Analysis of eletrectrohydrodynamic jetting using multifunctional and three-dimensional tomography
NASA Astrophysics Data System (ADS)
Ko, Han Seo; Nguyen, Xuan Hung; Lee, Soo-Hong; Kim, Young Hyun
2013-11-01
Three-dimensional optical tomography technique was developed to reconstruct three-dimensional flow fields using a set of two-dimensional shadowgraphic images and normal gray images. From three high speed cameras, which were positioned at an offset angle of 45° relative to one another, number, size and location of electrohydrodynamic jets with respect to the nozzle position were analyzed using shadowgraphic tomography employing a multiplicative algebraic reconstruction technique (MART). Additionally, a flow field inside cone-shaped liquid (Taylor cone) which was induced under electric field was also observed using a simultaneous multiplicative algebraic reconstruction technique (SMART) for reconstructing intensities of particle light and combining with a three-dimensional cross correlation. Various velocity fields of a circulating flow inside the cone-shaped liquid due to different physico-chemical properties of liquid and applied voltages were also investigated. This work supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. S-2011-0023457).
DOT National Transportation Integrated Search
2015-09-01
This study provides resistance factors (I) for design of deep foundations to implement Load and Resistance Factor Design (LRFD) for bridge foundations using Texas Cone Penetrometer (TCP) Test data. Initial efforts were made to determine resistance fa...
Information Theoretic Characterization of Physical Theories with Projective State Space
NASA Astrophysics Data System (ADS)
Zaopo, Marco
2015-08-01
Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.
Advances in Valveless Piezoelectric Pump with Cone-shaped Tubes
NASA Astrophysics Data System (ADS)
Zhang, Jian-Hui; Wang, Ying; Huang, Jun
2017-07-01
This paper reviews the development of valveless piezoelectric pump with cone-shaped tube chronologically, which have widely potential application in biomedicine and micro-electro-mechanical systems because of its novel principles and deduces the research direction in the future. Firstly, the history of valveless piezoelectric pumps with cone-shaped tubes is reviewed and these pumps are classified into the following types: single pump with solid structure or plane structure, and combined pump with parallel structure or series structure. Furthermore, the function of each type of cone-shaped tubes and pump structures are analyzed, and new directions of potential expansion of valveless piezoelectric pumps with cone-shaped tubes are summarized and deduced. The historical argument, which is provided by the literatures, that for a valveless piezoelectric pump with cone-shaped tubes, cone angle determines the flow resistance and the flow resistance determines the flow direction. The argument is discussed in the reviewed pumps one by one, and proved to be convincing. Finally, it is deduced that bionics is pivotal in the development of valveless piezoelectric pump with cone-shaped tubes from the perspective of evolution of biological structure. This paper summarizes the current valveless piezoelectric pumps with cone-shaped tubes and points out the future development, which may provide guidance for the research of piezoelectric actuators.
Gas-Stabilizing Gold Nanocones for Acoustically Mediated Drug Delivery.
Mannaris, Christophoros; Teo, Boon M; Seth, Anjali; Bau, Luca; Coussios, Constantin; Stride, Eleanor
2018-06-01
The efficient penetration of drugs into tumors is a major challenge that remains unmet. Reported herein is a strategy to promote extravasation and enhanced penetration using inertial cavitation initiated by focused ultrasound and cone-shaped gold nanoparticles that entrap gas nanobubbles. The cones are capable of initiating inertial cavitation under pressures and frequencies achievable with existing clinical ultrasound systems and of promoting extravasation and delivery of a model large therapeutic molecule in an in vitro tissue mimicking flow phantom, achieving penetration depths in excess of 2 mm. Ease of functionalization and intrinsic imaging capabilities provide gold with significant advantages as a material for biomedical applications. The cones show neither cytotoxicity in Michigan Cancer Foundation (MCF)-7 cells nor hemolytic activity in human blood at clinically relevant concentrations and are found to be colloidally stable for at least 5 d at 37 °C and several months at 4 °C. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Haas, Florian; Heckmann, Tobias; Klein, Thomas; Becht, Michael
2010-05-01
In high mountain regions, rockfall plays a major role as a geomorphic process, both in terms of sediment budget and natural hazard. During the last two years, high-resolution Terrestrial Laserscanning (TLS) was applied to study (a) detachment zones and sizes of rock fall events within steep rockfaces, (b) characteristics of rockfall deposits such as surface roughness, size distribution and fragment morphology, and (c) their influence on rockfall run-out length. The investigations were carried out in three study areas located in the Northern, Central and Southern Alps (Val di Funes, Northern Dolomites/Italy; Horlachtal, Central Alps/Austria; Höllental, Northern Calcareous Alps/Germany). Within this project (funded by the German Science Foundation, DFG), rockfaces and corresponding talus cones were scanned twice a year with two scanning resolutions. Larger events were investigated by scanning large areas of rockfaces and talus cones from a great distance (~500 m). In contrast, detailed scans from shorter distances (<250m) were used to investigate the capability of the approach to detect smaller events. With this approach, it was possible to record three large and several smaller events in the three catchments. The largest event occurred in the Dolomite Alps (Val di Funes/Italy) with a volume of nearly 3300 cubic meters (8900 tons). Both the detachment zone and the depositional zones could be defined very well by a cut-and-fill analysis of the digital elevation models generated from the TLS data. In addition, ground based LIDAR data are also a very helpful tool to characterize the surface properties of talus cones and the runout distances of large boulders. The surface roughness of talus cones in all three catchments was derived from the TLS point clouds by a GIS approach according to the roughness-length method. The resulting detailed rougness maps of the talus cones will help in the future to improve existing process models which are able to model runout distances on the talus cones using friction parameters. It has often been mentioned that not only the surface roughness of the talus cone, but also the shape of the boulders itself have an influence on the runout distance. The interrelationship between rock fragment morphology (characterised by shape parameters) and runout distance was analysed at the site of a large rockfall event (>10 000 cubic meters) from the year 2003 in the northern Dolomite Alps. For these analyses, the axial ratio of 618 rocks (>50 cm long axis) in the depositional zone and their corresponding runout distance were measured using TLS data and the software RiscanPro. Results show a significant correlation between the axial ratio of the particles and their runout distance. Rocks with a "round" shape (axial ratio around 1) have a longer runout distance than elongated or irregularly shaped particles (axial ratio greater than 1).
Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes
NASA Astrophysics Data System (ADS)
Walicka, A.
2018-02-01
In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.
Evaporation From Soil Containers With Irregular Shapes
NASA Astrophysics Data System (ADS)
Assouline, Shmuel; Narkis, Kfir
2017-11-01
Evaporation from bare soils under laboratory conditions is generally studied using containers of regular shapes where the vertical edges are parallel to the flow lines in the drying domain. The main objective of this study was to investigate the impact of irregular container shapes, for which the flow lines either converge or diverge toward the surface. Evaporation from initially saturated sand and sandy loam soils packed in cones and inverted cones was compared to evaporation from corresponding cylindrical columns. The initial evaporation rate was higher in the cones, and close to potential evaporation. At the end of the experiment, the cumulative evaporation depth in the sand cone was equal to that in the column but higher than in the inverted cone, while in the sandy loam, the order was cone > column > inverted cone. By comparison to the column, stage 1 evaporation was longer in the cones, and practically similar in the inverted cones. Stage 2 evaporation rate decreased with the increase of the evaporating surface area. These results were more pronounced in the sandy loam. For the sand column, the transition between stage 1 and stage 2 evaporation occurred when the depth of the saturation front was approximately equal to the characteristic length of the soil. However, for the cone and the inverted cone, it occurred for a shallower depth of the saturation front. It seems therefore that the concept of the characteristic length derived from the soil hydraulic properties is related to drying systems of regular shapes.
Liu, Guangmao; Zhou, Jianye; Sun, Hansong; Zhang, Yan; Chen, Haibo; Hu, Shengshou
2017-04-05
BACKGROUND Cannula shape and connection style influence the risk of thrombus formation in the blood pump by varying the blood flow characteristics inside the pump. Inlet cannulas should be designed based on the need for anatomical fit and reducing the risk of thrombus generation in the blood pump. The effects on thrombus formation of the cone-shaped bend inlet cannulas of axial blood pumps should be studied. MATERIAL AND METHODS The cannulas were designed as cone-shaped, with 1 bent section connecting 2 straight sections. Both the silicone tube and novel cone-shaped cannula were simulated for comparison. The flow fields of a blood pump with inlet cannula were simulated by computational fluid dynamics (CFD) at flows of 2.0, 2.5, and 3.0 liters per minute (lpm), with pump rotational speeds of 7500, 8000, and 8500 rpm, respectively. Then, 6 two-dimensional (2D) particle image velocimetry (PIV) tests were conducted and the velocity distributions were analyzed. RESULTS A low-velocity region was located inside the pump entrance when a soft silicone tube was used. At 8500 rpm and 3.0 lpm working condition, the minimum velocity inside the pump with cone-shaped cannulas was 2.5×10^-1 m/s. The cone-shaped cannulas eliminated the low-velocity region inside the pump. Both CFD and PIV results showed that the low-velocity region did not spread to the entrance of the blood pump within the flow range from 2.0 lpm to 7.0 lpm. CONCLUSIONS The designed cone-shaped bent cannulas can eliminate the low-velocity region inside the blood pump and reduce the risk of thrombus formation in the blood pump.
Shape measurement and vibration analysis of moving speaker cone
NASA Astrophysics Data System (ADS)
Zhang, Qican; Liu, Yuankun; Lehtonen, Petri
2014-06-01
Surface three-dimensional (3-D) shape information is needed for many fast processes such as structural testing of material, standing waves on loudspeaker cone, etc. Usually measurement is done from limited number of points using electrical sensors or laser distance meters. Fourier Transform Profilometry (FTP) enables fast shape measurement of the whole surface. Method is based on angled sinusoidal fringe pattern projection and image capturing. FTP requires only one image of the deformed fringe pattern to restore the 3-D shape of the measured object, which makes real-time or dynamic data processing possible. In our experiment the method was used for loudspeaker cone distortion measurement in dynamic conditions. For sound quality issues it is important that the whole cone moves in same phase and there are no partial waves. Our imaging resolution was 1280x1024 pixels and frame rate was 200 fps. Using our setup we found unwanted spatial waves in our sample cone.
Effect of pore architecture on oxygen diffusion in 3D scaffolds for tissue engineering.
Ahn, Geunseon; Park, Jeong Hun; Kang, Taeyun; Lee, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo
2010-10-01
The aim of this study was to maximize oxygen diffusion within a three-dimensional scaffold in order to improve cell viability and proliferation. To evaluate the effect of pore architecture on oxygen diffusion, we designed a regular channel shape with uniform diameter, referred to as cylinder shaped, and a new channel shape with a channel diameter gradient, referred to as cone shaped. A numerical analysis predicted higher oxygen concentration in the cone-shaped channels than in the cylinder-shaped channels, throughout the scaffold. To confirm these numerical results, we examined cell proliferation and viability in 2D constructs and 3D scaffolds. Cell culture experiments revealed that cell proliferation and viability were superior in the constructs and scaffolds with cone-shaped channels.
NASA Technical Reports Server (NTRS)
Calloway, R. L.
1983-01-01
An investigation was conducted to compare measured and predicted pressure distributions, forces and moments, and shock shapes on a geometrically matched sphere-cone and hyperboloid. A hyperboloid with a nose radius of 0.5276 in. and an asymptotic angle of 39.9871 deg was matched to a sphere-cone with a nose radius of 0.750 in. and a cone half-angle of 45 deg. Experimental results in helium at a free-stream Mach number of 20.3 and a free-stream unit Reynolds number of 6.83 x 10 to the 6th power per foot were combined with predicted results from a theoretical method to compare the two shapes. Comparisons of experimental results showed small differences in the two shapes, but the prediction method provided better results for the hyperboloid than for the sphere-cone.
Calculation of linearized supersonic flow over slender cones of arbitrary cross section
NASA Technical Reports Server (NTRS)
Mascitti, V. R.
1972-01-01
Supersonic linearized conical-flow theory is used to determine the flow over slender pointed cones having horizontal and vertical planes of symmetry. The geometry of the cone cross sections and surface velocities are expanded in Fourier series. The symmetry condition permits the uncoupling of lifting and nonlifting solutions. The present method reduces to Ward's theory for flow over a cone of elliptic cross section. Results are also presented for other shapes. Results by this method diverge for cross-sectional shapes where the maximum thickness is large compared with the minimum thickness. However, even for these slender-body shapes, lower order solutions are good approximations to the complete solution.
SU-E-T-252: Developing a Pencil Beam Dose Calculation Algorithm for CyberKnife System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, B; Duke University Medical Center, Durham, NC; Liu, B
2015-06-15
Purpose: Currently there are two dose calculation algorithms available in the Cyberknife planning system: ray-tracing and Monte Carlo, which is either not accurate or time-consuming for irregular field shaped by the MLC that was recently introduced. The purpose of this study is to develop a fast and accurate pencil beam dose calculation algorithm which can handle irregular field. Methods: A pencil beam dose calculation algorithm widely used in Linac system is modified. The algorithm models both primary (short range) and scatter (long range) components with a single input parameter: TPR{sub 20}/{sub 10}. The TPR{sub 20}/{sub 20}/{sub 10} value was firstmore » estimated to derive an initial set of pencil beam model parameters (PBMP). The agreement between predicted and measured TPRs for all cones were evaluated using the root mean square of the difference (RMSTPR), which was then minimized by adjusting PBMPs. PBMPs are further tuned to minimize OCR RMS (RMSocr) by focusing at the outfield region. Finally, an arbitrary intensity profile is optimized by minimizing RMSocr difference at infield region. To test model validity, the PBMPs were obtained by fitting to only a subset of cones (4) and applied to all cones (12) for evaluation. Results: With RMS values normalized to the dmax and all cones combined, the average RMSTPR at build-up and descending region is 2.3% and 0.4%, respectively. The RMSocr at infield, penumbra and outfield region is 1.5%, 7.8% and 0.6%, respectively. Average DTA in penumbra region is 0.5mm. There is no trend found in TPR or OCR agreement among cones or depths. Conclusion: We have developed a pencil beam algorithm for Cyberknife system. The prediction agrees well with commissioning data. Only a subset of measurements is needed to derive the model. Further improvements are needed for TPR buildup region and OCR penumbra. Experimental validations on MLC shaped irregular field needs to be performed. This work was partially supported by the National Natural Science Foundation of China (61171005) and the China Scholarship Council (CSC)« less
Cup-shaped Intrusions, Morphology and Emplacement Mechanism Investigate Through Analogue Modelling
NASA Astrophysics Data System (ADS)
Mathieu, L.; van Wyk de Vries, B.
2007-12-01
We investigate the morphology of large-scale shallow-depth magma intrusions and sub-volcanic complexes with analogue models. Intrusions of analogue magma are done in a granular material that can contain a ductile layer. The model surface is flat to model the formation of plutonic intrusions and it is overlain by a cone when modelling late sub-volcanic complexes. For flat-top models, we obtain cup-shaped intrusions fed by dykes. Cup-shaped intrusions are inverted-cone like bodies. They are different from saucer-shaped intrusions as they possess neither a well developed sill-base, nor an outer rim. However, like saucers, cups are shallow depth intrusions that dome the country rocks. They initiate from an advancing dyke and first develop an inverted-cone like morphology. Then, the central thickness increases and thrusts form at the edge of the domed country rocks. At this stage, the intrusions progressively involve toward a lopolith shape. By using analogue magma of various viscosities we have been able to constrain key relationships: higher intrusion viscosity causes deeper initiation and the deeper they initiate, the larger is the intrusion diameter. A natural example of such intrusion might by the circles of volcanoes like the Azufre-Lastaria (Peru) that might be overlain be a large-scale cup-shaped intrusion. When adding a cone at the surface of the model and, sometimes, a thin ductile layer in the substratum, the morphology of cup-shaped intrusions vary. Note that the ductile layer of our models is not thick enough to induce the gravitational spreading of the cone. Generally, cup-shaped intrusions are asymmetric in cross section and elliptical in plan view. Their formation creates extension structures in the cone (croissant-shaped rift, straight rift or normal fault) and thrusts in some sectors below the cone. Both types of structures are bordered by strike-slip faults. Cups and saucers share many similarities, but differ probably in the fact that saucers are partially sills that are guided by stratigraphic horizons. However, the basic formation mechanisms may be the same and saucers could be regarded as a special form of cup.
Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes.
Wang, Wei; Ruiz, Isaac; Ahmed, Kazi; Bay, Hamed Hosseini; George, Aaron S; Wang, Johnny; Butler, John; Ozkan, Mihrimah; Ozkan, Cengiz S
2014-08-27
In this work, we report the synthesis of an three-dimensional (3D) cone-shape CNT clusters (CCC) via chemical vapor deposition (CVD) with subsequent inductively coupled plasma (ICP) treatment. An innovative silicon decorated cone-shape CNT clusters (SCCC) is prepared by simply depositing amorphous silicon onto CCC via magnetron sputtering. The seamless connection between silicon decorated CNT cones and graphene facilitates the charge transfer in the system and suggests a binder-free technique of preparing lithium ion battery (LIB) anodes. Lithium ion batteries based on this novel 3D SCCC architecture demonstrates high reversible capacity of 1954 mAh g(-1) and excellent cycling stability (>1200 mAh g(-1) capacity with ≈ 100% coulombic efficiency after 230 cycles). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs
NASA Astrophysics Data System (ADS)
Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai
2017-12-01
Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.
The drag of magnetically suspended wind-tunnel models with nose-cones of various shapes
NASA Technical Reports Server (NTRS)
Dubois, G.
1983-01-01
This article concerns the experimental determination of optimum nose-cones (minimum drag) of a body of revolution at supersonic and hypersonic speeds by means of ONERA magnetic suspension. The study concerns two groups of models, specifically: a group whose nose-cone has a profile in the shape of X(n); the AGARD B group whose nose-cone is plotted in accordance with a given law. The results obtained for the first group are comparable to those calculated with the approximations of Cole and Newton and the experiments carried out by Kubota.
Micro-cone targets for producing high energy and low divergence particle beams
Le Galloudec, Nathalie
2013-09-10
The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.
Improved design of a cone-shaped rotating disk for shear force loading in a cell culture plate
NASA Astrophysics Data System (ADS)
Keawprachum, Boonrit; Limjeerajarus, Nuttapol; Nakalekha Limjeerajarus, Chalida; Srisungsitthisunti, Pornsak
2018-01-01
In our previous study, a cone-shaped rotating disk had been designed and proposed for generating shear force on the cell in a cell culture plate. This study aims to improve the design of the rotating disk that could provide a better uniformity of shear stress distribution. The top of the cone was designed to be trimmed off to obtain a flat head area. The effect of tilt angle (θ) was numerically studied using computational fluid dynamics (CFD) technique in ANSYS-Fluent software. The results revealed that for 500 rpm, the new designed rotating disk with a height of cone-shaped top to the plate bottom h = 1 mm and θ = 25° provided the best uniformity of 0.820 which was better than that of the previously designed.
Techniques for optimizing nanotips derived from frozen taylor cones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, Gregory
Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the lasermore » to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.« less
Determination of HCME 3-D parameters using a full ice-cream cone model
NASA Astrophysics Data System (ADS)
Na, Hyeonock; Moon, Yong-Jae; Lee, Harim
2016-05-01
It is very essential to determine three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) for space weather forecast. Several cone models (e.g., an elliptical cone model, an ice-cream cone model, an asymmetric cone model) have been examined to estimate these parameters. In this study, we investigate which cone type is close to a halo CME morphology using 26 CMEs: halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From cone shape parameters of these CMEs such as their front curvature, we find that near full ice-cream cone type CMEs are much closer to observations than shallow ice-cream cone type CMEs. Thus we develop a new cone model in which a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3-D parameters from our method are similar to those from other stereoscopic methods (a geometrical triangulation method and a Graduated Cylindrical Shell model) based on multi-spacecraft data. We are developing a general ice-cream cone model whose front shape is a free parameter determined by observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahtab, M., E-mail: m.mahtab.83@gmail.com; Habibi, M., E-mail: mortezahabibi@aut.ac.ir
2013-12-15
The effect of different anode tip geometries on the intensity of soft and hard X-rays emitted from a 4-kJ plasma focus device is investigated using five different anode tips. The shapes of the uppermost region of these anodes (tips) have been cylindrical-flat, cylindrical-hollow, spherical-convex, cone-flat, and cone-hollow. For time-resolved measurement of the emitted X-rays, several BPX-65 pin diodes covered by different filters and a fast plastic scintillator are used. Experimental results have shown that, the highest intensity of the both soft and hard X-ray is recorded in cone-flat, spherical-convex, and cone-hollow tips, respectively. The use of cone-flat anode tip hasmore » augmented the emitted X-ray three times.« less
Optimum shape of a blunt forebody in hypersonic flow
NASA Technical Reports Server (NTRS)
Maestrello, L.; Ting, L.
1989-01-01
The optimum shape of a blunt forebody attached to a symmetric wedge or cone is determined. The length of the forebody, its semi-thickness or base radius, the nose radius and the radius of the fillet joining the forebody to the wedge or cone are specified. The optimum shape is composed of simple curves. Thus experimental models can be built readily to investigate the utilization of aerodynamic heating for boundary layer control. The optimum shape based on the modified Newtonian theory can also serve as the preliminary shape for the numerical solution of the optimum shape using the governing equations for a compressible inviscid or viscous flow.
Point spread function modeling and image restoration for cone-beam CT
NASA Astrophysics Data System (ADS)
Zhang, Hua; Huang, Kui-Dong; Shi, Yi-Kai; Xu, Zhe
2015-03-01
X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Young Scientists Fund of National Natural Science Foundation of China (51105315), Natural Science Basic Research Program of Shaanxi Province of China (2013JM7003) and Northwestern Polytechnical University Foundation for Fundamental Research (JC20120226, 3102014KYJD022)
NASA Astrophysics Data System (ADS)
Kervyn, M.; Ernst, G. G. J.; Carracedo, J.-C.; Jacobs, P.
2012-01-01
Volcanic cones are the most common volcanic constructs on Earth. Their shape can be quantified using two morphometric ratios: the crater/cone base ratio (W cr/W co) and the cone height/width ratio (H co/W co). The average values for these ratios obtained over entire cone fields have been explained by the repose angle of loose granular material (i.e. scoria) controlling cone slopes. The observed variability in these ratios between individual cones has been attributed to the effect of erosional processes or contrasting eruptive conditions on cone morphometry. Using a GIS-based approach, high spatial resolution Digital Elevation Models and airphotos, two new geomorphometry datasets for cone fields at Mauna Kea (Hawaii, USA) and Lanzarote (Canary Islands, Spain) are extracted and analyzed here. The key observation in these datasets is the great variability in morphometric ratios, even for simple-shape and well-preserved cones. Simple analog experiments are presented to analyze factors influencing the morphometric ratios. The formation of a crater is simulated within an analog cone (i.e. a sand pile) by opening a drainage conduit at the cone base. Results from experiments show that variability in the morphometric ratios can be attributed to variations in the width, height and horizontal offset of the drainage point relative to the cone symmetry axis, to the dip of the underlying slope or to the influence of a small proportion of fine cohesive material. GIS analysis and analog experiments, together with specific examples of cones documented in the field, suggest that the morphometric ratios for well-preserved volcanic cones are controlled by a combination of 1) the intrinsic cone material properties, 2) time-dependent eruption conditions, 3) the local setting, and 4) the method used to estimate the cone height. Implications for interpreting cone morphometry solely as either an age or as an eruption condition indicator are highlighted.
NASA Technical Reports Server (NTRS)
Jermey, C.; Schiff, L. B.
1985-01-01
A series of wind-tunnel tests have been conducted on the Standard Dynamics Model (a simplified generic fighter-aircraft shape) undergoing coning motion at Mach 0.6. Six-component force and moment data are presented for a range of angles of attack, sideslip and coning rates. At the relatively low nondimensional coning rates employed, the lateral aerodynamic charactersitics generally show a linear variation with coning rate.
Aerodynamic characteristics of the standard dynamics model in coning motion at Mach 0.6
NASA Technical Reports Server (NTRS)
Jermey, C.; Schiff, L. B.
1985-01-01
A wind tunnel test was conducted on the Standard Dynamics Model (a simplified generic fighter aircraft shape) undergoing coning motion at Mach 0.6. Six component force and moment data are presented for a range of angle of attack, sideslip, and coning rates. At the relatively low non-dimensional coning rate employed (omega b/2V less than or equal to 0.04), the lateral aerodynamic characteristics generally show a linear variation with coning rate.
High-voltage R-F feedthrough bushing
Grotz, G.F.
1982-09-03
Described is a multi-element, high voltage radio frequency bushing for transmitting rf energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.
High voltage RF feedthrough bushing
Grotz, Glenn F.
1984-01-01
Described is a multi-element, high voltage radio frequency bushing for trmitting RF energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.
Loff, Steffan; Wirth, Hartmut; Jester, Iwgo; Hosie, Stuart; Wollmann, Carmen; Schaible, Thomas; Ataman, Ozge; Waag, Karl-Ludwig
2005-11-01
Large defects in patients with congenital diaphragmatic hernia (CDH) are frequently closed with a polytetrafluoroethylene patch (PTFE). Intraoperative problems include lack of abdominal domain for the reduction of organs and closure of the abdominal wall. Main surgical postoperative complication is the recurrence of the hernia. We suggest a new and easy method of patch implantation, improving these problems, and report first follow-up results. In our clinic, 103 children with CDH were treated, and 87 children underwent reconstruction of the diaphragm in the 5 years between 1998 and 2002. In 52 patients, a patch implantation had to be performed. We have been optimizing our complete pediatric and surgical procedure and present a new standardized technique of preparation and implantation of a PTFE patch. The flat patch is folded to a 90 degrees cone. The cone is fixed in its form with few single stitches. It is implanted with an overlapping border of 1 cm circumferentially. The border is separately fixed with absorbable single stitches to keep from rolling up. The rough side of the patch points toward the rim of the diaphragm to enable ingrowth of the connective tissue. In a 1-year follow-up study, the recurrences in the 3 following groups of PTFE patches were studied: conventional implantation (simple patch without overlapping border), patch with separately fixed overlapping border, and cone-shaped patch with overlapping separately fixed border. Thirty-three patients were included in the study. After conventional PTFE-patch implantation, 6 (46%) of 13 patients developed reherniation. After PTFE-patch implantation with separately fixed overlapping border, 1 (11%) of 9 patients had a recurrent hernia. In the group with the PTFE-cone implantation, 1 (9%) of 11 patients developed a recurrence. Meanwhile, another 20 CDH patients received implantation of a cone-shaped patch, and no further recurrence occurred up to now. With the additional space (20 mL) provided by the cone-shaped patch, the closure of the abdomen was easier, and the fundus had intraoperatively a physiological position. This optimized patch implantation technique in large diaphragmatic defects offers considerable advantages especially regarding recurrence of the hernia and closure of the abdomen, which are currently the most challenging surgical problems. 1. The cone-shaped 3-dimensional patch increases abdominal capacity. 2. Redundant chest capacity is reduced, and the reconstructed diaphragm shows a physiological shape. 3. The dome of the patch allows a physiological position of the gastric fundus and a normal Hiss angle, thus preventing gastroesophageal reflux. 4. Additional safety of the implantation is achieved by separate fixation of the overlapping border of the cone, preventing recurrence.
Subsonic Static and Dynamic Aerodynamics of Blunt Entry Vehicles
NASA Technical Reports Server (NTRS)
Mitcheltree, Robert A.; Fremaux, Charles M.; Yates, Leslie A.
1999-01-01
The incompressible subsonic aerodynamics of four entry-vehicle shapes with variable c.g. locations are examined in the Langley 20-Foot Vertical Spin Tunnel. The shapes examined are spherically-blunted cones with half-cone angles of 30, 45, and 60 deg. The nose bluntness varies between 0.25 and 0.5 times the base diameter. The Reynolds number based on model diameter for these tests is near 500,000. Quantitative data on attitude and location are collected using a video-based data acquisition system and reduced with a six deg-of-freedom inverse method. All of the shapes examined suffered from strong dynamic instabilities which could produced limit cycles with sufficient amplitudes to overcome static stability of the configuration. Increasing cone half-angle or nose bluntness increases drag but decreases static and dynamic stability.
Spectral sensitivity of cones of the monkey Macaca fascicularis.
Baylor, D A; Nunn, B J; Schnapf, J L
1987-01-01
1. Spectral sensitivities of cones in the retina of cynomolgus monkeys were determined by recording photocurrents from single outer segments with a suction electrode. 2. The amplitude and shape of the response to a flash depended upon the number of photons absorbed but not the wave-length, so that the 'Principle of Univariance' was obeyed. 3. Spectra were obtained from five 'blue', twenty 'green', and sixteen 'red' cones. The wave-lengths of maximum sensitivity were approximately 430, 531 and 561 nm, respectively. 4. The spectra of the three types of cones had similar shapes when plotted on a log wave number scale, and were fitted by an empirical expression. 5. There was no evidence for the existence of subclasses of cones with different spectral sensitivities. Within a class, the positions of the individual spectra on the wave-length axis showed a standard deviation of less than 1.5 nm. 6. Psychophysical results on human colour matching (Stiles & Burch, 1955; Stiles & Burch, 1959) were well predicted from the spectral sensitivities of the monkey cones. After correction for pre-retinal absorption and pigment self-screening, the spectra of the red and green cones matched the respective pi 5 and pi 4 mechanisms of Stiles (1953, 1959). PMID:3443931
Numerical Modeling of Shatter Cones Development in Impact Craters
NASA Technical Reports Server (NTRS)
Baratoux, D.; Melosh, H. J.
2003-01-01
Shatter cones are the characteristic forms of rock fractures in impact structures. They have been used for decades as unequivocal fingerprints of meteoritic impacts on Earth. The abundant data about shapes, apical angles, sizes and distributions of shatter cones for many terrestrial impact structures should provide insights for the determination of impact conditions and characteristics of shock waves produced by high-velocity projectiles in geologic media. However, previously proposed models for the formation of shatter cones do not agree with observations. For example, the widely accepted Johnson-Talbot mechanism requires that the longitudinal stress drops to zero between the arrival of the elastic precursor and the main plastic wave. Unfortunately, observations do not support such a drop. A model has been also proposed to explain the striated features on the surface of shatter cones but can not invoked for their conical shape. The mechanism by which shatter cones form thus remains enigmatic to date. In this paper we present a new model for the formation of shatter cones. Our model has been tested by means of numerical simulations using the hydrocodes SALE 2D enhanced with the Grady-Kipp-Melosh fragmentation model.
Kim, Kwang Ho; Yun, Bu Hyeon; Hwang, In Sang; Hwang, Eu Chang; Kang, Taek Won; Kwon, Dong Deuk; Park, Kwangsung; Kim, Jin Woong
2013-01-01
Purpose A morphologic contour method for assessing an exophytic renal mass as benign versus malignant on the basis of the shape of the interface with the renal parenchyma was recently developed. We investigated the usefulness of this morphologic contour method for predicting angiomyolipoma (AML) in patients who underwent partial nephrectomy for small renal masses (SRMs). Materials and Methods From January 2004 to March 2013, among 197 patients who underwent partial nephrectomy for suspicious renal cell carcinoma (RCC), the medical records of 153 patients with tumors (AML or RCC) ≤3 cm in diameter were retrospectively reviewed. Patient characteristics including age, gender, type of surgery, size and location of tumor, pathologic results, and specific findings of the imaging study ("ice-cream cone" shape) were compared between the AML and RCC groups. Results AML was diagnosed in 18 patients and RCC was diagnosed in 135 patients. Gender (p=0.001), tumor size (p=0.032), and presence of the ice-cream cone shape (p=0.001) showed statistically significant differences between the AML group and the RCC group. In the multivariate logistic regression analysis, female gender (odds ratio [OR], 5.20; 95% confidence interval [CI], 1.45 to 18.57; p=0.011), tumor size (OR, 0.34; 95% CI, 0.12 to 0.92; p=0.034), and presence of the ice-cream cone shape (OR, 18.12; 95% CI, 4.97 to 66.06; p=0.001) were predictors of AML. Conclusions This study confirmed a high incidence of AML in females. Also, the ice-cream cone shape and small tumor size were significant predictors of AML in SRMs. These finding could be beneficial for counseling patients with SRMs. PMID:23956824
Zhang, Guangyu; Jiang, Xin; Wang, Enge
2003-04-18
We report the synthesis of tubular graphite cones using a chemical vapor deposition method. The cones have nanometer-sized tips, micrometer-sized roots, and hollow interiors with a diameter ranging from about 2 to several tens of nanometers. The cones are composed of cylindrical graphite sheets; a continuous shortening of the graphite layers from the interior to the exterior makes them cone-shaped. All of the tubular graphite cones have a faceted morphology. The constituent graphite sheets have identical chiralities of a zigzag type across the entire diameter, imparting structural control to tubular-based carbon structures. The tubular graphite cones have potential for use as tips for scanning probe microscopy, but with greater rigidity and easier mounting than currently used carbon nanotubes.
Kaya, Takatoshi; Numai, Daisuke; Nagamine, Kuniaki; Aoyagi, Shigeo; Shiku, Hitoshi; Matsue, Tomokazu
2004-06-01
The metabolic activity of E. coli cells embedded in collagen gel microstructures in a cone-shaped well and in a cylindrical micropore was investigated using scanning electrochemical microscopy (SECM), based on the oxygen consumption rate and the conversion rate from ferrocyanide to ferricyanide. The analysis of the concentration profiles for oxygen and ferrocyanide afforded the oxygen consumption rate and the ferrocyanide production rate. A comparison indicated that the ferrocyanide production rates were larger than the oxygen consumption rate, and also that the rates observed in the cylindrical micropore were larger than those observed in the cone-shaped well. The ferrocyanide production rate of a single E. coli cell was calculated to be (5.4 +/- 2.6) x 10(-19) mol s(-1), using a cylindrical micropore system.
The Pine Cone Wars: Studying Writing in a Community of Children
ERIC Educational Resources Information Center
Dyson, Anne Haas
2008-01-01
Welcome to the Pine Cone Wars, as enacted by Mrs. Kay's children in her urban first grade. The children brought these wars from the playground to the classroom, reformulating them within the possibilities and constraints of the daily writing time. The Pine Cone Wars thus illustrate the inevitable interplay between the official world we shape as…
Ne'eman, Gidi; Goubitz, Shirrinka; Werger, Marinus J A; Shmida, Avi
2011-07-01
Sex allocation has been studied mainly in small herbaceous plants but much less in monoecious wind-pollinated trees. The aim of this study was to explore changes in gender segregation and sex allocation by Pinus halepensis, a Mediterranean lowland pine tree, within tree crowns and between trees differing in their size or crown shape. The production of new male and female cones and sex allocation of biomass, nitrogen and phosphorus were studied. The relationship between branch location, its reproductive status and proxies of branch vigour was also studied. Small trees produced only female cones, but, as trees grew, they produced both male and female cones. Female cones were produced mainly in the upper part of the crown, and male cones in its middle and lower parts. Lateral branch density was correlated with the number of male but not female cones; lateral branches were more dense in large than in small trees and even denser in hemispherical trees. Apical branches grew faster, were thicker and their phosphorus concentration was higher than in lateral shoots. Nitrogen concentration was higher in cone-bearing apical branches than in apical vegetative branches and in lateral branches with or without cones. Allocation to male relative to female function increased with tree size as predicted by sex allocation theory. The adaptive values of sex allocation and gender segregation patterns in P. halepensis, in relation to its unique life history, are demonstrated and discussed. Small trees produce only female cones that have a higher probability of being pollinated than the probability of male cones pollinating; the female-first strategy enhances population spread. Hemispherical old trees are loaded with serotinous cones that supply enough seeds for post-fire germination; thus, allocation to males is more beneficial than to females.
Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Dixit, Kratika; Naik, Saraswathi V
2016-01-01
Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. This is an experimental, in vitro study comparing the two groups. A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49.
Experimental and raytrace results for throat-to-throat compound parabolic concentrators
NASA Technical Reports Server (NTRS)
Leviton, D. B.; Leitch, J. W.
1986-01-01
Compound parabolic concentrators are nonimaging cone-shaped optics with useful angular transmission characteristics. Two cones used throat-to-throat accept radiant flux within one well-defined acceptance angle and redistribute it into another. If the entrance cone is fed with Lambertian flux, the exit cone produces a beam whose half-angle is the exit cone's acceptance angle and whose cross section shows uniform irradiance from near the exit mouth to infinity. (The pair is a beam angle transformer). The design of one pair of cones is discussed, also an experiment to map the irradiance of the emergent beam, and a raytracing program which models the cones fed by Lambertian flux. Experimental results compare favorably with raytrace results.
Scan-rate-dependent current rectification of cone-shaped silica nanopores in quartz nanopipettes.
Guerrette, Joshua P; Zhang, Bo
2010-12-08
Here we report the voltammetric behavior of cone-shaped silica nanopores in quartz nanopipettes in aqueous solutions as a function of the scan rate, v. Current rectification behavior for silica nanopores with diameters in the range 4-25 nm was studied. The rectification behavior was found to be strongly dependent on the scan rate. At low scan rates (e.g., v < 1 V/s), the rectification ratio was found to be at its maximum and relatively independent of v. At high scan rates (e.g., v > 200 V/s), a nearly linear current-voltage response was obtained. In addition, the initial voltage was shown to play a critical role in the current-voltage response of cone-shaped nanopores at high scan rates. We explain this v-dependent current-voltage response by ionic redistribution in the vicinity of the nanopore mouth.
Coherent backscattering of light by an inhomogeneous cloud of cold atoms
NASA Astrophysics Data System (ADS)
Labeyrie, Guillaume; Delande, Dominique; Müller, Cord A.; Miniatura, Christian; Kaiser, Robin
2003-03-01
When a quasiresonant laser beam illuminates an optically thick cloud of laser-cooled rubidium atoms, the average diffuse intensity reflected off the sample is enhanced in a narrow angular range around the direction of exact backscattering. This phenomenon is known as coherent backscattering (CBS). By detuning the laser from resonance, we are able to modify the light scattering mean-free path inside the sample and we record accordingly the variations of the CBS cone shape. We then compare the experimental data with theoretical calculations and Monte Carlo simulations including the effect of the light polarization and of the internal structure of the atoms. We confirm that the internal structure strongly affects the enhancement factor of the cone and we show that the unusual shape of the atomic medium—approximately a spherically-symmetric, Gaussian density profile—strongly affects the width and shape of the cone.
Simple and robust resistive dual-axis accelerometer using a liquid metal droplet
NASA Astrophysics Data System (ADS)
Huh, Myoung; Won, Dong-Joon; Kim, Joong Gil; Kim, Joonwon
2017-12-01
This paper presents a novel dual-axis accelerometer that consists of a liquid metal droplet in a cone-shaped channel and an electrode layer with four Nichrome electrodes. The sensor uses the advantages of the liquid metal droplet (i.e., high surface tension, electrical conductivity, high density, and deformability). The cone-shaped channel imposes a restoring force on the liquid metal droplet. We conducted simulation tests to determine the appropriate design specifications of the cone-shaped channel. Surface modifications to the channel enhanced the nonwetting performance of the liquid metal droplet. The performances of the sensor were analyzed by a tilting test. When the acceleration was applied along the axial direction, the device showed 6 kΩ/g of sensitivity and negligible crosstalk between the X- and Y-axes. In a diagonal direction test, the device showed 4 kΩ/g of sensitivity.
Mach Cones in a Coulomb Lattice and a Dusty Plasma
NASA Astrophysics Data System (ADS)
Samsonov, D.; Goree, J.; Ma, Z. W.; Bhattacharjee, A.; Thomas, H. M.; Morfill, G. E.
1999-11-01
Mach cones, or V-shaped disturbances created by supersonic objects, have been detected in a two-dimensional Coulomb crystal. Electrically charged microspheres levitated in a glow-discharge plasma formed a dusty plasma, with particles arranged in a hexagonal lattice in a horizontal plane. Beneath this lattice plane, a sphere moved faster than the lattice sound speed. Mach cones were double, first compressive then rarefactive, due to the strongly coupled crystalline state. Molecular dynamics simulations using a Yukawa potential also show multiple Mach cones.
Conical Refraction: new observations and a dual cone model.
Sokolovskii, G S; Carnegie, D J; Kalkandjiev, T K; Rafailov, E U
2013-05-06
We propose a paraxial dual-cone model of conical refraction involving the interference of two cones of light behind the exit face of the crystal. The supporting experiment is based on beam selecting elements breaking down the conically refracted beam into two separate hollow cones which are symmetrical with one another. The shape of these cones of light is a product of a 'competition' between the divergence caused by the conical refraction and the convergence due to the focusing by the lens. The developed mathematical description of the conical refraction demonstrates an excellent agreement with experiment.
Shape of scoria cones on Mars: Insights from numerical modeling of ballistic pathways
NASA Astrophysics Data System (ADS)
Brož, Petr; Čadek, Ondřej; Hauber, Ernst; Rossi, Angelo Pio
2014-11-01
Morphological observations of scoria cones on Mars show that their cross-sectional shapes are different from those on Earth. Due to lower gravity and atmospheric pressure on Mars, particles are spread over a larger area than on Earth. Hence, erupted volumes are typically not large enough for the flank slopes to attain the angle of repose, in contrast to Earth where this is common. The distribution of ejected material forming scoria cones on Mars, therefore, is ruled mainly by ballistic distribution and not by redistribution of flank material by avalanching after the static angle of repose is reached. As a consequence, the flank slopes of the Martian scoria cones do not reach the critical angle of repose in spite of a large volume of ejected material. Therefore, the topography of scoria cones on Mars is governed mainly by ballistic distribution of ejected particles and is not influenced by redistribution of flank material by avalanching. The growth of a scoria cone can be studied numerically by tracking the ballistic trajectories and tracing the cumulative deposition of repeatedly ejected particles. We apply this approach to a specific volcanic field, Ulysses Colles on Mars, and compare our numerical results with observations. The scoria cones in this region are not significantly affected by erosion and their morphological shape still preserves a record of physical conditions at the time of eruption. We demonstrate that the topography of these scoria cones can be rather well (with accuracy of ∼10 m) reproduced provided that the ejection velocities are a factor of ∼2 larger and the ejected particles are about ten times finer than typical on Earth, corresponding to a mean particle velocity of ∼92 m/s and a real particle size of about 4 mm. This finding is in agreement with previous theoretical works that argued for larger magma fragmentation and higher ejection velocities on Mars than on Earth due to lower gravity and different environmental conditions.
HTL resummation in the light cone gauge
NASA Astrophysics Data System (ADS)
Chen, Qi; Hou, De-fu
2018-04-01
The light cone gauge with light cone variables is often used in pQCD calculations in relativistic heavy-ion collision physics. The Hard Thermal Loops (HTL) resummation is an indispensable technique for hot QCD calculation. It was developed in covariant gauges with conventional Minkowski varaiables; we shall extend this method to the light cone gauge. In the real time formalism, using the Mandelstam-Leibbrant prescription of (n·K)‑1, we calculate the transverse and longitudinal components of the gluon HTL self energy, and prove that there are no infrared divergences. With this HTL self energy, we derive the HTL resummed gluon propagator in the light cone gauge. We also calculate the quark HTL self energy and the resummed quark propagator in the light cone gauge and find it is gauge independent. As application examples, we analytically calculate the damping rates of hard quarks and gluons with the HTL resummed gluon propagator in the light cone gauge and showed that they are gauge independent. The final physical results are identical to those computed in covariant gauge, as they should be. Supported by National Natural Science Foundation of China (11375070, 11735007, 11521064)
Numerical simulation study on the optimization design of the crown shape of PDC drill bit.
Ju, Pei; Wang, Zhenquan; Zhai, Yinghu; Su, Dongyu; Zhang, Yunchi; Cao, Zhaohui
The design of bit crown is an important part of polycrystalline diamond compact (PDC) bit design, although predecessors have done a lot of researches on the design principles of PDC bit crown, the study of the law about rock-breaking energy consumption according to different bit crown shape is not very systematic, and the mathematical model of design is over-simplified. In order to analyze the relation between rock-breaking energy consumption and bit crown shape quantificationally, the paper puts forward an idea to take "per revolution-specific rock-breaking work" as objective function, and analyzes the relationship between rock properties, inner cone angle, outer cone arc radius, and per revolution-specific rock-breaking work by means of explicit dynamic finite element method. Results show that the change law between per revolution-specific rock-breaking work and the radius of gyration is similar for rocks with different properties, it is beneficial to decrease rock-breaking energy consumption by decreasing inner cone angle or outer cone arc radius. Of course, we should also consider hydraulic structure and processing technology in the optimization design of PDC bit crown.
The Na+/Ca2+, K+ exchanger NCKX4 is required for efficient cone-mediated vision.
Vinberg, Frans; Wang, Tian; De Maria, Alicia; Zhao, Haiqing; Bassnett, Steven; Chen, Jeannie; Kefalov, Vladimir J
2017-06-26
Calcium (Ca 2+ ) plays an important role in the function and health of neurons. In vertebrate cone photoreceptors, Ca 2+ controls photoresponse sensitivity, kinetics, and light adaptation. Despite the critical role of Ca 2+ in supporting the function and survival of cones, the mechanism for its extrusion from cone outer segments is not well understood. Here, we show that the Na + /Ca 2+ , K + exchanger NCKX4 is expressed in zebrafish, mouse, and primate cones. Functional analysis of NCKX4-deficient mouse cones revealed that this exchanger is essential for the wide operating range and high temporal resolution of cone-mediated vision. We show that NCKX4 shapes the cone photoresponse together with the cone-specific NCKX2: NCKX4 acts early to limit response amplitude, while NCKX2 acts late to further accelerate response recovery. The regulation of Ca 2+ by NCKX4 in cones is a novel mechanism that supports their ability to function as daytime photoreceptors and promotes their survival.
Shape transformation of viral capsids and HIV
NASA Astrophysics Data System (ADS)
Nguyen, Toan
2005-03-01
We present a continuum description of the shape transformation of viral capsids. The cone-like HIV virus is shown to be an thermodynamic stable shape, intermediate between icosahedral and sphero-cylinder capsid shapes. A generalized Caspar-Klug classification is introduced to describe spherical, conical and cylinderical shapes of virus.
NASA Astrophysics Data System (ADS)
Kazanov, D. R.; Pozina, G.; Jmerik, V. N.; Shubina, T. V.
2018-03-01
Molecular beam epitaxy (MBE) of III-nitride compounds on specially prepared cone-shaped patterned substrates is being actively developed nowadays, especially for nanophotonic applications. This type of substrates enables the successful growth of hexagonal nanorods (NRs). The insertion of an active quantum-sized region of InGaN inside a GaN NR allows us to enhance the rate of optical transitions by coupling them with resonant optical modes in the NR. However, we have observed the enhancement of emission not only from the NR but also around the circumference region of the cone-shaped base. We have studied this specific feature and demonstrated its impact on the output signal.
von Zuben, Murilo; Martins, Jorge N R; Berti, Luiza; Cassim, Imran; Flynn, Daniel; Gonzalez, Jose Antonio; Gu, Yongchun; Kottoor, Jojo; Monroe, Adam; Rosas Aguilar, Rubén; Marques, Miguel Seruca; Ginjeira, António
2017-09-01
The aim of this study was to evaluate and compare the C-shaped mandibular second molar prevalence in different regions around the world with the aid of cone-beam computed tomography technology. Nine field observers from 9 different geographic regions were calibrated. A total of 400 samples were collected in each region. The prevalence of C-shaped anatomy was calculated. The number of roots and the configuration of the C-shaped canals at 3 different axial levels were also evaluated. The z-test was used to analyze the difference between the means of each independent group. Intrarater reliability was also tested. A total of 3600 teeth from 2735 patients were included in this research; 499 teeth presented C-shaped root canal configuration, representing a global prevalence of 13.9%. China had a prevalence of 44.0%, which was significantly higher than any other region. The C-shape prevalence in women was 16.5%, which was significantly higher than the 10.4% prevalence found in men. No difference between sides (37 or 47) was evident in the global sample. Cone-beam computed tomography is a valuable tool to evaluate the C-shaped root canal configuration in vivo. In the present study, China presented the highest prevalence of C-shaped mandibular second molars when compared with other regions. Women exhibited a higher prevalence than men. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Naik, Saraswathi V
2016-01-01
ABSTRACT Background: Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. Study design: This is an experimental, in vitro study comparing the two groups. Materials and methods: A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. Results: A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Conclusion: Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49. PMID:27274155
Rotary high power transfer apparatus
NASA Technical Reports Server (NTRS)
Jacobson, Peter E. (Inventor); Porter, Ryan S. (Inventor)
1987-01-01
An apparatus for reducing terminal-to-terminal circuit resistance and enhancing heat transfer in a rotary power transfer apparatus of the roll ring type comprising a connecting thimble for attaching an external power cable to a cone shaped terminal which is attached to a tab integral to an outer ring. An inner ring having a spherical recess mates with the spherical end of a tie connector. A cone shaped terminal is fitted to a second connecting thimble for attaching a second external power cable.
Porwanski, S; Moretti, F; Dumarcay-Charbonnier, F; Marsura, A
2016-05-01
Cesium templated Staudinger-aza-Wittig tandem reaction (S.A.W.) has been used in the synthesis of a bis-diazacrown-bis-cellobiosyl-tetra-ureido cryptand. A novel macrotricyclic compound having a "cone-shaped" configuration was selectively obtained. Additionally, first results on potential recognition properties of the cryptand are also given. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
Halloran, M C; Kalil, K
1994-04-01
During development, axons of the mammalian corpus callosum must navigate across the midline to establish connections with corresponding targets in the contralateral cerebral cortex. To gain insight into how growth cones of callosal axons respond to putative guidance cues along this CNS pathway, we have used time-lapse video microscopy to observe dynamic behaviors of individual callosal growth cones extending in living brain slices from neonatal hamster sensorimotor cortex. Crystals of the lipophilic dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) were inserted into the cortex in vivo to label small populations of callosal axons and their growth cones. Subsequently, 400 microns brain slices that included the injection site, the corpus callosum, and the target cortex were placed in culture and viewed under low-light-level conditions with a silicon-intensified target (SIT) camera. Time-lapse video observations revealed striking differences in growth cone behaviors in different regions of the callosal pathway. In the tract, which is defined as the region of the callosal pathway from the injection site to the corresponding target cortex, growth cones advanced rapidly, displaying continual lamellipodial shape changes and filopodial exploration. Forward advance was sometimes interrupted by brief pauses or retraction. Growth cones in the target cortex had almost uniform compact shapes that were consistently smaller than those in the tract. In cortex, axons adhered to straight radial trajectories and their growth cones extended at only half the speed of those in the tract. Growth cones in subtarget regions of the callosum beneath cortical targets displayed complex behaviors characterized by long pauses, extension of transitory branches, and repeated cycles of collapse, withdrawal, and resurgence. Video observations suggested that extension of axons into cortical targets could occur by interstitial branching from callosal axons rather than by turning behaviors of the primary growth cones. These results suggest the existence of guidance cues distinct for each of these callosal regions that elicit characteristic growth cone behaviors.
If Lava Mingled with Ground Ice on Mars
NASA Astrophysics Data System (ADS)
Martel, L. M. V.
2001-06-01
Clusters of small cones on the lava plains of Mars have caught the attention of planetary geologists for years for a simple and compelling reason: ground ice. These cones look like volcanic rootless cones found on Earth where hot lava flows over wet surfaces such as marshes, shallow lakes or shallow aquifers. Steam explosions fragment the lava into small pieces that fall into cone-shaped debris piles. Peter Lanagan, Alfred McEwen, Laszlo Keszthelyi (University of Arizona), and Thorvaldur Thordarson (University of Hawaii) recently identified groups of cones in the equatorial region of Mars using new high-resolution Mars Orbiter Camera (MOC) images. They report that the Martian cones have the same appearance, size, and geologic setting as rootless cones found in Iceland. If the Martian and terrestrial cones formed in the same way, then the Martian cones mark places where ground ice or groundwater existed at the time the lavas surged across the surface, estimated to be less than 10 million years ago, and where ground ice may still be today.
Bursting the Taylor cone bubble
NASA Astrophysics Data System (ADS)
Pan, Zhao; Truscott, Tadd
2014-11-01
A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.
Scientific designs of pine seeds and pine cones for species conservation
NASA Astrophysics Data System (ADS)
Song, Kahye; Yeom, Eunseop; Kim, Hyejeong; Lee, Sang Joon
2015-11-01
Reproduction and propagation of species are the most important missions of every living organism. For effective species propagation, pine cones fold their scales under wet condition to prevent seeds from short-distance dispersal. They open and release their embedded seeds on dry and windy days. In this study, the micro-/macro-scale structural characteristics of pine cones and pine seeds are studied using various imaging modalities. Since the scales of pine cones consist of dead cells, the folding motion is deeply related to structural changes. The scales of pine cones consist of three layers. Among them, bract scales are only involved in collecting water. This makes pine cones reduce the amount of water and minimize the time spent on structural changes. These systems also involve in drying and recovery of pine cones. In addition, pine cones and pine seeds have advantageous structures for long-distance dispersal and response to natural disaster. Owing to these structural features, pine seeds can be released safely and efficiently, and these types of structural advantages could be mimicked for practical applications. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).
Roemer, R B; Booth, D; Bhavsar, A A; Walter, G H; Terry, L I
2012-12-21
A mathematical model based on conservation of energy has been developed and used to simulate the temperature responses of cones of the Australian cycads Macrozamia lucida and Macrozamia. macleayi during their daily thermogenic cycle. These cones generate diel midday thermogenic temperature increases as large as 12 °C above ambient during their approximately two week pollination period. The cone temperature response model is shown to accurately predict the cones' temperatures over multiple days as based on simulations of experimental results from 28 thermogenic events from 3 different cones, each simulated for either 9 or 10 sequential days. The verified model is then used as the foundation of a new, parameter estimation based technique (termed inverse calorimetry) that estimates the cones' daily metabolic heating rates from temperature measurements alone. The inverse calorimetry technique's predictions of the major features of the cones' thermogenic metabolism compare favorably with the estimates from conventional respirometry (indirect calorimetry). Because the new technique uses only temperature measurements, and does not require measurements of oxygen consumption, it provides a simple, inexpensive and portable complement to conventional respirometry for estimating metabolic heating rates. It thus provides an additional tool to facilitate field and laboratory investigations of the bio-physics of thermogenic plants. Copyright © 2012 Elsevier Ltd. All rights reserved.
TU-CD-207-10: Dedicated Cone-Beam Breast CT: Design of a 3-D Beam-Shaping Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedantham, S; Shi, L; Karellas, A
2015-06-15
Purpose: To design a 3 -D beam-shaping filter for cone-beam breast CT for equalizing x-ray photon fluence incident on the detector along both fan and cone angle directions. Methods: The 3-D beam-shaping filter was designed as the sum of two filters: a bow-tie filter assuming cylindrical breast and a 3D difference filter equivalent to the difference in projected thickness between the cylinder and the real breast. Both filters were designed with breast-equivalent material and converted to Al for the targeted x-ray spectrum. The bow-tie was designed for the largest diameter cylindrical breast by determining the fan-angle dependent path-length and themore » filter thickness needed to equalize the fluence. A total of 23,760 projections (180 projections of 132 binary breast CT volumes) were averaged, scaled for the largest breast, and subtracted from the projection of the largest diameter cylindrical breast to provide the 3D difference filter. The 3 -D beam shaping filter was obtained by summing the two filters. Numerical simulations with semi-ellipsoidal breasts of 10–18 cm diameter (chest-wall to nipple length=0.75 x diameter) were conducted to evaluate beam equalization. Results: The proposed 3-D beam-shaping filter showed a 140% -300% improvement in equalizing the photon fluence along the chest-wall to nipple (cone-angle) direction compared to a bow-tie filter. The improvement over bow-tie filter was larger for breasts with longer chest-wall to nipple length. Along the radial (fan-angle) direction, the performance of the 3-D beam shaping filter was marginally better than the bow-tie filter, with 4%-10% improvement in equalizing the photon fluence. For a ray traversing the chest-wall diameter of the breast, the filter transmission ratio was >0.95. Conclusion: The 3-D beam shaping filter provided substantial advantage over bow-tie filter in equalizing the photon fluence along the cone-angle direction. In conjunction with a 2-axis positioner, the filter can accommodate breasts of varying dimensions and chest-wall inclusion. Supported in part by NIH R01 CA128906 and R21 CA134128. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or NCI.« less
Nano-cone resistive memory for ultralow power operation.
Kim, Sungjun; Jung, Sunghun; Kim, Min-Hwi; Kim, Tae-Hyeon; Bang, Suhyun; Cho, Seongjae; Park, Byung-Gook
2017-03-24
SiN x -based nano-structure resistive memory is fabricated by fully silicon CMOS compatible process integration including particularly designed anisotropic etching for the construction of a nano-cone silicon bottom electrode (BE). Bipolar resistive switching characteristics have significantly reduced switching current and voltage and are demonstrated in a nano-cone BE structure, as compared with those in a flat BE one. We have verified by systematic device simulations that the main cause of reduction in the performance parameters is the high electric field being more effectively concentrated at the tip of the cone-shaped BE. The greatly improved nonlinearity of the nano-cone resistive memory cell will be beneficial in the ultra-high-density crossbar array.
Study of open jet wind tunnel cones
NASA Technical Reports Server (NTRS)
Weick, Fred E
1927-01-01
Tests have been made by the National Advisory Committee for Aeronautics on the air flow in an open jet wind tunnel with various sizes, shapes, and spacings of cones, and the flow studied by means of velocity and direction surveys in conjunction with flow pictures. It was found that for all combinations of cones tested the flow is essentially the same, consisting of an inner core of decreasing diameter having uniform velocity and direction, and a boundary layer of more or less turbulent air increasing in thickness with length of jet. The energy ratio of the tunnel was obtained for the different combinations of cones, and the spilling around the exit cone causing undesirable air currents in the experiment chamber was noted. An empirical formula is given for the design of cones having no appreciable spilling.
Multifunctional, three-dimensional tomography for analysis of eletrectrohydrodynamic jetting
NASA Astrophysics Data System (ADS)
Nguyen, Xuan Hung; Gim, Yeonghyeon; Ko, Han Seo
2015-05-01
A three-dimensional optical tomography technique was developed to reconstruct three-dimensional objects using a set of two-dimensional shadowgraphic images and normal gray images. From three high-speed cameras, which were positioned at an offset angle of 45° between each other, number, size, and location of electrohydrodynamic jets with respect to the nozzle position were analyzed using shadowgraphic tomography employing multiplicative algebraic reconstruction technique (MART). Additionally, a flow field inside a cone-shaped liquid (Taylor cone) induced under an electric field was observed using a simultaneous multiplicative algebraic reconstruction technique (SMART), a tomographic method for reconstructing light intensities of particles, combined with three-dimensional cross-correlation. Various velocity fields of circulating flows inside the cone-shaped liquid caused by various physico-chemical properties of liquid were also investigated.
The Na+/Ca2+, K+ exchanger NCKX4 is required for efficient cone-mediated vision
Vinberg, Frans; Wang, Tian; De Maria, Alicia; Zhao, Haiqing; Bassnett, Steven; Chen, Jeannie; Kefalov, Vladimir J
2017-01-01
Calcium (Ca2+) plays an important role in the function and health of neurons. In vertebrate cone photoreceptors, Ca2+ controls photoresponse sensitivity, kinetics, and light adaptation. Despite the critical role of Ca2+ in supporting the function and survival of cones, the mechanism for its extrusion from cone outer segments is not well understood. Here, we show that the Na+/Ca2+, K+ exchanger NCKX4 is expressed in zebrafish, mouse, and primate cones. Functional analysis of NCKX4-deficient mouse cones revealed that this exchanger is essential for the wide operating range and high temporal resolution of cone-mediated vision. We show that NCKX4 shapes the cone photoresponse together with the cone-specific NCKX2: NCKX4 acts early to limit response amplitude, while NCKX2 acts late to further accelerate response recovery. The regulation of Ca2+ by NCKX4 in cones is a novel mechanism that supports their ability to function as daytime photoreceptors and promotes their survival. DOI: http://dx.doi.org/10.7554/eLife.24550.001 PMID:28650316
Evaluation of handle design characteristics in a maximum screwdriving torque task.
