wu, Xing -Gang
The Principle of Maximum Conformality (PMC) provides scale-fixed perturbative QCD predictions which are independent of the choice of the renormalization scheme, as well as the choice of the initial renormalization scale. In this article, we will test the PMC by comparing its predictions for the strong couplingmore » $$\\alpha^s_{g_1}(Q)$$, defined from the Bjorken sum rule, with predictions using conventional pQCD scale-setting. The two results are found to be compatible with each other and with the available experimental data. However, the PMC provides a significantly more precise determination, although its domain of applicability ($$Q \\gtrsim 1.5$$ GeV) does not extend to as small values of momentum transfer as that of a conventional pQCD analysis ($$Q \\gtrsim 1$$ GeV). In conclusion, we suggest that the PMC range of applicability could be improved by a modified intermediate scheme choice or using a single effective PMC scale.« less
NASA Astrophysics Data System (ADS)
Khellat, M. R.; Mirjalili, A.
2017-03-01
We first consider the idea of renormalization group-induced estimates, in the context of optimization procedures, for the Brodsky-Lepage-Mackenzie approach to generate higher-order contributions to QCD perturbative series. Secondly, we develop the deviation pattern approach (DPA) in which through a series of comparisons between lowerorder RG-induced estimates and the corresponding analytical calculations, one could modify higher-order RG-induced estimates. Finally, using the normal estimation procedure and DPA, we get estimates of αs4 corrections for the Bjorken sum rule of polarized deep-inelastic scattering and for the non-singlet contribution to the Adler function.
Tagging partially reconstructed objects with jet substructure
Freytsis, Marat; Volansky, Tomer; Walsh, Jonathan R.
2016-08-24
Here, we present a new tagger which aims at identifying partially reconstructed objects, in which only some of the constituents are collected in a single jet. As an example, we also focus on top decays in which either part of the hadronically decaying W or the b jet is soft or falls outside of the top jet cone. Furthermore, we construct an observable to identify remnant substructure from the decay and employ aggressive jet grooming to reject QCD backgrounds. The tagger is complementary to existing ones and works well in the intermediate boost regime where jet substructure techniques usually fail.more » It is anticipated that a similar tagger can be used to identify non-QCD hadronic jets, such as those expected from hidden valleys.« less
Off-shell gluon production in interaction of a projectile with 2 or 3 targets
NASA Astrophysics Data System (ADS)
Braun, M. A.; Salykin, M. Yu.
2017-07-01
Within the effective QCD action for the Regge kinematics, the amplitudes for virtual gluon emission are studied in collision of a projectile with two and three targets. It is demonstrated that all non-Feynman singularities cancel between induced vertices and rescattering contributions. Formulas simplify considerably in a special gauge, which is a straightforward generalization of the light-cone gauge for emission of real gluons.
Evolution equation in the field theory of strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marui, M.; Sugamoto, A.; Oda, I.
This paper reports on a stringy version of the Altarelli-Parisi equation given within the field theory of bosonic strings formulated in the light-cone gauge. Using this equation, the authors study the behavior of the decay function of strings under the change of reference scale, especially imposing an assumption of large transverse momentum. In some cases the n-th moment of the decay function behaves very differently from QCD.
NASA Astrophysics Data System (ADS)
Suganuma, H.; Fukushima, M.; Toki, H.
The Table of Contents for the book is as follows: * Preface * Opening Address * Monopole Condensation and Quark Confinement * Dual QCD, Effective String Theory, and Regge Trajectories * Abelian Dominance and Monopole Condensation * Non-Abelian Stokes Theorem and Quark Confinement in QCD * Infrared Region of QCD and Confining Configurations * BRS Quartet Mechanism for Color Confinement * Color Confinement and Quartet Mechanism * Numerical Tests of the Kugo-Ojima Color Confinement Criterion * Monopoles and Confinement in Lattice QCD * SU(2) Lattice Gauge Theory at T > 0 in a Finite Box with Fixed Holonomy * Confining and Dirac Strings in Gluodynamics * Cooling, Monopoles, and Vortices in SU(2) Lattice Gauge Theory * Quark Confinement Physics from Lattice QCD * An (Almost) Perfect Lattice Action for SU(2) and SU(3) Gluodynamics * Vortices and Confinement in Lattice QCD * P-Vortices, Nexuses and Effects of Gribov Copies in the Center Gauges * Laplacian Center Vortices * Center Vortices at Strong Couplings and All Couplings * Simulations in SO(3) × Z(2) Lattice Gauge Theory * Exciting a Vortex - the Cost of Confinement * Instantons in QCD * Deformation of Instanton in External Color Fields * Field Strength Correlators in the Instanton Liquid * Instanton and Meron Physics in Lattice QCD * The Dual Ginzburg-Landau Theory for Confinement and the Role of Instantons * Lattice QCD for Quarks, Gluons and Hadrons * Hadronic Spectral Functions in QCD * Universality and Chaos in Quantum Field Theories * Lattice QCD Study of Three Quark Potential * Probing the QCD Vacuum with Flavour Singlet Objects : η' on the Lattice * Lattice Studies of Quarks and Gluons * Quarks and Hadrons in QCD * Supersymmetric Nonlinear Sigma Models * Chiral Transition and Baryon-number Susceptibility * Light Quark Masses in QCD * Chiral Symmetry of Baryons and Baryon Resonances * Confinement and Bound States in QCD * Parallel Session * Off-diagonal Gluon Mass Generation and Strong Randomness of Off-diagonal Gluon Phase in the Maximally Abelian Gauge * On the Colour Confinement and the Minimal Surface * Glueball Mass and String Tension of SU(2) Gluodynamics from Abelian Monopoles and Strings * Application of the Non-Perturbative Renormalization Group to the Nambu-Jona-Lasinio Model at Finite Temperature and Density * Confining Flux-Tube and Hadrons in QCD * Gauge Symmetry Breakdown due to Dynamical Higgs Scalar * Spatial Structure of Quark Cooper Pairs * New Approach to Axial Coupling Constants in the QCD Sum Rule and Instanton Effects * String Breaking on a Lattice * Bethe-Salpeter Approach for Mesons within the Dual Ginzburg-Landau Theory * Gauge Dependence and Matching Procedure of a Nonrelativistic QCD Boundstate Formalism * A Mathematical Approach to the SU(2)-Quark Confinement * Simulations of Odd Flavors QCD by Hybrid Monte Carlo * Non-Perturbative Renormalization Group Analysis of Dynamical Chiral Symmetry Breaking with Beyond Ladder Contributions * Charmonium Physics in Finite Temperature Lattice QCD * From Meson-Nucleon Scattering to Vector Mesons in Nuclear Matter * Symposium Program * List of Participants
Nucleon Spin and Momentum Decomposition Using Lattice QCD Simulations.
Alexandrou, C; Constantinou, M; Hadjiyiannakou, K; Jansen, K; Kallidonis, C; Koutsou, G; Avilés-Casco, A Vaquero; Wiese, C
2017-10-06
We determine within lattice QCD the nucleon spin carried by valence and sea quarks and gluons. The calculation is performed using an ensemble of gauge configurations with two degenerate light quarks with mass fixed to approximately reproduce the physical pion mass. We find that the total angular momentum carried by the quarks in the nucleon is J_{u+d+s}=0.408(61)_{stat}(48)_{syst} and the gluon contribution is J_{g}=0.133(11)_{stat}(14)_{syst}, giving a total of J_{N}=0.54(6)_{stat}(5)_{syst} that is consistent with the spin sum. For the quark intrinsic spin contribution, we obtain 1/2ΔΣ_{u+d+s}=0.201(17)_{stat}(5)_{syst}. All quantities are given in the modified minimal subtraction scheme at 2 GeV. The quark and gluon momentum fractions are also computed and add up to ⟨x⟩_{u+d+s}+⟨x⟩_{g}=0.804(121)_{stat}(95)_{syst}+0.267(12)_{stat}(10)_{syst}=1.07(12)_{stat}(10)_{syst}, thus satisfying the momentum sum.
Geometric convex cone volume analysis
NASA Astrophysics Data System (ADS)
Li, Hsiao-Chi; Chang, Chein-I.
2016-05-01
Convexity is a major concept used to design and develop endmember finding algorithms (EFAs). For abundance unconstrained techniques, Pixel Purity Index (PPI) and Automatic Target Generation Process (ATGP) which use Orthogonal Projection (OP) as a criterion, are commonly used method. For abundance partially constrained techniques, Convex Cone Analysis is generally preferred which makes use of convex cones to impose Abundance Non-negativity Constraint (ANC). For abundance fully constrained N-FINDR and Simplex Growing Algorithm (SGA) are most popular methods which use simplex volume as a criterion to impose ANC and Abundance Sum-to-one Constraint (ASC). This paper analyze an issue encountered in volume calculation with a hyperplane introduced to illustrate an idea of bounded convex cone. Geometric Convex Cone Volume Analysis (GCCVA) projects the boundary vectors of a convex cone orthogonally on a hyperplane to reduce the effect of background signatures and a geometric volume approach is applied to address the issue arose from calculating volume and further improve the performance of convex cone-based EFAs.
Jet production in the CoLoRFulNNLO method: Event shapes in electron-positron collisions
NASA Astrophysics Data System (ADS)
Del Duca, Vittorio; Duhr, Claude; Kardos, Adam; Somogyi, Gábor; Szőr, Zoltán; Trócsányi, Zoltán; Tulipánt, Zoltán
2016-10-01
We present the CoLoRFulNNLO method to compute higher order radiative corrections to jet cross sections in perturbative QCD. We apply our method to the computation of event shape observables in electron-positron collisions at NNLO accuracy and validate our code by comparing our predictions to previous results in the literature. We also calculate for the first time jet cone energy fraction at NNLO.
On a realization of { β}-expansion in QCD
NASA Astrophysics Data System (ADS)
Mikhailov, S. V.
2017-04-01
We suggest a simple algebraic approach to fix the elements of the { β}-expansion for renormalization group invariant quantities, which uses additional degrees of freedom. The approach is discussed in detail for N2LO calculations in QCD with the MSSM gluino — an additional degree of freedom. We derive the formulae of the { β}-expansion for the nonsinglet Adler D-function and Bjorken polarized sum rules in the actual N3LO within this quantum field theory scheme with the MSSM gluino and the scheme with the second additional degree of freedom. We discuss the properties of the { β}-expansion for higher orders considering the N4LO as an example.
Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Pagan Griso, S; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S
2009-06-12
We present a measurement of the transverse momentum with respect to the jet axis (k(t)) of particles in jets produced in pp collisions at sqrt(s)=1.96 TeV. Results are obtained for charged particles in a cone of 0.5 radians around the jet axis in events with dijet invariant masses between 66 and 737 GeV/c(2). The experimental data are compared to theoretical predictions obtained for fragmentation partons within the framework of resummed perturbative QCD using the modified leading log and next-to-modified leading log approximations. The comparison shows that trends in data are successfully described by the theoretical predictions, indicating that the perturbative QCD stage of jet fragmentation is dominant in shaping basic jet characteristics.
Transverse momentum-dependent parton distribution functions from lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Engelhardt, Philipp Haegler, Bernhard Musch, John Negele, Andreas Schaefer
Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection. Starting from such a definition, a scheme to determine TMDs in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are obtained using ensembles at the pion masses 369MeV and 518MeV, focusing in particularmore » on the dependence of these shifts on the staple extent and a Collins-Soper-type evolution parameter quantifying proximity of the staples to the light cone.« less
Nonperturbative QCD Coupling and its $$\\beta$$-function from Light-Front Holography
Brodskey, Stanley J.; de Teramond, Guy; Deur, Alexandre P.
2010-05-28
The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective couplingmore » $$\\alpha_s^{AdS}(Q^2)$$. It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale $$ \\sim 1$$ GeV. The resulting $$\\beta$$-function appears to capture the essential characteristics of the full $$\\beta$$-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on $$\\alpha_s^{AdS}(Q^2)$$.« less
None
2018-05-14
We will introduce and discuss in some detail the two main classes of jets: cone type and sequential-recombination type. We will discuss their basic properties, as well as more advanced concepts such as jet substructure, jet filtering, ways of optimizing the jet radius, ways of defining the areas of jets, and of establishing the quality measure of the jet-algorithm in terms of discriminating power in specific searches. Finally we will discuss applications for Higgs searches involving boosted particles.
NASA Astrophysics Data System (ADS)
Gabadadze, Gregory; Tukhashvili, Giorgi
2018-07-01
The Crewther-Broadhurst-Kataev (CBK) relation connects the Bjorken function for deep-inelastic sum rules (or the Gross-Llewellyn Smith function) with the Adler function for electron-positron annihilation in QCD; it has been checked to hold up to four loops in perturbation theory. Here we study non-perturbative terms in the CBK relation using a holographic dual theory that is believed to capture properties of QCD. We show that for the large invariant momenta the perturbative CBK relation is exactly satisfied. For the small momenta non-perturbative corrections enter the relation and we calculate their significant effects. We also give an exact holographic expression for the Bjorken function, as well as for the entire three-point axial-vector-vector correlation function, and check their consistency in the conformal limit.
Justifying the naive partonic sum rule for proton spin
Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong
2015-04-01
We provide a theoretical basis for understanding the spin structure of the proton in terms of the spin and orbital angular momenta of free quarks and gluons in Feynman’s parton picture. We show that each term in the Jaffe–Manohar spin sum rule can be related to the matrix element of a gauge-invariant, but frame-dependent operator through a matching formula in large-momentum effective field theory. We present all the matching conditions for the spin content at one-loop order in perturbation theory, which provide a basis to calculate parton orbital angular momentum in lattice QCD at leading logarithmic accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baikov, P. A.; Chetyrkin, K. G.; Kuehn, J. H.
2010-04-02
We compute, for the first time, the order {alpha}{sub s}{sup 4} contributions to the Bjorken sum rule for polarized electron-nucleon scattering and to the (nonsinglet) Adler function for the case of a generic color gauge group. We confirm at the same order a (generalized) Crewther relation which provides a strong test of the correctness of our previously obtained results: the QCD Adler function and the five-loop {beta} function in quenched QED. In particular, the appearance of an irrational contribution proportional to {zeta}{sub 3} in the latter quantity is confirmed. We obtain the commensurate scale equation relating the effective strong couplingmore » constants as inferred from the Bjorken sum rule and from the Adler function at order {alpha}{sub s}{sup 4}.« less
Quenching parameter in a holographic thermal QCD
NASA Astrophysics Data System (ADS)
Patra, Binoy Krishna; Arya, Bhaskar
2017-01-01
We have calculated the quenching parameter, q ˆ in a model-independent way using the gauge-gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS black hole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov-Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover q ˆ is usually defined in the literature from the Glauber model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge-gravity duality. Thus we use an appropriate definition of q ˆ : q ˆ L- = 1 /L2, where L is the separation for which the Wilson loop is equal to some specific value. The above two refinements cause q ˆ to vary with the temperature as T4 always and to depend linearly on the light-cone time L- with an additional (1 /L-) correction term in the short-distance limit whereas in the long-distance limit, q ˆ depends only linearly on L- with no correction term. These observations agree with other holographic calculations directly or indirectly.
Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.
Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W
2016-01-22
In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5 GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.
Chiral corrections to the Adler-Weisberger sum rule
NASA Astrophysics Data System (ADS)
Beane, Silas R.; Klco, Natalie
2016-12-01
The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .
NASA Astrophysics Data System (ADS)
Koma, Y.
The derivative of the topological susceptibility at zero momentum is responsible for the validity of the Witten-Veneziano formula for the η mass, and also for the resolution of the EMC pro- ton spin problem. We investigate the momentum dependence of the topological susceptibility and its derivative at zero momentum using lattice QCD simulations with overlap fermions within quenched approximation. We expose the role of the low-lying Dirac eigenmodes for the topolog- ical charge density, and find the negative value for the derivative. While the sign of the derivative is consistent with the QCD sum rule in pure Yang-Mills theory, the absolute value becomes larger if only the contribution from the zero modes and the low-lying eigenmodes is taken into account.
Gubler, Philipp; Hattori, Koichi; Lee, Su Houng; ...
2016-03-15
In this paper, we investigate the mass spectra of open heavy flavor mesons in an external constant magnetic field within QCD sum rules. Spectral Ansatze on the phenomenological side are proposed in order to properly take into account mixing effects between the pseudoscalar and vector channels, and the Landau levels of charged mesons. The operator product expansion is implemented up to dimension-5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level effects, which together with the mixingmore » effects almost completely saturate the mass shifts obtained in our sum rule analysis.« less
The structure, mixing angle, mass and couplings of the light scalar f0(500) and f0(980) mesons
NASA Astrophysics Data System (ADS)
Agaev, S. S.; Azizi, K.; Sundu, H.
2018-06-01
The mixing angle, mass and couplings of the light scalar mesons f0 (500) and f0 (980) are calculated in the framework of QCD two-point sum rule approach by assuming that they are tetraquarks with diquark-antidiquark structures. The mesons are treated as mixtures of the heavy | H > = ([ su ] [ s bar u bar ] + [ sd ] [ s bar d bar ]) /√{ 2 } and light | L > = [ ud ] [ u bar d bar ] scalar diquark-antidiquark components. We extract from corresponding sum rules the mixing angles φH and φL of these states and evaluate the masses and couplings of the particles f0 (500) and f0 (980).
Mass formulas for {Xi}{sub c} and {Xi}{sub b} baryons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliev, T. M.; Zamiralov, V. S.; Ozpineci, A.
The importance of taking into account the mixing of the heavy cascade baryons {Xi} and {Xi}' that have new quantum numbers in analyzing their properties is shown. The Ono quark model is considered by way of example. The masses of the new baryons and the {Xi}-{Xi}' mixing angles are obtained. The same approach is applied to the interpolating currents of these baryons within QCD sum rules.
Multipolar and Composite Ordering in Two-Dimensional Semiclassical Geometrically Frustrated Magnets
NASA Astrophysics Data System (ADS)
Parker, Edward Temchin
Despite the success of QCD at high energies where the perturbation calculations can be carried out because of the asymptotic freedom, many fundamental questions, regarding the confinement of quarks and gluons, the nuclear forces, and the nucleon mass and structure, still remain in the non-perturbative regime. Dispersive sum rules, based on universal principles, provide a data-driven approach to study the nucleon structure without model-dependencies. Among those sum rules, the well known Gerasimov-Drell-Hearn (GDH) sum rule relates the anomalous magnetic moment to a weighted integral over the photo-absorption cross section. Its generalized form is extended for the virtual photon absorption at an arbitrary four momentum transfer square (Q2) and thus provides a unique relation to study the nucleon spin structure over an experimentally accessible range of Q2. The measured integrals can be compared with theoretical predictions for the spin dependent Compton amplitudes. Such experimental tests at intermediate and low Q 2 deepen our knowledge of the transition from the asymptotic freedom regime to the color confinement regime in QCD. Experiment E97-110 has been performed at the Thomas Jefferson National Accelerator Facility to precisely measure the generalized GDH sum rule and the moments of the neutron and 3He spin structure functions in the low energy region. During the experiment, a longitudinally-polarized electron beam with energies from 1.1 to 4.4 GeV was scattered from a 3He gas target which was polarized longitudinally or transversely at the Hall A center. Inclusive asymmetries and polarized cross-section differences, as well as the unpolarized cross sections, were measured in the quasielastic and resonance regions. In this work, the 3He spin dependent structure functions of g1(nu,Q 2) and g2(nu,Q 2) at Q2 = 0.032-0.230 GeV 2 have been extracted from the experimental data, and the generalized GDH sum rule of 3He is firstly obtained for Q 2 < 0.1 GeV2. The results exhibit a "turn-over" behavior at Q2 = 0.1 GeV2, which strongly indicates that the GDH sum rule for real photons will be recovered at Q2 → 0.
Resumming double logarithms in the QCD evolution of color dipoles
Iancu, E.; Madrigal, J. D.; Mueller, A. H.; ...
2015-05-01
The higher-order perturbative corrections, beyond leading logarithmic accuracy, to the BFKL evolution in QCD at high energy are well known to suffer from a severe lack-of-convergence problem, due to radiative corrections enhanced by double collinear logarithms. Via an explicit calculation of Feynman graphs in light cone (time-ordered) perturbation theory, we show that the corrections enhanced by double logarithms (either energy-collinear, or double collinear) are associated with soft gluon emissions which are strictly ordered in lifetime. These corrections can be resummed to all orders by solving an evolution equation which is non-local in rapidity. This equation can be equivalently rewritten inmore » local form, but with modified kernel and initial conditions, which resum double collinear logs to all orders. We extend this resummation to the next-to-leading order BFKL and BK equations. The first numerical studies of the collinearly-improved BK equation demonstrate the essential role of the resummation in both stabilizing and slowing down the evolution.« less
Northeast Parallel Architectures Center (NPAC) at Syracuse University
1990-12-01
lattice models. On the CM-2 we will fun a lattice gauge theory simulation of quantum chromodynamics ( QCD ), and on the CM-1 we will investigate the...into a three-dimensional grid with the stipulation that adjacent processors in the lattice correspond to proximate regions of space. Light paths will...be constrained to follow lattice links and the sum over all paths from light sources to each lattice site will be computed inductively by all
Mixing {Xi}--{Xi}' Effects and Static Properties of Heavy {Xi}'s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliev, T. M.; Ozpineci, A.; Zamiralov, V. S.
It is shown the importance of mixing of heavy baryons {Xi}--{Xi}' with the new quantum numbers for analysis of its characteristics. The quark model of Ono is used as an example. Masses of new baryons as well as mixing angles of the states {Xi}--{Xi}' are obtained. The same reasoning is shown to be valid for the interpolating currents of these baryons in the framework of the QCD sum rules.
Baikov, P A; Chetyrkin, K G; Kühn, J H
2006-01-13
We compute, for the first time, the absorptive part of the massless correlator of two quark scalar currents in five loops. As physical applications, we consider the [symbol: see text](alpha(s)4) corrections to the decay rate of the standard model Higgs boson into quarks, as well as the constraints on the strange quark mass following from QCD sum rules.
Hard QCD processes in the nuclear medium
NASA Astrophysics Data System (ADS)
Freese, Adam
The environment inside the atomic nucleus is one of the most fascinating arenas for the study of quantum chromodynamics (QCD). The strongly-interacting nature of the nuclear medium a?ects the nature of both QCD processes and the quark-gluon structure of hadrons, allowing several unique aspects of the strong nuclear force to be investigated in reactions involving nuclear targets. The research presented in this dissertation explores two aspects of nuclear QCD: firstly, the partonic structure of the nucleus itself; and secondly, the use of the nucleus as a micro-laboratory in which QCD processes can be studied. The partonic structure of the nucleus is calculated in this work by deriving and utilizing a convolution formula. The hadronic structure of the nucleus and the quark-gluon structure of its constituent nucleons are taken together to determine the nuclear partonic structure. Light cone descriptions of short range correlations, in terms of both hadronic and partonic structure, are derived and taken into account. Medium modifications of the bound nucleons are accounted for using the color screening model, and QCD evolution is used to connect nuclear partonic structure at vastly di?erent energy scales. The formalism developed for calculating nuclear partonic structure is applied to inclusive dijet production from proton-nucleus collisions at LHC kinematics, and novel predictions are calculated and presented for the dijet cross section. The nucleus is investigated as a micro-laboratory in vector meson photoproduction reactions. In particular, the deuteron is studied in the break-up reaction gammad → Vpn, for both the φ(1020) and J/v vector mesons. The generalized eikonal approximation is utilized, allowing unambiguous separation of the impulse approximation and final state interactions (FSIs). Two peaks or valleys are seen in the angular distribution of the reaction cross section, each of which is due to an FSI between either the proton and neutron, or the produced vector meson and the spectator nucleon. The presence and size of the latter FSI valley/peak contains information about the meson-nucleon interaction, and it is shown that several models of this interaction can be distinguished by measuring the angular distribution for the deuteron breakup reaction.
NASA Astrophysics Data System (ADS)
O'Donnell, Patrick J.; Smith, Brian Hendee
1996-11-01
The Table of Contents for the full book PDF is as follows: * Preface * Roberto Mendel, An Appreciaton * The Infamous Coulomb Gauge * Renormalized Path Integral in Quantum Mechanics * New Analysis of the Divergence of Perturbation Theory * The Last of the Soluble Two Dimensional Field Theories? * Rb and Heavy Quark Mixing * Rb Problem: Loop Contributions and Supersymmetry * QCD Radiative Effects in Inclusive Hadronic B Decays * CP-Violating Dipole Moments of Quarks in the Kobayashi-Maskawa Model * Hints of Dynamical Symmetry Breaking? * Pi Pi Scattering in an Effective Chiral Lagrangian * Pion-Resonance Parameters from QCD Sum Rules * Higgs Theorem, Effective Action, and its Gauge Invariance * SUSY and the Decay H_2^0 to gg * Effective Higgs-to-Light Quark Coupling Induced by Heavy Quark Loops * Heavy Charged Lepton Production in Superstring Inspired E6 Models * The Elastic Properties of a Flat Crystalline Membrane * Gauge Dependence of Topological Observables in Chern-Simons Theory * Entanglement Entropy From Edge States * A Simple General Treatment of Flavor Oscillations * From Schrödinger to Maupertuis: Least Action Principles from Quantum Mechanics * The Matrix Method for Multi-Loop Feynman Integrals * Simplification in QCD and Electroweak Calculations * Programme * List of Participants
Multibands tunneling in AAA-stacked trilayer graphene
NASA Astrophysics Data System (ADS)
Redouani, Ilham; Jellal, Ahmed; Bahaoui, Abdelhadi; Bahlouli, Hocine
2018-04-01
We study the electronic transport through np and npn junctions for AAA-stacked trilayer graphene. Two kinds of gates are considered where the first is a single gate and the second is a double gate. After obtaining the solutions for the energy spectrum, we use the transfer matrix method to determine the three transmission probabilities for each individual cone τ = 0 , ± 1 . We show that the quasiparticles in AAA-stacked trilayer graphene are not only chiral but also labeled by an additional cone index τ. The obtained bands are composed of three Dirac cones that depend on the chirality indexes. We show that there is perfect transmission for normal or near normal incidence, which is a manifestation of the Klein tunneling effect. We analyze also the corresponding total conductance, which is defined as the sum of the conductance channels in each individual cone. Our results are numerically discussed and compared with those obtained for ABA- and ABC-stacked trilayer graphene.
Higgs boson decay into b-quarks at NNLO accuracy
NASA Astrophysics Data System (ADS)
Del Duca, Vittorio; Duhr, Claude; Somogyi, Gábor; Tramontano, Francesco; Trócsányi, Zoltán
2015-04-01
We compute the fully differential decay rate of the Standard Model Higgs boson into b-quarks at next-to-next-to-leading order (NNLO) accuracy in αs. We employ a general subtraction scheme developed for the calculation of higher order perturbative corrections to QCD jet cross sections, which is based on the universal infrared factorization properties of QCD squared matrix elements. We show that the subtractions render the various contributions to the NNLO correction finite. In particular, we demonstrate analytically that the sum of integrated subtraction terms correctly reproduces the infrared poles of the two-loop double virtual contribution to this process. We present illustrative differential distributions obtained by implementing the method in a parton level Monte Carlo program. The basic ingredients of our subtraction scheme, used here for the first time to compute a physical observable, are universal and can be employed for the computation of more involved processes.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2016-03-02
In this study, the momentum-weighted sum of the charges of tracks associated to a jet is sensitive to the charge of the initiating quark or gluon. This paper presents a measurement of the distribution of momentum-weighted sums, called jet charge, in dijet events using 20.3 fb -1 of data recorded with the ATLAS detector at √s = 8 TeV in pp collisions at the LHC. The jet charge distribution is unfolded to remove distortions from detector effects and the resulting particle-level distribution is compared with several models. The p T dependence of the jet charge distribution average and standard deviationmore » are compared to predictions obtained with several leading-order and next-to-leading-order parton distribution functions. The data are also compared to different Monte Carlo simulations of QCD dijet production using various settings of the free parameters within these models. The chosen value of the strong coupling constant used to calculate gluon radiation is found to have a significant impact on the predicted jet charge. There is evidence for a p T dependence of the jet charge distribution for a given jet flavor. In agreement with perturbative QCD predictions, the data show that the average jet charge of quark-initiated jets decreases in magnitude as the energy of the jet increases.« less
RHIC and LHC Phenomena with a Unified Parton Transport
NASA Astrophysics Data System (ADS)
Bouras, Ioannis; El, Andrej; Fochler, Oliver; Reining, Felix; Senzel, Florian; Uphoff, Jan; Wesp, Christian; Xu, Zhe; Greiner, Carsten
We discuss recent applications of the partonic pQCD based cascade model BAMPS with focus on heavy-ion phenomeneology in hard and soft momentum range. The nuclear modification factor as well as elliptic flow are calculated in BAMPS for RHIC end LHC energies. These observables are also discussed within the same framework for charm and bottom quarks. Contributing to the recent jet-quenching investigations we present first preliminary results on application of jet reconstruction algorithms in BAMPS. Finally, collective effects induced by jets are investigated: we demonstrate the development of Mach cones in ideal matter as well in the highly viscous regime.
RHIC and LHC phenomena with an unified parton transport
NASA Astrophysics Data System (ADS)
Bouras, Ioannis; El, Andrej; Fochler, Oliver; Reining, Felix; Senzel, Florian; Uphoff, Jan; Wesp, Christian; Xu, Zhe; Greiner, Carsten
2012-11-01
We discuss recent applications of the partonic pQCD based cascade model BAMPS with focus on heavy-ion phenomeneology in hard and soft momentum range. The nuclear modification factor as well as elliptic flow are calculated in BAMPS for RHIC end LHC energies. These observables are also discussed within the same framework for charm and bottom quarks. Contributing to the recent jet-quenching investigations we present first preliminary results on application of jet reconstruction algorithms in BAMPS. Finally, collective effects induced by jets are investigated: we demonstrate the development of Mach cones in ideal matter as well in the highly viscous regime.
Next-to-leading order γ γ + 2 - jet production at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bern, Z.; Dixon, L. J.; Febres Cordero, F.
We present next-to-leading-order QCD predictions for cross sections and for a comprehensive set of distributions in γγ+2-jet production at the Large Hadron Collider. We consider the contributions from loop amplitudes for two photons and four gluons, but we neglect top quarks. We use BlackHat together with SHERPA to carry out the computation. We use a Frixione cone isolation for the photons. We study standard sets of cuts on the jets and the photons and also sets of cuts appropriate for studying backgrounds to Higgs-boson production via vector-boson fusion.
Higher Order Corrections in the CoLoRFulNNLO Framework
NASA Astrophysics Data System (ADS)
Somogyi, G.; Kardos, A.; Szőr, Z.; Trócsányi, Z.
We discuss the CoLoRFulNNLO method for computing higher order radiative corrections to jet cross sections in perturbative QCD. We apply our method to the calculation of event shapes and jet rates in three-jet production in electron-positron annihilation. We validate our code by comparing our predictions to previous results in the literature and present the jet cone energy fraction distribution at NNLO accuracy. We also present preliminary NNLO results for the three-jet rate using the Durham jet clustering algorithm matched to resummed predictions at NLL accuracy, and a comparison to LEP data.
High energy scattering in QCD and in quantum gravity
NASA Astrophysics Data System (ADS)
Lipatov, L. N.
2014-06-01
The theory of the high energy scattering in QCD is based on the BFKL equation for the Pomeron wave function and on its generalization for composite multi-gluon states in the crossing channel. At a large number of colors the equations for the gluon composite states have remarkable mathematical properties including their Möbius invariance, holomorphic separability, duality symmetry and integrability. High energy QCD interactions local in the particle rapidities are formulated in the form of the gauge invariant effective action. In the maximally extended N = 4 super-symmetry the Pomeron turns out to be dual to the reggeized graviton in the 10-dimensional anti-de-Sitter space. As a result, the Gribov calculus for the Pomeron interactions should be reformulated here as a generally covariant effective field theory for the reggeized gravitons. We construct the corresponding effective action, which gives a possibility to calculate their trajectory and couplings. The graviton trajectory in the leading order contains an ultraviolet divergency meaning the presence of the double-logarithmic (DL) terms. We sum the DL contributions in all orders of the perturbation theory in the Einstein-Hilbert gravity and in its super-symmetric generalizations. In the N = 8 super gravity the ratio of the scattering amplitude in the DL approximation to the Born expression tends to zero at large energies.
NASA Astrophysics Data System (ADS)
Mantry, Sonny; Petriello, Frank
2010-05-01
We derive a factorization theorem for the Higgs boson transverse momentum (pT) and rapidity (Y) distributions at hadron colliders, using the soft-collinear effective theory (SCET), for mh≫pT≫ΛQCD, where mh denotes the Higgs mass. In addition to the factorization of the various scales involved, the perturbative physics at the pT scale is further factorized into two collinear impact-parameter beam functions (IBFs) and an inverse soft function (ISF). These newly defined functions are of a universal nature for the study of differential distributions at hadron colliders. The additional factorization of the pT-scale physics simplifies the implementation of higher order radiative corrections in αs(pT). We derive formulas for factorization in both momentum and impact parameter space and discuss the relationship between them. Large logarithms of the relevant scales in the problem are summed using the renormalization group equations of the effective theories. Power corrections to the factorization theorem in pT/mh and ΛQCD/pT can be systematically derived. We perform multiple consistency checks on our factorization theorem including a comparison with known fixed-order QCD results. We compare the SCET factorization theorem with the Collins-Soper-Sterman approach to low-pT resummation.
Nearly perturbative lattice-motivated QCD coupling with zero IR limit
NASA Astrophysics Data System (ADS)
Ayala, César; Cvetič, Gorazd; Kögerler, Reinhart; Kondrashuk, Igor
2018-03-01
The product of the gluon dressing function and the square of the ghost dressing function in the Landau gauge can be regarded to represent, apart from the inverse power corrections 1/{Q}2n, a nonperturbative generalization { \\mathcal A }({Q}2) of the perturbative QCD running coupling a({Q}2) (\\equiv {α }s({Q}2)/π ). Recent large volume lattice calculations for these dressing functions indicate that the coupling defined in such a way goes to zero as { \\mathcal A }({Q}2)∼ {Q}2 when the squared momenta Q 2 go to zero ({Q}2\\ll 1 {GeV}}2). In this work we construct such a QCD coupling { \\mathcal A }({Q}2) which fulfills also various other physically motivated conditions. At high momenta it becomes the underlying perturbative coupling a({Q}2) to a very high precision. And at intermediate low squared momenta {Q}2∼ 1 {GeV}}2 it gives results consistent with the data of the semihadronic τ lepton decays as measured by OPAL and ALEPH. The coupling is constructed in a dispersive way, resulting as a byproduct in the holomorphic behavior of { \\mathcal A }({Q}2) in the complex Q 2-plane which reflects the holomorphic behavior of the spacelike QCD observables. Application of the Borel sum rules to τ-decay V + A spectral functions allows us to obtain values for the gluon (dimension-4) condensate and the dimension-6 condensate, which reproduce the measured OPAL and ALEPH data to a significantly better precision than the perturbative \\overline{MS}} coupling approach.
Scattering of glue by glue on the light-cone worldsheet: Helicity nonconserving amplitudes
NASA Astrophysics Data System (ADS)
Chakrabarti, D.; Qiu, J.; Thorn, C. B.
2005-09-01
We give the light-cone gauge calculation of the one-loop on-shell scattering amplitudes for gluon-gluon scattering which violate helicity conservation. We regulate infrared divergences by discretizing the p+ integrations, omitting the terms with p+=0. Collinear divergences are absent diagram by diagram for the helicity nonconserving amplitudes. We also employ a novel ultraviolet regulator that is natural for the light-cone worldsheet description of planar Feynman diagrams. We show that these regulators give the known answers for the helicity nonconserving one-loop amplitudes, which do not suffer from the usual infrared vagaries of massless particle scattering. For the maximal helicity violating process we elucidate the physics of the remarkable fact that the loop momentum integrand for the on-shell Green function associated with this process, with a suitable momentum routing of the different contributing topologies, is identically zero. We enumerate the counterterms that must be included to give Lorentz covariant results to this order, and we show that they can be described locally in the light-cone worldsheet formulation of the sum of planar diagrams.
NASA Astrophysics Data System (ADS)
Garkusha, A. V.; Kataev, A. L.; Molokoedov, V. S.
2018-02-01
The problem of scheme and gauge dependence of the factorization property of the renormalization group β-function in the SU( N c ) QCD generalized Crewther relation (GCR), which connects the flavor non-singlet contributions to the Adler and Bjorken polarized sum rule functions, is investigated at the O({a}_s^4) level of perturbation theory. It is known that in the gauge-invariant renormalization \\overline{MS} -scheme this property holds in the QCD GCR at least at this order. To study whether this factorization property is true in all gauge-invariant schemes, we consider the MS-like schemes in QCD and the QED-limit of the GCR in the \\overline{MS} -scheme and in two other gauge-independent subtraction schemes, namely in the momentum MOM and the on-shell OS schemes. In these schemes we confirm the existence of the β-function factorization in the QCD and QED variants of the GCR. The problem of the possible β-factorization in the gauge-dependent renormalization schemes in QCD is studied. To investigate this problem we consider the gauge non-invariant mMOM and MOMgggg-schemes. We demonstrate that in the mMOM scheme at the O({a}_s^3) level the β-factorization is valid for three values of the gauge parameter ξ only, namely for ξ = -3 , -1 and ξ = 0. In the O({a}_s^4) order of PT it remains valid only for case of the Landau gauge ξ = 0. The consideration of these two gauge-dependent schemes for the QCD GCR allows us to conclude that the factorization of RG β-function will always be implemented in any MOM-like renormalization schemes with linear covariant gauge at ξ = 0 and ξ = -3 at the O({a}_s^3) approximation. It is demonstrated that if factorization property for the MS-like schemes is true in all orders of PT, as theoretically indicated in the several works on the subject, then the factorization will also occur in the arbitrary MOM-like scheme in the Landau gauge in all orders of perturbation theory as well.
Probing CP violation in e + e − production of the Higgs boson and toponia
Hagiwara, Kaoru; Ma, Kai; Yokoya, Hiroshi
2016-06-01
We study the CP violation in the Higgs boson and toponia production process at the ILC where the toponia are produced near the threshold. With the approximation that the production vertex of the Higgs boson and toponia is contact, and neglecting the P-wave toponia, we analytically calculated the density matrix for the production and decay of the toponia. Under these assumptions, the production spectrum of the toponia is solely determined by the spin quantum number, therefore the toponia can be either singlet or triplet. We find that the production rate of the singlet toponium is highly suppressed, and behaves justmore » like the production of a P-wave toponia. In the case of the triplet toponium, three completely independent CP observables, namely azimuthal angles of lepton and antilepton in the toponium rest-frame as well as their sum, are predicted based on our analytical results, and checked by using the tree-level event generator. The non-trivial correlations come from the longitudinal-transverse interferences for the azimuthal angles of leptons, and the transverse-transverse interference for their sum. These three observables are well defined at the ILC, where the rest frame of the toponium can be reconstructed directly. Furthermore, the QCD-strong corrections, which are important near the threshold region, are also studied with the approximation of spin-independent QCD-Coulomb potential. While the total cross section is enhanced, the spin correlations predicted in this paper are not affected.« less
0+ tetraquark states from improved QCD sum rules: delving into X(5568)
NASA Astrophysics Data System (ADS)
Zhang, Jian-Rong; Zou, Jing-Lan; Wu, Jin-Yun
2018-04-01
In order to investigate the possibility of the recently observed X(5568) being a 0+ tetraquark state, we make an improvement to the study of the related various configuration states in the framework of the QCD sum rules. Particularly, to ensure the quality of the analysis, condensates up to dimension 12 are included to inspect the convergence of operator product expansion (OPE) and improve the final results of the studied states. We note that some condensate contributions could play an important role on the OPE side. By releasing the rigid OPE convergence criterion, we arrive at the numerical value {5.57}-0.23+0.35 {{GeV}} for the scalar-scalar diquark-antidiquark 0+ state, which agrees with the experimental data for the X(5568) and could support its interpretation in terms of a 0+ tetraquark state with the scalar-scalar configuration. The corresponding result for the axial-axial current is calculated to be {5.77}-0.33+0.44 {{GeV}}, which is still consistent with the mass of X(5568) in view of the uncertainty. The feasibility of X(5568) being a tetraquark state with the axial-axial configuration therefore cannot be definitely excluded. For the pseudoscalar-pseudoscalar and the vector-vector cases, their unsatisfactory OPE convergence make it difficult to find reasonable work windows to extract the hadronic information. Supported by National Natural Science Foundation of China (11475258, 11105223, 11675263) and the Project in NUDT for Excellent Youth Talents
Probing CP violation in e +e - production of the Higgs boson and toponia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagiwara, Kaoru; Ma, Kai; Yokoya, Hiroshi
We study the CP violation in the Higgs boson and toponia production process at the ILC where the toponia are produced near the threshold. With the approximation that the production vertex of the Higgs boson and toponia is contact, and neglecting the P-wave toponia, we analytically calculated the density matrix for the production and decay of the toponia. Under these assumptions, the production spectrum of the toponia is solely determined by the spin quantum number, therefore the toponia can be either singlet or triplet. We find that the production rate of the singlet toponium is highly suppressed, and behaves justmore » like the production of a P-wave toponia. In the case of the triplet toponium, three completely independent CP observables, namely azimuthal angles of lepton and antilepton in the toponium rest-frame as well as their sum, are predicted based on our analytical results, and checked by using the tree-level event generator. The non-trivial correlations come from the longitudinal-transverse interferences for the azimuthal angles of leptons, and the transverse-transverse interference for their sum. These three observables are well defined at the ILC, where the rest frame of the toponium can be reconstructed directly. Furthermore, the QCD-strong corrections, which are important near the threshold region, are also studied with the approximation of spin-independent QCD-Coulomb potential. While the total cross section is enhanced, the spin correlations predicted in this paper are not affected.« less
Probing CP violation in e +e - production of the Higgs boson and toponia
Hagiwara, Kaoru; Ma, Kai; Yokoya, Hiroshi
2016-06-08
We study the CP violation in the Higgs boson and toponia production process at the ILC where the toponia are produced near the threshold. With the approximation that the production vertex of the Higgs boson and toponia is contact, and neglecting the P-wave toponia, we analytically calculated the density matrix for the production and decay of the toponia. Under these assumptions, the production spectrum of the toponia is solely determined by the spin quantum number, therefore the toponia can be either singlet or triplet. We find that the production rate of the singlet toponium is highly suppressed, and behaves justmore » like the production of a P-wave toponia. In the case of the triplet toponium, three completely independent CP observables, namely azimuthal angles of lepton and antilepton in the toponium rest-frame as well as their sum, are predicted based on our analytical results, and checked by using the tree-level event generator. The non-trivial correlations come from the longitudinal-transverse interferences for the azimuthal angles of leptons, and the transverse-transverse interference for their sum. These three observables are well defined at the ILC, where the rest frame of the toponium can be reconstructed directly. Furthermore, the QCD-strong corrections, which are important near the threshold region, are also studied with the approximation of spin-independent QCD-Coulomb potential. While the total cross section is enhanced, the spin correlations predicted in this paper are not affected.« less
Growth and analysis of gallium arsenide-gallium antimonide single and two-phase nanoparticles
NASA Astrophysics Data System (ADS)
Schamp, Crispin T.
When evaluating the path of phase transformations in systems with nanoscopic dimensions one often relies on bulk phase diagrams for guidance because of the lack of phase diagrams that show the effect of particle size. The GaAs-GaSb pseudo-binary alloy is chosen for study to gain insight into the size dependence of solid-solubility in a two-phase system. To this end, a study is performed using independent laser ablation of high purity targets of GaAs and GaSb. The resultant samples are analyzed by transmission electron microscopy. Experimental results indicate that GaAs-GaSb nanoparticles have been formed with compositions that lie within the miscibility gap of bulk GaAs-GaSb. An unusual nanoparticle morpohology resembling the appearance of ice cream cones has been observed in single component experiments. These particles are composed of a spherical cap of Ga in contact with a crystalline cone of either GaAs or GaSb. The cones take the projected 2-D shape of a triangle or a faceted gem. The liquid Ga is found to consistently be of spherical shape and wets to the widest corners of the cone, suggesting an energy minimum exists at that wetting condition. To explore this observation a liquid sphere is modeled as being penetrated by a solid gem. The surface energies of the solid and liquid, and interfacial energy are summed as a function of penetration depth, with the sum showing a cusped minimum at the penetration depth corresponding to the waist of the gem. The angle of contact of the liquid wetting the cone is also calculated, and Young's contact angle is found to occur when the derivative of the total energy with respect to penetration depth is zero, which can be a maximum or a minimum depending on the geometrical details. The spill-over of the meniscus across the gem corners is found to be energetically favorable when the contact angle achieves the value of the equilibrium angle; otherwise the meniscus is pinned at the corners.
Hadronic light-by-light scattering contribution to the muon g - 2 on the lattice
NASA Astrophysics Data System (ADS)
Asmussen, Nils; Gérardin, Antoine; Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B.; Nyffeler, Andreas; Pascalutsa, Vladimir; Wittig, Hartmut
2018-05-01
We briefly review several activities at Mainz related to hadronic light-by-light scattering (HLbL) using lattice QCD. First we present a position-space approach to the HLbL contribution in the muon g̅2, where we focus on exploratory studies of the pion-pole contribution in a simple model and the lepton loop in QED in the continuum and in infinite volume. The second part describes a lattice calculation of the double-virtual pion transition form factor Fπ0γ*γ* (q21; q21) in the spacelike region with photon virtualities up to 1.5 GeV2 which paves the way for a lattice calculation of the pion-pole contribution to HLbL. The third topic involves HLbL forward scattering amplitudes calculated in lattice QCD which can be described, using dispersion relations (HLbL sum rules), by γ*γ* → hadrons fusion cross sections and then compared with phenomenological models.
The Λc(2860), Λc(2880), Ξc(3055) and Ξc(3080) as D-wave baryon states in QCD
NASA Astrophysics Data System (ADS)
Wang, Zhi-Gang
2018-01-01
In this article, we tentatively assign the Λc (2860), Λc (2880), Ξc (3055) and Ξc (3080) to be the D-wave baryon states with the spin-parity JP = 3/2+, 5/2 +, 3/2+ and 5/2+, respectively, and study their masses and pole residues with the QCD sum rules in a systematic way by constructing three-types interpolating currents with the quantum numbers (Lρ ,Lλ) = (0 , 2), (2 , 0) and (1 , 1), respectively. The present predictions favor assigning the Λc (2860), Λc (2880), Ξc (3055) and Ξc (3080) to be the D-wave baryon states with the quantum numbers (Lρ ,Lλ) = (0 , 2) and JP = 3/2+, 5/2+, 3/2+ and 5/2+, respectively. While the predictions for the masses of the (Lρ ,Lλ) = (2 , 0) and (1 , 1) D-wave Λc and Ξc states can be confronted to the experimental data in the future.
The effective hyper-Kähler potential in the N = 2 supersymmetric QCD
NASA Astrophysics Data System (ADS)
Ketov, Sergei V.
1997-02-01
The effective low-energy hyper-Kähler potential for a massive N = 2 matter in N = 2 super-QCD is investigated. TheN = 2 extended supersymmetry severely restricts the N = 2 matter self-couplings so that their exact form can be fixed by a few parameters, which is apparent in the N = 2 harmonic superspace. In the N = 2 QED with a single matter hypermultiplet, the one-loop perturbative calculations lead to the Taub-NUT hyper-Kähler metric in the massive case, and a free metric in the massless case. It is remarkable that the naive non-renormalization `theorem' does not apply. There exists a manifestly N = 2 supersymmetric duality transformation converting the low-energy effective action for the N = 2 QED hypermultiplet into a sum of the quadratic and the improved (non-polynomial) actions for an N = 2 tensor multiplet. The duality transformation also gives a simple connection between the low-energy effective action in the N = 2 harmonic superspace and the component results.
Polyakov loop and the hadron resonance gas model.
Megías, E; Arriola, E Ruiz; Salcedo, L L
2012-10-12
The Polyakov loop has been used repeatedly as an order parameter in the deconfinement phase transition in QCD. We argue that, in the confined phase, its expectation value can be represented in terms of hadronic states, similarly to the hadron resonance gas model for the pressure. Specifically, L(T)≈1/2[∑(α)g(α)e(-Δ(α)/T), where g(α) are the degeneracies and Δ(α) are the masses of hadrons with exactly one heavy quark (the mass of the heavy quark itself being subtracted). We show that this approximate sum rule gives a fair description of available lattice data with N(f)=2+1 for temperatures in the range 150 MeV
Messaoud, Yassine; Bergeron, Yves; Asselin, Hugo
2007-05-01
The reproductive potentials of balsam fir and white spruce (co-dominants in mixedwood forests) and black spruce (dominant in coniferous forests) were studied to explain the location of the ecotone between the two forest types in the boreal zone of Quebec. Four sites were selected along a latitudinal gradient crossing the ecotone. Cone crop, number of seeds per cone, percentage filled seeds, and percentage germination were measured for each species. Balsam fir and white spruce cone crops were significantly lower in the coniferous than in the mixedwood forest, while black spruce had greater crop constancy and regularity between both forest types. Mast years were more frequent for black spruce than for balsam fir in both forest types (mast year data not available for white spruce). The number of seeds per cone was more related to cone size than to forest type for all species. Black spruce produced more filled seeds in the coniferous forest than balsam fir or white spruce. The sum of growing degree-days and the maximum temperature of the warmest month (both for the year prior to cone production) significantly affected balsam fir cone production. The climate-related northward decrease in reproductive potential of balsam fir and white spruce could partly explain the position of the northern limit of the mixedwood forest. This could change drastically, however, as the ongoing climate warming might cancel this competitive advantage of black spruce.