Kong, Y-K; Lowe, B D; Lee, S-J; Krieg, E F
2007-09-01
The purpose of this study was to evaluate the effects of screwdriver handle shape, surface material and workpiece orientation on torque performance, finger force distribution and muscle activity in a maximum screwdriving torque task. Twelve male subjects performed maximum screw-tightening exertions using screwdriver handles with three longitudinal shapes (circular, hexagonal and triangular), four lateral shapes (cylindrical, double frustum, cone and reversed double frustum) and two surfaces (rubber and plastic). The average finger force contributions to the total hand force were 28.1%, 39.3%, 26.5% and 6.2%, in order from index to little fingers; the average phalangeal segment force contributions were 47.3%, 14.0%, 20.5% and 18.1% for distal, middle, proximal and metacarpal phalanges, respectively. The plastic surface handles were associated with 15% less torque output (4.86 Nm) than the rubber coated handles (5.73 Nm). In general, the vertical workpiece orientation was associated with higher torque output (5.9 Nm) than the horizontal orientation (4.69 Nm). Analysis of handle shapes indicates that screwdrivers designed with a circular or hexagonal cross-sectional shape result in greater torque outputs (5.49 Nm, 5.57 Nm), with less total finger force (95 N, 105 N). In terms of lateral shape, reversed double frustum handles were associated with less torque output (5.23 Nm) than the double frustum (5.44 Nm) and cone (5.37 Nm) handles. Screwdriver handles designed with combinations of circular or hexagonal cross-sectional shapes with double frustum and cone lateral shapes were optimal in this study.
Weadick, Cameron J; Loew, Ellis R; Rodd, F Helen; Chang, Belinda S W
2012-10-01
The Trinidadian pike cichlid (Crenicichla frenata) is a major predator of the guppy (Poecilia reticulata), a model system for visual ecology research, and visual predation by the pike cichlid is known to select for male guppies with reduced short-wavelength reflectance. However, an early study of the pike cichlid's visual system suggested a lack of short-wavelength-sensitive cone photoreceptors, a surprising finding as many African cichlids have highly developed short-wavelength vision. In this study, we found evidence for only four expressed cone opsins (LWS, RH2a, SWS2a, and SWS2b), plus one pseudogene (RH2b). Taken together with our microspectrophotometry data, which revealed the presence of three types of cone photoreceptor, including one sensitive to short-wavelength light, this would indicate a broader spectral capacity than previously believed from earlier visual studies of this fish. Relative to the highly diverse African cichlids, however, this Neotropical cichlid appears to have a greatly reduced opsin complement, reflecting both gene loss along the Neotropical lineage (lacking functional RH2b and, possibly, SWS1 opsins) and gene duplication within the African clade (which possesses paralogous RH2aα and RH2aβ opsins). Molecular evolutionary analyses show that positive selection has shaped the SWS2b and RH1 opsins along the Neotropical lineage, which may be indicative of adaptive evolution to alter nonspectral aspects of opsin biology. These results represent the first molecular evolutionary study of visual pigments in a Neotropical cichlid and thus provide a foundation for further study of a morphologically and ecologically diverse clade that has been understudied with respect to the link between visual ecology and diversification.
An Obstacle Problem for Conical Deformations of Thin Elastic Sheets
NASA Astrophysics Data System (ADS)
Figalli, Alessio; Mooney, Connor
2018-05-01
A developable cone ("d-cone") is the shape made by an elastic sheet when it is pressed at its center into a hollow cylinder by a distance {ɛ}. Starting from a nonlinear model depending on the thickness h > 0 of the sheet, we prove a {Γ} -convergence result as {h → 0} to a fourth-order obstacle problem for curves in {S^2}. We then describe the exact shape of minimizers of the limit problem when {ɛ} is small. In particular, we rigorously justify previous results in the physics literature.
Ashu, Eseme Ebai; Leroy, Guifo Marc; Aristide, Bang Guy; Joss, Bitang Mafok Louis; Bonaventure, Jemea; Patrick, Savom Eric; Myriam, Fotso Guegne
2015-01-01
Surgical repair of large umbilical hernias may present a challenging surgical problem; standard surgical techniques have proven to be inadequate for both closing the fascial defect of the umbilicus and providing a satisfactory cosmetic result. We describe here a case of double half-cone flap umbilicoplasty that was performed in a 2 years old boy. The case of a 2 years old child with proboscoid umbilical hernia. The protruding umbilical skin was excised sharply by two V-shaped cuts leaving two half cones, a short cephalic (0.5cm) and a long caudal (1cm). A classic herniotomy was carried out, with repair of the facial defect. The caudal half cone was sutured from its apex till half it's length upon itself with interrupted sutures and it was anchored deeply to the fascia. Then we inverted the cephalic half cone which was sutured to the caudal cone to form the new umbilicus. The early result was excellent with no complications and the result after 2years revealed a cosmetically satisfactory shape of the umbilicus. this technique provides a good solution for reconstruction of the protruding umbilical skin and it is easy to learn, easy to be taught and perform in surgical environments and may be applicable for any kind of umbilical reconstruction.
Ashu, Eseme Ebai; Leroy, Guifo Marc; Aristide, Bang Guy; Joss, Bitang Mafok Louis; Bonaventure, Jemea; Patrick, Savom Eric; Myriam, Fotso Guegne
2015-01-01
Surgical repair of large umbilical hernias may present a challenging surgical problem; standard surgical techniques have proven to be inadequate for both closing the fascial defect of the umbilicus and providing a satisfactory cosmetic result. We describe here a case of double half-cone flap umbilicoplasty that was performed in a 2 years old boy. The case of a 2 years old child with proboscoid umbilical hernia. The protruding umbilical skin was excised sharply by two V-shaped cuts leaving two half cones, a short cephalic (0.5cm) and a long caudal (1cm). A classic herniotomy was carried out, with repair of the facial defect. The caudal half cone was sutured from its apex till half it's length upon itself with interrupted sutures and it was anchored deeply to the fascia. Then we inverted the cephalic half cone which was sutured to the caudal cone to form the new umbilicus. The early result was excellent with no complications and the result after 2years revealed a cosmetically satisfactory shape of the umbilicus. this technique provides a good solution for reconstruction of the protruding umbilical skin and it is easy to learn, easy to be taught and perform in surgical environments and may be applicable for any kind of umbilical reconstruction. PMID:26664545
NASA Technical Reports Server (NTRS)
Agarwal, R.; Rakich, J. V.
1978-01-01
Computational results obtained with a parabolic Navier-Stokes marching code are presented for supersonic viscous flow past a pointed cone at angle of attack undergoing a combined spinning and coning motion. The code takes into account the asymmetries in the flow field resulting from the motion and computes the asymmetric shock shape, crossflow and streamwise shear, heat transfer, crossflow separation and vortex structure. The side force and moment are also computed. Reasonably good agreement is obtained with the side force measurements of Schiff and Tobak. Comparison is also made with the only available numerical inviscid analysis. It is found that the asymmetric pressure loads due to coning motion are much larger than all other viscous forces due to spin and coning, making viscous forces negligible in the combined motion.
Tensiometer with removable wick
Gee, Glendon W.; Campbell, Melvin D.
1992-01-01
The present invention relates to improvements in tensiometers for measuring soil water tension comprising a rod shaped wick. the rod shaped wick is shoestring, rolled paper towel, rolled glass microfiber filter, or solid ceramic. The rod shaped wick is secured to the tensiometer by a cone washer and a threaded fitting.
A cone-shaped 3D carbon nanotube probe for neural recording.
Su, Huan-Chieh; Lin, Chia-Min; Yen, Shiang-Jie; Chen, Yung-Chan; Chen, Chang-Hsiao; Yeh, Shih-Rung; Fang, Weileun; Chen, Hsin; Yao, Da-Jeng; Chang, Yen-Chung; Yew, Tri-Rung
2010-09-15
A novel cone-shaped 3D carbon nanotube (CNT) probe is proposed as an electrode for applications in neural recording. The electrode consists of CNTs synthesized on the cone-shaped Si (cs-Si) tip by catalytic thermal chemical vapor deposition (CVD). This probe exhibits a larger CNT surface area with the same footprint area and higher spatial resolution of neural recording compared to planar-type CNT electrodes. An approach to improve CNT characteristics by O(2) plasma treatment to modify the CNT surface will be also presented. Electrochemical characterization of O(2) plasma-treated 3D CNT (OT-CNT) probes revealed low impedance per unit area (∼64.5 Ω mm(-2)) at 1 kHz and high specific capacitance per unit area (∼2.5 mF cm(-2)). Furthermore, the OT-CNT probes were employed to record the neural signals of a crayfish nerve cord. Our findings suggest that OT-CNT probes have potential advantages as high spatial resolution and superb electrochemical properties which are suitable for neural recording applications. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jung, Yong Chan; Seong, Sejong; Lee, Taehoon; Kim, Seon Yong; Park, In-Sung; Ahn, Jinho
2018-03-01
The anode interface effects on the resistive switching characteristics of Pt/HfO2/Pt resistors are investigated by changing the forming and switching polarity. Resistive switching properties are evaluated and compared with the polarity operation procedures, such as the reset voltage (Vr), set voltage (Vs), and current levels at low and high resistance states. When the same forming and switching voltage polarity are applied to the resistor, their switching parameters are widely distributed. However, the opposite forming and switching voltage polarity procedures enhance the uniformity of the switching parameters. In particular, the Vs distribution is strongly affected by the voltage polarity variation. A model is proposed based on cone-shaped filament formation through the insulator and the cone diameter at the anode interface to explain the improved resistive switching characteristics under opposite polarity operation. The filament cone is thinner near the anode interface during the forming process; hence, the anode is altered by the application of a switching voltage with opposite polarity to the forming voltage polarity and the converted anode interface becomes the thicker part of the cone. The more uniform and stable switching behavior is attributed to control over the formation and rupture of the cone-shaped filaments at their thicker parts.
Transition Within Leeward Plane of Axisymmetric Bodies at Incidence in Supersonic Flow
NASA Technical Reports Server (NTRS)
Tokugawa, Naoko; Choudhari, Meelan; Ishikawa, Hiroaki; Ueda, Yoshine; Fujii, Keisuke; Atobe, Takashi; Li, Fei; Chang, Chau-Lyan; White, Jeffery
2012-01-01
Boundary layer transition along the leeward symmetry plane of axisymmetric bodies at nonzero angle of attack in supersonic flow was investigated experimentally and numerically as part of joint research between the Japan Aerospace Exploration Agency (JAXA) and National Aeronautics and Space Administration (NASA). Transition over four axisymmetric bodies (namely, Sears-Haack body, semi-Sears-Haack body, straight cone and flared cone) with different axial pressure gradients was measured in two different facilities with different unit Reynolds numbers. The semi-Sears-Haack body and flared cone were designed at JAXA to broaden the range of axial pressure distributions. For a body shape with an adverse pressure gradient (i.e., flared cone), the experimentally measured transition patterns show an earlier transition location along the leeward symmetry plane in comparison with the neighboring azimuthal locations. For nearly zero pressure gradient (i.e.,straight cone), this feature is only observed at the larger unit Reynolds number. Later transition along the leeward plane was observed for the remaining two body shapes with a favorable pressure gradient. The observed transition patterns are only partially consistent with the numerical predictions based on linear stability analysis. Additional measurements are used in conjunction with the stability computations to explore the phenomenon of leeward line transition and the underlying transition mechanism in further detail.
Mapping the Perceptual Grain of the Human Retina
Tuten, William S.; Roorda, Austin; Sincich, Lawrence C.
2014-01-01
In humans, experimental access to single sensory receptors is difficult to achieve, yet it is crucial for learning how the signals arising from each receptor are transformed into perception. By combining adaptive optics microstimulation with high-speed eye tracking, we show that retinal function can be probed at the level of the individual cone photoreceptor in living eyes. Classical psychometric functions were obtained from cone-sized microstimuli targeted to single photoreceptors. Revealed psychophysically, the cone mosaic also manifests a variable sensitivity to light across its surface that accords with a simple model of cone light capture. Because this microscopic grain of vision could be detected on the perceptual level, it suggests that photoreceptors can act individually to shape perception, if the normally suboptimal relay of light by the eye's optics is corrected. Thus the precise arrangement of cones and the exact placement of stimuli onto those cones create the initial retinal limits on signals mediating spatial vision. PMID:24741057
Tensiometer with removable wick
Gee, G.W.; Campbell, M.D.
1992-04-14
The present invention relates to improvements in tensiometers for measuring soil water tension comprising a rod shaped wick. The rod shaped wick is a shoestring, rolled paper towel, rolled glass microfiber filter, or solid ceramic. The rod shaped wick is secured to the tensiometer by a cone washer and a threaded fitting. 2 figs.
ZnO twin-cones: synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate.
Sun, Xuefei; Qiu, Xiaoqing; Li, Liping; Li, Guangshe
2008-05-19
ZnO twin-cones, a new member to the ZnO family, were prepared directly by a solvothermal method using a mixed solution of zinc nitrate and ethanol. The reaction and growth mechanisms of ZnO twin-cones were investigated by X-ray diffraction, UV-visible spectra, infrared and ion trap mass spectra, and transmission electron microscopy. All as-prepared ZnO cones consisted of tiny single crystals with lengths of several micrometers. With prolonging of the reaction time from 1.5 h to 7 days, the twin-cone shape did not change at all, while the lattice parameters increased slightly and the emission peak of photoluminescence shifted from the green region to the near orange region. ZnO twin-cones are also explored as an additive to promote the thermal decomposition of ammonium perchlorate. The variations of photoluminescence spectra and catalytic roles in ammonium perchlorate decomposition were discussed in terms of the defect structure of ZnO twin-cones.
3D Printed Scintillators For Use in Field Emission Detection and Other Nuclear Physics Experiments
NASA Astrophysics Data System (ADS)
Ficenec, Karen
2015-10-01
In accelerator cavities, field emission electrons - electrons that get stripped away from the cavity walls due to the high electromagnetic field necessary to accelerate the main beam - are partially accelerated and can crash into the cavity walls, adding to the heat-load of the cryogenic system. Because these field electrons emit gamma rays when bent by the electromagnetic field, a scintillator, if made to fit the cavity enclosure, can detect their presence. Eliminating the waste of subtractive manufacturing techniques and allowing for the production of unique, varied shapes, 3D printing of scintillators may allow for an efficient detection system. UV light is used to start a chemical polymerization process that links the monomers of the liquid resin together into larger, intertwined molecules, forming the solid structure. Each shape requires slightly different calibration of its optimal printing parameters, such as slice thickness and exposure time to UV light. Thus far, calibration parameters have been optimized for cylinders of 20 mm diameter, cones of 30 mm diameter and 30 mm height, rectangular prisms 30 by 40 by 10 mm, and square pyramids 20 mm across. Calibration continues on creating holes in the prints (for optical fibers), as well as shapes with overhangs. Scintill This work was supported in part by the National Science Foundation under Grant No. PHY-1405857.
Dirac cones in isogonal hexagonal metallic structures
NASA Astrophysics Data System (ADS)
Wang, Kang
2018-03-01
A honeycomb hexagonal metallic lattice is equivalent to a triangular atomic one and cannot create Dirac cones in its electromagnetic wave spectrum. We study in this work the low-frequency electromagnetic band structures in isogonal hexagonal metallic lattices that are directly related to the honeycomb one and show that such structures can create Dirac cones. The band formation can be described by a tight-binding model that allows investigating, in terms of correlations between local resonance modes, the condition for the Dirac cones and the consequence of the third structure tile sustaining an extra resonance mode in the unit cell that induces band shifts and thus nonlinear deformation of the Dirac cones following the wave vectors departing from the Dirac points. We show further that, under structure deformation, the deformations of the Dirac cones result from two different correlation mechanisms, both reinforced by the lattice's metallic nature, which directly affects the resonance mode correlations. The isogonal structures provide new degrees of freedom for tuning the Dirac cones, allowing adjustment of the cone shape by modulating the structure tiles at the local scale without modifying the lattice periodicity and symmetry.
Code of Federal Regulations, 2013 CFR
2013-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
Code of Federal Regulations, 2010 CFR
2010-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
Code of Federal Regulations, 2011 CFR
2011-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
Code of Federal Regulations, 2014 CFR
2014-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
Code of Federal Regulations, 2012 CFR
2012-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
SU-F-J-183: Interior Region-Of-Interest Tomography by Using Inverse Geometry System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K; Kim, D; Kang, S
2016-06-15
Purpose: The inverse geometry computed tomography (IGCT) composed of multiple source and small size detector has several merits such as reduction of scatter effect and large volumetric imaging within one rotation without cone-beam artifact, compared to conventional cone-beam computed tomography (CBCT). By using this multi-source characteristics, we intend to present a selective and multiple interior region-of-interest (ROI) imaging method by using a designed source on-off sequence of IGCT. Methods: All of the IGCT sources are operated one by one sequentially, and each projection in the shape of narrow cone-beam covers its own partial volume of full field of view (FOV)more » determined from system geometry. Thus, through controlling multi source operation, limited irradiation within ROI is possible and selective radon space data for ROI imaging can be acquired without additional X-ray filtration. With this feature, we designed a source on-off sequence for multi ROI-IGCT imaging, and projections of ROI-IGCT were generated by using the on-off sequence. Multi ROI-IGCT images were reconstructed by using filtered back-projection algorithm. All these imaging process of our study has been performed by utilizing digital phantom and patient CT data. ROI-IGCT images of the phantom were compared to CBCT image and the phantom data for the image quality evaluation. Results: Image quality of ROI-IGCT was comparable to that of CBCT. However, the distal axial-plane from the FOV center, large cone-angle region, ROI-IGCT showed uniform image quality without significant cone-beam artifact contrary to CBCT. Conclusion: ROI-IGCT showed comparable image quality and has the capability to provide multi ROI image within a rotation. Projection of ROI-IGCT is performed by selective irradiation, hence unnecessary imaging dose to non-interest region can be reduced. In this regard, it seems to be useful for diagnostic or image guidance purpose in radiotherapy such as low dose target localization and patient alignment. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less
Ablation and cone formation mechanism on CR-39 by ArF laser irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakeri Jooybari, B., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir; Nuclear Science and Technology Research Institute NSRT, Tehran; Afarideh, H., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir
In this work, chemical properties, surface modification, and micro structures formation on ablated polyallyl di-glycol carbonate (CR-39) polymer by ArF laser irradiation (λ = 193 nm) at various fluences and pulse number were investigated. CR-39 samples have been irradiated with an ArF laser (193 nm) at a repetition rate of 1 Hz. Threshold fluence of ablation and effective absorption coefficient of CR-39 were determined. Conical microstructures (Taylor cone) formed on laser-ablated CR-39 exhibit: smooth, Taylor cone shape walls and sharp tips together with interference and well defined fringe-structure with a period of 230 nm, around cone base. Mechanism of cone formation and cone evolution of CR-39more » ablated surface were investigated by change of fluences (at a given pulse number) and pulse number (at a given fluence). Cone height, cone base, and region of interface were increased in micrometer steps by increasing the total fluence. Depression on the base of the cone and the circular fringe were simulated. FTIR spectra were measured and energy dispersive x-ray analysis of irradiated and un-irradiated samples was performed.« less
Contribution to Estimating Bearing Capacity of Pile in Clayey Soils
NASA Astrophysics Data System (ADS)
Drusa, Marián; Gago, Filip; Vlček, Jozef
2016-12-01
The estimation of real geotechnical parameters is key factor for safe and economic design of geotechnical structures. One of these are pile foundations, which require proper design and evaluation due to accessing more deep foundation soil and because remediation work of not bearable piles or broken piles is a crucial operation. For this reason, geotechnical field testing like cone penetration test (CPT), standard penetration (SPT) or dynamic penetration test (DP) are realized in order to receive continuous information about soil strata. Comparing with rotary core drilling type of survey with sampling, these methods are more progressive. From engineering geologist point of view, it is more important to know geological characterization of locality but geotechnical engineers have more interest above the real geotechnical parameters of foundation soils. The role of engineering geologist cannot be underestimated because important geological processes in origin or during history can explain behaviour of a geological environment. In effort to streamline the survey, investigation by penetration tests is done as it is able to provide enough information for designers. This paper deals with actual trends in pile foundation design; because there are no new standards and usable standards are very old. Estimation of the bearing capacity of a single pile can be demonstrated on the example of determination of the cone factor Nk from CPT testing. Then results were compared with other common methods.
Belvedere, Claudio; Siegler, Sorin; Ensini, Andrea; Toy, Jason; Caravaggi, Paolo; Namani, Ramya; Giannini, Giulia; Durante, Stefano; Leardini, Alberto
2017-02-28
The mechanical characteristics of the ankle such as its kinematics and load transfer properties are influenced by the geometry of the articulating surfaces. A recent, image-based study found that these surfaces can be approximated by a saddle-shaped, skewed, truncated cone with its apex oriented laterally. The goal of this study was to establish a reliable experimental technique to study the relationship between the geometry of the articular surfaces of the ankle and its mobility and stability characteristics and to use this technique to determine if morphological approximations of the ankle surfaces based on recent discoveries, produce close to normal behavior. The study was performed on ten cadavers. For each specimen, a process based on medical imaging, modeling and 3D printing was used to produce two subject specific artificial implantable sets of the ankle surfaces. One set was a replica of the natural surfaces. The second approximated the ankle surfaces as an original saddle-shaped truncated cone with apex oriented laterally. Testing under cyclic loading conditions was then performed on each specimen following a previously established technique to determine its mobility and stability characteristics under three different conditions: natural surfaces; artificial surfaces replicating the natural surface morphology; and artificial approximation based on the saddle-shaped truncated cone concept. A repeated measure analysis of variance was then used to compare between the three conditions. The results show that (1): the artificial surfaces replicating natural morphology produce close to natural mobility and stability behavior thus establishing the reliability of the technique; and (2): the approximated surfaces based on saddle-shaped truncated cone concept produce mobility and stability behavior close to the ankle with natural surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transition From Ideal To Viscous Mach Cones In A Partonic Transport Model
NASA Astrophysics Data System (ADS)
Bouras, I.; El, A.; Fochler, O.; Niemi, H.; Xu, Z.; Greiner, C.
2013-09-01
Using a partonic transport model we investigate the evolution of conical structures in ultrarelativistic matter. Using two different source terms and varying the transport properties of the matter we study the formation of Mach Cones. Furthermore, in an additional study we extract the two-particle correlations from the numerical calculations and compare them to an analytical approximation. The influence of the viscosity to the shape of Mach Cones and the corresponding two-particle correlations is studied by adjusting the cross section of the medium.
Cone-shaped source characteristics and inductance effect of transient electromagnetic method
NASA Astrophysics Data System (ADS)
Yang, Hai-Yan; Li, Feng-Ping; Yue, Jian-Hua; Guo, Fu-Sheng; Liu, Xu-Hua; Zhang, Hua
2017-03-01
Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-offtime and a deep "blind zone". This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower "blind zone." Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to represent the comprehensive resistivity of the conical source. To verify the forward calculation method, the transient responses of H type models and KH type models are calculated, and data are inverted using a "smoke ring" inversion. The results of inversion have good agreement with original models and show that the forward calculation method is effective. The results of this study provide an option for solving the problem of a deep "blind zone" and also provide a theoretical indicator for further research.
Stereotyped Synaptic Connectivity Is Restored during Circuit Repair in the Adult Mammalian Retina.
Beier, Corinne; Palanker, Daniel; Sher, Alexander
2018-06-04
Proper function of the central nervous system (CNS) depends on the specificity of synaptic connections between cells of various types. Cellular and molecular mechanisms responsible for the establishment and refinement of these connections during development are the subject of an active area of research [1-6]. However, it is unknown if the adult mammalian CNS can form new type-selective synapses following neural injury or disease. Here, we assess whether selective synaptic connections can be reestablished after circuit disruption in the adult mammalian retina. The stereotyped circuitry at the first synapse in the retina, as well as the relatively short distances new neurites must travel compared to other areas of the CNS, make the retina well suited to probing for synaptic specificity during circuit reassembly. Selective connections between short-wavelength sensitive cone photoreceptors (S-cones) and S-cone bipolar cells provides the foundation of the primordial blue-yellow vision, common to all mammals [7-18]. We take advantage of the ground squirrel retina, which has a one-to-one S-cone-to-S-cone-bipolar-cell connection, to test if this connectivity can be reestablished following local photoreceptor loss [8, 19]. We find that after in vivo selective photoreceptor ablation, deafferented S-cone bipolar cells expand their dendritic trees. The new dendrites randomly explore the proper synaptic layer, bypass medium-wavelength sensitive cone photoreceptors (M-cones), and selectively synapse with S-cones. However, non-connected dendrites are not pruned back to resemble unperturbed S-cone bipolar cells. We show, for the first time, that circuit repair in the adult mammalian retina can recreate stereotypic selective wiring. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stages of rootless cone formation observed within the Raudhólar cone group, Iceland
NASA Astrophysics Data System (ADS)
Fitch, E. P.; Hamilton, C.; Fagents, S. A.; Thordarson, T.
2013-12-01
Secondary (rootless) cones form when lava interacts explosively with water contained in the substrate, and represent a largely degassed, end-member system that can elucidate mechanisms of magma-water interactions in the absence of primary degassing-induced fragmentation. Rootless cones are well documented in Iceland. The Raudhólar rootless cone group, located within the ~5200-year-old Ellidaá lava flow on the south-eastern outskirts of Reykjavík, was extensively quarried during the Second World War and now provides excellent cross-sections through the tephra sequences. Taking advantage of this exposure, we performed detailed stratigraphic, grain-size, and componentry analyses, which suggest that the energetics of rootless explosions vary substantially during cone formation. The lower unit contains the most substrate sediment and is characterized by dilute pyroclastic density current deposits. The middle unit is dominated by a succession of bed-pairs, each containing a finer-grained lower layer and coarser-grained upper layer. In the upper unit, the succession grades into a welded section that caps the cone. The abundance of substrate sediment generally decreases upwards within the cone, which suggests that the efficiency of lava-substrate mixing decreased with time. In addition, clast size generally increases upwards within the cone, implying that the fragmentation energy also decreased as the rootless eruption progressed. Both lines of evidence suggest that the explosions decreased in intensity with time, likely due to the depletion of available groundwater. However, alternating fine- and coarse-grained beds imply cycles of increased and decreased fragmentation efficiency, which we attribute to groundwater recharge and depletion during the event. Therefore, this study presents a detailed look at rootless cone formation and provides the foundation for future work on this important, yet understudied, system.
Volcanic cones in Hydraotes chaos : implications for the chaotic terrains formation
NASA Astrophysics Data System (ADS)
Meresse, S.; Costard, F.; Mangold, N.; Masson, P.; Neukum, G.
2006-12-01
Numerous geologic scenarios have been proposed for the chaotic terrains formation. They include (1) sub-ice volcanism and other magma-ice interactions and (2) catastrophic release of groundwater from confined aquifers. The lack of volcanic morphology in the chaos was an handicap for the hypothesis of magma-ice interactions but the HRSC (High Resolution Stereo Camera) images have recently revealed possible volcanic cones inside the Hydraotes chaos. About thirty cones lie on the lowest parts of the chaos at elevation between -4300 and -5100 meters. They have basal diameters of 500-1900 m and heights exceeding 100 m. They are observed on young surface: the south smooth floor and inside the narrow valleys separating the mesas. The cones are relatively fresh. Similar morphologies of small cone-shaped structures have been previously identified in the northern lowlands of Mars (Chryse, Acidalia, Amazonis, Isidis and Elysuim Planitia) but their origin remains uncertain. A number of volcanic or cold climate landforms were proposed as potential terrestrial analogues : Icelandic pseudocraters (or rootless cones), cinder cones, tuff cones, pingos and spatter cones. The morphologic measurements made on the Hydraotes cones argue rather for a volcanic origin in comparison with terrestrial analogues. These first volcanic cones observed in Hydraotes chaos suggest that volcanic or subvolcanic activity might have played an important part in the chaotic terrains formation and outflow channels genesis.
NASA Technical Reports Server (NTRS)
Hinson, W. F.; Keafer, L. S.
1984-01-01
It is proposed that for inflatable antenna systems, technology feasibility can be demonstrated and parametric design and scalability (scale factor 10 to 20) can be validated with an experiment using a 16-m-diameter antenna attached to the Shuttle. The antenna configuration consists of a thin film cone and paraboloid held to proper shape by internal pressure and a self-rigidizing torus. The cone and paraboloid would be made using pie-shaped gores with the paraboloid being coated with aluminum to provide reflectivity. The torus would be constructed using an aluminum polyester composite that when inflated would erect to a smooth shell that can withstand loads without internal pressure.
Phytofabrication of bioinspired zinc oxide nanocrystals for biomedical application.
Velmurugan, Palanivel; Park, Jung-Hee; Lee, Sang-Myeong; Jang, Jum-Suk; Yi, Young-Joo; Han, Sang-Sub; Lee, Sang-Hyun; Cho, Kwang-Min; Cho, Min; Oh, Byung-Taek
2016-09-01
In the present study, we investigated a novel green route for synthesis of zinc oxide nanoparticles (ZnO NPs) using the extract of young cones of Pinus densiflora as a reducing agent. Standard characterization studies were carried out to confirm the obtained product using UV-Vis spectra, SEM-EDS, FTIR, and XRD. TEM images showed that various shapes of ZnO NPs were synthesized, including hexagonal (wurtzite), triangular, spherical, and oval-shaped particles, with average sizes between 10 and 100 nm. The synthesized ZnO NPs blended with the young pine cone extract have very good activity against bacterial and fungal pathogens, similar to that of commercial ZnO NPs.
Reconfiguration of broad leaves into cones
NASA Astrophysics Data System (ADS)
Miller, Laura
2013-11-01
Flexible plants, fungi, and sessile animals are thought to reconfigure in the wind and water to reduce the drag forces that act upon them. Simple mathematical models of a flexible beam immersed in a two-dimensional flow will also exhibit this behavior. What is less understood is how the mechanical properties of a leaf in a three-dimensional flow will passively allow roll up and reduce drag. This presentation will begin by examining how leaves roll up into drag reducing shapes in strong flow. The dynamics of the flow around the leaf of the wild ginger Hexastylis arifolia are described using particle image velocimetry. The flows around the leaves are compared with those of simplified sheets using 3D numerical simulations and physical models. For some reconfiguration shapes, large forces and oscillations due to strong vortex shedding are produced. In the actual leaf, a stable recirculation zone is formed within the wake of the reconfigured cone. In physical and numerical models that reconfigure into cones, a similar recirculation zone is observed with both rigid and flexible tethers. These results suggest that the three-dimensional cone structure in addition to flexibility is significant to both the reduction of vortex-induced vibrations and the forces experienced by the leaf.
Wadhwani, Shefali; Singh, Mahesh Pratap; Agarwal, Manish; Somasundaram, Pavithra; Rawtiya, Manjusha; Wadhwani, P K
2017-01-01
To evaluate the prevalence of C-shaped root canals in mandibular molars using cone beam computed tomography (CBCT) in a subpopulation of Central India. CBCT scans of patients from diagnostic imaging center were selected in accordance with the criteria given by Fan et al . (2004) for C-shaped canals. A total of 238 CBCT scans fulfilled the inclusion criteria and thereby divided into two groups: Group 1: Images showing C-shaped canal configuration in mandibular second molars. Group 2: Images showing C-shaped canal configuration in mandibular third molars. The frequency and distribution of canals and their configuration along with the position of lingual/buccal grooves in the images were evaluated, and the data was analyzed. CBCT evaluation showed that 9.7% of second molars and 8% of third molars had C-shaped canals. A prominent buccal groove was seen in these teeth. The data showed a significant difference ( P = 0.038) for the presence of such anatomy on the right side for mandibular third molars. The study showed a significant prevalence of C-shaped canal configuration in the subpopulation studied.
Wadhwani, Shefali; Singh, Mahesh Pratap; Agarwal, Manish; Somasundaram, Pavithra; Rawtiya, Manjusha; Wadhwani, P. K.
2017-01-01
Introduction: To evaluate the prevalence of C-shaped root canals in mandibular molars using cone beam computed tomography (CBCT) in a subpopulation of Central India. Materials and Methods: CBCT scans of patients from diagnostic imaging center were selected in accordance with the criteria given by Fan et al. (2004) for C-shaped canals. A total of 238 CBCT scans fulfilled the inclusion criteria and thereby divided into two groups: Group 1: Images showing C-shaped canal configuration in mandibular second molars. Group 2: Images showing C-shaped canal configuration in mandibular third molars. The frequency and distribution of canals and their configuration along with the position of lingual/buccal grooves in the images were evaluated, and the data was analyzed. Results: CBCT evaluation showed that 9.7% of second molars and 8% of third molars had C-shaped canals. A prominent buccal groove was seen in these teeth. The data showed a significant difference (P = 0.038) for the presence of such anatomy on the right side for mandibular third molars. Conclusion: The study showed a significant prevalence of C-shaped canal configuration in the subpopulation studied. PMID:29386785
High-energy-density plasma jet generated by laser-cone interaction
NASA Astrophysics Data System (ADS)
Ke, Y. Z.; Yang, X. H.; Ma, Y. Y.; Xu, B. B.; Ge, Z. Y.; Gan, L. F.; Meng, L.; Wang, S. W.; Kawata, S.
2018-04-01
The generation of high-energy-density (HED) plasma jet from a laser ablating thin cone target is studied theoretically and by numerical simulations. Theoretical analysis and 1D simulations show that a maximum kinetic energy conversion efficiency (CE) of 26% can be achieved when nearly 80% of the foil is ablated by laser. A HED plasma jet is generated when an intense laser (˜1015 W/cm2) irradiates the cone target, inducing a great enhancement of energy density compared to that of the planar target, which is attributed to the cumulative effect of the cone shape and the new generation mechanism of jet, i.e., laser directly accelerating the cone wall onto the axis. The characteristic of jet is influenced by the cone geometry, i.e., thickness and cone angle. It is found that a cone with a half opening angle around 70 ° and the optimized thickness (˜5 μm) can induce a jet with a high CE and long duration, whose peak energy density can reach 3.5 × 1015 erg/cm3. The results can be beneficial for laser-driven novel neutron sources and other fusion related experiments, where HED plasma jet can be applied.
Growth cones are actively influenced by substrate-bound adhesion molecules.
Burden-Gulley, S M; Payne, H R; Lemmon, V
1995-06-01
As axons advance to appropriate target tissues during development, their growth cones encounter a variety of cell adhesion molecules (CAMs) and extracellular matrix molecules (ECM molecules). Purified CAMs and ECM molecules influence neurite outgrowth in vitro and are thought to have a similar function in vivo. For example, when retinal ganglion cell (RGC) neurons are grown on different CAM and ECM molecule substrates in vitro, their growth cones display distinctive morphologies (Payne et al., 1992). Similarly, RGC growth cones in vivo have distinctive shapes at different points in the pathway from the eye to the tectum, suggesting the presence of localized cues that determine growth cone behaviors such as pathway selection at choice points. In this report, time-lapse video microscopy was utilized to examine dynamic transformations of RGC growth cones as they progressed from L1/8D9, N-cadherin, or laminin onto a different substrate. Contact made by the leading edge of a growth cone with a new substrate resulted in a rapid and dramatic alteration in growth cone morphology. In some cases, the changes encompassed the entire growth cone including those regions not in direct contact with the new substrate. In addition, the growth cones displayed a variety of behavioral responses that were dependent upon the order of substrate contact. These studies demonstrate that growth cones are actively affected by the substrate, and suggest that abrupt changes in the molecular composition of the growth cone environment are influential during axonal pathfinding.
An ice-cream cone model for coronal mass ejections
NASA Astrophysics Data System (ADS)
Xue, X. H.; Wang, C. B.; Dou, X. K.
2005-08-01
In this study, we use an ice-cream cone model to analyze the geometrical and kinematical properties of the coronal mass ejections (CMEs). Assuming that in the early phase CMEs propagate with near-constant speed and angular width, some useful properties of CMEs, namely the radial speed (v), the angular width (α), and the location at the heliosphere, can be obtained considering the geometrical shapes of a CME as an ice-cream cone. This model is improved by (1) using an ice-cream cone to show the near real configuration of a CME, (2) determining the radial speed via fitting the projected speeds calculated from the height-time relation in different azimuthal angles, (3) not only applying to halo CMEs but also applying to nonhalo CMEs.
The properties of single cones isolated from the tiger salamander retina
Attwell, David; Werblin, Frank S.; Wilson, Martin
1982-01-01
1. The properties of isolated single cones were studied using the voltage-clamp technique, with two micro-electrodes inserted under visual control. 2. Single cones had input resistances, when impaled with two electrodes, of up to 270 MΩ. This is probably lower than the true membrane resistance, because of damage by the impaling electrodes. The cone capacitance was about 85 pF. 3. The cone membrane contains a time-dependent current, IB, controlled by voltage, and a separate photosensitive current. 4. The gated current, IB, is an inward current with a reversal potential around -25 mV. It is activated by hyperpolarization over the range -30 to -80 mV, and at constant voltage obeys first order (exponential) kinetics. The gating time constant is typically 50 ms at the resting potential of -45 mV, rises to 170 ms at -70 mV, and decreases for further hyperpolarization. 5. The spectral sensitivity curve of the cone light response peaks at 620 nm wave-length, and is narrower than the nomogram for vitamin A2-based pigments. The light responses of isolated cones are spectrally univariant. 6. Voltage-clamped photocurrents were recorded at various membrane potentials, for light steps of various intensities. The photocurrent reversed at around -8 mV. The time course of the photocurrent, for a given intensity, was approximately independent of voltage (although its magnitude was voltage-dependent). The shape of the peak current—voltage relation of the light-sensitive current was independent of light intensity (although its magnitude was intensity-dependent). 7. These results can be explained if: (a) light simply changes the number of photosensitive channels open, without altering the properties of an open channel; (b) the reactions controlling the production of internal transmitter, the binding of internal transmitter to the photosensitive channels, and the closing and opening of the channels are unaffected by the electric field in the cone membrane, even though at least some of these reactions take place in the membrane. 8. IB plays only a small role in shaping the cone voltage response to light. ImagesPlate 1 PMID:7131315
Directed translocation of a flexible polymer through a cone-shaped nano-channel
NASA Astrophysics Data System (ADS)
Nikoofard, Narges; Khalilian, Hamidreza; Fazli, Hossein
2013-08-01
Translocation of a flexible polymer through a cone-shaped channel is studied, theoretically and using computer simulations. Our simulations show that the shape of the channel causes the polymer translocation to be a driven process. The effective driving force of entropic origin acting on the polymer is calculated as a function of the length and the apex-angle of the channel, theoretically. It is found that the translocation time is a non-monotonic function of the apex-angle of the channel. By increasing the apex-angle from zero, the translocation time shows a minimum and then a maximum. Also, it is found that regardless of the value of the apex-angle, the translocation time is a uniformly decreasing function of the channel length. The results of the theory and the simulation are in good qualitative agreement.
Parashar, Saumya-Rajesh; Kowsky, R Dinesh; Natanasabapathy, Velmurugan
2017-01-01
This article aims to report a unique case with aberrant root canal anatomy exhibiting "Y-" and "J"-shaped canal pattern in a mandibular second molar. Anatomic complexities may pose challenges for endodontic treatment. Before performing endodontic treatment, the clinician should be aware of the internal anatomy of the tooth being treated and should recognize anatomic aberrations if present. Presence of unusual anatomy may call for modifications in treatment planning. This report describes in detail about a mandibular second molar tooth associated with two paramolar tubercles having a peculiar "Y-" and "J-"shaped canal anatomy detected with the aid of cone beam computed tomography, which has never been reported in the dental literature. The proposed treatment protocol for the endodontic management of the same has also been discussed.
NASA Technical Reports Server (NTRS)
Klunker, E. B.; South, J. C., Jr.; Davis, R. M.
1972-01-01
A user's manual for a computer program which calculates the supersonic flow about circular, elliptic, and bielliptic cones at incidence and elliptic cones at yaw by the method of lines is presented. The program is automated to compute a case from known or easily calculated solution by changing the parameters through a sequence of steps. It provides information including the shock shape, flow field, isentropic surface properties, entropy layer, and force coefficients. A description of the program operation, sample computations, and a FORTRAN 4 listing are presented.
Boulanger, Pierre; Flores-Mir, Carlos; Ramirez, Juan F; Mesa, Elizabeth; Branch, John W
2009-01-01
The measurements from registered images obtained from Cone Beam Computed Tomography (CBCT) and a photogrammetric sensor are used to track three-dimensional shape variations of orthodontic patients before and after their treatments. The methodology consists of five main steps: (1) the patient's bone and skin shapes are measured in 3D using the fusion of images from a CBCT and a photogrammetric sensor. (2) The bone shape is extracted from the CBCT data using a standard marching cube algorithm. (3) The bone and skin shape measurements are registered using titanium targets located on the head of the patient. (4) Using a manual segmentation technique the head and lower jaw geometry are extracted separately to deal with jaw motion at the different record visits. (5) Using natural features of the upper head the two datasets are then registered with each other and then compared to evaluate bone, teeth, and skin displacements before and after treatments. This procedure is now used at the University of Alberta orthodontic clinic.
Self-Similar Apical Sharpening of an Ideal Perfecting Conducting Fluid Subject to Maxwell Stresses
NASA Astrophysics Data System (ADS)
Zhou, Chengzhe; Troian, Sandra M.
2016-11-01
We examine the apical behavior of an ideal, perfectly conducting incompressible fluid surrounded by vacuum in circumstances where the capillary, Maxwell and inertial forces contribute to formation of a liquid cone. A previous model based on potential flow describes a family of self-similar solutions with conic cusps whose interior angles approach the Taylor cone angle. These solutions were obtained by matching powers of the leading order terms in the velocity and electric field potential to the asymptotic form dictated by a stationary cone shape. In re-examining this earlier work, we have found a more important, neglected leading order term in the velocity and field potentials, which satisfies the governing, interfacial and far-field conditions as well. This term allows for the development of additional self-similar, sharpening apical shapes, including time reversed solutions for conic tip recoil after fluid ejection. We outline the boundary-element technique for solving the exact similarity solutions, which have parametric dependence on the far-field conditions, and discuss consequences of our findings.
NASA Astrophysics Data System (ADS)
Saitou, Yutaka; Kikuchi, Yoshiaki; Kusakabe, Osamu; Kiyomiya, Osamu; Yoneyama, Haruo; Kawakami, Taiji
Steel sheet pipe pile foundations with large diameter steel pipe sheet pile were used for the foundation of the main pier of the Tokyo Gateway bridge. However, as for the large diameter steel pipe pile, the bearing mechanism including a pile tip plugging effect is still unclear due to lack of the practical examinations even though loading tests are performed on Trans-Tokyo Bay Highway. In the light of the foregoing problems, static pile loading tests both vertical and horizontal directions, a dynamic loading test, and cone penetration tests we re conducted for determining proper design parameters of the ground for the foundations. Design parameters were determined rationally based on the tests results. Rational design verification was obtained from this research.
Numerical study of core formation of asymmetrically driven cone-guided targets
Sawada, Hiroshi; Sakagami, Hitoshi
2017-09-22
Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less
Numerical study of core formation of asymmetrically driven cone-guided targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, Hiroshi; Sakagami, Hitoshi
Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less
NASA Technical Reports Server (NTRS)
Perkins, Edward W; Jorgensen, Leland H; Sommer, Simon C
1958-01-01
Experimental drag measurements at zero angle of attack for various theoretical minimum drag nose shapes, hemispherically blunted cones, and other more common profiles of fineness ratios of about 3 are compared with theoretical results for a Mach number and Reynolds number range of 1.24 to 7.4 and 1.0 x 10 to the 6th power to 7.5 x 10 to the 6th power (based on body length), respectively. The results of experimental pressure-distribution measurements are used for the development of an empirical expression for predicting the pressure drag of hemispherically blunted cones.
UV laser-ablated surface textures as potential regulator of cellular response.
Chandra, Prafulla; Lai, Karen; Sung, Hak-Joon; Murthy, N Sanjeeva; Kohn, Joachim
2010-06-01
Textured surfaces obtained by UV laser ablation of poly(ethylene terephthalate) films were used to study the effect of shape and spacing of surface features on cellular response. Two distinct patterns, cones and ripples with spacing from 2 to 25 μm, were produced. Surface features with different shapes and spacings were produced by varying pulse repetition rate, laser fluence, and exposure time. The effects of the surface texture parameters, i.e., shape and spacing, on cell attachment, proliferation, and morphology of neonatal human dermal fibroblasts and mouse fibroblasts were studied. Cell attachment was the highest in the regions with cones at ∼4 μm spacing. As feature spacing increased, cell spreading decreased, and the fibroblasts became more circular, indicating a stress-mediated cell shrinkage. This study shows that UV laser ablation is a useful alternative to lithographic techniques to produce surface patterns for controlling cell attachment and growth on biomaterial surfaces.
Solution of electromagnetic scattering problems using time domain techniques
NASA Technical Reports Server (NTRS)
Britt, Charles L.
1989-01-01
New methods are developed to calculate the electromagnetic diffraction or scattering characteristics of objects of arbitrary material and shape. The methods extend the efforts of previous researchers in the use of finite-difference and pulse response techniques. Examples are given of the scattering from infinite conducting and nonconducting cylinders, open channel, sphere, cone, cone sphere, coated disk, open boxes, and open and closed finite cylinders with axially incident waves.
Weak Localization of Light in a Disordered Microcavity
NASA Astrophysics Data System (ADS)
Gurioli, M.; Bogani, F.; Cavigli, L.; Gibbs, H.; Khitrova, G.; Wiersma, D. S.
2005-05-01
We report the observation of weak localization of light in a semiconductor microcavity. The intrinsic disorder in a microcavity leads to multiple scattering and hence to static speckle. We show that averaging over realizations of the disorder reveals a coherent backscattering cone that has a coherent enhancement factor ≥2, as required by reciprocity. The coherent backscattering cone is observed along a ring-shaped pattern due to confinement by the microcavity.
3-D model of ICME in the interplanetary medium
NASA Astrophysics Data System (ADS)
Borgazzi, A.; Lara, A.; Niembro, T.
2011-12-01
We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.
Atmospheric negative corona discharge using a Taylor cone as liquid electrode
NASA Astrophysics Data System (ADS)
Sekine, Ryuto; Shirai, Naoki; Uchida, Satoshi; Tochikubo, Fumiyoshi
2012-10-01
We examined characteristics of atmospheric negative corona discharge using liquid needle cathode. As a liquid needle cathode, we adopted Taylor cone with conical shape. A nozzle with inner diameter of 10 mm is filled with liquid, and a plate electrode is placed at 10 mm above the nozzle. By applying a dc voltage between electrodes, Taylor cone is formed. To change the liquid property, we added sodium dodecyl sulfate to reduce the surface tension, sodium sulfate to increase the conductivity, and polyvinyl alcohol to increase the viscosity, in distilled water. The liquid, with high surface tension such as pure water could not form a Taylor cone. When we reduced surface tension, a Taylor cone was formed and the stable corona discharge was observed at the tip of the cone. When we increased viscosity, a liquid filament protruded from the solution surface was formed and corona discharge was observed along the filament at position 0.7-1.0 mm above from the tip of the cone. Increasing the conductivity resulted in the higher light intensity of corona and the lower corona onset voltage. When we use the metal needle electrode, the corona discharge depends on the voltage and the gap length. Using Taylor cone, different types of discharges were observed by changing the property of the liquid.
Compound maar crater and co-eruptive scoria cone in the Lunar Crater Volcanic Field (Nevada, USA)
NASA Astrophysics Data System (ADS)
Amin, Jamal; Valentine, Greg A.
2017-06-01
Bea's Crater (Lunar Crater Volcanic Field, Nevada, USA) consists of two coalesced maar craters with diameters of 440 m and 1050 m, combined with a co-eruptive scoria cone that straddles the northeast rim of the larger crater. The two craters and the cone form an alignment that parallels many local and regional structures such as normal faults, and is interpreted to represent the orientation of the feeder dyke near the surface. The maar formed among a dense cluster of scoria cones; the cone-cluster topography resulted in crater rim that has a variable elevation. These older cones are composed of variably welded agglomerate and scoria with differing competence that subsequently affected the shape of Bea's Crater. Tephra ring deposits associated with phreatomagmatic maar-forming eruptions are rich in basaltic lithics derived from < 250 m depth, with variable contents of deeper-seated ignimbrite lithic clasts, consistent with ejection from relatively shallow explosions although a diatreme might extend to deeper levels beneath the maar. Interbedding of deposits on the northeastern cone and in the tephra ring record variations in the magmatic volatile driven and phreatomagmatic eruption styles in both space and time along a feeder dike.
Kinetics of Exocytosis Is Faster in Cones Than in Rods
Rabl, Katalin; Cadetti, Lucia; Thoreson, Wallace B.
2006-01-01
Cone-driven responses of second-order retinal neurons are considerably faster than rod-driven responses. We examined whether differences in the kinetics of synaptic transmitter release from rods and cones may contribute to differences in postsynaptic response kinetics. Exocytosis from rods and cones was triggered by membrane depolarization and monitored in two ways: (1) by measuring EPSCs evoked in second-order neurons by depolarizing steps applied to presynaptic rods or cones during simultaneous paired whole-cell recordings or (2) by direct measurements of exocytotic increases in membrane capacitance. The kinetics of release was assessed by varying the length of the depolarizing test step. Both measures of release revealed two kinetic components to the increase in exocytosis as a function of the duration of a step depolarization. In addition to slow sustained components in both cell types, the initial fast component of exocytosis had a time constant of <5 ms in cones, >10-fold faster than that of rods. Rod/cone differences in the kinetics of release were substantiated by a linear correlation between depolarization-evoked capacitance increases and EPSC charge transfer. Experiments on isolated rods indicate that the slower kinetics of exocytosis from rods was not a result of rod–rod coupling. The initial rapid release of vesicles from cones can shape the postsynaptic response and may contribute to the faster responses of cone-driven cells observed at light offset. PMID:15872111
3D modelling of the Tejeda Caldera cone-sheet swarm, Gran Canaria, Canary Islands, Spain
NASA Astrophysics Data System (ADS)
Samrock, Lisa K.; Jensen, Max J.; Burchardt, Steffi; Troll, Valentin R.; Mattsson, Tobias; Geiger, Harri
2015-04-01
Cone-sheet swarms provide vital information on the interior of volcanic systems and their plumbing systems (e.g. Burchardt et al. 2013). This information is important for the interpretation of processes and dynamics of modern and ancient volcanic systems, and is therefore vital for assessing volcanic hazards and to reduce risks to modern society. To more realistically model cone-sheet emplacement an approximation of their 3D shape needs to be known. Most cone-sheet swarms are not sufficiently exposed laterally and/or vertically, however, which makes it difficult to determine the geometry of a cone-sheet swarm at depth, especially since different shapes (e.g. convex, straight or concave continuations) would produce a similar trace at the surface (cf. Burchardt et al. 2011, and references therein). The Miocene Tejeda Caldera on Gran Canaria, Canary Islands, Spain, hosts a cone-sheet swarm that was emplaced into volcaniclastic caldera infill at about 12.3-7.3 Ma (Schirnick et al. 1999). The dyke swarm displays over 1000 m of vertical exposure and more than 15 km of horizontal exposure, making it a superb locality to study the evolution of cone-sheet swarms in detail and to determine its actual geometry in 3D space. We have used structural data of Schirnick (1996) to model the geometry of the Tejeda cone-sheet in 3D, using the software Move® by Midland Valley Ltd. Based on previous 2D projections, Schirnick et al. (1999) suggested that the cone-sheet swarm is formed by a stack of parallel intrusive sheets which have a truncated dome geometry and form a concentric structure around a central axis, assuming straight sheet-intrusions. Our 3D model gives insight into the symmetries of the sheets and the overall geometry of the cone-sheet swarm below the surface. This visualization now allows to grasp the complexity of the Tejeda cone-sheet swarm at depth, particularly in relation to different possible cone-sheet geometries suggested in the literature (cf. Burchardt et al. 2011, and references therein), and we discuss the implications of this architecture for the feeding system of the Tejeda volcano and the associated temporal variations of cone-sheet emplacement. References: Burchardt, S., Tanner, D.C., Troll, V.R., Krumbholz, M., Gustafsson, L.E. (2011) Three-dimensional geometry of concentric intrusive sheet swarms in the Geitafell and the Dyrfjöll volcanoes, eastern Iceland. Geochemistry, Geophysics, Geosystems 12(7): Q0AB09. Burchardt, S., Troll, V.R., Mathieu, L., Emeleus, H.C., Donaldson, C.H. (2013) Ardnamruchan 3D cone-sheet architecture explained by a single elongate magma chamber. Scientific Reports 3:2891. Schirnick, C. (1996) Formation of an intracaldera cone sheet dike swarm (Tejeda Caldera, Gran Canaria) (Dissertation). Christian-Albrechts-Universität, Kiel, Germany. Schirnick, C., van den Bogaard, P., Schmincke, H.-U. (1999) Cone-sheet formation and intrusive growth of an oceanic island - The Miocene Tejeda complex on Gran Canaria (Canary Islands). Geology, 27: 207-210.
Experimental Modeling of a Formula Student Carbon Composite Nose Cone
Fellows, Neil A.
2017-01-01
A numerical impact study is presented on a Formula Student (FS) racing car carbon composite nose cone. The effect of material model and model parameter selection on the numerical deceleration curves is discussed in light of the experimental deceleration data. The models show reasonable correlation in terms of the shape of the deceleration-displacement curves but do not match the peak deceleration values with errors greater that 30%. PMID:28772982
Numerical Investigations of High Pressure Acoustic Waves in Resonators
NASA Technical Reports Server (NTRS)
Athavale, Mahesh; Pindera, Maciej; Daniels, Christopher C.; Steinetz, Bruce M.
2004-01-01
This presentation presents work on numerical investigations of nonlinear acoustic phenomena in resonators that can generate high-pressure waves using acoustic forcing of the flow. Time-accurate simulations of the flow in a closed cone resonator were performed at different oscillation frequencies and amplitudes, and the numerical results for the resonance frequency and fluid pressure increase match the GRC experimental data well. Work on cone resonator assembly simulations has started and will involve calculations of the flow through the resonator assembly with and without acoustic excitation. A new technique for direct calculation of resonance frequency of complex shaped resonators is also being investigated. Script-driven command procedures will also be developed for optimization of the resonator shape for maximum pressure increase.
Fracture surface analysis of a quenched (α+β)-metastable titanium alloy
NASA Astrophysics Data System (ADS)
Illarionov, A. G.; Stepanov, S. I.; Demakov, S. L.
2017-12-01
Fracture surface analysis is conducted by means of SEM for VT16 titanium alloy specimens solution-treated at temperatures ranging from 700 to 875 °C, water-quenched and subjected to tensile testing. A cup and cone shape failure and dimple microstructure of the fracture surface indicates the ductile behavior of the alloy. Dimple dimensions correlated with the β-grain size of the alloy in quenched condition. The fracture area (namely, the size; the cup and cone shape) depends on the volume fraction of the primary α-phase in the quenched sample. However, the fracture surface changes considerably when the strain-induced β-αʺ-transformation takes place during tensile testing, resulting in the increase of alloy ductility.
Dose calculation for electron therapy using an improved LBR method.
Gebreamlak, Wondesen T; Tedeschi, David J; Alkhatib, Hassaan A
2013-07-01
To calculate the percentage depth dose (PDD) of any irregularly shaped electron beam using a modified lateral build-up ratio (LBR) method. Percentage depth dose curves were measured using 6, 9, 12, and 15 MeV electron beam energies for applicator cone sizes of 6 × 6, 10 × 10, 14 × 14, and 20 × 20 cm(2). Circular cutouts for each cone were prepared from 2.0 cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared. The LBR for each circular cutout was calculated from the measured PDD curve using the open field of the 14 × 14 cm(2) cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter [σR(z)] of the electron shower was calculated. Unlike the commonly accepted assumption that σR(z) is independent of cutout size, it is shown that its value increases linearly with circular cutout size (R). Using this characteristic of the lateral spread parameter, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves. In this research, it is shown that the lateral spread parameter σR(z) increases with cutout size. For radii of circular cutout sizes up to the equilibrium range of the electron beam, the increase of σR(z) with the cutout size is linear. The percentage difference of the calculated PDD curve from the measured PDD data for irregularly shaped cutouts was under 1.0% in the region between the surface and therapeutic range of the electron beam. Similar results were obtained for four electron beam energies (6, 9, 12, and 15 MeV).
NASA Astrophysics Data System (ADS)
Hohenberger, Matthias; Casey, D. T.; Thomas, C. A.; Baker, K. L.; Spears, B. K.; Khan, S. F.; Hurricane, O. A.; Callahan, D.
2017-10-01
The Bigfoot approach to indirect-drive inertial confinement fusion (ICF) has been developed as a compromise trading high-convergence and areal densities for high implosion velocities, large adiabats and hydrodynamic stability. Shape control and predictability are maintained by using relatively short laser pulses and merging the shocks within the DT-ice layer. These design choices ultimately limit the theoretically achievable performance, and one strategy to increase the 1-D performance is to reduce the shell adiabat by extending the pulse shape. However, this can result in loss of low-mode symmetry control, as the hohlraum ``bubble,'' the high-Z material launched by the outer-cone beams during the early part of the laser pulse, has more time to expand and will eventually intercept inner-cone beams preventing them from reaching the hohlraum waist, thus losing equatorial capsule drive. We report on experimental results exploring shape control and predictability with extended pulse shapes in BigFoot implosions. Prepared by LLNL under Contract DE-AC52-07NA27344.
Confined disclinations: exterior versus material constraints in developable thin elastic sheets.
Efrati, Efi; Pocivavsek, Luka; Meza, Ruben; Lee, Ka Yee C; Witten, Thomas A
2015-02-01
We examine the shape change of a thin disk with an inserted wedge of material when it is pushed against a plane, using analytical, numerical, and experimental methods. Such sheets occur in packaging, surgery, and nanotechnology. We approximate the sheet as having vanishing strain, so that it takes a conical form in which straight generators converge to a disclination singularity. Then, its shape is that which minimizes elastic bending energy alone. Real sheets are expected to approach this limiting shape as their thickness approaches zero. The planar constraint forces a sector of the sheet to buckle into the third dimension. We find that the unbuckled sector is precisely semicircular, independent of the angle δ of the inserted wedge. We generalize the analysis to include conical as well as planar constraints and thereby establish a law of corresponding states for shallow cones of slope ε and thin wedges. In this regime, the single parameter δ/ε^{2} determines the shape. We discuss the singular limit in which the cone becomes a plane, and the unexpected slow convergence to the semicircular buckling observed in real sheets.
Confined disclinations: Exterior versus material constraints in developable thin elastic sheets
NASA Astrophysics Data System (ADS)
Efrati, Efi; Pocivavsek, Luka; Meza, Ruben; Lee, Ka Yee C.; Witten, Thomas A.
2015-02-01
We examine the shape change of a thin disk with an inserted wedge of material when it is pushed against a plane, using analytical, numerical, and experimental methods. Such sheets occur in packaging, surgery, and nanotechnology. We approximate the sheet as having vanishing strain, so that it takes a conical form in which straight generators converge to a disclination singularity. Then, its shape is that which minimizes elastic bending energy alone. Real sheets are expected to approach this limiting shape as their thickness approaches zero. The planar constraint forces a sector of the sheet to buckle into the third dimension. We find that the unbuckled sector is precisely semicircular, independent of the angle δ of the inserted wedge. We generalize the analysis to include conical as well as planar constraints and thereby establish a law of corresponding states for shallow cones of slope ɛ and thin wedges. In this regime, the single parameter δ /ɛ2 determines the shape. We discuss the singular limit in which the cone becomes a plane, and the unexpected slow convergence to the semicircular buckling observed in real sheets.
Baird, Mark E
2003-10-01
The size, shape, and absorption coefficient of a microalgal cell determines, to a first order approximation, the rate at which light is absorbed by the cell. The rate of absorption determines the maximum amount of energy available for photosynthesis, and can be used to calculate the attenuation of light through the water column, including the effect of packaging pigments within discrete particles. In this paper, numerical approximations are made of the mean absorption cross-section of randomly oriented cells, aA. The shapes investigated are spheroids, rectangular prisms with a square base, cylinders, cones and double cones with aspect ratios of 0.25, 0.5, 1, 2, and 4. The results of the numerical simulations are fitted to a modified sigmoid curve, and take advantage of three analytical solutions. The results are presented in a non-dimensionalised format and are independent of size. A simple approximation using a rectangular hyperbolic curve is also given, and an approach for obtaining the upper and lower bounds of aA for more complex shapes is outlined.
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Subramanian, S. V.
1980-01-01
Radiative transfer equations are derived under nonequilibrium conditions which include multilevel energy transitions. The nonequalibrium results, obtained with and without ablation injection in the shock layer, are found to be greatly influenced by the temperature distribution in the shock layer. In the absence of ablative products, the convective and radiative heating to the entry body are reduced significantly under nonequilibrium conditions. The influence of nonequilibrium is found to be greater at higher entry altitudes. With coupled ablation and carbon phenolic injection, 16 chemical species are used in the ablation layer for radiation absorption. Equilibrium and nonequilibrium results are compared under peak heating conditions. A 45 degree sphere cone, a 35 degree hyperboloid, and a 45 degree ellipsoid were used to study probe shape change. Results indicate that the shock layer flow field and heat transfer to the body are influenced significantly by the probe shape change. The effect of shape change on radiative heating of the afterbodies is found to be considerably larger for the sphere cone and ellipsoid than for the hyperboloid.
Simulating Photo-Refraction Images of Keratoconus and Near-Sightedness Eyes
NASA Astrophysics Data System (ADS)
Baker, Kevin; Lewis, James W. L.; Chen, Ying-Ling
2004-11-01
Keratoconus is an abnormal condition of the eye resulting from cone-shaped features on the cornea that degrade the quality of vision. These corneal features result from thinning and subsequent bulging due to intraocular pressure. The abnormal corneal curvature increases the refractive power asymmetrically and can be misdiagnosed by examiners as astigmatism and nearsightedness. Since corrective treatment is possible, early detection of this condition is desirable. Photo-refraction (PR) detects the retinal irradiance reflected from a single light source and is an inexpensive method used to identify refractive errors. For near- (far-) sighted eye, a crescent appears on the same (opposite) side of the light source. The capability of a PR device to detect keratoconus and to differentiate this condition from myopia was investigated. Using a commercial optical program, synthetic eye models were constructed for both near-sighted and keratoconus eyes. PR images of various eye conditions were calculated. The keratoconus cone shapes were modeled with typical published cone locations and sizes. The results indicate significant differences between the images of keratoconus and near-sighted eyes.
NASA Technical Reports Server (NTRS)
Nowak, R. J.; Albertson, C. W.; Hunt, L. R.
1984-01-01
The effects of free-stream unit Reynolds number, angle of attack, and nose shape on the aerothermal environment of a 3-ft basediameter, 12.5 deg half-angle cone were investigated in the Langley 8-foot high temperature tunnel at Mach 6.7. The average total temperature was 3300 R, the freestream unit Reynolds number ranged from 400,000 to 1,400,000 per foot, and the angle of attack ranged from 0 deg to 10 deg. Three nose configurations were tested on the cone: a 3-in-radius tip, a 1-in-radius tip on an ogive frustum, and a sharp tip on an ogive frustum. Surface-pressure and cold-wall heating-rate distributions were obtained for laminar, transitional temperature in the shock layer were obtained. The location of the start of transition moved forward both on windward and leeward sides with increasing free-stream Reynolds numbers, increasing angle of attack, and decreasing nose bluntness.
Usher syndrome type 1–associated cadherins shape the photoreceptor outer segment
Parain, Karine; Aghaie, Asadollah; Picaud, Serge
2017-01-01
Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23, encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15–containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. PMID:28495838
Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment.
Schietroma, Cataldo; Parain, Karine; Estivalet, Amrit; Aghaie, Asadollah; Boutet de Monvel, Jacques; Picaud, Serge; Sahel, José-Alain; Perron, Muriel; El-Amraoui, Aziz; Petit, Christine
2017-06-05
Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis , these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23 , encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15-containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. © 2017 Schietroma et al.
Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.
Vinokurov, Nikolay A; Jeong, Young Uk
2013-02-08
We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.
Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake
Schott, Ryan K.; Müller, Johannes; Yang, Clement G. Y.; Bhattacharyya, Nihar; Chan, Natalie; Xu, Mengshu; Morrow, James M.; Ghenu, Ana-Hermina; Loew, Ellis R.; Tropepe, Vincent; Chang, Belinda S. W.
2016-01-01
Vertebrate retinas are generally composed of rod (dim-light) and cone (bright-light) photoreceptors with distinct morphologies that evolved as adaptations to nocturnal/crepuscular and diurnal light environments. Over 70 years ago, the “transmutation” theory was proposed to explain some of the rare exceptions in which a photoreceptor type is missing, suggesting that photoreceptors could evolutionarily transition between cell types. Although studies have shown support for this theory in nocturnal geckos, the origins of all-cone retinas, such as those found in diurnal colubrid snakes, remain a mystery. Here we investigate the evolutionary fate of the rods in a diurnal garter snake and test two competing hypotheses: (i) that the rods, and their corresponding molecular machinery, were lost or (ii) that the rods were evolutionarily modified to resemble, and function, as cones. Using multiple approaches, we find evidence for a functional and unusually blue-shifted rhodopsin that is expressed in small single “cones.” Moreover, these cones express rod transducin and have rod ultrastructural features, providing strong support for the hypothesis that they are not true cones, as previously thought, but rather are modified rods. Several intriguing features of garter snake rhodopsin are suggestive of a more cone-like function. We propose that these cone-like rods may have evolved to regain spectral sensitivity and chromatic discrimination as a result of ancestral losses of middle-wavelength cone opsins in early snake evolution. This study illustrates how sensory evolution can be shaped not only by environmental constraints but also by historical contingency in forming new cell types with convergent functionality. PMID:26715746
Litts, Katie M.; Wang, Xiaolin; Clark, Mark E.; Owsley, Cynthia; Freund, K. Bailey; Curcio, Christine A.; Zhang, Yuhua
2016-01-01
Purpose To investigate the microscopic structure of outer retinal tubulation (ORT) and optical properties of cone photoreceptors in vivo, we studied ORT appearance by multimodal imaging, including spectral domain optical coherence tomography (SD-OCT) and adaptive optics scanning laser ophthalmoscopy (AOSLO). Methods Four eyes of 4 subjects with advanced AMD underwent color fundus photography, infrared reflectance imaging, SD-OCT, and AOSLO with a high-resolution research instrument. ORT was identified in closely spaced (11 μm) SD-OCT volume scans. Results ORT in cross-sectional and en face SD-OCT was a hyporeflective area representing a lumen surrounded by a hyperreflective border consisting of cone photoreceptor mitochondria and external limiting membrane, per previous histology. In contrast, ORT by AOSLO was a hyporeflective structure of the same shape as in en face SD-OCT but lacking visualizable cone photoreceptors. Conclusion Lack of ORT cone reflectivity by AOSLO indicates that cones have lost their normal directionality and waveguiding property due to loss of outer segments and subsequent retinal remodeling. Reflective ORT cones by SD-OCT, in contrast, may depend partly on mitochondria as light scatterers within inner segments of these degenerating cells, a phenomenon enhanced by coherent imaging. Multimodal imaging of ORT provides insight into cone degeneration and reflectivity sources in OCT. PMID:27584549
The importance of the transport system in shaping the growth and form of kimberlite volcanoes
NASA Astrophysics Data System (ADS)
McClintock, Murray; Ross, Pierre-Simon; White, James D. L.
2009-11-01
Understanding the range of transport styles recorded by kimberlite deposits is key to describing the type and style of eruptions. Building a clear picture of the processes that shape deposits is essential for selecting exploration targets and evaluating the grade and value of diamond-bearing kimberlites. Variations in grade reflect differences in the diamond content of different magma parcels erupted during the lifetime of the kimberlite volcano, sorting during transport of eruption products, or reworking of diamonds during crater growth, cone collapse and erosion. The form of the kimberlite volcano is largely determined when the magma arrives near the surface. If magma comes into contact with external water, transport will be driven by a combination of magmatic gases + steam. From a diamond exploration perspective, the resulting deep diatremes make the most attractive targets because they survive erosion and tend to form large geophysical anomalies. If water is too abundant, a tuff cone or tuff ring with no diatreme or a shallow one will form. On the other hand, if external water is very limited or if the conduit is rapidly sealed by chilled melt, the transport system will be driven by magmatic gases alone. The result will then be a spatter cone or cinder cone underlain by a dike, possibly with a related lava flow, but with no diatreme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Bin; Li, Yongbao; Liu, Bo
Purpose: CyberKnife system is initially equipped with fixed circular cones for stereotactic radiosurgery. Two dose calculation algorithms, Ray-Tracing and Monte Carlo, are available in the supplied treatment planning system. A multileaf collimator system was recently introduced in the latest generation of system, capable of arbitrarily shaped treatment field. The purpose of this study is to develop a model based dose calculation algorithm to better handle the lateral scatter in an irregularly shaped small field for the CyberKnife system. Methods: A pencil beam dose calculation algorithm widely used in linac based treatment planning system was modified. The kernel parameters and intensitymore » profile were systematically determined by fitting to the commissioning data. The model was tuned using only a subset of measured data (4 out of 12 cones) and applied to all fixed circular cones for evaluation. The root mean square (RMS) of the difference between the measured and calculated tissue-phantom-ratios (TPRs) and off-center-ratio (OCR) was compared. Three cone size correction techniques were developed to better fit the OCRs at the penumbra region, which are further evaluated by the output factors (OFs). The pencil beam model was further validated against measurement data on the variable dodecagon-shaped Iris collimators and a half-beam blocked field. Comparison with Ray-Tracing and Monte Carlo methods was also performed on a lung SBRT case. Results: The RMS between the measured and calculated TPRs is 0.7% averaged for all cones, with the descending region at 0.5%. The RMSs of OCR at infield and outfield regions are both at 0.5%. The distance to agreement (DTA) at the OCR penumbra region is 0.2 mm. All three cone size correction models achieve the same improvement in OCR agreement, with the effective source shift model (SSM) preferred, due to their ability to predict more accurately the OF variations with the source to axis distance (SAD). In noncircular field validation, the pencil beam calculated results agreed well with the film measurement of both Iris collimators and the half-beam blocked field, fared much better than the Ray-Tracing calculation. Conclusions: The authors have developed a pencil beam dose calculation model for the CyberKnife system. The dose calculation accuracy is better than the standard linac based system because the model parameters were specifically tuned to the CyberKnife system and geometry correction factors. The model handles better the lateral scatter and has the potential to be used for the irregularly shaped fields. Comprehensive validations on MLC equipped system are necessary for its clinical implementation. It is reasonably fast enough to be used during plan optimization.« less
Initial '80s Development of Inflated Antennas
NASA Technical Reports Server (NTRS)
Friese, G. J.; Bilyeu, G. D.; Thomas, M.
1983-01-01
State of the art technology was considered in the definition and documentation of a membrane surface suitable for use in a space reflector system for long durations in orbit. Requirements for a metal foil-plastic laminate structural element were determined and a laboratory model of a rigidized element to test for strength characteristics was constructed. Characteristics of antennas ranging from 10 meters to 1000 meters were determined. The basic antenna configuration studied consists of (1) a thin film reflector, (2) a thin film cone, (3) a self-rigidizing structural torus at the interface of the cone and reflector; and (4) an inflation system. The reflector is metallized and, when inflated, has a parabolic shape. The cone not only completes the enclosure of the inflatant, but also holds the antenna feed at its apex. The torus keeps the inflated cone-reflector from collapsing inward. Laser test equipment determined the accuracy of the inflated paraboloids.
Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina
Sabesan, Ramkumar; Sincich, Lawrence C.
2017-01-01
A remarkable feature of human vision is that the retina and brain have evolved circuitry to extract useful spatial and spectral information from signals originating in a photoreceptor mosaic with trichromatic constituents that vary widely in their relative numbers and local spatial configurations. A critical early transformation applied to cone signals is horizontal-cell-mediated lateral inhibition, which imparts a spatially antagonistic surround to individual cone receptive fields, a signature inherited by downstream neurons and implicated in color signaling. In the peripheral retina, the functional connectivity of cone inputs to the circuitry that mediates lateral inhibition is not cone-type specific, but whether these wiring schemes are maintained closer to the fovea remains unsettled, in part because central retinal anatomy is not easily amenable to direct physiological assessment. Here, we demonstrate how the precise topography of the long (L)-, middle (M)-, and short (S)-wavelength-sensitive cones in the human parafovea (1.5° eccentricity) shapes perceptual sensitivity. We used adaptive optics microstimulation to measure psychophysical detection thresholds from individual cones with spectral types that had been classified independently by absorptance imaging. Measured against chromatic adapting backgrounds, the sensitivities of L and M cones were, on average, receptor-type specific, but individual cone thresholds varied systematically with the number of preferentially activated cones in the immediate neighborhood. The spatial and spectral patterns of these interactions suggest that interneurons mediating lateral inhibition in the central retina, likely horizontal cells, establish functional connections with L and M cones indiscriminately, implying that the cone-selective circuitry supporting red–green color vision emerges after the first retinal synapse. SIGNIFICANCE STATEMENT We present evidence for spatially antagonistic interactions between individual, spectrally typed cones in the central retina of human observers using adaptive optics. Using chromatic adapting fields to modulate the relative steady-state activity of long (L)- and middle (M)-wavelength-sensitive cones, we found that single-cone detection thresholds varied predictably with the spectral demographics of the surrounding cones. The spatial scale and spectral pattern of these photoreceptor interactions were consistent with lateral inhibition mediated by retinal horizontal cells that receive nonselective input from L and M cones. These results demonstrate a clear link between the neural architecture of the visual system inputs—cone photoreceptors—and visual perception and have implications for the neural locus of the cone-specific circuitry supporting color vision. PMID:28871030
Early Childhood: Holiday Science.
ERIC Educational Resources Information Center
McIntyre, Margaret, Ed.
1981-01-01
Describes science activities related to Christmas and Thanksgiving, including identification of evergreen trees, tree shapes, pine cone and needle collections, edible decorations, and instructions for preparing bird food called "bird pudding." (SK)
An approximate method for calculating three-dimensional inviscid hypersonic flow fields
NASA Technical Reports Server (NTRS)
Riley, Christopher J.; Dejarnette, Fred R.
1990-01-01
An approximate solution technique was developed for 3-D inviscid, hypersonic flows. The method employs Maslen's explicit pressure equation in addition to the assumption of approximate stream surfaces in the shock layer. This approximation represents a simplification to Maslen's asymmetric method. The present method presents a tractable procedure for computing the inviscid flow over 3-D surfaces at angle of attack. The solution procedure involves iteratively changing the shock shape in the subsonic-transonic region until the correct body shape is obtained. Beyond this region, the shock surface is determined using a marching procedure. Results are presented for a spherically blunted cone, paraboloid, and elliptic cone at angle of attack. The calculated surface pressures are compared with experimental data and finite difference solutions of the Euler equations. Shock shapes and profiles of pressure are also examined. Comparisons indicate the method adequately predicts shock layer properties on blunt bodies in hypersonic flow. The speed of the calculations makes the procedure attractive for engineering design applications.
Lanis, Alejandro; Álvarez Del Canto, Orlando
2015-01-01
The incorporation of virtual engineering into dentistry and the digitization of information are providing new perspectives and innovative alternatives for dental treatment modalities. The use of digital surface scanners with surgical planning software allows for the combination of the radiographic, prosthetic, surgical, and laboratory fields under a common virtual scenario, permitting complete digital treatment planning. In this article, the authors present a clinical case in which a guided implant surgery was performed based on a complete digital surgical plan combining the information from a cone beam computed tomography scan and the virtual simulation obtained from the 3Shape TRIOS intraoral surface scanner. The information was imported to and combined in the 3Shape Implant Studio software for guided implant surgery planning. A surgical guide was obtained by a 3D printer, and the surgical procedure was done using the Biohorizons Guided Surgery Kit and its protocol.
Jo, Hyoung-Hoon; Min, Jeong-Bum
2016-01-01
Objectives The purpose of this study was to investigate the incidence of root fusion and C-shaped root canals in maxillary molars, and to classify the types of C-shaped canal by analyzing cone-beam computed tomography (CBCT) in a Korean population. Materials and Methods Digitized CBCT images from 911 subjects were obtained in Chosun University Dental Hospital between February 2010 and July 2012 for orthodontic treatment. Among them, a total of selected 3,553 data of maxillary molars were analyzed retrospectively. Tomography sections in the axial, coronal, and sagittal planes were displayed by PiViewstar and Rapidia MPR software (Infinitt Co.). The incidence and types of root fusion and C-shaped root canals were evaluated and the incidence between the first and the second molar was compared using Chi-square test. Results Root fusion was present in 3.2% of the first molars and 19.5% of the second molars, and fusion of mesiobuccal and palatal root was dominant. C-shaped root canals were present in 0.8% of the first molars and 2.7% of the second molars. The frequency of root fusion and C-shaped canal was significantly higher in the second molar than the first molar (p < 0.001). Conclusions In a Korean population, maxillary molars showed total 11.3% of root fusion and 1.8% of C-shaped root canals. Furthermore, root fusion and C-shaped root canals were seen more frequently in the maxillary second molars. PMID:26877991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huh, S; Lee, S; Dagan, R
Purpose: To investigate the feasibility of utilizing Dynamic Arc (DA) and IMRT with 5mm MLC leaf of VERO treatment unit for SRS/FSRT brain cancer patients with non-invasive stereotactic treatments. The DA and IMRT plans using the VERO unit (BrainLab Inc, USA) are compared with cone-based planning and proton plans to evaluate their dosimetric advantages. Methods: The Vero treatment has unique features like no rotational or translational movements of the table during treatments, Dynamic Arc/IMRT, tracking of IR markers, limitation of Ring rotation. Accuracies of the image fusions using CBCT, orthogonal x-rays, and CT are evaluated less than ∼ 0.7mm withmore » a custom-made target phantom with 18 hidden targets. 1mm margin is given to GTV to determine PTV for planning constraints considering all the uncertainties of planning computer and mechanical uncertainties of the treatment unit. Also, double-scattering proton plans with 6F to 9F beams and typical clinical parameters, multiple isocenter plans with 6 to 21 isocenters, and DA/IMRT plans are evaluated to investigate the dosimetric advantages of the DA/IMRT for complex shape of targets. Results: 3 Groups of the patients are divided: (1) Group A (complex target shape), CI's are same for IMRT, and DGI of the proton plan are better by 9.5% than that of the IMRT, (2) Group B, CI of the DA plans (1.91+/−0.4) are better than cone-based plan, while DGI of the DA plan is 4.60+/−1.1 is better than cone-based plan (5.32+/−1.4), (3) Group C (small spherical targets), CI of the DA and cone-based plans are almost the same. Conclusion: For small spherical targets, cone-based plans are superior to other 2 plans: DS proton and DA plans. For complex or irregular plans, dynamic and IMRT plans are comparable to cone-based and proton plans for complex targets.« less
Possible Rootless Cones or Pseudo craters on Mars
NASA Technical Reports Server (NTRS)
1999-01-01
High-resolution images from the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) have revealed small cone-shaped structures on lava flows in southern Elysium Planitia, Marte Valles, and northwestern Amazonis Planitia in the northern hemisphere of the red planet. The most likely interpretation of these cones is that they may be volcanic features known as 'pseudo craters' or 'rootless cones.' They share several key characteristics with pseudo craters on Earth: they are distributed in small clusters independent of structural patterns, are superimposed on fresh lava flows, and they do not appear to have erupted lavas themselves. The white box in the picture above left shows the location of one of the MOC images of possible pseudocraters on Mars. The white box is drawn upon a MOC red wide angle context image acquired at the same time as the high resolution view, shown on the right above. Located in northwestern Amazonis Planitia near 24.8oN, 171.3oW, both the context image and high-resolution view are illuminated from the lower left. The high resolution view shows several possible pseudocraters (cone-shaped features with holes or pits at their summits) that occur on top of a rough-textured lava plain. The context frame covers an area 115 km (71 mi) across, the high-resolution view is 3 km (1.9 mi) across. Pseudocraters form by explosions due to the interaction of molten lava with a water-rich surface. Possible martian pseudocraters are of interest because they may mark the locations of shallow water or ice at the time the lava was emplaced. Viking Orbiter images have shown structures in other regions of Mars that were interpreted to be pseudocraters, but the interpretations were uncertain because the morphology was poorly resolved, it was unclear if they occurred on volcanic surfaces, and they have diameters as much as a factor of 3 larger than terrestrial pseudocraters. The cone-shaped morphology is well resolved in the cones imaged by MOC, and they have basal diameters of less than 250 m (273 yards), consistent with terrestrial examples. The cones rest on a surface with a distinctive morphology consisting of ridged plates that have rafted apart, which MOC team members have interpreted as the surface of voluminous lava flows. The surface shown here (above right) looks relatively fresh and has very few impact craters on it, which suggests that the lava flows and the cones are both geologically young. However, MOC images in other areas reveal such apparently young surfaces being exhumed (presumably by wind erosion) from beneath a blanket of overlying material. Impact processes may harden the blanket, or cover it with materials that cannot be removed by wind, so the wind erosion leaves behind elevated 'pedestalcraters.' The cones shown here are not typical of pedestal craters, but it is important to consider this alternative interpretation. MGS MOC first began taking pictures of Mars in mid-September 1997. The planet that has been revealed by this camera is often strange, new, and exciting. The possibility that lava and water or ice have interacted to create features like pseudocraters indicates that Mars has had a diverse and complex past that researchers are only just beginning to understand.Development of Optimized Combustors and Thermoelectric Generators for Palm Power Generation
2004-10-26
manufacturing techniques and microfabrication, on the chemical kinetics of JP-8 surrogates and on the development of advanced laser diagnostics for JP-8...takes the shape of a cone from the tip of which a thin liquid thread emerges, in the so-called cone-jet mode [1]. This microjet breaks into a stream of...combustion systems. 2. The development of a diagnostic technique based on two-color laser induced fluorescence from fluorescence tags added to the fuel
Parmelee, Caitlyn M.; Chen, Minghui; Cork, Karlene M.; Curto, Carina; Thoreson, Wallace B.
2014-01-01
At the first synapse in the vertebrate visual pathway, light-evoked changes in photoreceptor membrane potential alter the rate of glutamate release onto second-order retinal neurons. This process depends on the synaptic ribbon, a specialized structure found at various sensory synapses, to provide a supply of primed vesicles for release. Calcium (Ca2+) accelerates the replenishment of vesicles at cone ribbon synapses, but the mechanisms underlying this acceleration and its functional implications for vision are unknown. We studied vesicle replenishment using paired whole-cell recordings of cones and postsynaptic neurons in tiger salamander retinas and found that it involves two kinetic mechanisms, the faster of which was diminished by calmodulin (CaM) inhibitors. We developed an analytical model that can be applied to both conventional and ribbon synapses and showed that vesicle resupply is limited by a simple time constant, τ = 1/(Dρδs), where D is the vesicle diffusion coefficient, δ is the vesicle diameter, ρ is the vesicle density, and s is the probability of vesicle attachment. The combination of electrophysiological measurements, modeling, and total internal reflection fluorescence microscopy of single synaptic vesicles suggested that CaM speeds replenishment by enhancing vesicle attachment to the ribbon. Using electroretinogram and whole-cell recordings of light responses, we found that enhanced replenishment improves the ability of cone synapses to signal darkness after brief flashes of light and enhances the amplitude of responses to higher-frequency stimuli. By accelerating the resupply of vesicles to the ribbon, CaM extends the temporal range of synaptic transmission, allowing cones to transmit higher-frequency visual information to downstream neurons. Thus, the ability of the visual system to encode time-varying stimuli is shaped by the dynamics of vesicle replenishment at photoreceptor synaptic ribbons. PMID:25311636
NASA Astrophysics Data System (ADS)
Sosa, C. S.; Thompson, S. J.; Chichester, D. L.; Clarke, S. D.; Di Fulvio, A.; Pozzi, S. A.
2018-08-01
An increase in light-collection efficiency (LCE) improves the energy resolution of scintillator-based detection systems. An improvement in energy resolution can benefit detector performance, for example by lowering the measurement threshold and achieving greater accuracy in light-output calibration. This work shows that LCE can be increased by modifying the scintillator shape to reduce optical-photon reflections, thereby decreasing transmission and absorption likelihood at the reflector boundary. The energy resolution of four organic scintillators (EJ200) were compared: two cones and two right-circular cylinders, all with equal base diameter and height (50 mm). The sides of each shape had two surface conditions: one was polished and the other was ground. Each scintillator was coupled to the center of four photomultiplier tube (PMT) configurations of different diameters. The photocathode response of all PMTs was assessed as a function of position using a small cube (5 mm height) of EJ200. The worst configuration, a highly polished conical scintillator mated to a PMT of equal base diameter, produced a smeared energy spectrum. The cause of spectrum smearing is explored in detail. Results demonstrate that a ground cone had the greatest improvement in energy resolution over a ground cylinder by approximately 16.2% at 478 keVee, when using the largest diameter (127 mm) PMT. This result is attributed to the greater LCE of the cone, its ground surface, and the uniform photocathode response near center of the largest PMT. Optical-photon transport simulations in Geant4 of the cone and cylinder assuming a diffuse reflector and a uniform photocathode were compared to the best experimental configuration and agreed well. If a detector application requires excellent energy resolution above all other considerations, a ground cone on a large PMT is recommended over a cylinder.
Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Na, Hyeonock; Moon, Y.-J.; Lee, Harim
2017-04-01
It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory (STEREO)/Sun-Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft (SOHO or one of STEREO A and B) and limb ones by the other spacecraft (One of STEREO A and B or SOHO). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (I.e., a triangulation method and a Graduated Cylindrical Shell model).
Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Hyeonock; Moon, Y.-J.; Lee, Harim, E-mail: nho0512@khu.ac.kr, E-mail: moonyj@khu.ac.kr
It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO) /Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory ( STEREO )/Sun–Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft ( SOHO or one of STEREO A and B ) and limbmore » ones by the other spacecraft (One of STEREO A and B or SOHO ). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO /LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model).« less
Vesicle Pool Size at the Salamander Cone Ribbon Synapse
Bartoletti, Theodore M.; Babai, Norbert
2010-01-01
Cone light responses are transmitted to postsynaptic neurons by changes in the rate of synaptic vesicle release. Vesicle pool size at the cone synapse constrains the amount of release and can thus shape contrast detection. We measured the number of vesicles in the rapidly releasable and reserve pools at cone ribbon synapses by performing simultaneous whole cell recording from cones and horizontal or off bipolar cells in the salamander retinal slice preparation. We found that properties of spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs) are representative of mEPSCs evoked by depolarizing presynaptic stimulation. Strong, brief depolarization of the cone stimulated release of the entire rapidly releasable pool (RRP) of vesicles. Comparing charge transfer of the EPSC with mEPSC charge transfer, we determined that the fast component of the EPSC reflects release of ∼40 vesicles. Comparing EPSCs with simultaneous presynaptic capacitance measurements, we found that horizontal cell EPSCs constitute 14% of the total number of vesicles released from a cone terminal. Using a fluorescent ribeye-binding peptide, we counted ∼13 ribbons per cone. Together, these results suggest each cone contacts a single horizontal cell at ∼2 ribbons. The size of discrete components in the EPSC amplitude histogram also suggested ∼2 ribbon contacts per cell pair. We therefore conclude there are ∼20 vesicles per ribbon in the RRP, similar to the number of vesicles contacting the plasma membrane at the ribbon base. EPSCs evoked by lengthy depolarization suggest a reserve pool of ∼90 vesicles per ribbon, similar to the number of additional docking sites further up the ribbon. PMID:19923246
Color signals through dorsal and ventral visual pathways
Conway, Bevil R.
2014-01-01
Explanations for color phenomena are often sought in the retina, LGN and V1, yet it is becoming increasingly clear that a complete account will take us further along the visual-processing pathway. Working out which areas are involved is not trivial. Responses to S-cone activation are often assumed to indicate that an area or neuron is involved in color perception. However, work tracing S-cone signals into extrastriate cortex has challenged this assumption: S-cone responses have been found in brain regions, such as MT, not thought to play a major role in color perception. Here we review the processing of S-cone signals across cortex and present original data on S-cone responses measured with fMRI in alert macaque, focusing on one area in which S-cone signals seem likely to contribute to color (V4/posterior inferior temporal cortex), and on one area in which S signals are unlikely to play a role in color (MT). We advance a hypothesis that the S-cone signals in color-computing areas are required to achieve a balanced neural representation of perceptual color space, while the S-cone signals in non-color-areas provide a cue to illumination (not luminance) and confer sensitivity to the chromatic contrast generated by natural daylight (shadows, illuminated by ambient sky, surrounded by direct sunlight). This sensitivity would facilitate the extraction of shape-from-shadow signals to benefit global scene analysis and motion perception. PMID:24103417
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John
To determine the hoop tensile properties of irradiated fuel cladding in a hot cell, a cone wedge ring expansion test method was developed. A four-piece wedge insert was designed with tapered angles matched to the cone shape of a loading piston. The ring specimen was expanded in the radial direction by the lateral expansion of the wedges under the downward movement of the piston. The advantages of the proposed method are that implementation of the test setup in a hot cell is simple and easy, and that it enables a direct strain measurement of the test specimen from the piston’smore » vertical displacement soon after the wedge-clad contact resistance is initiated.« less
Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object.
Jordan, Stephen P; Crespi, Vincent H
2004-12-17
Graphene cones have two degenerate configurations: their original shape and its inverse. When the apex is depressed by an external probe, the simulated mechanical response is highly nonlinear, with a broad constant-force mode appearing after a short initial Hooke's law regime. For chiral cones, the final state is an atomically exact chiral invert of the original system. If the local reflection symmetry of the graphene sheet is broken by the chemisorption of just five hydrogen atoms to the apex, then the maximal yield strength of the cone increases by approximately 40%. The high symmetry of the conical geometry can concentrate micron-scale mechanical work with atomic precision, providing a way to activate specific chemical bonds.
Determining the Full Halo Coronal Mass Ejection Characteristics
NASA Astrophysics Data System (ADS)
Fainshtein, V. G.
2010-11-01
Observing halo coronal mass ejections (HCMEs) in the coronagraph field of view allows one to only determine the apparent parameters in the plane of the sky. Recently, several methods have been proposed allowing one to find some true geometrical and kinematical parameters of HCMEs. In most cases, a simple cone model was used to describe the CME shape. Observations show that various modifications of the cone model ("ice cream models") are most appropriate for describing the shapes of individual CMEs. This paper uses the method of determining full HCME parameters proposed by the author earlier, for determining the parameters of 45 full HCMEs, with various modifications of their shapes. I show that the determined CME characteristics depend significantly on the chosen CME shape. I conclude that the absence of criteria for a preliminary evaluation of the CME shape is a major source of error in determining the true parameters of a full HCME with any of the known methods. I show that, regardless of the chosen CME form, the trajectory of practically all the HCMEs in question deviate from the radial direction towards the Sun-Earth axis at the initial stage of their movement, and their angular size, on average, significantly exceeds that of all the observable CMEs.
NASA Astrophysics Data System (ADS)
Adewoyin, O. O.; Joshua, E. O.; Akinyemi, M. L.; Omeje, M.; Joel, E. S.
2017-05-01
Adequate information on the condition of the subsurface is very important for site evaluation for engineering purposes. In this study two dimensional (2D) geoelectrical resistivity survey and cone penetration tests were conducted to study the hazardous effect of excess near surface water on the foundation of building in a reclaimed land located at Victoria Island area of Lagos State. The results of the inverted 2D geoelectrical resistivity data revealed three distinct geoelectrical layers characterized by low to moderate electrical resistivity of 2.23 and 129Ωm and 9.46 to 636Ωm respectively. The topsoil is characterized by wet sandy soil, which is underlain by sandy clay and banded at the below by a geologic formation of low resistivity which is suspected to be clay. The clay material may be responsible for the excess water retention observed in the area. The CPT method on the other hand revealed a geological formation of low resistance to penetration between 2-3 kg/cm2 from the topsoil to a depth of 7 m, which may be the effect of excess water in the near surface. This study revealed that the foundation of building may not be founded directly on the soil in any reclaimed land as this may result in collapse as a result of upward migration of water to the near surface.
Circuitry to explain how the relative number of L and M cones shapes color experience
Schmidt, Brian P.; Touch, Phanith; Neitz, Maureen; Neitz, Jay
2016-01-01
The wavelength of light that appears unique yellow is surprisingly consistent across people even though the ratio of middle (M) to long (L) wavelength sensitive cones is strikingly variable. This observation has been explained by normalization to the mean spectral distribution of our shared environment. Our purpose was to reconcile the nearly perfect alignment of everyone's unique yellow through a normalization process with the striking variability in unique green, which varies by as much as 60 nm between individuals. The spectral location of unique green was measured in a group of volunteers whose cone ratios were estimated with a technique that combined genetics and flicker photometric electroretinograms. In contrast to unique yellow, unique green was highly dependent upon relative cone numerosity. We hypothesized that the difference in neural architecture of the blue-yellow and red-green opponent systems in the presence of a normalization process creates the surprising dependence of unique green on cone ratio. We then compared the predictions of different theories of color vision processing that incorporate L and M cone ratio and a normalization process. The results of this analysis reveal that—contrary to prevailing notions--postretinal contributions may not be required to explain the phenomena of unique hues. PMID:27366885
NASA Astrophysics Data System (ADS)
Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei
2016-10-01
technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser range profile (LRP).
NASA Technical Reports Server (NTRS)
Hamaker, Frank M; Neice, Stanford E; Wong, Thomas J
1953-01-01
The similarity law for nonsteady, inviscid, hypersonic flow about slender three-dimensional shapes is derived. Conclusions drawn are shown to be valid for rotational flow. Requirements for dynamic similarity of related shapes in free flight are obtained. The law is examined for steady flow about related three-dimensional shapes. Results of an experimental investigation of the pressures acting on two inclined cones are found to check the law as it applies to bodies of revolution.
Non-imaging Optics of multi-LED light source for hyperspectral imaging
NASA Astrophysics Data System (ADS)
Islam, Kashif; Gosnell, Martin E.; Ploschner, Martin; Anwer, Ayad G.; Goldys, Ewa M.
2016-12-01
The main objective of our work was to design a light source which should be capable to collect and illuminate light of LEDs at the smaller aperture of cone (9mm) which could be either coupled with secondary optics of a microscope or utilized independently for hyperspectral studies. Optimized performance of cone was assessed for different substrates (diffused glass silica, Alumina, Zerodur glass, acrylic plastic) and coating surfaces (white diffused, flat white paint, standard mirror) using a simulation software. The parameters optimized for truncated cone include slanting length and Top Major R (Larger diameter of cone) which were also varied from 10 to 350 mm and 10 to 80 mm respectively. In order to see affect of LED positions on cone efficiency, the positions of LED were varied from central axis to off-axis. Similarly, interLED distance was varied from 2 mm to 6 mm to reckon its effect on the performance of cone. The optimized Slant length (80 mm) and Top Major R (50 mm) were determined for substrates (glass zerodur or acrylic plastic) and coating surface (standard mirror). The output profile of truncated source was found non uniform, which is a typical presentation of non imaging optics problem. The maximum efficiency of cone has been found for LED at the centre and it was found decreasing as LED moves away from the central axis. Moreover, shorter the interLED distance, better is the performance of cone. The primary optics of cone shaped light source is capable to lit visible and UV LEDs in practical design. The optimum parameters obtained through simulations could be implemented in the fabrication procedure if the reflectance of source would have been maintained upto finish level of a standard mirror.
SU-F-BRCD-03: Dose Calculation of Electron Therapy Using Improved Lateral Buildup Ratio Method.
Gebreamlak, W; Tedeschi, D; Alkhatib, H
2012-06-01
To calculate the percentage depth dose of any irregular shape electron beam using modified lateral build-up-ratio method. Percentage depth dose (PDD) curves were measured using 6, 9, 12, and 15MeV electron beam energies for applicator cone sizes of 6×6, 10×10, 14×14, and 14×14cm 2 . Circular cutouts for each cone were prepared from 2.0cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared. The scanning was done using a water tank and two diodes - one for the signal and the other a stationary reference outside the tank. The water surface was determined by scanning the signal diode slowly from water to air and by noting the sharp change of the percentage depth dose curve at the water/air interface. The lateral build-up-ratio (LBR) for each circular cutout was calculated from the measured PDD curve using the open field of the 14×14 cm 2 cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter (sigma) of the electron shower was calculated. Unlike the commonly accepted assumption that sigma is independent of cutout size, it is shown that the sigma value increases linearly with circular cutout size. Using this characteristic of sigma, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves. In this research, it is shown that sigma increases with cutout size. For radius of circular cutout sizes up to the equilibrium range of the electron beam, the increase of sigma with the cutout size is linear. The percentage difference of the calculated PDD from the measured PDD for irregularly shaped cutouts was under 1.0%. Similar Result was obtained for four electron beam energies (6, 9, 12, and 15MeV). © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Leukhin, Yu L.; Pankratov, E. V.; Karpov, S. V.
2017-11-01
We have carried out Investigation into aerodynamic and convective heat transfer of the annular channel. Inner or outer surface of annular channel has shape of blunt-nosed cone tapering to outlet end. Truncated cone connects to a cyclone swirling flow generator. Asymmetric and unsteady flow from the swirling generator in the shape of periodic process gives rise to the formation of secondary flows of the type Taylor-Görtler vortices. These vortices occupy the whole space of the annular channel, with the axes, which coincide with the motion direction of the major stream. Contraction of cross-sectional area of channel (in both cases 52%) causes a marked increase in total velocity of flow, primarily due to its axial component and promotes a more intensive vortex generation. Vortex structures have a significant influence on both average heat transfer and surface distribution. At cross-sections of the annular channel we observe similarity of curves describing distribution of total velocity about wall and heat flux density on the surface. The coordinates of maximum and minimum values of velocity and heat flux coincide. At the average cross-section channel of maximum value of heat transfer is greater than minimum of about by a factor of 2.7 times for outer heat transfer surface and about by a factor of 1.7 times for inner heat transfer surface. Taper channel has a much higher influence on heat transfer of the inner surface than the outer surface and manifests itself at lower values of dimensionless axial coordinate. For the investigated taper cone geometry of the annular channel the heat transfer coefficient of inner surface increases at the outlet section and exceeds value in comparison with straight-line section by 91 … 98%. Heat transfer of the outer cylinder in the same section increases only by 5 … 11%. The increase in average heat transfer over the surfaces is 36% and 4% respectively.
Synaptic Ribbon Active Zones in Cone Photoreceptors Operate Independently from One Another
Grassmeyer, Justin J.; Thoreson, Wallace B.
2017-01-01
Cone photoreceptors depolarize in darkness to release glutamate-laden synaptic vesicles. Essential to release is the synaptic ribbon, a structure that helps organize active zones by clustering vesicles near proteins that mediate exocytosis, including voltage-gated Ca2+ channels. Cone terminals have many ribbon-style active zones at which second-order neurons receive input. We asked whether there are functionally significant differences in local Ca2+ influx among ribbons in individual cones. We combined confocal Ca2+ imaging to measure Ca2+ influx at individual ribbons and patch clamp recordings to record whole-cell ICa in salamander cones. We found that the voltage for half-maximal activation (V50) of whole cell ICa in cones averaged −38.1 mV ± 3.05 mV (standard deviation [SD]), close to the cone membrane potential in darkness of ca. −40 mV. Ca2+ signals at individual ribbons varied in amplitude from one another and showed greater variability in V50 values than whole-cell ICa, suggesting that Ca2+ signals can differ significantly among ribbons within cones. After accounting for potential sources of technical variability in measurements of Ca2+ signals and for contributions from cone-to-cone differences in ICa, we found that the variability in V50 values for ribbon Ca2+ signals within individual cones showed a SD of 2.5 mV. Simulating local differences in Ca2+ channel activity at two ribbons by shifting the V50 value of ICa by ±2.5 mV (1 SD) about the mean suggests that when the membrane depolarizes to −40 mV, two ribbons could experience differences in Ca2+ influx of >45%. Further evidence that local Ca2+ changes at ribbons can be regulated independently was obtained in experiments showing that activation of inhibitory feedback from horizontal cells (HCs) to cones in paired recordings changed both amplitude and V50 of Ca2+ signals at individual ribbons. By varying the strength of synaptic output, differences in voltage dependence and amplitude of Ca2+ signals at individual ribbons shape the information transmitted from cones to downstream neurons in vision. PMID:28744203
Reusable captive blind fastener
NASA Technical Reports Server (NTRS)
Peterson, S. A. (Inventor)
1981-01-01
A one piece reusable fastener capable of joining materials together from one side (blind backside) comprises a screw driven pin ending in a wedge-shaped expander cone. The cone cooperates within a slotted collar end which has a number of tangs on a cylindrical body. The fastener is set by inserting it through aligned holes in the workpieces to be joined. Turning the pin in one direction draws the cone into the collar, deforming the tangs radially outward to mate with tapered back-tapered hold in the workpiece, thus fastening the two pieces together. Reversing the direction of the pin withdraws the cone from the collar, and allows the tangs to resume their contracted configuration without withdrawing the fastener from the insertion hole. The fastener is capable of joining materials together from only one side with substantial strength in tension and shear over many resue attachment cycles, with no special operations on the main assembly parts other than the tapering of the back end of the insertion hole.
Sorting of colors in the retina
NASA Astrophysics Data System (ADS)
Ribak, Erez; Labin, Amichai; Safuri, Shadi; Perlman, Ido
2015-03-01
Our image of the world is detected by photoreceptors, lying at the bottom of the nearly-transparent retina. Lateral neural layers for processing the image temporally, spectrally, and spatially come in front the photoreceptors, not behind them. This reverse order is a long-standing puzzle, which we wish to explain. We found out that cone photoreceptors are attached to metabolic Muller cells which span the retina. Cones provide colour vision at day time, and are surrounded by sensitive rods which function at night. We showed by an analytical and a computational method that the Müller cells also serve as fibre optics, concentrating green-red light into the cones, while the excessive blue is scattered to the nearby rods. Spatial and spectral laboratory measurements validate that indeed the shapes and refractive index values of the Muller cells and the surrounding retina separate the colours according to the spectral sensitivities of both cones and rods. These results also explain other effects of vision acuity and colour sensitivity.
Image reconstruction in cone-beam CT with a spherical detector using the BPF algorithm
NASA Astrophysics Data System (ADS)
Zuo, Nianming; Zou, Yu; Jiang, Tianzi; Pan, Xiaochuan
2006-03-01
Both flat-panel detectors and cylindrical detectors have been used in CT systems for data acquisition. The cylindrical detector generally offers a sampling of a transverse image plane more uniformly than does a flat-panel detector. However, in the longitudinal dimension, the cylindrical and flat-panel detectors offer similar sampling of the image space. In this work, we investigate a detector of spherical shape, which can yield uniform sampling of the 3D image space because the solid angle subtended by each individual detector bin remains unchanged. We have extended the backprojection-filtration (BPF) algorithm, which we have developed previously for cone-beam CT, to reconstruct images in cone-beam CT with a spherical detector. We also conduct computer-simulation studies to validate the extended BPF algorithm. Quantitative results in these numerical studies indicate that accurate images can be obtained from data acquired with a spherical detector by use of our extended BPF cone-beam algorithms.
On Heatshield Shapes for Mars Entry Capsules
NASA Technical Reports Server (NTRS)
Prabhu, DInesh K.; Saunders, David A.
2012-01-01
The 70deg sphere-cone - the standard geometry for all US Mars entry missions - is thoroughly examined via flow field simulations at a select few peak heating points along candidate flight trajectories. Emphasis is placed on turbulent heating based on the Baldwin- Lomax turbulence model. It is shown that increased leeward turbulent heating for a 70 sphere-cone flying at angle of attack is primarily due to the discontinuity in curvature between the spherical nose cap and the conical frustum - the attachment of the sonic line at this sphere-cone junction leads to a supersonic edge Mach number over the leeward acreage. In an attempt to mitigate this problem of elevated turbulent heating, alternate geometries, without any curvature discontinuities in the acreage, are developed. Two approaches, one based on nonlinear optimization with constraints, and one based on the use of non-uniform rational B-splines, are considered. All configurations examined remain axisymmetric. The aerothermal performance of alternate geometries is shown to be superior to that of the 70 sphere-cone.
Breccia dikes from the Beaverhead Impact structure, southwest Montana
NASA Technical Reports Server (NTRS)
Fiske, P. S.; Hougen, S. B.; Hargraves, R. B.
1992-01-01
While shatter cones are generally accepted as indicators of meteorite impact, older petrologic features are not widely recognized in the geologic community. Breccia dikes are one such feature. They are found in many large impact structures occurring over an area at least as extensively as shatter cones. Breccia dikes will survive moderate degrees of metamorphism and tectonism, unlike many other microscopic features (shocked quartz grains, high-pressure polymorphs, etc.) and even large-scale features such as annular or bowl-shaped topographic features. Thus, they are important diagnostic criteria, especially for large, poorly preserved impact structures. The Beaverhead Impact structure is a recently discovered, deeply eroded impact structure in southwestern Montana. The remains of the structure are delineated by the occurrence of shatter cones, found in an area greater than 200 sq km, occurring within the Cabin thrust plate, part of the Cretaceous Sevier fold and thrust system. The distribution of shatter cones is further truncated by Tertiary normal faults. The present remains represent an allochthonous fragment of a larger structure.
The application of cone-beam CT in the aging of bone calluses: a new perspective?
Cappella, A; Amadasi, A; Gaudio, D; Gibelli, D; Borgonovo, S; Di Giancamillo, M; Cattaneo, C
2013-11-01
In the forensic and anthropological fields, the assessment of the age of a bone callus can be crucial for a correct analysis of injuries in the skeleton. To our knowledge, the studies which have focused on this topic are mainly clinical and still leave much to be desired for forensic purposes, particularly in looking for better methods for aging calluses in view of criminalistic applications. This study aims at evaluating the aid cone-beam CT can give in the investigation of the inner structure of fractures and calluses, thus acquiring a better knowledge of the process of bone remodeling. A total of 13 fractures (three without callus formation and ten with visible callus) of known age from cadavers were subjected to radiological investigations with digital radiography (DR) (conventional radiography) and cone-beam CT with the major aim of investigating the differences between DR and tomographic images when studying the inner and outer structures of bone healing. Results showed how with cone-beam CT the structure of the callus is clearly visible with higher specificity and definition and much more information on mineralization in different sections and planes. These results could lay the foundation for new perspectives on bone callus evaluation and aging with cone-beam CT, a user-friendly and skillful technique which in some instances can also be used extensively on the living (e.g., in cases of child abuse) with reduced exposition to radiation.
Acoustic Scattering from Corners, Edges and Circular Cones
NASA Astrophysics Data System (ADS)
Elschner, Johannes; Hu, Guanghui
2018-05-01
Consider the time-harmonic acoustic scattering from a bounded penetrable obstacle imbedded in an isotropic homogeneous medium. The obstacle is supposed to possess a circular conic point or an edge point on the boundary in three dimensions and a planar corner point in two dimensions. The opening angles of cones and edges are allowed to be any number in {(0,2π)π}. We prove that such an obstacle scatters any incoming wave non-trivially (that is, the far field patterns cannot vanish identically), leading to the absence of real non-scattering wavenumbers. Local and global uniqueness results for the inverse problem of recovering the shape of penetrable scatterers are also obtained using a single incoming wave. Our approach relies on the singularity analysis of the inhomogeneous Laplace equation in a cone.
Improved detector for the measurement of gamma radiation
NASA Astrophysics Data System (ADS)
Zelt, F. B.
1985-07-01
The present invention lies in the field of gamma ray spectrometry of geologic deposits and other materials, such as building materials (cement, asphalt, etc.) More specifically, the invention is an improved device for the gamma ray spetcrometery of gelogical deposits as a tool for petroleum exploration, geologic research and monitoring of radio-active materials such as in uranium mill tailings and the like. Improvement consists in enlarging the area of the receptor face and without any necessarily substantial increase in the volume of the receptor crystal over the current cylindrical shapes. The invention also provides, as a corollary of the increase in area receptor crystal face, a reduction in the weight of the amount of material necessary to provide effective shielding of the crystal from atmospheric radiation and radiation from deposits not under examination. The area of the receptor crystal face is increased by forming the crystal as a truncated cone with the shielding shaped as a hollow frustrum of a cone. A photomultiplier device is secured to the smaller face of the crystal. The improved detector shape can also be used in scintillometers which measure total gamma radiation.
Goyushov, Samir; Tözüm, Melek Didem; Tözüm, Tolga Fikret
2018-05-25
To determine the shape, position, vertical height, surrounding bone characteristics, and opening angle of mental foramen (MF) using dental cone beam computed tomography (CBCT). A retrospective study was performed on 663 patients. CBCT records analyzed for the shape, position, and surrounding bone measurements of the MF using Simplant 3D software (Hasselt, Belgium). Opening angle of MF was also assessed. Kruskal-Wallis and Mann-Whitney U tests were employed to test significant differences between parameters, genders and ages. All mental foramina were visualized. Regarding location, 49.2% of the MFs were located between first and second premolars, 7.7 distal and 39.7% coincident to the apex of the mandibular second premolar. The mean MF opening angle was 45.4° on the right side, and 45.9° on the left. There were no statistically differences between gender groups with regard to the opening angle degrees. This study may provide useful information about variations in the position, shape and size, angle of mental foramen, which may help the practitioners to perform safer mental nerve blocks and surgical procedures.
Bright and durable field-emission source derived from frozen refractory-metal Taylor cones
Hirsch, Gregory
2017-02-22
A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less
Bright and durable field-emission source derived from frozen refractory-metal Taylor cones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, Gregory
A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less
Shelf life extension for the lot AAE nozzle severance LSCs
NASA Technical Reports Server (NTRS)
Cook, M.
1990-01-01
Shelf life extension tests for the remaining lot AAE linear shaped charges for redesigned solid rocket motor nozzle aft exit cone severance were completed in the small motor conditioning and firing bay, T-11. Five linear shaped charge test articles were thermally conditioned and detonated, demonstrating proper end-to-end charge propagation. Penetration depth requirements were exceeded. Results indicate that there was no degradation in performance due to aging or the linear shaped charge curving process. It is recommended that the shelf life of the lot AAE nozzle severance linear shaped charges be extended through January 1992.
Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afjeh, Abdollah A.; Windpower, Nautica; Marrone, Joseph
2013-08-29
This project investigated a conceptual 2-bladed rotor wind turbine design and assessed its feasibility for installation in the Great Lakes. The levelized cost of energy was used for this purpose. A location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in themore » study of wind turbine system loads. Loads from ice floes and ridges were also included.The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design. The proposed turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation. This foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. An initial set of studies of the dynamics of wind turbines using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for this study. For ice load calculations, a method was developed and implemented in FAST to extend its capability for ice load modeling.Both upwind and downwind 2-bladed rotor wind turbine designs were developed and studied. The new rotor blade uses a new twist angle distribution design and a new pitch control algorithm compared with the baseline model. The coning and tilt angles were selected for both the upwind and downwind configurations to maximize the annual energy production. The risk of blade-tower impact is greater for the downwind design, particularly under a power grid fault; however, this risk was effectively reduced by adjusting the tilt angle for the downwind configuration.« less
Automated laser guidance of neuronal growth cones using a spatial light modulator.
Carnegie, David J; Cizmár, Tomás; Baumgartl, Jörg; Gunn-Moore, Frank J; Dholakia, Kishan
2009-11-01
The growth cone of a developing neuron can be guided using a focused infra-red (IR) laser beam [1]. In previous setups this process has required a significant amount of user intervention to adjust continuously the laser beam to guide the growing neuron. Previously, a system using an acousto-optical deflector (AOD) has been developed to steer the beam [2]. However, to enhance the controllability of this system, here we demonstrate the use of a computer controlled spatial light modulator (SLM) to steer and manipulate the shape of a laser beam for use in guided neuronal growth. This new experimental setup paves the way to enable a comprehensive investigation into beam shaping effects on neuronal growth and we show neuronal growth initiated by a Bessel light mode. This is a robust platform to explore the biochemistry of this novel phenomenon. (c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Self-positioning ability of a sphericon-shaped magnetic millirobot rolling on an inclined surface
NASA Astrophysics Data System (ADS)
Jeon, Seungmun
2018-05-01
This paper introduces the novel self-positioning ability of a sphericon-shaped magnetic millirobot (SSMM) on an inclined surface. The SSMM is comprised of four identical half cones with a cylindrical magnet inserted into the geometric center, and it can roll along a straight line on a surface with repeated rolling cone motions actuated by an external wobbling magnetic field (EWMF). Due to the restoring moment induced by a conservative gravitational force, the SSMM can maintain (self-position) its equilibrium position on the surface, even when the EWMF is removed. This paper derived several equations to quantify the condition in which the SSMM can steadily generate self-positioning motions. It also examined the self-positioning ability of the SSMM by constructing a prototype SSMM and demonstrating its rolling and self-positioning motions by using a magnetic navigation system.
Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load.
Sedmák, P; Pilch, J; Heller, L; Kopeček, J; Wright, J; Sedlák, P; Frost, M; Šittner, P
2016-08-05
The stress-induced martensitic transformation in tensioned nickel-titanium shape-memory alloys proceeds by propagation of macroscopic fronts of localized deformation. We used three-dimensional synchrotron x-ray diffraction to image at micrometer-scale resolution the grain-resolved elastic strains and stresses in austenite around one such front in a prestrained nickel-titanium wire. We found that the local stresses in austenite grains are modified ahead of the nose cone-shaped buried interface where the martensitic transformation begins. Elevated shear stresses at the cone interface explain why the martensitic transformation proceeds in a localized manner. We established the crossover from stresses in individual grains to a continuum macroscopic internal stress field in the wire and rationalized the experimentally observed internal stress field and the topology of the macroscopic front by means of finite element simulations of the localized deformation. Copyright © 2016, American Association for the Advancement of Science.
Development of a socketed foundation for cable barrier posts : phase I.
DOT National Transportation Integrated Search
2012-02-01
Four socketed foundation designs were evaluated for use as a new reusable base for high-tension, cable barrier : systems. Each foundation was a reinforced concrete cylindrical shape. The top of the foundation had an open steel tube to : accept the po...
Crossflow Instability on a Wedge-Cone at Mach 3.5
NASA Technical Reports Server (NTRS)
Beeler, George B.; Wilkinson, Stephen P.; Balakumar, P.; McDaniel, Keith S.
2012-01-01
As a follow-on activity to the HyBoLT flight experiment, a six degree half angle wedge-cone model at zero angle of attack has been employed to experimentally and computationally study the boundary layer crossflow instability at Mach 3.5 under low disturbance freestream conditions. Computed meanflow and linear stability analysis results are presented along with corresponding experimental Pitot probe data. Using a model-mounted probe survey apparatus, data acquired to date show a well defined stationary crossflow vortex pattern on the flat wedge surface. This effort paves the way for additional detailed, calibrated flow field measurements of the crossflow instability, both stationary and traveling modes, and transition-to-turbulence under quiet flow conditions as a means of validating existing stability theory and providing a foundation for dynamic flight instrumentation development.
Roles of ON Cone Bipolar Cell Subtypes in Temporal Coding in the Mouse Retina
Fyk-Kolodziej, Bozena; Cohn, Jesse
2014-01-01
In the visual system, diverse image processing starts with bipolar cells, which are the second-order neurons of the retina. Thirteen subtypes of bipolar cells have been identified, which are thought to encode different features of image signaling and to initiate distinct signal-processing streams. Although morphologically identified, the functional roles of each bipolar cell subtype in visual signal encoding are not fully understood. Here, we investigated how ON cone bipolar cells of the mouse retina encode diverse temporal image signaling. We recorded bipolar cell voltage changes in response to two different input functions: sinusoidal light and step light stimuli. Temporal tuning in ON cone bipolar cells was diverse and occurred in a subtype-dependent manner. Subtypes 5s and 8 exhibited low-pass filtering property in response to a sinusoidal light stimulus, and responded with sustained fashion to step-light stimulation. Conversely, subtypes 5f, 6, 7, and XBC exhibited bandpass filtering property in response to sinusoidal light stimuli, and responded transiently to step-light stimuli. In particular, subtypes 7 and XBC were high-temporal tuning cells. We recorded responses in different ways to further examine the underlying mechanisms of temporal tuning. Current injection evoked low-pass filtering, whereas light responses in voltage-clamp mode produced bandpass filtering in all ON bipolar cells. These findings suggest that cone photoreceptor inputs shape bandpass filtering in bipolar cells, whereas intrinsic properties of bipolar cells shape low-pass filtering. Together, our results demonstrate that ON bipolar cells encode diverse temporal image signaling in a subtype-dependent manner to initiate temporal visual information-processing pathways. PMID:24966376
Color, contrast sensitivity, and the cone mosaic.
Williams, D; Sekiguchi, N; Brainard, D
1993-01-01
This paper evaluates the role of various stages in the human visual system in the detection of spatial patterns. Contrast sensitivity measurements were made for interference fringe stimuli in three directions in color space with a psychophysical technique that avoided blurring by the eye's optics including chromatic aberration. These measurements were compared with the performance of an ideal observer that incorporated optical factors, such as photon catch in the cone mosaic, that influence the detection of interference fringes. The comparison of human and ideal observer performance showed that neural factors influence the shape as well as the height of the foveal contrast sensitivity function for all color directions, including those that involve luminance modulation. Furthermore, when optical factors are taken into account, the neural visual system has the same contrast sensitivity for isoluminant stimuli seen by the middle-wavelength-sensitive (M) and long-wavelength-sensitive (L) cones and isoluminant stimuli seen by the short-wavelength-sensitive (S) cones. Though the cone submosaics that feed these chromatic mechanisms have very different spatial properties, the later neural stages apparently have similar spatial properties. Finally, we review the evidence that cone sampling can produce aliasing distortion for gratings with spatial frequencies exceeding the resolution limit. Aliasing can be observed with gratings modulated in any of the three directions in color space we used. We discuss mechanisms that prevent aliasing in most ordinary viewing conditions. Images Fig. 1 Fig. 8 PMID:8234313
NASA Astrophysics Data System (ADS)
Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.; Meezan, N. B.
2018-01-01
Recent work in indirectly-driven inertial confinement fusion implosions on the National Ignition Facility has indicated that late-time propagation of the inner cones of laser beams (23° and 30°) is impeded by the growth of a "bubble" of hohlraum wall material (Au or depleted uranium), which is initiated by and is located at the location where the higher-intensity outer beams (44° and 50°) hit the hohlraum wall. The absorption of the inner cone beams by this "bubble" reduces the laser energy reaching the hohlraum equator at late time driving an oblate or pancaked implosion, which limits implosion performance. In this article, we present the design of a new shaped hohlraum designed specifically to reduce the impact of this bubble by adding a recessed pocket at the location where the outer cones hit the hohlraum wall. This recessed pocket displaces the bubble radially outward, reducing the inward penetration of the bubble at all times throughout the implosion and increasing the time for inner beam propagation by approximately 1 ns. This increased laser propagation time allows one to drive a larger capsule, which absorbs more energy and is predicted to improve implosion performance. The new design is based on a recent National Ignition Facility shot, N170601, which produced a record neutron yield. The expansion rate and absorption of laser energy by the bubble is quantified for both cylindrical and shaped hohlraums, and the predicted performance is compared.
Gao, Shuang; Liu, Gang; Chen, Qilai; Xue, Wuhong; Yang, Huali; Shang, Jie; Chen, Bin; Zeng, Fei; Song, Cheng; Pan, Feng; Li, Run-Wei
2018-02-21
Resistive random access memory (RRAM) with inherent logic-in-memory capability exhibits great potential to construct beyond von-Neumann computers. Particularly, unipolar RRAM is more promising because its single polarity operation enables large-scale crossbar logic-in-memory circuits with the highest integration density and simpler peripheral control circuits. However, unipolar RRAM usually exhibits poor switching uniformity because of random activation of conducting filaments and consequently cannot meet the strict uniformity requirement for logic-in-memory application. In this contribution, a new methodology that constructs cone-shaped conducting filaments by using chemically a active metal cathode is proposed to improve unipolar switching uniformity. Such a peculiar metal cathode will react spontaneously with the oxide switching layer to form an interfacial layer, which together with the metal cathode itself can act as a load resistor to prevent the overgrowth of conducting filaments and thus make them more cone-like. In this way, the rupture of conducting filaments can be strictly limited to the tip region, making their residual parts favorable locations for subsequent filament growth and thus suppressing their random regeneration. As such, a novel "one switch + one unipolar RRAM cell" hybrid structure is capable to realize all 16 Boolean logic functions for large-scale logic-in-memory circuits.