Measurement of multiplicities of charged hadrons, pions and kaons in DIS at COMPASS
NASA Astrophysics Data System (ADS)
Mitrofanov, Nikolai
2018-04-01
Precise measurements of multiplicities of charged hadrons, pions and kaons in deep inelastic scattering were performed. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6LiD target. The results were obtained in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. A leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions into pions. The results for the sum of the z-integrated multiplicities for pions and for kaons, differ from earlier results from the HERMES experiment. The results from the sum of the z-integrated K+ and K- multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.
Gottfried Sum Rule in QCD Nonsinglet Analysis of DIS Fixed-Target Data
NASA Astrophysics Data System (ADS)
Kotikov, A. V.; Krivokhizhin, V. G.; Shaikhatdenov, B. G.
2018-03-01
Deep-inelastic-scattering data from fixed-target experiments on the structure function F 2 were analyzed in the valence-quark approximation at the next-to-next-to-leading-order accuracy level in the strong-coupling constant. In this analysis, parton distributions were parametrized by employing information from the Gottfried sum rule. The strong-coupling constant was found to be α s ( M 2 Z) = 0.1180 ± 0.0020 (total expt. error), which is in perfect agreement with the world-averaged value from an updated Particle Data Group (PDG) report, α PDG s ( M 2 Z) = 0.1181 ± 0.0011. Also, the value of < x> u- d = 0.187 ± 0.021 found for the second moment of the difference in the u- and d-quark distributions complies very well with the most recent lattice result < x>LATTICE u- d = 0.208 ± 0.024.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mantry, Sonny; Petriello, Frank
We derive a factorization theorem for the Higgs boson transverse momentum (p{sub T}) and rapidity (Y) distributions at hadron colliders, using the soft-collinear effective theory (SCET), for m{sub h}>>p{sub T}>>{Lambda}{sub QCD}, where m{sub h} denotes the Higgs mass. In addition to the factorization of the various scales involved, the perturbative physics at the p{sub T} scale is further factorized into two collinear impact-parameter beam functions (IBFs) and an inverse soft function (ISF). These newly defined functions are of a universal nature for the study of differential distributions at hadron colliders. The additional factorization of the p{sub T}-scale physics simplifies themore » implementation of higher order radiative corrections in {alpha}{sub s}(p{sub T}). We derive formulas for factorization in both momentum and impact parameter space and discuss the relationship between them. Large logarithms of the relevant scales in the problem are summed using the renormalization group equations of the effective theories. Power corrections to the factorization theorem in p{sub T}/m{sub h} and {Lambda}{sub QCD}/p{sub T} can be systematically derived. We perform multiple consistency checks on our factorization theorem including a comparison with known fixed-order QCD results. We compare the SCET factorization theorem with the Collins-Soper-Sterman approach to low-p{sub T} resummation.« less
XYZ-SU3 breakings from Laplace sum rules at higher orders
NASA Astrophysics Data System (ADS)
Albuquerque, R.; Narison, S.; Rabetiarivony, D.; Randriamanatrika, G.
2018-06-01
We present new compact integrated expressions of SU3 breaking corrections to QCD spectral functions of heavy-light molecules and four-quark XY Z-like states at lowest order (LO) of perturbative (PT) QCD and up to d = 8 condensates of the Operator Product Expansion (OPE). Including next-to-next-to-leading order (N2LO) PT corrections in the chiral limit and next-to-leading order (NLO) SU3 PT corrections, which we have estimated by assuming the factorization of the four-quark spectral functions, we improve previous LO results for the XY Z-like masses and decay constants from QCD spectral sum rules (QSSR). Systematic errors are estimated from a geometric growth of the higher order PT corrections and from some partially known d = 8 nonperturbative contributions. Our optimal results, based on stability criteria, are summarized in Tables 18-21 while the 0++ and 1++ channels are compared with some existing LO results in Table 22. One can note that, in most channels, the SU3 corrections on the meson masses are tiny: ≤ 10% (respectively ≤ 3%) for the c (respectively b)-quark channel but can be large for the couplings ( ≤ 20%). Within the lowest dimension currents, most of the 0++ and 1++ states are below the physical thresholds while our predictions cannot discriminate a molecule from a four-quark state. A comparison with the masses of some experimental candidates indicates that the 0++ X(4500) might have a large D¯s0∗D s0∗ molecule component while an interpretation of the 0++ candidates as four-quark ground states is not supported by our findings. The 1++ X(4147) and X(4273) are compatible with the D¯s∗D s, D¯s0∗D s1 molecules and/or with the axial-vector Ac four-quark ground state. Our results for the 0‑±, 1‑± and for different beauty states can be tested in the future data. Finally, we revisit our previous estimates1 for the D¯0∗D 0∗ and D¯0∗D 1 and present new results for the D¯1D1.
Pion momentum distributions in the nucleon in chiral effective theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkardt, Matthias R.; Hendricks, K. S.; Ji, Cheung Ryong
2013-03-01
We compute the light-cone momentum distributions of pions in the nucleon in chiral effective theory using both pseudovector and pseudoscalar pion--nucleon couplings. For the pseudovector coupling we identifymore » $$\\delta$$-function contributions associated with end-point singularities arising from the pion-nucleon rainbow diagrams, as well as from pion tadpole diagrams which are not present in the pseudoscalar model. Gauge invariance is demonstrated, to all orders in the pion mass, with the inclusion of Weinberg-Tomozawa couplings involving operator insertions at the $$\\pi NN$$ vertex. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.« less
TU-CD-207-10: Dedicated Cone-Beam Breast CT: Design of a 3-D Beam-Shaping Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedantham, S; Shi, L; Karellas, A
2015-06-15
Purpose: To design a 3 -D beam-shaping filter for cone-beam breast CT for equalizing x-ray photon fluence incident on the detector along both fan and cone angle directions. Methods: The 3-D beam-shaping filter was designed as the sum of two filters: a bow-tie filter assuming cylindrical breast and a 3D difference filter equivalent to the difference in projected thickness between the cylinder and the real breast. Both filters were designed with breast-equivalent material and converted to Al for the targeted x-ray spectrum. The bow-tie was designed for the largest diameter cylindrical breast by determining the fan-angle dependent path-length and themore » filter thickness needed to equalize the fluence. A total of 23,760 projections (180 projections of 132 binary breast CT volumes) were averaged, scaled for the largest breast, and subtracted from the projection of the largest diameter cylindrical breast to provide the 3D difference filter. The 3 -D beam shaping filter was obtained by summing the two filters. Numerical simulations with semi-ellipsoidal breasts of 10–18 cm diameter (chest-wall to nipple length=0.75 x diameter) were conducted to evaluate beam equalization. Results: The proposed 3-D beam-shaping filter showed a 140% -300% improvement in equalizing the photon fluence along the chest-wall to nipple (cone-angle) direction compared to a bow-tie filter. The improvement over bow-tie filter was larger for breasts with longer chest-wall to nipple length. Along the radial (fan-angle) direction, the performance of the 3-D beam shaping filter was marginally better than the bow-tie filter, with 4%-10% improvement in equalizing the photon fluence. For a ray traversing the chest-wall diameter of the breast, the filter transmission ratio was >0.95. Conclusion: The 3-D beam shaping filter provided substantial advantage over bow-tie filter in equalizing the photon fluence along the cone-angle direction. In conjunction with a 2-axis positioner, the filter can accommodate breasts of varying dimensions and chest-wall inclusion. Supported in part by NIH R01 CA128906 and R21 CA134128. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or NCI.« less
Neutron electric dipole moment from electric and chromoelectric dipole moments of quarks
NASA Astrophysics Data System (ADS)
Pospelov, Maxim; Ritz, Adam
2001-04-01
Using QCD sum rules, we calculate the electric dipole moment of the neutron dn induced by all CP violating operators up to dimension five. We find that the chromoelectric dipole moments of quarks d~i, including that of the strange quark, provide significant contributions comparable in magnitude to those induced by the quark electric dipole moments di. When the theta term is removed via the Peccei-Quinn symmetry, the strange quark contribution is also suppressed and dn=(1+/-0.5)\\{0.55e(d~d+0.5d~u)+0.7(dd-0.25du)\\}.
Moments of the neutron g₂ structure function at intermediate Q²
Solvignon-Slifer, Patricia H.
2015-07-15
We present new experimental results of the ³He spin structure function g₂ in the resonance region at Q² values between 1.2 and 3.0 (GeV/c)². Spin dependent moments of the neutron were then extracted.Our main result, the inelastic contribution to the neutron d₂ matrix element, was found to be small (Q²) = 2.4 (GeV/c)² and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for ³He neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low x unmeasured region.
Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
NASA Astrophysics Data System (ADS)
Ablinger, Jakob; Blümlein, Johannes; Raab, Clemens; Schneider, Carsten; Wißbrock, Fabian
2014-08-01
We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version of the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators, new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∼30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N∈C. Integrals with a power-like divergence in N-space ∝aN,a∈R,a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.
A spectral model for signal elements isolated from zebrafish photopic electroretinogram
Nelson, Ralph; Singla, Nirmish
2009-01-01
The zebrafish photopic ERG sums isolatable elements. In each element red, blue, green and UV (r, g, b, u) cone signals combine in a way that reflects retinal organization. ERG responses to monochromatic stimuli of different wavelengths and irradiances were recorded on a white, rod suppressing background using superfused eyecups. Onset elements were isolated with glutamatergic blockers and response subtractions. CNQX blocked ionotropic (AMPA/kainate) glutamate receptors; L-AP4 or CPPG blocked metabotropic (mGluR6) glutamate receptors; TBOA blocked glutamate transporters; and L-Aspartate inactivated all glutamatergic mechanisms. Seven elements emerged: photopic PIII, the L-Aspartate-isolated cone response; b1, a CNQX-sensitive early b-wave element of inner retinal origin; PII, a photopic, CNQX-insensitive, composite b-wave element from ON bipolar cells; PIIm, an L-AP4/CPPG-sensitive, CNQX-insensitive metabotropic sub-element of PII; PIInm, an L-AP4/CPPG/CNQX-insensitive, non-metabotropic sub-element of PII; a1nm, a TBOA-sensitive, CNQX/L-AP4/CPPG-insensitive, non-metabotropic, post-photoreceptor a-wave element; and a2, a CNQX-sensitive a-wave element linked to OFF bipolar cells. The first five elements were fit with a spectral model that demonstrates independence of cone color pathways. From this Vmax and half-saturation values (k) for the contributing r- g- b- and u-cone signals were calculated. Two signal patterns emerged. For PIII or PIInm the Vmax order was Vr > Vg ≫ Vb ≈ Vu. For b1, PII, and PIIm the Vmax order was Vr ≈ Vb > Vg > Vu. In either pattern u-cone amplitude (Vu) was smallest, but u-cone sensitivity (ku362) was greatest, some 10-30 times greater than r-cone (kr570). The spectra of b1/PII/PIIm elements peaked near b-cone and u-cone absorbance maxima regardless of criteria, but the spectra of PIII/PIInm elements shifted from b- towards r-cone absorbance maxima as criterion levels increased. The greatest gains in Vmax relative to PIII occurred for the b- and u-cone signals in the b1/PII/PIIm b-wave elements. This suggests a high-gain, prolific metabotropic circuitry for b- and u-cone bipolar cells. PMID:19723365
First lattice QCD study of the gluonic structure of light nuclei
NASA Astrophysics Data System (ADS)
Winter, Frank; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Nplqcd Collaboration
2017-11-01
The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarized gluon distribution is studied in nuclei up to atomic number A =3 at quark masses corresponding to pion masses of mπ˜450 and 806 MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than ˜10 % in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the b1 structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a nonzero signal is observed at mπ˜806 MeV . This is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon.
Semileptonic Λb→Λcℓν¯ℓ transition in full QCD
NASA Astrophysics Data System (ADS)
Azizi, K.; Süngü, J. Y.
2018-04-01
The tree-level b →c ℓν¯ ℓ based hadronic transitions have been the focus of much attention since recording significant deviations of the experimental data, on the ratios of the branching fractions in τ and e -μ channels of the semileptonic B →D transition, from the SM predictions by the BABAR Collaboration in 2012. It can be of great importance to look whether similar discrepancies take place in the semileptonic baryonic Λb→Λcℓν¯ ℓ decay channel or not. In this accordance we estimate the decay width as well as the ratios of the branching fractions in τ and e -μ channels of this baryonic transition by calculating the form factors, entering the amplitude of this transition as the main inputs, in the framework of QCD sum rules in full theory. We compare the obtained results with the predictions of other theoretical studies. Our results may be compared with the corresponding future experimental data to look for possible deviations of data from the SM predictions.
First lattice QCD study of the gluonic structure of light nuclei
Winter, Frank; Detmold, William; Gambhir, Arjun S.; ...
2017-11-28
The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarised gluon distribution is studied in nuclei up to atomic numbermore » $A=3$ at quark masses corresponding to pion masses of $$m_\\pi\\sim 450$$ and $806$ MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than $$\\sim 10$$% in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the $$b_1$$ structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a non-zero signal is observed at $$m_\\pi \\sim 806$$ MeV. In conclusion, this is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon.« less
Finite volume effects in the chiral extrapolation of baryon masses
NASA Astrophysics Data System (ADS)
Lutz, M. F. M.; Bavontaweepanya, R.; Kobdaj, C.; Schwarz, K.
2014-09-01
We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self-energies are computed in a finite volume at next-to-next-to-next-to-leading order (N3LO), where the dependence on the physical meson and baryon masses is kept. The number of free parameters is reduced significantly down to 12 by relying on large-Nc sum rules. Altogether we describe accurately more than 220 data points from six different lattice groups, BMW, PACS-CS, HSC, LHPC, QCDSF-UKQCD and NPLQCD. Values for all counterterms relevant at N3LO are predicted. In particular we extract a pion-nucleon sigma term of 39-1+2 MeV and a strangeness sigma term of the nucleon of σsN=84-4+28 MeV. The flavor SU(3) chiral limit of the baryon octet and decuplet masses is determined with (802±4) and (1103±6) MeV. Detailed predictions for the baryon masses as currently evaluated by the ETM lattice QCD group are made.
Testing the Concept of Quark-Hadron Duality with the ALEPH τ Decay Data
NASA Astrophysics Data System (ADS)
Magradze, B. A.
2010-12-01
We propose a modified procedure for extracting the numerical value for the strong coupling constant α s from the τ lepton hadronic decay rate into non-strange particles in the vector channel. We employ the concept of the quark-hadron duality specifically, introducing a boundary energy squared s p > 0, the onset of the perturbative QCD continuum in Minkowski space (Bertlmann et al. in Nucl Phys B 250:61, 1985; de Rafael in An introduction to sum rules in QCD. In: Lectures at the Les Houches Summer School. arXiv: 9802448 [hep-ph], 1997; Peris et al. in JHEP 9805:011, 1998). To approximate the hadronic spectral function in the region s > s p, we use analytic perturbation theory (APT) up to the fifth order. A new feature of our procedure is that it enables us to extract from the data simultaneously the QCD scale parameter {Λ_{overlineMS}} and the boundary energy squared s p. We carefully determine the experimental errors on these parameters which come from the errors on the invariant mass squared distribution. For the {overlineMS} scheme coupling constant, we obtain {α_s(m2_{tau})=0.3204± 0.0159_{exp.}}. We show that our numerical analysis is much more stable against higher-order corrections than the standard one. Additionally, we recalculate the “experimental” Adler function in the infrared region using final ALEPH results. The uncertainty on this function is also determined.
Dijet cross sections in photoproduction at HERA
NASA Astrophysics Data System (ADS)
Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Garcia, Y. Zamora; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Haas, T.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jelén, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Gutjahr, B.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stilliaris, E.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Bagbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, J. I.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Mainusch, J.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Porocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.; ZEUS Collaboration
1995-02-01
Dijet production by almost real photons has been studied at HERA with the ZEUS detector. Jets have been identified using the cone algorithm. A cut on xγOBS, the fraction of the photon energy participating in the production of the two jets of highest transverse energy, is used to define cross sections sensitive to the parton distributions in the proton and in the photon. The dependence of the dijet cross sections on pseudorapidity has been measured for xγOBS ⩾ 0.75 and xγOBS < 0.75. The former is sensitive to the gluon momentum density in the proton. The latter is sensitive to the ginon in the photon. The cross sections are corrected for detector acceptance and compared to leading order QCD calculations.
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.
2017-05-01
A remarkable feature of QCD is that the mass scale κ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ ^4 ζ ^2 for mesons, where ζ ^2 is the LF radial variable conjugate to the q \\bar{q} invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS_5, the space of isometries of the conformal group—if one modifies the action of AdS_5 by the dilaton e^{κ ^2 z^2} in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ _{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α _s(Q^2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q_0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q_0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front-form vacuum has important consequences for the cosmological constant. I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with sum rules for nuclear parton distribution functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
A remarkable feature of QCD is that the mass scalemore » $k$ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the $$q\\bar{q}$$ invariant mass. The same result, including spin terms, is obtained using light-front holography$-$the duality between the front form and AdS 5, the space of isometries of the conformal group$-$if one modifies the action of AdS 5 by the dilaton e $κ^2z^2$ in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κκ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s (Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q 0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front-form vacuum has important consequences for the cosmological constant. In conclusion, I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with sum rules for nuclear parton distribution functions.« less
Brodsky, Stanley J.
2017-04-19
A remarkable feature of QCD is that the mass scalemore » $k$ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the $$q\\bar{q}$$ invariant mass. The same result, including spin terms, is obtained using light-front holography$-$the duality between the front form and AdS 5, the space of isometries of the conformal group$-$if one modifies the action of AdS 5 by the dilaton e $κ^2z^2$ in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κκ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s (Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q 0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front-form vacuum has important consequences for the cosmological constant. In conclusion, I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with sum rules for nuclear parton distribution functions.« less
Measurement of elastic Υ photoproduction at HERA
NASA Astrophysics Data System (ADS)
ZEUS Collaboration; Breitweg, J.; Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Yoshida, R.; Zhang, H.; Mattingly, M. C. K.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Coppola, N.; Corradi, M.; de Pasquale, S.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Eckert, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Paul, E.; Pfeiffer, M.; Schnurbusch, H.; Wieber, H.; Bailey, D. S.; Campbell-Robson, S.; Cottingham, W. N.; Foster, B.; Hall-Wilton, R.; Heath, G. P.; Heath, H. F.; McFall, J. D.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Capua, M.; Iannotti, L.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Mellado, B.; Parsons, J. A.; Ritz, S.; Sampson, S.; Sciulli, F.; Straub, P. B.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Przybycień , M. B.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Bukowy, M.; Czermak, A. M.; Jeleń , K.; Kisielewska, D.; Kowalski, T.; Przybycień , M.; Rulikowska-Zarȩ Bska, E.; Suszycki, L.; Zaja C, J.; Duliń Ski, Z.; Kotań Ski, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Desler, K.; Drews, G.; Fricke, U.; Gialas, I.; Goebel, F.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hasell, D.; Hebbel, K.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Lindemann, L.; Löhr, B.; Martínez, M.; Milewski, J.; Milite, M.; Monteiro, T.; Notz, D.; Pellegrino, A.; Pelucchi, F.; Piotrzkowski, K.; Rohde, M.; Roldán, J.; Ryan, J. J.; Saull, P. R. B.; Savin, A. A.; Schneekloth, U.; Schwarzer, O.; Selonke, F.; Stonjek, S.; Surrow, B.; Tassi, E.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Burow, B. D.; Coldewey, C.; Grabosch, H. J.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Markun, P.; Raach, H.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Lee, S. W.; MacDonald, N.; McCance, G. J.; Saxon, D. H.; Sinclair, L. E.; Skillicorn, I. O.; Strickland, E.; Waugh, R.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Garfagnini, A.; Gladilin, L. K.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Cole, J. E.; Howell, G.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Walker, R.; Mallik, U.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; Fleck, J. I.; Ishii, T.; Kuze, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamauchi, K.; Yamazaki, Y.; Hong, S. J.; Lee, S. B.; Nam, S. W.; Park, S. K.; Lim, H.; Park, I. H.; Son, D.; Barreiro, F.; Fernández, J. P.; García, G.; Glasman, C.; Hernández, J. M.; Hervás, L.; Labarga, L.; del Peso, J.; Puga, J.; Terrón, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Murray, W. N.; Ochs, A.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Yu. A.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Engelen, J.; Koffeman, E.; Kooijman, P.; van Sighem, A.; Tiecke, H.; Tuning, N.; Verkerke, W.; Vossebeld, J.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Nylander, P.; Romanowski, T. A.; Blaikley, H. E.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Edmonds, J. K.; Große-Knetter, J.; Harnew, N.; Nath, C.; Noyes, V. A.; Quadt, A.; Ruske, O.; Tickner, J. R.; Walczak, R.; Waters, D. S.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Oh, B. Y.; Okrasiń Ski, J. R.; Toothacker, W. S.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Raso, M.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Wichmann, R.; Williams, D. C.; Abramowicz, H.; Briskin, G.; Dagan, S.; Kananov, S.; Levy, A.; Abe, T.; Fusayasu, T.; Inuzuka, M.; Nagano, K.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Nishimura, T.; Arneodo, M.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Petrucci, M. C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sabetfakhri, A.; Simmons, D.; Butterworth, J. M.; Catterall, C. D.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; Saunders, R. L.; Sutton, M. R.; Wing, M.; Ciborowski, J.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Smalska, B.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Zsolararnecki, A. F.; Adamus, M.; Deppe, O.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Badgett, W. F.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Bhadra, S.; Frisken, W. R.; Khakzad, M.; Schmidke, W. B.
1998-10-01
The photoproduction reaction γp--> μ+μ-p has been studied in ep interactions using the ZEUS detector at HERA. The data sample corresponds to an integrated luminosity of 43.2 pb-1. The Υ meson has been observed in photoproduction for the first time. The sum of the products of the elastic Υ(1S),Υ(2S),Υ(3S) photoproduction cross sections with their respective branching ratios is determined to be 13.3+/-6.0(stat.)+2.7-2.3(syst.) pb at a mean photon-proton centre of mass energy of 120 GeV. The cross section is above the prediction of a perturbative QCD model.
NLO cross sections in 4 dimensions without DREG
NASA Astrophysics Data System (ADS)
Hernández-Pinto, R. J.; Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G. F. R.
2016-10-01
In this review, we present a new method for computing physical cross sections at NLO accuracy in QCD without using the standard Dimensional Regularisation. The algorithm is based on the Loop-Tree Duality theorem, which allow us to obtain loop integrals as a sum of phase-space integrals; in this way, transforming loop integrals into phase-space integrals, we propose a method to merge virtual and real contributions in order to find observables at NLO in d = 4 space-time dimensions. In addition, the strategy described is used for computing the γ* → qq̅(g) process. A more detailed discussion related on this topic can be found in Ref [1].
Suggested search for doubly charmed baryons of JP=3 /2+ via their electromagnetic transitions
NASA Astrophysics Data System (ADS)
Cui, Er-Liang; Chen, Hua-Xing; Chen, Wei; Liu, Xiang; Zhu, Shi-Lin
2018-02-01
We use the method of light-cone sum rules to study the electromagnetic transition of the Ξcc *++ into Ξcc ++γ , whose decay width is estimated to be 13.7-7.9+17.7 keV . This value is large enough for the Ξcc *++ to be observed in the Ξcc ++γ channel, and we propose to continually search for it in future LHCb and BelleII experiments.
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagnaia, P.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'eramo, L.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vasconcelos Corga, K.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Bello, F. A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Mateos, D.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; McFadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; St. Panagiotopoulou, E.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, DMS; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamatani, M.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; zur Nedden, M.; Zwalinski, L.
2017-12-01
Measurements of transverse energy-energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to √{s} = 8 TeV proton-proton collisions with an integrated luminosity of 20.2 fb^{-1}. The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of α s(μ ) predicted in QCD up to scales over 1 TeV. A global fit to the transverse energy-energy correlation distributions yields α s(m_Z) = 0.1162 ± 0.0011 (exp.) ^{+0.0084}_{-0.0070} (theo.) , while a global fit to the asymmetry distributions yields a value of α s(m_Z) = 0.1196 ± 0.0013 (exp.) ^{+0.0075}_{-0.0045} (theo.).
The decay width of the Z_c(3900) as an axialvector tetraquark state in solid quark-hadron duality
NASA Astrophysics Data System (ADS)
Wang, Zhi-Gang; Zhang, Jun-Xia
2018-01-01
In this article, we tentatively assign the Z_c^± (3900) to be the diquark-antidiquark type axialvector tetraquark state, study the hadronic coupling constants G_{Z_cJ/ψ π }, G_{Z_cη _cρ }, G_{Z_cD \\bar{D}^{*}} with the QCD sum rules in details. We take into account both the connected and disconnected Feynman diagrams in carrying out the operator product expansion, as the connected Feynman diagrams alone cannot do the work. Special attentions are paid to matching the hadron side of the correlation functions with the QCD side of the correlation functions to obtain solid duality, the routine can be applied to study other hadronic couplings directly. We study the two-body strong decays Z_c^+(3900)→ J/ψ π ^+, η _cρ ^+, D^+ \\bar{D}^{*0}, \\bar{D}^0 D^{*+} and obtain the total width of the Z_c^± (3900). The numerical results support assigning the Z_c^± (3900) to be the diquark-antidiquark type axialvector tetraquark state, and assigning the Z_c^± (3885) to be the meson-meson type axialvector molecular state.
Partonic quasidistributions of the proton and pion from transverse-momentum distributions
NASA Astrophysics Data System (ADS)
Broniowski, Wojciech; Arriola, Enrique Ruiz
2018-02-01
The parton quasidistribution functions (QDFs) of Ji have been found by Radyushkin to be directly related to the transverse momentum distributions (TMDs), to the pseudodistributions, and to the Ioffe-time distributions (ITDs). This makes the QDF results at finite longitudinal momentum of the hadron interesting in their own right. Moreover, the QDF-TMD relation provides a gateway to the pertinent QCD evolution, with respect to the resolution scale Q , for the QDFs. Using the Kwieciński evolution equations and well established parametrizations at a low initial scale, we analyze the QCD evolution of quark and gluon QDF components of the proton and the pion. We discuss the resulting breaking of the longitudinal-transverse factorization and show that it has little impact on QDFs at the relatively low scales presently accessible on the lattice, but the effect is visible in reduced ITDs at sufficiently large values of the Ioffe time. Sum rules involving derivatives of ITDs and moments of the parton distribution functions (PDFs) are applied to the European Twisted Mass Collaboration lattice data. This allows us for a lattice determination of the transverse-momentum width of the TMDs from QDF studies.
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.; Deur, Alexandre; de Téramond, Guy F.; Dosch, Hans Günter
2015-11-01
A primary question in hadron physics is how the mass scale for hadrons consisting of light quarks, such as the proton, emerges from the QCD Lagrangian even in the limit of zero quark mass. If one requires the effective action which underlies the QCD Lagrangian to remain conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory, then a unique, color-confining potential with a mass parameter κ emerges. The actual value of the parameter κ is not set by the model - only ratios of hadron masses and other hadronic mass scales are predicted. The result is a nonperturbative, relativistic light-front quantum mechanical wave equation, the Light-Front Schrödinger Equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the identical slope in the radial quantum number n and orbital angular momentum L. The same light-front equations for mesons with spin J also can be derived from the holographic mapping to QCD (3+1) at fixed light-front time from the soft-wall model modification of AdS5 space with a specific dilaton profile. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. One can also extend the analysis to baryons using superconformal algebra - 2 × 2 supersymmetric representations of the conformal group. The resulting fermionic LF bound-state equations predict striking similarities between the meson and baryon spectra. In fact, the holographic QCD light-front Hamiltonians for the states on the meson and baryon trajectories are identical if one shifts the internal angular momenta of the meson (LM) and baryon (LB) by one unit: LM = LB + 1. We also show how the mass scale κ underlying confinement and the masses of light-quark hadrons determines the scale ΛMS¯ controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime. The data for the effective coupling defined from the Bjorken sum rule αg1(Q2) are remarkably consistent with the Gaussian form predicted by LF holographic QCD. The result is an effective coupling defined at all momenta. The predicted value ΛMS¯(NF=3)=0.440mρ=0.341±0.024GeV is in agreement with the world average 0.339±0.010GeV. We thus can connect ΛMS¯ to hadron masses. The analysis applies to any renormalization scheme.
A model for neurite growth and neuronal morphogenesis.
Li, G H; Qin, C D
1996-02-01
A model is presented for tensile regulation of neuritic growth. It is proposed that the neurite tension can be determined by Hooke's law and determines the growth rate of neurites. The growth of a neurite is defined as the change in its unstretched length. Neuritic growth rate is assumed to increase in proportion to tension magnitude over a certain threshold [Dennerll et al., J. Cell Biol. 107: 665-674 (1988)]. The movement of branch nodes also contributes to the neuronal morphogenesis. It is supposed that the rate of a branch-node displacement is in proportion to the resultant neuritic tension exerted on this node. To deal with the growth-cone movement, it is further supposed that the environment exerts a traction force on the growth cone and the rate of growth-cone displacement is determined by the vector sum of the neuritic tension and the traction force. A group of differential equations are used to describe the model. The key point of the model is that the traction force and the neuritic tension are in opposition to generate a temporal contrast-enhancing mechanism. Results of a simulation study suggest that the model can explain some phenomena related to neuronal morphogenesis.
Establishing low-lying doubly charmed baryons
NASA Astrophysics Data System (ADS)
Chen, Hua-Xing; Mao, Qiang; Chen, Wei; Liu, Xiang; Zhu, Shi-Lin
2017-08-01
We systematically study the S -wave doubly charmed baryons using the method of QCD sum rules. Our results suggest that the Ξcc ++ recently observed by LHCb can be well identified as the S -wave Ξc c state of JP=1 /2+. We study its relevant Ωc c state, the mass of which is predicted to be around 3.7 GeV. We also systematically study the P -wave doubly charmed baryons, the masses of which are predicted to be around 4.1 GeV. Especially, there can be several excited doubly charmed baryons in this energy region, and we suggest searching for them in order to study the fine structure of the strong interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatiblemore » with the momentum and other sum rules for the nuclear parton distribution functions.« less
Spectral and spatial selectivity of luminance vision in reef fish.
Siebeck, Ulrike E; Wallis, Guy Michael; Litherland, Lenore; Ganeshina, Olga; Vorobyev, Misha
2014-01-01
Luminance vision has high spatial resolution and is used for form vision and texture discrimination. In humans, birds and bees luminance channel is spectrally selective-it depends on the signals of the long-wavelength sensitive photoreceptors (bees) or on the sum of long- and middle-wavelength sensitive cones (humans), but not on the signal of the short-wavelength sensitive (blue) photoreceptors. The reasons of such selectivity are not fully understood. The aim of this study is to reveal the inputs of cone signals to high resolution luminance vision in reef fish. Sixteen freshly caught damselfish, Pomacentrus amboinensis, were trained to discriminate stimuli differing either in their color or in their fine patterns (stripes vs. cheques). Three colors ("bright green", "dark green" and "blue") were used to create two sets of color and two sets of pattern stimuli. The "bright green" and "dark green" were similar in their chromatic properties for fish, but differed in their lightness; the "dark green" differed from "blue" in the signal for the blue cone, but yielded similar signals in the long-wavelength and middle-wavelength cones. Fish easily learned to discriminate "bright green" from "dark green" and "dark green" from "blue" stimuli. Fish also could discriminate the fine patterns created from "dark green" and "bright green". However, fish failed to discriminate fine patterns created from "blue" and "dark green" colors, i.e., the colors that provided contrast for the blue-sensitive photoreceptor, but not for the long-wavelength sensitive one. High resolution luminance vision in damselfish, Pomacentrus amboinensis, does not have input from the blue-sensitive cone, which may indicate that the spectral selectivity of luminance channel is a general feature of visual processing in both aquatic and terrestrial animals.
Brodsky, Stanley J.
2018-01-01
Tmore » he QCD light-front Hamiltonian equation H L F Ψ = M 2 Ψ derived from quantization at fixed LF time τ = t + z / c provides a causal, frame-independent method for computing hadron spectroscopy as well as dynamical observables such as structure functions, transverse momentum distributions, and distribution amplitudes. he QCD Lagrangian with zero quark mass has no explicit mass scale. de Alfaro, Fubini, and Furlan (dAFF) have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the dAFF procedure to the QCD light-front Hamiltonian, it leads to a color-confining potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q q ¯ invariant mass squared. he same result, including spin terms, is obtained using light-front holography, the duality between light-front dynamics and A d S 5 , if one modifies the A d S 5 action by the dilaton e κ 2 z 2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions provide a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons and a universal Regge slope. he pion q q ¯ eigenstate has zero mass at m q = 0 . he superconformal relations also can be extended to heavy-light quark mesons and baryons. his approach also leads to insights into the physics underlying hadronization at the amplitude level. I will also discuss the remarkable features of the Poincaré invariant, causal vacuum defined by light-front quantization and its impact on the interpretation of the cosmological constant. AdS/QCD also predicts the analytic form of the nonperturbative running coupling α s ( Q 2 ) ∝ e - Q 2 / 4 κ 2 . he mass scale κ underlying hadron masses can be connected to the parameter Λ M S ¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. he result is an effective coupling α s ( Q 2 ) defined at all momenta. One obtains empirically viable predictions for spacelike and timelike hadronic form factors, structure functions, distribution amplitudes, and transverse momentum distributions. Finally, I address the interesting question of whether the momentum sum rule is valid for nuclear structure functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
Tmore » he QCD light-front Hamiltonian equation H L F Ψ = M 2 Ψ derived from quantization at fixed LF time τ = t + z / c provides a causal, frame-independent method for computing hadron spectroscopy as well as dynamical observables such as structure functions, transverse momentum distributions, and distribution amplitudes. he QCD Lagrangian with zero quark mass has no explicit mass scale. de Alfaro, Fubini, and Furlan (dAFF) have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the dAFF procedure to the QCD light-front Hamiltonian, it leads to a color-confining potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q q ¯ invariant mass squared. he same result, including spin terms, is obtained using light-front holography, the duality between light-front dynamics and A d S 5 , if one modifies the A d S 5 action by the dilaton e κ 2 z 2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions provide a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons and a universal Regge slope. he pion q q ¯ eigenstate has zero mass at m q = 0 . he superconformal relations also can be extended to heavy-light quark mesons and baryons. his approach also leads to insights into the physics underlying hadronization at the amplitude level. I will also discuss the remarkable features of the Poincaré invariant, causal vacuum defined by light-front quantization and its impact on the interpretation of the cosmological constant. AdS/QCD also predicts the analytic form of the nonperturbative running coupling α s ( Q 2 ) ∝ e - Q 2 / 4 κ 2 . he mass scale κ underlying hadron masses can be connected to the parameter Λ M S ¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. he result is an effective coupling α s ( Q 2 ) defined at all momenta. One obtains empirically viable predictions for spacelike and timelike hadronic form factors, structure functions, distribution amplitudes, and transverse momentum distributions. Finally, I address the interesting question of whether the momentum sum rule is valid for nuclear structure functions.« less
Spatiotemporal configuration dependent pairing of nerve events in dark-adapted human vision
NASA Astrophysics Data System (ADS)
Bouman, Maarten A.
2002-02-01
In the model presented here, in the dark any single quantum absorption in a rod or cone produces a subliminal excitation. Subliminal excitations from both halves of a twin unit pair in the retina for the perception of light from the stimulus. A twin unit contains either two red or two green cones. The twin units are intertwined in triples of two red units and one green unit in a hexagon called a trion. P satellite rods surround each cone, P being approximately proportional to the square of eccentricity. A successful pairing for light perception represents-through the points of time and locations of the creation of its partners in the retina-a direction event with two possible polarities and with the orientation of the elongated shape of the twin unit. The polarity of the event depends on which of the two partners arrives first at the twin's pairing facility. Simultaneous events and successive events with the same polarity in adjacent units that are aligned along one of the three orientations of the hexagonal retinal mosaic pair in the cortex for the perception of edge and of movement. Inter-twin pairing products of the three differently oriented sets of aligned twins are independent of each other and sum vectorially in the cortex. This system of three sub-retinas is called the retrinet. Two one-quantum excitations in any of a twin's receptors make the percept colored. The odd blue cone produces already a blue signal for a single one-quantum excitation. Intra-receptor pairing in a rod, a red cone and a green cone is for white, red, and green respectively. Red and green cone products of a trion cross-pair in the retina and produce a yellow signal. Red and green cone products of a hexagon of adjacent trions cross-pair in the cortex and produce a white signal. This large hexagon with a total of seven trions is called a persepton. After subliminal excitations in a twin have paired successfully, further subliminal receptor excitations in neighboring and aligned twins are expressed to a certain extent in the percept's area, duration and color. Earlier experiments on absolute and color thresholds are the basis for this theory, which is developed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
In this study, measurements of transverse energy–energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to √s=8 TeV proton–proton collisions with an integrated luminosity of 20.2 fb –1. The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant ismore » extracted for different energy regimes, thus testing the running of α s(μ) predicted in QCD up to scales over 1 TeV. A global fit to the transverse energy–energy correlation distributions yields α s(m Z) = 0.1162±0.0011(exp.) +0.0084 –0.0070(theo.) , while a global fit to the asymmetry distributions yields a value of α s(m Z) = 0.1196±0.0013(exp.) +0.0075 –0.0045(theo.).« less
Spin structure in high energy processes: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePorcel, L.; Dunwoodie, C.
1994-12-01
This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD andmore » polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.« less
Aaboud, M.; Aad, G.; Abbott, B.; ...
2017-12-15
In this study, measurements of transverse energy–energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to √s=8 TeV proton–proton collisions with an integrated luminosity of 20.2 fb –1. The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant ismore » extracted for different energy regimes, thus testing the running of α s(μ) predicted in QCD up to scales over 1 TeV. A global fit to the transverse energy–energy correlation distributions yields α s(m Z) = 0.1162±0.0011(exp.) +0.0084 –0.0070(theo.) , while a global fit to the asymmetry distributions yields a value of α s(m Z) = 0.1196±0.0013(exp.) +0.0075 –0.0045(theo.).« less
A polarized Drell-Yan experiment to probe the dynamics of the nucleon sea
Kleinjan, David W.
2015-01-01
In QCD, nucleon spin comes from the sum of the quark spin, gluon spin, and the quark and gluon orbital angular momentum, but how these different components contribute and the interplay among them is not yet understood. For instance, sea quark orbital contribution remains largely unexplored. Measurements of the Sivers function for the sea quarks will provide a probe of the sea quark orbital contribution. The upcoming E1039 experiment at Fermilab will measure the Sivers asymmetry of the sea quarks via the Drell-Yan process using a 120 GeV unpolarized proton beam directed a transversely polarized ammonia target. Lastly, we reportmore » on the status and plans of the E1039 polarized Drell-Yan experiment.« less
A polarized Drell-Yan experiment to probe the dynamics of the nucleon sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinjan, David
In QCD, nucleon spin comes from the sum of the quark spin, gluon spin, and the quark and gluon orbital angular momentum, but how these different components contribute and the interplay among them is not yet understood. For instance, sea quark orbital contribution remains largely unexplored. Measurements of the Sivers function for the sea quarks will provide a probe of the sea quark orbital contribution. The upcoming E1039 experiment at Fermilab will measure the Sivers asymmetry of the sea quarks via the Drell-Yan process using a 120 GeV unpolarized proton beam directed a transversely polarized ammonia target. We report onmore » the status and plans of the E1039 polarized Drell-Yan experiment.« less
NASA Astrophysics Data System (ADS)
Bolzoni, Paolo; Somogyi, Gábor; Trócsányi, Zoltán
2011-01-01
We perform the integration of all iterated singly-unresolved subtraction terms, as defined in ref. [1], over the two-particle factorized phase space. We also sum over the unresolved parton flavours. The final result can be written as a convolution (in colour space) of the Born cross section and an insertion operator. We spell out the insertion operator in terms of 24 basic integrals that are defined explicitly. We compute the coefficients of the Laurent expansion of these integrals in two different ways, with the method of Mellin-Barnes representations and sector decomposition. Finally, we present the Laurent-expansion of the full insertion operator for the specific examples of electron-positron annihilation into two and three jets.
Persistence versus extinction for a class of discrete-time structured population models.
Jin, Wen; Smith, Hal L; Thieme, Horst R
2016-03-01
We provide sharp conditions distinguishing persistence and extinction for a class of discrete-time dynamical systems on the positive cone of an ordered Banach space generated by a map which is the sum of a positive linear contraction A and a nonlinear perturbation G that is compact and differentiable at zero in the direction of the cone. Such maps arise as year-to-year projections of population age, stage, or size-structure distributions in population biology where typically A has to do with survival and individual development and G captures the effects of reproduction. The threshold distinguishing persistence and extinction is the principal eigenvalue of (II−A)(−1)G'(0) provided by the Krein-Rutman Theorem, and persistence is described in terms of associated eigenfunctionals. Our results significantly extend earlier persistence results of the last two authors which required more restrictive conditions on G. They are illustrated by application of the results to a plant model with a seed bank.
Aad, G.
2011-03-18
A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a centre-of-mass energy √s = 7TeV is presented. The measurement covers the pseudorapidity ranges |η γ| < 1.37 and 1.52 < |η γ| < 1.81 in the transverse energy range 15 ≤ E T γ < 100 GeV. The results are based on an integrated luminosity of 880 nb -1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample ismore » estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. Results are compared to predictions from next-to-leading order perturbative QCD calculations.« less
Spin dependent structure function g1 of the deuteron and the proton
NASA Astrophysics Data System (ADS)
Klostermann, L.
1995-05-01
This thesis presents a study on the spin structure of the nucleon, via deep inelastic scattering (DIS) of polarized muons on polarized proton and deuterium targets. The work was done in the Spin Muon Collaboration (SMC) at CERN in Geneva. From the asymmetry in the scattering cross section for nucleon and lepton spins parallel and anti-parallel, one can determine the spin dependent structure function g(sub 1), which contains information on the quark and gluon spin distribution functions. The interpretation in the frame work of the quark parton model (QPM) of earlier results on g(sub 1, sup d) by the European Muon Collaboration (EMC), gave an indication that only a small fraction of the proton spin, compatible with zero, is carried by the spins of the constituent quarks. The SMC was set up to check this unexpected result with improved accuracy, and to combine measurements of g(sub 1, sup p) and g(sub 1, sup d) to test a fundamental sum rule in quantum chromodynamics (QCD), the Bjorken sum rule. The SMC results presented in this thesis are based on data taken in 1992 using a polarized deuterium target and polarized muons with an incident energy of 100 GeV, and 1993 data with a proton target and an incident muon energy of 190 GeV. Using all available data, the fundamental Bjorken sum rule has now been verified at the one standard deviation level to within 16% of its theoretical value.
Open-flavor charm and bottom s q q ¯ Q ¯ and q q q ¯ Q ¯ tetraquark states
NASA Astrophysics Data System (ADS)
Chen, Wei; Chen, Hua-Xing; Liu, Xiang; Steele, T. G.; Zhu, Shi-Lin
2017-06-01
We provide comprehensive investigations for the mass spectrum of exotic open-flavor charmed/bottom s q q ¯ c ¯ , q q q ¯ c ¯ , s q q ¯ b ¯ , q q q ¯ b ¯ tetraquark states with various spin-parity assignments JP=0+,1+,2+ and 0- , 1- in the framework of QCD sum rules. In the diquark configuration, we construct the diquark-antidiquark interpolating tetraquark currents using the color-antisymmetric scalar and axial-vector diquark fields. The stable mass sum rules are established in reasonable parameter working ranges, which are used to give reliable mass predictions for these tetraquark states. We obtain the mass spectra for the open-flavor charmed/bottom s q q ¯c ¯, q q q ¯c ¯, s q q ¯b ¯, q q q ¯b ¯ tetraquark states with various spin-parity quantum numbers. In addition, we suggest searching for exotic doubly-charged tetraquarks, such as [s d ][u ¯ c ¯ ]→Ds(*)-π- in future experiments at facilities such as BESIII, BelleII, PANDA, LHCb, and CMS, etc.
Dimension-six matrix elements for meson mixing and lifetimes from sum rules
NASA Astrophysics Data System (ADS)
Kirk, M.; Lenz, A.; Rauh, T.
2017-12-01
The hadronic matrix elements of dimension-six Δ F = 0, 2 operators are crucial inputs for the theory predictions of mixing observables and lifetime ratios in the B and D system. We determine them using HQET sum rules for three-point correlators. The results of the required three-loop computation of the correlators and the one-loop computation of the QCD-HQET matching are given in analytic form. For mixing matrix elements we find very good agreement with recent lattice results and comparable theoretical uncertainties. For lifetime matrix elements we present the first ever determination in the D meson sector and the first determination of Δ B = 0 matrix elements with uncertainties under control — superseeding preliminary lattice studies stemming from 2001 and earlier. With our state-of-the-art determination of the bag parameters we predict: τ( B +)/ τ( B d 0 ) = 1.082 - 0.026 + 0.022 , τ( B s 0 )/ τ( B d 0 ) = 0.9994 ± 0.0025, τ( D +)/ τ( D 0) = 2. 7 - 0.8 + 0.7 and the mixing-observables in the B s and B d system, in good agreement with the most recent experimental averages.
Excited Nucleons and Hadron Structure - Proceedings of the Nstar 2000 Conference
NASA Astrophysics Data System (ADS)
Burkert, V. D.; Elouadrhiri, L.; Kelly, J. J.; Minehart, R. C.
The Table of Contents for the book is as follows: * Probing the Structure of Nucleons in the Resonance Region * Pion Photoproduction Results from MAMI * Pion Production and Compton Scattering at LEGS * Electroproduction Multipoles from ELSA * Baryon Resonance Production at Jefferson Lab at High Q2 * A Dynamical Model for the Resonant Multipoles and the Δ Structure * Relations between N and Δ Electromagnetic Form Factors * Measurement of the Recoil Polarization in the [p(ěc e ,{e^prime}ěc p ){π ^0}] Reaction at the Energy of the Δ(1232) Resonance * Electroproduction Results from CLAS * S11 (1535) Resonance Production at Jefferson Lab at High Q2 * η and η' Electro- and Photoproduction with the CEBAF Large Acceptance Spectrometer * η Production in Hadronic Interactions * Electromagnetic Production of η and η' Mesons * The Crystal Barrel Experiment at ELSA * Measurement of π-p → Neutrals Using the Crystal Ball * π+π0 and η Photoproduction at GRAAL * Partial Wave Analysis of Pion Photoproduction with Constraints from Fixed-t Dispersion Relations * N* Resonances in e+e- Collisions at BEPC * What is the Structure of the Roper Resonance? * Hybrid Baryon Signatures * Mixing Angles Determination via the Process γp → ηp * SU(6) Breaking Effects in the Nucleon Elastic Electromagnetic Form Factors * The Hypercentral Constituent Quark Model * Baryon Resonance Decays Within Constituent Quark Models * Pion Production Model - Connection between Dynamics and Quark Models * N* Investigation via Two Pion Electroproduction with the CLAS Detector at Jefferson Laboratory * Isobar Model for Studies of N* Excitation in Charged Double Pion Production by Real and Virtual Photons * Double Pion Photoproduction in the Second Resonance Region * CLAS Electroproduction of ω(783) Mesons * Electromagnetic Production of Vector Mesons at Low Energies * Polarized Target Developments for GRAAL and Prospects * Analytic Structure of a Multichannel Model * Missing Nucleon Resonances in Kaon Production with Pions and Photons * Hyperon Electroproduction with CLAS * From Bjorken to Drell-Hearn-Gerasimov Sum Rules * GDH Measurements at Mainz * Double Polarization Measurements in Inclusive Inelastic e - p Scattering * Measurement of Inclusive Spin Asymmetries and Sum Rules on 3He and the Neutron * Polarization and Out-of-Plane Responses in Pion and ETA Electroproduction * Polarization Observables in π+ Electroproduction with CLAS * Pion Electroproduction on the Nucleon and the Generalized GDH Sum Rule * Virtual Compton Scattering in the Resonance Region * What We Know about the Theoretical Foundation of Duality in Electron Scattering * Hadron Structure in Lattice QCD: Exploring the Gluon Wave Functional * N* Spectrum in Lattice QCD * Baryon Spectrum in the Large Nc Limit * Deeply Virtual Photon and Meson Electroproduction * Why N*'s are Important * Participant List
Spectral and spatial selectivity of luminance vision in reef fish
Siebeck, Ulrike E.; Wallis, Guy Michael; Litherland, Lenore; Ganeshina, Olga; Vorobyev, Misha
2014-01-01
Luminance vision has high spatial resolution and is used for form vision and texture discrimination. In humans, birds and bees luminance channel is spectrally selective—it depends on the signals of the long-wavelength sensitive photoreceptors (bees) or on the sum of long- and middle-wavelength sensitive cones (humans), but not on the signal of the short-wavelength sensitive (blue) photoreceptors. The reasons of such selectivity are not fully understood. The aim of this study is to reveal the inputs of cone signals to high resolution luminance vision in reef fish. Sixteen freshly caught damselfish, Pomacentrus amboinensis, were trained to discriminate stimuli differing either in their color or in their fine patterns (stripes vs. cheques). Three colors (“bright green”, “dark green” and “blue”) were used to create two sets of color and two sets of pattern stimuli. The “bright green” and “dark green” were similar in their chromatic properties for fish, but differed in their lightness; the “dark green” differed from “blue” in the signal for the blue cone, but yielded similar signals in the long-wavelength and middle-wavelength cones. Fish easily learned to discriminate “bright green” from “dark green” and “dark green” from “blue” stimuli. Fish also could discriminate the fine patterns created from “dark green” and “bright green”. However, fish failed to discriminate fine patterns created from “blue” and “dark green” colors, i.e., the colors that provided contrast for the blue-sensitive photoreceptor, but not for the long-wavelength sensitive one. High resolution luminance vision in damselfish, Pomacentrus amboinensis, does not have input from the blue-sensitive cone, which may indicate that the spectral selectivity of luminance channel is a general feature of visual processing in both aquatic and terrestrial animals. PMID:25324727
Modifications of Geometric Truncation of the Scattering Phase Function
NASA Astrophysics Data System (ADS)
Radkevich, A.