Maxillary first molar with an O-shaped root morphology: report of a case.
Shin, Yooseok; Kim, Yemi; Roh, Byoung-Duck
2013-12-01
This case report is to present a maxillary first molar with one O-shaped root, which is an extended C-shaped canal system. Patient with chronic apical periodontitis in maxillary left first molar underwent replantation because of difficulty in negotiating all canals. Periapical radiographs and cone-beam computed tomography (CBCT) were taken. All roots were connected and fused to one root, and all canals seemed to be connected to form an O-shape. The apical 3 mm of the root were resected and retrograde filled with resin-modified glass ionomer. Intentional replantation as an alternative treatment could be considered in a maxillary first molar having an unusual O-shaped root.
Giant adsorption of microswimmers: Duality of shape asymmetry and wall curvature
NASA Astrophysics Data System (ADS)
Wysocki, Adam; Elgeti, Jens; Gompper, Gerhard
2015-05-01
The effect of shape asymmetry of microswimmers on their adsorption capacity at confining channel walls is studied by a simple dumbbell model. For a shape polarity of a forward-swimming cone, like the stroke-averaged shape of a sperm, extremely long wall retention times are found, caused by a nonvanishing component of the propulsion force pointing steadily into the wall, which grows exponentially with the self-propulsion velocity and the shape asymmetry. A direct duality relation between shape asymmetry and wall curvature is proposed and verified. Our results are relevant for the design microswimmer with controlled wall-adhesion properties. In addition, we confirm that pressure in active systems is strongly sensitive to the details of the particle-wall interactions.
Numerical investigation of the flat band Bloch modes in a 2D photonic crystal with Dirac cones
Zhang, Peng; Fietz, Chris; Tassin, Philippe; ...
2015-04-14
A numerical method combining complex-k band calculations and absorbing boundary conditions for Bloch waves is presented. We use this method to study photonic crystals with Dirac cones. We demonstrate that the photonic crystal behaves as a zero-index medium when excited at normal incidence, but that the zero-index behavior is lost at oblique incidence due to excitation of modes on the flat band. We also investigate the formation of monomodal and multimodal cavity resonances inside the photonic crystals, and the physical origins of their different line-shape features.
34. REDUCTION PLANT Furnace and boiler which provided steam heat ...
34. REDUCTION PLANT Furnace and boiler which provided steam heat required in converting fish, and fish offal, into meal and fish oil. Cone shaped tank at right held extracted oil. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA
NASA Astrophysics Data System (ADS)
Wu, Qiang; Yang, Chaoyu; Yang, Jianxin; Huang, Fangsheng; Liu, Guangli; Zhu, Zhiqiang; Si, Ting; Xu, Ronald X.
2018-02-01
We fabricate complex emulsions with irregular shapes in the microscale by a simple but effective multiplex coaxial flow focusing process. A multiphase cone-jet structure is steadily formed, and the compound liquid jet eventually breaks up into Janus microdroplets due to the perturbations propagating along the jet interfaces. The microdroplet shapes can be exclusively controlled by interfacial tensions of adjacent phases. Crescent-moon-shaped microparticles and microcapsules with designated structural characteristics are further produced under ultraviolet light of photopolymerization after removing one hemisphere of the Janus microdroplets. These complex emulsions have potential applications in bioscience, food, functional materials, and controlled drug delivery.
All the entropies on the light-cone
NASA Astrophysics Data System (ADS)
Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo
2018-05-01
We determine the explicit universal form of the entanglement and Renyi entropies, for regions with arbitrary boundary on a null plane or the light-cone. All the entropies are shown to saturate the strong subadditive inequality. This Renyi Markov property implies that the vacuum behaves like a product state. For the null plane, our analysis applies to general quantum field theories, and we show that the entropies do not depend on the region. For the light-cone, our approach is restricted to conformal field theories. In this case, the construction of the entropies is related to dilaton effective actions in two less dimensions. In particular, the universal logarithmic term in the entanglement entropy arises from a Wess-Zumino anomaly action. We also consider these properties in theories with holographic duals, for which we construct the minimal area surfaces for arbitrary shapes on the light-cone. We recover the Markov property and the universal form of the entropy, and argue that these properties continue to hold upon including stringy and quantum corrections. We end with some remarks on the recently proved entropic a-theorem in four spacetime dimensions.
Compressional and Shear Wakes in a 2D Dusty Plasma Crystal
NASA Astrophysics Data System (ADS)
Nosenko, V.; Goree, J.; Ma, Z. W.; Dubin, D. H. E.
2001-10-01
A 2D crystalline lattice can vibrate with two kinds of sound waves, compressional and shear (transverse), where the latter has a much slower sound speed. When these waves are excited by a moving supersonic disturbance, the superposition of the waves creates a Mach cone, i.e., a V-shaped wake. In our experiments, the supersonic disturbance was a moving spot of argon laser light, and this laser light applied a force, due to radiation pressure, on the particles. The beam was swept across the lattice in a controlled and repeatable manner. The particles were levitated in an argon rf discharge. By moving the laser spot faster than the shear sound speed c_t, but slower than the compressional sound speed c_l, we excited a shear wave Mach cone. Alternatively, by moving the laser spot faster than c_l, we excited both cones. In addition to Mach cones, we also observed a wake structure that arises from the compressional wave’s dispersion. We compare our results to Dubin’s theory (Phys. Plasmas 2000) and to molecular dynamics (MD) simulations.
Jet production in the CoLoRFulNNLO method: Event shapes in electron-positron collisions
NASA Astrophysics Data System (ADS)
Del Duca, Vittorio; Duhr, Claude; Kardos, Adam; Somogyi, Gábor; Szőr, Zoltán; Trócsányi, Zoltán; Tulipánt, Zoltán
2016-10-01
We present the CoLoRFulNNLO method to compute higher order radiative corrections to jet cross sections in perturbative QCD. We apply our method to the computation of event shape observables in electron-positron collisions at NNLO accuracy and validate our code by comparing our predictions to previous results in the literature. We also calculate for the first time jet cone energy fraction at NNLO.
Vázquez-Lobo, Alejandra; Carlsbecker, Annelie; Vergara-Silva, Francisco; Alvarez-Buylla, Elena R; Piñero, Daniel; Engström, Peter
2007-01-01
The identity of genes causally implicated in the development and evolutionary origin of reproductive characters in gymnosperms is largely unknown. Working within the framework of plant evolutionary developmental biology, here we have cloned, sequenced, performed phylogenetic analyses upon and tested the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in reproductive structures from selected species of the conifer genera Picea, Podocarpus, and Taxus. Contrary to expectations based on previous assessments, expression of LFY/FLO and NLY in cones of these taxa was found to occur simultaneously in a single reproductive axis, initially overlapping but later in mutually exclusive primordia and/or groups of developing cells in both female and male structures. These observations directly affect the status of the "mostly male theory" for the origin of the angiosperm flower. On the other hand, comparative spatiotemporal patterns of the expression of these genes suggest a complex genetic regulatory network of cone development, as well as a scheme of functional divergence for LFY/FLO with respect to NLY homologs in gymnosperms, both with clear heterochronic aspects. Results presented in this study contribute to the understanding of the molecular-genetic basis of morphological evolution in conifer cones, and may aid in establishing a foundation for gymnosperm-specific, testable evo-devo hypotheses.
STEMFLOW CONTRIBUTIONS TO THE "FERTILE ISLAND" EFFECT IN CREOSOTEBUSH, LARREA TRIDENTATA
The frequency of creosotebushes with inverted cone canopies is greatest in environments which are more water-limited. Hemispherical shaped creosotebushes are more abundant in less water limited environments. In ecosystems where overland flow of water exerts a greater influence ...
Chae, Michael P; Rozen, Warren Matthew; Patel, Nakul Gamanlal; Hunter-Smith, David J; Ramakrishnan, Venkat
2017-12-01
An increasing number of women undergo mastectomy for breast cancer and post-mastectomy autologous breast reconstruction has been shown to significantly improve the psychosexual wellbeing of the patients. A goal of treatment is to achieve symmetry and projection to match the native breast, and/or the contralateral breast in the case of a unilateral reconstruction. Autologous reconstruction, particularly with the deep inferior epigastric artery perforator (DIEP) flap, is particularly advantageous as it can be manipulated to mimic the shape and turgor of the native breast. However, very few techniques of shaping the breast conus when insetting the DIEP flap to enhance aesthetic outcome have been reported to date. With the aide of three-dimension (3D) photography and 3D-printed mirrored image of the contralateral breast as a guide intraoperatively, we describe our St Andrew's coning technique to create a personalized flap projection. We report a prospective case series of 3 delayed unilateral breast reconstructions where symmetrization procedure to the contralateral breast was not indicated. Using a commercial 3D scanner (VECTRA XR, Canfield Scientific), the breast region was imaged. The mirrored image was 3D-printed in-house using a desktop 3D printer. In all cases, projection of the breast mound was able to be safely achieved, with a demonstrated central volume (or 'cone') able to be highlighted on imaging and a 3D printed breast. A 3D print of the contralateral breast was able to be used intraoperatively to guide the operative approach. The St Andrew's coning technique is a useful aesthetic maneuver for achieving breast projection during DIEP flap breast reconstruction, with 3D imaging techniques able to assist in perioperative assessment of breast volume.
Light localization and SERS in tip-shaped silicon metasurface.
Lagarkov, Andrey; Boginskaya, Irina; Bykov, Igor; Budashov, Igor; Ivanov, Andrey; Kurochkin, Ilya; Ryzhikov, Ilya; Rodionov, Ilya; Sedova, Marina; Zverev, Alexander; Sarychev, Andrey K
2017-07-24
Optical properties of two dimensional periodic system of the silicon micro-cones are investigated. The metasurface, composed of the silicon tips, shows enhancement of the local optical field. Finite element computer simulations as well as real experiment reveal anomalous optical response of the dielectric metasurface due to excitation of the dielectric resonances. Various electromagnetic resonances are considered in the dielectric cone. The metal-dielectric resonances, which are excited between metal nanoparticles and dielectric cones, are also considered. The resonance local electric field can be much larger than the field in the usual surface plasmon resonances. To investigate local electric field the signal molecules are deposited on the metal nanoparticles. We demonstrate enhancement of the electromagnetic field and Raman signal from the complex of DTNB acid molecules and gold nanoparticles, which are distributed over the metasurface. The metasurfaces composed from the dielectric resonators can have quasi-continuous spectrum and serve as an efficient SERS substrates.
Growth and field emission properties of tubular carbon cones.
Li, J J; Wang, Q; Gu, C Z
2007-09-01
New forms of tubular carbon cone (TCC) were grown on gold wires by hot-filament chemical vapor deposition (HFCVD). They have a long-cone-shaped appearance with a herringbone hollow interior, surrounded by helical sheets of graphite that are coiled around it. It is considered that TCC formation results because the size of the catalyst particle located in the top of the TCC decreases continuously during growth, due to etching effects in the CVD plasma, reflecting competition between the growth and etching processes in the plasma. In addition, field emission measurements show that TCCs have a very low-threshold field of 0.27 V/microm, and that a stable macroscopic emitting current density of 1 mA/cm2 can be obtained at only 0.5 V/microm. TCCs have good field emission properties, compared to other forms of carbon field emitter, and may be good candidates for use in field emission display devices.
Directional view interpolation for compensation of sparse angular sampling in cone-beam CT.
Bertram, Matthias; Wiegert, Jens; Schafer, Dirk; Aach, Til; Rose, Georg
2009-07-01
In flat detector cone-beam computed tomography and related applications, sparse angular sampling frequently leads to characteristic streak artifacts. To overcome this problem, it has been suggested to generate additional views by means of interpolation. The practicality of this approach is investigated in combination with a dedicated method for angular interpolation of 3-D sinogram data. For this purpose, a novel dedicated shape-driven directional interpolation algorithm based on a structure tensor approach is developed. Quantitative evaluation shows that this method clearly outperforms conventional scene-based interpolation schemes. Furthermore, the image quality trade-offs associated with the use of interpolated intermediate views are systematically evaluated for simulated and clinical cone-beam computed tomography data sets of the human head. It is found that utilization of directionally interpolated views significantly reduces streak artifacts and noise, at the expense of small introduced image blur.
NASA Astrophysics Data System (ADS)
Azkiya, N. I.; Masruri, M.; Ulfa, S. M.
2018-01-01
The paper studies recent application of cone flower waste from Pinus merkusii Jungh & De Vriese for an environmentally unclear method for synthesis silver nanoparticle. Phytochemical characterization using iron trichloride solution showed the extract of Pinus merkusii cone flower contains of phenolic group of secondary metabolite. This group acts as both reducing and stabilizing agents. For the synthesis of silver nanoparticle, solution of silver nitrate is added to the extract at 60°C. The effect of extract concentration (5-20%) and time reaction (15-60 min) is investigated. The formation of silver nanoparticle is confirmed by the color change from yellowish to brown. Meanwhile, UV-Vis characterization of silver nanoparticle in extract 20% and 60 min reaction showed surface plasmon resonance (SPR) at 431 nm, and transmission electron microscope (TEM) revealed the particle size range in between 8 and 23 nm with a spherical in shape.
NASA Astrophysics Data System (ADS)
Fauzan Zakki, Ahmad; Suharto; Windyandari, Aulia
2018-03-01
Several attempts have been made to reduce the risk of tsunami disasters such as the development of early warning systems, evacuation procedures training, coastal protection and coastal spatial planning. Although many efforts to mitigate the impact of the tsunami in Indonesia was made, no one has developed a portable disaster rescue vehicle/shelter as well as a lifeboat on ships and offshore building, which is always available when a disaster occurs. The aim of the paper is to evaluate the performance of cone capsule shaped hull form that would be used for the portable tsunami lifeboat. The investigation of the boat resistance, intact stability, and seakeeping characteristics was made. The numerical analysis results indicate that the cone capsule is reliable as an alternative hull form for the portable tsunami lifeboat.
Unsteady Newton-Busemann flow theory. Part 2: Bodies of revolution
NASA Technical Reports Server (NTRS)
Hui, W. H.; Tobak, M.
1981-01-01
Newtonian flow theory for unsteady flow past oscillating bodies of revolution at very high Mach numbers is completed by adding a centrifugal force correction to the impact pressures. Exact formulas for the unsteady pressure and the stability derivatives are obtained in closed form and are applicable to bodies of revolution that have arbitrary shapes, arbitrary thicknesses, and either sharp or blunt noses. The centrifugal force correction arising from the curved trajectories followed by the fluid particles in unsteady flow cannot be neglected even for the case of a circular cone. With this correction, the present theory is in excellent agreement with experimental results for sharp cones and for cones with small nose bluntness; gives poor agreement with the results of experiments in air for bodies with moderate or large nose bluntness. The pitching motions of slender power-law bodies of revulution are shown to be always dynamically stable according to Newton-Busemann theory.
Mohamed, Shaaban K.; Akkurt, Mehmet; Hawaiz, Farouq E.; Ayoob, Mzgin M; Hosten, Eric
2017-01-01
The conformation of the title compound, C34H26F2O6, is cone-shaped, partially determined by intramolecular C—H⋯O short contacts. The benzene rings at the top of the cone are inclined to one another by 73.10 (7)°, while the benzene rings at the bottom of the cone are inclined to one another by 35.49 (8)°. In the crystal, molecules are linked by C—H⋯O and C—H⋯F hydrogen bonds, forming a three-dimensional supramolecular structure. There are also C—H⋯π contacts present within the framework structure. PMID:28083124
Edges, colour and awareness in blindsight.
Alexander, Iona; Cowey, Alan
2010-06-01
It remains unclear what is being processed in blindsight in response to faces, colours, shapes, and patterns. This was investigated in two hemianopes with chromatic and achromatic stimuli with sharp or shallow luminance or chromatic contrast boundaries or temporal onsets. Performance was excellent only when stimuli had sharp spatial boundaries. When discrimination between isoluminant coloured Gaussians was good it declined to chance levels if stimulus onset was slow. The ability to discriminate between instantaneously presented colours in the hemianopic field depended on their luminance, indicating that wavelength discrimination totally independent of other stimulus qualities is absent. When presented with narrow-band colours the hemianopes detected a stimulus maximally effective for S-cones but invisible to M- and L-cones, indicating that blindsight is mediated not just by the mid-brain, which receives no S-cone input, or that the rods contribute to blindsight. The results show that only simple stimulus features are processed in blindsight. 2010 Elsevier Inc. All rights reserved.
Paired-Pulse Depression at Photoreceptor Synapses
Rabl, Katalin; Cadetti, Lucia; Thoreson, Wallace B.
2011-01-01
Synaptic depression produced by repetitive stimulation is likely to be particularly important in shaping responses of second-order retinal neurons at the tonically active photoreceptor synapse. We analyzed the time course and mechanisms of synaptic depression at rod and cone synapses using paired-pulse protocols involving two complementary measurements of exocytosis: (1) paired whole-cell recordings of the postsynaptic current (PSC) in second-order retinal neurons and (2) capacitance measurements of vesicular membrane fusion in rods and cones. PSCs in ON bipolar, OFF bipolar, and horizontal cells evoked by stimulation of either rods or cones recovered from paired-pulse depression (PPD) at rates similar to the recovery of exocytotic capacitance changes in rods and cones. Correlation between presynaptic and postsynaptic measures of recovery from PPD suggests that 80 –90% of the depression at these synapses is presynaptic in origin. Consistent with a predominantly presynaptic mechanism, inhibiting desensitization of postsynaptic glutamate receptors had little effect on PPD. The depression of exocytotic capacitance changes exceeded depression of the presynaptic calcium current, suggesting that it is primarily caused by a depletion of synaptic vesicles. In support of this idea, limiting Ca2+ influx by using weaker depolarizing stimuli promoted faster recovery from PPD. Although cones exhibit much faster exocytotic kinetics than rods, exocytotic capacitance changes recovered from PPD at similar rates in both cell types. Thus, depression of release is not likely to contribute to differences in the kinetics of transmission from rods and cones. PMID:16510733
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dengwang; Liu, Li; Chen, Jinhu
2014-06-01
Purpose: The aiming of this study was to extract liver structures for daily Cone beam CT (CBCT) images automatically. Methods: Datasets were collected from 50 intravenous contrast planning CT images, which were regarded as training dataset for probabilistic atlas and shape prior model construction. Firstly, probabilistic atlas and shape prior model based on sparse shape composition (SSC) were constructed by iterative deformable registration. Secondly, the artifacts and noise were removed from the daily CBCT image by an edge-preserving filtering using total variation with L1 norm (TV-L1). Furthermore, the initial liver region was obtained by registering the incoming CBCT image withmore » the atlas utilizing edge-preserving deformable registration with multi-scale strategy, and then the initial liver region was converted to surface meshing which was registered with the shape model where the major variation of specific patient was modeled by sparse vectors. At the last stage, the shape and intensity information were incorporated into joint probabilistic model, and finally the liver structure was extracted by maximum a posteriori segmentation.Regarding the construction process, firstly the manually segmented contours were converted into meshes, and then arbitrary patient data was chosen as reference image to register with the rest of training datasets by deformable registration algorithm for constructing probabilistic atlas and prior shape model. To improve the efficiency of proposed method, the initial probabilistic atlas was used as reference image to register with other patient data for iterative construction for removing bias caused by arbitrary selection. Results: The experiment validated the accuracy of the segmentation results quantitatively by comparing with the manually ones. The volumetric overlap percentage between the automatically generated liver contours and the ground truth were on an average 88%–95% for CBCT images. Conclusion: The experiment demonstrated that liver structures of CBCT with artifacts can be extracted accurately for following adaptive radiation therapy. This work is supported by National Natural Science Foundation of China (No. 61201441), Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (No. BS2012DX038), Project of Shandong Province Higher Educational Science and Technology Program (No. J12LN23), Jinan youth science and technology star (No.20120109)« less
Shaping carbon nanostructures by controlling the synthesis process
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Guillorn, Michael A.; Lowndes, Douglas H.; Simpson, Michael L.; Voelkl, Edgar
2001-08-01
The ability to control the nanoscale shape of nanostructures in a large-scale synthesis process is an essential and elusive goal of nanotechnology research. Here, we report significant progress toward that goal. We have developed a technique that enables controlled synthesis of nanoscale carbon structures with conical and cylinder-on-cone shapes and provides the capability to dynamically change the nanostructure shape during the synthesis process. In addition, we present a phenomenological model that explains the formation of these nanostructures and provides insight into methods for precisely engineering their shape. Since the growth process we report is highly deterministic in allowing large-scale synthesis of precisely engineered nanoscale components at defined locations, our approach provides an important tool for a practical nanotechnology.
Fiberoptic probe and system for spectral measurements
Dai, Sheng; Young, Jack P.
1998-01-01
A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.
Explosive shaped charge penetration into tuff rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, M.G.
1988-10-01
Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented. 24 refs., 45 figs., 6 tabs.
Intrusion of Magmatic Bodies Into the Continental Crust: 3-D Numerical Models
NASA Astrophysics Data System (ADS)
Gorczyk, Weronika; Vogt, Katharina
2018-03-01
Magma intrusion is a major material transfer process in the Earth's continental crust. Yet the mechanical behavior of the intruding magma and its host are a matter of debate. In this study we present a series of numerical thermomechanical simulations on magma emplacement in 3-D. Our results demonstrate the response of the continental crust to magma intrusion. We observe change in intrusion geometries between dikes, cone sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions, and injection time. The rheology and temperature of the host are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favors host rock displacement and plutons at the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. Here the passage of magmatic and hydrothermal fluids from the intrusion through the fracture pattern may result in the formation of ore deposits. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle crust. Intrusion of low-density magma may more over result in T-shaped intrusions in cross section with magma sheets at the surface.
Method to fabricate functionalized conical nanopores
Small, Leo J.; Spoerke, Erik David; Wheeler, David R.
2016-07-12
A pressure-based chemical etch method is used to shape polymer nanopores into cones. By varying the pressure, the pore tip diameter can be controlled, while the pore base diameter is largely unaffected. The method provides an easy, low-cost approach for conically etching high density nanopores.
Practical Geometry Problems: The Case of the Ritzville Pyradmids.
ERIC Educational Resources Information Center
Nowlin, Donald
1993-01-01
Ritzville Pyramids are cone-shaped piles of wheat found near the community of Ritzville, Washington. Presents the practical problem of determining the volume and surface area of a Ritzville pyramid to help farmers solve cost-effectiveness questions related to selling the wheat. (MDH)
Ice and water on Newberry Volcano, central Oregon
Donnelly-Nolan, Julie M.; Jensen, Robert A.; O'Connor, Jim; Madin, Ian P.; Dorsey, Rebecca
2009-01-01
Newberry Volcano in central Oregon is dry over much of its vast area, except for the lakes in the caldera and the single creek that drains them. Despite the lack of obvious glacial striations and well-formed glacial moraines, evidence indicates that Newberry was glaciated. Meter-sized foreign blocks, commonly with smoothed shapes, are found on cinder cones as far as 7 km from the caldera rim. These cones also show evidence of shaping by flowing ice. In addition, multiple dry channels likely cut by glacial meltwater are common features of the eastern and western flanks of the volcano. On the older eastern flank of the volcano, a complex depositional and erosional history is recorded by lava flows, some of which flowed down channels, and interbedded sediments of probable glacial origin. Postglacial lava flows have subsequently filled some of the channels cut into the sediments. The evidence suggests that Newberry Volcano has been subjected to multiple glaciations.
Biodegradable microfabricated plug-filters for glaucoma drainage devices.
Maleki, Teimour; Chitnis, Girish; Park, Jun Hyeong; Cantor, Louis B; Ziaie, Babak
2012-06-01
We report on the development of a batch fabricated biodegradable truncated-cone-shaped plug filter to overcome the postoperative hypotony in nonvalved glaucoma drainage devices. Plug filters are composed of biodegradable polymers that disappear once wound healing and bleb formation has progressed past the stage where hypotony from overfiltration may cause complications in the human eye. The biodegradable nature of device eliminates the risks associated with permanent valves that may become blocked or influence the aqueous fluid flow rate in the long term. The plug-filter geometry simplifies its integration with commercial shunts. Aqueous humor outflow regulation is achieved by controlling the diameter of a laser-drilled through-hole. The batch compatible fabrication involves a modified SU-8 molding to achieve truncated-cone-shaped pillars, polydimethylsiloxane micromolding, and hot embossing of biodegradable polymers. The developed plug filter is 500 μm long with base and apex plane diameters of 500 and 300 μm, respectively, and incorporates a laser-drilled through-hole with 44-μm effective diameter in the center.
Superconducting energy storage magnet
NASA Technical Reports Server (NTRS)
Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)
1993-01-01
A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yu; Cao, Ruifen; Pei, Xi
2015-06-15
Purpose: The flat-panel detector response characteristics are investigated to optimize the scanning parameter considering the image quality and less radiation dose. The signal conversion model is also established to predict the tumor shape and physical thickness changes. Methods: With the ELEKTA XVI system, the planar images of 10cm water phantom were obtained under different image acquisition conditions, including tube voltage, electric current, exposure time and frames. The averaged responses of square area in center were analyzed using Origin8.0. The response characteristics for each scanning parameter were depicted by different fitting types. The transmission measured for 10cm water was compared tomore » Monte Carlo simulation. Using the quadratic calibration method, a series of variable-thickness water phantoms images were acquired to derive the signal conversion model. A 20cm wedge water phantom with 2cm step thickness was used to verify the model. At last, the stability and reproducibility of the model were explored during a four week period. Results: The gray values of image center all decreased with the increase of different image acquisition parameter presets. The fitting types adopted were linear fitting, quadratic polynomial fitting, Gauss fitting and logarithmic fitting with the fitting R-Square 0.992, 0.995, 0.997 and 0.996 respectively. For 10cm water phantom, the transmission measured showed better uniformity than Monte Carlo simulation. The wedge phantom experiment show that the radiological thickness changes prediction error was in the range of (-4mm, 5mm). The signal conversion model remained consistent over a period of four weeks. Conclusion: The flat-panel response decrease with the increase of different scanning parameters. The preferred scanning parameter combination was 100kV, 10mA, 10ms, 15frames. It is suggested that the signal conversion model could effectively be used for tumor shape change and radiological thickness prediction. Supported by National Natural Science Foundation of China (81101132, 11305203) and Natural Science Foundation of Anhui Province (11040606Q55, 1308085QH138)« less
ERIC Educational Resources Information Center
Kolleck, Nina
2017-01-01
In this article I examine how foundations use the concept of education and how they try to shape its definition and implementation. In accordance with Steven Lukes' notion, I argue that changes in social fields are mainly triggered by normative and semantic shifts. By drawing on techniques of discourse analysis, I explore the use of discursive…
NASA Astrophysics Data System (ADS)
Kazakov, K. E.; Kurdina, S. P.
2018-04-01
We study the contact interaction between a system of rigid annular punches and a viscoelastic two-layer foundation. The upper layer is thin compared with the punch width. We study the case where the punch shapes are described by a rapidly varying functions. We use special methods for constructing the solutions, because the standard methods are inefficient.
Cicada-Wing-Inspired Self-Cleaning Antireflection Coatings on Polymer Substrates.
Chen, Ying-Chu; Huang, Zhe-Sheng; Yang, Hongta
2015-11-18
The cicada has transparent wings with remarkable self-cleaning properties and high transmittance over the whole visible spectral range, which is derived from periodic conical structures covering the wing surface. Here we report a scalable self-assembly technique for fabricating multifunctional optical coatings that mimic cicada-wing structures. Spin-coated two-dimensional non-close-packed colloidal crystals are utilized as etching masks to pattern subwavelength-structured cone arrays directly on polymer substrates. The resulting gratings exhibit broadband antireflection performance and superhydrophobic properties after surface modification. The dependence of the cone shape and size on the antireflective and self-cleaning properties has also been investigated in this study.
NASA Technical Reports Server (NTRS)
Miller, Rolf W.; Argrow, Brian M.; Center, Kenneth B.; Brauckmann, Gregory J.; Rhode, Matthew N.
1998-01-01
The NASA Langley Research Center Unitary Plan Wind Tunnel and the 20-Inch Mach 6 Tunnel were used to test two osculating cones waverider models. The Mach-4 and Mach-6 shapes were generated using the interactive design tool WIPAR. WIPAR performance predictions are compared to the experimental results. Vapor screen results for the Mach-4 model at the on- design Mach number provide visual verification that the shock is attached along the entire leading edge, within the limits of observation. WIPAR predictions of pressure distributions and aerodynamic coefficients show general agreement with the corresponding experimental values.
Interpretation of symmetry experiments on Omega
NASA Astrophysics Data System (ADS)
Lours, Laurence; Bastian, Josiane; Monteil, Marie-Christine; Philippe, Franck; Jadaud, Jean-Paul
2006-10-01
The interpretation of the symmetry experiments performed on Omega in 2005 with 3 cone LMJ-like irradiation is presented here. The goal of this campaign was the characterization of the irradiation symmetry by X-ray imaging of the D2Ar capsule. Images of backlit implosion (as done in earlier campaigns with foam balls) and core emission were obtained on the same shot, and can be compared to FCI2 simulations. This set of shots comfirms former results with foam balls of a good symmetry control with 3 cones in empty hohlraums. The influence of the hohlraum shape on symmetry is also studied by comparison of cylindrical hohlraums vs rugby ones.
Paying the Piper: Foundation Evaluation Capacity Calls the Tune
ERIC Educational Resources Information Center
Behrens, Teresa R.; Kelly, Thomas
2008-01-01
An overview is presented of forces that have shaped how public and private funders approach evaluation, including the challenges that funders, and particularly foundations, face in effectively using evaluation within an organizational learning framework. Even with internal organizational challenges to learning, foundations are increasingly…
TU-H-BRC-05: Stereotactic Radiosurgery Optimized with Orthovoltage Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fagerstrom, J; Culberson, W; Bender, E
2016-06-15
Purpose: To achieve improved stereotactic radiosurgery (SRS) dose distributions using orthovoltage energy fluence modulation with inverse planning optimization techniques. Methods: A pencil beam model was used to calculate dose distributions from the institution’s orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods as well as measurements with radiochromic film. The orthovoltage photon spectra, modulated by varying thicknesses of attenuating material, were approximated using open-source software. A genetic algorithm search heuristic routine was used to optimize added tungsten filtration thicknesses to approach rectangular function dose distributions at depth. Optimizations were performed for depths of 2.5,more » 5.0, and 7.5 cm, with cone sizes of 8, 10, and 12 mm. Results: Circularly-symmetric tungsten filters were designed based on the results of the optimization, to modulate the orthovoltage beam across the aperture of an SRS cone collimator. For each depth and cone size combination examined, the beam flatness and 80–20% and 90–10% penumbrae were calculated for both standard, open cone-collimated beams as well as for the optimized, filtered beams. For all configurations tested, the modulated beams were able to achieve improved penumbra widths and flatness statistics at depth, with flatness improving between 33 and 52%, and penumbrae improving between 18 and 25% for the modulated beams compared to the unmodulated beams. Conclusion: A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions at depth with improved flatness and penumbrae compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system.« less
A method for generating double-ring-shaped vector beams
NASA Astrophysics Data System (ADS)
Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi
2016-07-01
We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam-Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).
SIMULATION OF A REACTING POLLUTANT PUFF USING AN ADAPTIVE GRID ALGORITHM
A new dynamic solution adaptive grid algorithm DSAGA-PPM, has been developed for use in air quality modeling. In this paper, this algorithm is described and evaluated with a test problem. Cone-shaped distributions of various chemical species undergoing chemical reactions are rota...
Perrichon, Prescilla; Grosell, Martin; Burggren, Warren W.
2017-01-01
Understanding cardiac function in developing larval fishes is crucial for assessing their physiological condition and overall health. Cardiac output measurements in transparent fish larvae and other vertebrates have long been made by analyzing videos of the beating heart, and modeling this structure using a conventional simple prolate spheroid shape model. However, the larval fish heart changes shape during early development and subsequent maturation, but no consideration has been made of the effect of different heart geometries on cardiac output estimation. The present study assessed the validity of three different heart models (the “standard” prolate spheroid model as well as a cylinder and cone tip + cylinder model) applied to digital images of complete cardiac cycles in larval mahi-mahi and red drum. The inherent error of each model was determined to allow for more precise calculation of stroke volume and cardiac output. The conventional prolate spheroid and cone tip + cylinder models yielded significantly different stroke volume values at 56 hpf in red drum and from 56 to 104 hpf in mahi. End-diastolic and stroke volumes modeled by just a simple cylinder shape were 30–50% higher compared to the conventional prolate spheroid. However, when these values of stroke volume multiplied by heart rate to calculate cardiac output, no significant differences between models emerged because of considerable variability in heart rate. Essentially, the conventional prolate spheroid shape model provides the simplest measurement with lowest variability of stroke volume and cardiac output. However, assessment of heart function—especially if stroke volume is the focus of the study—should consider larval heart shape, with different models being applied on a species-by-species and developmental stage-by-stage basis for best estimation of cardiac output. PMID:28725199
Tambe, Varsha Harshal; Nagmode, Pradnya Sunil; Abraham, Sathish; Patait, Mahendra; Lahoti, Pratik Vinod; Jaju, Neha
2014-01-01
Aim: The aim of the present study was to compare the canal transportation and centering ability of Rotary ProTaper, One Shape and Wave One systems using cone beam computed tomography (CBCT) in curved root canals to find better instrumentation technique for maintaining root canal geometry. Materials and Methods: Total 30 freshly extracted premolars having curved root canals with at least 10 degrees of curvature were divided into three groups of 10 teeth each. All teeth were scanned by CBCT to determine the root canal shape before instrumentation. In Group 1, the canals were prepared with Rotary ProTaper files, in Group 2 the canals were prepared with One Shape files and in Group 3 canals were prepared with Wave One files. After preparation, post-instrumentation scan was performed. Pre-instrumentation and post-instrumentation images were obtained at three levels, 3 mm apical, 3 mm coronal and 8 mm apical above the apical foramen were compared using CBCT software. Amount of transportation and centering ability were assessed. The three groups were statistically compared with analysis of variance and Tukey honestly significant. Results: All instruments maintained the original canal curvature with significant differences between the different files. Data suggested that Wave One files presented the best outcomes for both the variables evaluated. Wave One files caused lesser transportation and remained better centered in the canal than One Shape and Rotary ProTaper files. Conclusion: The canal preparation with Wave One files showed lesser transportation and better centering ability than One Shape and ProTaper. PMID:25506145
Fast and robust shape diameter function.
Chen, Shuangmin; Liu, Taijun; Shu, Zhenyu; Xin, Shiqing; He, Ying; Tu, Changhe
2018-01-01
The shape diameter function (SDF) is a scalar function defined on a closed manifold surface, measuring the neighborhood diameter of the object at each point. Due to its pose oblivious property, SDF is widely used in shape analysis, segmentation and retrieval. However, computing SDF is computationally expensive since one has to place an inverted cone at each point and then average the penetration distances for a number of rays inside the cone. Furthermore, the shape diameters are highly sensitive to local geometric features as well as the normal vectors, hence diminishing their applications to real-world meshes which often contain rich geometric details and/or various types of defects, such as noise and gaps. In order to increase the robustness of SDF and promote it to a wide range of 3D models, we define SDF by offsetting the input object a little bit. This seemingly minor change brings three significant benefits: First, it allows us to compute SDF in a robust manner since the offset surface is able to give reliable normal vectors. Second, it runs many times faster since at each point we only need to compute the penetration distance along a single direction, rather than tens of directions. Third, our method does not require watertight surfaces as the input-it supports both point clouds and meshes with noise and gaps. Extensive experimental results show that the offset-surface based SDF is robust to noise and insensitive to geometric details, and it also runs about 10 times faster than the existing method. We also exhibit its usefulness using two typical applications including shape retrieval and shape segmentation, and observe a significant improvement over the existing SDF.
Direct estimation of human trabecular bone stiffness using cone beam computed tomography.
Klintström, Eva; Klintström, Benjamin; Pahr, Dieter; Brismar, Torkel B; Smedby, Örjan; Moreno, Rodrigo
2018-04-10
The aim of this study was to evaluate the possibility of estimating the biomechanical properties of trabecular bone through finite element simulations by using dental cone beam computed tomography data. Fourteen human radius specimens were scanned in 3 cone beam computed tomography devices: 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan), NewTom 5 G (QR Verona, Verona, Italy), and Verity (Planmed, Helsinki, Finland). The imaging data were segmented by using 2 different methods. Stiffness (Young modulus), shear moduli, and the size and shape of the stiffness tensor were studied. Corresponding evaluations by using micro-CT were regarded as the reference standard. The 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan) showed good performance in estimating stiffness and shear moduli but was sensitive to the choice of segmentation method. NewTom 5 G (QR Verona, Verona, Italy) and Verity (Planmed, Helsinki, Finland) yielded good correlations, but they were not as strong as Accuitomo 80 (J. Morita MFG., Kyoto, Japan). The cone beam computed tomography devices overestimated both stiffness and shear compared with the micro-CT estimations. Finite element-based calculations of biomechanics from cone beam computed tomography data are feasible, with strong correlations for the Accuitomo 80 scanner (J. Morita MFG., Kyoto, Japan) combined with an appropriate segmentation method. Such measurements might be useful for predicting implant survival by in vivo estimations of bone properties. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kereszturi, Gábor; Németh, Károly
2016-08-01
Conical volcanic edifices that are made up from lapilli to block/bomb pyroclastic successions, such as scoria cones, are widespread in terrestrial and extraterrestrial settings. Eruptive processes responsible for establishing the final facies architecture of a scoria cone are not well linked to numerical simulations of their post-eruptive sediment transport. Using sedimentological, geomorphic and 2D fragment morphology data from a 15-ky-old scoria cone from the Cima Volcanic Field, California, this study provides field evidence of the various post-eruptive sediment transport and degradation processes of scoria cones located in arid to semi-arid environments. This study has revealed that pyroclast morphologies vary downslope due to syn-eruptive granular flows, along with post-eruptive modification by rolling, bouncing and sliding of individual particles down a slope, and overland flow processes. The variability of sediment transport rates on hillslopes are not directly controlled by local slope angle variability and the flank length but rather by grain size, and morphological characteristics of particles, such as shape irregularity of pyroclast fragments and block/lapilli ratio. Due to the abundance of hillslopes degrading in unvegetated regions, such as those found in the Southwestern USA, granulometric influences should be accounted for in the formulation of sediment transport laws for geomorphic modification of volcanic terrains over long geologic time.
Crooked fingers and sparse hair: an interesting case of trichorhinophalangeal syndrome type 1.
Narayanan, Ramakrishna; Chennareddy, Srinivasa
2015-01-27
Trichorhinophalangeal syndrome type 1 is a rare skeletal dysplasia of autosomal-dominant inheritance due to defects in the TRPS-1 gene. The syndrome is characterised by sparse slow-growing hair, a bulbous pear-shaped nose, cone-shaped epiphyses and deformities of the interphalangeal joints resembling those in rheumatoid arthritis. We present a case of trichorhinophalangeal syndrome in a 23-year-old man who presented with symmetrical painless progressive deformity of the fingers in both hands. 2015 BMJ Publishing Group Ltd.
Fiberoptic probe and system for spectral measurements
Dai, S.; Young, J.P.
1998-10-13
A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.
The Boer-Mulders Transverse Momentum Distribution in the Pion and its Evolution in Lattice QCD
NASA Astrophysics Data System (ADS)
Engelhardt, M.; Musch, B.; Hägler, P.; Schäfer, A.; Negele, J.
2015-02-01
Starting from a definition of transverse momentum-dependent parton distributions (TMDs) in terms of hadronic matrix elements of a quark bilocal operator containing a staple-shaped gauge link, selected TMD observables can be evaluated within Lattice QCD. A TMD ratio describing the Boer-Mulders effect in the pion is investigated, with a particular emphasis on its evolution as a function of a Collins-Soper-type parameter which quantifies the proximity of the staple-shaped gauge links to the light cone.
Ruschin, Mark; Komljenovic, Philip T; Ansell, Steve; Ménard, Cynthia; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David
2013-01-01
Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210° of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited <0.2 mm peak-to-peak variation. With a 0.5-mm voxel pitch, the maximum targeting error was 0.4 mm. Images of 2 patients were analyzed offline and submillimeter agreement was confirmed with conventional frame. A cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of producing high-resolution images of bone and soft tissue. The system is in clinical use and provides excellent image guidance without invasive frames. Copyright © 2013 Elsevier Inc. All rights reserved.
Growth and analysis of gallium arsenide-gallium antimonide single and two-phase nanoparticles
NASA Astrophysics Data System (ADS)
Schamp, Crispin T.
When evaluating the path of phase transformations in systems with nanoscopic dimensions one often relies on bulk phase diagrams for guidance because of the lack of phase diagrams that show the effect of particle size. The GaAs-GaSb pseudo-binary alloy is chosen for study to gain insight into the size dependence of solid-solubility in a two-phase system. To this end, a study is performed using independent laser ablation of high purity targets of GaAs and GaSb. The resultant samples are analyzed by transmission electron microscopy. Experimental results indicate that GaAs-GaSb nanoparticles have been formed with compositions that lie within the miscibility gap of bulk GaAs-GaSb. An unusual nanoparticle morpohology resembling the appearance of ice cream cones has been observed in single component experiments. These particles are composed of a spherical cap of Ga in contact with a crystalline cone of either GaAs or GaSb. The cones take the projected 2-D shape of a triangle or a faceted gem. The liquid Ga is found to consistently be of spherical shape and wets to the widest corners of the cone, suggesting an energy minimum exists at that wetting condition. To explore this observation a liquid sphere is modeled as being penetrated by a solid gem. The surface energies of the solid and liquid, and interfacial energy are summed as a function of penetration depth, with the sum showing a cusped minimum at the penetration depth corresponding to the waist of the gem. The angle of contact of the liquid wetting the cone is also calculated, and Young's contact angle is found to occur when the derivative of the total energy with respect to penetration depth is zero, which can be a maximum or a minimum depending on the geometrical details. The spill-over of the meniscus across the gem corners is found to be energetically favorable when the contact angle achieves the value of the equilibrium angle; otherwise the meniscus is pinned at the corners.
An Alternative Model of Philanthropy
ERIC Educational Resources Information Center
Green, Madeleine F.; Bezbatchenko, Annie W.
2014-01-01
This article begins by observing that foundations come in all shapes and sizes. The mission and grant-making philosophy of any foundation are determined by an unscientific mixture of its history, changing external realities, and leaders. The article then continues by describing The Teagle Foundation, a small, philanthropic organization with about…
Rugby and elliptical-shaped hohlraums experiments on the OMEGA laser facility
NASA Astrophysics Data System (ADS)
Tassin, Veronique; Monteil, Marie-Christine; Depierreux, Sylvie; Masson-Laborde, Paul-Edouard; Philippe, Franck; Seytor, Patricia; Fremerye, Pascale; Villette, Bruno
2017-10-01
We are pursuing on the OMEGA laser facility indirect drive implosions experiments in gas-filled rugby-shaped hohlraums in preparation for implosion plateforms on LMJ. The question of the precise wall shape of rugby hohlraum has been addressed as part of future megajoule-scale ignition designs. Calculations show that elliptical-shaped holhraum is more efficient than spherical-shaped hohlraum. There is less wall hydrodynamics and less absorption for the inner cone, provided a better control of time-dependent symmetry swings. In this context, we have conducted a series of experiments on the OMEGA laser facility. The goal of these experiments was therefore to characterize energetics with a complete set of laser-plasma interaction measurements and capsule implosion in gas-filled elliptical-shaped hohlraum with comparison with spherical-shaped hohlraum. Experiments results are discussed and compared to FCI2 radiation hydrodynamics simulations.
Differences in creosotebush (Larrea tridentata) crown morphology may reflect changes in the relative demand for water vs. nutrient resources, coinciding with shrub growth and development Creosotebushes with inverted cone-shaped crowns were more abundant in water-limited environme...
21 CFR 876.5895 - Ostomy irrigator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ostomy irrigator. 876.5895 Section 876.5895 Food... DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5895 Ostomy irrigator. (a) Identification. An ostomy irrigator is a device that consists of a container for fluid, tubing with a cone-shaped...
Infrared Emission by an Aerosol Cloud.
1980-10-10
contained in this report are those of the __j author(s) and should not be construed as an official Dep’artment of the Army ~ position, policy, or decision ...configuration employing a 4 inch diameter exhaust hose and auxillary fan located outside the hood has proved effective. Arrangements involving cone-shaped
Shah, Dipali Yogesh; Wadekar, Swati Ishwara; Dadpe, Ashwini Manish; Jadhav, Ganesh Ranganath; Choudhary, Lalit Jayant; Kalra, Dheeraj Deepak
2017-01-01
The purpose of this study was to compare and evaluate the shaping ability of ProTaper (PT) and Self-Adjusting File (SAF) system using cone-beam computed tomography (CBCT) to assess their performance in oval-shaped root canals. Sixty-two mandibular premolars with single oval canals were divided into two experimental groups ( n = 31) according to the systems used: Group I - PT and Group II - SAF. Canals were evaluated before and after instrumentation using CBCT to assess centering ratio and canal transportation at three levels. Data were statistically analyzed using one-way analysis of variance, post hoc Tukey's test, and t -test. The SAF showed better centering ability and lesser canal transportation than the PT only in the buccolingual plane at 6 and 9 mm levels. The shaping ability of the PT was best in the apical third in both the planes. The SAF had statistically significant better centering and lesser canal transportation in the buccolingual as compared to the mesiodistal plane at the middle and coronal levels. The SAF produced significantly less transportation and remained centered than the PT at the middle and coronal levels in the buccolingual plane of oval canals. In the mesiodistal plane, the performance of both the systems was parallel.
NASA Astrophysics Data System (ADS)
Gorczyk, W.; Vogt, K.
2017-12-01
Magma intrusion is a major material transfer process in Earth's continental crust. Yet, the mechanical behavior of the intruding magma and its host are a matter of debate. In this study, we present a series of numerical thermo-mechanical experiments on mafic magma emplacement in 3D.In our model, we place the magmatic source region (40 km diameter) at the base of the mantle lithosphere and connect it to the crust by a 3 km wide channel, which may have evolved at early stages of magmatism during rapid ascent of hot magmatic fluids/melts. Our results demonstrate continental crustal response due to magma intrusion. We observe change in intrusion geometries between dikes, cone-sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions as well as injection time. The rheology and temperature of the host-rock are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favours host rock displacement and magma pools along the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle-crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle-crust. Low-density source magma results in T-shaped intrusions in cross-section with magma sheets at the surface.
Output calculation of electron therapy at extended SSD using an improved LBR method.
Alkhatib, Hassaan A; Gebreamlak, Wondesen T; Tedeschi, David J; Mihailidis, Dimitris; Wright, Ben W; Neglia, William J; Sobash, Philip T; Fontenot, Jonas D
2015-02-01
To calculate the output factor (OPF) of any irregularly shaped electron beam at extended SSD. Circular cutouts were prepared from 2.0 cm diameter to the maximum possible size for 15 × 15 applicator cone. In addition, two irregular cutouts were prepared. For each cutout, percentage depth dose (PDD) at the standard SSD and doses at different SSD values were measured using 6, 9, 12, and 16 MeV electron beam energies on a Varian 2100C LINAC and the distance at which the central axis electron fluence becomes independent of cutout size was determined. The measurements were repeated with an ELEKTA Synergy LINAC using 14 × 14 applicator cone and electron beam energies of 6, 9, 12, and 15 MeV. The PDD measurements were performed using a scanning system and two diodes-one for the signal and the other a stationary reference outside the tank. The doses of the circular cutouts at different SSDs were measured using PTW 0.125 cm(3) Semiflex ion-chamber and EDR2 films. The electron fluence was measured using EDR2 films. For each circular cutout, the lateral buildup ratio (LBR) was calculated from the measured PDD curve using the open applicator cone as the reference field. The effective SSD (SSDeff) of each circular cutout was calculated from the measured doses at different SSD values. Using the LBR value and the radius of the circular cutout, the corresponding lateral spread parameter [σR(z)] was calculated. Taking the cutout size dependence of σR(z) into account, the PDD curves of the irregularly shaped cutouts at the standard SSD were calculated. Using the calculated PDD curve of the irregularly shaped cutout along with the LBR and SSDeff values of the circular cutouts, the output factor of the irregularly shaped cutout at extended SSD was calculated. Finally, both the calculated PDD curves and output factor values were compared with the measured values. The improved LBR method has been generalized to calculate the output factor of electron therapy at extended SSD. The percentage difference between the calculated and the measured output factors of irregularly shaped cutouts in a clinical useful SSD region was within 2%. Similar results were obtained for all available electron energies of both Varian 2100C and ELEKTA Synergy machines.
ERIC Educational Resources Information Center
Kwitonda, Jean Claude
2017-01-01
This study focused on foundational aspects of classroom relations. Specifically, relationships between teachers' immediacy (interpersonal) behaviours, classroom democracy, identification and learning were considered. Previous work suggests that these variables can be used as a foundation to shape classroom climate, culture and learning outcomes…
A Social Constructivist Approach to Introducing Skills for Employment to Foundation Degree Students
ERIC Educational Resources Information Center
Rutt, L.; Gray, C.; Turner, R.; Swain, J.; Hulme, S.; Pomeroy, R.
2013-01-01
Expectations for higher education providers to produce graduates ready for the workplace have shaped provision, with the introduction of the Foundation Degree, and expectations of an employability component within higher education programmes. This paper reports on an intervention for three groups of foundation degree students, which introduces…
Institutes, Foundations and Think Tanks: Neoconservative Influences on U.S. Public Schools
ERIC Educational Resources Information Center
Kovacs, Philip; Boyles, Deron
2005-01-01
This paper introduces the reader to think tanks, institutes, foundations, and their roles in shaping U.S. educational policy. Quite simply, think tanks, institutes, and foundations are nonprofit organizations that both produce and rely on research and expertise to aggressively influence the public, political leaders, and policy. Via an analysis of…
Nonlinear Evolution of Azimuthally Compact Crossflow-Vortex Packet over a Yawed Cone
NASA Astrophysics Data System (ADS)
Choudhari, Meelan; Li, Fei; Paredes, Pedro; Duan, Lian; NASA Langley Research Center Team; Missouri Univ of Sci; Tech Team
2017-11-01
Hypersonic boundary-layer flows over a circular cone at moderate incidence angle can support strong crossflow instability and, therefore, a likely scenario for laminar-turbulent transition in such flows corresponds to rapid amplification of high-frequency secondary instabilities sustained by finite amplitude stationary crossflow vortices. Direct numerical simulations (DNS) are used to investigate the nonlinear evolution of azimuthally compact crossflow vortex packets over a 7-degree half-angle, yawed circular cone in a Mach 6 free stream. Simulation results indicate that the azimuthal distribution of forcing has a strong influence on the stationary crossflow amplitudes; however, the vortex trajectories are nearly the same for both periodic and localized roughness height distributions. The frequency range, mode shapes, and amplification characteristics of strongly amplified secondary instabilities in the DNS are found to overlap with the predictions of secondary instability theory. The DNS computations also provide valuable insights toward the application of planar, partial-differential-equation based eigenvalue analysis to spanwise inhomogeneous, fully three-dimensional, crossflow-dominated flow configurations.
Influence of Nose Radius of Blunt Cones on Drag in Supersonic and Hypersonic Flows
NASA Astrophysics Data System (ADS)
Hemateja, A.; Teja, B. Ravi; Dileep Kumar, A.; Rakesh, S. G.
2017-08-01
The objects moving at high speeds encounter forces which tend to decelerate the objects. This resistance in the medium is termed as drag which is one of the major concerns while designing high speed aircrafts. Another key factor which influences the design is the heat transfer. The main challenge faced by aerospace industries is to design the shape of the flying object that travels at high speeds with optimum values of heat generation and drag. This study deals with computational analysis of sharp and blunt cones with varying cone angles and nose radii. The effect of nose radius on the drag is studied at supersonic and hypersonic flows and at various angles of attack. It is observed that as the nose radius is increased, the heat transfer reduces & the drag increases and vice-versa. Looking at the results, the optimum value of nose radius can be chosen depending on the need of the problem.
Mapping nonlinear receptive field structure in primate retina at single cone resolution
Li, Peter H; Greschner, Martin; Gunning, Deborah E; Mathieson, Keith; Sher, Alexander; Litke, Alan M; Paninski, Liam
2015-01-01
The function of a neural circuit is shaped by the computations performed by its interneurons, which in many cases are not easily accessible to experimental investigation. Here, we elucidate the transformation of visual signals flowing from the input to the output of the primate retina, using a combination of large-scale multi-electrode recordings from an identified ganglion cell type, visual stimulation targeted at individual cone photoreceptors, and a hierarchical computational model. The results reveal nonlinear subunits in the circuity of OFF midget ganglion cells, which subserve high-resolution vision. The model explains light responses to a variety of stimuli more accurately than a linear model, including stimuli targeted to cones within and across subunits. The recovered model components are consistent with known anatomical organization of midget bipolar interneurons. These results reveal the spatial structure of linear and nonlinear encoding, at the resolution of single cells and at the scale of complete circuits. DOI: http://dx.doi.org/10.7554/eLife.05241.001 PMID:26517879
Chen, Dongmei; Zhu, Shouping; Cao, Xu; Zhao, Fengjun; Liang, Jimin
2015-01-01
X-ray luminescence computed tomography (XLCT) has become a promising imaging technology for biological application based on phosphor nanoparticles. There are mainly three kinds of XLCT imaging systems: pencil beam XLCT, narrow beam XLCT and cone beam XLCT. Narrow beam XLCT can be regarded as a balance between the pencil beam mode and the cone-beam mode in terms of imaging efficiency and image quality. The collimated X-ray beams are assumed to be parallel ones in the traditional narrow beam XLCT. However, we observe that the cone beam X-rays are collimated into X-ray beams with fan-shaped broadening instead of parallel ones in our prototype narrow beam XLCT. Hence we incorporate the distribution of the X-ray beams in the physical model and collected the optical data from only two perpendicular directions to further speed up the scanning time. Meanwhile we propose a depth related adaptive regularized split Bregman (DARSB) method in reconstruction. The simulation experiments show that the proposed physical model and method can achieve better results in the location error, dice coefficient, mean square error and the intensity error than the traditional split Bregman method and validate the feasibility of method. The phantom experiment can obtain the location error less than 1.1 mm and validate that the incorporation of fan-shaped X-ray beams in our model can achieve better results than the parallel X-rays. PMID:26203388
Disposable MagLev centrifugal blood pump utilizing a cone-shaped impeller.
Hijikata, Wataru; Sobajima, Hideo; Shinshi, Tadahiko; Nagamine, Yasuyuki; Wada, Suguru; Takatani, Setsuo; Shimokohbe, Akira
2010-08-01
To enhance the durability and reduce the blood trauma of a conventional blood pump with a cone-shaped impeller, a magnetically levitated (MagLev) technology has been applied to the BioPump BPX-80 (Medtronic Biomedicus, Inc., Minneapolis, MN, USA), whose impeller is supported by a mechanical bearing. The MagLev BioPump (MagLev BP), which we have developed, has a cone-shaped impeller, the same as that used in the BPX-80. The suspension and driving system, which is comprised of two degrees of freedom, radial-controlled magnetic bearing, and a simply structured magnetic coupling, eliminates any physical contact between the impeller and the housing. To reduce both oscillation of the impeller and current in the coils, the magnetic bearing system utilizes repetitive and zero-power compensators. In this article, we present the design of the MagLev mechanism, measure the levitational accuracy of the impeller and pressure-flow curves (head-quantity [HQ] characteristics), and describe in vitro experiments designed to measure hemolysis. For the flow-induced hemolysis of the initial design to be reduced, the blood damage index was estimated by using computational fluid dynamics (CFD) analysis. Stable rotation of the impeller in a prototype MagLev BP from 0 to 2750 rpm was obtained, yielding a flow rate of 5 L/min against a head pressure in excess of 250 mm Hg. Because the impeller of the prototype MagLev BP is levitated without contact, the normalized index of hemolysis was 10% less than the equivalent value with the BPX-80. The results of the CFD analysis showed that the shape of the outlet and the width of the fluid clearances have a large effect on blood damage. The prototype MagLev BP satisfied the required HQ characteristics (5 L/min, 250 mm Hg) for extracorporeal circulation support with stable levitation of the impeller and showed an acceptable level of hemolysis. The simulation results of the CFD analysis indicated the possibility of further reducing the blood damage of the prototype MagLev BP.
History of Chandra X-Ray Observatory
2004-09-24
Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA’s Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.
NASA Technical Reports Server (NTRS)
2004-01-01
Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA's Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.
Three-dimensional shape perception from chromatic orientation flows
Zaidi, Qasim; Li, Andrea
2010-01-01
The role of chromatic information in 3-D shape perception is controversial. We resolve this controversy by showing that chromatic orientation flows are sufficient for accurate perception of 3-D shape. Chromatic flows required less cone contrast to convey shape than did achromatic flows, thus ruling out luminance artifacts as a problem. Luminance artifacts were also ruled out by a protanope’s inability to see 3-D shape from chromatic flows. Since chromatic orientation flows can only be extracted from retinal images by neurons that are responsive to color modulations and selective for orientation, the psychophysical results also resolve the controversy over the existence of such neurons. In addition, we show that identification of 3-D shapes from chromatic flows can be masked by luminance modulations, indicating that it is subserved by orientation-tuned neurons sensitive to both chromatic and luminance modulations. PMID:16961963
1990-01-01
aquifers is separated from the other by relatively impervious formations. Piezometric elevations (developed from water well inventory data) range from...350 to +400 MSL. The piezometric contours developed from water levels of the Glen Rose, Hensel and Hosston Formations show a definite cone of...Regional Geology 8 3-02 Site Geology 10 3-03 Weathering 18 3-04 Structural Geology 18 3-05 Grouna°- Water Conditions SECTION 4 - STRUCTURES 4-01 Outlet
Evaluation of water levels in major aquifers of the New Jersey coastal plain, 1978
Walker, R.L.
1983-01-01
Increased withdrawals from the major artesian aquifers that underlie the New Jersey Coastal Plain have caused water-level declines and large regional cones of depression. These cones of depression are delineated on detailed potentiometric surface maps produced from water-level data collected in the field in 1978. Water levels for 1978 are compared with those from 1970 or 1973, and water-level changes are evaluated and compared with hydrographs from observation wells. The Potomac-Raritan-Magothy aquifer system is divided into regionally extensive lower and upper aquifers. These aquifers have large cones of depression centered in Camden, Middlesex, and Monmouth Counties. Water levels declined 5 to 20 feet in these areas between 1973 and 1978. Deep cones of depression in coastal Monmouth and Ocean Counties in the Englishtown and Wenonah-Mount Laurel aquifers are similar in location and shape, due to a good hydraulic connection between these aquifers. Water levels declined 2 to 31 feet in the Englishtown aquifer and 12 to 26 feet in the Wenonah-Mount Laurel aquifer between 1973 and 1978. Water levels in the Atlantic City 800-foot sand of the Kirkwood Formation define an extensive elongated cone of depression centered near Margate, Atlantic County. Head changes ranged from a decline of 4 feet to a recovery of 9 feet during 1970-78. The lowest heads in the Cohansey Sand were about 26 feet below sea level at Cape May, Cape May County, and less than 0.5 miles from salty ground water. (USGS)
Pridmore, Ralph W
2013-01-01
This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors) but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral) functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure) hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique) over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95-1.0) in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones.) Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision.
The role of ecological factors in shaping bat cone opsin evolution.
Gutierrez, Eduardo de A; Schott, Ryan K; Preston, Matthew W; Loureiro, Lívia O; Lim, Burton K; Chang, Belinda S W
2018-04-11
Bats represent one of the largest and most striking nocturnal mammalian radiations, exhibiting many visual system specializations for performance in light-limited environments. Despite representing the greatest ecological diversity and species richness in Chiroptera, Neotropical lineages have been undersampled in molecular studies, limiting the potential for identifying signatures of selection on visual genes associated with differences in bat ecology. Here, we investigated how diverse ecological pressures mediate long-term shifts in selection upon long-wavelength ( Lws ) and short-wavelength ( Sws1 ) opsins, photosensitive cone pigments that form the basis of colour vision in most mammals, including bats. We used codon-based likelihood clade models to test whether ecological variables associated with reliance on visual information (e.g. echolocation ability and diet) or exposure to varying light environments (e.g. roosting behaviour and foraging habitat) mediated shifts in evolutionary rates in bat cone opsin genes. Using additional cone opsin sequences from newly sequenced eye transcriptomes of six Neotropical bat species, we found significant evidence for different ecological pressures influencing the evolution of the cone opsins. While Lws is evolving under significantly lower constraint in highly specialized high-duty cycle echolocating lineages, which have enhanced sonar ability to detect and track targets, variation in Sws1 constraint was significantly associated with foraging habitat, exhibiting elevated rates of evolution in species that forage among vegetation. This suggests that increased reliance on echolocation as well as the spectral environment experienced by foraging bats may differentially influence the evolution of different cone opsins. Our study demonstrates that different ecological variables may underlie contrasting evolutionary patterns in bat visual opsins, and highlights the suitability of clade models for testing ecological hypotheses of visual evolution. © 2018 The Author(s).
Pridmore, Ralph W.
2013-01-01
This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors) but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral) functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure) hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique) over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95–1.0) in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones.) Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision. PMID:24204755
Design Optimization of Space Launch Vehicles Using a Genetic Algorithm
2007-06-01
function until no improvement in the objective function could be made. The search space is modeled in a geometric form such as a polyhedron . The simplex... database . AeroDesign assumes that there are no boundary layers and that no separation occurs. AeroDesign can analyze either a cone or ogive shape
21 CFR 872.1850 - Lead-lined position indicator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lead-lined position indicator. 872.1850 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1850 Lead-lined position indicator. (a) Identification. A lead-lined position indicator is a cone-shaped device lined with lead that is attached to a...
21 CFR 872.1850 - Lead-lined position indicator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lead-lined position indicator. 872.1850 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1850 Lead-lined position indicator. (a) Identification. A lead-lined position indicator is a cone-shaped device lined with lead that is attached to a...
21 CFR 872.1850 - Lead-lined position indicator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lead-lined position indicator. 872.1850 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1850 Lead-lined position indicator. (a) Identification. A lead-lined position indicator is a cone-shaped device lined with lead that is attached to a...
21 CFR 872.1850 - Lead-lined position indicator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lead-lined position indicator. 872.1850 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1850 Lead-lined position indicator. (a) Identification. A lead-lined position indicator is a cone-shaped device lined with lead that is attached to a...
Root-like enamel pearl: a case report
2014-01-01
Introduction In general, enamel pearls are found in maxillary molars as a small globule of enamel. However, this case report describes an enamel pearl with a prolate spheroid shape which is 1.8mm wide and 8mm long. The different type of enamel pearl found in my clinic has significantly improved our understanding of enamel pearl etiology and pathophysiology. Case presentation A 42-year-old Han Chinese woman with severe toothache received treatment in my Department of Endodontics. She had no significant past medical history. A dental examination revealed extensive distal decay in her left mandibular first molar, tenderness to percussion and palpation of the periradicular zone, and found a deep periodontal pocket on the buccal lateral. Vitality testing was negative. Periapical radiographic images revealed radiolucency around the mesial apex. Cone beam computed tomography detected an opaque enamel pearl in the furcation area with a prolate spheroid shape of 1.8mm wide and 8mm long. Conclusion The enamel pearl described in this case report is like a very long dental root. Cone beam computed tomography may be used for evaluating enamel pearls. PMID:25008098
2015-10-14
There are many hills and knobs on Mars that reveal aspects of the local geologic history. Typically, the hills in the relatively-smooth region surrounding this image are flat topped erosional remnants or mesas with irregular or even polyhedral margins. These landforms suggest wide spread erosion of the soft or weakly-cemented sedimentary layers. This hill stands out because of is circular inverted-cone shape and apparent dark streaks along its flanks visible in lower resolution images. Close inspection from HiRISE reveals that the fine soils sloping down from the peak are intersected with radiating lines of rock and eroding rubble. This formation is similar to lava intrusions that form in the core of a volcano. As lava is squeezed up into a central conduit, radiating fractures fill with lava forming rock units called dikes. As the lava cools inside the ground and in the fractures, it forms into a harder rock that is more resistant to erosion. Later, as the surrounding sediments and soils erode, the resistant volcanic rock remains standing to tell a story of what happened underground long ago. http://photojournal.jpl.nasa.gov/catalog/PIA20003
Excitation condition analysis of guided wave on PFA tubes for ultrasonic flow meter.
Li, Xuan; Xiao, Xufeng; Cao, Li
2016-12-01
Impurity accumulation, which decreases the accuracy of flow measurement, is a critical problem when applying Z-shaped or U-shaped ultrasonic flow meters on straight PFA tubes. It can be expected that the guided wave can be used to implement flow measurement on straight PFA tubes. In this paper, the propagation of guided wave is explained by finite element simulations for the flow meter design. Conditions of guided wave generation, including the excitation frequency and the wedge structure, are studied in the simulations. The wedge is designed as a cone which is friendly to be manufactured and installed. The cone angle, the piezoelectric wafer's resonant frequency and the vibration directions are studied in the simulations. The simulations shows that the propagation of guided wave in thin PFA tubes is influenced by the piezoelectric wafers' resonant frequency and the vibration direction when the mode is on the 'water line'. Based on the results of the simulations, an experiment is conducted to verify the principles of excitation conditions, which performs flow measurement on a straight PFA tube well. Copyright © 2016 Elsevier B.V. All rights reserved.
1700 deg C optical temperature sensor
NASA Technical Reports Server (NTRS)
Mossey, P. W.; Shaffernocker, W. M.; Mulukutla, A. R.
1986-01-01
A new gas temperature sensor was developed that shows promise of sufficient ruggedness to be useful as a gas turbine temperature sensor. The sensor is in the form of a single-crystal aluminum oxide ceramic, ground to a cone shape and given an emissive coating. A lens and an optical fiber conduct the thermally emitted light to a remote and near-infrared photodetector assembly. Being optically coupled and passive, the sensor is highly immune to all types of electrical interference. Candidate sensors were analyzed for optical sensor performance, heat transfer characteristics, stress from gas loading. This led to the selection of the conical shape as the most promising for the gas turbine environment. One uncoated and two coated sensing elements were prepared for testing. Testing was conducted to an indicated 1750 C in a propane-air flame. Comparison with the referee optical pyrometer shows an accuracy of + or - 25 C at 1700 C for this initial development. One hundred cycles from room temperature to 1700 C left the sapphire cone intact, but some loss of the platinum, 6% rhodium coating was observed. Several areas for improving the overall performance and durability are identified.
Mechanisms of water infiltration into conical hydrophobic nanopores.
Liu, Ling; Zhao, Jianbing; Yin, Chun-Yang; Culligan, Patricia J; Chen, Xi
2009-08-14
Fluid channels with inclined solid walls (e.g. cone- and slit-shaped pores) have wide and promising applications in micro- and nano-engineering and science. In this paper, we use molecular dynamics (MD) simulations to investigate the mechanisms of water infiltration (adsorption) into cone-shaped nanopores made of a hydrophobic graphene sheet. When the apex angle is relatively small, an external pressure is required to initiate infiltration and the pressure should keep increasing in order to further advance the water front inside the nanopore. By enlarging the apex angle, the pressure required for sustaining infiltration can be effectively lowered. When the apex angle is sufficiently large, under ambient condition water can spontaneously infiltrate to a certain depth of the nanopore, after which an external pressure is still required to infiltrate more water molecules. The unusual involvement of both spontaneous and pressure-assisted infiltration mechanisms in the case of blunt nanocones, as well as other unique nanofluid characteristics, is explained by the Young's relation enriched with the size effects of surface tension and contact angle in the nanoscale confinement.
An ancient explanation of presbyopia based on binocular vision.
Barbero, Sergio
2014-06-01
Presbyopia, understood as the age-related loss of ability to clearly see near objects, was known to ancient Greeks. However, few references to it can be found in ancient manuscripts. A relevant discussion on presbyopia appears in a book called Symposiacs written by Lucius Mestrius Plutarchus around 100 A.C. In this work, Plutarch provided four explanations of presbyopia, associated with different theories of vision. One of the explanations is particularly interesting as it is based on a binocular theory of vision. In this theory, vision is produced when visual rays, emanating from the eyes, form visual cones that impinge on the objects to be seen. Visual rays coming from old people's eyes, it was supposed, are weaker than those from younger people's eyes; so the theory, to be logically coherent, implies that this effect is compensated by the increase in light intensity due to the overlapping, at a certain distance, of the visual cones coming from both eyes. Thus, it benefits the reader to move the reading text further away from the eyes in order to increase the fusion area of both visual cones. The historical hypothesis taking into consideration that the astronomer Hipparchus of Nicaea was the source of Plutarch's explanation of the theory is discussed. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Using Computer Simulations to Model Scoria Cone Growth
NASA Astrophysics Data System (ADS)
Bemis, K. G.; Mehta, R. D.
2016-12-01
Scoria cones form from the accumulation of scoria delivered by either bursting lava bubbles (Strombolian style eruptions) or the gas thrust of an eruption column (Hawaiian to sub-Plinian style eruption). In this study, we focus on connecting the distribution of scoria delivery to the eventual cone shape rather than the specifics of the mechanism of delivery. For simplicity, we choose to model ballistic paths, that follow the scoria from ejection from crater to landing on the surface and then avalanching down slope. The first stage corresponds to Strombolian-like bursts of the bubble. The second stage only occurs if the angle of repose is greater than 30 degrees. After this condition is met, the scoria particles grain flow downwards until a stable slope is formed. These two stages of the volcanic eruption repeat themselves in the number of phases. We hypothesize that the horizontal travel distance of the ballistic paths, and as a result the width of the volcano, is primarily dependent of the velocity of the particles bursting from the bubble in the crater. Other parameters that may affect the shape of cinder cones are air resistance on ballistic paths, ranges in particle size, ballistic ejection angles, and the total number of particles. Ejection velocity, ejection angle, particle size and air resistance control the delivery distribution of scoria; a similar distribution of scoria can be obtained by sedimentation from columns and the controlling parameters of such (gas thrust velocity, particle density, etc.) can be related to the ballistic delivery in terms of eruption energy and particle characteristics. We present a series of numerical experiments that test our hypotheses by varying different parameters one or more at a time in sets each designed to test a specific hypothesis. Volcano width increases as ejection velocity, ejection angle (measured from surface), or the total number of scoria particles increases. Ongoing investigations seek the controls on crater width.
NASA Astrophysics Data System (ADS)
Lelikov, E. P.; Sedin, V. T.; Pugachev, A. A.
2018-03-01
The paper reports the results of a geochemical study of volcanogenic rocks from the southern part of the Kyushu-Palau Ridge. Volcanic structures, such as plateaulike rises, mountain massifs, and single volcanoes, are the major relief-forming elements of the southern part of the Kyushu-Palau Ridge. They are divided into three types according to the features of the relief and geological structure: shield, cone-shaped, and dome-shaped volcanoes. The ridge was formed on oceanic crust in the Late Mesozoic and underwent several stages of evolution with different significance and application of forces (tension and compression). Change in the geodynamic conditions during the geological evolution of the ridge mostly determined the composition of volcanic rocks of deep-mantle nature. Most of the ridge was formed by the Early Paleogene under geodynamic conditions close to the formation of oceanic islands (shield volcanoes) under tension. The island arc formed on the oceanic basement in the compression mode in the Late Eocene-Early Oligocene. Dome-shaped volcanic edifices composed of alkaline volcanic rocks were formed in the Late Oligocene-Early Miocene under tension. Based on the new geochemical data, detailed characteristics of volcanic rocks making up the shield, cone-shape, and dome-shape stratovolcanoes resulting in the features of these volcanic edifices are given for the first time. Continuous volcanism (with an age from the Cretaceous to the Late Miocene and composition from oceanic tholeiite to calc-alkaline volcanites of the island arc type) resulting in growth of the Earth's crust beneath the Kyushu-Palau Ridge was the major factor in the formation this ridge.
Driving Forces of the Self-Assembly of Supramolecular Systems: Partially Ordered Mesophases
NASA Astrophysics Data System (ADS)
Shcherbina, M. A.; Chvalun, S. N.
2018-06-01
The main aspects are considered of the self-organization of a new class of liquid crystalline compounds, rigid sector-shaped and cone-shaped dendrons. Theoretical approaches to the self-assembly of different amphiphilic compounds (lipids, bolaamphiphiles, block copolymers, and polyelectrolytes) are described. Particular attention is given to the mesophase structures that emerge during the self-organization of mesophases characterized by intermediate degrees of ordering, e.g., plastic crystals, the rotation-crystalline phase in polymers, ordered and disordered two-dimensional columnar phases, and bicontinuous cubic phases of different symmetry.
NASA Astrophysics Data System (ADS)
Haas, F.; Heckmann, T.; Wichmann, V.; Becht, M.
2011-12-01
Rockfall processes play a major role as a natural hazard, especially if the rock faces are located close to infrastructure. However these processes cause also the retreat of the steep rock faces by weathering and the growth of the corresponding talus cones by routing debris down the talus cones. That's why this process plays also an important role for the geomorphic system and the sediment budget of high mountain catchments. The presented investigation deals with the use of TLS for quantification and for analysis of rockfall activity in two study areas located in the Alps. The rockfaces of both catchments and the corresponding talus cones were scanned twice a year from different distances. Figure 1 shows an example for the spatial distribution of surface changes at a rockface in the Northern Dolomites between 2008 and 2010. The measured surface changes at this location yields to a mean rockwall retreat of 0.04 cm/a. But high resolution TLS data are not only applicable to quantify rockfall activity they can also be used to characterize the surface properties of the corresponding talus cones and the runout distances of bigger boulders and this can lead to a better process understanding. Therefore the surface roughness of talus cones in both catchments was characterized from the TLS point clouds by a GIS approach. The resulting detailed maps of the surface conditions on the talus cones were used to improve an existing process model which is able to model runout distances on the talus cones using distributed friction parameters. Beside this the investigations showed, that also the shape of the boulders has an influence on the runout distance. That's why the interrelationships between rock fragment morphology and runout distance of over 600 single boulders were analysed at the site of a large rockfall event. The submitted poster will show the results of the quantification of the rockfall activity and additionally it will show the results of the analyses of the talus cones and of the large rockfall event and applying these results to an existing rockfall model.
Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography.
Alayo, Nerea; Conde-Rubio, Ana; Bausells, Joan; Borrisé, Xavier; Labarta, Amilcar; Batlle, Xavier; Pérez-Murano, Francesc
2015-11-06
Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition.
Wall-shaped hohlraum influence on symmetry and energetics in gas-filled hohlraums
NASA Astrophysics Data System (ADS)
Tassin, Veronique; Philippe, Franck; Laffite, Stephane; Videau, Laurent; Monteil, Marie-Christine; Villette, Bruno; Stemmler, Philippe; Bednarczyk, Sophie; Peche, Emilie; Reneaume, Benoit; Thessieux, Christian
2008-11-01
On the way to the LMJ completion, achieving ignition with 40 quads in a 2-cone configuration will be attempted as a first step. Theoretical investigation of a rugby-shaped hohlraum shows energetics optimization and a better symmetry control compared to a cylindrical hohlraum [1]. We recently conducted experiments on the Omega laser facility with 3 different wall-shaped methane-filled hohlraum configurations. We present here the experimental results. Energetics benefits are shown for reduced wall area hohlraums. The wall-shaped hohlraum influence on time-dependent radiation symmetry is also discussed. For the 3 gas-filled hohlraums configurations, we compare the foamball early-time radiographs, the D2Ar-filled capsule time-integrated images and the core self-emission images. [1] M. Vandenboomgaerde, Phys. Rev. Lett., 99, 065004 (2007).
Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope
NASA Astrophysics Data System (ADS)
Qian, Hui; Egerton, Ray F.
2017-11-01
Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.
Efficiency of geometric designs of flexible solar panels: mathematical simulation
NASA Astrophysics Data System (ADS)
Marciniak, Malgorzata; Hassebo, Yasser; Enriquez-Torres, Delfino; Serey-Roman, Maria Ignacia
2017-09-01
The purpose of this study is to analyze various surfaces of flexible solar panels and compare them to the traditional at panels mathematically. We evaluated the efficiency based on the integral formulas that involve flux. We performed calculations for flat panels with different positions, a cylindrical panel, conical panels with various opening angles and segments of a spherical panel. Our results indicate that the best efficiency per unit area belongs to particular segments of spherically-shaped panels. In addition, we calculated the optimal opening angle of a cone-shaped panel that maximizes the annual accumulation of the sun radiation per unit area. The considered shapes are presented below with a suggestion for connections of the cells.
Ustica Island (Tyrrhenian Sea, Italy): from shoaling to emergent stage
NASA Astrophysics Data System (ADS)
Marinoni, L. B.; Pasquaré, G.; Vezzoli, L.
2003-04-01
Ustica is a volcanic island located in the southern Tyrrhenian sea, ~60 km NW of Sicily. As usual for volcanic ocean islands, its exposed part (8.6 km2, 248 m max elevation, mostly of Pleistocene age), is a small fraction of the whole edifice which rises from ~2000 m depth. Its 5-pointed-star shape is slightly elongated in a NE direction. A new geological field survey was carried out at scale 1:10000 and locally at 1:2000, establishing informal stratigraphic units that on the whole fit a common scheme of evolution for volcanic ocean islands. In this framework, the whole pre-existing stratigraphy has been revised. Ustica has a variety of volcanic deposits from submarine (basaltic effusive to explosive) to subaereal (effusive, explosive and highly explosive -Plinian?). Moreover, Ustica is one of the few places in the world where a transition of deposits from shoaling to emergent stage crop out. In fact, its oldest deposits consist of: (a) a flank-facies association of submarine lavas (variably-shaped pillows, pillow breccias and hyaloclastites) with biocalcarenite-biocalcirudite lenses, dipping coastward in the E, S and W outer parts of the island; this association is arranged in steep foreset beds (lava deltas) and is capped by flat-lying transitional to subaereal massive lava flows and surf-shaped boulder conglomerates; the geometry of this association may suggest a progressive island uplift or sea lowering during this period; (b) shallow-water to emergent tuff cone deposits in the NW part of the island. In the centre of the island, subsequent activity built a pile, now deeply eroded, of subaereal basaltic lava flows capped by a scoria cone. A previously unknown outcrop where a pumice fall layer is exposed, allows a distinction into two members of a unit that was known as formed by pyroclastic surges only. Higher in the succession, the Ustica Pumice formation (for which 4 members are defined) is underlain by a palaeosoil, and is likely the remnant of a caldera-forming eruption, which possibly dismantled the northern part of the island. It may be suggested that a later flank collapse affected the W side of the island, exposing seamount-stage deposits and allowing small fissural eruptions. The northern part of the island was then rebuilt by hydro-magmatic littoral deposits, subaereal aa flows, and thick columnar lava flows. At the NE corner of the island, a littoral tuff cone (the only cone of the island which is roughly preserved in its original shape) gave the last volcanic activity in Ustica. Acknowledgement: LBM benefited of a grant from Milan University under the supervision of Prof. G.Pasquaré in the framework of a joint venture with SGN.
Antenna radiation patterns in the whistler wave regime measured in a large laboratory plasma
NASA Technical Reports Server (NTRS)
Stenzel, R. L.
1976-01-01
Antenna radiation patterns of balanced electric dipoles and shielded magnetic loop antennas are obtained by measuring the relative wave amplitude with a small receiver antenna scanned around the exciter in a large uniform collisionless magnetized laboratory plasma in the whistler wave regime. The boundary effects are assumed to be negligible even for many farfield patterns. Characteristic differences are observed between electrically short and long antennas, the former exhibiting resonance cones and the latter showing dipole-like antenna patterns along the magnetic field. Resonance cones due to small electric dipoles and magnetic loops are observed in both the near zone and the far zone. A self-focusing process is revealed which produces a pencil-shaped field-aligned radiation pattern.
Negative electroretinograms in pericentral pigmentary retinal degeneration.
Hotta, Kazuki; Kondo, Mineo; Nakamura, Makoto; Hotta, Junko; Terasaki, Hiroko; Miyake, Yozo; Hida, Tetsuo
2006-01-01
The clinical presentation and electrophysiological findings are described of three consecutive cases with pericentral pigmentary retinal degeneration. The responses to bright flashes after dark adaptation showed negative waveform shape in all cases. Rod responses were strongly reduced compared with cone responses. Cone electroretinograms elicited by long-duration stimuli showed greater loss of the on-response than the off-response. The ratio of the on-response amplitude to off-response amplitude of these patients (0.52 +/- 0.12; mean +/- SD, n = 6) was significantly smaller than that of normal subject (0.83 +/- 0.21; mean +/- SD, n = 8) (Mann-Whitney U-test, P < 0.01). The electrophysiological findings of these cases suggest a greater defect of inner retinal function, especially in transmission between photoreceptors and depolarizing bipolar cells.
NASA Technical Reports Server (NTRS)
Schairer, Edward T.; Heineck, James T.; Walker, Louise Ann; Kushner, Laura Kathryn; Zilliac, Gregory
2010-01-01
This paper describes simultaneous, synchronized, high-frequency measurements of both unsteady flow in the wake of a tension-cone decelerator in subsonic flow (by PIV) and the unsteady shape of the decelerator (by photogrammetry). The purpose of these measurements was to develop the test techniques necessary to validate numerical methods for computing fluid-structure interactions of flexible decelerators. A critical need for this effort is to map fabric surfaces that have buckled or wrinkled so that code developers can accurately represent them. This paper describes a new photogrammetric technique that performs this measurement. The work was done in support of the Entry, Descent, and Landing discipline within the Supersonics Project of NASA s Fundamental Aeronautics Program.
The properties of Ge quantum rings deposited by pulsed laser deposition.
Ma, Xiying
2010-07-01
SiGe ring-shape nanostructures have attracted much research interest because of the interesting morphology, mechanical, and electromagnetic properties. In this paper, we present the planar Ge nanorings with well-defined sharp edges self-assembled on Si (100) matrix prepared with pulsed laser deposition (PLD) in the present of Ar gas. The transforming mechanism of the droplets is discussed, which a dynamic deformation model has been developed to simulate the self-transforming process of the droplets. The rings were found to be formed in two steps: from droplets to cones and from cones to rings via an elastic self-deforming process, which were likely to be driven by the lateral strain of Ge/Si layers and the surface tension.
NASA Astrophysics Data System (ADS)
Bellaiche, Gilbert; Loncke, Lies; Gaullier, Virginie; Mascle, Jean; Courp, Thierry; Moreau, Alain; Radan, Silviu; Sardou, Olivier
2001-10-01
The meandrous leveed channels of the Nile Cone show clear evidence of avulsions. Their sedimentary architecture is founded on numerous stacked lens-shaped acoustic units. In the areas of the distal fan, lobe deposits are apparent from multichannel imagery. Huge debris flow deposits, sometimes associated with pockmarks, are recognized. Mud volcanoes and gas seeping are closely associated with faulting. In the East, a very long north-trending channel, originating from the Egyptian coast, merges with a network of channels, very probably originating from the Levantine coasts. Both networks outlet in the sedimentary basin located south of Cyprus.
Dore, Patricia; Dumani, Ardian; Wyatt, Geddes; Shepherd, Alex J
2018-03-16
This study explored associations between local and global shape perception on coloured backgrounds, colour discrimination, and non-verbal IQ (NVIQ). Five background colours were chosen for the local and global shape tasks that were tailored for the cone-opponent pathways early in the visual system (cardinal colour directions: L-M, loosely, reddish-greenish; and S-(L + M), or tritan colours, loosely, blueish-yellowish; where L, M and S refer to the long, middle and short wavelength sensitive cones). Participants also completed the Farnsworth-Munsell 100-hue test (FM100) to determine whether performance on the local and global shape tasks correlated with colour discrimination overall, or with performance on the L-M and tritan subsets of the FM100 test. Overall performance on the local and global shape tasks did correlate with scores on the FM100 tests, despite the colour of the background being irrelevant to the shape tasks. There were also significantly larger associations between scores for the L-M subset of the FM100 test, compared to the tritan subset, and accuracy on some of the shape tasks on the reddish, greenish and neutral backgrounds. Participants also completed the non-verbal components of the WAIS and the SPM+ version of Raven's progressive matrices, to determine whether performance on the FM100 test, and on the local and global shape tasks, correlated with NVIQ. FM100 scores correlated significantly with both WAIS and SPM+ scores. These results extend previous work that has indicated FM100 performance is not purely a measure of colour discrimination, but also involves aspects of each participant's NVIQ, such as the ability to attend to local and global aspects of the test, part-whole relationships, perceptual organisation and good visuomotor skills. Overall performance on the local and global shape tasks correlated only with the WAIS scores, not the SPM+. These results indicate that those aspects of NVIQ that engage spatial comprehension of local-global relationships and manual manipulation (WAIS), rather than more abstract reasoning (SPM+), are related to performance on the local and global shape tasks. Links are presented between various measures of NVIQ and performance on visual tasks, but they are currently seldom addressed in studies of either shape or colour perception. Further studies to explore these issues are recommended. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shah, Dipali Yogesh; Wadekar, Swati Ishwara; Dadpe, Ashwini Manish; Jadhav, Ganesh Ranganath; Choudhary, Lalit Jayant; Kalra, Dheeraj Deepak
2017-01-01
Context and Aims: The purpose of this study was to compare and evaluate the shaping ability of ProTaper (PT) and Self-Adjusting File (SAF) system using cone-beam computed tomography (CBCT) to assess their performance in oval-shaped root canals. Materials and Methods: Sixty-two mandibular premolars with single oval canals were divided into two experimental groups (n = 31) according to the systems used: Group I – PT and Group II – SAF. Canals were evaluated before and after instrumentation using CBCT to assess centering ratio and canal transportation at three levels. Data were statistically analyzed using one-way analysis of variance, post hoc Tukey's test, and t-test. Results: The SAF showed better centering ability and lesser canal transportation than the PT only in the buccolingual plane at 6 and 9 mm levels. The shaping ability of the PT was best in the apical third in both the planes. The SAF had statistically significant better centering and lesser canal transportation in the buccolingual as compared to the mesiodistal plane at the middle and coronal levels. Conclusions: The SAF produced significantly less transportation and remained centered than the PT at the middle and coronal levels in the buccolingual plane of oval canals. In the mesiodistal plane, the performance of both the systems was parallel. PMID:28855757
Shear Adhesion of Tapered Nanopillar Arrays.
Cho, Younghyun; Minsky, Helen K; Jiang, Yijie; Yin, Kaiyang; Turner, Kevin T; Yang, Shu
2018-04-04
Tapered nanopillars with various cross sections, including cone-shaped, stepwise, and pencil-like structures (300 nm in diameter at the base of the pillars and 1.1 μm in height), are prepared from epoxy resin templated by nanoporous anodic aluminum oxide (AAO) membranes. The effect of pillar geometry on the shear adhesion behavior of these nanopillar arrays is investigated via sliding experiments in a nanoindentation system. In a previous study of arrays with the same geometry, it was shown that cone-shaped nanopillars exhibit the highest adhesion under normal loading while stepwise and pencil-like nanopillars exhibit lower normal adhesion strength due to significant deformation of the pillars that occurs with increasing indentation depth. Contrary to the previous studies, here, we show that pencil-like nanopillars exhibit the highest shear adhesion strength at all indentation depths among three types of nanopillar arrays and that the shear adhesion increases with greater indentation depth due to the higher bending stiffness and closer packing of the pencil-like nanopillar array. Finite element simulations are used to elucidate the deformation of the pillars during the sliding experiments and agree with the nanoindentation-based sliding measurements. The experiments and finite element simulations together demonstrate that the shape of the nanopillars plays a key role in shear adhesion and that the mechanism is quite different from that of adhesion under normal loading.
NASA Astrophysics Data System (ADS)
Jodar, B.; Loison, D.; Yokoyama, Y.; Lescoute, E.; Nivard, M.; Berthe, L.; Sangleboeuf, J.-C.
2018-02-01
Laser-shock experiments were performed on a ternary {Zr50{Cu}40{Al}10} bulk metallic glass. A spalling process was studied through post-mortem analyses conducted on a recovered sample and spall. Scanning electron microscopy magnification of fracture surfaces revealed the presence of a peculiar feature known as cup-cone. Cups are found on sample fracture surface while cones are observed on spall. Two distinct regions can be observed on cups and cones: a smooth viscous-like region in the center and a flat one with large vein-pattern in the periphery. Energy dispersive spectroscopy measurements conducted on these features emphasized atomic distribution discrepancies both on the sample and spall. We propose a mechanism for the initiation and the growth of these features but also a process for atomic segregation during spallation. Cup and cones would originate from cracks arising from shear bands formation (softened paths). These shear bands result from a quadrupolar-shaped atomic disorder engendered around an initiation site by shock wave propagation. This disorder turns into a shear band when tensile front reaches spallation plane. During the separation process, temperature gain induced by shock waves and shear bands generation decreases material viscosity leading to higher atomic mobility. Once in a liquid-like form, atomic clusters migrate and segregate due to inertial effects originating from particle velocity variation (interaction of release waves). As a result, a high rate of copper is found in sample cups and high zirconium concentration is found on spall cones.
Ramírez Hernández, Adriana; Hernández-Alcántara, Pablo; Solís-Weiss, Vivianne
2015-09-02
A new species of polychaete, Nereis alacranensis n. sp., was found in dead coral rocks in the intertidal zone of Alacranes reef, southern Gulf of Mexico. N. alacranensis n. sp. can be included in a group of nereidids characterized by the absence of paragnaths in areas I and V of the pharynx, the presence of cones in a single row or absent in areas VII-VIII, and short blades in notopodial homogomph falcigers. The new species can be separated from the other species of the group by the presence of 3-7 cones in area VI and 7 cones arranged in a row in areas VII-VIII, finely dentate blades in notopodial homogomph falcigers, but most of all, by the presence of an unusual brown coarse arc shaped plate on the external ventral region of the peristomium. This structure has not yet been reported, at least in this genus. A taxonomic key of the species of Nereis recorded from the Grand Caribbean region is included.
Zurawski, Zack
2017-01-01
G-protein βγ subunits (Gβγ) interact with presynaptic proteins and regulate neurotransmitter release downstream of Ca2+ influx. To accomplish their roles in sensory signaling, photoreceptor synapses use specialized presynaptic proteins that support neurotransmission at active zone structures known as ribbons. While several G-protein coupled receptors (GPCRs) influence synaptic transmission at ribbon synapses of cones and other retinal neurons, it is unknown whether Gβγ contributes to these effects. We tested whether activation of one particular GPCR, a metabotropic glutamate receptor (mGluR), can reduce cone synaptic transmission via Gβγ in tiger salamander retinas. In recordings from horizontal cells, we found that an mGluR agonist (L-AP4) reduced cone-driven light responses and mEPSC frequency. In paired recordings of cones and horizontal cells, L-AP4 slightly reduced cone ICa (∼10%) and caused a larger reduction in cone-driven EPSCs (∼30%). Proximity ligation assay revealed direct interactions between SNAP-25 and Gβγ subunits in retinal synaptic layers. Pretreatment with the SNAP-25 cleaving protease BoNT/A inhibited L-AP4 effects on synaptic transmission, as did introduction of a peptide derived from the SNAP-25 C terminus. Introducing Gβγ subunits directly into cones reduced EPSC amplitude. This effect was inhibited by BoNT/A, supporting a role for Gβγ/SNAP-25 interactions. However, the mGluR-dependent reduction in ICa was not mimicked by Gβγ, indicating that this effect was independent of Gβγ. The finding that synaptic transmission at cone ribbon synapses is regulated by Gβγ/SNAP-25 interactions indicates that these mechanisms are shared by conventional and ribbon-type synapses. Gβγ liberated from other photoreceptor GPCRs is also likely to regulate synaptic transmission. SIGNIFICANCE STATEMENT Dynamic regulation of synaptic transmission by presynaptic G-protein coupled receptors shapes information flow through neural circuits. At the first synapse in the visual system, presynaptic metabotropic glutamate receptors (mGluRs) regulate cone photoreceptor synaptic transmission, although the mechanisms and functional impact of this are unclear. We show that mGluRs regulate light response encoding across the cone synapse, accomplished in part by triggering G-protein βγ subunits (Gβγ) interactions with SNAP-25, a core component of the synaptic vesicle fusion machinery. In addition to revealing a role in visual processing, this provides the first demonstration that Gβγ/SNAP-25 interactions regulate synaptic function at a ribbon-type synapse, contributing to an emerging picture of the ubiquity of Gβγ/SNARE interactions in regulating synaptic transmission throughout the nervous system. PMID:28363980
Van Hook, Matthew J; Babai, Norbert; Zurawski, Zack; Yim, Yun Young; Hamm, Heidi E; Thoreson, Wallace B
2017-04-26
G-protein βγ subunits (Gβγ) interact with presynaptic proteins and regulate neurotransmitter release downstream of Ca 2+ influx. To accomplish their roles in sensory signaling, photoreceptor synapses use specialized presynaptic proteins that support neurotransmission at active zone structures known as ribbons. While several G-protein coupled receptors (GPCRs) influence synaptic transmission at ribbon synapses of cones and other retinal neurons, it is unknown whether Gβγ contributes to these effects. We tested whether activation of one particular GPCR, a metabotropic glutamate receptor (mGluR), can reduce cone synaptic transmission via Gβγ in tiger salamander retinas. In recordings from horizontal cells, we found that an mGluR agonist (L-AP4) reduced cone-driven light responses and mEPSC frequency. In paired recordings of cones and horizontal cells, L-AP4 slightly reduced cone I Ca (∼10%) and caused a larger reduction in cone-driven EPSCs (∼30%). Proximity ligation assay revealed direct interactions between SNAP-25 and Gβγ subunits in retinal synaptic layers. Pretreatment with the SNAP-25 cleaving protease BoNT/A inhibited L-AP4 effects on synaptic transmission, as did introduction of a peptide derived from the SNAP-25 C terminus. Introducing Gβγ subunits directly into cones reduced EPSC amplitude. This effect was inhibited by BoNT/A, supporting a role for Gβγ/SNAP-25 interactions. However, the mGluR-dependent reduction in I Ca was not mimicked by Gβγ, indicating that this effect was independent of Gβγ. The finding that synaptic transmission at cone ribbon synapses is regulated by Gβγ/SNAP-25 interactions indicates that these mechanisms are shared by conventional and ribbon-type synapses. Gβγ liberated from other photoreceptor GPCRs is also likely to regulate synaptic transmission. SIGNIFICANCE STATEMENT Dynamic regulation of synaptic transmission by presynaptic G-protein coupled receptors shapes information flow through neural circuits. At the first synapse in the visual system, presynaptic metabotropic glutamate receptors (mGluRs) regulate cone photoreceptor synaptic transmission, although the mechanisms and functional impact of this are unclear. We show that mGluRs regulate light response encoding across the cone synapse, accomplished in part by triggering G-protein βγ subunits (Gβγ) interactions with SNAP-25, a core component of the synaptic vesicle fusion machinery. In addition to revealing a role in visual processing, this provides the first demonstration that Gβγ/SNAP-25 interactions regulate synaptic function at a ribbon-type synapse, contributing to an emerging picture of the ubiquity of Gβγ/SNARE interactions in regulating synaptic transmission throughout the nervous system. Copyright © 2017 the authors 0270-6474/17/374619-17$15.00/0.
Effects of target shape and reflection on laser radar cross sections.
Steinvall, O
2000-08-20
Laser radar cross sections have been evaluated for a number of ideal targets such as cones, spheres, paraboloids, and cylinders by use of different reflection characteristics. The time-independent cross section is the ratio of the cross section of one of these forms to that of a plate with the same maximum radius. The time-dependent laser radar cross section involves the impulse response from the object shape multiplied by the beam's transverse profile and the surface bidirectional reflection distribution function. It can be clearly seen that knowledge of the combined effect of object shape and reflection characteristics is important for determining the shape and the magnitude of the laser radar return. The results of this study are of interest for many laser radar applications such as ranging, three-dimensional imaging-modeling, tracking, antisensor lasers, and target recognition.
Multi-function diamond film fiberoptic probe and measuring system employing same
Young, Jack P.
1998-01-01
A fused fiberoptic probe having a protective cover, a fiberoptic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.
Design of Modular, Shape-transitioning Inlets for a Conical Hypersonic Vehicle
NASA Technical Reports Server (NTRS)
Gollan, Rowan J.; Smart, Michael K.
2010-01-01
For a hypersonic vehicle, propelled by scramjet engines, integration of the engines and airframe is highly desirable. Thus, the forward capture shape of the engine inlet should conform to the vehicle body shape. Furthermore, the use of modular engines places a constraint on the shape of the inlet sidewalls. Finally, one may desire a combustor cross- section shape that is different from that of the inlet. These shape constraints for the inlet can be accommodated by employing a streamline-tracing and lofting technique. This design technique was developed by Smart for inlets with a rectangular-to-elliptical shape transition. In this paper, we generalise that technique to produce inlets that conform to arbitrary shape requirements. As an example, we show the design of a body-integrated hypersonic inlet on a winged-cone vehicle, typical of what might be used in a three-stage orbital launch system. The special challenge of inlet design for this conical vehicle at an angle-of-attack is also discussed. That challenge is that the bow shock sits relatively close to the vehicle body.
Effects of source shape on the numerical aperture factor with a geometrical-optics model.
Wan, Der-Shen; Schmit, Joanna; Novak, Erik
2004-04-01
We study the effects of an extended light source on the calibration of an interference microscope, also referred to as an optical profiler. Theoretical and experimental numerical aperture (NA) factors for circular and linear light sources along with collimated laser illumination demonstrate that the shape of the light source or effective aperture cone is critical for a correct NA factor calculation. In practice, more-accurate results for the NA factor are obtained when a linear approximation to the filament light source shape is used in a geometric model. We show that previously measured and derived NA factors show some discrepancies because a circular rather than linear approximation to the filament source was used in the modeling.
NASA Astrophysics Data System (ADS)
Konovalenko, Ivan S.; Konovalenko, Igor S.
2015-10-01
Metal behavior under loading conditions that reproduce friction stir welding was studied on the atomic scale. Calculations were conducted based on molecular dynamics simulation with potentials calculated within the embedded atom method. The loading of the interface between two crystallites, whose structure corresponded to aluminum alloy 2024, was simulated by the motion of a cone-shaped tool along the interface with constant angular and translational velocities. The motion of the rotating tool causes fracture of the workpiece crystal structure with subsequent mixing of surface atoms of the interfacing crystallites. It is shown that the resistance force acting on the moving tool from the workpiece and the process of structural defect formation in the workpiece depend on the tool shape.
Early light deprivation effects on human cone-driven retinal function.
Esposito Veneruso, Paolo; Ziccardi, Lucia; Magli, Giulia; Parisi, Vincenzo; Falsini, Benedetto; Magli, Adriano
2017-03-01
To assess whether the early light deprivation induced by congenital cataract may influence the cone-driven retinal function in humans. Forty-one patients affected by congenital cataract (CC) who had undergone uncomplicated cataract extraction surgery and intraocular lens implant, and 14 healthy subjects (HS) were enrolled. All patients underwent complete ophthalmological and orthoptic evaluations and best-corrected visual acuity (BCVA) measurement; light-adapted full-field electroretinograms (ERG) and photopic negative responses (PhNR) were recorded to obtain a reliable measurement of the outer/inner retinal function and of the retinal ganglion cells' function respectively. Mean values of light-adapted ERG a- and b-wave and PhNR amplitude of CC eyes were significantly reduced and photopic ERG b-wave implicit time mean values were significantly delayed when compared to HS ones. When studying photopic ERG mean amplitudes at 5 ms, significant differences were found when comparing CC and control eyes. In CC eyes, statistically significant correlations were found between a- and b- wave amplitudes and PhNR amplitudes. No significant correlations were found between ERG parameters and BCVA, as well as between the age of CC patients at surgery and the time elapsed from lens extraction. No significant differences were found when functional parameters of bilateral and unilateral congenital cataract (uCC) eyes were compared, however uCC eyes showed significant differences when compared with contralateral healthy eyes. We found a significant impairment of cone-driven retinal responses in patients with a history of congenital cataract. These changes might result from the long-lasting effects of early light deprivation on the cone retinal pathways. Our findings support the relevance of retinal involvement in deficits induced by early light deprivation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
A post-reconstruction method to correct cupping artifacts in cone beam breast computed tomography
Altunbas, M. C.; Shaw, C. C.; Chen, L.; Lai, C.; Liu, X.; Han, T.; Wang, T.
2007-01-01
In cone beam breast computed tomography (CT), scattered radiation leads to nonuniform biasing of CT numbers known as a cupping artifact. Besides being visual distractions, cupping artifacts appear as background nonuniformities, which impair efficient gray scale windowing and pose a problem in threshold based volume visualization/segmentation. To overcome this problem, we have developed a background nonuniformity correction method specifically designed for cone beam breast CT. With this technique, the cupping artifact is modeled as an additive background signal profile in the reconstructed breast images. Due to the largely circularly symmetric shape of a typical breast, the additive background signal profile was also assumed to be circularly symmetric. The radial variation of the background signals were estimated by measuring the spatial variation of adipose tissue signals in front view breast images. To extract adipose tissue signals in an automated manner, a signal sampling scheme in polar coordinates and a background trend fitting algorithm were implemented. The background fits compared with targeted adipose tissue signal value (constant throughout the breast volume) to get an additive correction value for each tissue voxel. To test the accuracy, we applied the technique to cone beam CT images of mastectomy specimens. After correction, the images demonstrated significantly improved signal uniformity in both front and side view slices. The reduction of both intra-slice and inter-slice variations in adipose tissue CT numbers supported our observations. PMID:17822018
Long-term follow-up of two patients with oligocone trichromacy.
Smirnov, Vasily; Drumare, Isabelle; Bouacha, Ikram; Puech, Bernard; Defoort-Dhellemmes, Sabine
2015-10-01
Oligocone trichromacy (OT) is an uncommon cone dysfunction disorder, the mechanism of which remains poorly understood. OT has been thought to be non-progressive, but its long-term visual outcome has been seldom reported in the literature. Our aim was to present two OT patients followed at our institution over 18 years. Complete ocular examination, color vision, visual fields, and full-field electroretinography (ERG) were performed at initial presentation and follow-up. Spectral-domain optical coherence tomography (OCT) was performed during follow-up when available at our institution. Initial ocular examination showed satisfactory visual acuities with normal fundus examination and near-to-normal color vision. However, computerized perimetry demonstrated a ring-shaped scotoma around fixation, and ERG showed a profound cone dysfunction. The discrepancy between preserved color vision and profound cone dysfunction leads to the diagnosis of OT. Subsequent follow-ups over 18 years showed subtle degradation of visual acuities along with progression of the myopia in both patients and slight worsening of color vision in one patient. Initial OCT revealed a focal interruption of the ellipsoid line along with decreased thickness of the perifoveal macula. Subsequent OCT imaging performed 2 years later did not show any macular changes. Although OT is known to be a non-progressive cone dysfunction, our results suggest that subtle degradation of the visual function might happen over time.
Reyes, Kristina; Gonzalez, Nicolas I.; Stewart, Joshua; Ospino, Frank; Nguyen, Dickie; Cho, David T.; Ghahremani, Nahal; Spear, John R.
2013-01-01
Laminated, microbially produced stromatolites within the rock record provide some of the earliest evidence for life on Earth. The chemical, physical, and biological factors that lead to the initiation of these organosedimentary structures and shape their morphology are unclear. Modern coniform structures with morphological features similar to stromatolites are found on the surface of cyanobacterial/microbial mats. They display a vertical element of growth, can have lamination, can be lithified, and observably grow with time. To begin to understand the microbial processes and interactions required for cone formation, we determined the phylogenetic composition of the microbial community of a coniform structure from a cyanobacterial mat at Octopus Spring, Yellowstone National Park, and reconstituted coniform structures in vitro. The 16S rRNA clone library from the coniform structure was dominated by Leptolyngbya sp. Other cyanobacteria and heterotrophic bacteria were present in much lower abundance. The same Leptolyngbya sp. identified in the clone library was also enriched in the laboratory and could produce cones in vitro. When coniform structures were cultivated in the laboratory, the initial incubation conditions were found to influence coniform morphology. In addition, both the angle of illumination and the orientation of the surface affected the angle of cone formation demonstrating how external factors can influence coniform, and likely, stromatolite morphology. PMID:23241986
Substrate comprising a nanometer-scale projection array
Cui, Yi; Zhu, Jia; Hsu, Ching-Mei; Connor, Stephen T; Yu, Zongfu; Fan, Shanhui; Burkhard, George
2012-11-27
A method for forming a substrate comprising nanometer-scale pillars or cones that project from the surface of the substrate is disclosed. The method enables control over physical characteristics of the projections including diameter, sidewall angle, and tip shape. The method further enables control over the arrangement of the projections including characteristics such as center-to-center spacing and separation distance.
ERIC Educational Resources Information Center
Arnold, Jennifer E.; Kam, Carla L. Hudson; Tanenhaus, Michael K.
2007-01-01
Eye-tracking and gating experiments examined reference comprehension with fluent (Click on the red. . .) and disfluent (Click on [pause] thee uh red . . .) instructions while listeners viewed displays with 2 familiar (e.g., ice cream cones) and 2 unfamiliar objects (e.g., squiggly shapes). Disfluent instructions made unfamiliar objects more…
A Primer on Vibrational Ball Bearing Feature Generation for Prognostics and Diagnostics Algorithms
2015-03-01
Atlas -Marks (Cone-Shaped Kernel) ........................................................36 8.7.7 Hilbert-Huang Transform...bearing surface and eventually progress to the surface where the material will separate. Also known as pitting, spalling, or flaking. • Wear ...normal degradation caused by dirt and foreign particles causing abrasion of the contact surfaces over time resulting in alterations in the raceway and
Effects of the 2016 Kumamoto earthquakes on the Aso volcanic edifice
NASA Astrophysics Data System (ADS)
Tajima, Yasuhisa; Hasenaka, Toshiaki; Torii, Masayuki
2017-05-01
Large earthquakes occurred in the central part of Kumamoto Prefecture on April 14-16, 2016, causing severe damage to the northern segment of the Hinagu faults and the eastern segment of the Futagawa faults. Earthquake surface ruptures appeared along these faults and on the Aso volcanic edifice, which in turn generated landslides. We conducted landform change analysis of the central cones of Aso volcano by using satellite and aerial photographs. First, we categorized the topographical changes as surface scarps, arc-shaped cracks, and linear cracks. Field survey indicated that landslides caused the scarps and arc-shaped cracks, whereas faulting caused the linear cracks. We discovered a surface rupture concentration zone (RCZ) formed three ruptures bands with many surface ruptures and landslides extending from the west foot to the center of the Aso volcanic edifice. The magmatic volcanic vents that formed during the past 10,000 years are located along the north margin of the RCZ. Moreover, the distribution and dip of the core of rupture concentration zone correspond with the Nakadake craters. We conclude that a strong relationship exists between the volcanic vents and fault structures in the central cones of Aso volcano.[Figure not available: see fulltext.
Computational analysis of hypersonic flows past elliptic-cone waveriders
NASA Technical Reports Server (NTRS)
Yoon, Bok-Hyun; Rasmussen, Maurice L.
1991-01-01
A comprehensive study for the inviscid numerical calculation of the hypersonic flow past a class of elliptic-cone derived waveriders is presented. The theoretical background associated with hypersonic small-disturbance theory (HSDT) is reviewed. Several approximation formulas for the waverider compression surface are established. A CFD algorithm is used to calculate flow fields for the on-design case and a variety of off-design cases. The results are compared with HSDT, experiment, and other available CFD results. For the waverider shape used in previous investigations, the bow shock for the on-design condition stands off from the leading-edge tip of the waverider. It was found that this occurs because the tip was too thick according to the approximating shape formula that was used to describe the compression surface. When this was corrected, the bow shock became closer to attached as it should be. At Mach numbers greater than the design condition, a lambda-shock configuration develops near the tip of the compression surface. At negative angles of attack, other complicated shock patterns occur near the leading-edge tip. These heretofore unknown flow patterns show the power and utility of CFD for investigating novel hypersonic configurations such as waveriders.
Usefulness of a Rugby-shaped hohlraum in a Laser M'egaJoule (LMJ) 40-quad configuration
NASA Astrophysics Data System (ADS)
Malinie, G.; Vandenboomgaerde, M.; Bastian, J.; Galmiche, D.; Laffite, S.; Liberatore, S.
2007-11-01
The LMJ setup will consist of 60 quads in a 3-cone configuration, at angles 33.2^o, 49^o and 59.5^o. First ignition attempts in indirect drive are planned to be made on the way to the completion of the full facility, with only 40 quads in a 2-cone configuration, at angles 33.2^o and 49^o. By analytic considerations, we show that in a 40-quad configuration, the angular location of the hohlraum outer irradiating ring, as seen from the capsule, must be closer to the laser entrance hole than with the full LMJ. The use of a Rugby-shaped hohlraum instead of a cylinder therefore allows to keep a correct symmetry while reducing the wall surface, which improves the global energetic efficiency of the target. Simplified 2D numerical simulations of Rugby hohlraums are presented, achieving a yield of about 30 MJ with our 1.215 mm-radius, CH-uniform-ablator capsule. These results suggests this kind of hohlraum might be an interesting candidate for 40-quad ignition experiments. Work on optimizing the present design and refining the numerical simulations is currently pursued.
NASA Astrophysics Data System (ADS)
Poklad, A.; Pal, J.; Galindo, V.; Grants, I.; Heinze, V.; Meier, D.; Pätzold, O.; Stelter, M.; Gerbeth, G.
2017-07-01
A novel, vertical Bridgman-type technique for growing multi-crystalline silicon ingots in an induction furnace is described. In contrast to conventional growth, a modified setup with a cone-shaped crucible and susceptor is used. A detailed numerical simulation of the setup is presented. It includes a global thermal simulation of the furnace and a local simulation of the melt, which aims at the influence of the melt flow on the temperature and concentration fields. Furthermore, seeded growth of cone-shaped Si ingots using either a monocrystalline seed or a seed layer formed by pieces of poly-Si is demonstrated and compared to growth without seeds. The influences of the seed material on the grain structure and the dislocation density of the ingots are discussed. The second part addresses model experiments for the Czochralski technique using the room temperature liquid metal GaInSn. The studies were focused on the influence of a rotating and a horizontally static magnetic field on the melt flow and the related heat transport in crucibles being heated from bottom and/or side, and cooled by a crystal model covering about 1/3 of the upper melt surface.
NASA Technical Reports Server (NTRS)
Dietrich, D. L.; Ross, H. D.; Chang, P.; T'ien, J. S.
2001-01-01
The goal of this work is to study both experimentally and numerically the behavior of a candle flame burning in a microgravity environment. Two space experiments (Shuttle and Mir) have shown the candle flame in microgravity to be small (approximately 1.5 cm diameter), dim blue, and hemispherical. Near steady flames with very long flame lifetimes (up to 45 minutes in some tests) existed for many of the tests. Most of the flames spontaneously oscillated with a period of approximately 1 Hz just prior to extinction). In a previous model of candle flame in microgravity, a porous sphere wetted with liquid fuel simulated the evaporating wick. The sphere, with a temperature equal to the boiling temperature of the fuel, was at the end of an inert cone that had a prescribed temperature. This inert cone produces the quenching effect of the candle wax in the real configuration. Although the computed flame shape resembled that observed in the microgravity experiment, the model was not able to differentiate the effect of wick geometry, e.g., a long vs. a short wick. This paper presents recent developments in the numerical model of the candle flame. The primary focus has been to more realistically account for the actual shape of the candle.
Symmetry control in subscale near-vacuum hohlraums
NASA Astrophysics Data System (ADS)
Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N.; Landen, O. L.; Ho, D. D.; Mackinnon, A.; Zylstra, A. B.; Rinderknecht, H. G.; Sio, H.; Petrasso, R. D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E. L.; Callahan, D. A.; Hurricane, O.; Hsing, W. W.; Edwards, M. J.
2016-05-01
Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce most experimental observables, including hot spot shape, for a majority of implosions. Specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.
A multi-cone x-ray imaging Bragg crystal spectrometer
Bitter, M.; Hill, K. W.; Gao, Lan; ...
2016-08-26
This article describes a new x-ray imaging Bragg crystal spectrometer, which—in combination with a streak camera or a gated strip detector—can be used for time-resolved measurements of x-ray line spectra at the National Ignition Facility and other high power laser facilities. The main advantage of this instrument is that it produces perfect images of a point source for each wavelength in a selectable spectral range and that the detector plane can be perpendicular to the crystal surface or inclined by an arbitrary angle with respect to the crystal surface. Furthermore, these unique imaging properties are obtained by bending the x-raymore » diffracting crystal into a certain shape, which is generated by arranging multiple cones with different aperture angles on a common nodal line.« less
Preliminary design of a solar heat receiver for a Brayton cycle space power system
NASA Technical Reports Server (NTRS)
Cameron, H. M.; Mueller, L. A.; Namkoong, D.
1972-01-01
The preliminary design of a solar heat receiver for use as a heat source for an earth-orbiting 11-kWe Brayton-cycle engine is described. The result was a cavity heat receiver having the shape of a frustum of a cone. The wall of the cone is formed by 48 heat-transfer tubes, each tube containing pockets of lithium fluoride for storing heat for as much as 38 minutes of fullpower operation in the shade. Doors are provided in order to dump excess heat especially during operation in orbits with full sun exposure. The receiver material is predominantly columbium - 1-percent-zironium (Cb-1Zr) alloy. Full-scale testing of three heat-transfer tubes for more than 2000 hours and 1250 sun-shade cycles verified the design concept.
Pamboo, Jaya; Hans, Manoj Kumar; Chander, Subhas; Sharma, Kapil
2017-04-01
The success of endodontic therapy is based on having sufficient endodontic access, correct cleaning and shaping, and adequate root canal obturation. However, endodontic treatment is also dependent on having a sound knowledge of the internal anatomy of human teeth, especially when anatomic variations are present. Reporting these alterations is important for improving the understanding and expertise of endodontists. The aim of this case report is to describe a unique case of maxillary first molar with 2 palatal canals within a single root, as confirmed by cone-beam computed tomography (CBCT) scans. This article also reviews recent case reports of extra palatal root canals in the maxillary first molars and the role of CBCT analysis in successfully diagnosing them.
Material morphology and electrical resistivity differences in EPDM rubbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Nancy Y. C.; Domeier, Linda A.
2008-03-01
Electrical resistance anomalies noted in EPDM gaskets have been attributed to zinc-enriched surface sublayers, about 10-{micro}m thick, in the sulfur cured rubber material. Gasket over-compression provided the necessary connector pin contact and was also found to cause surprising morphological changes on the gasket surfaces. These included distributions of zinc oxide whiskers in high pressure gasket areas and cone-shaped features rich in zinc, oxygen, and sulfur primarily in low pressure protruding gasket areas. Such whiskers and cones were only found on the pin side of the gaskets in contact with a molded plastic surface and not on the back side inmore » contact with an aluminum surface. The mechanisms by which such features are formed have not yet been defined.« less
Spatiotemporal configuration dependent pairing of nerve events in dark-adapted human vision
NASA Astrophysics Data System (ADS)
Bouman, Maarten A.
2002-02-01
In the model presented here, in the dark any single quantum absorption in a rod or cone produces a subliminal excitation. Subliminal excitations from both halves of a twin unit pair in the retina for the perception of light from the stimulus. A twin unit contains either two red or two green cones. The twin units are intertwined in triples of two red units and one green unit in a hexagon called a trion. P satellite rods surround each cone, P being approximately proportional to the square of eccentricity. A successful pairing for light perception represents-through the points of time and locations of the creation of its partners in the retina-a direction event with two possible polarities and with the orientation of the elongated shape of the twin unit. The polarity of the event depends on which of the two partners arrives first at the twin's pairing facility. Simultaneous events and successive events with the same polarity in adjacent units that are aligned along one of the three orientations of the hexagonal retinal mosaic pair in the cortex for the perception of edge and of movement. Inter-twin pairing products of the three differently oriented sets of aligned twins are independent of each other and sum vectorially in the cortex. This system of three sub-retinas is called the retrinet. Two one-quantum excitations in any of a twin's receptors make the percept colored. The odd blue cone produces already a blue signal for a single one-quantum excitation. Intra-receptor pairing in a rod, a red cone and a green cone is for white, red, and green respectively. Red and green cone products of a trion cross-pair in the retina and produce a yellow signal. Red and green cone products of a hexagon of adjacent trions cross-pair in the cortex and produce a white signal. This large hexagon with a total of seven trions is called a persepton. After subliminal excitations in a twin have paired successfully, further subliminal receptor excitations in neighboring and aligned twins are expressed to a certain extent in the percept's area, duration and color. Earlier experiments on absolute and color thresholds are the basis for this theory, which is developed in this paper.
The role of localised Ultra-Low Frequency waves in energetic electron precipitation
NASA Astrophysics Data System (ADS)
Rae, J.; Murphy, K. R.; Watt, C.; Mann, I. R.; Ozeke, L.; Halford, A. J.; Sibeck, D. G.; Clilverd, M. A.; Rodger, C. J.; Degeling, A. W.; Singer, H. J.
2016-12-01
Electromagnetic waves play pivotal roles in radiation belt dynamics through a variety of different means. Typically, Ultra-Low Frequency (ULF) waves have historically been invoked for radial diffusive transport leading to both acceleration and loss of outer radiation belt electrons. Very-Low Frequency (VLF) and Extremely-Low Frequency (ELF) waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to direct modulation of the loss cone via localized compressional ULF waves. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity. We then perform statistical computations of the probability distribution to determine how likely a given magnetic perturbation would produce a given percentage change in the bounce loss-cone (BLC). We discuss the ramifications of the action of coherent, localized compressional ULF waves on drifting electron populations; their precipitation response can be a complex interplay between electron energy, the shape of the phase space density profile at pitch angles close to the loss cone, ionospheric decay timescales, and the time-dependence of the electron source. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. We determine that the two pivotal components not usually considered are localized ULF wave fields and ionospheric decay timescales. We conclude that ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm-times.
Functional significance of the taper of vertebrate cone photoreceptors
Hárosi, Ferenc I.
2012-01-01
Vertebrate photoreceptors are commonly distinguished based on the shape of their outer segments: those of cones taper, whereas the ones from rods do not. The functional advantages of cone taper, a common occurrence in vertebrate retinas, remain elusive. In this study, we investigate this topic using theoretical analyses aimed at revealing structure–function relationships in photoreceptors. Geometrical optics combined with spectrophotometric and morphological data are used to support the analyses and to test predictions. Three functions are considered for correlations between taper and functionality. The first function proposes that outer segment taper serves to compensate for self-screening of the visual pigment contained within. The second function links outer segment taper to compensation for a signal-to-noise ratio decline along the longitudinal dimension. Both functions are supported by the data: real cones taper more than required for these compensatory roles. The third function relates outer segment taper to the optical properties of the inner compartment whereby the primary determinant is the inner segment’s ability to concentrate light via its ellipsoid. In support of this idea, the rod/cone ratios of primarily diurnal animals are predicted based on a principle of equal light flux gathering between photoreceptors. In addition, ellipsoid concentration factor, a measure of ellipsoid ability to concentrate light onto the outer segment, correlates positively with outer segment taper expressed as a ratio of characteristic lengths, where critical taper is the yardstick. Depending on a light-funneling property and the presence of focusing organelles such as oil droplets, cone outer segments can be reduced in size to various degrees. We conclude that outer segment taper is but one component of a miniaturization process that reduces metabolic costs while improving signal detection. Compromise solutions in the various retinas and retinal regions occur between ellipsoid size and acuity, on the one hand, and faster response time and reduced light sensitivity, on the other. PMID:22250013
Design of a modulated orthovoltage stereotactic radiosurgery system.