2017-12-01
Phase function (PF) of light scattering on large atmospheric particles has very strong peak in forward direction constituting a challenge for accurate numerical calculations of radiance. Such accurate (and fast) evaluations are important in the problems of remote sensing of the atmosphere. Scaling transformation replaces original PF with a sum of the delta function and a new regular smooth PF. A number of methods to construct such a PF were suggested. Delta-M and delta-fit methods require evaluation of the PF moments which imposes a numerical problem if strongly anisotropic PF is given as a function of angle. Geometric truncation keeps the original PF unchanged outside the forward peak cone replacing it with a constant within the cone. This approach is designed to preserve the asymmetry parameter. It has two disadvantages: 1) PF has discontinuity at the cone; 2) the choice of the cone is subjective, no recommendations were provided on the choice of the truncation angle. This choice affects both truncation fraction and the value of the phase function within the forward cone. Both issues are addressed in this study. A simple functional form of the replacement PF is suggested. This functional form allows for a number of modifications. This study consider 3 versions providing continuous PF. The considered modifications also bear either of three properties: preserve asymmetry parameter, provide continuity of the 1st derivative of the PF, and preserve mean scattering angle. The second problem mentioned above is addressed with a heuristic approach providing unambiguous criterion of selection of the truncation angle. The approach showed good performance on liquid water and ice clouds with different particle size distributions. Suggested modifications were tested on different cloud PFs using both discrete ordinates and Monte Carlo methods. It was showed that the modifications provide better accuracy of the radiance computation compare to the original geometric truncation.
The two-mass contribution to the three-loop gluonic operator matrix element Agg,Q(3)
NASA Astrophysics Data System (ADS)
Ablinger, J.; Blümlein, J.; De Freitas, A.; Goedicke, A.; Schneider, C.; Schönwald, K.
2018-07-01
We calculate the two-mass QCD contributions to the massive operator matrix element Agg,Q at O (αs3) in analytic form in Mellin N- and z-space, maintaining the complete dependence on the heavy quark mass ratio. These terms are important ingredients for the matching relations of the variable flavor number scheme in the presence of two heavy quark flavors, such as charm and bottom. In Mellin N-space the result is given in the form of nested harmonic, generalized harmonic, cyclotomic and binomial sums, with arguments depending on the mass ratio. The Mellin inversion of these quantities to z-space gives rise to generalized iterated integrals with square root valued letters in the alphabet, depending on the mass ratio as well. Numerical results are presented.
Online geometric calibration of cone-beam computed tomography for arbitrary imaging objects.
Meng, Yuanzheng; Gong, Hui; Yang, Xiaoquan
2013-02-01
A novel online method based on the symmetry property of the sum of projections (SOP) is proposed to obtain the geometric parameters in cone-beam computed tomography (CBCT). This method requires no calibration phantom and can be used in circular trajectory CBCT with arbitrary cone angles. An objective function is deduced to illustrate the dependence of the symmetry of SOP on geometric parameters, which will converge to its minimum when the geometric parameters achieve their true values. Thus, by minimizing the objective function, we can obtain the geometric parameters for image reconstruction. To validate this method, numerical phantom studies with different noise levels are simulated. The results show that our method is insensitive to the noise and can determine the skew (in-plane rotation angle of the detector), the roll (rotation angle around the projection of the rotation axis on the detector), and the rotation axis with high accuracy, while the mid-plane and source-to-detector distance will be obtained with slightly lower accuracy. However, our simulation studies validate that the errors of the latter two parameters brought by our method will hardly degrade the quality of reconstructed images. The small animal studies show that our method is able to deal with arbitrary imaging objects. In addition, the results of the reconstructed images in different slices demonstrate that we have achieved comparable image quality in the reconstructions as some offline methods.
Eiber, C D; Pietersen, A N J; Zeater, N; Solomon, S G; Martin, P R
2017-11-22
The "blue-on" and "blue-off" receptive fields in retina and dorsal lateral geniculate nucleus (LGN) of diurnal primates combine signals from short-wavelength sensitive (S) cone photoreceptors with signals from medium/long wavelength sensitive (ML) photoreceptors. Three questions about this combination remain unresolved. Firstly, is the combination of S and ML signals in these cells linear or non-linear? Secondly, how does the timing of S and ML inputs to these cells influence their responses? Thirdly, is there spatial antagonism within S and ML subunits of the receptive field of these cells? We measured contrast sensitivity and spatial frequency tuning for four types of drifting sine gratings: S cone isolating, ML cone isolating, achromatic (S + ML), and counterphase chromatic (S - ML), in extracellular recordings from LGN of marmoset monkeys. We found that responses to stimuli which modulate both S and ML cones are well predicted by a linear sum of S and ML signals, followed by a saturating contrast-response relation. Differences in sensitivity and timing (i.e. vector combination) between S and ML inputs are needed to explain the amplitude and phase of responses to achromatic (S + ML) and counterphase chromatic (S - ML) stimuli. Best-fit spatial receptive fields for S and/or ML subunits in most cells (>80%) required antagonistic surrounds, usually in the S subunit. The surrounds were however generally weak and had little influence on spatial tuning. The sensitivity and size of S and ML subunits were correlated on a cell-by-cell basis, adding to evidence that blue-on and blue-off receptive fields are specialised to signal chromatic but not spatial contrast. Copyright © 2017 Elsevier Ltd. All rights reserved.
Light-front holographic QCD and emerging confinement
Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; ...
2015-05-21
In this study we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essential features of hadron spectra in terms of a single scale. Themore » light-front holographic methods described here give a precise interpretation of holographic variables and quantities in AdS space in terms of light-front variables and quantum numbers. This leads to a relation between the AdS wave functions and the boost-invariant light-front wave functions describing the internal structure of hadronic bound-states in physical spacetime. The pion is massless in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon bound states lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. In the light-front holographic approach described here currents are expressed as an infinite sum of poles, and form factors as a product of poles. At large q 2 the form factor incorporates the correct power-law fall-off for hard scattering independent of the specific dynamics and is dictated by the twist. At low q 2 the form factor leads to vector dominance. The approach is also extended to include small quark masses. We briefly review in this report other holographic approaches to QCD, in particular top-down and bottom-up models based on chiral symmetry breaking. We also include a discussion of open problems and future applications.« less
Quarks, Symmetries and Strings - a Symposium in Honor of Bunji Sakita's 60th Birthday
NASA Astrophysics Data System (ADS)
Kaku, M.; Jevicki, A.; Kikkawa, K.
1991-04-01
The Table of Contents for the full book PDF is as follows: * Preface * Evening Banquet Speech * I. Quarks and Phenomenology * From the SU(6) Model to Uniqueness in the Standard Model * A Model for Higgs Mechanism in the Standard Model * Quark Mass Generation in QCD * Neutrino Masses in the Standard Model * Solar Neutrino Puzzle, Horizontal Symmetry of Electroweak Interactions and Fermion Mass Hierarchies * State of Chiral Symmetry Breaking at High Temperatures * Approximate |ΔI| = 1/2 Rule from a Perspective of Light-Cone Frame Physics * Positronium (and Some Other Systems) in a Strong Magnetic Field * Bosonic Technicolor and the Flavor Problem * II. Strings * Supersymmetry in String Theory * Collective Field Theory and Schwinger-Dyson Equations in Matrix Models * Non-Perturbative String Theory * The Structure of Non-Perturbative Quantum Gravity in One and Two Dimensions * Noncritical Virasoro Algebra of d < 1 Matrix Model and Quantized String Field * Chaos in Matrix Models ? * On the Non-Commutative Symmetry of Quantum Gravity in Two Dimensions * Matrix Model Formulation of String Field Theory in One Dimension * Geometry of the N = 2 String Theory * Modular Invariance form Gauge Invariance in the Non-Polynomial String Field Theory * Stringy Symmetry and Off-Shell Ward Identities * q-Virasoro Algebra and q-Strings * Self-Tuning Fields and Resonant Correlations in 2d-Gravity * III. Field Theory Methods * Linear Momentum and Angular Momentum in Quaternionic Quantum Mechanics * Some Comments on Real Clifford Algebras * On the Quantum Group p-adics Connection * Gravitational Instantons Revisited * A Generalized BBGKY Hierarchy from the Classical Path-Integral * A Quantum Generated Symmetry: Group-Level Duality in Conformal and Topological Field Theory * Gauge Symmetries in Extended Objects * Hidden BRST Symmetry and Collective Coordinates * Towards Stochastically Quantizing Topological Actions * IV. Statistical Methods * A Brief Summary of the s-Channel Theory of Superconductivity * Neural Networks and Models for the Brain * Relativistic One-Body Equations for Planar Particles with Arbitrary Spin * Chiral Property of Quarks and Hadron Spectrum in Lattice QCD * Scalar Lattice QCD * Semi-Superconductivity of a Charged Anyon Gas * Two-Fermion Theory of Strongly Correlated Electrons and Charge-Spin Separation * Statistical Mechanics and Error-Correcting Codes * Quantum Statistics
Lattice QCD in rotating frames.
Yamamoto, Arata; Hirono, Yuji
2013-08-23
We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD.
Heavy-to-light scalar form factors from Muskhelishvili-Omnès dispersion relations
NASA Astrophysics Data System (ADS)
Yao, D.-L.; Fernandez-Soler, P.; Albaladejo, M.; Guo, F.-K.; Nieves, J.
2018-04-01
By solving the Muskhelishvili-Omnès integral equations, the scalar form factors of the semileptonic heavy meson decays D→ π \\bar{ℓ }ν _ℓ , D→ {\\bar{K}} \\bar{ℓ }ν _ℓ , {\\bar{B}}→ π ℓ \\bar{ν }_ℓ and {\\bar{B}}_s→ K ℓ \\bar{ν }_ℓ are simultaneously studied. As input, we employ unitarized heavy meson-Goldstone boson chiral coupled-channel amplitudes for the energy regions not far from thresholds, while, at high energies, adequate asymptotic conditions are imposed. The scalar form factors are expressed in terms of Omnès matrices multiplied by vector polynomials, which contain some undetermined dispersive subtraction constants. We make use of heavy quark and chiral symmetries to constrain these constants, which are fitted to lattice QCD results both in the charm and the bottom sectors, and in this latter sector to the light-cone sum rule predictions close to q^2=0 as well. We find a good simultaneous description of the scalar form factors for the four semileptonic decay reactions. From this combined fit, and taking advantage that scalar and vector form factors are equal at q^2=0, we obtain |V_{cd}|=0.244± 0.022, |V_{cs}|=0.945± 0.041 and |V_{ub}|=(4.3± 0.7)× 10^{-3} for the involved Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In addition, we predict the following vector form factors at q^2=0: |f_+^{D→ η }(0)|=0.01± 0.05, |f_+^{D_s→ K}(0)|=0.50 ± 0.08, |f_+^{D_s→ η }(0)|=0.73± 0.03 and |f_+^{{\\bar{B}}→ η }(0)|=0.82 ± 0.08, which might serve as alternatives to determine the CKM elements when experimental measurements of the corresponding differential decay rates become available. Finally, we predict the different form factors above the q^2-regions accessible in the semileptonic decays, up to moderate energies amenable to be described using the unitarized coupled-channel chiral approach.
The AdS/CFT Correspondence: Classical, Quantum, and Thermodynamical Aspects
NASA Astrophysics Data System (ADS)
Young, Donovan
2007-06-01
Certain aspects of the AdS/CFT correspondence are studied in detail. We investigate the one-loop mass shift to certain two-impurity string states in light-cone string field theory on a plane wave background. We find that there exist logarithmic divergences in the sums over intermediate mode numbers which cancel between the cubic Hamiltonian and quartic "contact term". We argue that generically, every order in intermediate state impurities contributes to the mass shift at leading perturbative order. The same mass shift is also computed using an improved 3-string vertex proposed by Dobashi and Yoneya. The result is found to agree with gauge theory at leading order and is close but not quite in agreement at subleading order. We extend the analysis to include discrete light-cone quantization, considering states with up to three units of p+. We study the (apparently) first-order phase transition in the weakly coupled plane-wave matrix model at finite temperature. We analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator to three loop order. We show that the phase transition is indeed of first order. We also compute the 2-loop correction to the Hagedorn temperature. Finally, correlation functions of 1/4 BPS Wilson loops with the infinite family of 1/2 BPS chiral primary operators are computed in N=4 super Yang-Mills theory by summing planar ladder diagrams. The correlation functions are also computed in the strong-coupling limit using string theory; the result is found to agree with the extrapolation of the planar ladders. The result is related to similar correlators of 1/2 BPS loops by a simple re-scaling of the coupling constant, discovered by Drukker for the case of the 1/4 BPS loop VEV.
Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion
NASA Astrophysics Data System (ADS)
Bonetti, Marco; Melnikov, Kirill; Tancredi, Lorenzo
2018-03-01
We present an estimate of the next-to-leading-order (NLO) QCD corrections to mixed QCD-electroweak contributions to the Higgs boson production cross section in gluon fusion, combining the recently computed three-loop virtual corrections and the approximate treatment of real emission in the soft approximation. We find that the NLO QCD corrections to the mixed QCD-electroweak contributions are nearly identical to NLO QCD corrections to QCD Higgs production. Our result confirms an earlier estimate of these O (α αs2) effects by Anastasiou et al. [J. High Energy Phys. 04 (2009) 003, 10.1088/1126-6708/2009/04/003] and provides further support for the factorization approximation of QCD and electroweak corrections.
Zanderighi, Giulia
2018-04-26
Modern QCD - Lecture 1 Starting from the QCD Lagrangian we will revisit some basic QCD concepts and derive fundamental properties like gauge invariance and isospin symmetry and will discuss the Feynman rules of the theory. We will then focus on the gauge group of QCD and derive the Casimirs CF and CA and some useful color identities.
NASA Astrophysics Data System (ADS)
Bodwin, Geoffrey T.; Chung, Hee Sok; Ee, June-Haak; Lee, Jungil
2017-03-01
We present a calculation of the rates for Higgs-boson decays to a vector heavy-quarkonium state plus a photon, where the heavy-quarkonium states are the J /ψ and the ϒ (n S ) states, with n =1 , 2, or 3. The calculation is carried out in the light-cone formalism, combined with nonrelativistic QCD factorization, and is accurate at leading order in mQ2/mH2, where mQ is the heavy-quark mass and mH is the Higgs-boson mass. The calculation contains corrections through next-to-leading order in the strong-coupling constant αs and the square of the heavy-quark velocity v , and includes a resummation of logarithms of mH2/mQ2 at next-to-leading logarithmic accuracy. We have developed a new method, which makes use of Abel summation, accelerated through the use of Padé approximants, to deal with divergences in the resummed expressions for the quarkonium light-cone distribution amplitudes. This approach allows us to make definitive calculations of the resummation effects. Contributions from the order-αs and order-v2 corrections to the light-cone distribution amplitudes that we obtain with this new method differ substantially from the corresponding contributions that one obtains from a model light-cone distribution amplitude [M. König and M. Neubert, J. High Energy Phys. 08 (2015) 012, 10.1007/JHEP08(2015)012]. Our results for the real parts of the direct-process amplitudes are considerably smaller than those from one earlier calculation [G. T. Bodwin, H. S. Chung, J.-H. Ee, J. Lee, and F. Petriello, Phys. Rev. D 90, 113010 (2014), 10.1103/PhysRevD.90.113010], reducing the sensitivity to the Higgs-boson-heavy-quark couplings, and are somewhat smaller than those from another earlier calculation [M. König and M. Neubert, J. High Energy Phys. 08 (2015) 012, 10.1007/JHEP08(2015)012]. However, our results for the standard-model Higgs-boson branching fractions are in good agreement with those in M. König and M. Neubert, J. High Energy Phys. 08 (2015) 012, 10.1007/JHEP08(2015)012.
Khachatryan, V.
2015-03-11
Measurements of differential cross sections are presented for the production of a Z boson and at least one hadronic jet in proton-proton collisions at √s = 7 TeV, recorded by the CMS detector, using a data sample corresponding to an integrated luminosity of 4.9 inverse femtobarns. The jet multiplicity distribution is measured for up to six jets. The differential cross sections are measured as a function of jet transverse momentum and pseudorapidity for the four highest transverse momentum jets. The distribution of the scalar sum of jet transverse momenta is also measured as a function of the jet multiplicity. Themore » measurements are compared with theoretical predictions at leading and next-to-leading order in perturbative QCD.« less
Borel Summability of Perturbative Series in 4D N=2 and 5D N=1 Supersymmetric Theories.
Honda, Masazumi
2016-05-27
We study weak coupling perturbative series in 4D N=2 and 5D N=1 supersymmetric gauge theories with Lagrangians. We prove that the perturbative series of these theories in the zero-instanton sector are Borel summable for various observables. Our result for the 4D N=2 case supports an expectation from a recent proposal on a semiclassical realization of infrared renormalons in QCD-like theories, where the semiclassical solution does not exist in N=2 theories and the perturbative series are unambiguous, namely, Borel summable. We also prove that the perturbative series in an arbitrary number of instanton sectors are Borel summable for a wide class of theories. It turns out that exact results can be obtained by summing over the Borel resummations with every instanton number.
Adhikari, K. P.; Deur, A.; El Fassi, L.; ...
2018-02-09
We measured themore » $$g_{1}$$ spin structure function of the deuteron at low $$Q^{2}$$, where QCD can be approximated with chiral perturbation theory ($$\\chi PT$$). The data cover the resonance region, up to an invariant mass of $$W\\approx1.9$$ GeV. The generalized GDH sum, the moment $$\\Gamma_{1}^{d}$$ and the spin polarizability $$\\gamma_{0}^{d}$$ are precisely determined down to a minimum $Q^2$ of 0.02 GeV$^2$ for the first time, about 2.5 times lower than that of previous data. We compare them to several $$\\chi PT$$ calculations and models. In conclusion, these results are the first in a program of benchmark measurements of polarization observables in the $$\\chi PT$$ domain.« less
Adhikari, K P; Deur, A; El Fassi, L; Kang, H; Kuhn, S E; Ripani, M; Slifer, K; Zheng, X; Adhikari, S; Akbar, Z; Amaryan, M J; Avakian, H; Ball, J; Balossino, I; Barion, L; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Bosted, P; Briscoe, W J; Brock, J; Bültmann, S; Burkert, V D; Thanh Cao, F; Carlin, C; Carman, D S; Celentano, A; Charles, G; Chen, J-P; Chetry, T; Choi, S; Ciullo, G; Clark, L; Cole, P L; Contalbrigo, M; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Defurne, M; Djalali, C; Dodge, G E; Drozdov, V; Dupre, R; Egiyan, H; El Alaoui, A; Elouadrhiri, L; Eugenio, P; Fedotov, G; Filippi, A; Ghandilyan, Y; Gilfoyle, G P; Golovatch, E; Gothe, R W; Griffioen, K A; Guidal, M; Guler, N; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Hattawy, M; Heddle, D; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Isupov, E L; Jenkins, D; Jo, H S; Johnston, S C; Joo, K; Joosten, S; Kabir, M L; Keith, C D; Keller, D; Khachatryan, G; Khachatryan, M; Khandaker, M; Kim, W; Klein, A; Klein, F J; Konczykowski, P; Kovacs, K; Kubarovsky, V; Lanza, L; Lenisa, P; Livingston, K; Long, E; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Meekins, D G; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Nadel-Turonski, P; Niculescu, G; Niccolai, S; Osipenko, M; Ostrovidov, A I; Paolone, M; Pappalardo, L; Paremuzyan, R; Park, K; Pasyuk, E; Payette, D; Phelps, W; Phillips, S K; Pierce, J; Pogorelko, O; Poudel, J; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Rizzo, A; Rosner, G; Rossi, P; Sabatié, F; Salgado, C; Schumacher, R A; Sharabian, Y G; Shigeyuki, T; Simonyan, A; Skorodumina, Iu; Smith, G D; Sparveris, N; Sokhan, D; Stepanyan, S; Strakovsky, I I; Strauch, S; Sulkosky, V; Taiuti, M; Tan, J A; Ungaro, M; Voutier, E; Wei, X; Weinstein, L B; Zhang, J; Zhao, Z W
2018-02-09
We measured the g_{1} spin structure function of the deuteron at low Q^{2}, where QCD can be approximated with chiral perturbation theory (χPT). The data cover the resonance region, up to an invariant mass of W≈1.9 GeV. The generalized Gerasimov-Drell-Hearn sum, the moment Γ_{1}^{d} and the spin polarizability γ_{0}^{d} are precisely determined down to a minimum Q^{2} of 0.02 GeV^{2} for the first time, about 2.5 times lower than that of previous data. We compare them to several χPT calculations and models. These results are the first in a program of benchmark measurements of polarization observables in the χPT domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, K. P.; Deur, A.; El Fassi, L.
We measured themore » $$g_{1}$$ spin structure function of the deuteron at low $$Q^{2}$$, where QCD can be approximated with chiral perturbation theory ($$\\chi PT$$). The data cover the resonance region, up to an invariant mass of $$W\\approx1.9$$ GeV. The generalized GDH sum, the moment $$\\Gamma_{1}^{d}$$ and the spin polarizability $$\\gamma_{0}^{d}$$ are precisely determined down to a minimum $Q^2$ of 0.02 GeV$^2$ for the first time, about 2.5 times lower than that of previous data. We compare them to several $$\\chi PT$$ calculations and models. In conclusion, these results are the first in a program of benchmark measurements of polarization observables in the $$\\chi PT$$ domain.« less
NASA Astrophysics Data System (ADS)
Sarcevic, Ina; Tan, Chung-I.
2000-07-01
The Table of Contents for the full book PDF is as follows: * Preface * Monday morning session: Hadronic Final States - Conveners: E. de Wolf and J. W. Gary * Session Chairman: J. W. Gary * Inclusive Jets at the Tevatron * Forward Jets, Dijets, and Subjets at the Tevatron * Inclusive Hadron Production and Dijets at HERA * Recent Opal Results on Photon Structure and Interactions * Review of Two-Photon Physics at LEP * Session Chairman: E. de Wolf * An Intriguing Area-Law-Based Hadron Production Scheme in e+e- Annihilation and Its Possible Extensions * Hyperfine Splitting in Hadron Production at High Energies * Event Selection Effects on Multiplicities in Quark and Gluon Jets * Quark and Gluon Jet Properties at LEP * Rapidity Gaps in Quark and Gluon Jets -- A Perturbative Approach * Monday afternoon session: Diffractive and Small-x - Conveners: M. Derrick and A. White * Session Chairman: A. White * Structure Functions: Low x, High y, Low Q2 * The Next-to-Leading Dynamics of the BFKL Pomeron * Renormalization Group Improved BFKL Equation * Session Chairman: G. Briskin * New Experimental Results on Diffraction at HERA * Diffractive Parton Distributions in Light-Cone QCD * The Logarithmic Derivative of the F2 Structure Function and Saturation * Spin Dependence of Diffractive DIS * Monday evening session * Session Chairman: M. Braun * Tests of QCD with Particle Production at HERA: Review and Outlook * Double Parton Scattering and Hadron Structure in Transverse Space * The High Density Parton Dynamics from Eikonal and Dipole Pictures * Hints of Higher Twist Effects in the Slope of the Proton Structure Function * Tuesday morning session: Correlations and Fluctuations - Conveners: R. Hwa and M. Tannenbaum * Session Chairman: A. Giovannini -- Fluctuations and Correlations * Bose-Einstein Results from L3 * Short-Range and Long-Range Correlations in DIS at HERA * Coior Mutation Model, Intermittency, and Erraticity * QCD Queuing and Hadron Multiplicity * Soft and Semi-hard Components in Multiplicity Distributions in the TeV Region * Qualitative Difference Between Particle Production Dynamics in Soft and Hard Processes * Session Chairman: M. Tannenbaum -- Bose-Einstein Correlations * Questions in Bose-Einstein Correlations * The Source Size Dependence on the mhadron Applying Fermi and Bose Statistics and I-Spin Invariance * Signal of Partial UA(1) Symmetry Restoration from Two-Pion Bose-Einstein Correlations * Multiparticle Bose-Einstein Correlations in Heavy-Ion Collisions * Tuesday afternoon session: Heavy Ion Collisions - Conveners: B. Müller and J. Statchel * Session Chairman: J. Stachel * Probing Baryon Freeze-out Density at the AGS with Proton Correlations * Centrality Dependence of Hadronic Observables at CERN SPS * Study of Transverse Momentum Spectra in pp Collisions with a Statistical Model of Hadronisation * Session Chairman: B. Brower * Production of Light (Anti-)Nuclei with E864 at the AGS * QCD Critical Point in Heavy-Ion Collision Experiments * Tuesday evening session * Session Chairman: H. M. Fried * Oscillating Hq, Event Shapes, and QCD * Critical Behavior of Quark-Hadron Phase Transition * Shadowing of Gluons at RHIC and LHC * Parton Distributions in Nuclei at Small x * Wednesday morning session: Diffraction and Small x - Conveners: M. Derrick and A. White * Session Chairman: C. Pajares * High-Energy Effective Action from Scattering of Shock Waves in QCD * The Triangle Anomaly in the Triple-Regge Limit * CDF Results on Hard Diffraction and Rapidity Gap Physics * DØ Results on Hard Diffraction * Interjet Rapidity Gaps in Perturbative QCD * Pomeron: Beyond the Standard Approach * Factorization and Diffractive Production at Collider Energies * Thursday morning session: Heavy Ion Collisions - Conveners: B. Müller and J. B. Stachel * Session Chairman: N. Schmitz * Summary of J/ψ Suppression Data and Preliminary Results on Multiplicity Distributions in PB-PB Collisions from the NA50 Experiment * Duality and Chiral Restoration from Dilepton Production in Relativistic Heavy-Ion Collisions * Session Chairman: I. Sarcevic * Transport-Theoretical Analysis of Reaction Dynamics, Particle Production and Freeze-out at RHIC * Inclusive Particle Spectra and Exotic Particle Searches Using STAR * The First Fermi in a High Energy Nuclear Collision * Probing the Space-Time Evolution of Heavy Ion Collisions with Bremsstrahlung * Thursday afternoon session: Hadronic Final States - Conveners: E. de Wolf and J. Gary * Session Chairman: F. Verbeure * QCD with SLD * QCD at LEP II * Multidimensional Analysis of the Bose-Einstein Correlations at DELPHI * Study of Color Singlet with Gluonic Subsinglet by Color Effective Hamiltonian * Correlations and Fluctuations - Conveners: R. Hwa and M. Tannenbaum * Session Chairman: R. C. Hwa -- Fluctuations in Heavy-Ion Collisions * Scale-Local Statistical Measures and the Multiparticle Final State * Centrality and ET Fluctuations from p + Be to Au + Au at AGS Energies * Order Parameter of Single Event * Multiplicities, Transverse Momenta and Their Correlations from Percolating Colour Strings * Probing the QCD Critical Point in Nuclear Collisions * Event-by-Event Fluctuations in Pb + Pb Collisions at the CERN SPS * Friday morning session: High Energy Collisions and Cosmic-Ray/Astrophysics - Conveners: F. Halzen and T. Stanev * Session Chairman: U. Sukhatme * Rethinking the Eikonal Approximation * QCD and Total Cross-Sections * The Role of Multiple Parton Collisions in Hadron Collisions * Effective Cross Sections and Spatial Structure of the Hadrons * Looking for the Odderon * QCD in Embedded Coordinates * Session Chairman: F. Bopp * Extensive Air Sbowers and Hadronic Interaction Models * Penetration of the Earth by Ultrahigh Energy Neutrinos and the Parton Distributions Inside the Nucleon * Comparison of Prompt Muon Observations to Charm Expectations * Friday afternoon session: Recent Developments - Conveners: R. Brower and I. Sarcevic * Session Chairman: G. Guralnik * The Relation Between Gauge Theories and Gravity * From Black Holes to Pomeron: Tensor Glueball and Pomeron Intercept at Strong Coupling * Summary Talks * Summary of Results of the Ultrarelativistic Heavy Ion Fixed Target Program * Review of Theory Talks * Summary of Experimental Talks * List of Participants
Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations.
Ma, Yan-Qing; Qiu, Jian-Wei
2018-01-12
Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. We also show that the proposed functions for lattice QCD calculation of PDFs in the literature are special cases of these good LCSs.
PREFACE: 4th International Hadron Physics Conference (TROIA'14)
NASA Astrophysics Data System (ADS)
Dağ, Hüseyin; Erkol, Güray; Küçükarslan, Ayşe; Özpineci, Altuğ
2014-11-01
The 4th International Conference on Hadron Physics, TROIA'14, was held at Canakkale, Turkey on 1-5 July 2014. Ozyegin University, Middle East Technical University, Canakkale Onsekiz Mart University, Turkish Atomic Energy Authority and HadronPhysics2 Consortium sponsored the conference. It aimed at bringing together the experts and the young scientists working on experimental and theoretical hadron physics. About 50 participants from 10 countries attended the conference. The topics covered included: . Chiral Perturbation Theory . QCD Sum Rules . Effective Field Theory . Exotic Hadrons . Hadron Properties from Lattice QCD . Experimental Results and Future Perspectives . Hadronic Distribution Amplitudes The conference presentations were organized such that the morning sessions contained invited talks and afternoon sessions were devoted to contributed talks. The speakers of the invited talks were: C. Alexandrou, A. Gal, L. Tolos, J.R. Pelaez and M. Schindler. We had also guest speakers D. A. Demir and T. Senger. The conference venue was a resort hotel around Canakkale. As a social program, a guided full-day excursion to the excavation site of the ancient Troia town and Assos was organized. We believe that this conference provided a medium for young scientists and experts in the field to effectively communicate and share ideas. We would like to express our sincere thanks to supporting agencies and to all participants for their contributions and stimulating discussions. We are also grateful to the Scientific Secretary, Bora Işıldak, and all other members of the Organizing Committee for their patience and efforts. 30.10.2014 The Editors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey
Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by theirmore » passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving “downward” into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we have built matches that measured in proton-proton collisions reasonably well. This is a novel way for hybridizing relevant inputs from perturbative QCD and a strongly coupled holographic gauge theory in the service of modeling jets in QGP. We send our ensemble of strings through an expanding cooling droplet of strongly coupled plasma, choosing the second model parameter so as to get a reasonable value for R AA jet , the suppression in the number of jets, and study how the mean jet shape and the dijet asymmetry are modified, comparing both to measurements from heavy ion collisions at the LHC.« less
Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; ...
2018-02-02
Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by theirmore » passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving “downward” into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we have built matches that measured in proton-proton collisions reasonably well. This is a novel way for hybridizing relevant inputs from perturbative QCD and a strongly coupled holographic gauge theory in the service of modeling jets in QGP. We send our ensemble of strings through an expanding cooling droplet of strongly coupled plasma, choosing the second model parameter so as to get a reasonable value for R AA jet , the suppression in the number of jets, and study how the mean jet shape and the dijet asymmetry are modified, comparing both to measurements from heavy ion collisions at the LHC.« less
NASA Astrophysics Data System (ADS)
Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; van der Schee, Wilke
2018-02-01
Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by their passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving "downward" into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we have built matches that measured in proton-proton collisions reasonably well. This is a novel way for hybridizing relevant inputs from perturbative QCD and a strongly coupled holographic gauge theory in the service of modeling jets in QGP. We send our ensemble of strings through an expanding cooling droplet of strongly coupled plasma, choosing the second model parameter so as to get a reasonable value for R AA jet , the suppression in the number of jets, and study how the mean jet shape and the dijet asymmetry are modified, comparing both to measurements from heavy ion collisions at the LHC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boz, Tamer; Skullerud, Jon-Ivar; Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005
2016-01-22
QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor’kov propagator. We express the Gor’kov propagator in terms of form factors and present recent lattice simulation results.
The renormalization scale-setting problem in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xing-Gang; Brodsky, Stanley J.; Mojaza, Matin
2013-09-01
A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The conventional scale-setting procedure assigns an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In fact, this ad hoc procedure gives results which depend on the choice of the renormalization scheme, and it is in conflict with the standard scale-setting procedure used in QED. Predictions for physical results should be independent of the choice of the scheme or other theoretical conventions. We review current ideas and points of view on how to deal with the renormalization scalemore » ambiguity and show how to obtain renormalization scheme- and scale-independent estimates. We begin by introducing the renormalization group (RG) equation and an extended version, which expresses the invariance of physical observables under both the renormalization scheme and scale-parameter transformations. The RG equation provides a convenient way for estimating the scheme- and scale-dependence of a physical process. We then discuss self-consistency requirements of the RG equations, such as reflexivity, symmetry, and transitivity, which must be satisfied by a scale-setting method. Four typical scale setting methods suggested in the literature, i.e., the Fastest Apparent Convergence (FAC) criterion, the Principle of Minimum Sensitivity (PMS), the Brodsky–Lepage–Mackenzie method (BLM), and the Principle of Maximum Conformality (PMC), are introduced. Basic properties and their applications are discussed. We pay particular attention to the PMC, which satisfies all of the requirements of RG invariance. Using the PMC, all non-conformal terms associated with the β-function in the perturbative series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC provides the principle underlying the BLM method, since it gives the general rule for extending BLM up to any perturbative order; in fact, they are equivalent to each other through the PMC–BLM correspondence principle. Thus, all the features previously observed in the BLM literature are also adaptable to the PMC. The PMC scales and the resulting finite-order PMC predictions are to high accuracy independent of the choice of the initial renormalization scale, and thus consistent with RG invariance. The PMC is also consistent with the renormalization scale-setting procedure for QED in the zero-color limit. The use of the PMC thus eliminates a serious systematic scale error in perturbative QCD predictions, greatly improving the precision of empirical tests of the Standard Model and their sensitivity to new physics.« less
NASA Astrophysics Data System (ADS)
Wilczek, Frank
Introduction Symmetry and the Phenomena of QCD Apparent and Actual Symmetries Asymptotic Freedom Confinement Chiral Symmetry Breaking Chiral Anomalies and Instantons High Temperature QCD: Asymptotic Properties Significance of High Temperature QCD Numerical Indications for Quasi-Free Behavior Ideas About Quark-Gluon Plasma Screening Versus Confinement Models of Chiral Symmetry Breaking More Refined Numerical Experiments High-Temperature QCD: Phase Transitions Yoga of Phase Transitions and Order Parameters Application to Glue Theories Application to Chiral Transitions Close Up on Two Flavors A Genuine Critical Point! (?) High-Density QCD: Methods Hopes, Doubts, and Fruition Another Renormalization Group Pairing Theory Taming the Magnetic Singularity High-Density QCD: Color-Flavor Locking and Quark-Hadron Continuity Gauge Symmetry (Non)Breaking Symmetry Accounting Elementary Excitations A Modified Photon Quark-Hadron Continuity Remembrance of Things Past More Quarks Fewer Quarks and Reality
Recent development in lattice QCD studies for three-nucleon forces
NASA Astrophysics Data System (ADS)
Doi, Takumi; HAL QCD Collaboration
2014-09-01
The direct determination of nuclear forces from QCD has been one of the most desirable challenges in nuclear physics. Recently, a first-principles lattice QCD determination is becoming possible by a novel theoretical method, HAL QCD method, in which Nambu-Bethe-Salpeter (NBS) wave functions are utilized. In this talk, I will focus on the study of three-nucleon forces in HAL QCD method by presenting the recent theoretical/numerical development.
The current matrix elements from HAL QCD method
NASA Astrophysics Data System (ADS)
Watanabe, Kai; Ishii, Noriyoshi
2018-03-01
HAL QCD method is a method to construct a potential (HAL QCD potential) that reproduces the NN scattering phase shift faithful to the QCD. The HAL QCD potential is obtained from QCD by eliminating the degrees of freedom of quarks and gluons and leaving only two particular hadrons. Therefor, in the effective quantum mechanics of two nucleons defined by HAL QCD potential, the conserved current consists not only of the nucleon current but also an extra current originating from the potential (two-body current). Though the form of the two-body current is closely related to the potential, it is not straight forward to extract the former from the latter. In this work, we derive the the current matrix element formula in the quantum mechanics defined by the HAL QCD potential. As a first step, we focus on the non-relativistic case. To give an explicit example, we consider a second quantized non-relativistic two-channel coupling model which we refer to as the original model. From the original model, the HAL QCD potential for the open channel is constructed by eliminating the closed channel in the elastic two-particle scattering region. The current matrix element formula is derived by demanding the effective quantum mechanics defined by the HAL QCD potential to respond to the external field in the same way as the original two-channel coupling model.
Vector and axial-vector charmoniumlike states
NASA Astrophysics Data System (ADS)
Chen, Wei; Zhu, Shi-Lin
2011-02-01
After constructing all the tetraquark interpolating currents with JPC=1-+, 1--, 1++ and 1+- in a systematic way, we investigate the two-point correlation functions to extract the masses of the charmoniumlike states with QCD sum rule. For the 1-- qcq¯c¯ charmoniumlike state, mX=4.6˜4.7GeV, which implies a possible tetraquark interpretation for the state Y(4660). The masses for both the 1++ qcq¯c¯ and scs¯c¯ charmoniumlike states are around 4.0˜4.2GeV, which are slightly above the mass of X(3872). For the 1-+ and 1+- qcq¯c¯ charmoniumlike states, the extracted masses are around 4.5˜4.7GeV and 4.0˜4.2GeV, respectively. As a by-product, the bottomoniumlike states are also studied. We also discuss the possible decay modes and experimental search of the charmoniumlike states.
Quenched results for light quark physics with overlap fermions
NASA Astrophysics Data System (ADS)
Giusti, L.; Hoelbling, C.; Rebbi, C.
2002-03-01
We present results of a quenched QCD simulation with overlap fermions on a lattice of volume V = 16 3 × 32 at β = 6.0, which corresponds to a lattice cutoff of ⋍ 2 GeV and an extension of ⋍ 1.4 fm. From the two-point correlation functions of bilinear operators we extract the pseudoscalar meson masses and the corresponding decay constants. From the GMOR relation we determine the chiral condensate and, by using the K-meson mass as experimental input, we compute the sum of the strange and average up-down quark masses ( m s + overlinem). The needed logarithmic divergent renormalization constant Z S is computed with the RI/MOM non-perturbative renormalization technique. Since the overlap preserves chiral symmetry at finite cutoff and volume, no divergent quark mass and chiral condensate additive renormalizations are required and the results are O( a) improved.
Mass and residue of Λ (1405) as hybrid and excited ordinary baryon
NASA Astrophysics Data System (ADS)
Azizi, K.; Barsbay, B.; Sundu, H.
2018-03-01
The nature of the Λ (1405) has been a puzzle for decades, whether it is a standard three-quark baryon, a hybrid baryon or a baryon-meson molecule. More information on the decay channels of this particle and its strong, weak and electromagnetic interactions with other hadrons is needed to clarify its internal organization. The residue of this particle is one of the main inputs in investigation of its decay properties in many approaches. We calculate the mass and residue of the Λ (1405) state in the context of QCD sum rules considering it as a hybrid baryon with three-quark-one-gluon content as well as an excited ordinary baryon with quantum numbers I(JP)=0(1/2-). The comparison of the obtained results on the mass with the average experimental value presented in PDG allows us to interpret this state as a hybrid baryon.
Angular momentum conservation law in light-front quantum field theory
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
2017-03-31
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
On the nature of the newly discovered Ω states
NASA Astrophysics Data System (ADS)
Agaev, S. S.; Azizi, K.; Sundu, H.
2017-06-01
The mass and residue of the ground-state, as well as the first orbital and radial excitations of the heavy ΩQ baryons with Q being b or c quark, for both J=1/2 and J=3/2 are calculated by means of the QCD two-point sum rule method using the general forms for the interpolating currents. In the calculations the quark, gluon and mixed vacuum condensates up to ten dimensions are taken into account. We compare our results for the masses of Ω_b- and Ω_c0 baryons with the existing predictions of other theoretical works. Our results for the charmed baryons are confronted with the experimental data of the LHCb Collaboration to understand the nature of the recently observed narrow Ω_c0 resonances. The predictions for the masses of the Ω_b- baryons with the same quantum numbers may shed light on future experimental searches for the corresponding bottom baryons.
Khachatryan, Vardan
2015-10-20
In this study, a comparison of the differential cross sections for the processes Z/γ * + jets and photon (γ)+jets is presented. The measurements are based on data collected with the CMS detector at √s = 8 TeV corresponding to an integrated luminosity of 19.7 fb –1. The differential cross sections and their ratios are presented as functions of p T. The measurements are also shown as functions of the jet multiplicity. Differential cross sections are obtained as functions of the ratio of the Z/γ* p T to the sum of all jet transverse momenta and of the ratio ofmore » the Z/γ* p T to the leading jet transverse momentum. The data are corrected for detector effects and are compared to simulations based on several QCD calculations.« less
Angular momentum conservation law in light-front quantum field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
Angular momentum conservation law in light-front quantum field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QEDmore » and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
Second-order small-disturbance solutions for hypersonic flow over power-law bodies
NASA Technical Reports Server (NTRS)
Townsend, J. C.
1975-01-01
Similarity solutions were found which give the adiabatic flow of an ideal gas about two-dimensional and axisymmetric power-law bodies at infinite Mach number to second order in the body slenderness parameter. The flow variables were expressed as a sum of zero-order and perturbation similarity functions for which the axial variations in the flow equations separated out. The resulting similarity equations were integrated numerically. The solutions, which are universal functions, are presented in graphic and tabular form. To avoid a singularity in the calculations, the results are limited to body power-law exponents greater than about 0.85 for the two-dimensional case and 0.75 for the axisymmetric case. Because of the entropy layer induced by the nose bluntness (for power-law bodies other than cones and wedges), only the pressure function is valid at the body surface. The similarity results give excellent agreement with the exact solutions for inviscid flow over wedges and cones having half-angles up to about 20 deg. They give good agreement with experimental shock-wave shapes and surface-pressure distributions for 3/4-power axisymmetric bodies, considering that Mach number and boundary-layer displacement effects are not included in the theory.
Lattice analysis for the energy scale of QCD phenomena.
Yamamoto, Arata; Suganuma, Hideo
2008-12-12
We formulate a new framework in lattice QCD to study the relevant energy scale of QCD phenomena. By considering the Fourier transformation of link variable, we can investigate the intrinsic energy scale of a physical quantity nonperturbatively. This framework is broadly available for all lattice QCD calculations. We apply this framework for the quark-antiquark potential and meson masses in quenched lattice QCD. The gluonic energy scale relevant for the confinement is found to be less than 1 GeV in the Landau or Coulomb gauge.
The simple perfection of quantum correlation in human vision.
Bouman, Maarten A
2006-01-01
A theory is presented that specifies the amount of light that is needed for the perception of any stimulus that is defined in space, time and color. For detection and discrimination mechanistic neural elements with deterministic procedures exist. Twin pairs of red and green cones are ordered in three sets along clockwise and counter clockwise revolving spirals and along circles around the center of the fovea. In the rod-free fovea the red pairs are ordered along the spirals and the green along the circles. Each cone is accompanied by--dependent on retinal eccentricity--up to 100 satellite rods. For the retinal signal processing such a receptor group constitutes a space-quantum in analogy with time-quanta of about 0.04 s. In the peripheral retina the red and green twin pairs of space-quanta are roughly ordered along and at random distributed over the spirals and circles. Over each time-quantum, the cone and rods of a space-quantum sum their responses in a common nerve circuit of the luminosity channel. The summation's results from twin pairs of the same set of space-quanta are correlated by two-fold spatio-temporal coincidence mechanisms in the retina. Their outcome signals the perception of light, movement and edge. In the fused binocular visual field the movement and edge signals of the three sets from both eyes perfectly join vectorially together, provided the responding pairs of space-quanta are binocularly in perfect register as they normally are. The receptor's Weber gain control makes the receptor an all-or-none-system. The space-quantum's De Vries gain control makes its sensitivity equal to the average of the poisson fluctuations in quantum absorption per time-quantum. The controls are based on, respectively, arithmetically feed forward and backward inhibitive nerve mechanisms. The thermal noise of the photo-pigment resets the controls. The response to the second quantum absorption in a time-quantum in the individual rod, red or green cone has accession to the white, red or green nerve color circuit, respectively, and produces there a corresponding color signal. Already a single absorption in a blue cone is for a blue signal. In the retina, for the generation of yellow signals, the color circuits of individual red and green cones of each mixed entwined triple of red and green twin pairs of space-quanta are cross-connected through a nerve opponent color circuit. In the lateral geniculate nucleus in groups of seven neighboring triples, through two nerve opponent color circuits that are common for the two eyes together, the red and green signals as well as the yellow and blue mutually annihilate each other's color. White signals remain. In anomalous trichromacy, the space-quanta of some pairs have different cones or in one of them the cone is missing. In dichromacy, all pairs have different cones or one type of cones is missing. For perceptive resolution the periodic scanning of the retinal image by the eye tremor in synchrony with the time-quanta, overrules the limit of optical resolution as set by diffraction in the eye optics. Dependent on pupil diameter the scanning contributes up to a factor of about 30 to resolution. The action potentials of the Purkinje cells in the myocardium generate the time-quanta of the central nervous system as well as the mechanical scanning of the retinal image through the synchronic periodic variation of the tonus in the eye muscles.
QCD dirac operator at nonzero chemical potential: lattice data and matrix model.
Akemann, Gernot; Wettig, Tilo
2004-03-12
Recently, a non-Hermitian chiral random matrix model was proposed to describe the eigenvalues of the QCD Dirac operator at nonzero chemical potential. This matrix model can be constructed from QCD by mapping it to an equivalent matrix model which has the same symmetries as QCD with chemical potential. Its microscopic spectral correlations are conjectured to be identical to those of the QCD Dirac operator. We investigate this conjecture by comparing large ensembles of Dirac eigenvalues in quenched SU(3) lattice QCD at a nonzero chemical potential to the analytical predictions of the matrix model. Excellent agreement is found in the two regimes of weak and strong non-Hermiticity, for several different lattice volumes.