Fagerstrom, Jessica M; Bender, Edward T; Lawless, Michael J; Culberson, Wesley S
2017-07-01
To achieve stereotactic radiosurgery (SRS) dose distributions with sharp gradients using orthovoltage energy fluence modulation with inverse planning optimization techniques. A pencil beam model was used to calculate dose distributions from an orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods. A Genetic Algorithm search heuristic was used to optimize the spatial distribution of added tungsten filtration to achieve dose distributions with sharp dose gradients. Optimizations were performed for depths of 2.5, 5.0, and 7.5 cm, with cone sizes of 5, 6, 8, and 10 mm. In addition to the beam profiles, 4π isocentric irradiation geometries were modeled to examine dose at 0.07 mm depth, a representative skin depth, for the low energy beams. Profiles from 4π irradiations of a constant target volume, assuming maximally conformal coverage, were compared. Finally, dose deposition in bone compared to tissue in this energy range was examined. Based on the results of the optimization, circularly symmetric tungsten filters were designed to modulate the orthovoltage beam across the apertures of SRS cone collimators. For each depth and cone size combination examined, the beam flatness and 80-20% and 90-10% penumbrae were calculated for both standard, open cone-collimated beams as well as for optimized, filtered beams. For all configurations tested, the modulated beam profiles had decreased penumbra widths and flatness statistics at depth. Profiles for the optimized, filtered orthovoltage beams also offered decreases in these metrics compared to measured linear accelerator cone-based SRS profiles. The dose at 0.07 mm depth in the 4π isocentric irradiation geometries was higher for the modulated beams compared to unmodulated beams; however, the modulated dose at 0.07 mm depth remained <0.025% of the central, maximum dose. The 4π profiles irradiating a constant target volume showed improved statistics for the modulated, filtered distribution compared to the standard, open cone-collimated distribution. Simulations of tissue and bone confirmed previously published results that a higher energy beam (≥ 200 keV) would be preferable, but the 250 kVp beam was chosen for this work because it is available for future measurements. A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions with decreased flatness and penumbra statistics compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Geppert, A.; Terzis, A.; Lamanna, G.; Marengo, M.; Weigand, B.
2017-12-01
The present paper investigates experimentally the impact dynamics of crown-type splashing for miscible two- and one-component droplet wall-film interactions over a range of Weber numbers and dimensionless film thicknesses. The splashing outcome is parametrised in terms of a set of quantifiable parameters, such as crown height, top and base diameter, wall inclination, number of fingers, and secondary droplet properties. The results show that the outcome of a splashing event is not affected by the choice of similar or dissimilar fluids, provided the dimensionless film thickness is larger than 0.1. Below this threshold, distinctive features of two-component interactions appear, such as hole formation and crown bottom breakdown. The observation of different crown shapes (e.g. V-shaped, cylindrical, and truncated-cone) confirms that vorticity production induces changes in the crown wall inclination, thus affecting the evolution of the crown height and top diameter. The evolution of the crown base diameter, instead, is mainly dependent on the relative importance of liquid inertia and viscous losses in the wall-film. The maximum number of liquid fingers decreases with increasing wall, film thickness, due to the enhanced attenuation of the effect of surface properties on the fingering process. The formation of secondary droplets is also affected by changes in the crown wall inclination. In particular, for truncated-cone shapes the occurrence of crown rim contraction induces a large scatter in the secondary droplet properties. Consequently, empirical models for the maximum number and mean diameter of the secondary droplets are derived for V-shaped crowns, as observed for the hexadecane-Hyspin interactions.
NASA Astrophysics Data System (ADS)
Yoshimura, Ryokei; Ogawa, Yasuo; Yukutake, Yohei; Kanda, Wataru; Komori, Shogo; Hase, Hideaki; Goto, Tada-nori; Honda, Ryou; Harada, Masatake; Yamazaki, Tomoya; Kamo, Masato; Kawasaki, Shingo; Higa, Tetsuya; Suzuki, Takeshi; Yasuda, Yojiro; Tani, Masanori; Usui, Yoshiya
2018-04-01
On 29 June 2015, a small phreatic eruption occurred at Hakone volcano, Central Japan, forming several vents in the Owakudani geothermal area on the northern slope of the central cones. Intense earthquake swarm activity and geodetic signals corresponding to the 2015 eruption were also observed within the Hakone caldera. To complement these observations and to characterise the shallow resistivity structure of Hakone caldera, we carried out a three-dimensional inversion of magnetotelluric measurement data acquired at 64 sites across the region. We utilised an unstructured tetrahedral mesh for the inversion code of the edge-based finite element method to account for the steep topography of the region during the inversion process. The main features of the best-fit three-dimensional model are a bell-shaped conductor, the bottom of which shows good agreement with the upper limit of seismicity, beneath the central cones and the Owakudani geothermal area, and several buried bowl-shaped conductive zones beneath the Gora and Kojiri areas. We infer that the main bell-shaped conductor represents a hydrothermally altered zone that acts as a cap or seal to resist the upwelling of volcanic fluids. Enhanced volcanic activity may cause volcanic fluids to pass through the resistive body surrounded by the altered zone and thus promote brittle failure within the resistive body. The overlapping locations of the bowl-shaped conductors, the buried caldera structures and the presence of sodium-chloride-rich hot springs indicate that the conductors represent porous media saturated by high-salinity hot spring waters. The linear clusters of earthquake swarms beneath the Kojiri area may indicate several weak zones that formed due to these structural contrasts.[Figure not available: see fulltext.
Jin, Peng; Hulshof, Maarten C C M; van Wieringen, Niek; Bel, Arjan; Alderliesten, Tanja
2017-07-01
To investigate the interfractional variability of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional cone-beam computed tomography (4D-CBCT) and assess if a 4D-CT is sufficient for predicting the motion during the treatment. Twenty-four patients with 63 markers visible in the retrospectively reconstructed 4D-CBCTs were included. For each marker, we calculated the amplitude and trajectory of the respiration-induced motion. Possible time trends of the amplitude over the treatment course and the interfractional variability of amplitudes and trajectory shapes were assessed. Further, the amplitudes measured in the 4D-CT were compared to those in the 4D-CBCTs. The amplitude was largest in the cranial-caudal direction of the distal esophagus (mean: 7.1mm) and proximal stomach (mean: 7.8mm). No time trend was observed in the amplitude over the treatment course. The interfractional variability of amplitudes and trajectory shapes was limited (mean: ≤1.4mm). Moreover, small and insignificant deviation was found between the amplitudes quantified in the 4D-CT and in the 4D-CBCT (mean absolute difference: ≤1.0mm). The limited interfractional variability of amplitudes and trajectory shapes and small amplitude difference between 4D-CT-based and 4D-CBCT-based measurements imply that a single 4D-CT would be sufficient for predicting the respiration-induced esophageal tumor motion during the treatment course. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kocot, A.; Vij, J. K.; Perova, T. S.; Merkel, K.; Swaminathan, V.; Sreenilayam, S. P.; Yadav, N.; Panov, V. P.; Stevenson, P. J.; Panov, A.; Rodriguez-Lojo, D.
2017-09-01
Two approaches exist in the literature for describing the orientational distribution function (ODF) of the molecular directors in SmA* phase of liquid crystals, though several models are recently proposed in the literature for explaining the de Vries behaviour. These ODFs correspond to either the conventional unimodal arrangements of molecular directors arising from the mean field theory that leads to the broad or sugar-loaf like distribution or to the "diffuse-cone-shaped" type distribution proposed by de Vries. The hypothesis by de Vries provides for a realistic explanation as to how at a molecular level, a first-order SmA* to SmC* transition can occur where the uniform molecular director azimuthal distributions condense to values lying within a narrow range of angles; finally these condense to a single value while at the same time ensuring a little or no concomitant shrinkage in the layer spacing. The azimuthal distribution of the in-layer directors is probed using IR and polarized Raman spectroscopic techniques. The latter allows us to obtain the ODF and the various order parameters for the uniaxial and the biaxial phases. Based on the results of these measurements, we conclude that the "cone-shaped" (or volcano-shaped) de Vries type of distribution can most preferably describe SmA* where "a first-order phase transition from SmA* to SmC*" and a low layer shrinkage can both be easily explained.
Simulating the effect of slab features on vapor intrusion of crack entry
Yao, Yijun; Pennell, Kelly G.; Suuberg, Eric M.
2012-01-01
In vapor intrusion screening models, a most widely employed assumption in simulating the entry of contaminant into a building is that of a crack in the building foundation slab. Some modelers employed a perimeter crack hypothesis while others chose not to identify the crack type. However, few studies have systematically investigated the influence on vapor intrusion predictions of slab crack features, such as the shape and distribution of slab cracks and related to this overall building foundation footprint size. In this paper, predictions from a three-dimensional model of vapor intrusion are used to compare the contaminant mass flow rates into buildings with different foundation slab crack features. The simulations show that the contaminant mass flow rate into the building does not change much for different assumed slab crack shapes and locations, and the foundation footprint size does not play a significant role in determining contaminant mass flow rate through a unit area of crack. Moreover, the simulation helped reveal the distribution of subslab contaminant soil vapor concentration beneath the foundation, and the results suggest that in most cases involving no biodegradation, the variation in subslab concentration should not exceed an order of magnitude, and is often significantly less than this. PMID:23359620
NASA Astrophysics Data System (ADS)
Pak, A.; Divol, L.; Kritcher, A. L.; Ma, T.; Ralph, J. E.; Bachmann, B.; Benedetti, L. R.; Casey, D. T.; Celliers, P. M.; Dewald, E. L.; Döppner, T.; Field, J. E.; Fratanduono, D. E.; Berzak Hopkins, L. F.; Izumi, N.; Khan, S. F.; Landen, O. L.; Kyrala, G. A.; LePape, S.; Millot, M.; Milovich, J. L.; Moore, A. S.; Nagel, S. R.; Park, H.-S.; Rygg, J. R.; Bradley, D. K.; Callahan, D. A.; Hinkel, D. E.; Hsing, W. W.; Hurricane, O. A.; Meezan, N. B.; Moody, J. D.; Patel, P.; Robey, H. F.; Schneider, M. B.; Town, R. P. J.; Edwards, M. J.
2017-05-01
This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10% to -5%, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additional negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ˜2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. These data indicate that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.
Retinoschisislike alterations in the mouse eye caused by gene targeting of the Norrie disease gene.
Ruether, K; van de Pol, D; Jaissle, G; Berger, W; Tornow, R P; Zrenner, E
1997-03-01
To investigate the retinal function and morphology of mice carrying a replacement mutation in exon 2 of the Norrie disease gene. Recently, Norrie disease mutant mice have been generated using gene targeting technology. The mutation removes the 56 N-terminal amino acids of the Norrie gene product. Ganzfeld electroretinograms (ERGs) were obtained in five animals hemizygous or homozygous for the mutant gene and in three female animals heterozygous for the mutant gene. As controls, three males carrying the wild-type gene were examined. Electroretinogram testing included rod a- and b-wave V-log I functions, oscillatory potentials, and cone responses. The fundus morphology has been visualized by scanning laser ophthalmoscopy. Rod and cone ERG responses and fundus morphology were not significantly different among female heterozygotes and wild-type mice. In contrast, the hemizygous mice displayed a severe loss of ERG b-wave, leading to a negatively shaped scotopic ERG and a marked reduction of oscillatory potentials. The a-wave was normal at low intensities, and only with brighter flashes was there a moderate amplitude loss. Cone amplitudes were barely recordable in the gene-targeted males. Ophthalmoscopy revealed snowflakelike vitreal changes, retinoschisis, and pigment epithelium irregularities in hemizygotes and homozygotes, but no changes in female heterozygotes. The negatively shaped scotopic ERG in male mice with a Norrie disease gene mutation probably was caused by retinoschisis. Pigment epithelial changes and degenerations of the outer retina are relatively mild. These findings may be a clue to the embryonal retinoschisislike pathogenesis of Norrie disease in humans or it may indicate a different expression of the Norrie disease gene defect in mice compared to that in humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, A.; Divol, L.; Kritcher, A. L.
This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10 to -5 %, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additionalmore » negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ~2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. This data indicates that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.« less
STEREO/LET Observations of Solar Energetic Particle Pitch Angle Distributions
NASA Astrophysics Data System (ADS)
Leske, Richard; Cummings, Alan; Cohen, Christina; Mewaldt, Richard; Labrador, Allan; Stone, Edward; Wiedenbeck, Mark; Christian, Eric; von Rosenvinge, Tycho
2015-04-01
As solar energetic particles (SEPs) travel through interplanetary space, the shape of their pitch angle distributions is determined by magnetic focusing and scattering. Measurements of SEP anisotropies therefore probe interplanetary conditions far from the observer and can provide insight into particle transport. Bidirectional flows of SEPs are often seen within interplanetary coronal mass ejections (ICMEs), resulting from injection of particles at both footpoints of the CME or from mirroring of a unidirectional beam. Mirroring is clearly implicated in those cases that show a loss cone distribution, in which particles with large pitch angles are reflected but the magnetic field enhancement at the mirror point is too weak to turn around particles with the smallest pitch angles. The width of the loss cone indicates the magnetic field strength at the mirror point far from the spacecraft, while if timing differences are detectable between outgoing and mirrored particles they may help constrain the location of the reflecting boundary.The Low Energy Telescopes (LETs) onboard both STEREO spacecraft measure energetic particle anisotropies for protons through iron at energies of about 2-12 MeV/nucleon. With these instruments we have observed loss cone distributions in several SEP events, as well as other interesting anisotropies, such as unusual oscillations in the widths of the pitch angle distributions on a timescale of several minutes during the 23 July 2012 SEP event and sunward-flowing particles when the spacecraft was magnetically connected to the back side of a distant shock well beyond 1 AU. We present the STEREO/LET anisotropy observations and discuss their implications for SEP transport. In particular, we find that the shapes of the pitch angle distributions generally vary with energy and particle species, possibly providing a signature of the rigidity dependence of the pitch angle diffusion coefficient.
Size of the foveal blue scotoma related to the shape of the foveal pit but not to macular pigment.
Chen, Yun; Lan, Weizhong; Schaeffel, Frank
2015-01-01
When the eye is covered with a filter that transmits light below 480 nm and a blue field is observed on a computer screen that is modulated in brightness at about 1 Hz, the fovea is perceived as small irregular dark spot. It was proposed that the "foveal blue scotoma" results from the lack of S-cones in the foveal center. The foveal blue scotoma is highly variable among subjects. Possible factors responsible for the variability include differences in S-cone distribution, in foveal shape, and in macular pigment distribution. Nine young adult subjects were instructed to draw their foveal blue scotomas on a clear foil that was attached in front of the computer screen. The geometry of their foveal pit was measured in OCT images in two dimensions. Macular pigment distribution was measured in fundus camera images. Finally, blue scotomas were compared with Maxwell's spot which was visualized with a dichroic filter and is commonly assumed to reflect the macular pigment distribution. The diameters of the foveal blue scotomas varied from 15.8 to 76.4 arcmin in the right eyes and 15.5 to 84.7 arcmin in the left and were highly correlated in both eyes. It was found that the steeper the foveal slopes and the narrower the foveal pit, the larger the foveal blue scotoma. There was no correlation between foveal blue scotoma and macular pigment distribution or Maxwell's spot. The results are therefore in line with the assumption that the foveal blue scotoma is a consequence of the lack of S-cones in the foveal center. Unlike the foveal blue scotoma, Maxwell's spot is based on macular pigment as previously proposed. Copyright © 2014 Elsevier B.V. All rights reserved.
Pak, A.; Divol, L.; Kritcher, A. L.; ...
2017-03-24
This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10 to -5 %, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additionalmore » negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ~2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. This data indicates that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.« less
Härer, Andreas; Torres-Dowdall, Julián; Meyer, Axel
2017-10-01
Colonization of novel habitats is typically challenging to organisms. In the initial stage after colonization, approximation to fitness optima in the new environment can occur by selection acting on standing genetic variation, modification of developmental patterns or phenotypic plasticity. Midas cichlids have recently colonized crater Lake Apoyo from great Lake Nicaragua. The photic environment of crater Lake Apoyo is shifted towards shorter wavelengths compared to great Lake Nicaragua and Midas cichlids from both lakes differ in visual sensitivity. We investigated the contribution of ontogeny and phenotypic plasticity in shaping the visual system of Midas cichlids after colonizing this novel photic environment. To this end, we measured cone opsin expression both during development and after experimental exposure to different light treatments. Midas cichlids from both lakes undergo ontogenetic changes in cone opsin expression, but visual sensitivity is consistently shifted towards shorter wavelengths in crater lake fish, which leads to a paedomorphic retention of their visual phenotype. This shift might be mediated by lower levels of thyroid hormone in crater lake Midas cichlids (measured indirectly as dio2 and dio3 gene expression). Exposing fish to different light treatments revealed that cone opsin expression is phenotypically plastic in both species during early development, with short and long wavelength light slowing or accelerating ontogenetic changes, respectively. Notably, this plastic response was maintained into adulthood only in the derived crater lake Midas cichlids. We conclude that the rapid evolution of Midas cichlids' visual system after colonizing crater Lake Apoyo was mediated by a shift in visual sensitivity during ontogeny and was further aided by phenotypic plasticity during development. © 2017 John Wiley & Sons Ltd.
Chae, Michael P.; Patel, Nakul Gamanlal; Hunter-Smith, David J.; Ramakrishnan, Venkat
2017-01-01
Background An increasing number of women undergo mastectomy for breast cancer and post-mastectomy autologous breast reconstruction has been shown to significantly improve the psychosexual wellbeing of the patients. A goal of treatment is to achieve symmetry and projection to match the native breast, and/or the contralateral breast in the case of a unilateral reconstruction. Autologous reconstruction, particularly with the deep inferior epigastric artery perforator (DIEP) flap, is particularly advantageous as it can be manipulated to mimic the shape and turgor of the native breast. However, very few techniques of shaping the breast conus when insetting the DIEP flap to enhance aesthetic outcome have been reported to date. With the aide of three-dimension (3D) photography and 3D-printed mirrored image of the contralateral breast as a guide intraoperatively, we describe our St Andrew’s coning technique to create a personalized flap projection. Method We report a prospective case series of 3 delayed unilateral breast reconstructions where symmetrization procedure to the contralateral breast was not indicated. Using a commercial 3D scanner (VECTRA XR, Canfield Scientific), the breast region was imaged. The mirrored image was 3D-printed in-house using a desktop 3D printer. Results In all cases, projection of the breast mound was able to be safely achieved, with a demonstrated central volume (or ‘cone’) able to be highlighted on imaging and a 3D printed breast. A 3D print of the contralateral breast was able to be used intraoperatively to guide the operative approach. Conclusions The St Andrew’s coning technique is a useful aesthetic maneuver for achieving breast projection during DIEP flap breast reconstruction, with 3D imaging techniques able to assist in perioperative assessment of breast volume. PMID:29302489
Harvest time of Cryptomeria japonica seeds depending on climate factors
NASA Astrophysics Data System (ADS)
Son, Seog-Gu; Kim, Hyo-Jeong; Kim, Chang-Soo; Byun, Kwang-Ok
2010-05-01
Sound seeds should have good germination rates and seed germination can be influenced by several factors. Seed picking time is regarded as one of the necessary elements to obtain sound seeds. From a clonal seed orchard of Cryptomeria japonica located in southern part of Korean peninsular, cones were picked about every 10 days from 30th of July 2005 to 30th of October in both 2005 and 2006. We have also analyzed the effects of climatic factors about two consecutive years on seed productivity. From the picked cones, seeds were collected and these germination ability, seed size and embryo shapes were investigated according to cone picking time. The 1,000-seed weight picked on 18th of August was 3.3 g and 5.3 g on 30th of September 2005and 2006. The size of seeds picked from 18th of August to 30th of September increased from 19.3 mm to 21.3 mm in length and from 15.8 mm to 18.5 mm in width. Depending on picking time, various shapes of embryos, including embryos with liquid material, jellied material and fully matured ones were observed. Germination aspects also varied throughout the test days. About two weeks after seeding in a glass petri-dish, germinal apparatuses appeared from each test seed sets which had been picked from after 10 August 2005 and 10 August 2006. The germination rates started from 10.7% from seeds picked 20 August 2006. Average germination rate in 2005 was 18.3 and 19.6 in 2006. In 2005, the highest germination rate was 34.3% from seeds picked on the 30th of September. In 2006, the highest germination rate was 31.7% for seeds picked at the same date as the 2005 seeds. After September, the highest germination rate for picked seeds decreased in both 2005 and 2006. Among the climatic factors, monthly sum of temperature and of precipitation were the main factors for maturation of C. japonica seeds. The results implied that the best cone picking time for the Korean C. japonica seed orchard to be around the end of September.
Lin, Yi G; Weadick, Cameron J; Santini, Francesco; Chang, Belinda S W
2013-12-01
Transducin is a heterotrimeric G protein that plays a critical role in phototransduction in the rod and cone photoreceptor cells of the vertebrate retina. Rods, highly sensitive cells that recover from photoactivation slowly, underlie dim-light vision, whereas cones are less sensitive, recover more quickly, and underlie bright-light vision. Transducin deactivation is a critical step in photoreceptor recovery and may underlie the functional distinction between rods and cones. Rods and cones possess distinct transducin α subunits, yet they share a common deactivation mechanism, the GTPase activating protein (GAP) complex. Here, we used codon models to examine patterns of sequence evolution in rod (GNAT1) and cone (GNAT2) α subunits. Our results indicate that purifying selection is the dominant force shaping GNAT1 and GNAT2 evolution, but that GNAT2 has additionally been subject to positive selection operating at multiple phylogenetic scales; phylogeny-wide analysis identified several sites in the GNAT2 helical domain as having substantially elevated dN/dS estimates, and branch-site analysis identified several nearby sites as targets of strong positive selection during early vertebrate history. Examination of aligned GNAT and GAP complex crystal structures revealed steric clashes between several positively selected sites and the deactivating GAP complex. This suggests that GNAT2 sequence variation could play an important role in adaptive evolution of the vertebrate visual system via effects on photoreceptor deactivation kinetics and provides an alternative perspective to previous work that focused instead on the effect of GAP complex concentration. Our findings thus further the understanding of the molecular biology, physiology, and evolution of vertebrate visual systems.
ERIC Educational Resources Information Center
Aberdeen, Lucinda; Carter, Jennifer; Grogan, Justine; Hollinsworth, David
2013-01-01
Foundation courses that provide knowledge and understanding about the social, cultural and historical factors shaping Indigenous Australians' lives since colonial settlement and their effects are endorsed in Australian higher education policy. Literature highlights the complexity of changing student views and the need for sustained, comprehensive…
NASA Astrophysics Data System (ADS)
Zheng, Xiao-Hang; Sui, Jie-He; Yang, Zhe-Yi; Zhi, Guo-Zhang; Cai, Wei
2017-05-01
Not Available Project support by the National Natural Science Foundation of China (Grant No. 51501049), China Postdoctoral Science Foundation (Grant No. 2015M571405), and the Fundamental Research Funds for the Central Universities, China (Grant No. HIT.NSRIF.20163).
Genesis and shape of natural solution cavities within salt deposits
NASA Astrophysics Data System (ADS)
Gechter, Daniel; Huggenberger, Peter; Ackerer, Philippe; Waber, H. Niklaus
2008-11-01
Since the genesis and shape of natural deep-seated cavities within a salt body are insufficiently understood, the current study tries to shed some light on this topic. To this end, freshwater was pumped slowly through a horizontal borehole in rock salt cores. Owing to fast halite dissolution kinetics, high solubility, and slow inflow rate, halite dissolution took place only in the inflow of the rock salt cylinder. The shape of the created cavities is an approximately symmetrical half cone with a horizontal base facing upward. A conceptual model is presented that is inspired by the experimental results and based on theoretical hydraulic-geochemical considerations, as well as on field observations. It proposes that triangular prism or conically shaped cavities develop within salt under confined conditions, where aggressive water flows upward along a fracture/conduit from an insoluble aquifer into the soluble stratum. Such cavity enlargements may cause land subsidence and structure collapse.
NASA Astrophysics Data System (ADS)
Glass, J. B.; Fornari, D. J.; Tivey, M. A.; Hall, H. F.; Cougan, A. A.; Berkenbosch, H. A.; Holmes, M. L.; White, S. M.; de La Torre, G.
2006-12-01
We combine high-resolution MR-1 sidescan sonar and EM-300 bathymetric data collected on four cruises (AHA-Nemo2 in 2000 (R/V Melville), DRIFT4 in 2001 (R/V Revelle), TN188 and TN189 in January 2006 (R/V Thompson) to study volcanic platform-building processes on the submarine flanks of Fernandina, Isabela, Roca Redonda and Santiago volcanoes, in the western Galapagos. Three primary volcanic provinces were identified including: rift zones (16, ranging from 5 to 20 km in length), small submarine volcanic cones (<3 km in diameter and several 100 m high) and deep (>3000 m), long (>10 km), large-area submarine lava flows. Lengths of the Galapagos rift zones are comparable to western Canary Island rift zones, but significantly shorter than Hawaiian submarine rift zones, possibly reflecting lower magma supply. A surface-towed magnetic survey was conducted over the NW Fernandina rift on TN189 and Fourier inversions were performed to correct for topographic effects. Calculated magnetization was highest (up to +32 A/m) over the shallow southwest flank of the rift, coinciding with cone fields and suggesting most recent volcanism has focused at this portion of the rift. Small submarine volcanic cones with various morphologies (e.g., pointed, cratered and occasionally breached) are common in the submarine western Galapagos both on rift zones and on the island flanks where no rifts are present, such as the northern flank of Santiago Island. Preliminary study of these cones suggests that their morphologies and depth of occurrence may reflect a combination of petrogenetic and eruption processes. Deep, long large-area lava flow fields in regions of low bathymetric relief have been previously identified as a common seafloor feature in the western Galapagos by Geist et al. [in press], and new EM300 data show that a number of the deep lava flows originate from small cones along the mid-lower portion of the NW submarine rift of Fernandina. Our high-resolution sonar data suggest that submarine volcanism in the western Galapagos occurs both on and off rift zones. Volcanic cones are prevalent on the Galapagos volcanic platform and long lava flows dominate in the deep regions west and north of the platform, possibly representing the foundation upon which the next Galapagos volcanoes will be constructed.
2008-01-01
BE POSTED ON THE WORLD -WIDE WEB: II SOCIAL SECURITY ACCOUNT NUMBERS 2) DATES OF BIRTH 3) HOME ADDRESSES 4) TELEPHONE NUMBERS OTHER THAN NUMBERS OF ... eosinophilia is seen during the vesicular stage of incontinentia pigmenti (Carney 1976). The presence of cone-shaped teeth, nail dysplasia, patchy...REPORT DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1
Richer, Stuart P; Stiles, William; Graham-Hoffman, Kelly; Levin, Marc; Ruskin, Dennis; Wrobel, James; Park, Dong-Wouk; Thomas, Carla
2011-11-01
The purpose of this study is to evaluate whether dietary supplementation with the carotenoid zeaxanthin (Zx) raises macula pigment optical density (MPOD) and has unique visual benefits for patients with early atrophic macular degeneration having visual symptoms but lower-risk National Institute of Health/National Eye Institute/Age-Related Eye Disease Study characteristics. This was a 1-year, n = 60 (57 men, 3 women), 4-visit, intention-to-treat, prospective, randomized controlled clinical trial of patients (74.9 years, standard deviation [SD] 10) with mild-to-moderate age-related macular degeneration (AMD) randomly assigned to 1 of 2 dietary supplement carotenoid pigment intervention groups: 8 mg Zx (n = 25) and 8 mg Zx plus 9 mg lutein (L) (n = 25) or 9 mg L ("Faux Placebo," control group, n = 10). Analysis was by Bartlett's test for equal variance, 3-way repeated factors analysis of variance, independent t test (P < 0.05) for variance and between/within group differences, and post-hoc Scheffé's tests. Estimated foveal heterochromic flicker photometry, 1° macular pigment optical density (MPOD QuantifEye(®)), low- and high-contrast visual acuity, foveal shape discrimination (Retina Foundation of the Southwest), 10° yellow kinetic visual fields (KVF), glare recovery, contrast sensitivity function (CSF), and 6° blue cone ChromaTest(®) color thresholds were obtained serially at 4, 8, and 12 months. Ninety percent of subjects completed ≥ 2 visits with an initial Age-Related Eye Disease Study report #18 retinopathy score of 1.4 (1.0 SD)/4.0 and pill intake compliance of 96% with no adverse effects. There were no intergroup differences in 3 major AMD risk factors: age, smoking, and body mass index as well as disease duration and Visual Function Questionnaire 25 composite score differences. Randomization resulted in equal MPOD variance and MPOD increasing in each of the 3 groups from 0.33 density units (du) (0.17 SD) baseline to 0.51 du (0.18 SD) at 12 m, (P = 0.03), but no between-group differences (Analysis of Variance; P = 0.47). In the Zx group, detailed high-contrast visual acuity improved by 1.5 lines, Retina Foundation of the Southwest shape discrimination sharpened from 0.97 to 0.57 (P = 0.06, 1-tail), and a larger percentage of Zx patients experienced clearing of their KVF central scotomas (P = 0.057). The "Faux Placebo" L group was superior in terms of low-contrast visual acuity, CSF, and glare recovery, whereas Zx showed a trend toward significance. In older male patients with AMD, Zx-induced foveal MPOD elevation mirrored that of L and provided complementary distinct visual benefits by improving foveal cone-based visual parameters, whereas L enhanced those parameters associated with gross detailed rod-based vision, with considerable overlap between the 2 carotenoids. The equally dosed (atypical dietary ratio) Zx plus L group fared worse in terms of raising MPOD, presumably because of duodenal, hepatic-lipoprotein or retinal carotenoid competition. These results make biological sense based on retinal distribution and Zx foveal predominance. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru; Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; National Research Tomsk Polytechnic University, Tomsk, 634050
2015-10-27
Metal behavior under loading conditions that reproduce friction stir welding was studied on the atomic scale. Calculations were conducted based on molecular dynamics simulation with potentials calculated within the embedded atom method. The loading of the interface between two crystallites, whose structure corresponded to aluminum alloy 2024, was simulated by the motion of a cone-shaped tool along the interface with constant angular and translational velocities. The motion of the rotating tool causes fracture of the workpiece crystal structure with subsequent mixing of surface atoms of the interfacing crystallites. It is shown that the resistance force acting on the moving toolmore » from the workpiece and the process of structural defect formation in the workpiece depend on the tool shape.« less
Multi-function diamond film fiber optic probe and measuring system employing same
Young, J.P.
1998-11-24
A fused fiber optic probe having a protective cover, a fiber optic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiber optic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 9 figs.
Light-emitting dendrimer film morphology: A neutron reflectivity study
NASA Astrophysics Data System (ADS)
Vickers, S. V.; Barcena, H.; Knights, K. A.; Thomas, R. K.; Ribierre, J.-C.; Gambino, S.; Samuel, I. D. W.; Burn, P. L.; Fragneto, Giovanna
2010-06-01
We have used neutron reflectivity (NR) measurements to probe the physical structure of phosphorescent dendrimer films. The dendrimers consisted of fac-tris(2-phenylpyridyl)iridium(III) cores, biphenyl-based dendrons (first or second generation), and perdeuterated 2-ethylhexyloxy surface groups. We found that the shape and hydrodynamic radius of the dendrimer were both important factors in determining the packing density of the dendrimers. "Cone" shaped dendrimers were found to pack more effectively than "spherical" dendrimers even when the latter had a smaller radius. The morphology of the films determined by NR was consistent with the measured photoluminescence and charge transporting properties of the materials.
NASA Technical Reports Server (NTRS)
Gnoffo, P. A.
1977-01-01
A generalized curvilinear orthogonal coordinate system is presented which can be used for approximating various axisymmetric and two-dimensional body shapes of interest to aerodynamicists. Such body shapes include spheres, ellipses, spherically capped cones, flat-faced cylinders with rounded corners, circular disks, and planetary probe vehicles. A set of transformation equations is also developed whereby a uniform velocity field approaching a body at any angle of attack can be resolved in the transformed coordinate system. The Navier-Stokes equations are written in terms of a generalized orthogonal coordinate system to show the resultant complexity of the governing equations.
Lattice QCD Studies of Transverse Momentum-Dependent Parton Distribution Functions
NASA Astrophysics Data System (ADS)
Engelhardt, M.; Musch, B.; Hägler, P.; Negele, J.; Schäfer, A.
2015-09-01
Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering and the Drell-Yan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped gauge link. Such a definition opens the possibility of evaluating TMDs within lattice QCD. By parametrizing the aforementioned matrix elements in terms of invariant amplitudes, the problem can be cast in a Lorentz frame suited for the lattice calculation. Results for selected TMD observables are presented, including a particular focus on their dependence on a Collins-Soper-type evolution parameter, which quantifies proximity of the staple-shaped gauge links to the light cone.
Observation of quantum interferences via light-induced conical intersections in diatomic molecules
Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.; ...
2016-04-07
We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less
Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones
NASA Astrophysics Data System (ADS)
Nguyen, H. S.; Dubois, F.; Deschamps, T.; Cueff, S.; Pardon, A.; Leclercq, J.-L.; Seassal, C.; Letartre, X.; Viktorovitch, P.
2018-02-01
We demonstrate that symmetry breaking opens a new degree of freedom to tailor energy-momentum dispersion in photonic crystals. Using a general theoretical framework in two illustrative practical structures, we show that breaking symmetry enables an on-demand tuning of the local density of states of the same photonic band from zero (Dirac cone dispersion) to infinity (flatband dispersion), as well as any constant density over an adjustable spectral range. As a proof of concept, we demonstrate experimentally the transformation of the very same photonic band from a conventional quadratic shape to a Dirac dispersion, a flatband dispersion, and a multivalley one. This transition is achieved by finely tuning the vertical symmetry breaking of the photonic structures. Our results provide an unprecedented degree of freedom for optical dispersion engineering in planar integrated photonic devices.
Observation of quantum interferences via light-induced conical intersections in diatomic molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.
We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less
Symmetry control in subscale near-vacuum hohlraums
Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.; ...
2016-05-18
Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce mostmore » experimental observables, including hot spot shape, for a majority of implosions. In conclusion, specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.« less
Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones.
Nguyen, H S; Dubois, F; Deschamps, T; Cueff, S; Pardon, A; Leclercq, J-L; Seassal, C; Letartre, X; Viktorovitch, P
2018-02-09
We demonstrate that symmetry breaking opens a new degree of freedom to tailor energy-momentum dispersion in photonic crystals. Using a general theoretical framework in two illustrative practical structures, we show that breaking symmetry enables an on-demand tuning of the local density of states of the same photonic band from zero (Dirac cone dispersion) to infinity (flatband dispersion), as well as any constant density over an adjustable spectral range. As a proof of concept, we demonstrate experimentally the transformation of the very same photonic band from a conventional quadratic shape to a Dirac dispersion, a flatband dispersion, and a multivalley one. This transition is achieved by finely tuning the vertical symmetry breaking of the photonic structures. Our results provide an unprecedented degree of freedom for optical dispersion engineering in planar integrated photonic devices.
The geographic selection mosaic for ponderosa pine and crossbills: a tale of two squirrels.
Parchman, Thomas L; Benkman, Craig W
2008-02-01
Recent research demonstrates how the occurrence of a preemptive competitor (Tamiasciurus) gives rise to a geographic mosaic of coevolution for crossbills (Loxia) and conifers. We extend these studies by examining ponderosa pine (Pinus ponderosa), which produces more variable annual seed crops than the conifers in previous studies and often cooccurs with tree squirrels in the genus Sciurus that are less specialized than Tamiasciurus on conifer seed. We found no evidence of seed defenses evolving in response to selection exerted by S. aberti, which was apparently overwhelmed by selection resulting from inner bark feeding that caused many developing cones to be destroyed. In the absence of S. aberti, defenses directed at crossbills increased, favoring larger-billed crossbills and causing stronger reciprocal selection between crossbills and ponderosa pine. However, crossbill nomadism in response to cone crop fluctuations prevents localized reciprocal adaptation by crossbills. In contrast, evolution in response to S. griseus has incidentally defended cones against crossbills, limiting the geographic range of the interaction between crossbills and ponderosa pine. Our results suggest that annual resource variation does not prevent competitors from shaping selection mosaics, although such fluctuations likely prevent fine-scale geographic differentiation in predators that are nomadic in response to resource variability.
Symmetry control using beam phasing in ~0.2 NIF scale high temperature Hohlraum experiment on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delamater, Norman D; Wilson, Goug C; Kyrala, George A
2009-01-01
Results are shown from recent experiments at the Omega laser facility, using 40 Omega beams driving the hohlraum with 3 cones from each side and up to 19.5 kJ of laser energy. Beam phasing is achieved by decreasing the energy separately in each of the three cones, by 3 kJ, for a total drive energy of 16.5kJ. This results in a more asymmetric drive, which will vary the shape of the imploded symmetry capsule core from round to oblate or prolate in a systematic and controlled manner. These results would be the first demonstration of beam phasing for implosions inmore » such 'high temperature' (275 eV) hohlraums at Omega. Dante measurements confirmed the predicted peak drive temperatures of 275 eV. Implosion core time dependent x-ray images were obtained from framing camera data which show the expected change in symmetry due to beam phasing and which also agree well with post processed hydro code calculations. Time resolved hard x-ray data has been obtained and it was found that the hard x-rays are correlated mainly with the low angle 21{sup o} degree cone.« less
Flight motor set 360L002 (STS-27R). Volume 5: Nozzle component
NASA Technical Reports Server (NTRS)
Meyer, S. A.
1990-01-01
A review of the performance and post-flight condition of the STS-27 Redesigned Solid Rocket Motor (RSRM) nozzles is presented. Thermal/Structural instrumentation data is reviewed, and applicable Discrepancy Reports (DRs) and Process Departures (PDs) are presented. The Nozzle Component Program Team (NCPT) performance evaluation and the Redesign Program Review Board (RPRB) assessment is included. The STS-27 nozzle assemblies were flown on the RSRM Second Flight (Space Shuttle Atlantis) on 2 December 1988. The nozzles were a partially submerged convergent and/or divergent movable design with an aft pivot point flexible bearing. The nozzle assemblies incorporated the following features: RSRM forward exit cone with snubber assembly, RSRM fixed housing, Structural backup Outer Boot Ring (OBR), RSRM cowl ring, RSRM nose inlet assembly, RSRM throat assembly, RSRM aft exit cone assembly with Linear-Shaped Charge (LSC), RTV backfill in Joints 1, 3, and 4, Use of EA913 NA adhesive in place of EA913 adhesive, Redesigned nozzle plug, and Carbon Cloth Phenolic (CCP) with 750 ppm sodium content. The CCP material usage for the STS-27 forward nozzle and aft exit cone assemblies is shown.
Design principles for morphologies of antireflection patterns for solar absorbing applications.
Moon, Yoon-Jong; Na, Jin-Young; Kim, Sun-Kyung
2015-07-01
Two-dimensional surface texturing is a widespread technology for imparting broadband antireflection, yet its design rules are not completely understood. The dependence of the reflectance spectrum of a periodically patterned glass film on various structural parameters (e.g., pitch, height, shape, and fill factor) has been investigated by means of full-vectorial numerical simulations. An average weighted reflectivity accounting for the AM1.5G solar spectrum (λ=300-1000 nm) was sinusoidally modulated by a rod pattern's height, and was minimized for pitches of 400-600 nm. When a rationally optimized cone pattern was used, the average weighted reflectivity was less than 0.5%, for incident angles of up to 40° off normal. The broadband antireflection of a cone pattern was reproduced well by a graded refractive index film model corresponding to its geometry, with the addition of a diffraction effect resulting from its periodicity. The broadband antireflection ability of optimized cone patterns is not limited to the glass material, but rather is generically applicable to other semiconductor materials, including Si and GaAs. The design rules developed herein represent a key step in the development of light-absorbing devices, such as solar cells.
Injection Characteristics of Non-Swirling and Swirling Annular Liquid Sheets
NASA Technical Reports Server (NTRS)
Harper, Brent (Technical Monitor); Ibrahim, E. A.; McKinney, T. R.
2004-01-01
A simplified mathematical model, based on body-fitted coordinates, is formulated to study the evolution of non-swirling and swirling liquid sheet emanated from an annular nozzle in a quiescent surrounding medium. The model provides predictions of sheet trajectory, thickness and velocity at various liquid mass flow rates and liquid-swirler angles. It is found that a non-swirling annular sheet converges toward its centerline and assumes a bell shape as it moves downstream from the nozzle. The bell radius, and length are more pronounced at higher liquid mass flow rates. The thickness of the non-swirling annular sheet increases while its stream-wise velocity decreases with an increase in mass flow rate. The introduction of swirl results in the formation of a diverging hollow-cone sheet. The hollow-cone divergence from its centerline is enhanced by an increase in liquid mass flow rate or liquid-swirler angle. The hollow- cone sheet its radius, curvature and stream-wise velocity increase while its thickness and tangential velocity decrease as a result of increasing the mass flow rate or liquid-swirler angle. The present results are compared with previous studies and conclusions are drawn.
Studies of Dirac and Weyl fermions by angle resolved photoemission spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lunan
2016-01-01
This dissertation consists of three parts. First, we study magnetic domains in Nd 2Fe 14B single crystals using high resolution magnetic force microscopy (MFM). In addition to the elongated, wavy nano-domains reported by a previous MFM study, we found that the micrometer size, star-shaped fractal pattern is constructed of an elongated network of nano-domains about 20 nm in width, with resolution-limited domain walls thinner than 2 nm. Second, we studied extra Dirac cones of multilayer graphene on SiC surface by ARPES and SPA-LEED. We discovered extra Dirac cones on Fermi surface due to SiC 6 x 6 and graphene 6√more » 3 6√ 3 coincidence lattice on both single-layer and three-layer graphene sheets. We interpreted the position and intensity of the Dirac cone replicas, based on the scattering vectors from LEED patterns. We found the positions of replica Dirac cones are determined mostly by the 6 6 SiC superlattice even graphene layers grown thicker. Finally, we studied the electronic structure of MoTe 2 by ARPES and experimentally con rmed the prediction of type II Weyl state in this material. By combining the result of Density Functional Theory calculations and Berry curvature calculations with out experimental data, we identi ed Fermi arcs, track states and Weyl points, all features predicted to exist in a type II Weyl semimetal. This material is an excellent playground for studies of exotic Fermions.« less
Quadruple Cone Coil with improved focality than Figure-8 coil in Transcranial Magnetic Stimulation
NASA Astrophysics Data System (ADS)
Rastogi, Priyam; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.
Transcranial Magnetic Stimulation (TMS) is a non-invasive therapy which uses a time varying magnetic field to induce an electric field in the brain and to cause neuron depolarization. Magnetic coils play an important role in the TMS therapy since their coil geometry determines the focality and penetration's depth of the induced electric field in the brain. Quadruple Cone Coil (QCC) is a novel coil with an improved focality when compared to commercial Figure-8 coil. The results of this newly designed QCC coil are compared with the Figure-8 coil at two different positions of the head - vertex and dorsolateral prefrontal cortex, over the 50 anatomically realistic MRI derived head models. Parameters such as volume of stimulation, maximum electric, area of stimulation and location of maximum electric field are determined with the help of computer modelling of both coils. There is a decrease in volume of brain stimulated by 11.6 % and a modest improvement of 8 % in the location of maximum electric field due to QCC in comparison to the Figure-8 coil. The Carver Charitable Trust and The Galloway Foundation.
Terhune, Claire E
2013-08-01
Functional shape analyses have long relied on the use of shape ratios to test biomechanical hypotheses. This method is powerful because of the ease with which results are interpreted, but these techniques fall short in quantifying complex morphologies that may not have a strong biomechanical foundation but may still be functionally informative. In contrast, geometric morphometric methods are continually being adopted for quantifying complex shapes, but they tend to prove inadequate in functional analyses because they have little foundation in an explicit biomechanical framework. The goal of this study was to evaluate the intersection of these two methods using the great ape temporomandibular joint as a case study. Three-dimensional coordinates of glenoid fossa and mandibular condyle shape were collected using a Microscribe digitizer. Linear distances extracted from these landmarks were analyzed using a series of one-way ANOVAs; further, the landmark configurations were analyzed using geometric morphometric techniques. Results suggest that the two methods are broadly similar, although the geometric morphometric data allow for the identification of shape differences among taxa that were not immediately apparent in the univariate analyses. Furthermore, this study suggests several new approaches for translating these shape data into a biomechanical context by adjusting the data using a biomechanically relevant variable. Copyright © 2013 Wiley Periodicals, Inc.
Li, Wenjing; Zhang, Jingjing; Xue, Zhongxin; Wang, Jingming; Jiang, Lei
2018-01-24
Manipulation of gas bubble behaviors is crucial for gas bubble-related applications. Generally, the manipulation of gas bubble behaviors generally takes advantage of their buoyancy force. It is very difficult to control the transportation of gas bubbles in a specific direction. Several approaches have been developed to collect and transport bubbles in aqueous media; however, most reliable and effective manipulation of gas bubbles in aqueous media occurs on the interfaces with simple shapes (i.e., cylinder and cone shapes). Reliable strategies for spontaneous and directional transport of gas bubbles on interfaces with complex shapes remain enormously challenging. Herein, a type of 3D gradient porous network was constructed on copper wire interfaces, with rectangle, wave, and helix shapes. The superhydrophobic copper wires were immersed in water, and continuous and stable gas films then formed on the interfaces. With the assistance of the Laplace pressure gradient between two bubbles, gas bubbles (including microscopic gas bubbles) in the aqueous media were subsequently transported, continuously and directionally, on the copper wires with complex shapes. The small gas bubbles always moved to the larger ones.
C-shaped maxillary permanent first molar: a case report and literature review.
Martins, Jorge N R; Quaresma, Sérgio; Quaresma, Maria Carlos; Frisbie-Teel, Jared
2013-12-01
The C-shaped configuration is rare in the upper first molar.The purpose of this article is to present 2 cases diagnosed during endodontic therapy and perform a literature review of this anatomy in the upper first molar. Endodontic therapy was performed by using a dental operating microscope and a cone-beam computed tomography analysis for better understanding of this anatomy. A literature search was conducted to identify and compare all the published cases of C-shaped upper first molar. Before the cases reported in this article, only 5 cases were available in the published literature. Three different types of C-shaped configurations in the upper first molar have been presented. The C-shaped maxillary first molar is a rare anatomic configuration. The use of the dental operating microscope may help in the endodontic therapy of these cases. Three types of C-shaped configurations have been reported; the fusion of the distobuccal root with the palatal root appears to be the most usual one. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Determining the imaging plane of a retinal capillary layer in adaptive optical imaging
NASA Astrophysics Data System (ADS)
Yang, Le-Bao; Hu, Li-Fa; Li, Da-Yu; Cao, Zhao-Liang; Mu, Quan-Quan; Ma, Ji; Xuan, Li
2016-09-01
Even in the early stage, endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm. However, the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μm in diameter. The human retina is a thin and multiple layer tissue, and the layer of capillaries less than 10 μm in diameter only exists in the inner nuclear layer. The layer thickness of capillaries less than 10 μm in diameter is about 40 μm and the distance range to rod&cone cell surface is tens of micrometers, which varies from person to person. Therefore, determining reasonable capillary layer (CL) position in different human eyes is very difficult. In this paper, we propose a method to determine the position of retinal CL based on the rod&cone cell layer. The public positions of CL are recognized with 15 subjects from 40 to 59 years old, and the imaging planes of CL are calculated by the effective focal length of the human eye. High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system (LCAOS) validate our method. All of the subjects’ CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer, which is influenced by the depth of focus. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194).
The study of the stress - strain state of the tank with bottom water drainage during operation
NASA Astrophysics Data System (ADS)
Shchipkova, Yu V.; Tokarev, V. V.
2018-04-01
Bottom drainage from tank is a current problem in modern tank usage. This article proposes the use of the bottom drainage system from the tank with the shape of the sloped cone to the centre of it. Changing the bottom design alters the stress - strain state to be analyzed in the Ansys. The analysis concluded that the proposed drainage system should be applied.
Gaps of free-space optics beams with the Beer-Lambert law.
Lacaze, Bernard
2009-05-10
Lasers used in free-space optics propagate a beam within a truncated cone. Because of this shape, the intensity cannot follow the Beer-Lambert law. In the case of a homogeneous atmosphere, we calculate the gap from the cylinder case. We will see that the gap exists but is generally very weak and, therefore, that the use of the Beer-Lambert law is a justified approximation.
Sculpting Silica Colloids by Etching Particles with Nonuniform Compositions
2017-01-01
We present the synthesis of new shapes of colloidal silica particles by manipulating their chemical composition and subsequent etching. Segments of silica rods, prepared by the ammonia catalyzed hydrolysis and condensation of tetraethylorthosilicate (TEOS) from polyvinylpyrrolidone loaded water droplets, were grown under different conditions. Upon decreasing temperature, delaying ethanol addition, or increasing monomer concentration, the rate of dissolution of the silica segment subsequently formed decreased. A watery solution of NaOH (∼mM) selectively etched these segments. Further tuning the conditions resulted in rod–cone or cone–cone shapes. Deliberately modulating the composition along the particle’s length by delayed addition of (3-aminopropyl)-triethoxysilane (APTES) also allowed us to change the composition stepwise. The faster etching of this coupling agent in neutral conditions or HF afforded an even larger variety of particle morphologies while in addition changing the chemical functionality. A comparable step in composition was applied to silica spheres. Biamine functional groups used in a similar way as APTES caused a charge inversion during the growth, causing dumbbells and higher order aggregates to form. These particles etched more slowly at the neck, resulting in a biconcave silica ring sandwiched between two silica spheres, which could be separated by specifically etching the functionalized layer using HF. PMID:28413261
A New Cone-Shaped Aortic Valve Prosthesis for Orthotopic Position: An Experimental Study in Swine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sochman, Jan, E-mail: jan.sochman@medicon.c; Peregrin, Jan H.; Pulda, Zdenek
The aim of this experimental study was to evaluate a newly designed cone-shaped aortic valve prosthesis (CAVP) for one-step transcatheter placement in an orthotopic position. The study was conducted in 15 swine using either the transcarotid (11 animals) or the transfemoral (4 animals) artery approach. A 12- or 13-Fr sheath was inserted via arterial cutdown. The CAVP was deployed under fluoroscopic control and its struts, by design, induced significant native valve insufficiency. CAVP function was evaluated by aortography and aortic pressure curve tracing. In 11 of 15 swine the CAVP was properly deployed and functioned well throughout the scheduled periodmore » of 2-3 h. In three swine the CAVPs were placed lower than intended, however, they were functional even in the left ventricular outflow tract position. One swine expired due to inadvertent low CAVP placement that caused both aortic regurgitation and immobilization of the anterior mitral valve leaflet by the valve struts. We conclude that this design of CAVP is relatively easy to deploy, works well throughout a short time period (2-3 h), and, moreover, seems to be reliable even in a lower-than-orthotopic position (e.g., infra-annulary space). Longer-term studies are needed for its further evaluation.« less
The ratio of profile peak separations as a probe of pulsar radio-beam structure
NASA Astrophysics Data System (ADS)
Dyks, J.; Pierbattista, M.
2015-12-01
The known population of pulsars contains objects with four- and five-component profiles, for which the peak-to-peak separations between the inner and outer components can be measured. These Q- and M-type profiles can be interpreted as a result of sightline cut through a nested-cone beam, or through a set of azimuthal fan beams. We show that the ratio RW of the components' separations provides a useful measure of the beam shape, which is mostly independent of parameters that determine the beam scale and complicate interpretation of simpler profiles. In particular, the method does not depend on the emission altitude and the dipole tilt distribution. The different structures of the radio beam imply manifestly different statistical distributions of RW, with the conal model being several orders of magnitude less consistent with data than the fan-beam model. To bring the conal model into consistency with data, strong effects of observational selection need to be called for, with 80 per cent of Q and M profiles assumed to be undetected because of intrinsic blending effects. It is concluded that the statistical properties of Q and M profiles are more consistent with the fan-shaped beams, than with the traditional nested-cone geometry.
Hathaway, Thomas J.
1979-01-01
This invention provides a housing containing a rotatable coal bucket that is sealed at its ends in the housing with a reciprocal plunger that is sealed in the bucket at one end and has an opposite cone-shaped end that wedges up against a closed end of the bucket, and a method for feeding dry, variable size coal from an ambient atmosphere at low pressure into a high temperature, high pressure reactor between the seals for producing fuel gas substantially without losing any high pressure gas from the reactor or excessively wearing the seals. To this end, the piston biases the plunger back and forth for loading and unloading the bucket with coal along an axis that is separated from the seals, the bucket is rotated to unload the coal into the reactor so as to fill the bucket with trapped high pressure gas from the reactor while preventing the gas from escaping therefrom, and then the cone-shaped plunger end is wedged into mating engagement with the closed end of the bucket to displace this high pressure bucket gas by expelling it back into the reactor whereby the bucket can be re-rotated for filling it with coal again substantially without losing any of the high pressure gas or excessively wearing the seals.
NASA Astrophysics Data System (ADS)
Albertson, Theodore; Troian, Sandra
Above a critical applied field strength, the surface of a liquid metal can deform into a conical shape whose apex can emit ions. The precursor shape and dynamics to that event have been debated for decades. In a landmark paper, Zubarev (2001) invoked potential flow theory to predict the existence of self-similar apical sharpening for the case of an ideal perfectly conducting liquid. He found that the Maxwell and capillary pressures at the cone tip scale in time as -2/3 upon approach to the singularity. In this talk, we examine the behavior of thin electrified microscale films placed in close proximity to a grounded planar counter electrode to probe how inertial and viscous forces, diminished or neglected in the original analysis, modify the power law exponents governing the apical self-similar regime. We employ finite element, moving mesh simulations to investigate these effects for low, intermediate and high electric Reynolds and capillary numbers. We confirm the robustness of the self-similar regime characterized by power law exponents despite the lack of potential flow - however, the power law exponents, no longer -2/3, assume values which depend on the choice of dimensionless numbers. TGA gratefully acknowledges support from a NASA Space Technology Research Fellowship.
NASA Astrophysics Data System (ADS)
MacLaren, Steve; Zylstra, A. B.; Yi, A.; Kline, J. L.; Kyrala, G. A.; Kot, L. B.; Loomis, E. N.; Perry, T. S.; Shah, R. C.; Masse, L. P.; Ralph, J. E.; Khan, S. F.
2017-10-01
Typically in indirect-drive inertial confinement fusion (ICF) hohlraums cryogenic helium gas fill is used to impede the motion of the hohlraum wall plasma as it is driven by the laser pulse. A fill of 1 mg/cc He has been used to significantly suppress wall motion in ICF hohlraums at the National Ignition Facility (NIF); however, this level of fill also causes laser-plasma instabilities (LPI) which result in hot electrons, time-dependent symmetry swings and reduction in drive due to increased backscatter. There are currently no adequate models for these phenomena in codes used to simulate integrated ICF experiments. A better compromise is a fill in the range of 0.3 0.6 mg/cc, which has been shown to provide some reduction in wall motion without incurring significant LPI effects. The wall motion in these low-fill hohlraums and the resulting effect on symmetry due to absorption of the inner cone beams by the outer cone plasma can be simulated with some degree of accuracy with the hydrodynamics and inverse Bremsstrahlung models in ICF codes. We describe a series of beryllium capsule implosions in 0.3 mg/cc He fill hohlraums that illustrate the effect of pulse shape on implosion symmetry in the ``low-fill'' regime. In particular, we find the shape of the beginning or ``foot'' of the pulse has significant leverage over the final symmetry of the stagnated implosion. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
Buyuk, C; Gunduz, K; Avsever, H
2018-01-01
The aim of this investigation was to evaluate the length, thickness, sagittal and transverse angulations and the morphological variations of the stylohyoid complex (SHC), to assess their probable associations with age and gender, and to investigate the prevalence of it in a wide range of a Turkish sub-population by using cone beam computed tomography (CBCT). The CBCT images of the 1000 patients were evaluated retrospectively. The length, thickness, sagittal and transverse angulations, morphological variations and ossification degrees of SHC were evaluated on multiplanar reconstructions (MPR) adnd three-dimensional (3D) volume rendering (3DVR) images. The data were analysed statistically by using nonparametric tests, Pearson's correlation coefficient, Student's t test, c2 test and one-way ANOVA. Statistical significance was considered at p < 0.05. It was determined that 684 (34.2%) of all 2000 SHCs were elongated (> 35 mm). The mean sagittal angle value was measured to be 72.24° and the mean transverse angle value was 70.81°. Scalariform shape, elongated type and nodular calcification pattern have the highest mean age values between the morphological groups, respectively. Calcified outline was the most prevalent calcification pattern in males. There was no correlation between length and the calcification pattern groups while scalariform shape and pseudoarticular type were the longest variations. We observed that as the anterior sagittal angle gets wider, SHC tends to get longer. The most observed morphological variations were linear shape, elongated type and calcified outline pattern. Detailed studies on the classification will contribute to the literature. (Folia Morphol 2018; 77, 1: 79-89).
Losinno, Antonella D; Sorrivas, Viviana; Ezquer, Marcelo; Ezquer, Fernando; López, Luis A; Morales, Alfonsina
2016-08-01
The wall of the seminiferous tubule in rodents consists of an inner layer of myoid cells covered by an outer layer of endothelial cells. Myoid cells are a type of smooth muscle cell containing α-actin filaments arranged in two independent layers that contract when stimulated by endothelin-1. The irregular surface relief of the tubular wall is often considered a hallmark of contraction induced by a variety of stimuli. We examine morphological changes of the rat seminiferous tubule wall during contraction by a combination of light, confocal, transmission and scanning electron microscopy. During ET-1-induced contraction, myoid cells changed from a flat to a conical shape, but their actin filaments remained in independent layers. As a consequence of myoid cell contraction, the basement membrane became wavy, orientation of collagen fibers in the extracellular matrix was altered and the endothelial cell layer became folded. To observe the basement of the myoid cell cone, the endothelial cell monolayer was removed by collagenase digestion prior to SEM study. In contracted tubules, it is possible to distinguish cell relief: myoid cells have large folds on the external surface oriented parallel to the tubular axis, whereas endothelial cells have numerous cytoplasmic projections facing the interstitium. The myoid cell cytoskeleton is unusual in that the actin filaments are arranged in two orthogonal layers, which adopt differing shapes during contraction with myoid cells becoming cone-shaped. This arrangement impacts on other components of the seminiferous tubule wall and affects the propulsion of the tubular contents to the rete testis.
Krug, R; Krastl, G; Jahreis, M
2017-03-01
The objectives of the study were to evaluate the radiographic technical quality of root canal treatment before and after the implementation of a nickel-titanium rotary (NiTiR) preparation followed by a matching-taper single-cone (mSC) obturation and to detect the procedural errors associated with this technique. A random sample of 535 patients received root canal treatment at the Department of Conservative Dentistry and Periodontology at the University of Würzburg: 254 teeth were treated in 2002-2003 by using stainless steel instruments (SSI) for preparation and a lateral compaction (LC) technique (classic group (CG)). Two hundred eighty-one teeth were root filled in 2012-2013 employing NiTiR instruments for the root canal shaping and a mSC technique (advanced group (AG)). The quality assessments were based on the radiographic criteria of the European Society of Endodontology. The presence of voids was recorded separately for the apical, central and cervical thirds of the root canals. Procedural errors, such as ledges, apical transportations, perforations and fractured instruments, were detected. The root canal fillings in the CG and AG were compared using chi-squared and Fisher's exact tests. Multivariable logistic regression was performed to investigate the association between the independent variables (patient age, tooth type and type of treatment) and the dependent variables (density and length). Adequate length was achieved significantly more often in the AG compared to the CG for molars (p = 0.017), mandibular teeth (p = 0.013) and primary root canal treatments (p = 0.024). No significant difference was detected between the AG and CG regarding adequate length in general (p = 0.051) or adequate overall quality of root canal filling (p = 0.1). In the AG, a significant decrease in procedural errors was evident (p = 0.019) and decreases in the densities of the root canal fillings in the cervical (p = 0.01) and central (p = 0.01) thirds of the root canals were also observed. Moreover, root canals in elderly patients exhibited fewer voids (p = 0.009). Rotary root canal preparation followed by a matching-taper single-cone filling technique provides a reliable shaping of the root canal, with fewer procedural errors and a more acceptable filling quality in terms of length and homogeneity in the apical third. Less favourable results were achieved in the central and cervical parts of the root canals. The matching-taper single-cone technique seems to effectively obturate well-tapered root canals after adequate rotary instrumentation. Irregularly shaped canals require additional lateral or warm vertical condensation to avoid voids.
NASA Astrophysics Data System (ADS)
Shcherbina, M. A.; Chvalun, S. N.
2018-06-01
Using a number of classes of such sector-shaped macromolecules as derivatives of 2,3,4- and 3,4,5- tri(dodecyloxy)benzenesulfonic acid and dendrimers based on gallic acid as an example, the main stages in the formation of supramolecular ensembles are considered: the formation of individual supramolecular aggregates due to the weak noncovalent interactions of mesogenic groups, and the subsequent ordering within these aggregates, which lowers the free energy of a system. Supramolecular aggregates are in turn organized into two- or three-dimensional supramolecular lattices. It is shown that the shape of the supramolecular aggregates and its change along with temperature are functions of the chemical structure of the mesogenic group (resulting in the controlled design of complex self-organizing systems with a given response to external stimuli).
Samuel A. Cushman; Tamara Max; Nashelly Meneses; Luke M. Evans; Sharon Ferrier; Barbara Honchak; Thomas G. Whitham; Gerard J. Allan
2014-01-01
Fremont cottonwood (Populus fremonti) is a foundation riparian tree species that drives community structure and ecosystem processes in southwestern U.S. ecosystems. Despite its ecological importance, little is known about the ecological and environmental processes that shape its genetic diversity, structure, and landscape connectivity. Here, we combined...
Leader Voices: Principals Reflect on the Evolution of Their Leadership
ERIC Educational Resources Information Center
Marcellus, Angela; Flores, Matt; Craig, Anthony
2012-01-01
More than a decade of school leadership research from The Wallace Foundation highlights not only the critical role of the principal but also the practices that effective school leaders undertake. A recent brief (The Wallace Foundation, 2011) distills these practices into five key functions: (1) Shape a vision of academic success for all students;…
ERIC Educational Resources Information Center
de Silva, Chamelle R.; Chigona, A.; Adendorff, S. A.
2016-01-01
Among its many affordances, the interactive whiteboard (IWB) as a digital space for children's dialogic engagement in the Foundation Phase classroom remains largely under-exploited. This paper emanates from a study which was undertaken in an attempt to understand how teachers acquire knowledge of emerging technologies and how this shapes their…
ERIC Educational Resources Information Center
Vickery, Amanda E.
2016-01-01
This qualitative multiple case study documents how two African American women social studies teachers utilise their lived experiences as the curricular foundation for teaching differing notions of citizenship to African-American students. Particular events, experiences, and relationships helped shape their perception of their roles as teachers and…
An evaluation of the utility of four in situ test methods for transmission line foundation design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullen, W.G. Jr.
1991-01-01
This research examines four existing in-situ soil strength testing methods; standard penetration test (SPT), the cone penetrometer (CPT), the flat plate dilatometer (DMT), and the pressuremeter (PMT). Soils data were collected at eight separate sites using each of the devices. The test sites were chosen to mirror soil conditions encountered within the service territory of Virginia Power, the project sponsor. A total of 19 standard soil borings, 30 cone penetrometer soundings, 26 dilatometer soundings, and 33 pressuremeter tests were undertaken in residual, alluvial and marine clay soil conditions. The testing program was conducted with five areas of concern: (1) comparisonmore » of the penetration/stiffness data from the four tests, (2) comparison of values of undrained shear strength and angle of internal friction developed from each of the test methods, (3) determination if pressuremeter data can be correlated to and thereby developed from one of the more rapid tests, (4) comparison of indirect soil type identifications from the standard borings, (5) development of information on the relative effort required for each test. Comparison of the penetration resistance stiffness data produced useful correlations among the CPT and DMT, with the SPT data yielding more erratic results. Shear strength data was most consistent for the marine clay sites, while the CPT and DMT returned useful friction angle data in the alluvial sands. PMT data correlated well to both the CPT and DMT test results. Correlation of PMT results to the SPT was more erratic. Indirect soil identification from the CPT and DMT was fully adequate for transmission line foundation design purposes, and finally, useful comparative data on the relative testing time required for the four in-situ tests was developed.« less
Field building: lessons from the Robert Wood Johnson Foundation's anthology series.
Isaacs, Stephen L; Knickman, James R
2005-01-01
As editors of the Robert Wood Johnson Foundation's (RWJF's) anthology series, we have examined the entire range of the foundation's grant making since 1972. We found that the RWJF has enjoyed considerable success in building fields--from nurse practitioners to tobacco control to end-of-life care. The RWJF has done this by shaping fields as they were emerging, by adopting a wide-ranging "bear hug" approach, and by staying the course. The lessons from the RWJF's field-building efforts are relevant for both large and small foundations: Small funders can develop strategic plans aimed at building fields in their home state or locality.
Effect of truncated cone roughness element density on hydrodynamic drag
NASA Astrophysics Data System (ADS)
Womack, Kristofer; Schultz, Michael; Meneveau, Charles
2017-11-01
An experimental study was conducted on rough-wall, turbulent boundary layer flow with roughness elements whose idealized shape model barnacles that cause hydrodynamic drag in many applications. Varying planform densities of truncated cone roughness elements were investigated. Element densities studied ranged from 10% to 79%. Detailed turbulent boundary layer velocity statistics were recorded with a two-component LDV system on a three-axis traverse. Hydrodynamic roughness length (z0) and skin-friction coefficient (Cf) were determined and compared with the estimates from existing roughness element drag prediction models including Macdonald et al. (1998) and other recent models. The roughness elements used in this work model idealized barnacles, so implications of this data set for ship powering are considered. This research was supported by the Office of Naval Research and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Rawtiya, Manjusha; Somasundaram, Pavithra; Wadhwani, Shefali; Munuga, Swapna; Agarwal, Manish; Sethi, Priyank
2016-01-01
The aim of this study was to investigate the root and canal morphology of maxillary third molars in Central India population using cone-beam computed tomography (CBCT) analysis. CBCT images of 116 maxillary third molars were observed, and data regarding the number of roots, the number of canals, and Vertucci's Classification in each root was statistically evaluated. Majority of Maxillary third molars had three roots (55.2%) and three canals (37.9%). Most MB root (43.8%), DB root (87.5%), and palatal root (100%) of maxillary third molars had Vertucci Type I. Mesiobuccal root of three-rooted maxillary third molars had Vertucci Type I (43.8%) and Type IV (40.6%) configuration. Overall prevalence of C-shaped canals in maxillary third molars was 3.4%. There was a high prevalence of three-rooted maxillary molars with three canals.
A free flight investigation of transonic sting interference
NASA Technical Reports Server (NTRS)
Jaffe, P.
1975-01-01
Transonic sting interference has been studied in a supersonic wind tunnel to obtain free flight and sting support data on identical models. The two principal configurations, representing fuselage bodies, were cigar shaped with tail fins. The others were a sharp 10-deg cone, a sphere, and a blunt entry body. Comparative data indicated that the sting had an appreciable effect on drag for the fuselage-like configurations; drag rise occurred 0.02 Mach number earlier in free flight, and drag level was 15% greater. The spheres and the blunt bodies were insensitive to the presence of stings regardless of their size. The 10-deg cones were in between, experiencing no drag difference with a minimum diameter sting, but a moderate difference with the largest diameter sting tested. All data tend to confirm the notion that for the more slender bodies the sting not only affects flow but the forebody flow as well.
Performance and durability of improved air-atomizing splash-cone fuel nozzles
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1974-01-01
An improved design of air-atomizing fuel nozzles was determined from a study of four differently shaped splash-cone fuel nozzles after 56 hr of durability testing in a combustor segment. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures of 41 to 203 N/cm, inlet-air temperatures of 477 to 811 K, and a reference velocity of 21.3 m/sec. Flat-tip fuel nozzles showed the least erosion damage and at a combustor operating condition of 700 K and 101 N/sq cm an oxides-of-nitrogen emission index of 12 and a smoke number of approximately 18 with a fuel-air ratio of 0.018. Emission indices for carbon monoxide and unburned hydrocarbons were 44 and 16, respectively, at simulated idle conditions of 477 K and 41 N/sq cm.
Examining the Effect of the Die Angle on Tool Load and Wear in the Extrusion Process
NASA Astrophysics Data System (ADS)
Nowotyńska, Irena; Kut, Stanisław
2014-04-01
The tool durability is a crucial factor in each manufacturing process, and this also includes the extrusion process. Striving to achieve the higher product quality should be accompanied by a long-term tool life and production cost reduction. This article presents the comparative research of load and wear of die at various angles of working cone during the concurrent extrusion. The numerical calculations of a tool load during the concurrent extrusion were performed using the MSC MARC software using the finite element method (FEM). Archard model was used to determine and compare die wear. This model was implemented in the software using the FEM. The examined tool deformations and stress distribution were determined based on the performed analyses. The die wear depth at various working cone angles was determined. Properly shaped die has an effect on the extruded material properties, but also controls loads, elastic deformation, and the tool life.
Highly damped kinematic coupling for precision instruments
Hale, Layton C.; Jensen, Steven A.
2001-01-01
A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.
BRANCHING PATTERNS OF INDIVIDUAL SYMPATHETIC NEURONS IN CULTURE
Bray, D.
1973-01-01
The growth of single sympathetic neurons in tissue culture was examined with particular regard to the way in which the patterns of axonal or dendritic processes (here called nerve fibers), were formed. The tips of the fibers were seen to advance in straight lines and to grow at rates that did not vary appreciably with time, with their position in the cell outgrowth, or with the fiber diameter. Most of the branch points were formed by the bifurcation of a fiber tip (growth cone), apparently at random, and thereafter remained at about the same distance from the cell body. It seemed that the final shape of a neuron was the result of the reiterated and largely autonomous activities of the growth cones. The other parts of the cell played a supportive role but, apart from this, had no obvious influence on the final pattern of branches formed. PMID:4687915
Mineralized rods and cones suggest colour vision in a 300 Myr-old fossil fish.
Tanaka, Gengo; Parker, Andrew R; Hasegawa, Yoshikazu; Siveter, David J; Yamamoto, Ryoichi; Miyashita, Kiyoshi; Takahashi, Yuichi; Ito, Shosuke; Wakamatsu, Kazumasa; Mukuda, Takao; Matsuura, Marie; Tomikawa, Ko; Furutani, Masumi; Suzuki, Kayo; Maeda, Haruyoshi
2014-12-23
Vision, which consists of an optical system, receptors and image-processing capacity, has existed for at least 520 Myr. Except for the optical system, as in the calcified lenses of trilobite and ostracod arthropods, other parts of the visual system are not usually preserved in the fossil record, because the soft tissue of the eye and the brain decay rapidly after death, such as within 64 days and 11 days, respectively. The Upper Carboniferous Hamilton Formation (300 Myr) in Kansas, USA, yields exceptionally well-preserved animal fossils in an estuarine depositional setting. Here we show that the original colour, shape and putative presence of eumelanin have been preserved in the acanthodii fish Acanthodes bridgei. We also report on the tissues of its eye, which provides the first record of mineralized rods and cones in a fossil and indicates that this 300 Myr-old fish likely possessed colour vision.
NASA Technical Reports Server (NTRS)
Henderson, Arthur, Jr.; Johnston, Patrick J.
1959-01-01
The fluid-dynamic characteristics of flat plates, 5 deg and 10 deg wedges, and 5 deg and 10 deg cones have been investigated at Mach numbers from 16.3 to 23.9 in helium flow. The flat-plate results are for a leading-edge Reynolds number range of 584 to 19,500 and show that the induced pressure distribution is essentially linear with the hypersonic viscous interaction parameter bar X within the scope of this investigation. It is also shown that the rate at which the induced pressure varies with bar X is a linear function of the leading-edge Reynolds number. The wedge and cone results show that as the flow-deflection angle increases, the induced-pressure effects decrease and the measured pressures approach those predicted by inviscid shock theory.
NASA Technical Reports Server (NTRS)
Rathjen, K. A.; Burk, H. O.
1983-01-01
The computer code CAVE (Conduction Analysis via Eigenvalues) is a convenient and efficient computer code for predicting two dimensional temperature histories within thermal protection systems for hypersonic vehicles. The capabilities of CAVE were enhanced by incorporation of the following features into the code: real gas effects in the aerodynamic heating predictions, geometry and aerodynamic heating package for analyses of cone shaped bodies, input option to change from laminar to turbulent heating predictions on leading edges, modification to account for reduction in adiabatic wall temperature with increase in leading sweep, geometry package for two dimensional scramjet engine sidewall, with an option for heat transfer to external and internal surfaces, print out modification to provide tables of select temperatures for plotting and storage, and modifications to the radiation calculation procedure to eliminate temperature oscillations induced by high heating rates. These new features are described.
NASA Astrophysics Data System (ADS)
Bistacchi, A.; Pisterna, R.; Romano, V.; Rust, D.; Tibaldi, A.
2009-04-01
The plumbing system that connects a sub-volcanic magma reservoir to the surface has been the object of field characterization and mechanical modelling efforts since the pioneering work by Anderson (1936), who produced a detailed account of the spectacular Cullin Cone-sheet Complex (Isle of Skye, UK) and a geometrical and mechanical model aimed at defining the depth to the magma chamber. Since this work, the definition of the stress state in the half space comprised between the magma reservoir and the surface (modelled either as a flat surface or a surface comprising a volcanic edifice) was considered the key point in reconstructing dike propagation paths from the magma chamber. In fact, this process is generally seen as the propagation in an elastic media of purely tensional joints (mode I or opening mode propagation), which follow trajectories perpendicular to the least compressive principal stress axis. Later works generally used different continuum mechanics methodologies (analytic, BEM, FEM) to solve the problem of a pressure source (the magma chamber, either a point source or a finite volume) in an elastic (in some cases heterogeneous) half space (bounded by a flat topography or topped by a "volcano"). All these models (with a few limited exceptions) disregard the effect of the regional stress field, which is caused by tectonic boundary forces and gravitational body load, and consider only the pressure source represented by the magma chamber (review in Gudmundsson, 2006). However, this is only a (sometimes subordinate) component of the total stress field. Grosfils (2007) first introduced the gravitational load (but not tectonic stresses) in an elastic model solved with FEM in a 2D axisymmetric half-space, showing that "failure to incorporate gravitational loading correctly" affect the calculated stress pattern and many of the predictions that can be drawn from the models. In this contribution we report on modelling results that include: 2D axisymmetric or true 3D geometry; gravitational body load; anisotropic tectonic stresses; different shapes and depths of the magma chamber; different overpressure levels in the magma chamber; different shapes of the topographic surface (e.g. flat, volcano, caldera); linear-elastic or elasto-plastic Drucker-Prager rheology. The latter point, which in our opinion constitutes a fundamental improvement in the model, has proven necessary because in a purely elastic model the stress state would rise at levels that cannot be sustained by geologic materials. Particularly around and above the magma chamber, yielding is expected, influencing the stress field in the remaining modelling domain. The non-linear problem has been solved with the commercial finite element package Comsol Multiphysics, using a parametric solver. At the same time, a field structural analysis of the classical Cuillin Cone-sheet Complex has been performed. This analysis has shown that four distinct families of cone sheets of different age do exist. Among these, the sheets with the higher dip angle range (80-65°) are confirmed as purely tensional joints, but those with a lower dip angle range (60-40°) are quite often (when suitable markers are available) associated with a measurable shear component. Combining these new field observations with mechanical modelling results, we propose a new interpretation for the Cuillin Cone Sheet Complex. The plumbing system was composed by both purely tensional joints and mesoscopic faults with a shear component, produced in response to the regional stress field perturbed by the magma chamber, and later passively re-used as magma emplacement conduits. Under this assumption, the observed geometry of the Cuillin Cone-sheet Complex is consistent with a relatively shallow magma chamber with a flattened laccolite shape. The shape of the palaeotopography, now completely eroded, has also been considered, but is more weakly constrained by modelling results. References: Anderson E.M., 1936. The dynamics of the formation of cone-sheets, ring-dykes and cauldron subsidences. Proc R Soc Edinburgh, 56, 128-157. Grosfils E.B., 2007. Magma reservoir failure on the terrestrial planets: Assessing the importance of gravitational loading in simple elastic models. Journal of Volcanology and Geothermal Research, 166 (2), 47-75. Gudmundsson A. , 2006. How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth Science Reviews, 79 (1), 1-31.
Phylogenetic relationships of cone snails endemic to Cabo Verde based on mitochondrial genomes.
Abalde, Samuel; Tenorio, Manuel J; Afonso, Carlos M L; Uribe, Juan E; Echeverry, Ana M; Zardoya, Rafael
2017-11-25
Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.
Equilibrium and stability of axisymmetric drops on a conical substrate under gravity
NASA Astrophysics Data System (ADS)
Nurse, A. K.; Colbert-Kelly, S.; Coriell, S. R.; McFadden, G. B.
2015-08-01
Motivated by recent investigations of toroidal tissue clusters that are observed to climb conical obstacles after self-assembly [Nurse et al., "A model of force generation in a three-dimensional toroidal cluster of cells," J. Appl. Mech. 79, 051013 (2012)], we study a related problem of the determination of the equilibrium and stability of axisymmetric drops on a conical substrate in the presence of gravity. A variational principle is used to characterize equilibrium shapes that minimize surface energy and gravitational potential energy subject to a volume constraint, and the resulting Euler equation is solved numerically using an angle/arclength formulation. The resulting equilibria satisfy a Laplace-Young boundary condition that specifies the contact angle at the three-phase trijunction. The vertical position of the equilibrium drops on the cone is found to vary significantly with the dimensionless Bond number that represents the ratio of gravitational and capillary forces; a global force balance is used to examine the conditions that affect the drop positions. In particular, depending on the contact angle and the cone half-angle, we find that the vertical position of the drop can either increase ("the drop climbs the cone") or decrease due to a nominal increase in the gravitational force. Most of the equilibria correspond to upward-facing cones and are analogous to sessile drops resting on a planar surface; however, we also find equilibria that correspond to downward facing cones that are instead analogous to pendant drops suspended vertically from a planar surface. The linear stability of the drops is determined by solving the eigenvalue problem associated with the second variation of the energy functional. The drops with positive Bond number are generally found to be unstable to non-axisymmetric perturbations that promote a tilting of the drop. Additional points of marginal stability are found that correspond to limit points of the axisymmetric base state. Drops that are far from the tip are subject to azimuthal instabilities with higher mode numbers that are analogous to the Rayleigh instability of a cylindrical interface. We have also found a range of completely stable solutions that correspond to small contact angles and cone half-angles.
Tricho-rhino-phalangeal syndrome type I in a Belgian family.
Verbruggen, L A; Van Laere, C; Lamoureux, J; Van Tiggelen, R
1987-06-01
We report three cases of tricho-rhino-phalangeal syndrome (TRPS) type I in a Belgian family. They presented typical characteristics such as a pear-shaped nose, and short, deformed fingers with cone-shaped epiphyses of some middle phalanges of the hands. Hair growth was practically normal in our patients, except for some narrowing of the lateral part of the eyebrows. Perthes-like hip dysplasia was documented in two of our cases. The proband presented at the age of 31 with Kienböch's disease of the right wrist. Blood and urine analysis showed no clear anomalies. In this patient, echography revealed a renal cyst containing a stone. The relationship of these findings to TRPS is discussed.
Snow distribution and heat flow in the taiga
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturm, M.
1992-05-01
The trees of the taiga intercept falling snow and cause it to become distributed in an uneven fashion. Around aspen and birch, cone-shaped accumulations form. Beneath large spruce trees, the snow cover is depleted, forming a bowl-shaped depression called a tree well. Small spruce trees become covered with snow, creating cavities that funnel cold air to the snow/ground interface. The depletion of snow under large spruce trees results in greater heat loss from the ground. A finite difference model suggests that heat flow from tree wells can be more than twice that of undisturbed snow. In forested watersheds, this increasemore » can be a significant percentage of the total winter energy exchange.« less
Aerobraking orbital transfer vehicle
NASA Technical Reports Server (NTRS)
Scott, Carl D. (Inventor); Nagy, Kornel (Inventor); Roberts, Barney B. (Inventor); Ried, Robert C. (Inventor); Kroll, Kenneth R. (Inventor); Gamble, Joe (Inventor)
1989-01-01
An aerobraking orbital transfer vehicle which includes an aerobraking device which also serves as a heat shield in the shape of a raked-off elliptic or circular cone with a circular or elliptical base, and with an ellipsoid or other blunt shape nose. The aerobraking device is fitted with a toroid-like skirt and is integral with the support structure of the propulsion system and other systems of the space vehicle. The vehicle is intended to be transported in components to a space station in lower earth orbit where it is assembled for use as a transportation system from low earth orbit to geosynchronous earth orbit and return. Conventional guidance means are included for autonomous flight.
Tapered pulse tube for pulse tube refrigerators
Swift, Gregory W.; Olson, Jeffrey R.
1999-01-01
Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.
2012-08-08
reminiscent of wood -grain. It is unknown what effect the different construction techniques will have on the material’s suitability as a projectile...large plastic bar and mounts on the rear of the target plate are the interferometry probe holder (and probe). 11 Distribution Statement A. Approval...required to extrude the tapered boot through the tapering cone of the orifice plate, the breech pressure pulse shape (how long the high pressures are
Elsherief, Samia M.; Zayet, Mohamed K.; Hamouda, Ibrahim M.
2013-01-01
Cone beam computed tomography is a 3-dimensional high resolution imaging method. The purpose of this study was to compare the effects of 3 different NiTi rotary instruments used to prepare curved root canals on the final shape of the curved canals and total amount of root canal transportation by using cone-beam computed tomography. A total of 81 mesial root canals from 42 extracted human mandibular molars, with a curvature ranging from 15 to 45 degrees, were selected. Canals were randomly divided into 3 groups of 27 each. After preparation with Protaper, Revo-S and Hero Shaper, the amount of transportation and centering ability that occurred were assessed by using cone beam computed tomography. Utilizing pre- and post-instrumentation radiographs, straightening of the canal curvatures was determined with a computer image analysis program. Canals were metrically assessed for changes (surface area, changes in curvature and transportation) during canal preparation by using software SimPlant; instrument failures were also recorded. Mean total widths and outer and inner width measurements were determined on each central canal path and differences were statistically analyzed. The results showed that all instruments maintained the original canal curvature well with no significant differences between the different files (P = 0.226). During preparation there was failure of only one file (the protaper group). In conclusion, under the conditions of this study, all instruments maintained the original canal curvature well and were safe to use. Areas of uninstrumented root canal wall were left in all regions using the various systems. PMID:23885273
Fundus-controlled two-color dark adaptometry with the Microperimeter MP1.
Bowl, Wadim; Stieger, Knut; Lorenz, Birgit
2015-06-01
The aim of this study was to provide fundus-controlled two-color adaptometry with an existing device. A quick and easy approach extends the application possibilities of a commercial fundus-controlled perimeter. An external filter holder was placed in front the objective lens of the MP1 (Nidek, Italy) and fitted with filters to modify background, stimulus intensity, and color. Prior to dark adaptometry, the subject's visual sensitivity profile was measured for red and blue stimuli to determine whether rods or cones or both mediated the absolute threshold. After light adaptation, 20 healthy subjects were investigated with a pattern covering six spots at the posterior pole of the retina up to 45 min of dark adaptation. Thresholds were determined using a 200 ms red Goldmann IV and a blue Goldmann II stimulus. The pre-test sensitivity showed a typical distribution of values along the meridian, with high peripheral light increment sensitivity (LIS) and low central LIS for rods and the reverse for cones. After bleach, threshold recovery had a classic biphasic shape. The absolute threshold was reached after approximately 10 min for the red and 15 min for the blue stimulus. Two-color fundus-controlled adaptometry with a commercial MP1 without internal changes to the device provides a quick and easy examination of rod and cone function during dark adaptation at defined retinal loci of the posterior pole. This innovative method will be helpful to measure rod vs. cone function at known loci of the posterior pole in early stages of retinal degenerations.
Li, Hai-juan; Zhao, Xin; Jia, Qing-fei; Li, Tian-lai; Ning, Wei
2012-08-01
The achenes morphological and micro-morphological characteristics of six species of genus Taraxacum from northeastern China as well as SRAP cluster analysis were observed for their classification evidences. The achenes were observed by microscope and EPMA. Cluster analysis was given on the basis of the size, shape, cone proportion, color and surface sculpture of achenes. The Taraxacum inter-species achene shape characteristic difference is obvious, particularly spinulose distribution and size, achene color and achene size; with the Taraxacum plant achene shape the cluster method T. antungense Kitag. and the T. urbanum Kitag. should combine for the identical kind; the achene morphology cluster analysis and the SRAP tagged molecule systematics's cluster result retrieves in the table with "the Chinese flora". The class group to divide the result is consistent. Taraxacum plant achene shape characteristic stable conservative, may carry on the inter-species division and the sibship analysis according to the achene shape characteristic combination difference; the achene morphology cluster analysis as well as the SRAP tagged molecule systematics confirmation support dandelion classification result of "the Chinese flora".
Modification of jet shapes in PbPb collisions at $$\\sqrt {s_{NN}} = 2.76$$ TeV
Chatrchyan, Serguei
2014-03-01
The first measurement of jet shapes, defined as the fractional transverse momentum radial distribution, for inclusive jets produced in heavy-ion collisions is presented. Data samples of PbPb and pp collisions, corresponding to integrated luminosities of 150 inverse microbarns and 5.3 inverse picobarns respectively, were collected at a nucleon-nucleon centre-of-mass energy of sqrt(s[NN]) = 2.76 TeV with the CMS detector at the LHC. The jets are reconstructed with the anti-kt algorithm with a distance parameter R=0.3, and the jet shapes are measured for charged particles with transverse momentum pt > 1 GeV. The jet shapes measured in PbPb collisions in differentmore » collision centralities are compared to reference distributions based on the pp data. A centrality-dependent modification of the jet shapes is observed in the more central PbPb collisions, indicating a redistribution of the energy inside the jet cone. This measurement provides information about the parton shower mechanism in the hot and dense medium produced in heavy-ion collisions.« less
Generalized Models for Rock Joint Surface Shapes
Du, Shigui; Hu, Yunjin; Hu, Xiaofei
2014-01-01
Generalized models of joint surface shapes are the foundation for mechanism studies on the mechanical effects of rock joint surface shapes. Based on extensive field investigations of rock joint surface shapes, generalized models for three level shapes named macroscopic outline, surface undulating shape, and microcosmic roughness were established through statistical analyses of 20,078 rock joint surface profiles. The relative amplitude of profile curves was used as a borderline for the division of different level shapes. The study results show that the macroscopic outline has three basic features such as planar, arc-shaped, and stepped; the surface undulating shape has three basic features such as planar, undulating, and stepped; and the microcosmic roughness has two basic features such as smooth and rough. PMID:25152901
Zargarzadeh, Leila; Elliott, Janet A W
2013-10-22
The behavior of pure fluid confined in a cone is investigated using thermodynamic stability analysis. Four situations are explained on the basis of the initial confined phase (liquid/vapor) and its pressure (above/below the saturation pressure). Thermodynamic stability analysis (a plot of the free energy of the system versus the size of the new potential phase) reveals whether the phase transition is possible and, if so, the number and type (unstable/metastable/stable) of equilibrium states in each of these situations. Moreover we investigated the effect of the equilibrium contact angle and the cone angle (equivalent to the confinement's surface separation distance) on the free energy (potential equilibrium states). The results are then compared to our previous study of pure fluid confined in the gap between a sphere and a flat plate and the gap between two flat plates.1 Confined fluid behavior of the four possible situations (for these three geometries) can be explained in a unified framework under two categories based on only the meniscus shape (concave/convex). For systems with bulk-phase pressure imposed by a reservoir, the stable coexistence of pure liquid and vapor is possible only when the meniscus is concave.
Two R7 RGS proteins shape retinal bipolar cell signaling
Mojumder, Deb Kumar; Qian, Yan; Wensel, Theodore G.
2009-01-01
RGS7, RGS11, and their binding partner Gβ5 are localized to the dendritic tips of retinal ON bipolar cells (ON-BPC), where mGluR6 responds to glutamate released from photoreceptor terminals by activation of the RGS7/RGS11 substrate, Gαo. To determine their functions in retinal signaling, we investigated cell-specific expression patterns of RGS7 and RGS11 by immunostaining, and measured light responses by electroretinography (ERG) in mice with targeted disruptions of the genes encoding them. RGS7 staining is present in dendritic tips of all rod ON-BPC, but missing in those for subsets of cone ON-BPC, whereas the converse was true for RGS11 staining. Genetic disruption of either RGS7 or RGS11 produced delays in the ON-BPC-derived electroretinogram b-wave, but no changes in the photoreceptor-derived a-wave. Homozygous RGS7 mutant mice had delays in rod-driven b-waves, whereas, RGS11 mutant mice had delays in rod-driven, and especially in cone-driven b-waves. The b-wave delays were further enhanced in mice homozygous for both RGS7 and RGS11 gene disruptions. Thus, RGS7 and RGS11 act in parallel to regulate the kinetics of ON bipolar cell responses, with differential impacts on the rod and cone pathways. PMID:19535587
NASA Astrophysics Data System (ADS)
Liu, Xiang-Shu; Zhao, Li-Chen; Duan, Liang; Yang, Zhan-Ying; Yang, Wen-Li
2017-12-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11475135), the Fund from Shaanxi Province Science Association of Colleges and Universities (Grant No. 20160216), and Guangxi Provincial Education Department Research Project, China (Grant No. 2017KY0776).
Preliminary geologic map of Kanaga Volcano, Alaska
Miller, T.P.; Waythomas, C.F.; Nye, C.J.
2003-01-01
Kanaga Volcano is a 1,300 m (4,287-foot) high, historically active cone-shaped stratovolcano located on the north end of Kanaga Island in the Andreanof Islands Group of the Aleutian Islands. The volcano is undissected, symmetrical in profile, and is characterized by blocky andesitic lava flows, with well-developed levees and steep flow fronts, that emanate radially from, or near, the 200-m-wide summit crater. The lack of dissection of the cone suggests the entire edifice was constructed in post-glacial Holocene time. Historical eruptions were reported in 1791, 1827, 1829, 1904-1906, and 1993-95 (Miller and others, 1998); questionable eruptions occurred in 1763, 1768, 1786, 1790, and 1933. The upper flanks of the cone are very steep (>30°) and flows moving down these steep flows commonly fragment into breccias and lahars. A non-vegetated lahar, or group of lahars, extends from high on the southeast flank of the cone down to the northeast shore of the intracaldera lake. This lahar deposit was observed in 1999 but does not appear to be present on aerial photos taken in 1974 and is assumed to be part of the 1994-95 eruption. Most recent eruptions of Kanag a, including the 1994-95 eruption, were primarily effusive in character with a subordinate explosive component. Lava was extruded from, or near, the summit vent and moved down the flank of the cone in some cases reaching the ocean. In 1994, lava flows going down the very steep north and west flanks broke up into incandescent avalanches tumbling over steep truncated sea cliffs into the Bering Sea. A common feature of Kanaga central vent eruptions is the occurrence of widespread ballistics and accompanying craters. Steam and fine ash plumes rose to 7.5 km ASL and drifted a few tens of kilometers downwind. Plumes such as these are unlikely to deposit significant (i.e., sufficiently thick to leave a permanent record) tephras on other islands downwind.
Measurements in a Transitioning Cone Boundary Layer at Freestream Mach 3.5
NASA Technical Reports Server (NTRS)
King, Rudolph A.; Chou, Amanda; Balakumar, Ponnampalam; Owens, Lewis R.; Kegerise, Michael A.
2016-01-01
An experimental study was conducted in the Supersonic Low-Disturbance Tunnel to investigate naturally-occurring instabilities in a supersonic boundary layer on a 7 deg half- angle cone. All tests were conducted with a nominal freestream Mach number of M(sub infinity) = 3:5, total temperature of T(sub 0) = 299:8 K, and unit Reynolds numbers of Re(sub infinity) x 10(exp -6) = 9:89, 13.85, 21.77, and 25.73 m(exp -1). Instability measurements were acquired under noisy- ow and quiet- ow conditions. Measurements were made to document the freestream and the boundary-layer edge environment, to document the cone baseline flow, and to establish the stability characteristics of the transitioning flow. Pitot pressure and hot-wire boundary- layer measurements were obtained using a model-integrated traverse system. All hot- wire results were single-point measurements and were acquired with a sensor calibrated to mass ux. For the noisy-flow conditions, excellent agreement for the growth rates and mode shapes was achieved between the measured results and linear stability theory (LST). The corresponding N factor at transition from LST is N 3:9. The stability measurements for the quiet-flow conditions were limited to the aft end of the cone. The most unstable first-mode instabilities as predicted by LST were successfully measured, but this unstable first mode was not the dominant instability measured in the boundary layer. Instead, the dominant instabilities were found to be the less-amplified, low-frequency disturbances predicted by linear stability theory, and these instabilities grew according to linear theory. These low-frequency unstable disturbances were initiated by freestream acoustic disturbances through a receptivity process that is believed to occur near the branch I locations of the cone. Under quiet-flow conditions, the boundary layer remained laminar up to the last measurement station for the largest Re1, implying a transition N factor of N greater than 8:5.
Sidman, Richard L.
1957-01-01
Fragments of freshly obtained retinas of several vertebrate species were studied by refractometry, with reference to the structure of the rods and cones. The findings allowed a reassessment of previous descriptions based mainly on fixed material. The refractometric method was used also to measure the refractice indices and to calculate the concentrations of solids and water in the various cell segments. The main quantitative data were confirmed by interference microscopy. When examined by the method of refractometry the outer segments of freshly prepared retinal rods appear homogeneous. Within a few minutes a single eccentric longitudinal fiber appears, and transverse striations may develop. These changes are attributed to imbibition of water and swelling in structures normally too small for detection by light microscopy. The central "core" of outer segments and the chromophobic disc between outer and inner segments appear to be artifacts resulting from shrinkage during dehydration. The fresh outer segments of cones, and the inner segments of rods and cones also are described and illustrated. The volumes, refractive indices, concentrations of solids, and wet and dry weights of various segments of the photoreceptor cells were tabulated. Rod outer segments of the different species vary more than 100-fold in volume and mass but all have concentrations of solids of 40 to 43 per cent. Cone outer segments contain only about 30 per cent solids. The myoids, paraboloids, and ellipsoids of the inner segments likewise have characteristic refractive indices and concentrations of solids. Some of the limitations and particular virtues of refractometry as a method for quantitative analysis of living cells are discussed in comparison with more conventional biochemical techniques. Also the shapes and refractive indices of the various segments of photoreceptor cells are considered in relation to the absorption and transmission of light. The Stiles-Crawford effect can be accounted for on the basis of the structure of cone cells. PMID:13416308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Chibani, O; Jin, L
2016-06-15
Purpose: Stereotactic intra and extra-cranial body radiation therapy has evolved with advances in treatment accuracy, effective radiation dose, and parameters necessary to maximize machine capabilities. Novel gamma systems with a ring type gantry were developed having the ability to perform oblique arcs. The aim of this study is to explore the dosimetric advantages of this new system. Methods: The rotating Gamma system is named CybeRay (Cyber Medical Corp., Xian, China). It has a treatment head of 16 cobalt-60 sources focused to the isocenter, which can rotate 360° on the ring gantry and swing 35° in the superior direction. Treatment plansmore » were generated utilizing our in-house Monte Carlo treatment planning system. A cylindrical phantom was modeled with 2mm voxel size. Dose inside the cylindrical phantom was calculated for coplanar and non-coplanar arcs. Dosimetric differences between CybeRay cobalt beams and CyberKnife 6MV beams were compared in a lung phantom and for previously treated SBRT patients. Results: The full width at half maxima of cross profiles in the S-I direction for the coplanar setup matched the cone sizes, while for the non-coplanar setup, FWHM was larger by 2mm for a 10mm cone and about 5mm for larger cones. In the coronal and sagittal view, coplanar beams showed elliptical shaped isodose lines, while non-coplanar beams showed circular isodose lines. Thus proper selection of the oblique angle and cone size can aid optimal dose matching to the target volume. Comparing a single 5mm cone from CybeRay to that from CyberKnife showed similar penumbra in a lung phantom but CybeRay had significant lower doses beyond lung tissues. Comparable treatment plans were obtained with CybeRay as that from CyberKnife.ConclusionThe noncoplanar multiple source arrangement of CybeRay will be of great clinical benefits for stereotactic intra and extra-cranial radiation therapy.« less
First integrals of the axisymmetric shape equation of lipid membranes
NASA Astrophysics Data System (ADS)
Zhang, Yi-Heng; McDargh, Zachary; Tu, Zhan-Chun
2018-03-01
The shape equation of lipid membranes is a fourth-order partial differential equation. Under the axisymmetric condition, this equation was transformed into a second-order ordinary differential equation (ODE) by Zheng and Liu (Phys. Rev. E 48 2856 (1993)). Here we try to further reduce this second-order ODE to a first-order ODE. First, we invert the usual process of variational calculus, that is, we construct a Lagrangian for which the ODE is the corresponding Euler–Lagrange equation. Then, we seek symmetries of this Lagrangian according to the Noether theorem. Under a certain restriction on Lie groups of the shape equation, we find that the first integral only exists when the shape equation is identical to the Willmore equation, in which case the symmetry leading to the first integral is scale invariance. We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor. Project supported by the National Natural Science Foundation of China (Grant No. 11274046) and the National Science Foundation of the United States (Grant No. 1515007).
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Johnston, Christopher O.
2011-01-01
Implementations of a model for equilibrium, steady-state ablation boundary conditions are tested for the purpose of providing strong coupling with a hypersonic flow solver. The objective is to remove correction factors or film cooling approximations that are usually applied in coupled implementations of the flow solver and the ablation response. Three test cases are considered - the IRV-2, the Galileo probe, and a notional slender, blunted cone launched at 10 km/s from the Earth's surface. A successive substitution is employed and the order of succession is varied as a function of surface temperature to obtain converged solutions. The implementation is tested on a specified trajectory for the IRV-2 to compute shape change under the approximation of steady-state ablation. Issues associated with stability of the shape change algorithm caused by explicit time step limits are also discussed.
Detection and discrimination of colour, a comparison of physiological and psychophysical data
NASA Astrophysics Data System (ADS)
Valberg, A.; Lee, B. B.
1989-01-01
Whereas the physiological basis of colorimetry (colour matches) is well understood in terms of the trireceptor theory of colour vision, colour discrimination and scaling still lack a comparable foundation. We present here experimental data that demonstrate how sensitivity and responsiveness of different types of cone-opponent and non-opponent cells of the macaque monkey correlate with human threshold sensitivity on the one hand, and how they in combination can be used to construct a suprathreshold equidistant colour space. Psychophysical thresholds correlate well with the threshold envelope of the most sensitive cells when stimuli are projected upon a steady white background. Detection thresholds for stimuli of differing wavelength and purity (saturation) generally indicate a transition from a phasic non-opponent system to a tonic opponent system of on-centre cells as purity increases. Detection and chromatic discrimination thresholds coincide only for long and short wavelengths of high purity, whereas they differ for mid-spectral lights. Different cell types may thus support detection and discrimination with different stimuli. With chromatic scaling of surface colours on the other hand, when stimuli are darker than an adaptation field still other cell types are needed. We demonstrate that it is possible, from a combination of on- and off-opponent cells, to reconstruct a uniform colour space, using summed outputs of cells with the same cone combination and vector addition for cells with different combinations. Different hues are represented by opponent cells with inputs from different cone types, the hue percept being related to the ratio of the activities of these cell systems.
Brito, L F C; Silva, A E D F; Rodrigues, L H; Vieira, F V; Deragon, L A G; Kastelic, J P
2002-10-01
The objectives were to determine the effects of age and genetic group on characteristics of the scrotum, testes and testicular vascular cones (TVC), and on sperm production and semen quality in 107 Bos indicus, B. taurus and cross-bred bulls at three artificial insemination (AI) centers in Brazil. In addition, predictors of sperm production and semen quality were identified. In general, scrotal circumference (SC), scrotal shape score, scrotal neck perimeter, and testicular size (length, width and volume) increased (P < 0.05) with age. Although there were no significant differences among genetic groups for SC or testicular size, B. indicus bulls had the least pendulous scrotal shape, the shortest scrotal neck length, and the greatest scrotal neck perimeter (P < 0.05). Fat covering the TVC was thinner (P < 0.05) in bulls < or = 36 months of age and in B. taurus bulls than in older bulls and B. indicus bulls, respectively. Age and genetic group did not affect testicular ultrasonic echotexture. B. indicus bulls tended (P < 0.1) to have the lowest average scrotal surface temperature (SST). In general, ejaculate volume, total number of spermatozoa and number of viable spermatozoa increased (P < 0.05) with age. However, there was no significant effect of age on sperm concentration, motility, major and total defects. The proportion of spermatozoa with minor defects was highest (P < 0.05) in bulls 37-60 months of age. B. indicus bulls had higher (P < 0.01) sperm concentration, total number of spermatozoa and number of viable spermatozoa than B. taurus bulls, with intermediate values for cross-bred bulls. Increased sperm production was associated with increased testicular volume, SC, TVC fat cover, and SST top-to-bottom gradient. Decreased semen quality was associated with increased SC and bottom SST, and decreased scrotal shape, scrotal neck perimeter and vascular cone diameter. In summary, age and genetic group affected the characteristics of the scrotum, testes, and TVC, sperm production and semen quality. In addition, characteristics of the scrotum, testes and TVC were associated with sperm production and semen quality in bulls and could be assessed for breeding soundness evaluation.
Analysis and design of quiet hypersonic wind tunnels
NASA Astrophysics Data System (ADS)
Naiman, Hadassah
The purpose of the present work is to integrate CFD into the design of quiet hypersonic wind tunnels and the analysis of their performance. Two specific problems are considered. The first problem is the automated design of the supersonic portion of a quiet hypersonic wind tunnel. Modern optimization software is combined with full Navier-Stokes simulations and PSE stability analysis to design a Mach 6 nozzle with maximum quiet test length. A response surface is constructed from a user-specified set of contour shapes and a genetic algorithm is used to find the "optimal contour", which is defined as the shortest nozzle with the maximum quiet test length. This is achieved by delaying transition along the nozzle wall. It is found that transition is triggered by Goertler waves, which can be suppressed by including a section of convex curvature along the contour. The optimal design has an unconventional shape described as compound curvature, which makes the contour appear slightly wavy. The second problem is the evaluation of a proposed modification of the test section in the Boeing/AFOSR Mach 6 Quiet Tunnel. The new design incorporates a section of increased diameter with the intention of enabling the tunnel to start in the presence of larger blunt models. Cone models with fixed base diameter (and hence fixed blockage ratio) are selected for this study. Cone half-angles from 15° to 75° are examined to ascertain the effect of ii the strength of the test model shock wave on the tunnel startup. The unsteady, laminar, compressible Navier-Stokes equations are solved. The resulting flowfields are analyzed to see what affect the shocks and shear layers have on the quiet test section flow. This study indicates that cone angles ≤20° allow the tunnel to start. Keywords. automated optimization, response surface, parabolized stability equations, compound curvature, laminar, wind tunnel, unstart, test section.
Experimental simulation and morphological quantification of volcano growth
NASA Astrophysics Data System (ADS)
Grosse, Pablo; Kervyn, Matthieu; Gallland, Olivier; Delcamp, Audray; Poppe, Sam
2016-04-01
Volcanoes display very diverse morphologies as a result of a complex interplay of several constructive and destructive processes. Here the role played by the spatial distribution of eruption centre and by an underlying strike-slip fault in controlling the long term growth of volcanoes is investigated with analogue models. Volcano growth was simulated by depositing loads of granular material (sand-kaolin mixtures) from a point source. An individual load deposited at a fixed location produces a simple symmetrical cone with flank slopes at the angle of repose of the granular material (~33°) that can be considered as the building-block for the experiments. Two sets of experiments were undertaken: (1) the location of deposition of the granular material (i.e. the volcano growth location) was shifted with time following specific probability density functions simulating shifts or migrations in vent location; (2) the location of deposition was kept fixed, but the deposition rate (i.e. the volcano growth rate) was varied coupled with the movement of a basal plate attached to a step-motor simulating a strike-slip displacement under the growing cone (and hence deformation of the cone). During the progression of the experiments, the models were photographed at regular time intervals using four digital cameras positioned at slightly different angles over the models. The photographs were used to generate synthetic digital elevation models (DEMs) with 0.2 mm spatial resolution of each step of the models by applying the MICMAC digital stereo-photogrammetry software. Morphometric data were extracted from the DEMs by applying two IDL-language algorithms: NETVOLC, used to automatically calculate the volcano edifice basal outline, and MORVOLC, used to extract a set of morphometric parameters that characterize the volcano edifice in terms of size, plan shape, profile shape and slopes. Analysis of the DEM-derived morphometric parameters allows to quantitatively characterize the growth evolution of the volcano models in terms of vent distribution and growth rate-deformation rate ratios.
Small-scale volcanoes on Mars: distribution and types
NASA Astrophysics Data System (ADS)
Broz, Petr; Hauber, Ernst
2015-04-01
Volcanoes differ in sizes, as does the amount of magma which ascends to a planetary surface. On Earth, the size of volcanoes is anti-correlated with their frequency, i.e. small volcanoes are much more numerous than large ones. The most common terrestrial volcanoes are scoria cones (
NASA Astrophysics Data System (ADS)
Chen, L.; Cheng, Y. M.
2018-07-01
In this paper, the complex variable reproducing kernel particle method (CVRKPM) for solving the bending problems of isotropic thin plates on elastic foundations is presented. In CVRKPM, one-dimensional basis function is used to obtain the shape function of a two-dimensional problem. CVRKPM is used to form the approximation function of the deflection of the thin plates resting on elastic foundation, the Galerkin weak form of thin plates on elastic foundation is employed to obtain the discretized system equations, the penalty method is used to apply the essential boundary conditions, and Winkler and Pasternak foundation models are used to consider the interface pressure between the plate and the foundation. Then the corresponding formulae of CVRKPM for thin plates on elastic foundations are presented in detail. Several numerical examples are given to discuss the efficiency and accuracy of CVRKPM in this paper, and the corresponding advantages of the present method are shown.
Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections
NASA Astrophysics Data System (ADS)
Bertholet, J.; Wan, H.; Toftegaard, J.; Schmidt, M. L.; Chotard, F.; Parikh, P. J.; Poulsen, P. R.
2017-02-01
Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.
Modeling Whistler Wave Generation Regimes In Magnetospheric Cyclotron Maser
NASA Astrophysics Data System (ADS)
Pasmanik, D. L.; Demekhov, A. G.; Trakhtengerts, V. Y.; Parrot, M.
Numerical analysis of the model for cyclotron instability development in the Earth magnetosphere is made.This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. Two different mechanisms of energetic electron loss from the interaction region are discussed. The first one is precipitation of energetic particles via the loss cone. The other mechanism is drift of particles away from the interaction region across the mag- netic field line. In the case of interaction in plasmasphere or rather large areas of cold plasma density enhancement the loss cone precipitation are dominant. For interaction in a subauroral duct losses due to drift are most effective. A parametric study of the model for both mechanisms of particle losses is made. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch-angle distributions and elec- tron density. We show that in addition to the well-known stationary generation and periodic regime with successive spikes of similar shape, more complex forms of wave spectrum exist. In particular, we found a periodic regime, in which a single period in- cludes two separate spikes with different spectral shapes. In another regime, periodic generation of spikes at higher frequencies together with quasi-stationary generation at lower frequencies occurs. Quasi-periodic regime with spike overlapping, i.e. when generation of a new spike begins before the previous one is over is also found. Results obtained are compared with experimental data on quasi-periodic regimes of whistler wave generation.
Chhabra, Sanjay; Yadav, Seema; Talwar, Sangeeta
2014-05-01
The study was aimed to acquire better understanding of C-shaped canal systems in mandibular second molar teeth through a clinical approach using sophisticated techniques such as surgical operating microscope and cone beam computed tomography (CBCT). A total of 42 extracted mandibular second molar teeth with fused roots and longitudinal grooves were collected randomly from native Indian population. Pulp chamber floors of all specimens were examined under surgical operating microscope and classified into four types (Min's method). Subsequently, samples were subjected to CBCT scan after insertion of K-files size #10 or 15 into each canal orifice and evaluated using the cross-sectional and 3-dimensional images in consultation with dental radiologist so as to obtain more accurate results. Minimum distance between the external root surface on the groove and initial file placed in the canal was also measured at different levels and statistically analyzed. Out of 42 teeth, maximum number of samples (15) belonged to Type-II category. A total of 100 files were inserted in 86 orifices of various types of specimens. Evaluation of the CBCT scan images of the teeth revealed that a total of 21 canals were missing completely or partially at different levels. The mean values for the minimum thickness were highest at coronal followed by middle and apical third levels in all the categories. Lowest values were obtained for teeth with Type-III category at all three levels. The present study revealed anatomical variations of C-shaped canal system in mandibular second molars. The prognosis of such complex canal anatomies can be improved by simultaneous employment of modern techniques such as surgical operating microscope and CBCT.
Morphology of AGN Emission Line Regions in SDSS-IV MaNGA Survey
NASA Astrophysics Data System (ADS)
He, Zhicheng; Sun, Ai-Lei; Zakamska, Nadia L.; Wylezalek, Dominika; Kelly, Michael; Greene, Jenny E.; Rembold, Sandro B.; Riffel, Rogério; Riffel, Rogemar A.
2018-05-01
Extended narrow-line regions (NLRs) around active galactic nuclei (AGN) are shaped by the distribution of gas in the host galaxy and by the geometry of the circumnuclear obscuration, and thus they can be used to test the AGN unification model. In this work, we quantify the morphologies of the narrow-line regions in 308 nearby AGNs (z = 0 - 0.14, Lbol˜1042.4 - 44.1 erg s-1) from the MaNGA survey. Based on the narrow-line region maps, we find that a large fraction (81%) of these AGN have bi-conical NLR morphology. The distribution of their measured opening angles suggests that the intrinsic opening angles of the ionization cones has a mean value of 85-98° with a finite spread of 39-44° (1-σ). Our inferred opening angle distribution implies a number ratio of type I to type II AGN of 1:1.6-2.3, consistent with other measurements of the type I / type II ratio at low AGN luminosities. Combining these measurements with the WISE photometry data, we find that redder mid-IR color (lower effective temperature of dust) corresponds to stronger and narrower photo-ionized bicones. This relation is in agreement with the unification model that suggests that the bi-conical narrow-line regions are shaped by a toroidal dusty structure within a few pc from the AGN. Furthermore, we find a significant alignment between the minor axis of host galaxy disks and AGN ionization cones. Together, these findings suggest that obscuration on both circumnuclear (˜pc) and galactic (˜ kpc) scales are important in shaping and orienting the AGN narrow-line regions.
PROPAGATION OF THE 2014 JANUARY 7 CME AND RESULTING GEOMAGNETIC NON-EVENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, M. L.; Collinson, G.; Taktakishvili, A.
2015-10-20
On 2014 January 7 an X1.2 flare and coronal mass ejection (CME) with a radial speed ≈2500 km s{sup −1} was observed from near an active region close to disk center. This led many forecasters to estimate a rapid arrival at Earth (≈36 hr) and predict a strong geomagnetic storm. However, only a glancing CME arrival was observed at Earth with a transit time of ≈49 hr and a K{sub P} geomagnetic index of only 3−. We study the interplanetary propagation of this CME using the ensemble Wang-Sheeley-Arge (WSA)–ENLIL+Cone model, that allows a sampling of CME parameter uncertainties. We exploremore » a series of simulations to isolate the effects of the background solar wind solution, CME shape, tilt, location, size, and speed, and the results are compared with observed in situ arrivals at Venus, Earth, and Mars. Our results show that a tilted ellipsoid CME shape improves the initial real-time prediction to better reflect the observed in situ signatures and the geomagnetic storm strength. CME parameters from the Graduated Cylindrical Shell model used as input to WSA–ENLIL+Cone, along with a tilted ellipsoid cloud shape, improve the arrival-time error by 14.5, 18.7, 23.4 hr for Venus, Earth, and Mars respectively. These results highlight that CME orientation and directionality with respect to observatories play an important role in understanding the propagation of this CME, and for forecasting other glancing CME arrivals. This study also demonstrates the importance of three-dimensional CME fitting made possible by multiple viewpoint imaging.« less
First in...Last Out: History of the U.S. Army Pathfinder (1942-2011)
2014-05-21
Extraction Zone FRAGO Fragmentary Order GMRS Ground Marked Release System GZ Glider Zone HE Heavy Drop HLZ Helicopter Landing Zone LOC Lines of...balloon parachutists to design a parachute suitable to be used by winged aviators. Leo Stevens designed and constructed a cone shape model with a body...pilots with parachutes. These parachutes were static-line-activated; much like Leo Stevens 20 design the pilots wore a canvas body harness over their
Confocal non-line-of-sight imaging based on the light-cone transform
NASA Astrophysics Data System (ADS)
O’Toole, Matthew; Lindell, David B.; Wetzstein, Gordon
2018-03-01
How to image objects that are hidden from a camera’s view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.
Simpsy, Gurram Samuel; Sajjan, Girija S.; Mudunuri, Padmaja; Chittem, Jyothi; Prasanthi, Nalam N. V. D.; Balaga, Pankaj
2016-01-01
Introduction: M-Wire and reciprocating motion of WaveOne and controlled memory (CM) wire) of HyFlex were the recent innovations using thermal treatment. Therefore, a study was planned to evaluate the shaping ability of reciprocating motion of WaveOne and HyFlex using cone beam computed tomography (CBCT). Methodology: Forty-five freshly extracted mandibular teeth were selected and stored in saline until use. All teeth were scanned pre- and post-operatively using CBCT (Kodak 9000). All teeth were accessed and divided into three groups. (1) Group 1 (control n = 15): Instrumented with ProTaper. (2) Group 2 (n = 15): Instrumented with primary file (8%/25) WaveOne. (3) Group 3 (n = 15): Instrumented with (4%/25) HyFlex CM. Sections at 1, 3, and 5 mm were obtained from the pre- and post-operative scans. Measurement was done using CS3D software and Adobe Photoshop software. Apical transportation and degree of straightening were measured and statistically analyzed. Results: HyFlex showed lesser apical transportation when compared to other groups at 1 and 3 mm. WaveOne showed lesser degree of straightening when compared to other groups. Conclusion: This present study concluded that all systems could be employed in routine endodontics whereas HyFlex and WaveOne could be employed in severely curved canals. PMID:27994323
NASA Astrophysics Data System (ADS)
Wu, N.; Wang, J. H.; Shen, L.
2017-03-01
This paper presents a numerical investigation on the three-dimensional interaction between two bow shock waves in two environments, i.e. ground high-enthalpy wind tunnel test and real space flight, using Fluent 15.0. The first bow shock wave, also called induced shock wave, which is generated by the leading edge of a hypersonic vehicle. The other bow shock wave can be deemed objective shock wave, which is generated by the cowl clip of hypersonic inlet, and in this paper the inlet is represented by a wedge shaped nose cone. The interaction performances including flow field structures, aerodynamic pressure and heating are analyzed and compared between the ground test and the real space flight. Through the analysis and comparison, we can find the following important phenomena: 1) Three-dimensional complicated flow structures appear in both cases, but only in the real space flight condition, a local two-dimensional type IV interaction appears; 2) The heat flux and pressure in the interaction region are much larger than those in the no-interaction region in both cases, but the peak values of the heat flux and pressure in real space flight are smaller than those in ground test. 3) The interaction region on the objective surface are different in the two cases, and there is a peak value displacement of 3 mm along the stagnation line.
Confocal non-line-of-sight imaging based on the light-cone transform.
O'Toole, Matthew; Lindell, David B; Wetzstein, Gordon
2018-03-15
How to image objects that are hidden from a camera's view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.
NASA Astrophysics Data System (ADS)
Waghorn, K. A.; Pecher, I. A.; Strachan, L. J.; Crutchley, G.; Coffin, R. B.; Rose, P. S.; Bialas, J.; Davy, B. W.; Kroeger, K.
2013-12-01
An area of extensive seafloor depressions occurs on the Southern Chatham Rise, New Zealand. The 2013 R/V Sonne SO-226 voyage aimed to investigate the formation and occurrences of these features and their possible relation to release of gas during glacial-interglacial cycles. The seafloor depressions occur in water depths of 500-1100m. This presentation focuses on a depression with a diameter of approximately 1km in a water depth of ~1000m. We present initial results from a high-resolution subsurface 3D seismic data cube collected across the seafloor depression. The data were collected using the P-Cable system, which has been developed specifically for imaging the shallow subsurface. The data shows an enigmatic conical-shaped feature underlying the seafloor depression with an area surrounding which has been initially interpreted as a giant gas chimney flow-zone. While geochemical results indicate no present day methane flux, the geophysical data shows a presence of blanking which may be associated with gas or gas hydrate close to the seafloor. We show first interpretations of the nature of this feature and its emplacement. Our preferred causes are either a volcanic cone or a mud diapir. We speculate that emplacement of this feature has been instrumental in forming the overlying seafloor depressions but are still evaluating the potential linkages.
Controllable Organic Resistive Switching Achieved by One-Step Integration of Cone-Shaped Contact.
Ling, Haifeng; Yi, Mingdong; Nagai, Masaru; Xie, Linghai; Wang, Laiyuan; Hu, Bo; Huang, Wei
2017-09-01
Conductive filaments (CFs)-based resistive random access memory possesses the ability of scaling down to sub-nanoscale with high-density integration architecture, making it the most promising nanoelectronic technology for reclaiming Moore's law. Compared with the extensive study in inorganic switching medium, the scientific challenge now is to understand the growth kinetics of nanoscale CFs in organic polymers, aiming to achieve controllable switching characteristics toward flexible and reliable nonvolatile organic memory. Here, this paper systematically investigates the resistive switching (RS) behaviors based on a widely adopted vertical architecture of Al/organic/indium-tin-oxide (ITO), with poly(9-vinylcarbazole) as the case study. A nanoscale Al filament with a dynamic-gap zone (DGZ) is directly observed using in situ scanning transmission electron microscopy (STEM) , which demonstrates that the RS behaviors are related to the random formation of spliced filaments consisting of Al and oxygen vacancy dual conductive channels growing through carbazole groups. The randomicity of the filament formation can be depressed by introducing a cone-shaped contact via a one-step integration method. The conical electrode can effectively shorten the DGZ and enhance the localized electric field, thus reducing the switching voltage and improving the RS uniformity. This study provides a deeper insight of the multiple filamentary mechanisms for organic RS effect. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of the Runner Gap on the Flow Field in the Draft Tube of a Low Head Turbine
NASA Astrophysics Data System (ADS)
Junginger, Bernd; Riedelbauch, Stefan
2016-11-01
The gap flow of axial turbines is usually neglected in the design process of hydraulic machines, although it can lead to a stabilization of the draft tube flow. Though, this negligence of the gap can falsify the flow field in the draft tube. Presented in this paper are simulations of an axial propeller turbine operated at Δγ = Δγ BEP with Q > Qbep . Simulations of four gap sizes, using a mesh with about 15 million elements for the entire machine, are performed. Additionally, two turbulence models are applied, the k-ω-SST and the SAS-SST model. At the evaluated operating point a full load vortex develops. Depending on the turbulence model the developing vortex rope can either arise from the hub in a straight shape or in a shape resembling a corkscrew. Integral quantities such as head and torque are compared with experimental model test results performed in the laboratory of the Institute. Flow field simulation results are evaluated for different gap widths. Furthermore, the impact of the gap flow respectively the gap size can be observed in velocity profiles evaluated at different positions downstream the runner until to the end of the draft tube cone. Moreover, the pressure signals recorded at the beginning of the draft tube cone are also affected by the gap flow.
Gómez Yepes, Milena Elizabeth; Cremades, Lázaro V
2011-01-01
Study characterized and analyzed form factor, elementary composition and particle size of wood dust, in order to understand its harmful health effects on carpenters in Quindío (Colombia). Once particle characteristics (size distributions, aerodynamic equivalent diameter (D(α)), elemental composition and shape factors) were analyzed, particles were then characterized via scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray analysis (EDXRA). SEM analysis of particulate matter showed: 1) cone-shaped particle ranged from 2.09 to 48.79 µm D(α); 2) rectangular prism-shaped particle from 2.47 to 72.9 µm D(α); 3) cylindrically-shaped particle from 2.5 to 48.79 µm D(α); and 4) spherically-shaped particle from 2.61 to 51.93 µm D(α). EDXRA reveals presence of chemical elements from paints and varnishes such as Ca, K, Na and Cr. SEM/EDXRA contributes in a significant manner to the morphological characterization of wood dust. It is obvious that the type of particles sampled is a complex function of shapes and sizes of particles. Thus, it is important to investigate the influence of particles characteristics, morphology, shapes and D(α) that may affect the health of carpenters in Quindío.