Experimental access to Transition Distribution Amplitudes with the P¯ANDA experiment at FAIR
NASA Astrophysics Data System (ADS)
Singh, B. P.; Erni, W.; Keshelashvili, I.; Krusche, B.; Steinacher, M.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Fink, M.; Heinsius, F. H.; Held, T.; Holtmann, T.; Koch, H.; Kopf, B.; Kümmel, M.; Kuhl, G.; Kuhlmann, M.; Leyhe, M.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Beck, R.; Hammann, C.; Kaiser, D.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Pietreanu, D.; Vasile, M. E.; Patel, B.; Kaplan, D.; Brandys, P.; Czyzewski, T.; Czyzycki, W.; Domagala, M.; Hawryluk, M.; Filo, G.; Krawczyk, M.; Kwiatkowski, D.; Lisowski, E.; Lisowski, F.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Czech, B.; Kliczewski, S.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Malgorzata, K.; Pysz, K.; Schäfer, W.; Siudak, R.; Szczurek, A.; Biernat, J.; Jowzaee, S.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Palka, M.; Psyzniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wrońska, A.; Augustin, I.; Lehmann, I.; Nicmorus, D.; Schepers, G.; Schmitt, L.; Al-Turany, M.; Cahit, U.; Capozza, L.; Dbeyssi, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Karabowicz, R.; Kliemt, R.; Kunkel, J.; Kurilla, U.; Lehmann, D.; Lühning, J.; Maas, F.; Morales Morales, C.; Mora Espí, M. C.; Nerling, F.; Orth, H.; Peters, K.; Rodríguez Piñeiro, D.; Saito, N.; Saito, T.; Sánchez Lorente, A.; Schmidt, C. J.; Schwarz, C.; Schwiening, J.; Traxler, M.; Valente, R.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V. M.; Alexeev, G.; Arefiev, A.; Astakhov, V. I.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Yu. I.; Dodokhov, V. Kh.; Efremov, A. A.; Fedunov, A. G.; Festchenko, A. A.; Galoyan, A. S.; Grigoryan, S.; Karmokov, A.; Koshurnikov, E. K.; Lobanov, V. I.; Lobanov, Yu. Yu.; Makarov, A. F.; Malinina, L. V.; Malyshev, V. L.; Mustafaev, G. A.; Olshevskiy, A.; Pasyuk, M. A.; Perevalova, E. A.; Piskun, A. A.; Pocheptsov, T. A.; Pontecorvo, G.; Rodionov, V. K.; Rogov, Yu. N.; Salmin, R. A.; Samartsev, A. G.; Sapozhnikov, M. G.; Shabratova, G. S.; Skachkov, N. B.; Skachkova, A. N.; Strokovsky, E. A.; Suleimanov, M. K.; Teshev, R. Sh.; Tokmenin, V. V.; Uzhinsky, V. V.; Vodopyanov, A. S.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Glazier, D.; Watts, D.; Woods, P.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savriè, M.; Stancari, G.; Akishina, V.; Kisel, I.; Kulakov, I.; Zyzak, M.; Arora, R.; Bel, T.; Gromliuk, A.; Kalicy, G.; Krebs, M.; Patsyuk, M.; Zuehlsdorf, M.; Bianchi, N.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Pace, E.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R. F.; Bianco, S.; Bremer, D.; Brinkmann, K. T.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Eissner, T.; Etzelmüller, E.; Föhl, K.; Galuska, M.; Gessler, T.; Gutz, E.; Hayrapetyan, A.; Hu, J.; Kröck, B.; Kühn, W.; Kuske, T.; Lange, S.; Liang, Y.; Merle, O.; Metag, V.; Mülhheim, D.; Münchow, D.; Nanova, M.; Novotny, R.; Pitka, A.; Quagli, T.; Rieke, J.; Rosenbaum, C.; Schnell, R.; Spruck, B.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wasem, T.; Werner, M.; Zaunick, H. G.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P. N.; Kulkarni, A. V.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P.; Lindemulder, M.; Löhner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; van der Weele, J. C.; Tiemens, M.; Veenstra, R.; Vejdani, S.; Kalita, K.; Mohanta, D. P.; Kumar, A.; Roy, A.; Sahoo, R.; Sohlbach, H.; Büscher, M.; Cao, L.; Cebulla, A.; Deermann, D.; Dosdall, R.; Esch, S.; Georgadze, I.; Gillitzer, A.; Goerres, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Kozlov, V.; Lehrach, A.; Leiber, S.; Maier, R.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Ritman, J.; Schadmand, S.; Schumann, J.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Rigato, V.; Fissum, S.; Hansen, K.; Isaksson, L.; Lundin, M.; Schröder, B.; Achenbach, P.; Bleser, S.; Cardinali, M.; Corell, O.; Deiseroth, M.; Denig, A.; Distler, M.; Feldbauer, F.; Fritsch, M.; Jasinski, P.; Hoek, M.; Kangh, D.; Karavdina, A.; Lauth, W.; Leithoff, H.; Merkel, H.; Michel, M.; Motzko, C.; Müller, U.; Noll, O.; Plueger, S.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Steinen, M.; Thiel, M.; Weber, T.; Zambrana, M.; Dormenev, V. I.; Fedorov, A. A.; Korzihik, M. V.; Missevitch, O. V.; Balanutsa, P.; Balanutsa, V.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Varentsov, V.; Boukharov, A.; Malyshev, O.; Marishev, I.; Semenov, A.; Konorov, I.; Paul, S.; Grieser, S.; Hergemöller, A. K.; Khoukaz, A.; Köhler, E.; Täschner, A.; Wessels, J.; Dash, S.; Jadhav, M.; Kumar, S.; Sarin, P.; Varma, R.; Chandratre, V. B.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A. K.; Roy, B.; Yan, Y.; Chinorat, K.; Khanchai, K.; Ayut, L.; Pornrad, S.; Barnyakov, A. Y.; Blinov, A. E.; Blinov, V. E.; Bobrovnikov, V. S.; Kononov, S. A.; Kravchenko, E. A.; Kuyanov, I. A.; Onuchin, A. P.; Sokolov, A. A.; Tikhonov, Y. A.; Atomssa, E.; Hennino, T.; Imre, M.; Kunne, R.; Le Galliard, C.; Ma, B.; Marchand, D.; Ong, S.; Ramstein, B.; Rosier, P.; Tomasi-Gustafsson, E.; Van de Wiele, J.; Boca, G.; Costanza, S.; Genova, P.; Lavezzi, L.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Melnik, Y.; Levin, A.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Yabsley, B.; Bäck, T.; Cederwall, B.; Makónyi, K.; Tegnér, P. E.; von Würtemberg, K. M.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Kashchuk, A.; Levitskaya, O.; Manaenkov, S.; Miklukho, O.; Naryshkin, Y.; Suvorov, K.; Veretennikov, D.; Zhadanov, A.; Rai, A. K.; Godre, S. S.; Duchat, R.; Amoroso, A.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Zotti, L.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mingnore, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Younis, H.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Clement, H.; Gålnander, B.; Caldeira Balkeståhl, L.; Calén, H.; Fransson, K.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Pettersson, J.; Schönning, K.; Wolke, M.; Zlomanczuk, J.; Díaz, J.; Ortiz, A.; Vinodkumar, P. C.; Parmar, A.; Chlopik, A.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Suzuki, K.; Widmann, E.; Zmeskal, J.; Fröhlich, B.; Khaneft, D.; Lin, D.; Zimmermann, I.; Semenov-Tian-Shansky, K.
2015-08-01
Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion ( πN) TDAs from reaction with the future P¯ANDA detector at the FAIR facility. At high center-of-mass energy and high invariant mass squared of the lepton pair q 2, the amplitude of the signal channel admits a QCD factorized description in terms of πN TDAs and nucleon Distribution Amplitudes (DAs) in the forward and backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring with the P¯ANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. were performed for the center-of-mass energy squared s = 5 GeV2 and s = 10 GeV2, in the kinematic regions 3.0 < q 2 < 4.3 GeV2 and 5 < q 2 GeV2, respectively, with a neutral pion scattered in the forward or backward cone in the proton-antiproton center-of-mass frame. Results of the simulation show that the particle identification capabilities of the P¯ANDA detector will allow to achieve a background rejection factor of 5 · 107 (1 · 107) at low (high) q 2 for s = 5 GeV2, and of 1 · 108 (6 · 106) at low (high) q 2 for s = 10 GeV2, while keeping the signal reconstruction efficiency at around 40%. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 fb-1 of integrated luminosity. The cross sections obtained from the simulations are used to show that a test of QCD collinear factorization can be done at the lowest order by measuring scaling laws and angular distributions. The future measurement of the signal channel cross section with P¯ANDA will provide a new test of the perturbative QCD description of a novel class of hard exclusive reactions and will open the possibility of experimentally accessing π TDAs.
Measurements of d 2 n and A 1 n : Probing the neutron spin structure
Flay, D.; Posik, M.; Parno, D. S.; ...
2016-09-06
We report on the results of the E06-014 experiment performed at Jefferson Lab in Hall A, where a precision measurement of the twist-3 matrix elementmore » $$d_2$$ of the neutron ($$d_{2}^{n}$$) was conducted. This quantity represents the average color Lorentz force a struck quark experiences in a deep inelastic electron scattering event off a neutron due to its interaction with the hadronizing remnants. This color force was determined from a linear combination of the third moments of the spin structure functions $$g_1$$ and $$g_2$$ on $$^{3}$$He after nuclear corrections had been applied to these moments. The kinematics included two average $$Q^{2}$$ bins of $3.2$ GeV$$^{2}$$ and $4.3$ GeV$$^{2}$$, and Bjorken-$x$ $$0.25 \\leq x \\leq 0.90$$ covering the DIS and resonance regions. We found $$d_2^n$$ to be small and negative for $ = 3.2$ GeV$$^{2}$$, and smaller for $ = 4.3$ GeV$$^{2}$$, consistent with a lattice QCD calculation. The twist-4 matrix element $$f_{2}^{n}$$ was extracted by combining our $$d_{2}^{n}$$ with the world data on $$\\Gamma_{1}^{n} = \\int_{0}^{1} g_{1}^{n} dx$$. We found $$f_{2}^{n}$$ to be roughly an order of magnitude larger than $$d_{2}^{n}$$. Utilizing the extracted $$d_{2}^{n}$$ and $$f_{2}^{n}$$ data, we separated the color force into its electric and magnetic components, $$F_{E}^{y,n}$$ and $$F_{B}^{y,n}$$, and found them to be equal and opposite in magnitude, in agreement with instanton model predictions but not with those from QCD sum rules. Additionally, we have extracted the neutron virtual photon-nucleon asymmetry $$A_{1}^{n}$$, the structure function ratio $$g_{1}^{n}/F_{1}^{n}$$, and the quark ratios $$(\\Delta u + \\Delta \\bar{u})/(u + \\bar{u})$$ and $$(\\Delta d + \\Delta \\bar{d})/(d + \\bar{d})$$. Lastly, these results were found to be consistent with DIS world data and with the prediction of the constituent quark model but at odds with those of perturbative QCD at large $x$.« less
Inclusive rare B decays using effective field theories
NASA Astrophysics Data System (ADS)
Bauer, Christian
In this thesis we will discuss several properties of rare decays of B mesons. First we discuss properties of the inclusive radiative decay B¯ --> Xsγ, where Xs stands for any hadronic state containing an s quark. We extend previous studies of this decay, which included perturbative corrections to order αs and nonperturbative contributions up to order (ΛQCD/ mb)2 and calculate the O (ΛQCD/mb)3 contributions to this decay. The values of the nonperturbative parameters entering at this order are unknown, leading to uncertainties in the standard model prediction of this decay. We estimate the size of these nonperturbative uncertainties by varying these parameters in the range suggested by dimensional analysis. We also estimate uncertainties arising from a cut on the photon energy which is required experimentally. Another decay mode investigated is B¯ --> Xsl+l-. We study the O (ΛQCD/mb)3 contributions to the leptonic invariant mass spectrum, the forward-backward asymmetry and hadronic invariant mass moments and estimate the resulting uncertainties. We calculate how the size of these uncertainties depend on the value of an experimental cut that has to be applied to eliminate the large background from other B decays. A model independent way to determinate the CKM matrix element | Vub| from the dilepton invariant mass spectrum of the inclusive decay B-->Xul+ n is presented next. We show that cuts required to eliminate the charm background still allow for a theoretically clean way to determine the CKM matrix element |Vub|. We also discuss the utility of the B¯ --> Xsl +l- decay rate above the y (2S) resonance to reduce the resulting uncertainties. Finally, we introduce a novel effective theory valid for highly energetic particles. In decays where the phase space is sufficiently restricted such that final state particles have very high energies compared to their mass, the perturbative as well as nonperturbative series diverge. The effective theory presented allows to sum perturbative Sudakov logarithms in a framework that also incorporates the nonperturbative physics in such limits of phase space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flay, D.; Posik, M.; Parno, D. S.
We report on the results of the E06-014 experiment performed at Jefferson Lab in Hall A, where a precision measurement of the twist-3 matrix elementmore » $$d_2$$ of the neutron ($$d_{2}^{n}$$) was conducted. This quantity represents the average color Lorentz force a struck quark experiences in a deep inelastic electron scattering event off a neutron due to its interaction with the hadronizing remnants. This color force was determined from a linear combination of the third moments of the spin structure functions $$g_1$$ and $$g_2$$ on $$^{3}$$He after nuclear corrections had been applied to these moments. The kinematics included two average $$Q^{2}$$ bins of $3.2$ GeV$$^{2}$$ and $4.3$ GeV$$^{2}$$, and Bjorken-$x$ $$0.25 \\leq x \\leq 0.90$$ covering the DIS and resonance regions. We found $$d_2^n$$ to be small and negative for $ = 3.2$ GeV$$^{2}$$, and smaller for $ = 4.3$ GeV$$^{2}$$, consistent with a lattice QCD calculation. The twist-4 matrix element $$f_{2}^{n}$$ was extracted by combining our $$d_{2}^{n}$$ with the world data on $$\\Gamma_{1}^{n} = \\int_{0}^{1} g_{1}^{n} dx$$. We found $$f_{2}^{n}$$ to be roughly an order of magnitude larger than $$d_{2}^{n}$$. Utilizing the extracted $$d_{2}^{n}$$ and $$f_{2}^{n}$$ data, we separated the color force into its electric and magnetic components, $$F_{E}^{y,n}$$ and $$F_{B}^{y,n}$$, and found them to be equal and opposite in magnitude, in agreement with instanton model predictions but not with those from QCD sum rules. Additionally, we have extracted the neutron virtual photon-nucleon asymmetry $$A_{1}^{n}$$, the structure function ratio $$g_{1}^{n}/F_{1}^{n}$$, and the quark ratios $$(\\Delta u + \\Delta \\bar{u})/(u + \\bar{u})$$ and $$(\\Delta d + \\Delta \\bar{d})/(d + \\bar{d})$$. Lastly, these results were found to be consistent with DIS world data and with the prediction of the constituent quark model but at odds with those of perturbative QCD at large $x$.« less
Detection and discrimination of colour, a comparison of physiological and psychophysical data
NASA Astrophysics Data System (ADS)
Valberg, A.; Lee, B. B.
1989-01-01
Whereas the physiological basis of colorimetry (colour matches) is well understood in terms of the trireceptor theory of colour vision, colour discrimination and scaling still lack a comparable foundation. We present here experimental data that demonstrate how sensitivity and responsiveness of different types of cone-opponent and non-opponent cells of the macaque monkey correlate with human threshold sensitivity on the one hand, and how they in combination can be used to construct a suprathreshold equidistant colour space. Psychophysical thresholds correlate well with the threshold envelope of the most sensitive cells when stimuli are projected upon a steady white background. Detection thresholds for stimuli of differing wavelength and purity (saturation) generally indicate a transition from a phasic non-opponent system to a tonic opponent system of on-centre cells as purity increases. Detection and chromatic discrimination thresholds coincide only for long and short wavelengths of high purity, whereas they differ for mid-spectral lights. Different cell types may thus support detection and discrimination with different stimuli. With chromatic scaling of surface colours on the other hand, when stimuli are darker than an adaptation field still other cell types are needed. We demonstrate that it is possible, from a combination of on- and off-opponent cells, to reconstruct a uniform colour space, using summed outputs of cells with the same cone combination and vector addition for cells with different combinations. Different hues are represented by opponent cells with inputs from different cone types, the hue percept being related to the ratio of the activities of these cell systems.
Direction-Sensitive Hand-Held Gamma-Ray Spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, S.
2012-10-04
A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal’s energy resolution, less than 3% at 662 keV, is also excellent, and the response ismore » highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.« less
Zanderighi, Giulia
2018-05-21
Modern QCD - Lecture 2 We will start discussing the matter content of the theory and revisit the experimental measurements that led to the discovery of quarks. We will then consider a classic QCD observable, the R-ratio, and use it to illustrate the appearance of UV divergences and the need to renormalize the coupling constant of QCD. We will then discuss asymptotic freedom and confinement. Finally, we will examine a case where soft and collinear infrared divergences appear, will discuss the soft approximation in QCD and will introduce the concept of infrared safe jets.
NASA Astrophysics Data System (ADS)
Aoki, Sinya
2013-07-01
We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for nucleon-nucleon potentials.
Renormalization of Extended QCD2
NASA Astrophysics Data System (ADS)
Fukaya, Hidenori; Yamamura, Ryo
2015-10-01
Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N_c, to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region.
θ and the η ' in large N supersymmetric QCD
Dine, Michael; Draper, Patrick; Stephenson-Haskins, Laurel; ...
2017-05-22
Here, we study the large N θ dependence and the η' potential in supersymmetric QCD with small soft SUSY-breaking terms. Known exact results in SUSY QCD are found to reflect a variety of expectations from large N perturbation theory, including the presence of branches and the behavior of theories with matter (both with N f << N and N f ~ N ). But, there are also striking departures from ordinary QCD and the conventional large N description: instanton effects, when under control, are not exponentially suppressed at large N , and branched structure in supersymmetric QCD is always associatedmore » with approximate discrete symmetries. We suggest that these differences motivate further study of large N QCD on the lattice.« less
Matrix theory for baryons: an overview of holographic QCD for nuclear physics.
Aoki, Sinya; Hashimoto, Koji; Iizuka, Norihiro
2013-10-01
We provide, for non-experts, a brief overview of holographic QCD (quantum chromodynamics) and a review of the recent proposal (Hashimoto et al 2010 (arXiv:1003.4988[hep-th])) of a matrix-like description of multi-baryon systems in holographic QCD. Based on the matrix model, we derive the baryon interaction at short distances in multi-flavor holographic QCD. We show that there is a very universal repulsive core of inter-baryon forces for a generic number of flavors. This is consistent with a recent lattice QCD analysis for Nf = 2, 3 where the repulsive core looks universal. We also provide a comparison of our results with the lattice QCD and the operator product expansion analysis.
Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations
Ma, Yan-Qing; Qiu, Jian-Wei
2018-01-10
Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. In conclusion, we also show that the proposed functions for lattice QCDmore » calculation of PDFs in the literature are special cases of these good LCSs.« less
NASA Astrophysics Data System (ADS)
Alhakeem, Eyad; Zavgorodni, Sergei
2018-01-01
The purpose of this study was to evaluate the latent variance (LV) of Varian TrueBeam photon phase-space files (PSF) for open 10 × 10 cm2 and small stereotactic fields and estimate the number of phase spaces required to be summed up in order to maintain sub-percent LV in Monte Carlo (MC) dose calculations. BEAMnrc/DOSXYZnrc software was used to transport particles from Varian phase-space files (PSFA) through the secondary collimators. Transported particles were scored into another phase-space located under the jaws (PSFB), or transported further through the cone collimators and scored straight below, forming PSFC. Phase-space files (PSFB) were scored for 6 MV-FFF, 6 MV, 10 MV-FFF, 10 MV and 15 MV beams with 10 × 10 cm2 field size, and PSFC were scored for 6 MV beam under circular cones of 0.13, 0.25, 0.35, and 1 cm diameter. Both PSFB and PSFC were transported into a water phantom with particle recycling number ranging from 10 to 1000. For 10 × 10 cm2 fields 0.5 × 0.5 × 0.5 cm3 voxels were used to score the dose, whereas the dose was scored in 0.1 × 0.1 × 0.5 cm3 voxels for beams collimated with small cones. In addition, for small 0.25 cm diameter cone-collimated 6 MV beam, phantom voxel size varied as 0.02 × 0.02 × 0.5 cm3, 0.05 × 0.05 × 0.5 cm3 and 0.1 × 0.1 × 0.5 cm3. Dose variances were scored in all cases and LV evaluated as per Sempau et al. For the 10 × 10 cm2 fields calculated LVs were greatest at the phantom surface and decreased with depth until they reached a plateau at 5 cm depth. LVs were found to be 0.54%, 0.96%, 0.35%, 0.69% and 0.57% for the 6 MV-FFF, 6 MV, 10 MV-FFF, 10 MV and 15 MV energies, respectively at the depth of 10 cm. For the 6 MV phase-space collimated with cones of 0.13, 0.25, 0.35, 1.0 cm diameter, the LVs calculated at 1.5 cm depth were 75.6%, 25.4%, 17.6% and 8.0% respectively. Calculated LV for the 0.25 cm cone-collimated 6 MV beam were 61.2%, 40.7%, 22.5% in 0.02 × 0.02 × 0.5 cm3, 0.05 × 0.05 × 0.5 cm3 and 0.1 × 0.1 × 0.5 cm3 voxels respectively. In order to achieve sub-percent LV in open 10 × 10 cm2 field MC simulations a single PSF can be used, whereas for small SRS fields (0.13-1.0 cm) more PSFs (66-8 PSFs) would have to be summed.
PREFACE: 3rd International Conference on Hadron Physics (TROIA'11)
NASA Astrophysics Data System (ADS)
Erkol, Güray; Küçükarslan, Ayşe; Özpineci, Altuğ
2012-03-01
The 3rd International Conference on Hadron Physics, TROIA'11 was held at Canakkale, Turkey on 22-25 August 2011. Ozyegin University, Middle East Technical University, Canakkale Onsekiz Mart University and HadronPhysics2 Consortium sponsored the conference. Its aim was to bring together the experts and young scientists working on experimental and theoretical hadron physics. About 60 participants from 12 countries attended the conference. The topics covered included: Chiral Perturbation Theory QCD Sum Rules Effective Field Theory Exotic Hadrons Hadron Properties from Lattice QCD Experimental Results and Future Perspectives Hadronic Distribution Amplitudes The conference presentations were organized such that the morning sessions contained invited talks and the afternoon sessions were devoted to contributed talks and poster presentations. The speakers of the invited talks were: D Melikhov, M Nielsen, M Oka, E Oset, S Scherer, T T Takahashi and R Wanke. The conference venue was a resort hotel near Canakkale. As a social program, a guided full-day excursion to the excavation site of the ancient town of Troia and Assos was organized. We believe that this conference provided a medium for young scientists and experts in the field to effectively communicate and share ideas. We would like to express our sincere thanks to all participants for their contributions and stimulating discussions. We are also grateful to the Scientific Secretary, Kadir Utku Can, and all other members of the Organizing Committee for their patience and efforts. 13 February 2012 The Editors Güray Erkol Ayşe Küçükarslan Altuğ Özpineci Conference photograph
Neutral and charged scalar mesons, pseudoscalar mesons, and diquarks in magnetic fields
NASA Astrophysics Data System (ADS)
Liu, Hao; Wang, Xinyang; Yu, Lang; Huang, Mei
2018-04-01
We investigate both (pseudo)scalar mesons and diquarks in the presence of external magnetic field in the framework of the two-flavored Nambu-Jona-Lasinio (NJL) model, where mesons and diquarks are constructed by infinite sum of quark-loop chains by using random phase approximation. The polarization function of the quark-loop is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in the Landau level representation. We systematically investigate the masses behaviors of scalar σ meson, neutral and charged pions as well as the scalar diquarks, with respect to the magnetic field strength at finite temperature and chemical potential. It is shown that the numerical results of both neutral and charged pions are consistent with the lattice QCD simulations. The mass of the charge neutral pion keeps almost a constant under the magnetic field, which is preserved by the remnant symmetry of QCD ×QED in the vacuum. The mass of the charge neutral scalar σ is around two times quark mass and increases with the magnetic field due to the magnetic catalysis effect, which is an typical example showing that the polarized internal quark structure cannot be neglected when we consider the meson properties under magnetic field. For the charged particles, the one quark-antiquark loop contribution to the charged π± increases essentially with the increase of magnetic fields due to the magnetic catalysis of the polarized quarks. However, the one quark-quark loop contribution to the scalar diquark mass is negative comparing with the point-particle result and the loop effect is small.
NASA Astrophysics Data System (ADS)
Boito, D.; Dedonder, J.-P.; El-Bennich, B.; Escribano, R.; Kamiński, R.; Leśniak, L.; Loiseau, B.
2017-12-01
We introduce parametrizations of hadronic three-body B and D weak decay amplitudes that can be readily implemented in experimental analyses and are a sound alternative to the simplistic and widely used sum of Breit-Wigner type amplitudes, also known as the isobar model. These parametrizations can be particularly useful in the interpretation of C P asymmetries in the Dalitz plots. They are derived from previous calculations based on a quasi-two-body factorization approach in which two-body hadronic final-state interactions are fully taken into account in terms of unitary S - and P -wave π π , π K , and K K ¯ form factors. These form factors can be determined rigorously, fulfilling fundamental properties of quantum field-theory amplitudes such as analyticity and unitarity, and are in agreement with the low-energy behavior predicted by effective theories of QCD. They are derived from sets of coupled-channel equations using T -matrix elements constrained by experimental meson-meson phase shifts and inelasticities, chiral symmetry, and asymptotic QCD. We provide explicit amplitude expressions for the decays B±→π+π-π±, B →K π+π-, B±→K+K-K±, D+→π-π+π+, D+→K-π+π+, and D0→KS0π+π-, for which we have shown in previous studies that this approach is phenomenologically successful; in addition, we provide expressions for the D0→KS0K+K- decay. Other three-body hadronic channels can be parametrized likewise.
NASA Astrophysics Data System (ADS)
Iritani, Takumi
2018-03-01
Both direct and HAL QCD methods are currently used to study the hadron interactions in lattice QCD. In the direct method, the eigen-energy of two-particle is measured from the temporal correlation. Due to the contamination of excited states, however, the direct method suffers from the fake eigen-energy problem, which we call the "mirage problem," while the HAL QCD method can extract information from all elastic states by using the spatial correlation. In this work, we further investigate systematic uncertainties of the HAL QCD method such as the quark source operator dependence, the convergence of the derivative expansion of the non-local interaction kernel, and the single baryon saturation, which are found to be well controlled. We also confirm the consistency between the HAL QCD method and the Lüscher's finite volume formula. Based on the HAL QCD potential, we quantitatively confirm that the mirage plateau in the direct method is indeed caused by the contamination of excited states.
Exclusive Reactions at High Momentum Transfer
NASA Astrophysics Data System (ADS)
Radyushkin, Anatoly; Stoler, Paul
2008-03-01
Hard exclusive scattering at JLab / P. Kroll -- AdS/CFT and exclusive processes in QCD / S. J. Brodsky and G. F. de Téramond -- Hadron structure matters in collisions at high energy and momentum / A. W. Thomas -- Inclusive perspectives / P. Hoyer -- Fitting DVCS at NLO and beyond / K. Kumericki, D. Müller and K. Passek-Kumericki -- Spin-orbit correlations and single-spin asymmetries / M. Burkardt -- Electroproduction of soft pions at large momentum transfers / V. M. Braun, D. Yu. Ivanov and A. Peters -- Color transparency: 33 years and still running / M. Strikman -- Meson clouds and nucleon electromagnetic form factors / G. A. Miller -- Covariance, dynamics and symmetries, and hadron form factors / M. S. Bhagwat, I. C. Cloët and C. D. Roberts -- N to [symbol] electromagnetic and axial form factors in full QCD / C. Alexandrou -- Real and virtual compton scattering in perturbative QCD / C.-R. Ji and R. Thomson -- Deeply virtual compton scattering at Jefferson Lab / F. Sabatie -- DVCS at HERMES: recent results / F. Ellinghaus -- Deeply virtual compton scattering with CLAS / F. X. Girod -- Deeply virtual compton scattering off the neutron at JLab Hall A / M. Mazouz -- The future DVCS experiments in Hall A at JLab / J. Roche -- Deeply virtual compton scattering with CLAS12 / L. Elouadrhiri -- Quark helicity flip and the transverse spin dependence of inclusive DIS / A. Afanasev, M. Strikman and C. Weiss -- Deeply virtual pseudoscalar meson production / V. Kubarovsky and P. Stoler -- Exclusive p[symbol] electroproduction on the proton: GPDs or not GPDs? / M. Guidal and S. Morrow -- p[symbol] transverse target spin asymmetry at HERMES / A. Airapetian -- Electroproduction of ø(1020) mesons / J. P. Santoro and E. S. Smith -- Generalized parton distributions from hadronic observables / S. Ahmad ... [et al.] -- Imaging the proton via hard exclusive production in diffractive pp scattering / G. E. Hyde ... [et al.] -- Regge contributions to exclusive electro-production / A. P. Szczepaniak and J. T. Londergan -- High energy break-up of few-nucleon systems / M. Sargsian -- Photodisintegration of the deuteron, and [symbol]He / R. Gilman -- A review of the few-body form factors / G. G. Petratos -- Nucleon form factor measurements and interpretation / C. F. Perdrisat -- Implications of G[symbol](Q[symbol])/G[symbol](Q[symbol]) / S. Dubnicka and A. Z. Dubnickova -- High Q[symbol] large acceptance G[symbol]/G[symbol] measurements using polarization transfer / L. Pentchev, C. F. Perdrisat and B. Wojtsekhowski -- A precise measurement of the neutron magnetic form factor G[symbol] in the few-GeV[symbol] region / G. P. Gilfoyle et al. (the CLAS collaboration) -- Magnetic form factor of the neutron up to 8 (GeV/c)[symbol] / B. Quinn -- Timelike form factors / K. K. Seth -- Polarization phenomena in e[symbol]e[symbol] [symbol] pp¯ revisited / A. Z. Dubnickova and S. Dubnicka -- Light-cone sum rules for form factors of the N[symbol] transition at Q[symbol] = 0 / J. Rohrwild -- Exclusive electroproduction of [symbol] mesons / A. N. Villano (for the JLab E01-002 collaboration) -- Exclusive electroproduction of [symbol] mesons in the S[symbol](1535) resonance region at high momentum transfer / M. M. Dalton (for the JLab E01-002 collaboration) -- Two-photon exchange in electron-proton elastic scattering: theory update / A. V. Afanasev -- Two-photon exchange contributions to elastic ep scattering in the non-local field formalism / P. Jain, S. D. Joglekar and S. Mitra -- Beyond the born approximation: a precise comparison of positron-proton and electron-proton elastic scattering in CLAS / J. Lachniet et al. -- Meson form factors in the space-like region / D. Gaskell -- Pion-nucleon distribution amplitudes / A. Peters -- [symbol] scattering in the 1/N[symbol] expansion / H. J. Kwee -- [symbol] annihilations into quasi-two-body final states at 10.58 GeV / Kai Yi -- Transition distribution amplitudes / J. P. Lansberg, B. Pire and L. Szymanowski -- Novel QCD effects from initial and final state interactions / S. J. Brodsky -- Parton distributions and spin-orbital correlations / F. Yuan -- Transverse momentum dependences of distribution and fragmentation functions / D. S. Hwang and D. S. Kim -- Flavor dependence of the Boer-Mulders function and its influence on Azimuthal and single-spin asymmetries in semi-inclusive DIS / L. P. Gamberg, G. R. Goldstein and M. Schlegel -- Symmetric spin-dependent structure function in deep inelastic processes / D. S. Hwang, J. H. Kim and S. Kim -- HERMES recoil detector / R. Perez-Benito -- Inner calorimeter in CLAS/DVCS experiment / R. Niyazov -- Frozen-spin HD as a possible target for electro-production experiments / A. M. Sandorfi et al.
Usami, Masahide; Iwadare, Yoshitaka; Watanabe, Kyota; Ushijima, Hirokage; Kodaira, Masaki; Okada, Takashi; Sasayama, Daimei; Sugiyama, Nobuhiro; Saito, Kazuhiko
2015-07-01
The parent-assessed children-with-difficulties questionnaire (Questionnaire-Children with Difficulties; QCD) is designed to evaluate a child׳s difficulties in functioning during specific periods of the day. This study aimed to use the QCD to evaluate the difficulties in daily functioning experienced by children with depressive disorders. A case-control design was used. The cases comprised 90 junior high school students with depressive disorder, whereas a community sample of 363 junior high school students was enrolled as controls. Behaviors were assessed using the QCD, Depression Self-Rating Scale (DSRS), Tokyo Autistic Behavior Scale (TABS), attention deficit hyperactivity disorder-rating scale (ADHD-RS), and Oppositional Defiant Behavior Inventory (ODBI). We then analyzed the effects of sex and diagnosis on the QCD scores as well as the correlation coefficients between the QCD and the other questionnaires. We included 90 cases (33 boys, 57 girls) with depressive disorders and 363 controls (180 boys, 183 girls). The QCD scores for the children with depressive disorders were significantly lower compared with those from the community sample (P<0.001). The morning, school-time, and night subscores of the QCD were lower for the children with both depressive disorders and truancy problems than for those with depressive disorders alone (P<0.001). Significant correlations were observed between the following: the night QCD subscore and the DSRS scores among boys, the morning QCD subscore and ADHD-RS inattention scores for all groups, and the evening QCD subscore and the TABS score. Parents reported that children with depressive disorders experienced greater difficulties in completing basic daily activities compared with community controls. These difficulties were dependent on sex, symptoms, and the time of day. The use of QCD to assess children with depressive disorders enables clinicians to clarify the time periods at which the children face difficulties. Copyright © 2015 Elsevier B.V. All rights reserved.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2016-08-01
A measurement of the cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a centre-of-mass energy of √s = 8 TeV is presented. The measurement covers the pseudorapidity ranges |η γ | < 1.37 and 1.56 ≤ |η γ | < 2.37 in the transverse energy range 25 < E T γ < 1500 GeV. The results are based on an integrated luminosity of 20.2 fb –1, recorded by the ATLAS detector at the LHC. Photon candidates are identified by combining information from the calorimeters and the inner tracker. The background is subtracted using amore » data-driven technique, based on the observed calorimeter shower-shape variables and the deposition of hadronic energy in a narrow cone around the photon candidate. In conclusion, the measured cross sections are compared with leading-order and next-to-leading order perturbative QCD calculations and are found to be in a good agreement over ten orders of magnitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benic, Sanjin; Fukushima, Kenji; Garcia-Montero, Oscar
Here, we compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the result obtained is formally at next-to-leading order in the CGC power counting, it provides the dominant contribution for central rapidities. We observe that the inclusive photon cross section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations inmore » the gluon saturation regime of QCD. We demonstrate that k ⊥ and collinear factorized expressions for inclusive photon production are obtained as leading twist approximations to our result. In particular, the collinearly factorized expression is directly sensitive to the nuclear gluon distribution at small x. Other results of interest include the realization of the Low-Burnett-Kroll soft photon theorem in the CGC framework and a comparative study of how the photon amplitude is obtained in Lorenz and light-cone gauges.« less
Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M
2014-08-15
We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. We show that the thermodynamic presence of these additional states gets imprinted in the yields of the ground-state strange hadrons leading to a systematic 5-8 MeV decrease of the chemical freeze-out temperatures of ground-state strange baryons.
Critical end point in the presence of a chiral chemical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Z. -F.; Cloët, I. C.; Lu, Y.
A class of Polyakov-loop-modified Nambu-Jona-Lasinio models has been used to support a conjecture that numerical simulations of lattice-regularized QCD defined with a chiral chemical potential can provide information about the existence and location of a critical end point in the QCD phase diagram drawn in the plane spanned by baryon chemical potential and temperature. That conjecture is challenged by conflicts between the model results and analyses of the same problem using simulations of lattice-regularized QCD (lQCD) and well-constrained Dyson-Schwinger equation (DSE) studies. We find the conflict is resolved in favor of the lQCD and DSE predictions when both a physicallymore » motivated regularization is employed to suppress the contribution of high-momentum quark modes in the definition of the effective potential connected with the Polyakov-loop-modified Nambu-Jona-Lasinio models and the four-fermion coupling in those models does not react strongly to changes in the mean field that is assumed to mock-up Polyakov-loop dynamics. With the lQCD and DSE predictions thus confirmed, it seems unlikely that simulations of lQCD with mu(5) > 0 can shed any light on a critical end point in the regular QCD phase diagram.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yan-Qing; Qiu, Jian-Wei
Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. In conclusion, we also show that the proposed functions for lattice QCDmore » calculation of PDFs in the literature are special cases of these good LCSs.« less
The quark condensate in multi-flavour QCD – planar equivalence confronting lattice simulations
Armoni, Adi; Shifman, Mikhail; Shore, Graham; ...
2015-02-01
Planar equivalence between the large N limits of N=1 Super Yang–Mills (SYM) theory and a variant of QCD with fermions in the antisymmetric representation is a powerful tool to obtain analytic non-perturbative results in QCD itself. In particular, it allows the quark condensate for N=3 QCD with quarks in the fundamental representation to be inferred from exact calculations of the gluino condensate in N=1 SYM. In this paper, we review and refine our earlier predictions for the quark condensate in QCD with a general number nf of flavours and confront these with lattice results.
QCD tests in $$p\\bar{p}$$ collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huth, John E.; Mangano, Michelangelo L.
1993-02-01
We review the status of QCD tests in high energy p-pbar collisions. Contents: i) Introduction ii) QCD in Hadronic Collisions iii) Jet Production iv) Heavy Flavour Production v) W and Z Production vi) Direct Photons.
Digital x-ray tomosynthesis with interpolated projection data for thin slab objects
NASA Astrophysics Data System (ADS)
Ha, S.; Yun, J.; Kim, H. K.
2017-11-01
In relation with a thin slab-object inspection, we propose a digital tomosynthesis reconstruction with fewer numbers of measured projections in combinations with additional virtual projections, which are produced by interpolating the measured projections. Hence we can reconstruct tomographic images with less few-view artifacts. The projection interpolation assumes that variations in cone-beam ray path-lengths through an object are negligible and the object is rigid. The interpolation is performed in the projection-space domain. Pixel values in the interpolated projection are the weighted sum of pixel values of the measured projections considering their projection angles. The experimental simulation shows that the proposed method can enhance the contrast-to-noise performance in reconstructed images while sacrificing the spatial resolving power.
Parton distributions and lattice QCD calculations: A community white paper
NASA Astrophysics Data System (ADS)
Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; Orginos, Kostas; Rojo, Juan; Accardi, Alberto; Alexandrou, Constantia; Bacchetta, Alessandro; Bozzi, Giuseppe; Chen, Jiunn-Wei; Collins, Sara; Cooper-Sarkar, Amanda; Constantinou, Martha; Del Debbio, Luigi; Engelhardt, Michael; Green, Jeremy; Gupta, Rajan; Harland-Lang, Lucian A.; Ishikawa, Tomomi; Kusina, Aleksander; Liu, Keh-Fei; Liuti, Simonetta; Monahan, Christopher; Nadolsky, Pavel; Qiu, Jian-Wei; Schienbein, Ingo; Schierholz, Gerrit; Thorne, Robert S.; Vogelsang, Werner; Wittig, Hartmut; Yuan, C.-P.; Zanotti, James
2018-05-01
In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.
Strangeness S =-1 hyperon-nucleon interactions: Chiral effective field theory versus lattice QCD
NASA Astrophysics Data System (ADS)
Song, Jing; Li, Kai-Wen; Geng, Li-Sheng
2018-06-01
Hyperon-nucleon interactions serve as basic inputs to studies of hypernuclear physics and dense (neutron) stars. Unfortunately, a precise understanding of these important quantities has lagged far behind that of the nucleon-nucleon interaction due to lack of high-precision experimental data. Historically, hyperon-nucleon interactions are either formulated in quark models or meson exchange models. In recent years, lattice QCD simulations and chiral effective field theory approaches start to offer new insights from first principles. In the present work, we contrast the state-of-the-art lattice QCD simulations with the latest chiral hyperon-nucleon forces and show that the leading order relativistic chiral results can already describe the lattice QCD data reasonably well. Given the fact that the lattice QCD simulations are performed with pion masses ranging from the (almost) physical point to 700 MeV, such studies provide a useful check on both the chiral effective field theory approaches as well as lattice QCD simulations. Nevertheless more precise lattice QCD simulations are eagerly needed to refine our understanding of hyperon-nucleon interactions.
Extension of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD
NASA Astrophysics Data System (ADS)
Aoki, S.
We extend the HAL QCD approach, with which potentials between two hadrons can be obtained in QCD at energy below inelastic thresholds, to inelastic and multi-particle scatterings. We first derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles, in terms of the one-shell $T$-matrix consrainted by the unitarity of quantum field theories. We show that its asymptotic behavior contains phase shifts and mixing angles of $n$ particle scatterings. This property is one of the essential ingredients of the HAL QCD scheme to define "potential" from the NBS wave function in quantum field theories such as QCD. We next construct energy independent but non-local potentials above inelastic thresholds, in terms of these NBS wave functions. We demonstrate an existence of energy-independent coupled channel potentials with a non-relativistic approximation, where momenta of all particles are small compared with their own masses. Combining these two results, we can employ the HAL QCD approach also to investigate inelastic and multi-particle scatterings.
Cadetti, Lucia; Bartoletti, Theodore M.; Thoreson, Wallace B.
2012-01-01
At the photoreceptor ribbon synapse, glutamate released from vesicles at different positions along the ribbon reaches the same postsynaptic receptors. Thus, vesicles may not exert entirely independent effects. We examined whether responses of salamander retinal horizontal cells evoked by light or direct depolarization during paired recordings could be predicted by summation of individual miniature excitatory postsynaptic currents (mEPSCs). For EPSCs evoked by depolarization of rods or cones, linear convolution of mEPSCs with photoreceptor release functions predicted EPSC waveforms and changes caused by inhibiting glutamate receptor desensitization. A low-affinity glutamate antagonist, kynurenic acid (KynA), preferentially reduced later components of rod-driven EPSCs, suggesting lower levels of glutamate are present during the later sustained component of the EPSC. A glutamate-scavenging enzyme, glutamic-pyruvic transaminase, did not inhibit mEPSCs or the initial component of rod-driven EPSCs, but reduced later components of the EPSC. Inhibiting glutamate uptake with a low concentration of dl-threo-β-benzoyloxyaspartate (TBOA) also did not alter mEPSCs or the initial component of rod-driven EPSCs, but enhanced later components of the EPSC. Low concentrations of TBOA and KynA did not affect the kinetics of fast cone-driven EPSCs. Under both rod- and cone-dominated conditions, light-evoked currents (LECs) were enhanced considerably by TBOA. LECs were more strongly inhibited than EPSCs by KynA, suggesting the presence of lower glutamate levels. Collectively, these results indicate that the initial EPSC component can be largely predicted from a linear sum of individual mEPSCs, but with sustained release, residual amounts of glutamate from multiple vesicles pool together, influencing LECs and later components of EPSCs. PMID:18547244
Resonant conversions of QCD axions into hidden axions and suppressed isocurvature perturbations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitajima, Naoya; Takahashi, Fuminobu, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp
2015-01-01
We study in detail MSW-like resonant conversions of QCD axions into hidden axions, including cases where the adiabaticity condition is only marginally satisfied, and where anharmonic effects are non-negligible. When the resonant conversion is efficient, the QCD axion abundance is suppressed by the hidden and QCD axion mass ratio. We find that, when the resonant conversion is incomplete due to a weak violation of the adiabaticity, the CDM isocurvature perturbations can be significantly suppressed, while non-Gaussianity of the isocurvature perturbations generically remain unsuppressed. The isocurvature bounds on the inflation scale can therefore be relaxed by the partial resonant conversion ofmore » the QCD axions into hidden axions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dine, Michael; Draper, Patrick; Stephenson-Haskins, Laurel
Here, we study the large N θ dependence and the η' potential in supersymmetric QCD with small soft SUSY-breaking terms. Known exact results in SUSY QCD are found to reflect a variety of expectations from large N perturbation theory, including the presence of branches and the behavior of theories with matter (both with N f << N and N f ~ N ). But, there are also striking departures from ordinary QCD and the conventional large N description: instanton effects, when under control, are not exponentially suppressed at large N , and branched structure in supersymmetric QCD is always associatedmore » with approximate discrete symmetries. We suggest that these differences motivate further study of large N QCD on the lattice.« less
Scheme Variations of the QCD Coupling and Hadronic τ Decays
NASA Astrophysics Data System (ADS)
Boito, Diogo; Jamin, Matthias; Miravitllas, Ramon
2016-10-01
The quantum chromodynamics (QCD) coupling αs is not a physical observable of the theory, since it depends on conventions related to the renormalization procedure. We introduce a definition of the QCD coupling, denoted by α^s, whose running is explicitly renormalization scheme invariant. The scheme dependence of the new coupling α^s is parametrized by a single parameter C , related to transformations of the QCD scale Λ . It is demonstrated that appropriate choices of C can lead to substantial improvements in the perturbative prediction of physical observables. As phenomenological applications, we study e+e- scattering and decays of the τ lepton into hadrons, both being governed by the QCD Adler function.
Patterned Roughness for Cross-flow Transition Control at Mach 6
NASA Astrophysics Data System (ADS)
Arndt, Alexander; Matlis, Eric; Semper, Michael; Corke, Thomas
2017-11-01
Experiments are performed to investigate patterned discrete roughness for transition control on a sharp right-circular cone at an angle of attack at Mach 6.0. The approach to transition control is based on exciting less-amplified (subcritical) stationary cross-flow (CF) modes that suppress the growth of the more-amplified (critical) CF modes, and thereby delay transition. The experiments were performed in the Air Force Academy Ludwieg Tube which is a conventional (noisy) design. The cone model is equipped with a motorized 3-D traversing mechanism that mounts on the support sting. The traversing mechanism held a closely-spaced pair of fast-response total pressure Pitot probes. The model utilized a removable tip to exchange between different tip-roughness conditions. Mean flow distortion x-development indicated that the transition Reynolds number increased by 25% with the addition of the subcritical roughness. The energy in traveling disturbances was centered in the band of most amplified traveling CF modes predicted by linear theory. The spatial pattern in the amplitude of the traveling CF modes indicated a nonlinear (sum and difference) interaction between the stationary and traveling CF modes that might explain differences in Retrans between noisy and quiet environments. Air Force Grant FA9550-15-1-0278.
Gamba, Thiago O; Oliveira, Matheus L; Flores, Isadora L; Cruz, Adriana D; Almeida, Solange M; Haiter-Neto, Francisco; Lopes, Sérgio L P C
2014-03-01
To compare dental plaster model (DPM) and cone-beam computed tomography (CBCT) in the measurement of the dental arches, and investigate whether CBCT image artifacts compromise the reliability of such measurements. Twenty patients were divided into two groups based on the presence or absence of metallic restorations in the posterior teeth. Both dental arches of the patients were scanned with the CBCT unit i-CAT, and DPMs were obtained. Two examiners obtained eight arch measurements on the CBCT images and DPMs and repeated this procedure 15 days later. The arch measurements of each patient group were compared separately by the Wilcoxon rank sum (Mann-Whitney U) test, with a significance level of 5% (α = .05). Intraclass correlation measured the level of intraobserver agreement. Patients with healthy teeth showed no significant difference between all DPM and CBCT arch measurements (P > .05). Patients with metallic restoration showed significant difference between DPM and CBCT for the majority of the arch measurements (P > .05). The two examiners showed excellent intraobserver agreement for both measuring methods with intraclass correlation coefficient higher than 0.95. CBCT provided the same accuracy as DPM in the measurement of the dental arches, and was negatively influenced by the presence of image artifacts.
Scattering processes and resonances from lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briceno, Raul A.; Dudek, Jozef J.; Young, Ross D.
The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lightermore » hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This paper reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. Finally, the challenges which currently limit the field are discussed along with the steps being taken to resolve them.« less
Scattering processes and resonances from lattice QCD
NASA Astrophysics Data System (ADS)
Briceño, Raúl A.; Dudek, Jozef J.; Young, Ross D.
2018-04-01
The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This article reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. The challenges which currently limit the field are discussed along with the steps being taken to resolve them.
Scattering processes and resonances from lattice QCD
Briceno, Raul A.; Dudek, Jozef J.; Young, Ross D.
2018-04-18
The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lightermore » hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This paper reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. Finally, the challenges which currently limit the field are discussed along with the steps being taken to resolve them.« less
Dyonic Flux Tube Structure of Nonperturbative QCD Vacuum
NASA Astrophysics Data System (ADS)
Chandola, H. C.; Pandey, H. C.
We study the flux tube structure of the nonperturbative QCD vacuum in terms of its dyonic excitations by using an infrared effective Lagrangian and show that the dyonic condensation of QCD vacuum has a close connection with the process of color confinement. Using the fiber bundle formulation of QCD, the magnetic symmetry condition is presented in a gauge covariant form and the gauge potential has been constructed in terms of the magnetic vectors on global sections. The dynamical breaking of the magnetic symmetry has been shown to lead the dyonic condensation of QCD vacuum in the infrared energy sector. Deriving the asymptotic solutions of the field equations in the dynamically broken phase, the dyonic flux tube structure of QCD vacuum is explored which has been shown to lead the confinement parameters in terms of the vector and scalar mass modes of the condensed vacuum. Evaluating the charge quantum numbers and energy associated with the dyonic flux tube solutions, the effect of electric excitation of monopole is analyzed using the Regge slope parameter (as an input parameter) and an enhancement in the dyonic pair correlations and the confining properties of QCD vacuum in its dyonically condensed mode has been demonstrated.
Symmetric and anti-symmetric LS hyperon potentials from lattice QCD
NASA Astrophysics Data System (ADS)
Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji; Inoue, Takashi; HAL QCD Collaboration
2014-09-01
We present recent results of odd-parity hyperon-hyperon potentials from lattice QCD. By using HAL QCD method, we generate hyperon-hyperon potentials from Nambu-Bethe-Salpeter (NBS) wave functions generated by lattice QCD simulation in the flavor SU(3) limit. Potentials in the irreducible flavor SU(3) representations are combined to make a Lambda-N potential which has a strong symmetric LS potential and a weak anti-symmetric LS potential. We discuss a possible cancellation between symmetric and anti-symmetric LS (Lambda-N) potentials after the coupled Sigma-N sector is integrated out. We present recent results of odd-parity hyperon-hyperon potentials from lattice QCD. By using HAL QCD method, we generate hyperon-hyperon potentials from Nambu-Bethe-Salpeter (NBS) wave functions generated by lattice QCD simulation in the flavor SU(3) limit. Potentials in the irreducible flavor SU(3) representations are combined to make a Lambda-N potential which has a strong symmetric LS potential and a weak anti-symmetric LS potential. We discuss a possible cancellation between symmetric and anti-symmetric LS (Lambda-N) potentials after the coupled Sigma-N sector is integrated out. This work is supported by JSPS KAKENHI Grant Number 25400244.
QCD on the BlueGene/L Supercomputer
NASA Astrophysics Data System (ADS)
Bhanot, G.; Chen, D.; Gara, A.; Sexton, J.; Vranas, P.
2005-03-01
In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented.
Vortical susceptibility of finite-density QCD matter
Aristova, A.; Frenklakh, D.; Gorsky, A.; ...
2016-10-07
Here, the susceptibility of finite-density QCD matter to vorticity is introduced, as an analog of magnetic susceptibility. It describes the spin polarization of quarks and antiquarks in finite-density QCD matter induced by rotation. We estimate this quantity in the chirally broken phase using the mixed gauge-gravity anomaly at finite baryon density. It is proposed that the vortical susceptibility of QCD matter is responsible for the polarization of Λ and Λ¯ hyperons observed recently in heavy ion collisions at RHIC by the STAR collaboration.
Polyakov loop modeling for hot QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukushima, Kenji; Skokov, Vladimir
Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.
Polyakov loop modeling for hot QCD
Fukushima, Kenji; Skokov, Vladimir
2017-06-19
Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.
Some New/Old Approaches to QCD
DOE R&D Accomplishments Database
Gross, D. J.
1992-11-01
In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, Sampurn; Mohanty, Subhendra; Dey, Ujjal Kumar, E-mail: sampurn@prl.res.in, E-mail: ujjal@cts.iitkgp.ernet.in, E-mail: mohanty@prl.res.in
Cosmological phase transitions can be a source of Stochastic Gravitational Wave (SGW) background. Apart from the dynamics of the phase transition, the characteristic frequency and the fractional energy density Ω{sub gw} of the SGW depends upon the temperature of the transition. In this article, we compute the SGW spectrum in the light of QCD equation of state provided by the lattice results. We find that the inclusion of trace anomaly from lattice QCD, enhances the SGW signal generated during QCD phase transition by ∼ 50% and the peak frequency of the QCD era SGW are shifted higher by ∼ 25%more » as compared to the earlier estimates without trace anomaly. This result is extremely significant for testing the phase transition dynamics near QCD epoch.« less
Scheme variations of the QCD coupling
NASA Astrophysics Data System (ADS)
Boito, Diogo; Jamin, Matthias; Miravitllas, Ramon
2017-03-01
The Quantum Chromodynamics (QCD) coupling αs is a central parameter in the Standard Model of particle physics. However, it depends on theoretical conventions related to renormalisation and hence is not an observable quantity. In order to capture this dependence in a transparent way, a novel definition of the QCD coupling, denoted by â, is introduced, whose running is explicitly renormalisation scheme invariant. The remaining renormalisation scheme dependence is related to transformations of the QCD scale Λ, and can be parametrised by a single parameter C. Hence, we call â the C-scheme coupling. The dependence on C can be exploited to study and improve perturbative predictions of physical observables. This is demonstrated for the QCD Adler function and hadronic decays of the τ lepton.
Light meson gas in the QCD vacuum and oscillating universe
NASA Astrophysics Data System (ADS)
Prokhorov, George; Pasechnik, Roman
2018-01-01
We have developed a phenomenological effective quantum-field theoretical model describing the "hadron gas" of the lightest pseudoscalar mesons, scalar σ-meson and σ-vacuum, i.e. the expectation value of the σ-field, at finite temperatures. The corresponding thermodynamic approach was formulated in terms of the generating functional derived from the effective Lagrangian providing the basic thermodynamic information about the "meson plasma + QCD condensate" system. This formalism enables us to study the QCD transition from the hadron phase with direct implications for cosmological evolution. Using the hypothesis about a positively-definite QCD vacuum contribution stochastically produced in early universe, we show that the universe could undergo a series of oscillations during the QCD epoch before resuming unbounded expansion.
Symmetry Transition Preserving Chirality in QCD: A Versatile Random Matrix Model
NASA Astrophysics Data System (ADS)
Kanazawa, Takuya; Kieburg, Mario
2018-06-01
We consider a random matrix model which interpolates between the chiral Gaussian unitary ensemble and the Gaussian unitary ensemble while preserving chiral symmetry. This ensemble describes flavor symmetry breaking for staggered fermions in 3D QCD as well as in 4D QCD at high temperature or in 3D QCD at a finite isospin chemical potential. Our model is an Osborn-type two-matrix model which is equivalent to the elliptic ensemble but we consider the singular value statistics rather than the complex eigenvalue statistics. We report on exact results for the partition function and the microscopic level density of the Dirac operator in the ɛ regime of QCD. We compare these analytical results with Monte Carlo simulations of the matrix model.
Harvest time of Cryptomeria japonica seeds depending on climate factors
NASA Astrophysics Data System (ADS)
Son, Seog-Gu; Kim, Hyo-Jeong; Kim, Chang-Soo; Byun, Kwang-Ok
2010-05-01
Sound seeds should have good germination rates and seed germination can be influenced by several factors. Seed picking time is regarded as one of the necessary elements to obtain sound seeds. From a clonal seed orchard of Cryptomeria japonica located in southern part of Korean peninsular, cones were picked about every 10 days from 30th of July 2005 to 30th of October in both 2005 and 2006. We have also analyzed the effects of climatic factors about two consecutive years on seed productivity. From the picked cones, seeds were collected and these germination ability, seed size and embryo shapes were investigated according to cone picking time. The 1,000-seed weight picked on 18th of August was 3.3 g and 5.3 g on 30th of September 2005and 2006. The size of seeds picked from 18th of August to 30th of September increased from 19.3 mm to 21.3 mm in length and from 15.8 mm to 18.5 mm in width. Depending on picking time, various shapes of embryos, including embryos with liquid material, jellied material and fully matured ones were observed. Germination aspects also varied throughout the test days. About two weeks after seeding in a glass petri-dish, germinal apparatuses appeared from each test seed sets which had been picked from after 10 August 2005 and 10 August 2006. The germination rates started from 10.7% from seeds picked 20 August 2006. Average germination rate in 2005 was 18.3 and 19.6 in 2006. In 2005, the highest germination rate was 34.3% from seeds picked on the 30th of September. In 2006, the highest germination rate was 31.7% for seeds picked at the same date as the 2005 seeds. After September, the highest germination rate for picked seeds decreased in both 2005 and 2006. Among the climatic factors, monthly sum of temperature and of precipitation were the main factors for maturation of C. japonica seeds. The results implied that the best cone picking time for the Korean C. japonica seed orchard to be around the end of September.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled regime and its prediction for the analytic form of $$\\alpha_s(Q^2)$$. The AdS/QCD light-front holographic analysis predicts the color confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale $$\\Lambda$$ and hadron masses. One can also identify a specific scale $$Q_0$$ which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including Lattice QCD, Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating conflicting results, we provide a partial discussion on the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances on this difficult subject, but also to suggest what could be the best definition of $$\\alpha_s(Q^2)$$ in order to bring better unity to the subject.« less
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-05-09
Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled regime and its prediction for the analytic form of $$\\alpha_s(Q^2)$$. The AdS/QCD light-front holographic analysis predicts the color confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale $$\\Lambda$$ and hadron masses. One can also identify a specific scale $$Q_0$$ which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including Lattice QCD, Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating conflicting results, we provide a partial discussion on the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances on this difficult subject, but also to suggest what could be the best definition of $$\\alpha_s(Q^2)$$ in order to bring better unity to the subject.« less
Triply heavy Q Q Q ¯ q ¯ tetraquark states
NASA Astrophysics Data System (ADS)
Jiang, Jin-Feng; Chen, Wei; Zhu, Shi-Lin
2017-11-01
Within the framework of QCD sum rules, we have investigated the tetraquark states with three heavy quarks. We systematically construct the interpolating currents for the possible c c c ¯ q ¯ , c c b ¯q ¯, b c b ¯q ¯, b b b ¯q ¯ tetraquark states with quantum numbers JP=0+ and JP=1+. Using these interpolating currents, we have calculated the two-point correlation functions and extracted the mass spectra for the above tetraquark states. We also discuss the decay patterns of these tetraquarks, and notice that the c c c ¯q ¯, c c b ¯q ¯, b c b ¯q ¯ may decay quickly with a narrow width due to their mass spectra. The b b b ¯q ¯ tetraquarks are expected to be very narrow resonances since their OZI (Okubo-Zweig-Iizuka)-allowed decay modes are kinematically forbidden. These states may be searched for in the final states with a B meson plus a light meson or photon.
Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Almond, J; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Araque, J P; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batley, J R; Battaglia, M; Battistin, M; Bauer, F; Bawa, H S; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuciuc, C-M; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; Cunha Sargedas De Sousa, M J Da; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J A; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Dobos, D; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Dwuznik, M; Dyndal, M; Ebke, J; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Franz, S; Fraternali, M; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Guan, L; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböeck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Kareem, M J; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; La Rosa, A; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, B A; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marques, C N; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrella, S; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Przysiezniak, H; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, M; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sauvage, G; Sauvan, E; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Spurlock, B; Denis, R D St; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weigell, P; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilkens, H G; Will, J Z; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wright, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L
This paper presents cross sections for the production of a [Formula: see text] boson in association with jets, measured in proton-proton collisions at [Formula: see text] with the ATLAS experiment at the large hadron collider. With an integrated luminosity of [Formula: see text], this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of [Formula: see text] and multiplicities up to seven associated jets. The production cross sections for [Formula: see text] bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. The measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, Frank; Detmold, William; Gambhir, Arjun S.
The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarised gluon distribution is studied in nuclei up to atomic numbermore » $A=3$ at quark masses corresponding to pion masses of $$m_\\pi\\sim 450$$ and $806$ MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than $$\\sim 10$$% in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the $$b_1$$ structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a non-zero signal is observed at $$m_\\pi \\sim 806$$ MeV. In conclusion, this is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon.« less
Universal behavior of the γ⁎γ→(π0,η,η′) transition form factors
Melikhov, Dmitri; Stech, Berthold
2012-01-01
The photon transition form factors of π, η and η′ are discussed in view of recent measurements. It is shown that the exact axial anomaly sum rule allows a precise comparison of all three form factors at high-Q2 independent of the different structures and distribution amplitudes of the participating pseudoscalar mesons. We conclude: (i) The πγ form factor reported by Belle is in excellent agreement with the nonstrange I=0 component of the η and η′ form factors obtained from the BaBar measurements. (ii) Within errors, the πγ form factor from Belle is compatible with the asymptotic pQCD behavior, similar to the η and η′ form factors from BaBar. Still, the best fits to the data sets of πγ, ηγ, and η′γ form factors favor a universal small logarithmic rise Q2FPγ(Q2)∼log(Q2). PMID:23226917
Measurements of the W production cross sections in association with jets with the ATLAS detector
Aad, G.
2015-02-19
This paper presents cross sections for the production of a W boson in association with jets, measured in proton–proton collisions at \\(\\sqrt{s} = 7\\) TeV with the ATLAS experiment at the large hadron collider. With an integrated luminosity of 4.6fb -1, this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of themore » jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. As a result, the measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.« less
Baryon interactions in lattice QCD: the direct method vs. the HAL QCD potential method
NASA Astrophysics Data System (ADS)
Iritani, T.; HAL QCD Collaboration
We make a detailed comparison between the direct method and the HAL QCD potential method for the baryon-baryon interactions, taking the $\\Xi\\Xi$ system at $m_\\pi= 0.51$ GeV in 2+1 flavor QCD and using both smeared and wall quark sources. The energy shift $\\Delta E_\\mathrm{eff}(t)$ in the direct method shows the strong dependence on the choice of quark source operators, which means that the results with either (or both) source are false. The time-dependent HAL QCD method, on the other hand, gives the quark source independent $\\Xi\\Xi$ potential, thanks to the derivative expansion of the potential, which absorbs the source dependence to the next leading order correction. The HAL QCD potential predicts the absence of the bound state in the $\\Xi\\Xi$($^1$S$_0$) channel at $m_\\pi= 0.51$ GeV, which is also confirmed by the volume dependence of finite volume energy from the potential. We also demonstrate that the origin of the fake plateau in the effective energy shift $\\Delta E_\\mathrm{eff}(t)$ at $t \\sim 1$ fm can be clarified by a few low-lying eigenfunctions and eigenvalues on the finite volume derived from the HAL QCD potential, which implies that the ground state saturation of $\\Xi\\Xi$($^1$S$_0$) requires $t \\sim 10$ fm in the direct method for the smeared source on $(4.3 \\ \\mathrm{fm})^3$ lattice, while the HAL QCD method does not suffer from such a problem.
NASA Astrophysics Data System (ADS)
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-09-01
We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale Λ and hadron masses. One can also identify a specific scale Q0 which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including lattice QCD, the Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating their conflicting predictions, we discuss the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances in this difficult area, but also to suggest what could be an optimal definition of αs(Q2) in order to bring better unity to the subject.
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, P. M.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration
2017-08-01
The STAR Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum hadron trigger, in central and peripheral Au +Au collisions at √{sNN}=200 GeV. Charged jets are reconstructed with the anti-kT algorithm for jet radii R between 0.2 and 0.5 and with low infrared cutoff of track constituents (pT>0.2 GeV / c ). A novel mixed-event technique is used to correct the large uncorrelated background present in heavy ion collisions. Corrected recoil jet distributions are reported at midrapidity, for charged-jet transverse momentum pT,jet ch<30 GeV / c . Comparison is made to similar measurements for Pb +Pb collisions at √{s }=2.76 TeV, to calculations for p +p collisions at √{s }=200 GeV based on the pythia Monte Carlo generator and on a next-to-leading order perturbative QCD approach, and to theoretical calculations incorporating jet quenching. The recoil jet yield is suppressed in central relative to peripheral collisions, with the magnitude of the suppression corresponding to medium-induced charged energy transport out of the jet cone of 2.8 ±0.2 (stat )±1.5 (sys ) GeV /c , for 10
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...
2017-08-14
Here, the STAR Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum hadron trigger, in central and peripheral Au+Au collisions at √ sNN = 200 GeV. Charged jets are reconstructed with the anti-k T algorithm for jet radii R between 0.2 and 0.5 and with low infrared cutoff of track constituents (p T > 0.2 GeV/c). A novel mixed-event technique is used to correct the large uncorrelated background present in heavy ion collisions. Corrected recoil jet distributions are reported at midrapidity, for charged-jet transverse momentum p ch T,jet < 30 GeV/c. Comparison ismore » made to similar measurements for Pb+Pb collisions at √s = 2.76 TeV, to calculations for p+p collisions at √s = 200 GeV based on the pythia Monte Carlo generator and on a next-to-leading order perturbative QCD approach, and to theoretical calculations incorporating jet quenching. The recoil jet yield is suppressed in central relative to peripheral collisions, with the magnitude of the suppression corresponding to medium-induced charged energy transport out of the jet cone of 2.8 ± 0.2(stat) ± 1.5(sys) GeV/c, for 10 < p ch T,jet < 20 GeV/c and R = 0.5. No medium-induced change in jet shape is observed for R < 0.5. The azimuthal distribution of low-p ch T,jet recoil jets may be enhanced at large azimuthal angles to the trigger axis, due to scattering off quasiparticles in the hot QCD medium. As a result, measurement of this distribution gives a 90% statistical confidence upper limit to the yield enhancement at large deflection angles in central Au + Au collisions of 50 ± 30(sys)% of the large-angle yield in p+p collisions predicted by pythia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.
Here, the STAR Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum hadron trigger, in central and peripheral Au+Au collisions at √ sNN = 200 GeV. Charged jets are reconstructed with the anti-k T algorithm for jet radii R between 0.2 and 0.5 and with low infrared cutoff of track constituents (p T > 0.2 GeV/c). A novel mixed-event technique is used to correct the large uncorrelated background present in heavy ion collisions. Corrected recoil jet distributions are reported at midrapidity, for charged-jet transverse momentum p ch T,jet < 30 GeV/c. Comparison ismore » made to similar measurements for Pb+Pb collisions at √s = 2.76 TeV, to calculations for p+p collisions at √s = 200 GeV based on the pythia Monte Carlo generator and on a next-to-leading order perturbative QCD approach, and to theoretical calculations incorporating jet quenching. The recoil jet yield is suppressed in central relative to peripheral collisions, with the magnitude of the suppression corresponding to medium-induced charged energy transport out of the jet cone of 2.8 ± 0.2(stat) ± 1.5(sys) GeV/c, for 10 < p ch T,jet < 20 GeV/c and R = 0.5. No medium-induced change in jet shape is observed for R < 0.5. The azimuthal distribution of low-p ch T,jet recoil jets may be enhanced at large azimuthal angles to the trigger axis, due to scattering off quasiparticles in the hot QCD medium. As a result, measurement of this distribution gives a 90% statistical confidence upper limit to the yield enhancement at large deflection angles in central Au + Au collisions of 50 ± 30(sys)% of the large-angle yield in p+p collisions predicted by pythia.« less
QCDNUM: Fast QCD evolution and convolution
NASA Astrophysics Data System (ADS)
Botje, M.
2011-02-01
The QCDNUM program numerically solves the evolution equations for parton densities and fragmentation functions in perturbative QCD. Un-polarised parton densities can be evolved up to next-to-next-to-leading order in powers of the strong coupling constant, while polarised densities or fragmentation functions can be evolved up to next-to-leading order. Other types of evolution can be accessed by feeding alternative sets of evolution kernels into the program. A versatile convolution engine provides tools to compute parton luminosities, cross-sections in hadron-hadron scattering, and deep inelastic structure functions in the zero-mass scheme or in generalised mass schemes. Input to these calculations are either the QCDNUM evolved densities, or those read in from an external parton density repository. Included in the software distribution are packages to calculate zero-mass structure functions in un-polarised deep inelastic scattering, and heavy flavour contributions to these structure functions in the fixed flavour number scheme. Program summaryProgram title: QCDNUM version: 17.00 Catalogue identifier: AEHV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public Licence No. of lines in distributed program, including test data, etc.: 45 736 No. of bytes in distributed program, including test data, etc.: 911 569 Distribution format: tar.gz Programming language: Fortran-77 Computer: All Operating system: All RAM: Typically 3 Mbytes Classification: 11.5 Nature of problem: Evolution of the strong coupling constant and parton densities, up to next-to-next-to-leading order in perturbative QCD. Computation of observable quantities by Mellin convolution of the evolved densities with partonic cross-sections. Solution method: Parametrisation of the parton densities as linear or quadratic splines on a discrete grid, and evolution of the spline coefficients by solving (coupled) triangular matrix equations with a forward substitution algorithm. Fast computation of convolution integrals as weighted sums of spline coefficients, with weights derived from user-given convolution kernels. Restrictions: Accuracy and speed are determined by the density of the evolution grid. Running time: Less than 10 ms on a 2 GHz Intel Core 2 Duo processor to evolve the gluon density and 12 quark densities at next-to-next-to-leading order over a large kinematic range.
First Renormalized Parton Distribution Functions from Lattice QCD
NASA Astrophysics Data System (ADS)
Lin, Huey-Wen; LP3 Collaboration
2017-09-01
We present the first lattice-QCD results on the nonperturbatively renormalized parton distribution functions (PDFs). Using X.D. Ji's large-momentum effective theory (LaMET) framework, lattice-QCD hadron structure calculations are able to overcome the longstanding problem of determining the Bjorken- x dependence of PDFs. This has led to numerous additional theoretical works and exciting progress. In this talk, we will address a recent development that implements a step missing from prior lattice-QCD calculations: renormalization, its effects on the nucleon matrix elements, and the resultant changes to the calculated distributions.
The CP-PACS Project and Lattice QCD Results
NASA Astrophysics Data System (ADS)
Iwasaki, Y.
The aim of the CP-PACS project was to develop a massively parallel computer for performing numerical research in computational physics with primary emphasis on lattice QCD. The CP-PACS computer with a peak speed of 614 GFLOPS with 2048 processors was completed in September 1996, and has been in full operation since October 1996. We present an overview of the CP-PACS project and describe characteristics of the CP-PACS computer. The CP-PACS has been mainly used for hadron spectroscopy studies in lattice QCD. Main results in lattice QCD simulations are given.
Remarks on the Phase Transition in QCD
NASA Astrophysics Data System (ADS)
Wilczek, Frank
The significance of the question of the order of the phase transition in QCD, and recent evidence that real-world QCD is probably close to having a single second order transition as a function of temperature, is reviewed. Although this circumstance seems to remove the possibility that the QCD transition during the big bang might have had spectacular cosmological consequences, there is some good news: it allows highly non-trivial yet reliable quantitative predictions to be made for the behavior near the transition. These predictions can be tested in numerical simulations and perhaps even eventually in heavy ion collisions. The present paper is a very elementary discussion of the relevant concepts, meant to be an accessible introduction for those innocent of the renormalization group approach to critical phenomena and/or the details of QCD.
Towards understanding Regge trajectories in holographic QCD
NASA Astrophysics Data System (ADS)
Catà, Oscar
2007-05-01
We reassess a work done by Migdal on the spectrum of low-energy vector mesons in QCD in the light of the anti-de Sitter (AdS)-QCD correspondence. Recently, a tantalizing parallelism was suggested between Migdal’s work and a family of holographic duals of QCD. Despite the intriguing similarities, both approaches face a major drawback: the spectrum is in conflict with well-tested Regge scaling. However, it has recently been shown that holographic duals can be modified to accommodate Regge behavior. Therefore, it is interesting to understand whether Regge behavior can also be achieved in Migdal’s approach. In this paper we investigate this issue. We find that Migdal’s approach, which is based on a modified Padé approximant, is closely related to the issue of quark-hadron duality breakdown in QCD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudek, Jozef
Highlights of the research include: the determination of the form of the lowest energy gluonic excitation within QCD and the spectrum of hybrid hadrons which follows; the first calculation of the spectrum of hybrid baryons within a first-principles approach to QCD; a detailed mapping out of the phase-shift of elastic ππ scattering featuring the ρ resonance at two values of the light quark mass within lattice QCD; the first (and to date, only) determinations of coupled-channel meson-meson scattering within first-principles QCD; the first (and to date, only) determinations of the radiative coupling of a resonant state, the ρ appearing inmore » πγ→ππ; the first (and to date, only) determination of the properties of the broad σ resonance in elastic ππ scattering within QCD without unjustified approximations.« less
Highlights in light-baryon spectroscopy and searches for gluonic excitations
NASA Astrophysics Data System (ADS)
Crede, Volker
2016-01-01
The spectrum of excited hadrons - mesons and baryons - serves as an excellent probe of quantum chromodynamics (QCD), the fundamental theory of the strong interaction. The strong coupling however makes QCD challenging. It confines quarks and breaks chiral symmetry, thus providing us with the world of light hadrons. Highly-excited hadronic states are sensitive to the details of quark confinement, which is only poorly understood within QCD. This is the regime of non-perturbative QCD and it is one of the key issues in hadronic physics to identify the corresponding internal degrees of freedom and how they relate to strong coupling QCD. The quark model suggests mesons are made of a constituent quark and an antiquark and baryons consist of three such quarks. QCD predicts other forms of matter. What is the role of glue? Resonances with large gluonic components are predicted as bound states by QCD. The lightest hybrid mesons with exotic quantum numbers are estimated to have masses in the range from 1 to 2 GeV/c2 and are well in reach of current experimental programs. At Jefferson Laboratory (JLab) and other facilities worldwide, the high-energy electron and photon beams present a remarkably clean probe of hadronic matter, providing an excellent microscope for examining atomic nuclei and the strong nuclear force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Hong -Hao; Wu, Xing -Gang; Ma, Yang
A key problem in making precise perturbative QCD (pQCD) predictions is how to set the renormalization scale of the running coupling unambiguously at each finite order. The elimination of the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance requires that predictions for observables must also be independent on the choice of the renormalization scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM approach tomore » all orders. In this paper we discuss two distinct methods. One is based on the “Principle of Maximum Conformality” (PMC), which provides a systematic all-orders method to eliminate the scale and scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon divergences. An alternative method is the “sequential extended BLM” (seBLM) approach, which has been primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed, introduces auxiliary fields and follows the pattern of the β0-expansion to fix the renormalization scale. However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a few processes at low orders. In order to avoid the complications of adding extra fields, we propose a modified version of seBLM which allows us to apply this method to higher orders. As a result, we then perform detailed numerical comparisons of the two alternative scale-setting approaches by investigating their predictions for the annihilation cross section ratio R e+e– at four-loop order in pQCD.« less
Hadronic and nuclear interactions in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is themore » analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics.« less
Parton distributions and lattice QCD calculations: A community white paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred
In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this paper we present an overview of lattice-QCDmore » and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. Finally, this document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.« less
Gravitation waves from QCD and electroweak phase transitions
NASA Astrophysics Data System (ADS)
Chen, Yidian; Huang, Mei; Yan, Qi-Shu
2018-05-01
We investigate the gravitation waves produced from QCD and electroweak phase transitions in the early universe by using a 5-dimension holographic QCD model and a holographic technicolor model. The dynamical holographic QCD model is to describe the pure gluon system, where a first order confinement-deconfinement phase transition can happen at the critical temperature around 250 MeV. The minimal holographic technicolor model is introduced to model the strong dynamics of electroweak, it can give a first order electroweak phase transition at the critical temperature around 100-360 GeV. We find that for both GW signals produced from QCD and EW phase transitions, in the peak frequency region, the dominant contribution comes from the sound waves, while away from the peak frequency region the contribution from the bubble collision is dominant. The peak frequency of gravitation wave determined by the QCD phase transition is located around 10-7 Hz which is within the detectability of FAST and SKA, and the peak frequency of gravitational wave predicted by EW phase transition is located at 0.002 - 0.007 Hz, which might be detectable by BBO, DECIGO, LISA and ELISA.
Twin Higgs Asymmetric Dark Matter.
García García, Isabel; Lasenby, Robert; March-Russell, John
2015-09-18
We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20 GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.
Parton distributions and lattice QCD calculations: A community white paper
Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; ...
2018-01-31
In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this paper we present an overview of lattice-QCDmore » and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. Finally, this document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.« less
Flavor-singlet baryons in the graded symmetry approach to partially quenched QCD
NASA Astrophysics Data System (ADS)
Hall, Jonathan M. M.; Leinweber, Derek B.
2016-11-01
Progress in the calculation of the electromagnetic properties of baryon excitations in lattice QCD presents new challenges in the determination of sea-quark loop contributions to matrix elements. A reliable estimation of the sea-quark loop contributions represents a pressing issue in the accurate comparison of lattice QCD results with experiment. In this article, an extension of the graded symmetry approach to partially quenched QCD is presented, which builds on previous theory by explicitly including flavor-singlet baryons in its construction. The formalism takes into account the interactions among both octet and singlet baryons, octet mesons, and their ghost counterparts; the latter enables the isolation of the quark-flow disconnected sea-quark loop contributions. The introduction of flavor-singlet states enables systematic studies of the internal structure of Λ -baryon excitations in lattice QCD, including the topical Λ (1405 ).
Hamiltonian Effective Field Theory Study of the N^{*}(1535) Resonance in Lattice QCD.
Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun
2016-02-26
Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying J^{P}=1/2^{-} nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.
Recombination algorithms and jet substructure: Pruning as a tool for heavy particle searches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, Stephen D.; Vermilion, Christopher K.; Walsh, Jonathan R.
2010-05-01
We discuss jet substructure in recombination algorithms for QCD jets and single jets from heavy particle decays. We demonstrate that the jet algorithm can introduce significant systematic effects into the substructure. By characterizing these systematic effects and the substructure from QCD, splash-in, and heavy particle decays, we identify a technique, pruning, to better identify heavy particle decays into single jets and distinguish them from QCD jets. Pruning removes protojets typical of soft, wide-angle radiation, improves the mass resolution of jets reconstructing heavy particle decays, and decreases the QCD background to these decays. We show that pruning provides significant improvements overmore » unpruned jets in identifying top quarks and W bosons and separating them from a QCD background, and may be useful in a search for heavy particles.« less
The Conformal Template and New Perspectives for Quantum Chromodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; /SLAC
2007-03-06
Conformal symmetry provides a systematic approximation to QCD in both its perturbative and nonperturbative domains. One can use the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. For example, there is an exact correspondence between the fifth-dimensional coordinate of AdS space and a specific impact variable which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, themore » fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. One can also use conformal symmetry as a template for perturbative QCD predictions where the effects of the nonzero beta function can be systematically included in the scale of the QCD coupling. This leads to fixing of the renormalization scale and commensurate scale relations which relate observables without scale or scheme ambiguity. The results are consistent with the renormalization group and the analytic connection of QCD to Abelian theory at N{sub C} {yields} 0. I also discuss a number of novel phenomenological features of QCD. Initial- and .nal-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, di.ractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, nonperturbative antisymmetric sea quark distributions, anomalous heavy quark e.ects, and the unexpected effects of direct higher-twist processes.« less
NASA Astrophysics Data System (ADS)
Bochicchio, Marco
2017-03-01
Yang-Mills (YM) theory and QCD are known to be renormalizable, but not ultraviolet (UV) finite, order by order, in perturbation theory. It is a fundamental question whether YM theory or QCD is UV finite, or only renormalizable, order by order, in the large-N 't Hooft or Veneziano expansions. We demonstrate that the renormalization group (RG) and asymptotic freedom imply that in 't Hooft large-N expansion the S matrix in YM theory is UV finite, while in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massless QCD is renormalizable but not UV finite. By the same argument, the large-N N =1 supersymmetry (SUSY) YM S matrix is UV finite as well. Besides, we demonstrate that, in both 't Hooft and Veneziano large-N expansions, the correlators of local gauge-invariant operators, as opposed to the S matrix, are renormalizable but, in general, not UV finite, either in YM theory and N =1 SUSY YM theory or a fortiori in massless QCD. Moreover, we compute explicitly the counterterms that arise from renormalizing the 't Hooft and Veneziano expansions by deriving in confining massless QCD-like theories a low-energy theorem of the Novikov-Shifman-Vainshtein-Zakharov type that relates the log derivative with respect to the gauge coupling of a k -point correlator, or the log derivative with respect to the RG-invariant scale, to a (k +1 )-point correlator with the insertion of Tr F2 at zero momentum. Finally, we argue that similar results hold in the large-N limit of a vast class of confining massive QCD-like theories, provided a renormalization scheme exists—as, for example, MS ¯ —in which the beta function is not dependent on the masses. Specifically, in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massive QCD and massive N =1 SUSY QCD is renormalizable but not UV finite.
Accurate determinations of alpha(s) from realistic lattice QCD.
Mason, Q; Trottier, H D; Davies, C T H; Foley, K; Gray, A; Lepage, G P; Nobes, M; Shigemitsu, J
2005-07-29
We obtain a new value for the QCD coupling constant by combining lattice QCD simulations with experimental data for hadron masses. Our lattice analysis is the first to (1) include vacuum polarization effects from all three light-quark flavors (using MILC configurations), (2) include third-order terms in perturbation theory, (3) systematically estimate fourth and higher-order terms, (4) use an unambiguous lattice spacing, and (5) use an [symbol: see text](a2)-accurate QCD action. We use 28 different (but related) short-distance quantities to obtain alpha((5)/(MS))(M(Z)) = 0.1170(12).
Dimensional Transmutation by Monopole Condensation in QCD
NASA Astrophysics Data System (ADS)
Cho, Y. M.
2015-01-01
The dimensional transmutation by the monopole condensation in QCD is reviewed. Using Abelian projection of the gauge potential which projects out the monopole potential gauge independently, we we show that there are two types of gluons: the color neutral binding gluons which plays the role of the confining agent and the colored valence gluons which become confined prisoners. With this we calculate the one-loop QCD effective potential and show the monopole condensation becomes the true vacuum of QCD. We propose to test the existence of two types of gluons experimentally by re-analyzing the existing gluon jets data.
TG/DTG/DTA evaluation of flame retarded cotton fabrics and comparison to cone calorimeter data.
Šimkovic, Ivan
2012-10-01
Unbleached cotton fabrics (UCF) with 12.5% polypropylene scrim treated with two phosphate-urea based fire-retardant (FR) formulations were evaluated for FR properties using thermogravimetry/differential thermogravimetry/differential thermal analysis (TG/DTG/DTA) method. In addition to testing the two FR-treated unbleached cotton fabrics (CF-FR1 and CF-FR2), bleached cotton fabric (BCF) treated with the two FR formulations (BCF-FR1 and BCF-FR2) was evaluated. Both formulations were washable with add-on of FR chemicals at 18.7% (FR1) or 17.4% (FR2) for UCF and 22.5% (FR1) or 24.9% (FR2) for BCF. The decreasing order of sums at maximal rates of samples degradation in air environment according to DTG method was: BCF (21.40%/min)>UCF (12.91%/min)>BCF-FR2 (12.83%/min)>BCF-FR1 (11.68%/min)>CF-FR2 (10.20%/min)>CF-FR1 (9.73%/min). It indicates that both formulations cause the decrease of thermooxidation of the products at slower rates than the starting material. Several endo- and exothermic peaks observed by DTA in inert and oxidative environment gives additional information about the degradation process. The order of decreasing thermal responses of the studied samples based on sums of DTA peak values of endothermic and exothermic peaks in air environment is: UCF (0.597 °C/mg)>BCF (0.120 °C/mg)>CF-FR1 (0.089 °C/mg)>BCF-FR1 (0.077 °C/mg)>CF-FR2 (0.062 °C/mg)>BCF-FR2 (0.053 °C/mg). This is in agreement with the cone calorimeter results according to which the flammability properties are improving with the decreasing heat release rates or ignition time prolongation in order: UCF>CF-FR1>CF-FR2. The advantage of TG/DTG/DTA method is slower linear heating rate, which allows the more detailed evaluation of the light and flammable cotton fabric. Copyright © 2012 Elsevier Ltd. All rights reserved.
Benic, Sanjin; Fukushima, Kenji; Garcia-Montero, Oscar; ...
2017-01-26
Here, we compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the result obtained is formally at next-to-leading order in the CGC power counting, it provides the dominant contribution for central rapidities. We observe that the inclusive photon cross section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations inmore » the gluon saturation regime of QCD. We demonstrate that k ⊥ and collinear factorized expressions for inclusive photon production are obtained as leading twist approximations to our result. In particular, the collinearly factorized expression is directly sensitive to the nuclear gluon distribution at small x. Other results of interest include the realization of the Low-Burnett-Kroll soft photon theorem in the CGC framework and a comparative study of how the photon amplitude is obtained in Lorenz and light-cone gauges.« less
QCD inequalities for the nucleon mass and the free energy of baryonic matter.
Cohen, Thomas D
2003-07-18
The positivity of the integrand of certain Euclidean space functional integrals for two flavor QCD with degenerate quark masses implies that the free energy per unit volume for QCD with a baryon chemical potential mu(B) (and zero isospin chemical potential) is greater than the free energy with an isospin chemical potential mu(I)=(2 mu(B)/N(c)) (and zero baryon chemical potential). The same result applies to QCD with any number of heavy flavors in addition to the two light flavors so long as the chemical potential is understood as applying to the light quark contributions to the baryon number. This relation implies a bound on the nucleon mass: there exists a particle X in QCD (presumably the pion) such that M(N)> or =(N(c) m(X)/2 I(X)) where m(X) is the mass of the particle and I(X) is its isospin.
NASA Astrophysics Data System (ADS)
The QCD Evolution 2016 workshop was held at the National Institute for Subatomic Physics (Nikhef) in Amsterdam, May 30 - June 3, 2016. The workshop is a continuation of a series of workshops held during five consecutive years, in 2011, 2012, 2013, 2015 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques, we look forward to yet another exciting meeting in 2016. The program of QCD Evolution 2016 will pay special attention to the topics of importance for ongoing experiments, in the full range from Jefferson Lab energies to LHC energies or future experiments such as a future Electron Ion Collider, recently recommended as a highest priority in U.S. Department of Energy's 2015 Long Range Plan for Nuclear Science.
NASA Astrophysics Data System (ADS)
2017-05-01
The QCD Evolution 2017 workshop was held at Jefferson Lab, May 22-26, 2017. The workshop is a continuation of a series of workshops held during six consecutive years, in 2011, 2012, 2013, 2015 at Jefferson Lab, and in 2014 in Santa Fe, NM, and in 2016 at the National Institute for Subatomic Physics (Nikhef) in Amsterdam. With the rapid developments in our understanding of the evolution of parton distributions including TMDs, GPDs, low-x, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques, we look forward to yet another exciting meeting in 2017. The program of QCD Evolution 2017 will pay special attention to the topics of importance for ongoing experiments, in the full range from Jefferson Lab energies to RHIC and LHC energies or future experiments such as a future Electron Ion Collider, recently recommended as a highest priority in U.S. Department of Energy's 2015 Long Range Plan for Nuclear Science.
Effective holographic models for QCD: Glueball spectrum and trace anomaly
NASA Astrophysics Data System (ADS)
Ballon-Bayona, Alfonso; Boschi-Filho, Henrique; Mamani, Luis A. H.; Miranda, Alex S.; Zanchin, Vilson T.
2018-02-01
We investigate effective holographic models for QCD arising from five-dimensional dilaton gravity. The models are characterized by a dilaton with a mass term in the UV, dual to a CFT deformation by a relevant operator, and quadratic in the IR. The UV constraint leads to the explicit breaking of conformal symmetry, whereas the IR constraint guarantees linear confinement. We propose semianalytic interpolations between the UV and the IR and obtain a spectrum for scalar and tensor glueballs consistent with lattice QCD data. We use the glueball spectrum as a physical constraint to find the evolution of the model parameters as the mass term goes to 0. Finally, we reproduce the universal result for the trace anomaly of deformed CFTs and propose a dictionary between this result and the QCD trace anomaly. A nontrivial consequence of this dictionary is the emergence of a β function similar to the two-loop perturbative QCD result.
A web-based instruction module for interpretation of craniofacial cone beam CT anatomy.
Hassan, B A; Jacobs, R; Scarfe, W C; Al-Rawi, W T
2007-09-01
To develop a web-based module for learner instruction in the interpretation and recognition of osseous anatomy on craniofacial cone-beam CT (CBCT) images. Volumetric datasets from three CBCT systems were acquired (i-CAT, NewTom 3G and AccuiTomo FPD) for various subjects using equipment-specific scanning protocols. The datasets were processed using multiple software to provide two-dimensional (2D) multiplanar reformatted (MPR) images (e.g. sagittal, coronal and axial) and three-dimensional (3D) visual representations (e.g. maximum intensity projection, minimum intensity projection, ray sum, surface and volume rendering). Distinct didactic modules which illustrate the principles of CBCT systems, guided navigation of the volumetric dataset, and anatomic correlation of 3D models and 2D MPR graphics were developed using a hybrid combination of web authoring and image analysis techniques. Interactive web multimedia instruction was facilitated by the use of dynamic highlighting and labelling, and rendered video illustrations, supplemented with didactic textual material. HTML coding and Java scripting were heavily implemented for the blending of the educational modules. An interactive, multimedia educational tool for visualizing the morphology and interrelationships of osseous craniofacial anatomy, as depicted on CBCT MPR and 3D images, was designed and implemented. The present design of a web-based instruction module may assist radiologists and clinicians in learning how to recognize and interpret the craniofacial anatomy of CBCT based images more efficiently.
APPROXIMATING SYMMETRIC POSITIVE SEMIDEFINITE TENSORS OF EVEN ORDER*
BARMPOUTIS, ANGELOS; JEFFREY, HO; VEMURI, BABA C.
2012-01-01
Tensors of various orders can be used for modeling physical quantities such as strain and diffusion as well as curvature and other quantities of geometric origin. Depending on the physical properties of the modeled quantity, the estimated tensors are often required to satisfy the positivity constraint, which can be satisfied only with tensors of even order. Although the space P02m of 2mth-order symmetric positive semi-definite tensors is known to be a convex cone, enforcing positivity constraint directly on P02m is usually not straightforward computationally because there is no known analytic description of P02m for m > 1. In this paper, we propose a novel approach for enforcing the positivity constraint on even-order tensors by approximating the cone P02m for the cases 0 < m < 3, and presenting an explicit characterization of the approximation Σ2m ⊂ Ω2m for m ≥ 1, using the subset Ω2m⊂P02m of semi-definite tensors that can be written as a sum of squares of tensors of order m. Furthermore, we show that this approximation leads to a non-negative linear least-squares (NNLS) optimization problem with the complexity that equals the number of generators in Σ2m. Finally, we experimentally validate the proposed approach and we present an application for computing 2mth-order diffusion tensors from Diffusion Weighted Magnetic Resonance Images. PMID:23285313
Recent QCD Studies at the Tevatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Group, Robert Craig
2008-04-01
Since the beginning of Run II at the Fermilab Tevatron the QCD physics groups of the CDF and D0 experiments have worked to reach unprecedented levels of precision for many QCD observables. Thanks to the large dataset--over 3 fb{sup -1} of integrated luminosity recorded by each experiment--important new measurements have recently been made public and will be summarized in this paper.
Lattice quantum chromodynamical approach to nuclear physics
NASA Astrophysics Data System (ADS)
Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji; HAL QCD Collaboration
2012-09-01
We review recent progress in the HAL QCD method, which was recently proposed to investigate hadron interactions in lattice quantum chromodynamics (QCD). The strategy to extract the energy-independent non-local potential in lattice QCD is explained in detail. The method is applied to study nucleon-nucleon, nucleon-hyperon, hyperon-hyperon, and meson-baryon interactions. Several extensions of the method are also discussed.
On microscopic structure of the QCD vacuum
NASA Astrophysics Data System (ADS)
Pak, D. G.; Lee, Bum-Hoon; Kim, Youngman; Tsukioka, Takuya; Zhang, P. M.
2018-05-01
We propose a new class of regular stationary axially symmetric solutions in a pure QCD which correspond to monopole-antimonopole pairs at macroscopic scale. The solutions represent vacuum field configurations which are locally stable against quantum gluon fluctuations in any small space-time vicinity. This implies that the monopole-antimonopole pair can serve as a structural element in microscopic description of QCD vacuum formation.
Equivalence of the AdS-metric and the QCD running coupling
NASA Astrophysics Data System (ADS)
Pirner, H. J.; Galow, B.
2009-08-01
We use the functional form of the QCD running coupling to modify the conformal metric in AdS/CFT mapping the fifth-dimensional z-coordinate to the energy scale in the four-dimensional QCD. The resulting type-0 string theory in five dimensions is solved with the Nambu-Goto action giving good agreement with the Coulombic and confinement QQbar potential.
Renormalizability of quasiparton distribution functions
Ishikawa, Tomomi; Ma, Yan-Qing; Qiu, Jian-Wei; ...
2017-11-21
Quasi-parton distribution functions have received a lot of attentions in both perturbative QCD and lattice QCD communities in recent years because they not only carry good information on the parton distribution functions, but also could be evaluated by lattice QCD simulations. However, unlike the parton distribution functions, the quasi-parton distribution functions have perturbative ultraviolet power divergences because they are not defined by twist-2 operators. Here in this article, we identify all sources of ultraviolet divergences for the quasi-parton distribution functions in coordinate-space, and demonstrated that power divergences, as well as all logarithmic divergences can be renormalized multiplicatively to all ordersmore » in QCD perturbation theory.« less
Susceptibility of the QCD vacuum to CP-odd electromagnetic background fields.
D'Elia, Massimo; Mariti, Marco; Negro, Francesco
2013-02-22
We investigate two flavor quantum chromodynamics (QCD) in the presence of CP-odd electromagnetic background fields and determine, by means of lattice QCD simulations, the induced effective θ term to first order in E[over →] · B[over →]. We employ a rooted staggered discretization and study lattice spacings down to 0.1 fm and Goldstone pion masses around 480 MeV. In order to deal with a positive measure, we consider purely imaginary electric fields and real magnetic fields, and then exploit the analytic continuation. Our results are relevant to a description of the effective pseudoscalar quantum electrodynamics-QCD interactions.
Renormalizability of quasiparton distribution functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Tomomi; Ma, Yan-Qing; Qiu, Jian-Wei
Quasi-parton distribution functions have received a lot of attentions in both perturbative QCD and lattice QCD communities in recent years because they not only carry good information on the parton distribution functions, but also could be evaluated by lattice QCD simulations. However, unlike the parton distribution functions, the quasi-parton distribution functions have perturbative ultraviolet power divergences because they are not defined by twist-2 operators. Here in this article, we identify all sources of ultraviolet divergences for the quasi-parton distribution functions in coordinate-space, and demonstrated that power divergences, as well as all logarithmic divergences can be renormalized multiplicatively to all ordersmore » in QCD perturbation theory.« less
Quark–hadron phase structure, thermodynamics, and magnetization of QCD matter
NASA Astrophysics Data System (ADS)
Nasser Tawfik, Abdel; Magied Diab, Abdel; Hussein, M. T.
2018-05-01
The SU(3) Polyakov linear-sigma model (PLSM) is systematically implemented to characterize the quark-hadron phase structure and to determine various thermodynamic quantities and the magnetization of quantum chromodynamic (QCD) matter. Using mean-field approximation, the dependence of the chiral order parameter on a finite magnetic field is also calculated. Under a wide range of temperatures and magnetic field strengths, various thermodynamic quantities including trace anomaly, speed of sound squared, entropy density, and specific heat are presented, and some magnetic properties are described as well. Where available these results are compared to recent lattice QCD calculations. The temperature dependence of these quantities confirms our previous finding that the transition temperature is reduced with the increase in the magnetic field strength, i.e. QCD matter is characterized by an inverse magnetic catalysis. Furthermore, the temperature dependence of the magnetization showing that QCD matter has paramagnetic properties slightly below and far above the pseudo-critical temperature is confirmed as well. The excellent agreement with recent lattice calculations proves that our QCD-like approach (PLSM) seems to possess the correct degrees of freedom in both the hadronic and partonic phases and describes well the dynamics deriving confined hadrons to deconfined quark-gluon plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAEZAWA,Y.; AOKI, S.; EJIRI, S.
The authors report the current status of the systematic studies of the QCD thermodynamics by lattice QCD simulations with two flavors of improved Wilson quarks. They evaluate the critical temperature of two flavor QCD in the chiral limit at zero chemical potential and show the preliminary result. Also they discuss fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to chemical potential.
Heavy-quark production in gluon fusion at two loops in QCD
NASA Astrophysics Data System (ADS)
Czakon, M.; Mitov, A.; Moch, S.
2008-07-01
We present the two-loop virtual QCD corrections to the production of heavy quarks in gluon fusion. The results are exact in the limit when all kinematical invariants are large compared to the mass of the heavy quark up to terms suppressed by powers of the heavy-quark mass. Our derivation uses a simple relation between massless and massive QCD scattering amplitudes as well as a direct calculation of the massive amplitude at two loops. The results presented here together with those obtained previously for quark-quark scattering form important parts of the next-to-next-to-leading order QCD corrections to heavy-quark production in hadron-hadron collisions.
Higgs boson couplings to bottom quarks: two-loop supersymmetry-QCD corrections.
Noth, David; Spira, Michael
2008-10-31
We present two-loop supersymmetry (SUSY) QCD corrections to the effective bottom Yukawa couplings within the minimal supersymmetric extension of the standard model (MSSM). The effective Yukawa couplings include the resummation of the nondecoupling corrections Deltam_{b} for large values of tanbeta. We have derived the two-loop SUSY-QCD corrections to the leading SUSY-QCD and top-quark-induced SUSY-electroweak contributions to Deltam_{b}. The scale dependence of the resummed Yukawa couplings is reduced from O(10%) to the percent level. These results reduce the theoretical uncertainties of the MSSM Higgs branching ratios to the accuracy which can be achieved at a future linear e;{+}e;{-} collider.
Determination of $${{\\rm{\\Lambda }}}_{\\overline{{\\rm{MS}}}}$$ at five loops from holographic QCD
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2017-08-25
Here, the recent determination of themore » $$\\beta$$--function of the QCD running coupling $$\\alpha_{\\overline{MS}}(Q^2)$$ to five-loops, provides a verification of the convergence of a novel method for determining the fundamental QCD parameter $$\\Lambda_s$$ based on the Light-Front Holographic approach to nonperturbative QCD. The new 5-loop analysis, together with improvements in determining the holographic QCD nonperturbative scale parameter $$\\kappa$$ from hadronic spectroscopy, leads to an improved precision of the value of $$\\Lambda_s$$ in the $${\\overline{MS}}$$ scheme close to a factor of two; we find $$\\Lambda^{(3)}_{\\overline{MS}}=0.339\\pm0.019$$ GeV for $$n_{f}=3$$, in excellent agreement with the world average, $$\\Lambda_{\\overline{MS}}^{(3)}=0.332\\pm0.017$$ GeV. Lastly, we also discuss the constraints imposed on the scale dependence of the strong coupling in the nonperturbative domain by superconformal quantum mechanics and its holographic embedding in anti-de Sitter space.« less
Dissociation of heavy quarkonium in hot QCD medium in a quasiparticle model
NASA Astrophysics Data System (ADS)
Agotiya, Vineet Kumar; Chandra, Vinod; Jamal, M. Yousuf; Nilima, Indrani
2016-11-01
Following a recent work on the effective description of the equations of state for hot QCD obtained from a hard thermal loop expression for the gluon self-energy, in terms of the quasigluons and quasiquarks and antiquarks with respective effective fugacities, the dissociation process of heavy quarkonium in hot QCD medium has been investigated. This has been done by investigating the medium modification to a heavy quark potential. The medium-modified potential has a quite different form (a long-range Coulomb tail in addition to the usual Yukawa term) in contrast to the usual picture of Debye screening. The flavor dependence binding energies of the heavy quarkonia states and the dissociation temperature have been obtained by employing the Debye mass for pure gluonic and full QCD case computed employing the quasiparticle picture. Thus, estimated dissociation patterns of the charmonium and bottomonium states, considering Debye mass from different approaches in the pure gluonic case and full QCD, have shown good agreement with the other potential model studies.
Going Beyond QCD in Lattice Gauge Theory
NASA Astrophysics Data System (ADS)
Fleming, G. T.
2011-01-01
Strongly coupled gauge theories (SCGT's) have been studied theoretically for many decades using numerous techniques. The obvious motivation for these efforts stemmed from a desire to understand the source of the strong nuclear force: Quantum Chromo-dynamics (QCD). Guided by experimental results, theorists generally consider QCD to be a well-understood SCGT. Unfortunately, it is not clear how to extend the lessons learned from QCD to other SCGT's. Particularly urgent motivators for new studies of other SCGT's are the ongoing searches for physics beyond the standard model (BSM) at the Large Hadron Collider (LHC) and the Tevatron. Lattice gauge theory (LGT) is a technique for systematically-improvable calculations in many SCGT's. It has become the standard for non-perturbative calculations in QCD and it is widely believed that it may be useful for study of other SCGT's in the realm of BSM physics. We will discuss the prospects and potential pitfalls for these LGT studies, focusing primarily on the flavor dependence of SU(3) gauge theory.
A study of jet production rates and a test of QCD on the Z 0 resonance
NASA Astrophysics Data System (ADS)
Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Bavaria, G.; Beard, C.; Beck, F.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Bloodworth, I. J.; Bock, P.; Boerner, H.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Cohen, I.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Davies, O. W.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchesneau, D.; Duchovni, E.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gandois, B.; Ganel, O.; Gary, J. W.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grosse-Wiesmann, P.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hatzifotiadou, D.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Heintze, J.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Hinde, P. S.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Imori, M.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jin, E.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Köpke, L.; Kokott, T. P.; Koshiba, M.; Kowalewski, R.; Kreutzmann, H.; Von Krogh, J.; Kroll, J.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Lasota, M. M. B.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Lupu, N.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Muller, A.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Patrick, G. N.; Pawley, S. J.; Perez, A.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Possoz, A.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Roehner, F.; Rollnik, A.; Roney, J. M.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; von der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk, G.; van den Plas, D.; Vandalen, G. J.; Virtue, C. J.; Wagner, A.; Wahl, C.; Wang, H.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yamashita, H.; Yang, Y.; Yekutieli, G.; Zeuner, W.; Zorn, G. T.; Zylberajch, S.; OPAL Collaboration
1990-02-01
Relative production rates of multijet hadronic final states of Z 0 boson decays, observed in e +e - annihilation around 91 GeV centre of mass energy, are presented. The data can be well described by analytic O( αs2) QCD calculations and by QCD shower model calaculations with parameters as determined at lower energies. A first judgement of Λ overlineMS and of the renormalization scale μ2 in O( αs2) QCD results in values similar to those obtained in the continuum of e +e - annihilations. Significant scaling violations are observed when the 3-jet fractions are compared to the corresponding results from smaller centre of mass energies. They can be interpreted as being entirely due tot the energy dependence of αs, as proposed by the nonabelian nature of QCD, The possibility of an energy independent coupling constant can be excluded with a significance of 5.7 standard deviations.
Nuclear reactions from lattice QCD
Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.
2015-01-13
In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less
QCD corrections to ZZ production in gluon fusion at the LHC
Caola, Fabrizio; Melnikov, Kirill; Rontsch, Raoul; ...
2015-11-23
We compute the next-to-leading-order QCD corrections to the production of two Z-bosons in the annihilation of two gluons at the LHC. Being enhanced by a large gluon flux, these corrections provide a distinct and, potentially, the dominant part of the N 3LO QCD contributions to Z-pair production in proton collisions. The gg → ZZ annihilation is a loop-induced process that receives the dominant contribution from loops of five light quarks, that are included in our computation in the massless approximation. We find that QCD corrections increase the gg → ZZ production cross section by O(50%–100%) depending on the values ofmore » the renormalization and factorization scales used in the leading-order computation and the collider energy. Furthermore, the large corrections to the gg → ZZ channel increase the pp → ZZ cross section by about 6% to 8%, exceeding the estimated theoretical uncertainty of the recent next-to-next-to-leading-order QCD calculation.« less
The Top Quark, QCD, And New Physics.
DOE R&D Accomplishments Database
Dawson, S.
2002-06-01
The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.
Phenomenological consequences of enhanced bulk viscosity near the QCD critical point
Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi
2017-03-06
In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. Here, this work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening themore » equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. In conclusion, the observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, M; Yuan, Y; Rosenzweig, K
2015-06-15
Purpose: To develop a novel technique to enhance the image contrast of clinical cone beam CT projections and extract respiratory signals based on anatomical motion using the modified Amsterdam Shroud (AS) method to benefit image guided radiation therapy. Methods: Thoracic cone beam CT projections acquired prior to treatment were preprocessed to increase their contrast for better respiratory signal extraction. Air intensity on raw images was firstly estimated and then applied to correct the projections to generate new attenuation images that were subsequently improved with deeper anatomy feature enhancement through taking logarithm operation, derivative along superior-inferior direction, respectively. All pixels onmore » individual post-processed two dimensional images were horizontally summed to one column and all projections were combined side by side to create an AS image from which patient’s respiratory signal was extracted. The impact of gantry rotation on the breathing signal rendering was also investigated. Ten projection image sets from five lung cancer patients acquired with the Varian Onboard Imager on 21iX Clinac (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Results: Application of the air correction on raw projections showed that more than an order of magnitude of contrast enhancement was achievable. The typical contrast on the raw projections is around 0.02 while that on attenuation images could greater than 0.5. Clear and stable breathing signal can be reliably extracted from the new images while the uncorrected projection sets failed to yield clear signals most of the time. Conclusion: Anatomy feature plays a key role in yielding breathing signal from the projection images using the AS technique. The air correction process facilitated the contrast enhancement significantly and attenuation images thus obtained provides a practical solution to obtaining markerless breathing motion tracking.« less
Progress towards quantum simulating the classical O(2) Model
2014-12-01
approach by building up on simple models sharing some of the basic features of lattice QCD . In the context of condensed matter, a proof of principle that...independently. Explicit Hilbert space repre- sentations of the physical states and of their matrix elements are mostly absent from today’s lattice QCD ...to lattice QCD , seems possible and interesting. ACKNOWLEDGMENTS We thank Masanori Hanada, Peter Orland, Lode Pollet, Boris Svistunov, the participants
The International Conference on Vector and Parallel Computing (2nd)
1989-01-17
Computation of the SVD of Bidiagonal Matrices" ...................................... 11 " Lattice QCD -As a Large Scale Scientific Computation...vectorizcd for the IBM 3090 Vector Facility. In addition, elapsed times " Lattice QCD -As a Large Scale Scientific have been reduced by using 3090...benchmarked Lattice QCD on a large number ofcompu- come from the wavefront solver routine. This was exten- ters: CrayX-MP and Cray 2 (vector
Computational Science: Ensuring America’s Competitiveness
2005-06-01
Supercharging U. S. Innovation & Competitiveness, Washington, D.C. , July 2004. Davies, C. T. H. , et al. , “High-Precision Lattice QCD Confronts Experiment...together to form a class of particles call hadrons (that include protons and neutrons) . For 30 years, researchers in lattice QCD have been trying to use...the basic QCD equations to calculate the properties of hadrons, especially their masses, using numerical lattice gauge theory calculations in order to
QCDOC: A 10-teraflops scale computer for lattice QCD
NASA Astrophysics Data System (ADS)
Chen, D.; Christ, N. H.; Cristian, C.; Dong, Z.; Gara, A.; Garg, K.; Joo, B.; Kim, C.; Levkova, L.; Liao, X.; Mawhinney, R. D.; Ohta, S.; Wettig, T.
2001-03-01
The architecture of a new class of computers, optimized for lattice QCD calculations, is described. An individual node is based on a single integrated circuit containing a PowerPC 32-bit integer processor with a 1 Gflops 64-bit IEEE floating point unit, 4 Mbyte of memory, 8 Gbit/sec nearest-neighbor communications and additional control and diagnostic circuitry. The machine's name, QCDOC, derives from "QCD On a Chip".
Three-point Green functions in the odd sector of QCD
NASA Astrophysics Data System (ADS)
Kadavý, T.; Kampf, K.; Novotný, J.
2016-11-01
A review of familiar results of the three-point Green functions of currents in the odd-intrinsic parity sector of QCD is presented. Such Green functions include very well-known examples of VVP, VAS or AAP correlators. We also shortly present some of the new results for VVA and AAA Green functions with a discussion of their high-energy behaviour and its relation to the QCD condensates.
Renormalization scheme dependence of high-order perturbative QCD predictions
NASA Astrophysics Data System (ADS)
Ma, Yang; Wu, Xing-Gang
2018-02-01
Conventionally, one adopts typical momentum flow of a physical observable as the renormalization scale for its perturbative QCD (pQCD) approximant. This simple treatment leads to renormalization scheme-and-scale ambiguities due to the renormalization scheme and scale dependence of the strong coupling and the perturbative coefficients do not exactly cancel at any fixed order. It is believed that those ambiguities will be softened by including more higher-order terms. In the paper, to show how the renormalization scheme dependence changes when more loop terms have been included, we discuss the sensitivity of pQCD prediction on the scheme parameters by using the scheme-dependent {βm ≥2}-terms. We adopt two four-loop examples, e+e-→hadrons and τ decays into hadrons, for detailed analysis. Our results show that under the conventional scale setting, by including more-and-more loop terms, the scheme dependence of the pQCD prediction cannot be reduced as efficiently as that of the scale dependence. Thus a proper scale-setting approach should be important to reduce the scheme dependence. We observe that the principle of minimum sensitivity could be such a scale-setting approach, which provides a practical way to achieve optimal scheme and scale by requiring the pQCD approximate be independent to the "unphysical" theoretical conventions.
Spontaneous CP breaking in QCD and the axion potential: an effective Lagrangian approach
NASA Astrophysics Data System (ADS)
Di Vecchia, Paolo; Rossi, Giancarlo; Veneziano, Gabriele; Yankielowicz, Shimon
2017-12-01
Using the well-known low-energy effective Lagrangian of QCD — valid for small (non-vanishing) quark masses and a large number of colors — we study in detail the regions of parameter space where CP is spontaneously broken/unbroken for a vacuum angle θ = π. In the CP broken region there are first order phase transitions as one crosses θ = π, while on the (hyper)surface separating the two regions, there are second order phase transitions signalled by the vanishing of the mass of a pseudo Nambu-Goldstone boson and by a divergent QCD topological susceptibility. The second order point sits at the end of a first order line associated with the CP spontaneous breaking, in the appropriate complex parameter plane. When the effective Lagrangian is extended by the inclusion of an axion these features of QCD imply that standard calculations of the axion potential have to be revised if the QCD parameters fall in the above mentioned CP broken region, in spite of the fact that the axion solves the strong- CP problem. These last results could be of interest for axionic dark matter calculations if the topological susceptibility of pure Yang-Mills theory falls off sufficiently fast when temperature is increased towards the QCD deconfining transition.
Kenneth Wilson and Lattice QCD
NASA Astrophysics Data System (ADS)
Ukawa, Akira
2015-09-01
We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward better understanding of physics, better algorithms, and more powerful supercomputers have produced major breakthroughs in our understanding of the strong interactions. We review the salient results of this effort in understanding the hadron spectrum, the Cabibbo-Kobayashi-Maskawa matrix elements and CP violation, and quark-gluon plasma at high temperatures. We conclude with a brief summary and a future perspective.
A study of energy-energy correlations and measurement of {alpha}{sub s} at the Z{sup 0} resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
We present the energy-energy correlation (EEC) distribution and its asymmetry (AEEC) in hadronic decays of {Zeta}{sup 0} bosons measured by the SLD at SLAC. The data are found to be in good agreement with the predictions of perturbative QCD and fragmentation Monte Carlo models of hadron production. After correction for hadronization effects the data are compared with {Omicron}({alpha}{sub s}{sup 2}) perturbative QCD calculations from various authors. Fits to the central region of the EEC yield substantially different values of the QCD scale {lambda}{sub {ovr MS}} for each of the QCD calculations. There is also a sizeable dependence of the fittedmore » {lambda}{sub {ovr MS}} value on the QCD renormalization scale factor, f. Our preliminary results are {alpha}{sub s}(M {sub Z}) = 0.121 {plus_minus} 0.002(stat.) {plus_minus} 0.004(exp.sys.) {sub {minus}0.009}{sup +0.016} (theor.) for EEC and {alpha}{sub s}(M{sub Z}) = 0.108 {plus_minus} 0.003(stat.) {plus_minus} 0.005(exp.sys.){sub {minus}0.003}{sup +0.008}(theor.) for AEEC. The largest contribution to the error arises from the theoretical uncertainty in choosing the QCD renormalization scale.« less
New Methods in Non-Perturbative QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unsal, Mithat
2017-01-31
In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), andmore » there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.« less
NASA Astrophysics Data System (ADS)
Alkofer, Reinhard; von Smekal, Lorenz
2001-11-01
Recent studies of QCD Green's functions and their applications in hadronic physics are reviewed. We discuss the definition of the generating functional in gauge theories, in particular, the rôle of redundant degrees of freedom, possibilities of a complete gauge fixing versus gauge fixing in presence of Gribov copies, BRS invariance and positivity. The apparent contradiction between positivity and colour antiscreening in combination with BRS invariance in QCD is considered. Evidence for the violation of positivity by quarks and transverse gluons in the covariant gauge is collected, and it is argued that this is one manifestation of confinement. We summarise the derivation of the Dyson-Schwinger equations (DSEs) of QED and QCD. For the latter, the implications of BRS invariance on the Green's functions are explored. The possible influence of instantons on DSEs is discussed in a two-dimensional model. In QED in (2+1) and (3+1) dimensions, the solutions for Green's functions provide tests of truncation schemes which can under certain circumstances be extended to the DSEs of QCD. We discuss some limitations of such extensions and assess the validity of assumptions for QCD as motivated from studies in QED. Truncation schemes for DSEs are discussed in axial and related gauges, as well as in the Landau gauge. Furthermore, we review the available results from a systematic non-perturbative expansion scheme established for Landau gauge QCD. Comparisons to related lattice results, where available, are presented. The applications of QCD Green's functions to hadron physics are summarised. Properties of ground state mesons are discussed on the basis of the ladder Bethe-Salpeter equation for quarks and antiquarks. The Goldstone nature of pseudoscalar mesons and a mechanism for diquark confinement beyond the ladder approximation are reviewed. We discuss some properties of ground state baryons based on their description as Bethe-Salpeter/Faddeev bound states of quark-diquark correlations in the quantum field theory of confined quarks and gluons.
Kinematics of Cone-In-Cone Growth, with Implications for Timing and Formation Mechanism
NASA Astrophysics Data System (ADS)
Hooker, J. N.; Cartwright, J. A.
2015-12-01
Cone-in-cone is an enigmatic structure. Similar to many fibrous calcite veins, cone-in-cone is generally formed of calcite and present in bedding-parallel vein-like accumulations within fine-grained rocks. Unlike most fibrous veins, cone-in-cone contains conical inclusions of host-rock material, creating nested, parallel cones throughout. A long-debated aspect of cone-in-cone structures is whether the calcite precipitated with its conical form (primary cone-in-cone), or whether the cones formed afterwards (secondary cone-in-cone). Trace dolomite within a calcite cone-in-cone structure from the Cretaceous of Jordan supports the primary hypothesis. The host sediment is a siliceous mud containing abundant rhombohedral dolomite grains. Dolomite rhombohedra are also distributed throughout the cone-in-cone. The rhombohedra within the cones are randomly oriented yet locally have dolomite overgrowths having boundaries that are aligned with calcite fibers. Evidence that dolomite co-precipitated with calcite, and did not replace calcite, includes (i) preferential downward extension of dolomite overgrowths, in the presumed growth-direction of the cone-in-cone, and (ii) planar, vertical borders between dolomite crystals and calcite fibers. Because dolomite overgrows host-sediment rhombohedra and forms fibers within the cones, it follows that the host-sediment was included within the growing cone-in-cone as the calcite precipitated, and not afterward. The host-sediment was not injected into the cone-in-cone along fractures, as the secondary-origin hypothesis suggests. This finding implies that cone-in-cone in general does not form over multiple stages, and thus has greater potential to preserve the chemical signature of its original precipitation. Because cone-in-cone likely forms before complete lithification of the host, and because the calcite displaces the host material against gravity, this chemical signature can preserve information about early overpressures in fine-grained sediments.
A study of the energy dependence of the underlying event in proton-antiproton collisions
Aaltonen, T.
2015-11-23
We study charged particle production (p T > 0.5 GeV/c, |η| < 0.8) in proton-antiproton collisions at 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of η-Φspace; “toward”, “away”, and “transverse”. Furthermore, the average number and the average scalar p T sum of charged particles in the transverse region are sensitive to the modeling of the “underlying event”. The transverse region is divided into a MAX and MIN transverse region, which helps separate the “hard component” (initial and final-state radiation) frommore » the “beam-beam remnant” and multiple parton interaction components of the scattering. We found that the center-of-mass energy dependence of the various components of the event are studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.« less
Light quark masses with overlap fermions in quenched QCD
NASA Astrophysics Data System (ADS)
Giusti, L.; Hoelbling, C.; Rebbi, C.
2001-12-01
We present the results of a computation of the sum of the strange and average up-down quark masses with overlap fermions in the quenched approximation. Since the overlap regularization preserves chiral symmetry at finite cutoff and volume, no additive quark mass renormalization is required and the results are O(a) improved. Our simulations are performed at β=6.0 and volume V=163×32, which correspond to a lattice cutoff of ~2 GeV and to an extension of ~1.4 fm. The logarithmically divergent renormalization constant has been computed nonperturbatively in the RI/MOM scheme. By using the K-meson mass as experimental input, we obtain (ms+m)RI(2 GeV)=120(7)(21) MeV, which corresponds to mMS¯s(2 GeV)=102(6)(18) MeV if continuum perturbation theory and χPT are used. By using the Gell-Mann-Oakes-Renner relation we also obtain <ψ¯ψ>MS¯(2 GeV)/Nf =-0.0190(11)(33) GeV3=-[267(5)(15) MeV]3, where the errors are statistical and systematic respectively.
Pseudoscalar D and B mesons in the hot dense and nonstrange symmetric medium
NASA Astrophysics Data System (ADS)
Chhabra, Rahul; Kumar, Arvind
2017-01-01
We investigate the effect of temperature and density on the shift in the masses and decay constants of the pseudoscalar D and B mesons in the nonstrange symmetric medium. We use chiral SU(3) model to calculate the medium modified scalar and isoscalar fields σ, ζ, δ and χ. We use these modified fields to calculate the in-medium quark and gluon condensates by solving the coupled equations of motions in the chiral SU(3) model. We obtain the medium modified mass and decay constant through these medium modified condensates using the QCD sum rules. Further we use the 3P0 model by taking the internal structure of the mesons to calculate the in-medium decay width of the higher charmonium states χ(3556) , ψ(3686) and ψ(3770) to the D D pairs, through the in-medium mass of D meson and neglecting the mass modification of higher charmonium states. We also compare the present data with the previous results. These results of present investigation may be important to explain the possible outcomes of the experiments like CBM, Panda at GSI.
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Almond, J.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuciuc, C.-M.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Cunha Sargedas De Sousa, M. J. Da; Via, C. Da; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J. A.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Dobos, D.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Guan, L.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, B. A.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrella, S.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Struebig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.
2015-05-01
Double-differential three-jet production cross-sections are measured in proton-proton collisions at a centre-of-mass energy of using the ATLAS detector at the large hadron collider. The measurements are presented as a function of the three-jet mass , in bins of the sum of the absolute rapidity separations between the three leading jets . Invariant masses extending up to 5 TeV are reached for . These measurements use a sample of data recorded using the ATLAS detector in 2011, which corresponds to an integrated luminosity of . Jets are identified using the anti- algorithm with two different jet radius parameters, and . The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.
Many body effects in nuclear matter QCD sum rules
NASA Astrophysics Data System (ADS)
Drukarev, E. G.; Ryskin, M. G.; Sadovnikova, V. A.
2017-12-01
We calculate the single-particle nucleon characteristics in symmetric nuclear matter with inclusion of the 3N and 4N interactions. We calculated the contribution of the 3N interactions earlier, now we add that of the 4N ones. The contribution of the 4N forces to nucleon self energies is expressed in terms of the nonlocal scalar condensate (d = 3) and of the configurations of the vector-scalar and the scalar-scalar quark condensates (d = 6) in which two diquark operators act on two different nucleons of the matter.These four-quark condensates are obtained in the model-independent way. The density dependence of the nucleon effective mass, of the vector self energy and of the single-particle potential energy are obtained. We traced the dependence of the nucleon characteristics on the actual value of the pion-nucleon sigma term. We obtained also the nucleon characteristics in terms of the quasifree nucleons, with the noninteracting nucleons surrounded by their pion clouds as the starting point. This approach leads to strict hierarchy of the many body forces.
NASA Astrophysics Data System (ADS)
Engelhardt, M.
2017-05-01
Given a Wigner distribution simultaneously characterizing quark transverse positions and momenta in a proton, one can directly evaluate their cross product, i.e., quark orbital angular momentum. The aforementioned distribution can be obtained by generalizing the proton matrix elements of quark bilocal operators which define transverse momentum-dependent parton distributions (TMDs); the transverse momentum information is supplemented with transverse position information by introducing an additional nonzero momentum transfer. A gauge connection between the quarks must be specified in the quark bilocal operators; the staple-shaped gauge link path used in TMD calculations yields the Jaffe-Manohar definition of orbital angular momentum, whereas a straight path yields the Ji definition. An exploratory lattice calculation, performed at the pion mass mπ=518 MeV , is presented which quasicontinuously interpolates between the two definitions and demonstrates that their difference can be clearly resolved. The resulting Ji orbital angular momentum is confronted with traditional evaluations based on Ji's sum rule. Jaffe-Manohar orbital angular momentum is enhanced in magnitude compared to its Ji counterpart.
Closeout Report for CTEQ Summer School 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Tao
The CTEQ Collaboration is an informal group of 37 experimental and theoretical high energy physicists from 20 universities and 5 national labs, engaged in a program to advance research in and understanding of QCD. This program includes the well-known collaborative project on global QCD analysis of parton distributions, the organization of a variety of workshops, periodic collaboration meetings, and the subject of this proposal: the CTEQ Summer Schools on QCD Analysis and Phenomenology.
Complex Langevin dynamics and zeroes of the fermion determinant
NASA Astrophysics Data System (ADS)
Aarts, Gert; Seiler, Erhard; Sexty, Dénes; Stamatescu, Ion-Olimpiu
2017-05-01
QCD at nonzero baryon chemical potential suffers from the sign problem, due to the complex quark determinant. Complex Langevin dynamics can provide a solution, provided certain conditions are met. One of these conditions, holomorphicity of the Langevin drift, is absent in QCD since zeroes of the determinant result in a meromorphic drift. We first derive how poles in the drift affect the formal justification of the approach and then explore the various possibilities in simple models. The lessons from these are subsequently applied to both heavy dense QCD and full QCD, and we find that the results obtained show a consistent picture. We conclude that with careful monitoring, the method can be justified a posteriori, even in the presence of meromorphicity.
Quark-hadron phase structure of QCD matter from SU(4) Polyakov linear sigma model
NASA Astrophysics Data System (ADS)
Diab, Abdel Magied Abdel Aal; Tawfik, Abdel Nasser
2018-04-01
The SU(4) Polyakov linear sigma model (PLSM) is extended towards characterizing the chiral condensates, σl, σs and σc of light, strange and charm quarks, respectively and the deconfinement order-parameters φ and φ at finite temperatures and densities (chemical potentials). The PLSM is considered to study the QCD equation of state in the presence of the chiral condensate of charm for different finite chemical potentials. The PLSM results are in a good agreement with the recent lattice QCD simulations. We conclude that, the charm condensate is likely not affected by the QCD phase-transition, where the corresponding critical temperature is greater than that of the light and strange quark condensates.
Moving Forward to Constrain the Shear Viscosity of QCD Matter
Denicol, Gabriel; Monnai, Akihiko; Schenke, Björn
2016-05-26
In this work, we demonstrate that measurements of rapidity differential anisotropic flow in heavy-ion collisions can constrain the temperature dependence of the shear viscosity to entropy density ratio η/s of QCD matter. Comparing results from hydrodynamic calculations with experimental data from the RHIC, we find evidence for a small η/s ≈ 0.04 in the QCD crossover region and a strong temperature dependence in the hadronic phase. A temperature independent η/s is disfavored by the data. We further show that measurements of the event-by-event flow as a function of rapidity can be used to independently constrain the initial state fluctuations inmore » three dimensions and the temperature dependent transport properties of QCD matter.« less
Lepton-rich cold QCD matter in protoneutron stars
NASA Astrophysics Data System (ADS)
Jiménez, J. C.; Fraga, E. S.
2018-05-01
We investigate protoneutron star matter using the state-of-the-art perturbative equation of state for cold and dense QCD in the presence of a fixed lepton fraction in which both electrons and neutrinos are included. Besides computing the modifications in the equation of state due to the presence of trapped neutrinos, we show that stable strange quark matter has a more restricted parameter space. We also study the possibility of nucleation of unpaired quark matter in the core of protoneutron stars by matching the lepton-rich QCD pressure onto a hadronic equation of state, namely TM1 with trapped neutrinos. Using the inherent dependence of perturbative QCD on the renormalization scale parameter, we provide a measure of the uncertainty in the observables we compute.
Curvature of the freeze-out line in heavy ion collisions
Bazavov, A.; Ding, H. -T.; Hegde, P.; ...
2016-01-28
Here, we calculate the mean and variance of net-baryon number and net-electric charge distributions from quantum chromodynamics (QCD) using a next-to-leading order Taylor expansion in terms of temperature and chemical potentials. Moreover, these expansions with experimental data from STAR and PHENIX are compared, we determine the freeze-out temperature in the limit of vanishing baryon chemical potential, and, for the first time, constrain the curvature of the freeze-out line through a direct comparison between experimental data on net-charge fluctuations and a QCD calculation. We obtain a bound on the curvature coefficient, κmore » $^f$$_2$$<0.011, that is compatible with lattice QCD results on the curvature of the QCD transition line.« less
Sasaki, Yoshinori; Usami, Masahide; Sasayama, Daimei; Okada, Takashi; Iwadare, Yoshitaka; Watanabe, Kyota; Ushijima, Hirokage; Tanaka, Tetsuya; Harada, Maiko; Tanaka, Hiromi; Kodaira, Masaki; Sugiyama, Nobuhiro; Sawa, Tetsuji; Saito, Kazuhiko
2015-01-01
Background/Aim The Questionnaire: Children with Difficulties (QCD) is a parent-assessed questionnaire designed to evaluate child’s difficulties in functioning during specific periods of the day. This study aimed to evaluate difficulties in daily functioning of children and adolescents with pervasive developmental disorder (PDD) using the QCD. Results were compared with those for a community sample. Methods A case–control design was used. The cases comprised elementary school students (182 males, 51 females) and junior high school students (100 males, 39 females) with PDD, whereas a community sample of elementary school students (568 males, 579 females) and junior high school students (180 males, 183 females) was enrolled as controls. Their behavior was assessed using the QCD, the Tokyo Autistic Behavior Scale (TABS), the ADHD-rating scale (ADHD-RS), and the Oppositional Defiant Behavior Inventory (ODBI) for elementary and junior high school students, respectively. Effects of gender and diagnosis on the QCD scores were analyzed. Correlation coefficients between QCD and TABS, ADHD-RS, and ODBI scores were analyzed. Results The QCD scores for the children with PDD were significantly lower compared with those from the community sample (P < 0.001). Significantly strong correlations were observed in more areas of the ADHD-RS and ODBI scores compared with the TABS scores. Conclusions Children with PDD experienced greater difficulties in completing basic daily activities; moreover, their QCD scores revealed stronger associations with their ADHD-RS and ODBI scores in comparison with their TABS scores. The difficulties of PDD, ADHD and OBDI symptoms combined in children makes it necessary to assess all diagnoses before any therapy for PDD is initiated in order to be able to evaluate its results properly. PMID:25898260
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.
2011-01-10
AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equalmore » light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.« less
Three-particle N π π state contribution to the nucleon two-point function in lattice QCD
NASA Astrophysics Data System (ADS)
Bär, Oliver
2018-05-01
The three-particle N π π state contribution to the QCD two-point function of standard nucleon interpolating fields is computed to leading order in chiral perturbation theory. Using the experimental values for two low-energy coefficients, the impact of this contribution on lattice QCD calculations of the nucleon mass is estimated. The impact is found to be at the per mille level at most and negligible in practice.
Better than $l/Mflops sustained: a scalable PC-based parallel computer for lattice QCD
NASA Astrophysics Data System (ADS)
Fodor, Zoltán; Katz, Sándor D.; Papp, Gábor
2003-05-01
We study the feasibility of a PC-based parallel computer for medium to large scale lattice QCD simulations. The Eötvös Univ., Inst. Theor. Phys. cluster consists of 137 Intel P4-1.7GHz nodes with 512 MB RDRAM. The 32-bit, single precision sustained performance for dynamical QCD without communication is 1510 Mflops/node with Wilson and 970 Mflops/node with staggered fermions. This gives a total performance of 208 Gflops for Wilson and 133 Gflops for staggered QCD, respectively (for 64-bit applications the performance is approximately halved). The novel feature of our system is its communication architecture. In order to have a scalable, cost-effective machine we use Gigabit Ethernet cards for nearest-neighbor communications in a two-dimensional mesh. This type of communication is cost effective (only 30% of the hardware costs is spent on the communication). According to our benchmark measurements this type of communication results in around 40% communication time fraction for lattices upto 48 3·96 in full QCD simulations. The price/sustained-performance ratio for full QCD is better than l/Mflops for Wilson (and around 1.5/Mflops for staggered) quarks for practically any lattice size, which can fit in our parallel computer. The communication software is freely available upon request for non-profit organizations.
Bose-Fermi degeneracies in large N adjoint QCD
Basar, Gokce; Cherman, Aleksey; McGady, David
2015-07-06
Here, we analyze the large N limit of adjoint QCD, an SU( N) gauge theory with N f flavors of massless adjoint Majorana fermions, compactified on S 3 × S 1. We focus on the weakly-coupled confining small- S 3 regime. If the fermions are given periodic boundary conditions on S 1, we show that there are large cancellations between bosonic and fermionic contributions to the twisted partition function. These cancellations follow a pattern previously seen in the context of misaligned supersymmetry, and lead to the absence of Hagedorn instabilities for any S 1 size L, even though the bosonicmore » and fermionic densities of states both have Hagedorn growth. Adjoint QCD stays in the confining phase for any L ~ N 0, explaining how it is able to enjoy large N volume independence for any L. The large N boson-fermion cancellations take place in a setting where adjoint QCD is manifestly non-supersymmetric at any finite N, and are consistent with the recent conjecture that adjoint QCD has emergent fermionic symmetries in the large N limit.« less
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Haque, Najmul; Mustafa, Munshi G.; Strickland, Michael
2016-03-01
In a previous paper [N. Haque et al., J. High Energy Phys. 05 (2014) 27], we calculated the three-loop thermodynamic potential of QCD at finite temperature T and quark chemical potentials μq using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and finite baryon, strangeness, and isospin chemical potentials μB, μS, and μI. We calculate the pressure at nonzero μB and μI with μS=0 , and the energy density, the entropy density, the trace anomaly, and the speed of sound at nonzero μI with μB=μS=0 . The second- and fourth-order isospin susceptibilities are calculated at μB=μS=μI=0 . Our results can be directly compared to lattice QCD without Taylor expansions around μq=0 since QCD has no sign problem at μB=μS=0 and finite isospin chemical potential μI.
Lattice QCD results on soft and hard probes of strongly interacting matter
NASA Astrophysics Data System (ADS)
Kaczmarek, Olaf
2017-11-01
We present recent results from lattice QCD relevant for the study of strongly interacting matter as it is produced in heavy ion collision experiments. The equation of state at non-vanishing density from a Taylor expansion up to 6th order will be discussed for a strangeness neutral system and using the expansion coefficients of the series limits on the critical point are estimated. Chemical freeze-out temperatures from the STAR and ALICE Collaborations will be compared to lines of constant physics calculated from the Taylor expansion of QCD bulk thermodynamic quantities. We show that qualitative features of the √{sNN} dependence of skewness and kurtosis ratios of net proton-number fluctuations measured by the STAR Collaboration can be understood from QCD results for cumulants of conserved baryon-number fluctuations. As an example for recent progress towards the determination of spectral and transport properties of the QGP from lattice QCD, we will present constraints on the thermal photon rate determined from a spectral reconstruction of continuum extrapolated lattice correlation functions in combination with input from most recent perturbative calculations.
Inclusive jet cross section and strong coupling constant measurements at CMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerci, Salim, E-mail: Salim.Cerci@cern.ch
2016-03-25
The probes which are abundantly produced in high energetic proton-proton (pp) collisions at the LHC are called jets. Events with jets can be described by Quantum Chromodynamics (QCD) in terms of parton-parton scattering. The inclusive jet cross section in pp collision is the fundamental quantity which can be measured and predicted within the framework of perturbative QCD (pQCD). The strong coupling constant α{sub S} which can be determined empirically in the limit of massless quarks, is the single parameter in QCD. The jet measurements can also be used to determine strong coupling constant α{sub S} and parton density functions (PDFs).more » The recent jet measurements which are performed with the data collected by the CMS detector at different center-of-mass energies and down to very low transverse momentum p{sub T} are presented. The measurements are compared to Monte Carlo predictions and perturbative calculations up to next-to-next-to leading order. Finally, the precision jet measurements give further insight into the QCD dynamics.« less
Conjecture about the 2-Flavour QCD Phase Diagram
NASA Astrophysics Data System (ADS)
Nava Blanco, M. A.; Bietenholz, W.; Fernández Téllez, A.
2017-10-01
The QCD phase diagram, in particular its sector of high baryon density, is one of the most prominent outstanding mysteries within the Standard Model of particle physics. We sketch a project how to arrive at a conjecture for the case of two massless quark flavours. The pattern of spontaneous chiral symmetry breaking is isomorphic to the spontaneous magnetisation in an O(4) non-linear σ-model, which can be employed as a low-energy effective theory to study the critical behaviour. We focus on the 3d O(4) model, where the configurations are divided into topological sectors, as in QCD. A topological winding with minimal Euclidean action is denoted as a skyrmion, and the topological charge corresponds to the QCD baryon number. This effective model can be simulated on a lattice with a powerful cluster algorithm, which should allow us to identify the features of the critical temperature, as we proceed from low to high baryon density. In this sense, this projected numerical study has the potential to provide us with a conjecture about the phase diagram of QCD with two massless quark flavours.
Electroweak Higgs production with HiggsPO at NLO QCD
NASA Astrophysics Data System (ADS)
Greljo, Admir; Isidori, Gino; Lindert, Jonas M.; Marzocca, David; Zhang, Hantian
2017-12-01
We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p_T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available.
Search for the pentaquark resonance signature in lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. G. Lasscock; J. Hedditch; Derek Leinweber
2005-02-01
Claims concerning the possible discovery of the {Theta}{sup +} pentaquark, with minimal quark content uudd{bar s}, have motivated our comprehensive study into possible pentaquark states using lattice QCD. We review various pentaquark interpolating fields in the literature and create a new candidate ideal for lattice QCD simulations. Using these interpolating fields we attempt to isolate a signal for a five-quark resonance. Calculations are performed using improved actions on a large 20{sup 3} x 40 lattice in the quenched approximation. The standard lattice resonance signal of increasing attraction between baryon constituents for increasing quark mass is not observed for spin-1/2 pentaquarkmore » states. We conclude that evidence supporting the existence of a spin-1/2 pentaquark resonance does not exist in quenched QCD.« less
The decay of Λ _b→ p~K^- in QCD factorization approach
NASA Astrophysics Data System (ADS)
Zhu, Jie; Ke, Hong-Wei; Wei, Zheng-Tao
2016-05-01
With only the tree-level operator, the decay of Λ _b→ pK is predicted to be one order smaller than the experimental data. The QCD penguin effects should be taken into account. In this paper, we explore the one-loop QCD corrections to the decay of Λ _b→ pK within the framework of QCD factorization approach. For the baryon system, the diquark approximation is adopted. The transition hadronic matrix elements between Λ _b and p are calculated in the light-front quark model. The branching ratio of Λ _b→ pK is predicted to be about 4.85× 10^{-6}, which is consistent with experimental data (4.9± 0.9)× 10^{-6}. The CP violation is about 5 % in theory.
NASA Astrophysics Data System (ADS)
Yepez-Martinez, Tochtli; Civitarese, Osvaldo; Hess, Peter O.
The SO(4) symmetry of a sector of the quantum chromodynamics (QCD) Hamiltonian was analyzed in a previous work. The numerical calculations were then restricted to a particle-hole (ph) space and the comparison with experimental data was reasonable in spite of the complexity of the QCD spectrum at low energy. Here on, we continue along this line of research and show our new results of the treatment of the QCD Hamiltonian in the SO(4) representation, including ground state correlations by means of the Random Phase Approximation (RPA). We are able to identify, within this model, states which may be associated to physical pseudo-scalar and vector mesons, like η,η‧,K,ρ,ω,ϕ, as well as the pion (π).
Hadron interactions and exotic hadrons from lattice QCD
NASA Astrophysics Data System (ADS)
Ikeda, Yoichi
2014-09-01
One of the interesting subjects in hadron physics is to look for the multiquark configurations. One of candidates is the H-dibaryon (udsuds), and the possibility of the bound H-dibaryon has been recently studied from lattice QCD. We also extend the HAL QCD method to define potentials on the lattice between baryons to meson-meson systems including charm quarks to search for the bound tetraquark Tcc (ud c c) and Tcs (ud c s). In the presentation, after reviewing the HAL QCD method, we report the results on the H-dibaryon, the tetraquark Tcc (ud c c) and Tcs (ud c s), where we have employed the relativistic heavy quark action to treat the charm quark dynamics with pion masses, mπ = 410, 570, 700 MeV.
Kaon-Nucleon potential from lattice QCD
NASA Astrophysics Data System (ADS)
Ikeda, Y.; Aoki, S.; Doi, T.; Hatsuda, T.; Inoue, T.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K.
2010-04-01
We study the K N interactions in the I(Jπ) = 0(1/2-) and 1(1/2-) channels and associated exotic state Θ+ from 2+1 flavor full lattice QCD simulation for relatively heavy quark mass corresponding to mπ = 871 MeV. The s-wave K N potentials are obtained from the Bethe-Salpeter wave function by using the method recently developed by HAL QCD (Hadrons to Atomic nuclei from Lattice QCD) Collaboration. Potentials in both channels reveal short range repulsions: Strength of the repulsion is stronger in the I = 1 potential, which is consistent with the prediction of the Tomozawa-Weinberg term. The I = 0 potential is found to have attractive well at mid range. From these potentials, the K N scattering phase shifts are calculated and compared with the experimental data.
Exposing the QCD Splitting Function with CMS Open Data.
Larkoski, Andrew; Marzani, Simone; Thaler, Jesse; Tripathee, Aashish; Xue, Wei
2017-09-29
The splitting function is a universal property of quantum chromodynamics (QCD) which describes how energy is shared between partons. Despite its ubiquitous appearance in many QCD calculations, the splitting function cannot be measured directly, since it always appears multiplied by a collinear singularity factor. Recently, however, a new jet substructure observable was introduced which asymptotes to the splitting function for sufficiently high jet energies. This provides a way to expose the splitting function through jet substructure measurements at the Large Hadron Collider. In this Letter, we use public data released by the CMS experiment to study the two-prong substructure of jets and test the 1→2 splitting function of QCD. To our knowledge, this is the first ever physics analysis based on the CMS Open Data.
Mesopic luminance assessed with minimally distinct border perception
Raphael, Sabine; MacLeod, Donald I. A.
2015-01-01
In photopic vision, the border between two fields is minimally distinct when the two fields are isoluminant; that is, when the achromatic luminance of the two fields is equal. The distinctness of a border between extrafoveal reference and comparison fields was used here as an isoluminance criterion under a variety of adaptation conditions ranging from photopic to scotopic. The adjustment was done by trading off the amount of blue against the amount of red in the comparison field. Results show that isoluminant border settings are linear under all constant adaptation conditions, though varying with state of adaptation. The relative contribution of rods and cones to luminance was modeled such that the linear sum of the suitably weighted scotopic and photopic luminance is constant for the mesopic isoluminant conditions. The relative weights change with adapting intensity in a sigmoid fashion and also depend strongly on the position of the border in the visual field. PMID:26223024
NASA Astrophysics Data System (ADS)
Khetarpal, P.; Stoler, P.; Aznauryan, I. G.; Kubarovsky, V.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Anghinolfi, M.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Fradi, A.; Gabrielyan, M. Y.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kuleshov, S. V.; Kvaltine, N. D.; Lewis, S.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Saylor, N. A.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; Zonta, I.
2013-04-01
We report the measurement of near-threshold neutral pion electroproduction cross sections and the extraction of the associated structure functions on the proton in the kinematic range Q2 from 2 to 4.5 GeV2 and W from 1.08 to 1.16 GeV. These measurements allow us to access the dominant pion-nucleon s-wave multipoles E0+ and S0+ in the near-threshold region. In the light-cone sum-rule framework (LCSR), these multipoles are related to the generalized form factors G1π0p(Q2) and G2π0p(Q2). The data are compared to these generalized form factors and the results for G1π0p(Q2) are found to be in good agreement with the LCSR predictions, but the level of agreement with G2π0p(Q2) is poor.
Measurement of the generalized form factors near threshold via γ*p→nπ+ at high Q2
NASA Astrophysics Data System (ADS)
Park, K.; Gothe, R. W.; Adhikari, K. P.; Adikaram, D.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bookwalter, C.; Boiarinov, S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fradi, A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Graham, L.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Heddle, D.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jo, H. S.; Joo, K.; Kalantarians, N.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, S.; Pereira, S. Anefalos; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Y.; Tkachenko, S.; Trivedi, A.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voutier, E.; Watts, D. P.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhao, B.; Zhao, Z. W.
2012-03-01
We report the first extraction of the pion-nucleon multipoles near the production threshold for the nπ+ channel at relatively high momentum transfer (Q2 up to 4.2 GeV2). The dominance of the s-wave transverse multipole (E0+), expected in this region, allowed us to access the generalized form factor G1 within the light-cone sum-rule (LCSR) framework as well as the axial form factor GA. The data analyzed in this work were collected by the nearly 4π CEBAF Large Acceptance Spectrometer (CLAS) using a 5.754-GeV electron beam on a proton target. The differential cross section and the π-N multipole E0+/GD were measured using two different methods, the LCSR and a direct multipole fit. The results from the two methods are found to be consistent and almost Q2 independent.
Quantum Strategies and Local Operations
NASA Astrophysics Data System (ADS)
Gutoski, Gus
2010-02-01
This thesis is divided into two parts. In Part I we introduce a new formalism for quantum strategies, which specify the actions of one party in any multi-party interaction involving the exchange of multiple quantum messages among the parties. This formalism associates with each strategy a single positive semidefinite operator acting only upon the tensor product of the input and output message spaces for the strategy. We establish three fundamental properties of this new representation for quantum strategies and we list several applications, including a quantum version of von Neumann's celebrated 1928 Min-Max Theorem for zero-sum games and an efficient algorithm for computing the value of such a game. In Part II we establish several properties of a class of quantum operations that can be implemented locally with shared quantum entanglement or classical randomness. In particular, we establish the existence of a ball of local operations with shared randomness lying within the space spanned by the no-signaling operations and centred at the completely noisy channel. The existence of this ball is employed to prove that the weak membership problem for local operations with shared entanglement is strongly NP-hard. We also provide characterizations of local operations in terms of linear functionals that are positive and "completely" positive on a certain cone of Hermitian operators, under a natural notion of complete positivity appropriate to that cone. We end the thesis with a discussion of the properties of no-signaling quantum operations.
The complete two-loop integrated jet thrust distribution in soft-collinear effective theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Manteuffel, Andreas; Schabinger, Robert M.; Zhu, Hua Xing
2014-03-01
In this work, we complete the calculation of the soft part of the two-loop integrated jet thrust distribution in e+e- annihilation. This jet mass observable is based on the thrust cone jet algorithm, which involves a veto scale for out-of-jet radiation. The previously uncomputed part of our result depends in a complicated way on the jet cone size, r, and at intermediate stages of the calculation we actually encounter a new class of multiple polylogarithms. We employ an extension of the coproduct calculus to systematically exploit functional relations and represent our results concisely. In contrast to the individual contributions, themore » sum of all global terms can be expressed in terms of classical polylogarithms. Our explicit two-loop calculation enables us to clarify the small r picture discussed in earlier work. In particular, we show that the resummation of the logarithms of r that appear in the previously uncomputed part of the two-loop integrated jet thrust distribution is inextricably linked to the resummation of the non-global logarithms. Furthermore, we find that the logarithms of r which cannot be absorbed into the non-global logarithms in the way advocated in earlier work have coefficients fixed by the two-loop cusp anomalous dimension. We also show that in many cases one can straightforwardly predict potentially large logarithmic contributions to the integrated jet thrust distribution at L loops by making use of analogous contributions to the simpler integrated hemisphere soft function.« less
Test of universal rise of hadronic total cross sections based on {pi}p, Kp and pp, pp scatterings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishida, Muneyuki; Igi, Keiji; Theoretical Physics Laboratory, RIKEN, Wako, Saitama 351-0198
Recently, there have been several evidences that the hadronic total cross section {sigma}{sub tot} is proportional to Blog{sup 2}s, which is consistent with the Froissart unitarity bound. The COMPETE Collaboration has further assumed {sigma}{sub tot}{approx_equal}Blog{sup 2}(s/s{sub 0})+Z to extend its universal rise with the common values of B and s{sub 0} for all hadronic scatterings to reduce the number of adjustable parameters. It was suggested that the coefficient B was universal in the arguments of the color glass condensate of QCD in recent years. However, there has been no rigorous proof yet based only on QCD. We attempt to investigatemore » the value of B for {pi}{sup {+-}}p, K{sup {+-}}p and pp, pp scatterings, respectively, through the search for the simultaneous best fit to the experimental {sigma}{sub tot} and {rho} ratios at high energies. The {sigma}{sub tot} at the resonance- and intermediate-energy regions has also been exploited as a duality constraint based on the special form of the finite-energy sum rule. We estimate the values of B, s{sub 0}, and Z individually for {pi}{sup {+-}}p, K{sup {+-}}p and pp, pp scatterings without using the universality hypothesis. It turns out that the values of B are mutually consistent within 1 standard deviation. It has to be stressed that we cannot obtain such a definite conclusion without the duality constraint. It is also interesting to note that the values of Z for {pi}p, Kp, and p(p)p approximately satisfy the ratio 2 ratio 2 ratio 3 predicted by the quark model. The obtained value of B for p(p)p is B{sub pp}=0.280{+-}0.015 mb, which predicts {sigma}{sub tot}{sup pp}=108.0{+-}1.9 mb and {rho}{sup pp}=0.131{+-}0.0025 at the LHC energy {radical}(s)=14 TeV.« less
The gluon density of the proton at low x from a QCD analysis of F2
NASA Astrophysics Data System (ADS)
Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration
1995-02-01
We present a QCD analysis of the proton structure function F2 measured by the H1 experiment at HERA, combined with data from previous fixed target experiments. The gluon density is extracted from the scaling violations of F2 in the range 2 · 10 -4 < x < 3 · 10 -2 and compared with an approximate solution of the QCD evolution equations. The gluon density is found to rise steeply with decreasing x.
Archeology and evolution of QCD
NASA Astrophysics Data System (ADS)
De Rújula, A.
2017-03-01
These are excerpts from the closing talk at the "XIIth Conference on Quark Confinement and the Hadron Spectrum", which took place last Summer in Thessaloniki -an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which -to my judgement- illustrate well the QCD evolution (in time), both from a scientific and a sociological point of view.
Two loop renormalization of the magnetic coupling in hot QCD
NASA Astrophysics Data System (ADS)
Giovannangeli, P.
2004-04-01
Well above the critical temperature hot QCD is described by 3d electrostatic QCD with gauge coupling gE and Debye mass mE. We integrate out the Debye scales to two loop accuracy and find for the gauge coupling in the resulting magnetostatic action gM2=gE21-{1}/{48}{gE2N}/{πmE}-{17}/{4608}{gE2N}/{πmE}2+O{gE2N}/{πmE}3.
QCD unitarity constraints on Reggeon Field Theory
NASA Astrophysics Data System (ADS)
Kovner, Alex; Levin, Eugene; Lublinsky, Michael
2016-08-01
We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun's Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a "black disk limit" as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.
Spectral functions at small energies and the electrical conductivity in hot quenched lattice QCD.
Aarts, Gert; Allton, Chris; Foley, Justin; Hands, Simon; Kim, Seyong
2007-07-13
In lattice QCD, the maximum entropy method can be used to reconstruct spectral functions from Euclidean correlators obtained in numerical simulations. We show that at finite temperature the most commonly used algorithm, employing Bryan's method, is inherently unstable at small energies and gives a modification that avoids this. We demonstrate this approach using the vector current-current correlator obtained in quenched QCD at finite temperature. Our first results indicate a small electrical conductivity above the deconfinement transition.
Nuclear physics from lattice QCD at strong coupling.
de Forcrand, Ph; Fromm, M
2010-03-19
We study numerically the strong coupling limit of lattice QCD with one flavor of massless staggered quarks. We determine the complete phase diagram as a function of temperature and chemical potential, including a tricritical point. We clarify the nature of the low temperature dense phase, which is strongly bound "nuclear" matter. This strong binding is explained by the nuclear potential, which we measure. Finally, we determine, from this first-principles limiting case of QCD, the masses of "atomic nuclei" up to A=12 "carbon".
OPE of Green functions in the odd sector of QCD
NASA Astrophysics Data System (ADS)
Kadavý, T.; Kampf, K.; Novotný, J.
2017-03-01
A review of familiar results of the three-point Green functions of currents in the odd-intrinsic parity sector of QCD is presented. Such Green functions include very well-known examples of VVP, VAS or AAP correlators. We also present new results for VVA and AAA Green functions that have not yet been studied extensively in the literature before, more importantly with a phenomenological study and a discussion of the highenergy behaviour and its relation to the QCD condensates.
Fragmentation functions at next-to-next-to-leading order accuracy
Anderle, Daniele P.; Stratmann, Marco; Ringer, Felix
2015-12-01
We present a first analysis of parton-to-pion fragmentation functions at next-to-next-to-leading order accuracy in QCD based on single-inclusive pion production in electron-positron annihilation. Special emphasis is put on the technical details necessary to perform the QCD scale evolution and cross section calculation in Mellin moment space. Lastly, we demonstrate how the description of the data and the theoretical uncertainties are improved when next-to-next-to-leading order QCD corrections are included.
REMARKS ON THE MAXIMUM ENTROPY METHOD APPLIED TO FINITE TEMPERATURE LATTICE QCD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
UMEDA, T.; MATSUFURU, H.
2005-07-25
We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.
Anomaly inflow on QCD axial domain-walls and vortices
NASA Astrophysics Data System (ADS)
Fukushima, Kenji; Imaki, Shota
2018-06-01
We study the chiral effective theory in the presence of quantum chromodynamics (QCD) vortices. Gauge invariance requires novel terms from vortex singularities in the gauged Wess-Zumino-Witten action, which incorporate anomaly-induced currents along the vortices. We examine these terms for systems with QCD axial domain-walls bounded by vortices (vortons) under magnetic fields. We discuss how the baryon and electric charge conservations are satisfied in these systems through interplay between domain-walls and vortices, manifesting Callan-Harvey's mechanism of anomaly inflow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothstein, Ira Z.; Stewart, Iain W.
Starting with QCD, we derive an effective field theory description for forward scattering and factorization violation as part of the soft-collinear effective field theory (SCET) for high energy scattering. These phenomena are mediated by long distance Glauber gluon exchanges, which are static in time, localized in the longitudinal distance, and act as a kernel for forward scattering where |t| << s. In hard scattering, Glauber gluons can induce corrections which invalidate factorization. With SCET, Glauber exchange graphs can be calculated explicitly, and are distinct from graphs involving soft, collinear, or ultrasoft gluons. We derive a complete basis of operators whichmore » describe the leading power effects of Glauber exchange. Key ingredients include regulating light-cone rapidity singularities and subtractions which prevent double counting. Our results include a novel all orders gauge invariant pure glue soft operator which appears between two collinear rapidity sectors. The 1-gluon Feynman rule for the soft operator coincides with the Lipatov vertex, but it also contributes to emissions with ≥ 2 soft gluons. Our Glauber operator basis is derived using tree level and one-loop matching calculations from full QCD to both SCET II and SCET I. The one-loop amplitude’s rapidity renormalization involves mixing of color octet operators and yields gluon Reggeization at the amplitude level. The rapidity renormalization group equation for the leading soft and collinear functions in the forward scattering cross section are each given by the BFKL equation. Various properties of Glauber gluon exchange in the context of both forward scattering and hard scattering factorization are described. For example, we derive an explicit rule for when eikonalization is valid, and provide a direct connection to the picture of multiple Wilson lines crossing a shockwave. In hard scattering operators Glauber subtractions for soft and collinear loop diagrams ensure that we are not sensitive to the directions for soft and collinear Wilson lines. Conversely, certain Glauber interactions can be absorbed into these soft and collinear Wilson lines by taking them to be in specific directions. Finally, we also discuss criteria for factorization violation.« less
An effective field theory for forward scattering and factorization violation
Rothstein, Ira Z.; Stewart, Iain W.
2016-08-03
Starting with QCD, we derive an effective field theory description for forward scattering and factorization violation as part of the soft-collinear effective field theory (SCET) for high energy scattering. These phenomena are mediated by long distance Glauber gluon exchanges, which are static in time, localized in the longitudinal distance, and act as a kernel for forward scattering where |t| << s. In hard scattering, Glauber gluons can induce corrections which invalidate factorization. With SCET, Glauber exchange graphs can be calculated explicitly, and are distinct from graphs involving soft, collinear, or ultrasoft gluons. We derive a complete basis of operators whichmore » describe the leading power effects of Glauber exchange. Key ingredients include regulating light-cone rapidity singularities and subtractions which prevent double counting. Our results include a novel all orders gauge invariant pure glue soft operator which appears between two collinear rapidity sectors. The 1-gluon Feynman rule for the soft operator coincides with the Lipatov vertex, but it also contributes to emissions with ≥ 2 soft gluons. Our Glauber operator basis is derived using tree level and one-loop matching calculations from full QCD to both SCET II and SCET I. The one-loop amplitude’s rapidity renormalization involves mixing of color octet operators and yields gluon Reggeization at the amplitude level. The rapidity renormalization group equation for the leading soft and collinear functions in the forward scattering cross section are each given by the BFKL equation. Various properties of Glauber gluon exchange in the context of both forward scattering and hard scattering factorization are described. For example, we derive an explicit rule for when eikonalization is valid, and provide a direct connection to the picture of multiple Wilson lines crossing a shockwave. In hard scattering operators Glauber subtractions for soft and collinear loop diagrams ensure that we are not sensitive to the directions for soft and collinear Wilson lines. Conversely, certain Glauber interactions can be absorbed into these soft and collinear Wilson lines by taking them to be in specific directions. Finally, we also discuss criteria for factorization violation.« less
Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors
Bruce, Kady S.; Harmening, Wolf M.; Langston, Bradley R.; Tuten, William S.; Roorda, Austin; Sincich, Lawrence C.
2015-01-01
Purpose To determine the light sensitivity of poorly reflective cones observed in retinas of normal subjects, and to establish a relationship between cone reflectivity and perceptual threshold. Methods Five subjects (four male, one female) with normal vision were imaged longitudinally (7–26 imaging sessions, representing 82–896 days) using adaptive optics scanning laser ophthalmoscopy (AOSLO) to monitor cone reflectance. Ten cones with unusually low reflectivity, as well as 10 normally reflective cones serving as controls, were targeted for perceptual testing. Cone-sized stimuli were delivered to the targeted cones and luminance increment thresholds were quantified. Thresholds were measured three to five times per session for each cone in the 10 pairs, all located 2.2 to 3.3° from the center of gaze. Results Compared with other cones in the same retinal area, three of 10 monitored dark cones were persistently poorly reflective, while seven occasionally manifested normal reflectance. Tested psychophysically, all 10 dark cones had thresholds comparable with those from normally reflecting cones measured concurrently (P = 0.49). The variation observed in dark cone thresholds also matched the wide variation seen in a large population (n = 56 cone pairs, six subjects) of normal cones; in the latter, no correlation was found between cone reflectivity and threshold (P = 0.0502). Conclusions Low cone reflectance cannot be used as a reliable indicator of cone sensitivity to light in normal retinas. To improve assessment of early retinal pathology, other diagnostic criteria should be employed along with imaging and cone-based microperimetry. PMID:26193919
Ma, Hongwei; Thapa, Arjun; Morris, Lynsie; Redmond, T. Michael; Baehr, Wolfgang; Ding, Xi-Qin
2014-01-01
Cone phototransduction and survival of cones in the human macula is essential for color vision and for visual acuity. Progressive cone degeneration in age-related macular degeneration, Stargardt disease, and recessive cone dystrophies is a major cause of blindness. Thyroid hormone (TH) signaling, which regulates cell proliferation, differentiation, and apoptosis, plays a central role in cone opsin expression and patterning in the retina. Here, we investigated whether TH signaling affects cone viability in inherited retinal degeneration mouse models. Retinol isomerase RPE65-deficient mice [a model of Leber congenital amaurosis (LCA) with rapid cone loss] and cone photoreceptor function loss type 1 mice (severe recessive achromatopsia) were used to determine whether suppressing TH signaling with antithyroid treatment reduces cone death. Further, cone cyclic nucleotide-gated channel B subunit-deficient mice (moderate achromatopsia) and guanylate cyclase 2e-deficient mice (LCA with slower cone loss) were used to determine whether triiodothyronine (T3) treatment (stimulating TH signaling) causes deterioration of cones. We found that cone density in retinol isomerase RPE65-deficient and cone photoreceptor function loss type 1 mice increased about sixfold following antithyroid treatment. Cone density in cone cyclic nucleotide-gated channel B subunit-deficient and guanylate cyclase 2e-deficient mice decreased about 40% following T3 treatment. The effect of TH signaling on cone viability appears to be independent of its regulation on cone opsin expression. This work demonstrates that suppressing TH signaling in retina dystrophy mouse models is protective of cones, providing insights into cone preservation and therapeutic interventions. PMID:24550448
Generalized parton distributions and transversity from full lattice QCD
NASA Astrophysics Data System (ADS)
Göckeler, M.; Hägler, Ph.; Horsley, R.; Pleiter, D.; Rakow, P. E. L.; Schäfer, A.; Schierholz, G.; Zanotti, J. M.; Qcdsf Collaboration
2005-06-01
We present here the latest results from the QCDSF collaboration for moments of gener- alized parton distributions and transversity in two-flavour QCD, including a preliminary analysis of the pion mass dependence.
Zanderighi, Giulia
2018-05-23
Modern QCD - Lecture 4. We will consider some processes of interest at the LHC and will discuss the main elements of their cross-section calculations. We will also summarize the current status of higher order calculations.
Second-order QCD effects in Higgs boson production through vector boson fusion
NASA Astrophysics Data System (ADS)
Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Huss, A.
2018-06-01
We compute the factorising second-order QCD corrections to the electroweak production of a Higgs boson through vector boson fusion. Our calculation is fully differential in the kinematics of the Higgs boson and of the final state jets, and uses the antenna subtraction method to handle infrared singular configurations in the different parton-level contributions. Our results allow us to reassess the impact of the next-to-leading order (NLO) QCD corrections to electroweak Higgs-plus-three-jet production and of the next-to-next-to-leading order (NNLO) QCD corrections to electroweak Higgs-plus-two-jet production. The NNLO corrections are found to be limited in magnitude to around ± 5% and are uniform in several of the kinematical variables, displaying a kinematical dependence only in the transverse momenta and rapidity separation of the two tagging jets.
Poincare recurrence theorem and the strong CP problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalloniatis, Alex C.; Nedelko, Sergei N.; Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna
2006-02-01
The existence in the physical QCD vacuum of nonzero gluon condensates, such as
Determination of the chiral condensate from (2+1)-flavor lattice QCD.
Fukaya, H; Aoki, S; Hashimoto, S; Kaneko, T; Noaki, J; Onogi, T; Yamada, N
2010-03-26
We perform a precise calculation of the chiral condensate in QCD using lattice QCD with 2+1 flavors of dynamical overlap quarks. Up and down quark masses cover a range between 3 and 100 MeV on a 16{3}x48 lattice at a lattice spacing approximately 0.11 fm. At the lightest sea quark mass, the finite volume system on the lattice is in the regime. By matching the low-lying eigenvalue spectrum of the Dirac operator with the prediction of chiral perturbation theory at the next-to-leading order, we determine the chiral condensate in (2+1)-flavor QCD with strange quark mass fixed at its physical value as Sigma;{MS[over ]}(2 GeV)=[242(04)(+19/-18) MeV]{3} where the errors are statistical and systematic, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S
2003-11-19
Theoretical and phenomenological evidence is now accumulating that the QCD coupling becomes constant at small virtuality; i.e., {alpha}{sub s}(Q{sup 2}) develops an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. For example, the hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{sub {tau}}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. The {tau} decay data at low mass scales indicates that the effective charge freezes at a value of s = m{sub {tau}{prime}}{sup 2} of order 1more » GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1. The near-constant behavior of effective couplings suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer and why there are no significant running coupling corrections to quark counting rules for exclusive processes. The AdS/CFT correspondence of large N{sub c} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time also has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes and light-front wavefunctions. The utility of light-front quantization and light-front Fock wavefunctions for analyzing nonperturbative QCD and representing the dynamics of QCD bound states is also discussed.« less
Testing the QCD string at large Nc from the thermodynamics of the hadronic phase
NASA Astrophysics Data System (ADS)
Cohen, Thomas D.
2007-02-01
It is generally believed that in the limit of a large number of colors (Nc) the description of confinement via flux tubes becomes valid and QCD can be modeled accurately via a hadronic string theory—at least for highly excited states. QCD at large Nc also has a well-defined deconfinement transition at a temperature Tc. In this talk it is shown how the thermodyanmics of the metastable hadronic phase of QCD (above Tc) at large NC can be related directly to properties of the effective QCD string. The key points in the derivation is the weakly interacting nature of hadrons at large Nc and the existence of a Hagedorn temperature TH for the effective string theory. From this it can be seen at large Nc and near TH, the energy density and pressure of the hadronic phase scale as E ˜ (TH - T)-(D⊥-6)/2 (for D⊥ < 6) and P ˜ (TH - T)-(D⊥-4)/2 (for D⊥ < 4) where D⊥ is the effective number of transverse dimensions of the string theory. This behavior for D⊥ < 6 is qualitatively different from typical models in statistical mechanics and if observed on the lattice would provide a direct test of the stringy nature of large Nc QCD. However since it can be seen that TH > Tc this behavior is of relevance only to the metastable phase. The prospect of using this result to extract D⊥ via lattice simulations of the metastable hadronic phase at moderately large Nc is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Sheng-Quan; Wu, Xing-Gang; Brodsky, Stanley J.
We present improved perturbative QCD (pQCD) predictions for Higgs boson hadroproduction at the LHC by applying the principle of maximum conformality (PMC), a procedure which resums the pQCD series using the renormalization group (RG), thereby eliminating the dependence of the predictions on the choice of the renormalization scheme while minimizing sensitivity to the initial choice of the renormalization scale. In previous pQCD predictions for Higgs boson hadroproduction, it has been conventional to assume that the renormalization scale μ r of the QCD coupling α s ( μ r ) is the Higgs mass and then to vary this choice overmore » the range 1 / 2 m H < μ r < 2 m H in order to estimate the theory uncertainty. However, this error estimate is only sensitive to the nonconformal β terms in the pQCD series, and thus it fails to correctly estimate the theory uncertainty in cases where a pQCD series has large higher-order contributions, as is the case for Higgs boson hadroproduction. Furthermore, this ad hoc choice of scale and range gives pQCD predictions which depend on the renormalization scheme being used, in contradiction to basic RG principles. In contrast, after applying the PMC, we obtain next-to-next-to-leading-order RG resummed pQCD predictions for Higgs boson hadroproduction which are renormalization-scheme independent and have minimal sensitivity to the choice of the initial renormalization scale. Taking m H = 125 GeV , the PMC predictions for the p p → H X Higgs inclusive hadroproduction cross sections for various LHC center-of-mass energies are σ Incl | 7 TeV = 21.2 1 + 1.36 - 1.32 pb , σ Incl | 8 TeV = 27.3 7 + 1.65 - 1.59 pb , and σ Incl | 13 TeV = 65.7 2 + 3.46 - 3.0 pb . We also predict the fiducial cross section σ fid ( p p → H → γ γ ) : σ fid | 7 TeV = 30.1 + 2.3 - 2.2 fb , σ fid | 8 TeV = 38.3 + 2.9 - 2.8 fb , and σ fid | 13 TeV = 85.8 + 5.7 - 5.3 fb . The error limits in these predictions include the small residual high-order renormalization-scale dependence plus the uncertainty from the factorization scale. The PMC predictions show better agreement with the ATLAS measurements than the LHC Higgs Cross Section Working Group predictions which are based on conventional renormalization-scale setting.« less
Fluctuations in the quark-meson model for QCD with isospin chemical potential
NASA Astrophysics Data System (ADS)
Kamikado, Kazuhiko; Strodthoff, Nils; von Smekal, Lorenz; Wambach, Jochen
2013-01-01
We study the two-flavor quark-meson (QM) model with the functional renormalization group (FRG) to describe the effects of collective mesonic fluctuations on the phase diagram of QCD at finite baryon and isospin chemical potentials, μB and μI. With only isospin chemical potential there is a precise equivalence between the competing dynamics of chiral versus pion condensation and that of collective mesonic and baryonic fluctuations in the quark-meson-diquark model for two-color QCD at finite baryon chemical potential. Here, finite μB = 3 μ introduces an additional dimension to the phase diagram as compared to two-color QCD, however. At zero temperature, the (μI, μ) plane of this phase diagram is strongly constrained by the "Silver Blaze problem." In particular, the onset of pion condensation must occur at μI =mπ / 2, independent of μ as long as μ +μI stays below the constituent quark mass of the QM model or the liquid-gas transition line of nuclear matter in QCD. In order to maintain this relation beyond mean field it is crucial to compute the pion mass from its timelike correlator with the FRG in a consistent way.
Backović, Mihailo; Krämer, Michael; Maltoni, Fabio; Martini, Antony; Mawatari, Kentarou; Pellen, Mathieu
Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s -channel mediators. We implement such models in the FeynRules/MadGraph5_aMC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s -channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.
QCD triple Pomeron coupling from string amplitudes
NASA Astrophysics Data System (ADS)
Bialas, A.; Navelet, H.; Peschanski, R.
1998-06-01
Using the recent solution of the triple Pomeron coupling in the QCD dipole picture as a closed string amplitude with six legs, its analytical form in terms of hypergeometric functions and numerical value are derived.
Hadronic Correlations and Fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Volker
2008-10-09
We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.
Merging weak and QCD showers with matrix elements
Christiansen, Jesper Roy; Prestel, Stefan
2016-01-22
In this study, we present a consistent way of combining associated weak boson radiation in hard dijet events with hard QCD radiation in Drell–Yan-like scatterings. This integrates multiple tree-level calculations with vastly different cross sections, QCD- and electroweak parton-shower resummation into a single framework. The new merging strategy is implemented in the P ythia event generator and predictions are confronted with LHC data. Improvements over the previous strategy are observed. Results of the new electroweak-improved merging at a future 100 TeV proton collider are also investigated.
Lattice QCD Application Development within the US DOE Exascale Computing Project
NASA Astrophysics Data System (ADS)
Brower, Richard; Christ, Norman; DeTar, Carleton; Edwards, Robert; Mackenzie, Paul
2018-03-01
In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020's. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.
Massive QCD Amplitudes at Higher Orders
NASA Astrophysics Data System (ADS)
Moch, S.; Mitov, A.
2007-11-01
We consider the factorisation properties of on-shell QCD amplitudes with massive partons in the limit when all kinematical invariants are large compared to the parton mass and discuss the structure of their infrared singularities. The dimensionally regulated soft poles and the large collinear logarithms of the parton masses exponentiate to all orders. Based on this factorisation a simple relation between massless and massive scattering amplitudes in gauge theories can be established. We present recent applications of this relation for the calculation of the two-loop virtual QCD corrections to the hadro-production of heavy quarks.
Inclusive heavy flavor hadroproduction in NLO QCD: The exact analytic result
NASA Astrophysics Data System (ADS)
Czakon, M.; Mitov, A.
2010-01-01
We present the first exact analytic result for all partonic channels contributing to the total cross section for the production of a pair of heavy flavors in hadronic collisions in NLO QCD. Our calculation is a step in the derivation of the top quark pair production cross section at NNLO in QCD, which is a cornerstone of the precision LHC program. Our results uncover the analytical structures behind observables with heavy flavors at higher orders. They also reveal surprising and non-trivial implications for kinematics close to partonic threshold.
A comparison of NNLO QCD predictions with 7 TeV ATLAS and CMS data for V+jet processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boughezal, Radja; Liu, Xiaohui; Petriello, Frank
2016-06-17
Here, we perform a detailed comparison of next-to-next-to-leading order (NNLO) QCD predictions for the W+jet and Z+jet processes with 7 TeV experimental data from ATLAS and CMS. We observe excellent agreement between theory and data for most studied observables, which span several orders of magnitude in both cross section and energy. For some observables, such as the HT distribution, the NNLO QCD corrections are essential for resolving existing discrepancies between theory and data.
Critical opalescence in baryonic QCD matter.
Antoniou, N G; Diakonos, F K; Kapoyannis, A S; Kousouris, K S
2006-07-21
We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies.
Identifying QCD Transition Using Deep Learning
NASA Astrophysics Data System (ADS)
Zhou, Kai; Pang, Long-gang; Su, Nan; Petersen, Hannah; Stoecker, Horst; Wang, Xin-Nian
2018-02-01
In this proceeding we review our recent work using supervised learning with a deep convolutional neural network (CNN) to identify the QCD equation of state (EoS) employed in hydrodynamic modeling of heavy-ion collisions given only final-state particle spectra ρ(pT, V). We showed that there is a traceable encoder of the dynamical information from phase structure (EoS) that survives the evolution and exists in the final snapshot, which enables the trained CNN to act as an effective "EoS-meter" in detecting the nature of the QCD transition.
Constraining axion dark matter with Big Bang Nucleosynthesis
Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela; ...
2014-08-04
We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN
Chiral magnetic effect in lattice QCD with a chiral chemical potential.
Yamamoto, Arata
2011-07-15
We perform a first lattice QCD simulation including a two-flavor dynamical fermion with a chiral chemical potential. Because the chiral chemical potential gives rise to no sign problem, we can exactly analyze a chirally imbalanced QCD matter by Monte Carlo simulation. By applying an external magnetic field to this system, we obtain a finite induced current along the magnetic field, which corresponds to the chiral magnetic effect. The obtained induced current is proportional to the magnetic field and to the chiral chemical potential, which is consistent with an analytical prediction.
Evidence from lattice data for a new particle on the worldsheet of the QCD flux tube.
Dubovsky, Sergei; Flauger, Raphael; Gorbenko, Victor
2013-08-09
We propose a new approach for the calculation of the spectrum of excitations of QCD flux tubes. It relies on the fact that the worldsheet theory is integrable at low energies. With this approach, energy levels can be calculated for much shorter flux tubes than was previously possible, allowing for a quantitative comparison with existing lattice data. The improved theoretical control makes it manifest that existing lattice data provides strong evidence for a new pseudoscalar particle localized on the QCD flux tube--the worldsheet axion.
QCD inequalities for hadron interactions.
Detmold, William
2015-06-05
We derive generalizations of the Weingarten-Witten QCD mass inequalities for particular multihadron systems. For systems of any number of identical pseudoscalar mesons of maximal isospin, these inequalities prove that near threshold interactions between the constituent mesons must be repulsive and that no bound states can form in these channels. Similar constraints in less symmetric systems are also extracted. These results are compatible with experimental results (where known) and recent lattice QCD calculations, and also lead to a more stringent bound on the nucleon mass than previously derived, m_{N}≥3/2m_{π}.
Has the QCD critical point been signaled by observations at the BNL relativistic heavy ion collider?
Lacey, Roy A; Ajitanand, N N; Alexander, J M; Chung, P; Holzmann, W G; Issah, M; Taranenko, A; Danielewicz, P; Stöcker, Horst
2007-03-02
The shear viscosity to entropy ratio (eta/s) is estimated for the hot and dense QCD matter created in Au+Au collisions at BNL Relativistic Heavy Ion Collider (square root[s_{NN}]=200 GeV). A very low value is found; eta/s approximately 0.1, which is close to the conjectured lower bound (1/4pi). It is argued that such a low value is indicative of thermodynamic trajectories for the decaying matter which lie close to the QCD critical end point.
Constraining axion dark matter with Big Bang Nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela
We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN
Hadron scattering, resonances, and QCD
NASA Astrophysics Data System (ADS)
Briceño, R. A.
2016-11-01
The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.
Lattice QCD Application Development within the US DOE Exascale Computing Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brower, Richard; Christ, Norman; DeTar, Carleton
In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020's. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.
Merging weak and QCD showers with matrix elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christiansen, Jesper Roy; Prestel, Stefan
In this study, we present a consistent way of combining associated weak boson radiation in hard dijet events with hard QCD radiation in Drell–Yan-like scatterings. This integrates multiple tree-level calculations with vastly different cross sections, QCD- and electroweak parton-shower resummation into a single framework. The new merging strategy is implemented in the P ythia event generator and predictions are confronted with LHC data. Improvements over the previous strategy are observed. Results of the new electroweak-improved merging at a future 100 TeV proton collider are also investigated.
... grade cone biopsy; High-grade cone biopsy; Carcinoma in situ-cone biopsy; CIS - cone biopsy; ASCUS - cone biopsy; ... marked dysplasia CIN III -- severe dysplasia to carcinoma in situ Abnormal results may also be due to cervical ...
Spectral characteristics of light sources for S-cone stimulation.
Schlegelmilch, F; Nolte, R; Schellhorn, K; Husar, P; Henning, G; Tornow, R P
2002-11-01
Electrophysiological investigations of the short-wavelength sensitive pathway of the human eye require the use of a suitable light source as a S-cone stimulator. Different light sources with their spectral distribution properties were investigated and compared with the ideal S-cone stimulator. First, the theoretical background of the calculation of relative cone energy absorption from the spectral distribution function of the light source is summarized. From the results of the calculation, the photometric properties of the ideal S-cone stimulator will be derived. The calculation procedure was applied to virtual light sources (computer generated spectral distribution functions with different medium wavelengths and spectrum widths) and to real light sources (blue and green light emitting diodes, blue phosphor of CRT-monitor, multimedia projector, LCD monitor and notebook display). The calculated relative cone absorbencies are compared to the conditions of an ideal S-cone stimulator. Monochromatic light sources with wavelengths of less than 456 nm are close to the conditions of an ideal S-cone stimulator. Spectrum widths up to 21 nm do not affect the S-cone activation significantly (S-cone activation change < 0.2%). Blue light emitting diodes with peak wavelength at 448 nm and spectrum bandwidth of 25 nm are very useful for S-cone stimulation (S-cone activation approximately 95%). A suitable display for S-cone stimulation is the Trinitron computer monitor (S-cone activation approximately 87%). The multimedia projector has a S-cone activation up to 91%, but their spectral distribution properties depends on the selected intensity. LCD monitor and notebook displays have a lower S-cone activation (< or = 74%). Carefully selecting the blue light source for S-cone stimulation can reduce the unwanted L-and M-cone activation down to 4% for M-cones and 1.5% for L-cones.
The QCD corrections of the process h → ηbZ
NASA Astrophysics Data System (ADS)
Zhu, Rong-Fei; Feng, Tai-Fu; Zhang, Hai-Bin
2018-05-01
We investigate the 125 GeV Higgs boson decay to a pseudoscalar quarkonium ηb and Z boson. We calculate the quantum chromodynamics (QCD) one-loop corrections to the branching ratio of the process, Br(h → ηbZ), both in the Standard Model (SM) and in the two Higgs double models (THDM). Adding the QCD one-loop corrections, the branching ratio of h → ηbZ in the SM is Br(h → ηbZ) = (4.739‑0.244+0.276) × 10‑5. The relative correction of that QCD one-loop level relative to the tree level of Br(h → ηbZ) is around 76% in the SM. Similarly, the relative correction in the THDM also can be around 75%. The key parameter, tan β, can affect the relative correction in the THDM.
Present constraints on the H-dibaryon at the physical point from Lattice QCD
Beane, S. R.; Chang, E.; Detmold, W.; ...
2011-11-10
The current constraints from Lattice QCD on the existence of the H-dibaryon are discussed. With only two significant Lattice QCD calculations of the H-dibaryon binding energy at approximately the same lattice spacing, the form of the chiral and continuum extrapolations to the physical point are not determined. In this brief report, an extrapolation that is quadratic in the pion mass, motivated by low-energy effective field theory, is considered. An extrapolation that is linear in the pion mass is also considered, a form that has no basis in the effective field theory, but is found to describe the light-quark mass dependencemore » observed in Lattice QCD calculations of the octet baryon masses. In both cases, the extrapolation to the physical pion mass allows for a bound H-dibaryon or a near-threshold scattering state.« less
Current matrix element in HAL QCD's wavefunction-equivalent potential method
NASA Astrophysics Data System (ADS)
Watanabe, Kai; Ishii, Noriyoshi
2018-04-01
We give a formula to calculate a matrix element of a conserved current in the effective quantum mechanics defined by the wavefunction-equivalent potentials proposed by the HAL QCD collaboration. As a first step, a non-relativistic field theory with two-channel coupling is considered as the original theory, with which a wavefunction-equivalent HAL QCD potential is obtained in a closed analytic form. The external field method is used to derive the formula by demanding that the result should agree with the original theory. With this formula, the matrix element is obtained by sandwiching the effective current operator between the left and right eigenfunctions of the effective Hamiltonian associated with the HAL QCD potential. In addition to the naive one-body current, the effective current operator contains an additional two-body term emerging from the degrees of freedom which has been integrated out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi
In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. Here, this work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening themore » equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. In conclusion, the observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.« less
Most Strange Dibaryon from Lattice QCD
NASA Astrophysics Data System (ADS)
Gongyo, Shinya; Sasaki, Kenji; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Nemura, Hidekatsu; HAL QCD Collaboration
2018-05-01
The Ω Ω system in the 1S0 channel (the most strange dibaryon) is studied on the basis of the (2 +1 )-flavor lattice QCD simulations with a large volume (8.1 fm )3 and nearly physical pion mass mπ≃146 MeV at a lattice spacing of a ≃0.0846 fm . We show that lattice QCD data analysis by the HAL QCD method leads to the scattering length a0=4.6 (6 )(-0.5+1.2) fm , the effective range reff=1.27 (3 )(-0.03+0.06) fm , and the binding energy BΩ Ω=1.6 (6 )(-0.6+0.7) MeV . These results indicate that the Ω Ω system has an overall attraction and is located near the unitary regime. Such a system can be best searched experimentally by the pair-momentum correlation in relativistic heavy-ion collisions.
Bs and Ds decay constants in three-flavor lattice QCD.
Wingate, Matthew; Davies, Christine T H; Gray, Alan; Lepage, G Peter; Shigemitsu, Junko
2004-04-23
Capitalizing on recent advances in lattice QCD, we present a calculation of the leptonic decay constants f(B(s)) and f(D(s)) that includes effects of one strange sea quark and two light sea quarks via an improved staggered action. By shedding the quenched approximation and the associated lattice scale uncertainty, lattice QCD greatly increases its predictive power. Nonrelativistic QCD is used to simulate heavy quarks with masses between 1.5m(c) and m(b). We arrive at the following results: f(B(s))=260+/-7+/-26+/-8+/-5 and f(D(s))=290+/-20+/-29+/-29+/-6 MeV. The first quoted error is the statistical uncertainty, and the rest estimate the sizes of higher order terms neglected in this calculation. All of these uncertainties are systematically improvable by including another order in the weak coupling expansion, the nonrelativistic expansion, or the Symanzik improvement program.
Most Strange Dibaryon from Lattice QCD.
Gongyo, Shinya; Sasaki, Kenji; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Nemura, Hidekatsu
2018-05-25
The ΩΩ system in the ^{1}S_{0} channel (the most strange dibaryon) is studied on the basis of the (2+1)-flavor lattice QCD simulations with a large volume (8.1 fm)^{3} and nearly physical pion mass m_{π}≃146 MeV at a lattice spacing of a≃0.0846 fm. We show that lattice QCD data analysis by the HAL QCD method leads to the scattering length a_{0}=4.6(6)(_{-0.5}^{+1.2}) fm, the effective range r_{eff}=1.27(3)(_{-0.03}^{+0.06}) fm, and the binding energy B_{ΩΩ}=1.6(6)(_{-0.6}^{+0.7}) MeV. These results indicate that the ΩΩ system has an overall attraction and is located near the unitary regime. Such a system can be best searched experimentally by the pair-momentum correlation in relativistic heavy-ion collisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
Here, the recent determination of themore » $$\\beta$$--function of the QCD running coupling $$\\alpha_{\\overline{MS}}(Q^2)$$ to five-loops, provides a verification of the convergence of a novel method for determining the fundamental QCD parameter $$\\Lambda_s$$ based on the Light-Front Holographic approach to nonperturbative QCD. The new 5-loop analysis, together with improvements in determining the holographic QCD nonperturbative scale parameter $$\\kappa$$ from hadronic spectroscopy, leads to an improved precision of the value of $$\\Lambda_s$$ in the $${\\overline{MS}}$$ scheme close to a factor of two; we find $$\\Lambda^{(3)}_{\\overline{MS}}=0.339\\pm0.019$$ GeV for $$n_{f}=3$$, in excellent agreement with the world average, $$\\Lambda_{\\overline{MS}}^{(3)}=0.332\\pm0.017$$ GeV. Lastly, we also discuss the constraints imposed on the scale dependence of the strong coupling in the nonperturbative domain by superconformal quantum mechanics and its holographic embedding in anti-de Sitter space.« less
Cosmological abundance of the QCD axion coupled to hidden photons
NASA Astrophysics Data System (ADS)
Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu
2018-06-01
We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.
Constructing a neutron star from the lattice in G2-QCD
NASA Astrophysics Data System (ADS)
Hajizadeh, Ouraman; Maas, Axel
2017-10-01
The inner structure of neutron stars is still an open question. One obstacle is the infamous sign problem of lattice QCD, which bars access to the high-density equation of state. A possibility to make progress and understand the qualitative impact of gauge interactions on the neutron star structure is to study a modified version of QCD without the sign problem. In the modification studied here the gauge group of QCD is replaced by the exceptional Lie group G_2 , which keeps neutrons in the spectrum. Using an equation of state from lattice calculations only we determine the mass-radius-relation for a neutron star using the Tolman-Oppenheimer-Volkoff equation. This allows us to understand the challenges and approximations currently necessary to use lattice data for this purpose. We discuss in detail the particular uncertainties and systematic problems of this approach.
NASA Astrophysics Data System (ADS)
Kobayashi, Tatsuo; Seto, Osamu; Shimomura, Takashi; Urakawa, Yuko
2017-09-01
We investigate cosmological constraints on the original relaxion scenario proposed by Graham, Kaplan and Rajendran. We first discuss the appropriate sign choice of the terms in the scalar potential, when the QCD axion is the relaxion with a relaxion-inflaton coupling proposed in the original paper. We next derive the cosmologically consistent ranges of the mass and a coupling of the relaxion for both the QCD relaxion and non-QCD relaxion. The mass range is obtained by 10-5eV ≪ m ϕ ≲ 104eV. We also find that a strong correlation between the Hubble parameter at the relaxion stabilization and the scale Λ of non-QCD strong dynamics, which generates the non-perturbative relaxion cosine potential. For a higher relaxion mass, a large scale Λ becomes available. However, for its lower mass, Λ should be small and constructing such a particle physics model is challenging.
ATLAS measurement of Electroweak Vector Boson production
NASA Astrophysics Data System (ADS)
Vittori, C.; Atlas Collaboration
2017-01-01
The measurements of the Drell-Yan production of W and Z /γ* bosons at the LHC provide a benchmark of our understanding of the perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements of the double differential cross-sections as a function of the dilepton mass and rapidity. The measurements are compared to state of calculations at NNLO in QCD and constrain the photon content of the proton. The angular distributions of the Drell-Yan lepton pairs around the Z-boson mass peak probe the underlying QCD dynamics of the Z-boson production mechanisms. The complete set of angular coefficients describing these distributions is presented and compared to theoretical predictions highlighting different approaches of the QCD and EW modelling. First precise inclusive measurements of W and Z production at 13 TeV are presented. W / Z and W+ /W- ratios profit from a cancellation of experimental uncertainties.
Connecting the hadron mass scale to the fundamental mass scale of quantum chromodynamics
Deur, Alexandre; Brodsky, Stanley J.; de Teramond, Guy F.
2015-10-01
We establish an explicit connection between the long distance physics of confinement and the dynamical interactions of quarks and gluons at short distances and it has been a long-sought goal of quantum chromodynamics. Using holographic QCD, we derive a direct analytic relation between the scale κ which determines the masses of hadrons and the scale Λ s which controls the predictions of perturbative QCD at very short distances. The resulting prediction Λ s=0.341±0.032 GeV in the MS -scheme agrees well with the experimental average 0.339±0.016 GeV. We also derive a relation between Λs and the QCD string tension σ. Furthermore,more » this connection between the fundamental hadronic scale underlying the physics of quark confinement and the perturbative QCD scale controlling hard collisions can be carried out in any renormalization scheme.« less
Inverse magnetic catalysis from improved holographic QCD in the Veneziano limit
NASA Astrophysics Data System (ADS)
Gürsoy, Umut; Iatrakis, Ioannis; Järvinen, Matti; Nijs, Govert
2017-03-01
We study the dependence of the chiral condensate on external magnetic field in the context of holographic QCD at large number of flavors. We consider a holographic QCD model where the flavor degrees of freedom fully backreact on the color dynamics. Perturbative QCD calculations have shown that B acts constructively on the chiral condensate, a phenomenon called "magnetic catalysis". In contrast, recent lattice calculations show that, depending on the number of flavors and temperature, the magnetic field may also act destructively, which is called "inverse magnetic catalysis". Here we show that the holographic theory is capable of both behaviors depending on the choice of parameters. For reasonable choice of the potentials entering the model we find qualitative agreement with the lattice expectations. Our results provide insight for the physical reasons behind the inverse magnetic catalysis. In particular, we argue that the backreaction of the flavors to the background geometry decatalyzes the condensate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-10-16
A workshop was held at the RIKEN-BNL Research Center on October 16, 1998, as part of the first anniversary celebration for the center. This meeting brought together the physicists from RIKEN-BNL, BNL and Columbia who are using the QCDSP (Quantum Chromodynamics on Digital Signal Processors) computer at the RIKEN-BNL Research Center for studies of QCD. Many of the talks in the workshop were devoted to domain wall fermions, a discretization of the continuum description of fermions which preserves the global symmetries of the continuum, even at finite lattice spacing. This formulation has been the subject of analytic investigation for somemore » time and has reached the stage where large-scale simulations in QCD seem very promising. With the computational power available from the QCDSP computers, scientists are looking forward to an exciting time for numerical simulations of QCD.« less
NASA Astrophysics Data System (ADS)
Csörgő, Tamás Hegyi, Sándor Kittel, Wolfram
The Table of Contents for the book is as follows: * Preface * QCD IN MULTIPARTICLE PRODUCTION * QCD and multiparticle production - The status of the perturbative cascade * Test of QCD predictions for multiparticle production at LEP * Multijet final states in e+e- annihilation * Tests of QCD in two photon physics at LEP * Interplay between perturbative and non-perturbative QCD in three-jet events * QCD and hadronic final states at the LHC * Transverse energy and minijets in high energy collisions * Multiparticle production at RHIC and LHC: A classical point of view * High energy interaction with the nucleus in the perturbative QCD with Nc → ∞ * DIFFRACTIVE PRODUCTION AND SMALL-x * Introduction to low-x physics and diffraction * Low-x physics at HERA * Diffractive structure functions at the Tevatron * What is the experimental evidence for the BFKL Pomeron? * Self-organized criticality in gluon systems and its consequences * Scale anomaly and dipole scattering in QCD * Pomeron and AdS/CFT correspondence for QCD * INTERPLAY BETWEEN SOFT AND HARD PHENOMENA * Inclusive jet cross sections and BFKL dynamics searches in dijet cross sections * Soft and hard interactions in p bar{p} Collisions at √ s = 1800 and 630 GeV * Recent results on particle production from OPAL * New results on αs and optimized scales * Preliminary results of the standard model Higgs boson search at LEP 2 in 2000 * Ways to go between hard and soft QCD * Alternative scenarios for fragmentation of a gluonic Lund String * A simultaneous measurement of the QCD colour charges and the strong coupling from LEP multijet data * Branching processes and Koenigs function * Soft and hard QCD dynamics in J/ψ hadroproduction * HADRONIC FINAL STATES IN 1+1, 1+h AND h+h REACTIONS * Universality in hadron production in electron-positron, lepton-hadron and hadron-hadron reactions * Search for gluonic mesons in gluon jets * Vector-to-pseudoscalar and meson-to-baryon ratios in hadronic Z decays at LEP * Polarization and spin alignment in multihadronic Z0 decays * Jet physics at HERA * Final state studies at HERA * A gauge-invariant subtraction technique for non-inclusive observables in QCD * Baryon transport in dual models and the possibility of a backward peak in diffraction * ASTROPARTICLE PHYSICS * Cosmic rays in the energy range of the knee - Recent results from KASCADE * Imaging atmospheric Čerenkov telescopes: Techniques and results * Extensive air shower simulations with CORSIKA and the influence of high-energy hadronic interaction models * Future directions in astroparticle physics and the AUGER experiment * p+A COLLISIONS * pp and pA collisions at CERN SPS * Charmonium attenuation and the quark-gluon plasma * Gluon depletion and J/ψ suppression in pA collisions * CORRELATIONS AND FLUCTUATIONS - EXPERIMENT * Experimental correlation analysis: Foundations and practice * Intermittency and correlations at LEP and at HERA * Moments of the charged-particle multiplicity distribution in Z decays at LEP * On the scale of visible jets in high energy electron-positron collisions * HBT in relativistic heavy ion collisions * Comparison of the pion emission function in hadron-hadron and heavy ion collisions * Multiparticle correlations at LEP1 * Inter-W Bose-Einstein correlations ellipse ... or not? * Colour reconnection at LEP2 * CORRELATIONS AND FLUCTUATIONS - THEORY * Correlations and fluctuations - introduction * Coherence and incoherence in Bose-Einstein correlations * Bose-Einstein correlations in cascade processes and non-extensive statistics * A systematic approach to anomalous phenomena at high energies * Reconstruction of hadronization stage in Pb+Pb collisions at 158A GeV/c * Status of ring-like correlations and wavelets * Fluctuation probes of quark deconfinement * PQCD structure and hadronization in jets and heavy-ion collisions * Net-baryon fluctuations at the QCD critical point * Fractional Fokker-Planck equation in time variable and oscillation of cumulant moments * QCD and multiplicity scaling * RELATIVISTIC HEAVY ION COLLISIONS - EXPERIMENT * Introduction to multiparticle dynamics at RHIC * First results from the STAR experiment at RHIC * Preliminary results from the PHENIX experiment at RHIC * Forward energy and multiplicity in Au-Au reactions at √ {s_{nn} } = 130{text{GeV}} * Results from the PHOBOS experiment on Au+Au collisions at RHIC * Strangeness production in Pb-Pb collisions at the CERN SPS: Results from the WA97 experiment * Direct photon production in 158A GeV 208Pb+208Pb collisions * Search for critical phenomena in Pb+Pb collisions * Recent NA49 results on Pb+Pb collisions at CERN SPS * J/ψ suppression in Pb+Pb collisions at CERN SPS * RELATIVISTIC HEAVY ION COLLISIONS - THEORY * Hyperon ratios at RHIC and the coalescence predictions at mid-rapidity * Dynamics of nuclear collisions and the dependence of the onset of anomalous J/ψ suppression on nucleon numbers of colliding nuclei * Multi-boson effects in Bose-Einstein interferometry * The source of the "third flow component" * Collective flow and multiparticle azimuthal correlations * Microscopic strangeness enhancement mechanisms at the SPS * Jet quenching at finite opacity and its application at RHIC energy * Particle rapidity density and collective phenomena in heavy ion collisions * Elliptic flow from an on-shell parton cascade * Dilepton production in ultrarelativistic heavy ion collisions * Coulomb and core/halo corrections to Bose-Einstein n-particle correlations * CP VIOLATION IN MULTIPARTICLE DYNAMICS * New results from NA48 experiment on neutral kaon rare decays * Measurement of direct CP violation by the NA48 experiment at CERN * Aspects of parity, CP, and time reversal violation in hot QCD * Decay of parity odd bubbles * Parity and time reversal studies at RHIC * Constraining CP-violating TGCS and measuring W-polarization at OPAL * Buckyballs of QCD: Gluon junction networks * List of participants
Feed-back modulation of cone synapses by L-horizontal cells of turtle retina.
Gerschenfeld, H M; Piccolino, M; Neyton, J
1980-12-01
Light stimulation of the periphery of the receptive field of turtle cones can evoke both transient and sustained increases of the cone Ca2+ conductance, which may become regenerative. Such increase in the cone Ca2+ conductance evoked by peripheral illumination results from the activation of a polysynaptic pathway involving a feed-back connexion from the L-horizontal cells (L-HC) to the cones. Thus the hyperpolarization of a L-HC by inward current injection can evoke a Ca2+ conductance increase in neighbouring cones. The cone Ca2+ channels thus activated are likely located at its synaptic endings and probably intervene in the cone transmitter release. Therefore the feed-back connexion between L-HC and cones by modifying the Ca2+ conductance of cones could actually modulate the transmitter release from cone synapses. Such feed-back modulation of cone synapses plays a role in the organization of the colour-coded responses of the chromaticity type-horizontal cells and probably of other second order neurones, post-synaptic to the cones. The mechanisms operating the feed-back connexion from L-HC to cones are discussed.
Jiménez-López, Manuel; Alburquerque-Béjar, Juan J.; Nieto-López, Leticia; García-Ayuso, Diego; Villegas-Pérez, Maria P.; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta
2014-01-01
We purpose here to analyze and compare the population and topography of cone photoreceptors in two mouse strains using automated routines, and to design a method of retinal sampling for their accurate manual quantification. In whole-mounted retinas from pigmented C57/BL6 and albino Swiss mice, the longwave-sensitive (L) and the shortwave-sensitive (S) opsins were immunodetected to analyze the population of each cone type. In another group of retinas both opsins were detected with the same fluorophore to quantify all cones. In a third set of retinas, L-opsin and Brn3a were immunodetected to determine whether L-opsin+cones and retinal ganglion cells (RGCs) have a parallel distribution. Cones and RGCs were automatically quantified and their topography illustrated with isodensity maps. Our results show that pigmented mice have a significantly higher number of total cones (all-cones) and of L-opsin+cones than albinos which, in turn, have a higher population of S-opsin+cones. In pigmented animals 40% of cones are dual (cones that express both opsins), 34% genuine-L (cones that only express the L-opsin), and 26% genuine-S (cones that only express the S-opsin). In albinos, 23% of cones are genuine-S and the proportion of dual cones increases to 76% at the expense of genuine-L cones. In both strains, L-opsin+cones are denser in the central than peripheral retina, and all-cones density increases dorso-ventrally. In pigmented animals S-opsin+cones are scarce in the dorsal retina and very numerous in the ventral retina, being densest in its nasal aspect. In albinos, S-opsin+cones are abundant in the dorsal retina, although their highest densities are also ventral. Based on the densities of each cone population, we propose a sampling method to manually quantify and infer their total population. In conclusion, these data provide the basis to study cone degeneration and its prevention in pathologic conditions. PMID:25029531
NASA Astrophysics Data System (ADS)
Kang, K.; Fried, H. M.; Tan, C.-I.
1994-02-01
The Table of Contents for the book is as follows: * Preface * `Overview' on Elastic Scattering and Total Cross-Sections * A Precise Measurement of the Real Part of the Elastic Scattering Amplitude at the {S bar{p}pS} * Luminosity Dependent Measurement of the p bar{p} Total Cross Section at √{s} = 541 GeV * Status of Fermilab E-710 * Luminosity-Independent Measurement of bar{p}p Elastic Scattering, Single Diffraction, Dissociation and Total Cross Section at √{s} = 546 and 1800 GeV * Phase Relations Revisited: A Challenge for SSC and LHC * Status of Near-Forward Elastic Scattering * bar{p}p Collisions at √{s} = 1.8 TeV: p, σt and B * p bar{p} Forward Scattering Parameters Results from Fermilab E760 * Photoproduction Results from H1 at HERA * Total and Jet Photoproduction Cross Sections at HERA and Fermilab * Minijet Model for High Energy γp Cross Sections * The Pomeron as Massive Gluons * Large N Theories with Glueball-like Spectra * Unitarity Relations for Gluonic Pomeron * The Donnachie-Landshoff Pomeron vs. QCD * The Odderon Intercept in Perturbative QCD * Theoret. and Phenomenol. Aspects of the Odderon * First Theorist's Gaze at HERA Data at Low xB * H1 Results for Structure Functions at Small x * Partial Photoproduction Cross Sections at √{s} ≈prox 180 GeV and First Results on F2 of the Proton from the ZEUS Experiment * Observation of a New Class of Events in Deep Inelastic Scattering * Jet Production in Muon-Proton and Muon-Nuclei Scattering at Fermilab-E665 * D0 Studies of Perturbative QCD * Large Rapidity Gaps and Single Diffraction Dissociation in High Energy pp and bar{p}p Collisions * Hadron and Reggeon Structure in High Energy Collisions * Monte Carlo Studies of Diffractive Processes in Deep Inelastic Scattering * Elastic Parton-Parton Amplitudes in Geometrical Models * Non-Perturbative QCD Calculations of High-Energy Observables * Effective Field Theory for Diffractive QCD Processes * High Energy Behavior of σtot, ρ, and B - Asymptotic Amplitude Analysis and a QCD-Inspired Analysis * Rapidity Gaps and Multiplicity Fluctuations * Branching Processes and Multi-Particle Production * High Energy Elastic Scattering and Nucleon as a Topological Soliton * The Behavior of Cross Sections at Very High Energies * The Pomeron and QCD with Many Light Quarks * Heterotic Pomeron: High Energy Hadronic Collisions in QCD * CDF Results on Electroweak Physics * DØ Results on Electroweak Physics * Search for the Top Quark and Other New Particles at DØ * Rapidity Gaps and Forward Physics at DØ * High Energy Asymptotics of Perturbative Multi-Color QCD * Rapidity Gaps in e+e- Collisions * Large Rapidity Gap, Jet Events at HERA: a PQCD Approach * High Energy Parton-Parton Elastic Scattering in QCD * Parton-Parton Elastic Scattering and Rapidity Gaps at Tevatron Energies * Hard Elastic Scattering * Hard Diffractive Processes * Three Successful Tests of Color Transparency and Nuclear Filtering * New KNO in QCD * A Chiral Condensate Search at the Tevatron * Cosmic Ray Evidences for Aligned High Energy Jets at Supertevatron Energy and Hard DDD * "New Hadronic State" Observed in Extremely High Energy Cosmic-Ray Interactions * Meson and Nucleon Form Factors in PQCD * Elastic Charge Form Factors for Pseudoscalar Mesons * The Ultimate Experiment * Search for Coherent Charm Production in 800 GeV/c Proton-Silicon Interactions * Chiral Quark Model and Hadron Scattering * Elastic Spin Experiments at UNK, Fermilab and SSC * Spin-Flip in Elastic and Diffractive Scattering * FNAL Polarized Beams and Spin Dependence at RHIC * Particle Tracking in the Close-to-Forward Region (η > 5.5) * Blois V: Experimental Summary * Blois V: Summary Talk * List of Participants
Calculation of neutral weak nucleon form factors with the AdS/QCD correspondence
NASA Astrophysics Data System (ADS)
Lohmann, Mark
The AdS/QCD (Anti-de Sitter/Quantum Chromodynamics) is a mathematical formalism applied to a theory based on the original AdS/CFT (Anti-de Sitter/ Conformal Field Theory) correspondence. The aim is to describe properties of the strong force in an essentially non-perturbative way. AdS/QCD theories break the conformal symmetry of the AdS metric (a sacrifice) to arrive at a boundary theory which is QCD-like (a payoff). This correspondence has been used to calculate well-known quantities in nucleon spectra and structure like Regge trajectories, form factors, and many others within an error of less than 20% from experiment. This is impressive considering that ordinary perturbation theory in QCD applied to the strongly interacting domain usually obtains an error of about 30%. In this thesis, the AdS/QCD correspondence method of light-front holography established by Brodsky and de Teramond is used in an attempt to calculate the Dirac and Pauli neutral weak form factors, FZ1 (Q2) and FZ2 (Q 2) respectively, for both the proton and the neutron. With this approach, we were able to determine the neutral weak Dirac form factor for both nucleons and the Pauli form factor for the proton, while the method did not succeed at determining the neutral weak Pauli form factor for the neutron. With these we were also able to extract the proton's strange electric and magnetic form factor, which addresses important questions in nucleon sub-structure that are currently being investigated through experiments at the Thomas Jefferson National Accelerator Facility.
The Secret Life of Quarks, Final Report for the University of North Carolina at Chapel Hill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Robert J.
This final report summarizes activities and results at the University of North Carolina as part of the the SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Quantum Chromodynamics. The overall objective of the project is to construct the software needed to study quantum chromo- dynamics (QCD), the theory of the strong interactions of subatomic physics, and similar strongly coupled gauge theories anticipated to be of importance in the LHC era. It built upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API)more » was developed that enables lat- tice gauge theorists to make effective use of a wide variety of massively parallel computers. In the SciDAC-2 project, optimized versions of the QCD API were being created for the IBM Blue- Gene/L (BG/L) and BlueGene/P (BG/P), the Cray XT3/XT4 and its successors, and clusters based on multi-core processors and Infiniband communications networks. The QCD API is being used to enhance the performance of the major QCD community codes and to create new applications. Software libraries of physics tools have been expanded to contain sharable building blocks for inclusion in application codes, performance analysis and visualization tools, and software for au- tomation of physics work flow. New software tools were designed for managing the large data sets generated in lattice QCD simulations, and for sharing them through the International Lattice Data Grid consortium. As part of the overall project, researchers at UNC were funded through ASCR to work in three general areas. The main thrust has been performance instrumentation and analysis in support of the SciDAC QCD code base as it evolved and as it moved to new computation platforms. In support of the performance activities, performance data was to be collected in a database for the purpose of broader analysis. Third, the UNC work was done at RENCI (Renaissance Computing Institute), which has extensive expertise and facilities for scientific data visualization, so we acted in an ongoing consulting and support role in that area.« less
Marcos, S; Tornow, R P; Elsner, A E; Navarro, R
1997-07-01
Foveal cone spacing was measured in vivo using an objective technique: ocular speckle interferometry. Cone packing density was computed from cone spacing data. Foveal cone photopigment density difference was measured in the same subjects using retinal densitometry with a scanning laser ophthalmoscope. Both the cone packing density and cone photopigment density difference decreased sharply with increasing retinal eccentricity. From the comparison of both sets of measurements, the computed amounts of photopigment per cone increased slightly with increasing retinal eccentricity. Consistent with previous results, decreases in cone outer segment length are over-compensated by an increase in the outer segment area, at least in retinal eccentricities up to 1 deg.
Expression of the vesicular glutamate transporter vGluT2 in a subset of cones of the mouse retina.
Wässle, Heinz; Regus-Leidig, Hanna; Haverkamp, Silke
2006-06-01
Cone photoreceptors have a continuous release of glutamate that is modulated by light. Vesicular glutamate transporters (vGluT) play an essential role for sustaining this release by loading synaptic vesicles in the cone synapse, the so-called cone pedicle. In the present study mouse retinas were immunostained for vGluT1 and vGluT2. vGluT1 was localized to all cone pedicles and rod spherules, whereas vGluT2 was found in only 10% of the cone pedicles. The vGluT2-expressing cones were characterized in more detail. They are distributed in a regular array, suggesting they are a distinct type. Their proportion does not differ between dorsal (L-cone-dominated) and ventral (S-cone-dominated) retina, and they are not the genuine blue cones of the mouse retina. During development, vGluT1 and vGluT2 expression in cones starts at around P0 and right from the beginning vGluT2 is only expressed in a subset of cones. Bipolar cells contact the vGluT2-expressing cones and other cones nonselectively. The possible functional role of vGluT2 expression in a small fraction of cones is discussed.
Fixed-topology Lorentzian triangulations: Quantum Regge Calculus in the Lorentzian domain
NASA Astrophysics Data System (ADS)
Tate, Kyle; Visser, Matt
2011-11-01
A key insight used in developing the theory of Causal Dynamical Triangu-lations (CDTs) is to use the causal (or light-cone) structure of Lorentzian manifolds to restrict the class of geometries appearing in the Quantum Gravity (QG) path integral. By exploiting this structure the models developed in CDTs differ from the analogous models developed in the Euclidean domain, models of (Euclidean) Dynamical Triangulations (DT), and the corresponding Lorentzian results are in many ways more "physical". In this paper we use this insight to formulate a Lorentzian signature model that is anal-ogous to the Quantum Regge Calculus (QRC) approach to Euclidean Quantum Gravity. We exploit another crucial fact about the structure of Lorentzian manifolds, namely that certain simplices are not constrained by the triangle inequalities present in Euclidean signa-ture. We show that this model is not related to QRC by a naive Wick rotation; this serves as another demonstration that the sum over Lorentzian geometries is not simply related to the sum over Euclidean geometries. By removing the triangle inequality constraints, there is more freedom to perform analytical calculations, and in addition numerical simulations are more computationally efficient. We first formulate the model in 1 + 1 dimensions, and derive scaling relations for the pure gravity path integral on the torus using two different measures. It appears relatively easy to generate "large" universes, both in spatial and temporal extent. In addition, loopto-loop amplitudes are discussed, and a transfer matrix is derived. We then also discuss the model in higher dimensions.
Ding, Xi-Qin; Matveev, Alexander; Singh, Anil; Komori, Naoka; Matsumoto, Hiroyuki
2012-01-01
Cone vision mediated by photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Cone CNG channel is composed of two structurally related subunit types, CNGA3 and CNGB3. Naturally occurring mutations in cone CNG channel are associated with a variety of cone diseases including achromatopsia, progressive cone dystrophy, and some maculopathies. Nevertheless, our understanding of the structure of cone CNG channel is quite limited. This is, in part, due to the challenge of studying cones in a rod-dominant mammalian retina. We have demonstrated a robust expression of cone CNG channel and lack of rod CNG channel in the cone-dominant Nrl−/− retina and shown that the Nrl−/− mouse line is a valuable model to study cone CNG channel. This work examined the complex structure of cone CNG channel using infrared fluorescence Western detection combined with chemical cross-linking and blue native-PAGE. Our results suggest that the native cone CNG channel is a heterotetrameric complex likely at a stoichiometry of three CNGA3 and one CNGB3. PMID:22183405
Observables of QCD diffraction
NASA Astrophysics Data System (ADS)
Mieskolainen, Mikael; Orava, Risto
2017-03-01
A new combinatorial vector space measurement model is introduced for soft QCD diffraction. The model independent mathematical construction resolves experimental complications; the theoretical framework of the approach includes the Good-Walker view of diffraction, Regge phenomenology together with AGK cutting rules and random fluctuations.
Reliable semiclassical computations in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dine, Michael; Department of Physics, Stanford University Stanford, California 94305-4060; Festuccia, Guido
We revisit the question of whether or not one can perform reliable semiclassical QCD computations at zero temperature. We study correlation functions with no perturbative contributions, and organize the problem by means of the operator product expansion, establishing a precise criterion for the validity of a semiclassical calculation. For N{sub f}>N, a systematic computation is possible; for N{sub f}
Study of QCD-dynamics in η and η' production and decays
NASA Astrophysics Data System (ADS)
Beck, Reinhard; Wiedner, Ulrich
2017-01-01
One aim of this project lies in studying QCD dynamics using photoproduction of η and η' mesons with the CBELSA/TAPS experiment at the accelerator facility ELSA. Hadronic decay modes of η and η' are analyzed that allow the study of symmetry breaking effects in QCD. Furthermore, excited η-states produced with a photon beam are studied within the scope of this project. Of special interest is hereby the nature of the η(1405). The high data samples for η- and η'-photoproduction off the proton allow in addition the determination of polarization observables.
Matching next-to-leading order predictions to parton showers in supersymmetric QCD
Degrande, Céline; Fuks, Benjamin; Hirschi, Valentin; ...
2016-02-03
We present a fully automated framework based on the FeynRules and MadGraph5_aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.
Matching next-to-leading order predictions to parton showers in supersymmetric QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degrande, Céline; Fuks, Benjamin; Hirschi, Valentin
We present a fully automated framework based on the FeynRules and MadGraph5_aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.
Searching for the rules that govern hadron construction
Shepherd, Matthew R.; Dudek, Jozef J.; Mitchell, Ryan E.
2016-06-22
Just as quantum electrodynamics describes how electrons are bound in atoms by the electromagnetic force, mediated by the exchange of photons, quantum chromodynamics (QCD) describes how quarks are bound inside hadrons by the strong force, mediated by the exchange of gluons. QCD seems to allow hadrons constructed from increasingly many quarks to exist, just as atoms with increasing numbers of electrons exist, yet such complex constructions seemed, until recently, not to be present in nature. In this paper, we describe advances in the spectroscopy of mesons that are refining our understanding of the rules for predicting hadron structure from QCD.
Gluon and ghost correlation functions of 2-color QCD at finite density
NASA Astrophysics Data System (ADS)
Hajizadeh, Ouraman; Boz, Tamer; Maas, Axel; Skullerud, Jon-Ivar
2018-03-01
2-color QCD, i. e. QCD with the gauge group SU(2), is the simplest non-Abelian gauge theory without sign problem at finite quark density. Therefore its study on the lattice is a benchmark for other non-perturbative approaches at finite density. To provide such benchmarks we determine the minimal-Landau-gauge 2-point and 3-gluon correlation functions of the gauge sector and the running gauge coupling at finite density. We observe no significant effects, except for some low-momentum screening of the gluons at and above the supposed high-density phase transition.
QCD Physics with the CMS Experiment
NASA Astrophysics Data System (ADS)
Cerci, S.
2017-12-01
Jets which are the signatures of quarks and gluons in the detector can be described by Quantum Chromodynamics (QCD) in terms of parton-parton scattering. Jets are abundantly produced at the LHC's high energy scales. Measurements of inclusive jets, dijets and multijets can be used to test perturbative QCD predictions and to constrain parton distribution functions (PDF), as well as to measure the strong coupling constant αS . The measurements use the samples of proton-proton collisions collected with the CMS detector at the LHC at various center-of-mass energies of 7, 8 and 13 TeV.
Hadron mass spectrum from lattice QCD.
Majumder, Abhijit; Müller, Berndt
2010-12-17
Finite temperature lattice simulations of quantum chromodynamics (QCD) are sensitive to the hadronic mass spectrum for temperatures below the "critical" temperature T(c) ≈ 160 MeV. We show that a recent precision determination of the QCD trace anomaly shows evidence for the existence of a large number of hadron states beyond those known from experiment. The lattice results are well represented by an exponentially growing mass spectrum up to a temperature T=155 MeV. Using simple parametrizations of the hadron mass spectrum we show how one may estimate the total spectral weight in these yet undermined states.
Akemann, G; Bloch, J; Shifrin, L; Wettig, T
2008-01-25
We analyze how individual eigenvalues of the QCD Dirac operator at nonzero quark chemical potential are distributed in the complex plane. Exact and approximate analytical results for both quenched and unquenched distributions are derived from non-Hermitian random matrix theory. When comparing these to quenched lattice QCD spectra close to the origin, excellent agreement is found for zero and nonzero topology at several values of the quark chemical potential. Our analytical results are also applicable to other physical systems in the same symmetry class.
Virtual Compton scattering off a spinless target in AdS/QCD
NASA Astrophysics Data System (ADS)
Marquet, Cyrille; Roiesnel, Claude; Wallon, Samuel
2010-04-01
We study the doubly virtual Compton scattering off a spinless target γ* P → γ* P' within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests.
Associated Higgs-W-boson production at hadron colliders: a fully exclusive QCD calculation at NNLO.
Ferrera, Giancarlo; Grazzini, Massimiliano; Tramontano, Francesco
2011-10-07
We consider QCD radiative corrections to standard model Higgs-boson production in association with a W boson in hadron collisions. We present a fully exclusive calculation up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform this NNLO computation, we use a recently proposed version of the subtraction formalism. Our calculation includes finite-width effects, the leptonic decay of the W boson with its spin correlations, and the decay of the Higgs boson into a bb pair. We present selected numerical results at the Tevatron and the LHC.
Next-to-leading-order QCD corrections to Higgs boson production plus three jets in gluon fusion.
Cullen, G; van Deurzen, H; Greiner, N; Luisoni, G; Mastrolia, P; Mirabella, E; Ossola, G; Peraro, T; Tramontano, F
2013-09-27
We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD corrections, we observe a strong reduction in the scale dependence of the result, and an increased steepness in the transverse momentum distributions of both the Higgs boson and the leading jets. The results are obtained with the combined use of GOSAM, SHERPA, and the MADDIPOLE-MADEVENT framework.
NΩ interaction from two approaches in lattice QCD
NASA Astrophysics Data System (ADS)
Etminan, Faisal; Firoozabadi, Mohammad Mehdi
2014-10-01
We compare the standard finite volume method by Lüscher with the potential method by HAL QCD collaboration, by calculating the ground state energy of N(nucleon)-Ω(Omega) system in 5 S2 channel. We employ 2+1 flavor full QCD configurations on a (1.9 fm)3×3.8 fm lattice at the lattice spacing a≃0.12 fm, whose ud(s) quark mass corresponds to mπ = 875(1) (mK = 916(1)) MeV. We have found that both methods give reasonably consistent results that there is one NΩ bound state at this parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley
2017-01-01
In this paper we show that the intrinsic heavy-quark QCD mechanism for the hadroproduction of heavy hadrons at largemore » $$x_F$$ can resolve the apparent conflict between measurements of double-charm baryons by the SELEX fixed-target experiment and the LHCb experiment at the LHC collider. We show that both experiments are compatible, and that both results can be correct. The observed spectroscopy of double-charm hadrons is in agreement with the predictions of supersymmetric light front holographic QCD.« less
A study of energy-energy correlations and measurement of [alpha][sub s] at the Z[sup 0] resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
We present the energy-energy correlation (EEC) distribution and its asymmetry (AEEC) in hadronic decays of [Zeta][sup 0] bosons measured by the SLD at SLAC. The data are found to be in good agreement with the predictions of perturbative QCD and fragmentation Monte Carlo models of hadron production. After correction for hadronization effects the data are compared with [Omicron]([alpha][sub s][sup 2]) perturbative QCD calculations from various authors. Fits to the central region of the EEC yield substantially different values of the QCD scale [lambda][sub [ovr MS
NNLO QCD corrections to associated W H production and H →b b ¯ decay
NASA Astrophysics Data System (ADS)
Caola, Fabrizio; Luisoni, Gionata; Melnikov, Kirill; Röntsch, Raoul
2018-04-01
We present a computation of the next-to-next-to-leading-order (NNLO) QCD corrections to the production of a Higgs boson in association with a W boson at the LHC and the subsequent decay of the Higgs boson into a b b ¯ pair, treating the b quarks as massless. We consider various kinematic distributions and find significant corrections to observables that resolve the Higgs decay products. We also find that a cut on the transverse momentum of the W boson, important for experimental analyses, may have a significant impact on kinematic distributions and radiative corrections. We show that some of these effects can be adequately described by simulating QCD radiation in Higgs boson decays to b quarks using parton showers. We also describe contributions to Higgs decay to a b b ¯ pair that first appear at NNLO and that were not considered in previous fully differential computations. The calculation of NNLO QCD corrections to production and decay sub-processes is carried out within the nested soft-collinear subtraction scheme presented by some of us earlier this year. We demonstrate that this subtraction scheme performs very well, allowing a computation of the coefficient of the second-order QCD corrections at the level of a few per mill.
Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects
Bhattacharya, Atri; Enberg, Rikard; Jeong, Yu Seon; ...
2016-11-28
We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, k T factorization including low-x resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest datamore » on forward charm meson production from LHCb at 7 TeV and at 13 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10% to 50% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.« less
Primate Short-Wavelength Cones Share Molecular Markers with Rods
Craft, Cheryl M.; Huang, Jing; Possin, Daniel E.; Hendrickson, Anita
2015-01-01
Macaca, Callithrix jacchus marmoset monkey, Pan troglodytes chim- panzee and human retinas were examined to define if short wavelength (S) cones share molecular markers with L&M cone or rod photoreceptors. S cones showed consistent differences in their immunohistochemical staining and expression levels compared to L&M cones for “rod” Arrestin1 (S-Antigen), “cone” Arrestin4, cone alpha transducin, and Calbindin. Our data verify a similar pattern of expression in these primate retinas and provide clues to the structural divergence of rods and S cones versus L&M cones, suggesting S cone retinal function is “intermediate” between them. PMID:24664680
An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs
NASA Astrophysics Data System (ADS)
Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai
2017-12-01
Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.
Quantization of Time-Like Energy for Wave Maps into Spheres
NASA Astrophysics Data System (ADS)
Grinis, Roland
2017-06-01
In this article we consider large energy wave maps in dimension 2+1, as in the resolution of the threshold conjecture by Sterbenz and Tataru (Commun. Math. Phys. 298(1):139-230, 2010; Commun. Math. Phys. 298(1):231-264, 2010), but more specifically into the unit Euclidean sphere S^{n-1} \\subsetRn with {n≥2}, and study further the dynamics of the sequence of wave maps that are obtained in Sterbenz and Tataru (Commun. Math. Phys. 298(1):231-264, 2010) at the final rescaling for a first, finite or infinite, time singularity. We prove that, on a suitably chosen sequence of time slices at this scaling, there is a decomposition of the map, up to an error with asymptotically vanishing energy, into a decoupled sum of rescaled solitons concentrating in the interior of the light cone and a term having asymptotically vanishing energy dispersion norm, concentrating on the null boundary and converging to a constant locally in the interior of the cone, in the energy space. Similar and stronger results have been recently obtained in the equivariant setting by several authors (Côte, Commun. Pure Appl. Math. 68(11):1946-2004, 2015; Côte, Commun. Pure Appl. Math. 69(4):609-612, 2016; Côte, Am. J. Math. 137(1):139-207, 2015; Côte et al., Am. J. Math. 137(1):209-250, 2015; Krieger, Commun. Math. Phys. 250(3):507-580, 2004), where better control on the dispersive term concentrating on the null boundary of the cone is provided, and in some cases the asymptotic decomposition is shown to hold for all time. Here, however, we do not impose any symmetry condition on the map itself and our strategy follows the one from bubbling analysis of harmonic maps into spheres in the supercritical regime due to Lin and Rivière (Ann. Math. 149(2):785-829, 1999; Duke Math. J. 111:177-193, 2002), which we make work here in the hyperbolic context of Sterbenz and Tataru (Commun. Math. Phys. 298(1), 231-264, 2010).
Soft-Collinear Mode for Jet Rates in Soft-Collinear Effective Theory
Chien, Yang-Ting; Lee, Christopher; Hornig, Andrew
2016-01-29
We propose the addition of a new "soft-collinear" mode to soft collinear effective theory (SCET) below the usual soft scale to factorize and resum logarithms of jet radii R in jet cross sections. We consider exclusive 2-jet cross sections in e +e - collisions with an energy veto Λ on additional jets. The key observation is that there are actually two pairs of energy scales whose ratio is R: the transverse momentum QR of the energetic particles inside jets and their total energy Q, and the transverse momentum ΛR of soft particles that are cut out of the jet cones and their energy Λ. The soft-collinear mode is necessary to factorize and resum logarithms of the latter hierarchy. We show how this factorization occurs in the jet thrust cross section for cone and k T-type algorithms at O(α s) and using the thrust cone algorithm at O(αmore » $$2\\atop{s}$$). We identify the presence of hard-collinear, in-jet soft, global (veto) soft, and soft-collinear modes in the jet thrust cross section. We also observe here that the in-jet soft modes measured with thrust are actually the "csoft" modes of the theory SCET +. We dub the new theory with both csoft and soft-collinear modes "SCET ++". We go on to explain the relation between the "unmeasured" jet function appearing in total exclusive jet cross sections and the hard-collinear and csoft functions in measured jet thrust cross sections. We do not resum logs that are non-global in origin, arising from the ratio of the scales of soft radiation whose thrust is measured at Q$${{\\tau}}$$/R and of the soft-collinear radiation at 2ΛR. Their resummation would require the introduction of additional operators beyond those we consider here. The steps we outline here are a necessary part of summing logs of R that are global in nature and have not been factorized and resummed beyond leading-log level previously.« less
Soft-Collinear Mode for Jet Rates in Soft-Collinear Effective Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, Yang-Ting; Lee, Christopher; Hornig, Andrew
We propose the addition of a new "soft-collinear" mode to soft collinear effective theory (SCET) below the usual soft scale to factorize and resum logarithms of jet radii R in jet cross sections. We consider exclusive 2-jet cross sections in e +e - collisions with an energy veto Λ on additional jets. The key observation is that there are actually two pairs of energy scales whose ratio is R: the transverse momentum QR of the energetic particles inside jets and their total energy Q, and the transverse momentum ΛR of soft particles that are cut out of the jet cones and their energy Λ. The soft-collinear mode is necessary to factorize and resum logarithms of the latter hierarchy. We show how this factorization occurs in the jet thrust cross section for cone and k T-type algorithms at O(α s) and using the thrust cone algorithm at O(αmore » $$2\\atop{s}$$). We identify the presence of hard-collinear, in-jet soft, global (veto) soft, and soft-collinear modes in the jet thrust cross section. We also observe here that the in-jet soft modes measured with thrust are actually the "csoft" modes of the theory SCET +. We dub the new theory with both csoft and soft-collinear modes "SCET ++". We go on to explain the relation between the "unmeasured" jet function appearing in total exclusive jet cross sections and the hard-collinear and csoft functions in measured jet thrust cross sections. We do not resum logs that are non-global in origin, arising from the ratio of the scales of soft radiation whose thrust is measured at Q$${{\\tau}}$$/R and of the soft-collinear radiation at 2ΛR. Their resummation would require the introduction of additional operators beyond those we consider here. The steps we outline here are a necessary part of summing logs of R that are global in nature and have not been factorized and resummed beyond leading-log level previously.« less
Li, Xia; Li, Wensheng; Dai, Xufeng; Kong, Fansheng; Zheng, Qinxiang; Zhou, Xiangtian; Lü, Fan; Chang, Bo; Rohrer, Bärbel; Hauswirth, William. W.; Qu, Jia; Pang, Ji-jing
2011-01-01
Purpose. RPE65 function is necessary in the retinal pigment epithelium (RPE) to generate chromophore for all opsins. Its absence results in vision loss and rapid cone degeneration. Recent Leber congenital amaurosis type 2 (LCA with RPE65 mutations) phase I clinical trials demonstrated restoration of vision on RPE65 gene transfer into RPE cells overlying cones. In the rd12 mouse, a naturally occurring model of RPE65-LCA early cone degeneration was observed; however, some peripheral M-cones remained. A prior study showed that AAV-mediated RPE65 expression can prevent early cone degeneration. The present study was conducted to test whether the remaining cones in older rd12 mice can be rescued. Methods. Subretinal treatment with the scAAV5-smCBA-hRPE65 vector was initiated at postnatal day (P)14 and P90. After 2 months, electroretinograms were recorded, and cone morphology was analyzed by using cone-specific peanut agglutinin and cone opsin–specific antibodies. Results. Cone degeneration started centrally and spread ventrally, with cells losing cone-opsin staining before that for the PNA-lectin–positive cone sheath. Gene therapy starting at P14 resulted in almost wild-type M- and S-cone function and morphology. Delaying gene-replacement rescued the remaining M-cones, and most important, more M-cone opsin–positive cells were identified than were present at the onset of gene therapy, suggesting that opsin expression could be reinitiated in cells with cone sheaths. Conclusions. The results support and extend those of the previous study that gene therapy can stop early cone degeneration, and, more important, they provide proof that delayed treatment can restore the function and morphology of the remaining cones. These results have important implications for the ongoing LCA2 clinical trials. PMID:21169527
NASA Astrophysics Data System (ADS)
Kervyn, M.; Ernst, G. G. J.; Carracedo, J.-C.; Jacobs, P.
2012-01-01
Volcanic cones are the most common volcanic constructs on Earth. Their shape can be quantified using two morphometric ratios: the crater/cone base ratio (W cr/W co) and the cone height/width ratio (H co/W co). The average values for these ratios obtained over entire cone fields have been explained by the repose angle of loose granular material (i.e. scoria) controlling cone slopes. The observed variability in these ratios between individual cones has been attributed to the effect of erosional processes or contrasting eruptive conditions on cone morphometry. Using a GIS-based approach, high spatial resolution Digital Elevation Models and airphotos, two new geomorphometry datasets for cone fields at Mauna Kea (Hawaii, USA) and Lanzarote (Canary Islands, Spain) are extracted and analyzed here. The key observation in these datasets is the great variability in morphometric ratios, even for simple-shape and well-preserved cones. Simple analog experiments are presented to analyze factors influencing the morphometric ratios. The formation of a crater is simulated within an analog cone (i.e. a sand pile) by opening a drainage conduit at the cone base. Results from experiments show that variability in the morphometric ratios can be attributed to variations in the width, height and horizontal offset of the drainage point relative to the cone symmetry axis, to the dip of the underlying slope or to the influence of a small proportion of fine cohesive material. GIS analysis and analog experiments, together with specific examples of cones documented in the field, suggest that the morphometric ratios for well-preserved volcanic cones are controlled by a combination of 1) the intrinsic cone material properties, 2) time-dependent eruption conditions, 3) the local setting, and 4) the method used to estimate the cone height. Implications for interpreting cone morphometry solely as either an age or as an eruption condition indicator are highlighted.
Ahnelt, P K; Hokoç, J N; Röhlich, P
1995-01-01
The retinas of placental mammals appear to lack the large number and morphological diversity of cone subtypes found in diurnal reptiles. We have now studied the photoreceptor layer of a South American marsupial (Didelphis marsupialis aurita) by peanut agglutinin labeling of the cone sheath and by labeling of cone outer segments with monoclonal anti-visual pigment antibodies that have been proven to consistently label middle-to-long wavelength (COS-1) and short-wavelength (OS-2) cone subpopulations in placental mammals. Besides a dominant rod population (max. = 400,000/mm2) four subtypes of cones (max. = 3000/mm2) were identified. The outer segments of three cone subtypes were labeled by COS-1: a double cone with a principal cone containing a colorless oil droplet, a single cone with oil droplet, and another single cone. A second group of single cones lacking oil droplets was labeled by OS-2 antibody. The topography of these cone subtypes showed striking anisotropies. The COS-1 labeled single cones without oil droplets were found all over the retina and constituted the dominant population in the area centralis located in the temporal quadrant of the upper, tapetal hemisphere. The population of OS-2 labeled cones was also ubiquitous although slightly higher in the upper hemisphere (200/mm2). The COS-1 labeled cones bearing an oil droplet, including the principal member of double cones, were concentrated (800/mm2) in the inferior, non-tapetal half of the retina. The two spectral types of single cones resemble those of dichromatic photopic systems in most placental mammals. The additional set of COS-1 labeled cones is a distinct marsupial feature. The presence of oil droplets in this cone subpopulation, its absence in the area centralis, and the correlation with the non-tapetal inferior hemisphere suggest a functional specialization, possibly for mesopic conditions. Thus, sauropsid features have been retained but probably with a modified function.
Diaphragm motion quantification in megavoltage cone-beam CT projection images.
Chen, Mingqing; Siochi, R Alfredo
2010-05-01
To quantify diaphragm motion in megavoltage (MV) cone-beam computed tomography (CBCT) projections. User identified ipsilateral hemidiaphragm apex (IHDA) positions in two full exhale and inhale frames were used to create bounding rectangles in all other frames of a CBCT scan. The bounding rectangle was enlarged to create a region of interest (ROI). ROI pixels were associated with a cost function: The product of image gradients and a gradient direction matching function for an ideal hemidiaphragm determined from 40 training sets. A dynamic Hough transform (DHT) models a hemidiaphragm as a contour made of two parabola segments with a common vertex (the IHDA). The images within the ROIs are transformed into Hough space where a contour's Hough value is the sum of the cost function over all contour pixels. Dynamic programming finds the optimal trajectory of the common vertex in Hough space subject to motion constraints between frames, and an active contour model further refines the result. Interpolated ray tracing converts the positions to room coordinates. Root-mean-square (RMS) distances between these positions and those resulting from an expert's identification of the IHDA were determined for 21 Siemens MV CBCT scans. Computation time on a 2.66 GHz CPU was 30 s. The average craniocaudal RMS error was 1.38 +/- 0.67 mm. While much larger errors occurred in a few near-sagittal frames on one patient's scans, adjustments to algorithm constraints corrected them. The DHT based algorithm can compute IHDA trajectories immediately prior to radiation therapy on a daily basis using localization MVCBCT projection data. This has potential for calibrating external motion surrogates against diaphragm motion.
NASA Astrophysics Data System (ADS)
Hu, Jicun; Tam, Kwok; Johnson, Roger H.
2004-01-01
We derive and analyse a simple algorithm first proposed by Kudo et al (2001 Proc. 2001 Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine (Pacific Grove, CA) pp 7-10) for long object imaging from truncated helical cone beam data via a novel definition of region of interest (ROI). Our approach is based on the theory of short object imaging by Kudo et al (1998 Phys. Med. Biol. 43 2885-909). One of the key findings in their work is that filtering of the truncated projection can be divided into two parts: one, finite in the axial direction, results from ramp filtering the data within the Tam window. The other, infinite in the z direction, results from unbounded filtering of ray sums over PI lines only. We show that for an ROI defined by PI lines emanating from the initial and final source positions on a helical segment, the boundary data which would otherwise contaminate the reconstruction of the ROI can be completely excluded. This novel definition of the ROI leads to a simple algorithm for long object imaging. The overscan of the algorithm is analytically calculated and it is the same as that of the zero boundary method. The reconstructed ROI can be divided into two regions: one is minimally contaminated by the portion outside the ROI, while the other is reconstructed free of contamination. We validate the algorithm with a 3D Shepp-Logan phantom and a disc phantom.
UAS Collision Avoidance Algorithm that Minimizes the Impact on Route Surveillance
2009-03-01
Appendix A: Collision Avoidance Algorithm/Virtual Cockpit Interface .......................124 Appendix B : Collision Cone Boundary Rates... b ) Split Cone (c) Multiple Intruders, Single and Split Cones [27] ........................................................ 27 3-3: Collision Cone...Approach in the Vertical Plane (a) Single Cone ( b ) Multiple Intruders, Single and Split Cone [27
Zou, Leilei; Zhu, Xiaoyu; Liu, Rui; Ma, Fei; Yu, Manrong
2018-01-01
Purpose To analyze the changes of refraction and metabolism of the retinal cones under monochromatic lights in guinea pigs. Methods Sixty guinea pigs were randomly divided into a short-wavelength light (SL) group, a middle-wavelength light (ML) group, and a white light (WL) group. Refraction and axial length were measured before and after 10-week illumination. The densities of S-cones and M-cones were determined by retinal cone immunocytochemistry, and the expressions of S-opsins and M-opsins were determined by real-time PCR and Western blot. Results After 10-week illumination, the guinea pigs developed relative hyperopia in the SL group and relative myopia in the ML group. Compared with the WL group, the density of S-cones and S-opsins increased while M-cones and M-opsins decreased in the SL group (all, p < 0.05); conversely, the density of S-cones and S-opsins decreased while M-cones and M-opsins increased in the ML group (all, p < 0.05). Increased S-cones/opsins and decreased M-cones/opsins were induced by short-wavelength lights. Decreased S-cones/opsins and increased M-cones/opsins were induced by middle-wavelength lights. Conclusions Altered retinal cones/opsins induced by monochromatic lights might be involved in the refractive development in guinea pigs. PMID:29675275
NASA Astrophysics Data System (ADS)
Chen, Wei; Chen, Hua-Xing; Liu, Xiang; Steele, T. G.; Zhu, Shi-Lin
2017-12-01
We have studied the mass spectra of the hidden-charm/bottom q c q ¯c ¯, s c s ¯c ¯ and q b q ¯b ¯, s b s ¯b ¯ tetraquark states with JP C=0++ and 2++ in the framework of QCD sum rules. We construct ten scalar and four tensor interpolating currents in a systematic way and calculate the mass spectra for these tetraquark states. The X*(3860 ) may be either an isoscalar tetraquark state or χc 0(2 P ). If the X*(3860 ) is a tetraquark candidate, our results prefer the 0++ option over the 2++ one. The X (4160 ) may be classified as either the scalar or tensor q c q ¯c ¯ tetraquark state, while the X (3915 ) favors a 0++ q c q ¯c ¯ or s c s ¯c ¯ tetraquark assignment over the tensor one. The X (4350 ) cannot be interpreted as a s c s ¯c ¯ tetraquark with either JP C=0++ or 2++.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Gregory
A precision measurement of the spin structure function g{sub 1}(x,Q{sup 2}) for both the proton and deuteron was made using deep inelastic scattering of the 48.35 GeV polarized electron beam at the Stanford Linear Accelerator Center. The kinematic range of the measurement was 0.014 < x < 0.9 and 1 (GeV/c){sup 2} < Q{sup 2} < 40 (GeV/c){sup 2}. Solid {sup 15}NH{sub 3} and {sup 6}Li{sup 2}H were used as target materials. The beam polarization of 0.81 {+-} 0.02 was measured using Moeller polarimetry. The scattered electron events were accumulated in three magnetic spectrometers at fixed angles of 2.75{sup o},more » 5.5{sup o}, and 10.5{sup o}. Data were obtained with the target polarization direction both parallel and transverse to the beam direction. Together with existing world data, the g{sub 1}(x,Q{sup 2}) results were fit in a well-established next-to-leading order QCD formalism, and are consistent with the Bjorken sum rule.« less
Deeply Virtual Exclusive Processes and Generalized Parton Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
,
2011-06-01
The goal of the comprehensive program in Deeply Virtual Exclusive Scattering at Jefferson Laboratory is to create transverse spatial images of quarks and gluons as a function of their longitudinal momentum fraction in the proton, the neutron, and in nuclei. These functions are the Generalized Parton Distributions (GPDs) of the target nucleus. Cross section measurements of the Deeply Virtual Compton Scattering (DVCS) reaction ep {yields} ep{gamma} in Hall A support the QCD factorization of the scattering amplitude for Q^2 {>=} 2 GeV^2. Quasi-free neutron-DVCS measurements on the Deuteron indicate sensitivity to the quark angular momentum sum rule. Fully exclusive H(e,more » e'p{gamma} ) measurements have been made in a wide kinematic range in CLAS with polarized beam, and with both unpolarized and longitudinally polarized targets. Existing models are qualitatively consistent with the JLab data, but there is a clear need for less constrained models. Deeply virtual vector meson production is studied in CLAS. The 12 GeV upgrade will be essential for for these channels. The {rho} and {omega} channels reactions offer the prospect of flavor sensitivity to the quark GPDs, while the {phi}-production channel is dominated by the gluon distribution.« less
Analytic Evolution of Singular Distribution Amplitudes in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandogan Kunkel, Asli
2014-08-01
Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a at (constant) DA, antisymmetric at DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standardmore » method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer polynomials requires an infinite number of terms in order to accurately reproduce functions in the vicinity of singular points. Straightforward iteration of an initial distribution produces logarithmically divergent terms at each iteration. In our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve. Afterwards, in order to get precise results, only one or two iterations are needed.« less
Miracles in Scattering Amplitudes: from QCD to Gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volovich, Anastasia
2016-10-09
The goal of my research project "Miracles in Scattering Amplitudes: from QCD to Gravity" involves deepening our understanding of gauge and gravity theories by exploring hidden structures in scattering amplitudes and using these rich structures as much as possible to aid practical calculations.
Variability in human cone topography assessed by adaptive optics scanning laser ophthalmoscopy
Zhang, Tianjiao; Godara, Pooja; Blanco, Ernesto R.; Griffin, Russell L; Wang, Xiaolin; Curcio, Christine A.; Zhang, Yuhua
2015-01-01
Purpose To assess between- and within-individual variability of macular cone topography in the eyes of young adults. Design Observational case series. Methods Cone photoreceptors in 40 eyes of 20 subjects aged 19–29 years with normal maculae were imaged using a research adaptive optics scanning laser ophthalmoscope. Refractive errors ranged from −3.0 D to 0.63 D and differed by <0.50 D in fellow eyes. Cone density was assessed on a two-dimensional sampling grid over the central 2.4 mm × 2.4 mm. Between-individual variability was evaluated by coefficient of variation (CV). Within-individual variability was quantified by maximum difference and root-mean-square (RMS). Cones were cumulated over increasing eccentricity. Results Peak densities of foveal cones are 168,162 ± 23,529 cones/mm2 (mean ± SD) (CV = 0.14). The number of cones within the cone-dominated foveola (0.8–0.9 mm diameter) is 38,311 ± 2,319 (CV = 0.06). The RMS cone density difference between fellow eyes is 6.78%, and the maximum difference is 23.6%. Mixed model statistical analysis found no difference in the association between eccentricity and cone density in the superior/nasal (p=0.8503), superior/temporal (p=0.1551), inferior/nasal (p=0.8609), and inferior/temporal (p=0.6662) quadrants of fellow eyes. Conclusions New instrumentation imaged the smallest foveal cones, thus allowing accurate assignment of foveal centers and assessment of variability in macular cone density in a large sample of eyes. Though cone densities vary significantly in the fovea, the total number of foveolar cones are very similar both between- and within-subjects. Thus, the total number of foveolar cones may be an important measure of cone degeneration and loss. PMID:25935100
Aoki, Y; Endrodi, G; Fodor, Z; Katz, S D; Szabó, K K
2006-10-12
Quantum chromodynamics (QCD) is the theory of the strong interaction, explaining (for example) the binding of three almost massless quarks into a much heavier proton or neutron--and thus most of the mass of the visible Universe. The standard model of particle physics predicts a QCD-related transition that is relevant for the evolution of the early Universe. At low temperatures, the dominant degrees of freedom are colourless bound states of hadrons (such as protons and pions). However, QCD is asymptotically free, meaning that at high energies or temperatures the interaction gets weaker and weaker, causing hadrons to break up. This behaviour underlies the predicted cosmological transition between the low-temperature hadronic phase and a high-temperature quark-gluon plasma phase (for simplicity, we use the word 'phase' to characterize regions with different dominant degrees of freedom). Despite enormous theoretical effort, the nature of this finite-temperature QCD transition (that is, first-order, second-order or analytic crossover) remains ambiguous. Here we determine the nature of the QCD transition using computationally demanding lattice calculations for physical quark masses. Susceptibilities are extrapolated to vanishing lattice spacing for three physical volumes, the smallest and largest of which differ by a factor of five. This ensures that a true transition should result in a dramatic increase of the susceptibilities. No such behaviour is observed: our finite-size scaling analysis shows that the finite-temperature QCD transition in the hot early Universe was not a real phase transition, but an analytic crossover (involving a rapid change, as opposed to a jump, as the temperature varied). As such, it will be difficult to find experimental evidence of this transition from astronomical observations.
One-loop QCD thermodynamics in a strong homogeneous and static magnetic field
NASA Astrophysics Data System (ADS)
Rath, Shubhalaxmi; Patra, Binoy Krishna
2017-12-01
We have studied how the equation of state of thermal QCD with two light flavors is modified in a strong magnetic field. We calculate the thermodynamic observables of hot QCD matter up to one-loop, where the magnetic field affects mainly the quark contribution and the gluon part is largely unaffected except for the softening of the screening mass. We have first calculated the pressure of a thermal QCD medium in a strong magnetic field, where the pressure at fixed temperature increases with the magnetic field faster than the increase with the temperature at constant magnetic field. This can be understood from the dominant scale of thermal medium in the strong magnetic field, being the magnetic field, in the same way that the temperature dominates in a thermal medium in the absence of magnetic field. Thus although the presence of a strong magnetic field makes the pressure of hot QCD medium larger, the dependence of pressure on the temperature becomes less steep. Consistent with the above observations, the entropy density is found to decrease with the temperature in the presence of a strong magnetic field which is again consistent with the fact that the strong magnetic field restricts the dynamics of quarks to two dimensions, hence the phase space becomes squeezed resulting in the reduction of number of microstates. Moreover the energy density is seen to decrease and the speed of sound of thermal QCD medium increases in the presence of a strong magnetic field. These findings could have phenomenological implications in heavy ion collisions because the expansion dynamics of the medium produced in non-central ultra-relativistic heavy ion collisions is effectively controlled by both the energy density and the speed of sound.
AdS/QCD and Light Front Holography: A New Approximation to QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; de Teramond, Guy
2010-02-15
The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give themore » hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n+L+S/2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Keh-Fei; Draper, Terrence
It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. Wemore » started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D s meson decay constant f Ds, the strangeness and charmness, the meson mass decomposition and the strange quark spin from the anomalous Ward identity. Recently, we have started to include multiple lattices with different lattice spacings and different volumes including large lattices at the physical pion mass point. We are getting quite close to being able to calculate the hadron structure at the physical point and to do the continuum and large volume extrapolations, which is our ultimate aim. We have now finished several projects which have included these systematic corrections. They include the leptonic decay width of the ρ, the πN sigma and strange sigma terms, and the strange quark magnetic moment. Over the years, we have also studied hadron spectroscopy with lattice calculations and in phenomenology. These include Roper resonance, pentaquark state, charmonium spectrum, glueballs, scalar mesons a 0(1450) and σ(600) and other scalar mesons, and the 1 -+ meson. In addition, we have employed the canonical approach to explore the first-order phase transition and the critical point at finite density and finite temperature. We have also discovered a new parton degree of freedom -- the connected sea partons, from the path-integral formulation of the hadronic tensor, which explains the experimentally observed Gottfried sum rule violation. Combining experimental result on the strange parton distribution, the CT10 global fitting results of the total u and d anti-partons and the lattice result of the ratio of the momentum fraction of the strange vs that of u or d in the disconnected insertion, we have shown that the connected sea partons can be isolated. In this final technical report, we shall present a few representative highlights that have been achieved in the project.« less
Ding, Xi-Qin; Thapa, Arjun; Ma, Hongwei; Xu, Jianhua; Elliott, Michael H.; Rodgers, Karla K.; Smith, Marci L.; Wang, Jin-Shan; Pittler, Steven J.; Kefalov, Vladimir J.
2016-01-01
Cone photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in cone phototransduction, which is a process essential for daylight vision, color vision, and visual acuity. Mutations in the cone channel subunits CNGA3 and CNGB3 are associated with human cone diseases, including achromatopsia, cone dystrophies, and early onset macular degeneration. Mutations in CNGB3 alone account for 50% of reported cases of achromatopsia. This work investigated the role of CNGB3 in cone light response and cone channel structural stability. As cones comprise only 2–3% of the total photoreceptor population in the wild-type mouse retina, we used Cngb3−/−/Nrl−/− mice with CNGB3 deficiency on a cone-dominant background in our study. We found that, in the absence of CNGB3, CNGA3 was able to travel to the outer segments, co-localize with cone opsin, and form tetrameric complexes. Electroretinogram analyses revealed reduced cone light response amplitude/sensitivity and slower response recovery in Cngb3−/−/Nrl−/− mice compared with Nrl−/− mice. Absence of CNGB3 expression altered the adaptation capacity of cones and severely compromised function in bright light. Biochemical analysis demonstrated that CNGA3 channels lacking CNGB3 were more resilient to proteolysis than CNGA3/CNGB3 channels, suggesting a hindered structural flexibility. Thus, CNGB3 regulates cone light response kinetics and the channel structural flexibility. This work advances our understanding of the biochemical and functional role of CNGB3 in cone photoreceptors. PMID:26893377