Pittsburgh and the Arts or How My Eye Was Formed.
ERIC Educational Resources Information Center
Roschwalb, Susanne A.
The way the author's experiences of the city of Pittsburgh (Pennsylvania) shaped her visual literacy are explored. Along with the imagery of the steel mills, she experienced some artistic opportunities that helped shape the foundation of her life in art. Although no American city was as extensively industrialized as Pittsburgh, it was the artistic…
Slot-coupled CW standing wave accelerating cavity
Wang, Shaoheng; Rimmer, Robert; Wang, Haipeng
2017-05-16
A slot-coupled CW standing wave multi-cell accelerating cavity. To achieve high efficiency graded beta acceleration, each cell in the multi-cell cavity may include different cell lengths. Alternatively, to achieve high efficiency with acceleration for particles with beta equal to 1, each cell in the multi-cell cavity may include the same cell design. Coupling between the cells is achieved with a plurality of axially aligned kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slots and less power loss.
Enhanced retinal vasculature imaging with a rapidly configurable aperture
Sapoznik, Kaitlyn A.; Luo, Ting; de Castro, Alberto; Sawides, Lucie; Warner, Raymond L.; Burns, Stephen A.
2018-01-01
In adaptive optics scanning laser ophthalmoscope (AOSLO) systems, capturing multiply scattered light can increase the contrast of the retinal microvasculature structure, cone inner segments, and retinal ganglion cells. Current systems generally use either a split detector or offset aperture approach to collect this light. We tested the ability of a spatial light modulator (SLM) as a rapidly configurable aperture to use more complex shapes to enhance the contrast of retinal structure. Particularly, we varied the orientation of a split detector aperture and explored the use of a more complex shape, the half annulus, to enhance the contrast of the retinal vasculature. We used the new approach to investigate the influence of scattering distance and orientation on vascular imaging. PMID:29541524
Glaser, Adam K; Andreozzi, Jacqueline M; Zhang, Rongxiao; Pogue, Brian W; Gladstone, David J
2015-07-01
To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp-Davis-Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm(3) volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%-99% pass fraction depending on the chosen threshold dose. The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.
The Role of Localized Compressional Ultra-low Frequency Waves in Energetic Electron Precipitation
NASA Astrophysics Data System (ADS)
Rae, I. Jonathan; Murphy, Kyle R.; Watt, Clare E. J.; Halford, Alexa J.; Mann, Ian R.; Ozeke, Louis G.; Sibeck, David G.; Clilverd, Mark A.; Rodger, Craig J.; Degeling, Alex W.; Forsyth, Colin; Singer, Howard J.
2018-03-01
Typically, ultra-low frequency (ULF) waves have historically been invoked for radial diffusive transport leading to acceleration and loss of outer radiation belt electrons. At higher frequencies, very low frequency waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere of radiation belt electrons. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to a direct modulation of the loss cone via localized compressional ULF waves. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity, which greatly exceeds the change in pitch angle through conservation of the first and second adiabatic invariants. The precipitation response can be a complex interplay between electron energy, the localization of the waves, the shape of the phase space density profile at low pitch angles, ionospheric decay time scales, and the time dependence of the electron source; we show that two pivotal components not usually considered are localized ULF wave fields and ionospheric decay time scales. We conclude that enhanced precipitation driven by compressional ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm times.
Steart, David C.; Spencer, Alan R.T.; Garwood, Russell J.; Hilton, Jason; Munt, Martin C.; Needham, John
2014-01-01
We document a new species of ovulate cone (Pararaucaria collinsonae) on the basis of silicified fossils from the Late Jurassic Purbeck Limestone Group of southern England (Tithonian Stage: ca. 145 million years). Our description principally relies on the anatomy of the ovuliferous scales, revealed through X-ray synchrotron microtomography (SRXMT) performed at the Diamond Light Source (UK). This study represents the first application of SRXMT to macro-scale silicified plant fossils, and demonstrates the significant advantages of this approach, which can resolve cellular structure over lab-based X-ray computed microtomography (XMT). The method enabled us to characterize tissues and precisely demarcate their boundaries, elucidating organ shape, and thus allowing an accurate assessment of affinities. The cones are broadly spherical (ca. 1.3 cm diameter), and are structured around a central axis with helically arranged bract/scale complexes, each of which bares a single ovule. A three-lobed ovuliferous scale and ovules enclosed within pocket-forming tissue, demonstrate an affinity with Cheirolepidiaceae. Details of vascular sclerenchyma bundles, integument structure, and the number and attachment of the ovules indicate greatest similarity to P. patagonica and P. carrii. This fossil develops our understanding of the dominant tree element of the Purbeck Fossil Forest, providing the first evidence for ovulate cheirolepidiaceous cones in Europe. Alongside recent discoveries in North America, this significantly extends the known palaeogeographic range of Pararaucaria, supporting a mid-palaeolatitudinal distribution in both Gondwana and Laurasia during the Late Jurassic. Palaeoclimatic interpretations derived from contemporaneous floras, climate sensitive sediments, and general circulation climate models indicate that Pararaucaria was a constituent of low diversity floras in semi-arid Mediterranean-type environments. PMID:25374776
Archaeological investigation by geotomography: structure of the foundation of Yingxian timber pagoda
NASA Astrophysics Data System (ADS)
Feng, Rui; Yan, Wei-Zhang; Feng, Guo-Zheng; Tao, Yu-Lu; Zhou, Hai-Nan; Li, Xiao-Qin
1998-03-01
It is significant to take a non-destructive inspection, one of advanced techniques, for detecting the internal structure and the present status of ancient cultural relics. The results detected by geotomography in Yingxian timber pagoda, Shanxi Province, are presented in this paper. The embankment in the stepped foundation shows a three circular structure in horizontal: the circular platform core is hard, homogenous and unharmed, out of which there are some radial collapsed grooves. The middle circle with a thickness of 2 to 4 m is a compacted layer and its loading capacity decreases then. The outer protective layer has a larger porosity and a weak loading capacity. An abnormal body is found out in the core, which has a circular shape and a reverse high-absorption coefficient in the shallow part, but appears a long-band shape and a low-absorption coefficient in the deep part. It might be a disturbance caused by artificial activities: the shallow part is probably a channel filled with loosen soil and the deep part is a hidden cave. It is found that the foundation of the courtyard is homogenous and integrated. Two soft and weakened areas in the north are related to the long-term run-off and drainage of groundwater. The inclination of the timber pagoda to the northwest and northeast relates to several factors, such as the inherited subsidence of the northern foundation, the lower loading capacity of the outer stepped foundation, seismic activity and timber deformation.
Kinematics of Cone-In-Cone Growth, with Implications for Timing and Formation Mechanism
NASA Astrophysics Data System (ADS)
Hooker, J. N.; Cartwright, J. A.
2015-12-01
Cone-in-cone is an enigmatic structure. Similar to many fibrous calcite veins, cone-in-cone is generally formed of calcite and present in bedding-parallel vein-like accumulations within fine-grained rocks. Unlike most fibrous veins, cone-in-cone contains conical inclusions of host-rock material, creating nested, parallel cones throughout. A long-debated aspect of cone-in-cone structures is whether the calcite precipitated with its conical form (primary cone-in-cone), or whether the cones formed afterwards (secondary cone-in-cone). Trace dolomite within a calcite cone-in-cone structure from the Cretaceous of Jordan supports the primary hypothesis. The host sediment is a siliceous mud containing abundant rhombohedral dolomite grains. Dolomite rhombohedra are also distributed throughout the cone-in-cone. The rhombohedra within the cones are randomly oriented yet locally have dolomite overgrowths having boundaries that are aligned with calcite fibers. Evidence that dolomite co-precipitated with calcite, and did not replace calcite, includes (i) preferential downward extension of dolomite overgrowths, in the presumed growth-direction of the cone-in-cone, and (ii) planar, vertical borders between dolomite crystals and calcite fibers. Because dolomite overgrows host-sediment rhombohedra and forms fibers within the cones, it follows that the host-sediment was included within the growing cone-in-cone as the calcite precipitated, and not afterward. The host-sediment was not injected into the cone-in-cone along fractures, as the secondary-origin hypothesis suggests. This finding implies that cone-in-cone in general does not form over multiple stages, and thus has greater potential to preserve the chemical signature of its original precipitation. Because cone-in-cone likely forms before complete lithification of the host, and because the calcite displaces the host material against gravity, this chemical signature can preserve information about early overpressures in fine-grained sediments.
2015-12-01
The tall, cone-shaped mountain Ahuna Mons is seen in this image taken by NASA's Dawn spacecraft. Ahuna Mons, named for the traditional post-harvest festival of the Sumi tribe of Nagaland in India, is about 4 miles (6 kilometers) tall and 12 miles (20 kilometers) in diameter. Dawn took this image on Oct. 14, 2015, from an altitude of 915 miles (1,470 kilometers). It has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20130
Determination of Geometric and Kinematical Parameters of Coronal Mass Ejections Using STEREO Data
NASA Astrophysics Data System (ADS)
Fainshtein, V. G.; Tsivileva, D. M.; Kashapova, L. K.
2010-03-01
We present a new, relatively simple and fast method to determine true geometric and kinematical CME parameters from simultaneous STEREO A, B observations of CMEs. These parameters are the three-dimensional direction of CME propagation, velocity and acceleration of CME front, CME angular sizes and front position depending on time. The method is based on the assumption that CME shape may be described by a modification of so-called ice-cream cone models. The method has been tested for several CMEs.
Hypersonic Transition Experiments in 3D Cone Flow with New Measurement Techniques
2012-08-01
flux. Computation by G. Candler (University of Minnesota). Flow conditions: p0 = 12bar, Re∞ = 9.5 × 10 6m-1 ...... 22 Figure 15: Power spectra of...Introduction One major uncertainty in the aerodynamic design of high-speed vehicles results from laminar- turbulent boundary layer (BL) transition...flush mounted to the surface. The diameter of the gauges is 3.18mm. The active area is of rectangular shape (0.762×0.762mm²). Power was supplied by two
2012-04-13
conventional CT, the newer CBCT system had a number of advantages . The most celebrated advantage of CBCT is the reduced radiation burden to the patient...anteroposterior growth or perhaps do they mirror the overall shape of the underlying maxillary basal bone? 9 In a 2005 study, Franchi and Bacetti...stated that “no information is available for the dentoskeletal transverse dimensions in Class III subjects” ( Franchi and Baccetti 2005). These
Earth observations taken from shuttle orbiter Atlantis during STS-84 mission
1997-05-20
STS084-712-003 (15-24 May 1997) --- Early morning sun highlights the volcanic features on Onekotan Island which is one of several volcanic islands in the Russian owned Kurile Island chain. Onekotan lies just south of Kamchatka. Two volcanoes are active on the island -- the small island surrounded by a moat-like lake in the south (Tao-Rusyr caldera) last erupted in 1952, and the cone-shaped peak at the north end of the island, Nemo peak, erupted in 1938.
Evaluation and Repair of Concrete Slabs
1992-01-01
materials can also be used in conjunction with a separate bonding agent to improve the bonding between the newly placed cement- based material and the existing...and the strength of the affected member. Damage can range from small cracks to total failure. " Based on the capacity of the member and the nature and...conically shaped, with the base of the cone on the concrete surface, and the j point in the concrete. At the tip of the point is usually a particle of
NASA Technical Reports Server (NTRS)
Demmons, Nathaniel (Inventor); Roy, Thomas (Inventor); Spence, Douglas (Inventor); Martin, Roy (Inventor); Hruby, Vladimir (Inventor); Ehrbar, Eric (Inventor); Zwahlen, Jurg (Inventor)
2011-01-01
An electrospray device includes an electrospray emitter adapted to receive electrospray fluid; an extractor plate spaced from the electrospray emitter and having at least one aperture; and a power supply for applying a first voltage between the extractor plate and emitter for generating at least one Taylor cone emission through the aperture to create an electrospray plume from the electrospray fluid, the extractor plate as well as accelerator and shaping plates may include a porous, conductive medium for transporting and storing excess, accumulated electrospray fluid away from the aperture.
Surgical robot for single-incision laparoscopic surgery.
Choi, Hyundo; Kwak, Ho-Seong; Lim, Yo-An; Kim, Hyung-Joo
2014-09-01
This paper introduces a novel surgical robot for single-incision laparoscopic surgeries. The robot system includes the cone-type remote center-of-motion (RCM) mechanism and two articulated instruments having a flexible linkage-driven elbow. The RCM mechanism, which has two revolute joints and one prismatic joint, is designed to maintain a stationary point at the apex of the cone shape. By placing the stationary point on the incision area, the mechanism allows a surgical instrument to explore the abdominal area through a small incision point. The instruments have six articulated joints, including an elbow pitch joint, which make the triangulation position for the surgery possible inside of the abdominal area. The presented elbow pitch structure is similar to the slider-crank mechanism but the connecting rod is composed of a flexible leaf spring for high payload and small looseness error. We verified the payload of the robot is more than 10 N and described preliminary experiments on peg transfer and suture motion by using the proposed surgical robot.
Rawtiya, Manjusha; Somasundaram, Pavithra; Wadhwani, Shefali; Munuga, Swapna; Agarwal, Manish; Sethi, Priyank
2016-01-01
Objective: The aim of this study was to investigate the root and canal morphology of maxillary third molars in Central India population using cone-beam computed tomography (CBCT) analysis. Materials and Methods: CBCT images of 116 maxillary third molars were observed, and data regarding the number of roots, the number of canals, and Vertucci's Classification in each root was statistically evaluated. Results: Majority of Maxillary third molars had three roots (55.2%) and three canals (37.9%). Most MB root (43.8%), DB root (87.5%), and palatal root (100%) of maxillary third molars had Vertucci Type I. Mesiobuccal root of three-rooted maxillary third molars had Vertucci Type I (43.8%) and Type IV (40.6%) configuration. Overall prevalence of C-shaped canals in maxillary third molars was 3.4%. Conclusion: There was a high prevalence of three-rooted maxillary molars with three canals. PMID:27011747
Raghavendra, Srinidhi Surya; Hindlekar, Ajit Narayan; Desai, Niranjan Nanasaheb; Vyavahare, Nishant Kishor; Napte, Bandu Devrao
2014-01-01
The main objective of root canal treatment is thorough cleaning and shaping of the entire pulp space and its complete filling with an inert filling material. A major cause of post-treatment disease is the inability to locate, debride or adequately fill all canals of the root canal system. The form, configuration, and number of root canals in the maxillary first molars have been discussed for more than half a century. Maxillary first molars commonly present with three roots and three canals, with a second mesiobuccal canal (MB2) also present. With the advent of improved magnification there are reports of multiple root canals in the maxillary first molars. Nonsurgical endodontic therapy of a left maxillary first molar with three roots and seven root canals was successfully performed under a dental operating microscope. The diagnosis of multiple root canals was confirmed with the help of Cone Beam Computed Tomography (CBCT) images. PMID:25565745
NASA Astrophysics Data System (ADS)
Cox, G. M.; Mccue, S. W.; Thamwattana, N.; Hill, J. M.
Under certain circumstances, an industrial hopper which operates under the "funnel-flow" regime can be converted to the "mass-flow" regime with the addition of a flow-corrective insert. This paper is concerned with calculating granular flow patterns near the outlet of hoppers that incorporate a particular type of insert, the cone-in-cone insert. The flow is considered to be quasi-static, and governed by the Coulomb-Mohr yield condition together with the non-dilatant double-shearing theory. In two-dimensions, the hoppers are wedge-shaped, and as such the formulation for the wedge-in-wedge hopper also includes the case of asymmetrical hoppers. A perturbation approach, valid for high angles of internal friction, is used for both two-dimensional and axially symmetric flows, with analytic results possible for both leading order and correction terms. This perturbation scheme is compared with numerical solutions to the governing equations, and is shown to work very well for angles of internal friction in excess of 45°.
Actin Waves Do Not Boost Neurite Outgrowth in the Early Stages of Neuron Maturation
Mortal, Simone; Iseppon, Federico; Perissinotto, Andrea; D'Este, Elisa; Cojoc, Dan; Napolitano, Luisa M. R.; Torre, Vincent
2017-01-01
During neurite development, Actin Waves (AWs) emerge at the neurite base and move up to its tip, causing a transient retraction of the Growth Cone (GC). Many studies have shown that AWs are linked to outbursts of neurite growth and, therefore, contribute to the fast elongation of the nascent axon. Using long term live cell-imaging, we show that AWs do not boost neurite outgrowth and that neurites without AWs can elongate for several hundred microns. Inhibition of Myosin II abolishes the transient GC retraction and strongly modifies the AWs morphology. Super-resolution nanoscopy shows that Myosin IIB shapes the growth cone-like AWs structure and is differently distributed in AWs and GCs. Interestingly, depletion of membrane cholesterol and inhibition of Rho GTPases decrease AWs frequency and velocity. Our results indicate that Myosin IIB, membrane tension, and small Rho GTPases are important players in the regulation of the AW dynamics. Finally, we suggest a role for AWs in maintaining the GCs active during environmental exploration. PMID:29326552
Foveal shape and structure in a normal population.
Tick, Sarah; Rossant, Florence; Ghorbel, Itebeddine; Gaudric, Alain; Sahel, José-Alain; Chaumet-Riffaud, Philippe; Paques, Michel
2011-07-29
The shape of the human fovea presents important but still poorly characterized variations. In this study, the variability of the shape and structure of normal foveae were examined. In a group of 110 eyes of 57 healthy adults, the shape and structure of the fovea were analyzed by automated segmentation of retinal layer on high-resolution optical coherence tomography scans. In an additional group of 10 normal eyes of 10 patients undergoing fluorescein angiography, the size of the foveal avascular zone (FAZ) was correlated to foveal shape. From the thickest to the thinnest fovea, there was a structural continuum ranging from a shallow pit with continuity of the inner nuclear layer (INL) over the center (seven eyes; 6.7%), to a complete separation of inner layers overlying a flat and thinner central outer nuclear layer (ONL; eight eyes; 7.3%). Central foveal thickness correlated inversely to the degree of inner layer separation and to the surface of the FAZ. Foveal structure strongly correlates with its neurovascular organization. The findings support a developmental model in which the size of the FAZ determines the extent of centrifugal migration of inner retinal layers, which counteracts in some way the centripetal packing of cone photoreceptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Brett W.; Diaz, Kimberly A.; Ochiobi, Chinaza Darlene
2015-09-01
3D printing originally known as additive manufacturing is a process of making 3 dimensional solid objects from a CAD file. This ground breaking technology is widely used for industrial and biomedical purposes such as building objects, tools, body parts and cosmetics. An important benefit of 3D printing is the cost reduction and manufacturing flexibility; complex parts are built at the fraction of the price. However, layer by layer printing of complex shapes adds error due to the surface roughness. Any such error results in poor quality products with inaccurate dimensions. The main purpose of this research is to measure themore » amount of printing errors for parts with different geometric shapes and to analyze them for finding optimal printing settings to minimize the error. We use a Design of Experiments framework, and focus on studying parts with cone and ellipsoid shapes. We found that the orientation and the shape of geometric shapes have significant effect on the printing error. From our analysis, we also determined the optimal orientation that gives the least printing error.« less
Morphology of cone-fields in SW Elysium Planitia - Traces of hydrothermal venting on Mars?
NASA Astrophysics Data System (ADS)
Lanz, J. K.; Saric, M. B.
2008-09-01
Introduction Small cone-shaped features with summit pits can be found in several regions on Mars; mainly in Isidis Planitia; Elysium Planitia; Amazonis Planitia; Acidalia Planitia; in the Cydonia Region; in Cerberus Planum; the Phlegra Montes and on several volcanic flanks. They vary greatly in size and morphology and have been compared to terrestrial features of various origins; namely (1) cinder cones (e.g. [1]), (2) tuff cones or tuff rings (e.g. [2]), (3) rootless cones (pseudocraters) (e.g. [3], [4]), (4) pingos (e.g. [5], [6]) and (5) mud volcanoes (e.g. [7]). They are often found near volcanic centers and large lava fields or cluster in regions where the volatile content of the Martian regolith was/is supposedly high. This has led to the assumption that (ground-) water or ground ice was a trigger or driving force of cone formation. They could therefore, be an important indicator of the history of water on the planet. We have studied an area in western Elysium Planitia, bordering the Aeolis Planum plateau, which exhibits a large number of pitted cones, ridges and dome-like structures. Their distribution and morphology differs strongly from pitted cones elsewhere in Elysium Planitia, which have mainly been interpreted as hydrovolcanic rootless cones, and from other regions on Mars. Based on our observations, we present an alternative model for cone formation in the study area that might hint towards hydrothermal processes in the Aeolis Planum region and possibly young igneous activity. Aeolis Planum Cones The Aeolis Planum pitted cones (referred to as APCs from now on) cluster along the southern edges of the broad shallow valley that borders the Aeolis Planum Formation (APF) to the north. Cones along the northern edges of the valley are rare and can only be found in association with APF remnants where they strongly resemble the cones in the south. Along the southern border the cone coverage is almost continuous, describing a narrow band approximately 2 to 3 km wide. There are distinct morphological changes both within the band from north to south and along the band from east to west (Fig. 2). The cones are mostly circular but elongated, irregular forms are common. They are of varying size with basal diameters ranging from 20 to 200 meters, though most (single) cones have basal diameters below 100 meters. The heights of the cones are difficult to determine as their sizes are far below the resolution limits of either MOLA or HRSC stereo data, yet photoclinometric calculations have given approximate heights between ~ 10 up to several dozens of meters. Often the cones show hardly any elevation above the surroundings (e.g. Fig. 2c, e or f). Most of the APCs have steep convex flanks and large summit pits with diameters at least half as wide as their bases. The overall morphology of the cones changes from S to N with distance from the APF and from E to W along the edges of the APF. Toward the south, close to the strongly eroded borders of the APF, broad ridges and elongated domes are dominant. They form a narrow band approximately 2 km wide. The ridges and domes are a few dozen to several hundred meters long and between 10 to 50 meters wide and show numerous cracks and fissures. They are often topped by small cones, elongated pits and remnants of APF sediments. Further north follows a rather abrupt transition from the ridged area to more cone-dominated regions. Here single cones are prevalent with a more random distribution. Their number decreases rapidly with increasing distance from the APF and approximately 3 km off the southern edge of the APF no further cones are found. Hydrothermal venting on Mars? Morphology and stratigraphic relationships indicate that the cones are young and that they have, at least in places, developed inside the APF complex. APF remnants can be found covering the central pits of cones and APF units have been tilted and eroded by coneforming processes. Furthermore, cones are mainly found inside a narrow band 2-3 km wide along the APF-lava contact. A connection between APF-lava interaction and cone-forming processes is therefore likely. We propose that a combination of contact metamorphosis and associated hydrothermal venting comparable to hydrothermal vent complexes on Earth could have been the driving force of cone-formation in the study area based on the assumption of a high volatile content of the APF. The processes might then have proceeded as follows: Phase 1: The flooding of the study area by lava caused initial explosive reactions along the lava-APF-boundary forming clusters of pseudocraters. Pseudocraters are only visible towards the edges of the depression where the lava cover is thinnest. Towards the center the thick lava coverage prevented pseudocrater formation or quickly reburied forming cones. Phase 2: The heat of the cooling lava, which could be as thick as 500 m based on the diameters of flooded craters, causes contact metamorphosis and the mobilization of volatiles in the surrounding APF-sediments. Similar to hydrothermal vent complexes on Earth, this may have caused hydrofracturing of the sediments and the formation of sediment pipes and dikes that transport the volatiles to the surface. Pre-existing fissures would have served as additional pathways. At the surface rapid decompression causes phreatic explosions and the formation of small cones. Phase 3: Close to the lava-body mobilization of volatiles (e.g. by dehydratation of hydrated minerals, mobilization of ground- or pore ice or even juvenile waters and other volatiles from the lava itself) was strongest. In combination with lower sediment thickness and shorter pathways to the surface, phreatic explosion were more violent and conduits may have been repeatedly active. The lower atmospheric pressure and lower gravity on Mars would have further enhanced the explosive activity. While the lower gravity leads to a faster ascent of the volatile-sediment-phase, thereby preventing early degassing, the lower atmospheric pressure causes stronger decompression and expansion of gases. With increasing distance and increasing APF-thickness the surface manifestation of the processes weakens and phreatic explosive activity decreases. The cracked domes and elongated ridges may then be the surface expression of sediment pipes and dikes that have cooled and degassed before reaching the surface. The flow structures surrounding many cones and ridges could be interpreted in this context as fluidized sediment as lava would not have been discharged from the vents. This kind of sediment volcanism took place after the erosion of the APF and marks the end of the hydrothermal activity. Phase 4: Erosion of the APF, enhanced by the cone-forming processes themselves, later exhumed deeper parts of the vents and the brecciated sediment cores, leaving remnants of APF sediments in central pits and on top of cones, ridges and domes. References: [1] Plescia J. B. (1980) NASA Tech. Memo., 82385, 263-265. [2] Bridges J. C. et al. (2003) JGR, 180(E1), 5001, doi:10.1029/2001JE001820. [3] Fagents S. A. (2002) LPSC XXXIII, Abstract #1594. [4] Bruno B. C. (2004) JGR, 109, doi:1029/2004JE002273. [5] Theilig E. and Greeley R. (1979) J. Geophys. Res., 84, 7994-8010. [6] Page and Murray (2006) Icarus, 183, 46-54. [7] Skinner J. A. and Tanaka K. L. (2006) Icarus, 186, 41-59. [7] Watters T. R. et al. (2007) Sciencexpress, science. 1148112, 10.1126.
Surface Wave Characterization of New Orleans Levee Soil Foundations
NASA Astrophysics Data System (ADS)
Delisser, T. A.; Lorenzo, J. M.; Hayashi, K.; Craig, M. S.
2016-12-01
Standard geotechnical tests such as the drilling of boreholes and cone penetration tests are able to assess soil stability at point locations vertically but lack lateral resolution in a complex sedimentary environment, such as the Louisiana Coastal system. Multi-Channel Analysis of Surface Waves (MASW) can complement geotechnical tests to improve certainty in resolving lateral features when predicting soil types in the near surface of levee soil foundations. A portion of the Inner-Harbor Navigation Canal levee wall that intersects the 9th Ward of New Orleans failed in the aftermath of Hurricane Katrina in 2005. Failures were attributed to floodwaters overtopping the levee wall and eroding its base. Geotechnical and geological data from test points can be used to calibrate continuous shear strength estimates derived from MASW. It is important to understand soil stability and strength to prevent future failures in New Orleans levee foundation soils. MASW analyzes the dispersive property of Rayleigh waves to develop shear wave velocity profiles for the near surface. Data are acquired using a seismic land streamer containing 4.5-Hz vertical-component geophones and a sledgehammer as the source. We plot and contour 18 inverted models of the interpreted fundamental mode and generate a 200-m-long profile to help us (1) better understand the characteristics of levee foundation soils as well as (2) improve existing geological cross-sections to help in future planning and maintenance of the levees. In comparison to the prior geological models, we find unexpected large vertical and horizontal shear-velocity gradients, as well as relatively low shear strengths throughout the seismic profile.
Chan, Eunice HoYee; Chavadimane Shivakumar, Pruthvi; Clément, Raphaël; Laugier, Edith; Lenne, Pierre-François
2017-01-01
Adhesion molecules hold cells together but also couple cell membranes to a contractile actomyosin network, which limits the expansion of cell contacts. Despite their fundamental role in tissue morphogenesis and tissue homeostasis, how adhesion molecules control cell shapes and cell patterns in tissues remains unclear. Here we address this question in vivo using the Drosophila eye. We show that cone cell shapes depend little on adhesion bonds and mostly on contractile forces. However, N-cadherin has an indirect control on cell shape. At homotypic contacts, junctional N-cadherin bonds downregulate Myosin-II contractility. At heterotypic contacts with E-cadherin, unbound N-cadherin induces an asymmetric accumulation of Myosin-II, which leads to a highly contractile cell interface. Such differential regulation of contractility is essential for morphogenesis as loss of N-cadherin disrupts cell rearrangements. Our results establish a quantitative link between adhesion and contractility and reveal an unprecedented role of N-cadherin on cell shapes and cell arrangements. DOI: http://dx.doi.org/10.7554/eLife.22796.001 PMID:28537220
Signature analysis of ballistic missile warhead with micro-nutation in terahertz band
NASA Astrophysics Data System (ADS)
Li, Ming; Jiang, Yue-song
2013-08-01
In recent years, the micro-Doppler effect has been proposed as a new technique for signature analysis and extraction of radar targets. The ballistic missile is known as a typical radar target and has been paid many attentions for the complexities of its motions in current researches. The trajectory of a ballistic missile can be generally divided into three stages: boost phase, midcourse phase and terminal phase. The midcourse phase is the most important phase for radar target recognition and interception. In this stage, the warhead forms a typical micro-motion called micro-nutation which consists of three basic micro-motions: spinning, coning and wiggle. This paper addresses the issue of signature analysis of ballistic missile warhead in terahertz band via discussing the micro-Doppler effect. We establish a simplified model (cone-shaped) for the missile warhead followed by the micro-motion models including of spinning, coning and wiggle. Based on the basic formulas of these typical micro-motions, we first derive the theoretical formula of micro-nutation which is the main micro-motion of the missile warhead. Then, we calculate the micro-Doppler frequency in both X band and terahertz band via these micro-Doppler formulas. The simulations are given to show the superiority of our proposed method for the recognition and detection of radar micro targets in terahertz band.
Study of silicon crystal surface formation based on molecular dynamics simulation results
NASA Astrophysics Data System (ADS)
Barinovs, G.; Sabanskis, A.; Muiznieks, A.
2014-04-01
The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.
Rethinking foundations of language from a multidisciplinary perspective.
Gong, Tao; Shuai, Lan; Wu, Yicheng
2018-04-21
The issue of language foundations has been of great controversy ever since it was first raised in Lenneberg's (1967) monograph Biological Foundations of Language. Based on a survey of recent findings relevant to the study of language acquisition and evolution, we propose that: (i) the biological predispositions for language are largely domain-general, not necessarily language-specific or human-unique; (ii) the socio-cultural environment of language serves as another important foundation of language, which helps shape language components, induce and drive language shift; and (iii) language must have coevolved with the cognitive mechanisms associated with it through intertwined biological and cultural evolution. In addition to theoretical issues, this paper also evaluates the primary approaches recently joining the endeavor of studying language foundations and evolution, including human experiments and computer simulations. Most of the evidence surveyed in this paper comes from a variety of disciplines, and methodology therein complements each other to form a global picture of language foundations. These reflect the complexity of the issue of language foundations and the necessity of taking a multidisciplinary perspective to address it. Copyright © 2018 Elsevier B.V. All rights reserved.
Newberry Volcano—Central Oregon's Sleeping Giant
Donnelly-Nolan, Julie M.; Stovall, Wendy K.; Ramsey, David W.; Ewert, John W.; Jensen, Robert A.
2011-01-01
Hidden in plain sight, Oregon's massive Newberry Volcano is the largest volcano in the Cascades volcanic arc and covers an area the size of Rhode Island. Unlike familiar cone-shaped Cascades volcanoes, Newberry was built into the shape of a broad shield by repeated eruptions over 400,000 years. About 75,000 years ago a major explosion and collapse event created a large volcanic depression (caldera) at its summit. Newberry last erupted about 1,300 years ago, and present-day hot springs and geologically young lava flows indicate that it could reawaken at any time. Because of its proximity to nearby communities, frequency and size of past eruptions, and geologic youthfulness, U.S. Geological Survey scientists are working to better understand volcanic activity at Newberry and closely monitor the volcano for signs of unrest.
Process system and method for fabricating submicron field emission cathodes
Jankowski, A.F.; Hayes, J.P.
1998-05-05
A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape. 3 figs.
Process system and method for fabricating submicron field emission cathodes
Jankowski, Alan F.; Hayes, Jeffrey P.
1998-01-01
A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.
NASA Astrophysics Data System (ADS)
Shah, Ishfaq Ahmad; Hassan, Najam ul; Rauf, Abdur; Liu, Jun; Gong, Yuanyuan; Xu, Guizhou; Xu, Feng
2017-08-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), Jiangsu Natural Science Foundation for Distinguished Young Scholars, China (Grant No. BK20140035), China Postdoctoral Science Foundation (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833 and BK20160829), Qing Lan Project of Jiangsu Province, China, Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and NMG-NJUST Joint Scholarship Program for Ishfaq Ahmad Shah (Student ID: 914116020118).
NASA Astrophysics Data System (ADS)
Crotty, Dominic J.; Brady, Samuel L.; Jackson, D'Vone C.; Toncheva, Greta I.; Anderson, Colin E.; Yoshizumi, Terry T.; Tornai, Martin P.
2010-04-01
A dual modality SPECT-CT prototype dedicated to uncompressed breast imaging (mammotomography) has been developed. The CT subsystem incorporates an ultra-thick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam to optimize the dose efficiency for uncompressed breast tomography. We characterize the absorbed dose to the breast under normal tomographic cone beam image acquisition protocols using both TLD measurements and ionization chamber-calibrated radiochromic film. Geometric and anthropomorphic breast phantoms are filled with 1000mL of water and oil to simulate different breast compositions and varying object shapes having density bounds of 100% glandular and fatty breast compositions, respectively. Doses to the water filled geometric and anthropomorphic breast phantoms for a tomographic scan range from 1.3-7.3mGy and 1.7-6.3mGy, respectively, with a mean whole-breast dose of 4.5mGy for the water-filled anthropomorphic phantom. Measured dose distribution trends indicate lower doses in the center of the breast phantoms towards the chest wall along with higher doses near the peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes (mean dose, 3.8mGy for the anthropomorphic breast). Results agree with Monte Carlo dose estimates generated for uncompressed breast imaging and illustrate the advantages of using the novel K-edge filtered beam to minimize absorbed dose to the breast during fully-3D imaging.
Zhou, Qitao; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Tang, Haibin; Qian, Yiwu; Chen, Bin; Chen, Bensong
2014-02-28
NiO-nanoflakes (NiO-NFs) grafted Ni-nanorod (Ni-NR) arrays stuck out of the porous anodic aluminum oxide (AAO) template are achieved by a combinatorial process of AAO-confined electrodeposition of Ni-NRs, selectively etching part of the AAO template to expose the Ni-NRs, wet-etching the exposed Ni-NRs in ammonia to obtain Ni(OH)2-NFs grafted onto the cone-shaped Ni-NRs, and annealing to transform Ni(OH)2-NFs in situ into NiO-NFs. By top-view sputtering, Ag-nanoparticles (Ag-NPs) are decorated on each NiO-NFs grafted Ni-NR (denoted as NiO-NFs@Ni-NR). The resultant Ag-NPs-decorated NiO-NFs@Ni-NR (denoted as Ag-NPs@NiO-NFs@Ni-NR) arrays exhibit not only strong surface-enhanced Raman scattering (SERS) activity but also reproducible SERS-signals over the whole array. It is demonstrated that the strong SERS-activity is mainly ascribed to the high density of sub-10 nm gaps (hot spots) between the neighboring Ag-NPs, the semiconducting NiO-NFs induced chemical enhancement effect, and the lightning rod effect of the cone-shaped Ni-NRs. The three-level hierarchical nanostructure arrays stuck out of the AAO template can be utilized to probe polychlorinated biphenyls (PCBs, a kind of global environmental hazard) with a concentration as low as 5 × 10(-6) M, showing promising potential in SERS-based rapid detection of organic environmental pollutants.
The eyes of mesopelagic crustaceans. III. Thysanopoda tricuspidata (Euphausiacea).
Meyer-Rochow, V B; Walsh, S
1978-12-14
The compound eyes of the mesopelagic eupausiid Thysanopoda tricuspidata were investigated by light-, scanning-, and transmission electron microscopy. The eyes are spherical and have a diameter that corresponds to 1/6 of the carapace length. The hexagonal facets have strongly curved outer surfaces. Although there are four crystalline cone cells, only two participate in the formation of the cone, which is 90-120 micrometer long and appears to have a radial gradient of refractive index. The clear zone, separating dioptric structures and retinula, is only 90-120 micrometer wide. In it lie the very large oval nuclei of the seven retinula cells. Directly in front of the 70 micrometer long and 15 micrometer thick rhabdom a lens-like structure of 12 micrometer diameter is developed. This structure, known in only a very few arthropods, seems to be present in all species of Euphausiacea studied to date. It is believed that the rhabdom lens improves near-field vision and absolute light sensitivity. Rod-shaped pigment grains and mitochondria of the tubular type are found in the plasma of retinula cells. The position of the proximal screening pigment as well as the microvillar organization in the rhabdom are indicative of light-adapted material. The orthogonal alignment of rhabdovilli suggests polarization sensitivity. Behind each rabdom there is a cup-shaped homogenous structure of unknown, but possibly optical function. Finally, the structure and the function of the euphysiid eye are reviewed and the functional implications of individual components are discussed.
Zinge, Priyanka Ramdas; Patil, Jayaprakash
2017-01-01
The aim of this study is to evaluate and compare the effect of one shape, Neolix rotary single-file systems and WaveOne, Reciproc reciprocating single-file systems on pericervical dentin (PCD) using cone-beam computed tomography (CBCT). A total of 40 freshly extracted mandibular premolars were collected and divided into two groups, namely, Group A - Rotary: A 1 - Neolix and A 2 - OneShape and Group B - Reciprocating: B 1 - WaveOne and B 2 - Reciproc. Preoperative scans of each were taken followed by conventional access cavity preparation and working length determination with 10-k file. Instrumentation of the canal was done according to the respective file system, and postinstrumentation CBCT scans of teeth were obtained. 90 μm thick slices were obtained 4 mm apical and coronal to the cementoenamel junction. The PCD thickness was calculated as the shortest distance from the canal outline to the closest adjacent root surface, which was measured in four surfaces, i.e., facial, lingual, mesial, and distal for all the groups in the two obtained scans. There was no significant difference found between rotary single-file systems and reciprocating single-file systems in their effect on PCD, but in Group B 2 , there was most significant loss of tooth structure in the mesial, lingual, and distal surface ( P < 0.05). Reciproc single-file system removes more PCD as compared to other experimental groups, whereas Neolix single file system had the least effect on PCD.
Describing a Robot's Workspace Using a Sequence of Views from a Moving Camera.
Hong, T H; Shneier, M O
1985-06-01
This correspondence describes a method of building and maintaining a spatial respresentation for the workspace of a robot, using a sensor that moves about in the world. From the known camera position at which an image is obtained, and two-dimensional silhouettes of the image, a series of cones is projected to describe the possible positions of the objects in the space. When an object is seen from several viewpoints, the intersections of the cones constrain the position and size of the object. After several views have been processed, the representation of the object begins to resemble its true shape. At all times, the spatial representation contains the best guess at the true situation in the world with uncertainties in position and shape explicitly represented. An octree is used as the data structure for the representation. It not only provides a relatively compact representation, but also allows fast access to information and enables large parts of the workspace to be ignored. The purpose of constructing this representation is not so much to recognize objects as to describe the volumes in the workspace that are occupied and those that are empty. This enables trajectory planning to be carried out, and also provides a means of spatially indexing objects without needing to represent the objects at an extremely fine resolution. The spatial representation is one part of a more complex representation of the workspace used by the sensory system of a robot manipulator in understanding its environment.
Dietary breadth is positively correlated with venom complexity in cone snails.
Phuong, Mark A; Mahardika, Gusti N; Alfaro, Michael E
2016-05-26
Although diet is believed to be a major factor underlying the evolution of venom, few comparative studies examine both venom composition and diet across a radiation of venomous species. Cone snails within the family, Conidae, comprise more than 700 species of carnivorous marine snails that capture their prey by using a cocktail of venomous neurotoxins (conotoxins or conopeptides). Venom composition across species has been previously hypothesized to be shaped by (a) prey taxonomic class (i.e., worms, molluscs, or fish) and (b) dietary breadth. We tested these hypotheses under a comparative phylogenetic framework using ecological data from past studies in conjunction with venom duct transcriptomes sequenced from 12 phylogenetically disparate cone snail species, including 10 vermivores (worm-eating), one molluscivore, and one generalist. We discovered 2223 unique conotoxin precursor peptides that encoded 1864 unique mature toxins across all species, >90 % of which are new to this study. In addition, we identified two novel gene superfamilies and 16 novel cysteine frameworks. Each species exhibited unique venom profiles, with venom composition and expression patterns among species dominated by a restricted set of gene superfamilies and mature toxins. In contrast with the dominant paradigm for interpreting Conidae venom evolution, prey taxonomic class did not predict venom composition patterns among species. We also found a significant positive relationship between dietary breadth and measures of conotoxin complexity. The poor performance of prey taxonomic class in predicting venom components suggests that cone snails have either evolved species-specific expression patterns likely as a consequence of the rapid evolution of conotoxin genes, or that traditional means of categorizing prey type (i.e., worms, mollusc, or fish) and conotoxins (i.e., by gene superfamily) do not accurately encapsulate evolutionary dynamics between diet and venom composition. We also show that species with more generalized diets tend to have more complex venoms and utilize a greater number of venom genes for prey capture. Whether this increased gene diversity confers an increased capacity for evolutionary change remains to be tested. Overall, our results corroborate the key role of diet in influencing patterns of venom evolution in cone snails and other venomous radiations.
Cone-Beam CT with a Flat-Panel Detector: From Image Science to Image-Guided Surgery
Siewerdsen, Jeffrey H.
2011-01-01
The development of large-area flat-panel x-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions - for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck / skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical performance under CBCT guidance, and early clinical trials demonstrate feasibility, workflow, and image quality within the surgical theatre. PMID:22942510
NASA Astrophysics Data System (ADS)
Kitahama, Yasutaka; Itoh, Tamitake; Suzuki, Toshiaki
2018-05-01
To evaluate the shape of an Ag tip with regard to tip-enhanced Raman scattering (TERS) signal, the enhanced electromagnetic (EM) field and scattering spectrum, arising from surface plasmon resonance at the apex of the tip, were calculated using a finite-difference time domain (FDTD) method. In the calculated forward scattering spectra from the smooth Ag tip, the band appeared within the visible region, similar to the experimental results and calculation for a corrugated Ag cone. In the FDTD calculation of TERS, the Ag tip acting as a monopole antenna was adopted by insertion of a perfect electric conductor between the root of the tip and a top boundary surface of the calculation space. As a result, the EM field was only enhanced at the apex. The shape dependence i.e. the EM field calculated at the apex with various curvatures on the different tapered tips, obtained using the monopole antenna model, was different from that simulated using a conventional dipole antenna model.
NASA Technical Reports Server (NTRS)
Miller, C. G., III
1975-01-01
Shock shape results for flat-faced cylinders, spheres, and spherically blunted cones in various test gases, along with preliminary results from a calibration study performed in the Langley 6-inch expansion tube are presented. Free-stream velocities from 5 to 7 km/sec are generated at hypersonic conditions with helium, air, and CO2, resulting in normal shock density ratios from 4 to 19. Ideal-gas shock shape predictions, in which an effective ratio of specific heats is used as input, are compared with the measured results. The effect of model diameter is examined to provide insight to the thermochemical state of the flow in the shock layer. The regime for which equilibrium exists in the shock layer for the present air and CO2 test conditions is defined. Test core flow quality, test repeatability, and comparison of measured and predicted expansion-tube flow quantities are discussed.
The energy distribution of subjets and the jet shape
Kang, Zhong-Bo; Ringer, Felix; Waalewijn, Wouter J.
2017-07-13
We present a framework that describes the energy distribution of subjets of radius r within a jet of radius R. We consider both an inclusive sample of subjets as well as subjets centered around a predetermined axis, from which the jet shape can be obtained. For r << R we factorize the physics at angular scales r and R to resum the logarithms of r/R. For central subjets, we consider both the standard jet axis and the winner-take-all axis, which involve double and single logarithms of r/R, respectively. All relevant one-loop matching coefficients are given, and an inconsistency in somemore » previous results for cone jets is resolved. Our results for the standard jet shape differ from previous calculations at next-to-leading logarithmic order, because we account for the recoil of the standard jet axis due to soft radiation. Numerical results are presented for an inclusive subjet sample for pp → jet + X at next-to-leading order plus leading logarithmic order.« less
NASA Astrophysics Data System (ADS)
Gallagher, C.; Balme, M. R.
2012-04-01
On the low-lying plains along much of the Martian Dichotomy Boundary (MDB) and in the Isidis impact basin, cones and curving chains of cones, referred to as thumbprint terrain (TPT), are common. In the same settings, pit chains (catenas) occur in orthogonal to curving and conchoidal fracture sets between mesa-like crustal blocks, generally at or near topographic margins. Many of the fractures consist of linked pits rather than simple propagated cracks. These assemblages are often associated with the more disaggregated populations of blocks comprising chaos terrain. We show that the local planimetric arrangement of the cone chains, fractures and pit catenas is strikingly similar in both shape and scale, including lateral separation, length, longitudinal slope and radius of curvature. The summits of cones tend to be closely accordant along individual cone chains. Neighbouring cone chains tend to be mutually accordant on low gradient basin surfaces but generally stepped en echelon closer to the fractured basin margins. Similarly, the crustal blocks (including very isolated block sets) are often mutually stepped, and fractures between these en echelon blocks tend to be very close to horizontal. Hence, many cone chains, fractures and pit catenas in fractures share the property of being arranged along strike. They diverge morphologically by the cone chains being positive forms separated by narrow gulfs but the pit catenas being negative forms separated by planar blocks. All of these characteristics point to the possibility that the arcuate cone chains and the arcuate pit catenas have a common origin. In particular, we hypothesise that the cone chains characteristic of TPT along the MDB and in Isidis are filled, indurated and then exhumed pit catenas revealed by the stripping-away of intervening blocks [cf. 1]. Many other surfaces on Mars are pervaded by pits and pit catenas, with evidence of former water flow through the catenas suggesting that ground-ice thaw played a role in at least one mode of catena formation [2]. As well as presenting the morphological evidence for a genetic association between TPT and pit catenas, we present corroborative evidence that fluvial channel networks on Mars have in places increased in complexity through the linking of pits arranged in linear to arcuate arrays, culminating in a pseudo-branching channel network. Such systems do not occur at topographic margins and did not disintegrate into stepped crustal blocks. However, the scale of these channels and the volumes of liquid intermittently impounded in craters along these channel systems indicate that pit chains are associated with significant excess groundwater production leading to channelized flow, including catastrophic discharges when crater-impounded lakes along-flow were breached. Are the MDB and Isidis cone chains exhumed pit catenas and are the pits the surface expression of more deep-seated conduits? Do pit catenas indicate excess pore-water production, sufficient to link individual pits and dissect crustal blocks? Together, do these assemblages reflect the degradation of the MDB and Isidis margins and the subsequent stripping of adjacent low-lying plains? The crucial observations presented in this research (cone chains lying between crustal blocks, together with the morphometric similarities) are consistent with the interpretation of the cones and catenas having a common origin. Consequently, we hypothesise that the translated, back-rotated, tilted and capsized disposition of en echelon blocks is very reminiscent of the morphology produced during lateral spreading [3] associated with stratabound liquefaction below a low-gradient, rigid, insensitive surface. Significantly, such liquefaction events cause extensive, arcuate ground fractures along with the discharge of sediment-laden groundwater from the liquefiable substratum to the surface through pipes and conical boils confined within inter-block fractures. These conduits and their injectite are frequently indurated by secondary mineralisation, often making them more competent and less erodible than the confining material. Most often, lateral spreads occur at coastlines, with basin-ward normal faulting and extension of the original surface. Generally, seismic shaking of susceptible materials is responsible for lateral spreading but pore-water pressure changes, e.g. due to rapid marine recession and drawdown, may also play a role. Given the basin-and-margin setting of the martian cone, pit and block assemblages described in this research, we speculate that all three broad morphological types reflect the degradation of extensive marine margins and the deflation of the interiors of marine basins during long-term marine recession. [1] Williams et al. (2007) in Willis et al. (eds), Utah Geological Association Publication 36. [2] Weitz et al. (2006) Icarus 184, 436-451. [3] Wang et al. (2005) Icarus 175, 551-555.
NASA Technical Reports Server (NTRS)
Bobbitt, Percy J.; Maglieri, Domenic J.; Banks, Daniel W.; Frederick, Michael A.; Fuchs, Aaron W.
2012-01-01
The results of supersonic wind-tunnel tests on three probes at nominal Mach numbers of 1.6, 1.8 and 2.0 and flight tests on two of these probes up to a Mach number of 1.9 are described. One probe is an 8 deg. half-angle wedge with two total-pressure measurements and one static. The second, a conical probe, is a cylinder that has a 15 deg., semi-angle cone tip with one total-pressure orifice at the apex and four static-pressure orifices on the surface of the cone, 90 deg. apart, and about two-thirds of the distance from the cone apex to the base of the cone. The third is a 2 deg. semi-angle cone that has two static ports located 180 deg. apart about 1.5 inches behind the apex of the cone. The latter probe was included since it has been the "probe of choice" for wind-tunnel flow-field pressure measurements (or one similar to it) for the past half-century. The wedge and 15 deg. conical probes used in these tests were designed for flight diagnostic measurements for flight Mach numbers down to 1.35 and 1.15 respectively, and have improved capabilities over earlier probes of similar shape. The 15. conical probe also has a temperature sensor that is located inside the cylindrical part of the probe that is exposed to free-stream flow through an annulus at the apex of the cone. It enables the determination of free-stream temperature, density, speed of sound, and velocity, in addition to free-stream pressure, Mach number, angle of attack and angle of sideslip. With the time-varying velocity, acceleration can be calculated. Wind-tunnel tests of the two probes were made in NASA Langley Research Center fs Unitary Plan Wind Tunnel (UPWT) at Mach numbers of 1.6, 1.8, and 2.0. Flight tests were carried out at the NASA Dryden Flight Research Center (DFRC) on its F-15B aircraft up to Mach numbers of 1.9. The probes were attached to a fixture, referred to as the Centerline Instrumented Pylon (CLIP), under the fuselage of the aircraft. Problems controlling the velocity of the flow through the conical probe required for accurate temperature measurements are noted, as well as some calibration problems of the miniature pressure sensors that required a re-calculation of the flow variables. Data are presented for angle of attack, pressure and Mach number obtained in the wind tunnel and in flight. In the wind tunnel some transient data were obtained by translating the probes through the shock flow field created by a bump on the wind-tunnel wall.
Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors
Bruce, Kady S.; Harmening, Wolf M.; Langston, Bradley R.; Tuten, William S.; Roorda, Austin; Sincich, Lawrence C.
2015-01-01
Purpose To determine the light sensitivity of poorly reflective cones observed in retinas of normal subjects, and to establish a relationship between cone reflectivity and perceptual threshold. Methods Five subjects (four male, one female) with normal vision were imaged longitudinally (7–26 imaging sessions, representing 82–896 days) using adaptive optics scanning laser ophthalmoscopy (AOSLO) to monitor cone reflectance. Ten cones with unusually low reflectivity, as well as 10 normally reflective cones serving as controls, were targeted for perceptual testing. Cone-sized stimuli were delivered to the targeted cones and luminance increment thresholds were quantified. Thresholds were measured three to five times per session for each cone in the 10 pairs, all located 2.2 to 3.3° from the center of gaze. Results Compared with other cones in the same retinal area, three of 10 monitored dark cones were persistently poorly reflective, while seven occasionally manifested normal reflectance. Tested psychophysically, all 10 dark cones had thresholds comparable with those from normally reflecting cones measured concurrently (P = 0.49). The variation observed in dark cone thresholds also matched the wide variation seen in a large population (n = 56 cone pairs, six subjects) of normal cones; in the latter, no correlation was found between cone reflectivity and threshold (P = 0.0502). Conclusions Low cone reflectance cannot be used as a reliable indicator of cone sensitivity to light in normal retinas. To improve assessment of early retinal pathology, other diagnostic criteria should be employed along with imaging and cone-based microperimetry. PMID:26193919
Ma, Hongwei; Thapa, Arjun; Morris, Lynsie; Redmond, T. Michael; Baehr, Wolfgang; Ding, Xi-Qin
2014-01-01
Cone phototransduction and survival of cones in the human macula is essential for color vision and for visual acuity. Progressive cone degeneration in age-related macular degeneration, Stargardt disease, and recessive cone dystrophies is a major cause of blindness. Thyroid hormone (TH) signaling, which regulates cell proliferation, differentiation, and apoptosis, plays a central role in cone opsin expression and patterning in the retina. Here, we investigated whether TH signaling affects cone viability in inherited retinal degeneration mouse models. Retinol isomerase RPE65-deficient mice [a model of Leber congenital amaurosis (LCA) with rapid cone loss] and cone photoreceptor function loss type 1 mice (severe recessive achromatopsia) were used to determine whether suppressing TH signaling with antithyroid treatment reduces cone death. Further, cone cyclic nucleotide-gated channel B subunit-deficient mice (moderate achromatopsia) and guanylate cyclase 2e-deficient mice (LCA with slower cone loss) were used to determine whether triiodothyronine (T3) treatment (stimulating TH signaling) causes deterioration of cones. We found that cone density in retinol isomerase RPE65-deficient and cone photoreceptor function loss type 1 mice increased about sixfold following antithyroid treatment. Cone density in cone cyclic nucleotide-gated channel B subunit-deficient and guanylate cyclase 2e-deficient mice decreased about 40% following T3 treatment. The effect of TH signaling on cone viability appears to be independent of its regulation on cone opsin expression. This work demonstrates that suppressing TH signaling in retina dystrophy mouse models is protective of cones, providing insights into cone preservation and therapeutic interventions. PMID:24550448
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.
Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used tomore » guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation results significantly (p < 0.01) based on DSC (6.72%) and SD of contour-to-contour distances (0.08 cm) and decreased the 95% confidence intervals of the bladder volume differences. Moreover, expanding the shape model improved the segmentation results significantly (p < 0.01) based on DSC and SD of contour-to-contour distances. Conclusions: This patient-specific shape model based automatic bladder segmentation method on CBCT is accurate and generic. Our segmentation method only needs two pretreatment imaging data sets as prior knowledge, is independent of patient gender and patient treatment position and has the possibility to manually adapt the segmentation locally.« less
Learning Theory Foundations of Simulation-Based Mastery Learning.
McGaghie, William C; Harris, Ilene B
2018-06-01
Simulation-based mastery learning (SBML), like all education interventions, has learning theory foundations. Recognition and comprehension of SBML learning theory foundations are essential for thoughtful education program development, research, and scholarship. We begin with a description of SBML followed by a section on the importance of learning theory foundations to shape and direct SBML education and research. We then discuss three principal learning theory conceptual frameworks that are associated with SBML-behavioral, constructivist, social cognitive-and their contributions to SBML thought and practice. We then discuss how the three learning theory frameworks converge in the course of planning, conducting, and evaluating SBML education programs in the health professions. Convergence of these learning theory frameworks is illustrated by a description of an SBML education and research program in advanced cardiac life support. We conclude with a brief coda.
Laser initiated spark development in an air gap.
Lindner, F W; Rudolph, W; Brumme, G; Fischer, H
1975-09-01
Spark development is studied by 20-nsec image converter photography. A diffuse and transparent prechannel bridges the gap from the top of the metal vapor jet, which has counterelectrode potential. The prechannel cuts off the development of the cone shaped jet with increasing gap voltage. The final breakdown is initiated by a z-axis, laser induced filament, which expands into the prechannel volume within less, similar10 nsec. This interval represents the final high current thermalization phase of the breakdown. Thermal expansion of the initial spark channel (Braginskii) follows.
NASA Technical Reports Server (NTRS)
Klunker, E. B.; South, J. C., Jr.; Davis, R. M.
1972-01-01
A user's manual is presented for a program that calculates the supersonic flow on the windward side of conical delta wings with shock attached at the sharp leading edge by the method of lines. The program also has a limited capability for computing the flow about circular and elliptic cones at incidence. It provides information including the shock shape, flow field, isentropic surface-flow properties, and force coefficients. A description of the program operation, a sample computation, and a FORTRAN 4 program listing are included.
Polymer in a pore: Effect of confinement on the free energy barrier
NASA Astrophysics Data System (ADS)
Kumar, Sanjiv; Kumar, Sanjay
2018-06-01
We investigate the transfer of a polymer chain from cis- side to trans- side through two types of pores: cone-shaped channel and flat-channel. Using the exact enumeration technique, we obtain the free energy landscapes of a polymer chain for such systems. We have also calculated the free-energy barrier of a polymer chain attached to the edge of the pore. The model system allows us to calculate the force required to pull polymer from the pore and stall-force to confine polymer within the pore.
Computer-aided design of bevel gear tooth surfaces
NASA Technical Reports Server (NTRS)
Shuo, Hung Chang; Huston, Ronald L.; Coy, John J.
1989-01-01
This paper presents a computer-aided design procedure for generating bevel gears. The development is based on examining a perfectly plastic, cone-shaped gear blank rolling over a cutting tooth on a plane crown rack. The resulting impression on the plastic gear blank is the envelope of the cutting tooth. This impression and envelope thus form a conjugate tooth surface. Equations are presented for the locus of points on the tooth surface. The same procedures are then extended to simulate the generation of a spiral bevel gear. The corresponding governing equations are presented.
Computer aided design of bevel gear tooth surfaces
NASA Technical Reports Server (NTRS)
Chang, S. H.; Huston, R. L.; Coy, J. J.
1989-01-01
This paper presents a computer-aided design procedure for generating bevel gears. The development is based on examining a perfectly plastic, cone-shaped gear blank rolling over a cutting tooth on a plane crown rack. The resulting impression on the plastic gear blank is the envelope of the cutting tooth. This impression and envelope thus form a conjugate tooth surface. Equations are presented for the locus of points on the tooth surface. The same procedures are then extended to simulate the generation of a spiral bevel gear. The corresponding governing equations are presented.
NASA Astrophysics Data System (ADS)
Finchenko, V. S.; Ivankov, A. A.; Shmatov, S. I.; Mordvinkin, A. S.
2015-12-01
The article presents the initial data for the ExoMars landing module aerothermodynamic calculations, used calculation methods, the calculation results of aerodynamic characteristics of the landing module shape and structural parameters of thermal protection selected during the conceptual design phase. Also, the test results of the destruction of the thermal protection material and comparison of the basic characteristics of the landing module with a front shield in the form of a cone and a spherical segment are presented.
Stars and Stones on Emperor Elagabalus' Coins
NASA Astrophysics Data System (ADS)
Comeron, F.
Several series of coins and medals issued under the reign of Roman Emperor Elagabalus (AD 218-222) refer to the ceremony of his entry in Rome, in which the baetyl of Emesa played a central role. This baetyl, a cone-shaped black stone of likely meteoritic origin, represents the solar divinity Baal, whose cult was introduced in Rome by Elagabalus. Worship of baetyls is common in ancient near-Eastern cultures, in which meteorites are believed to have a celestial origin, as opposed to the Aristotelian theory prevalent in the Roman culture at the epoch.
Unified algorithm of cone optics to compute solar flux on central receiver
NASA Astrophysics Data System (ADS)
Grigoriev, Victor; Corsi, Clotilde
2017-06-01
Analytical algorithms to compute flux distribution on central receiver are considered as a faster alternative to ray tracing. They have quite too many modifications, with HFLCAL and UNIZAR being the most recognized and verified. In this work, a generalized algorithm is presented which is valid for arbitrary sun shape of radial symmetry. Heliostat mirrors can have a nonrectangular profile, and the effects of shading and blocking, strong defocusing and astigmatism can be taken into account. The algorithm is suitable for parallel computing and can benefit from hardware acceleration of polygon texturing.
Dunn, Dana S; Ehde, Dawn M; Wegener, Stephen T
2016-02-01
Historically, the Foundational Principles articulated by Wright (1983) and others guided theory development, research and scholarship, and practice in rehabilitation psychology. In recent decades, these principles have become more implicit and less explicit or expressive in the writings and work of rehabilitation professionals. We believe that the Foundational Principles are essential lodestars for working with people with disabilities that can guide inquiry, practice, and service. To introduce this special issues, this commentary identifies and defines key Foundational Principles, including, for example, Lewin's (1935) person-environment relation, adjustment to disability, the malleability of self-perceptions of bodily states, and the importance of promoting dignity for people with disabilities. We then consider the role the Foundational Principles play in the articles appearing in this special issue. We close by considering some new principles and their potential utility in rehabilitation settings. Readers in rehabilitation psychology and aligned areas (e.g., social-personality psychology, health psychology, rehabilitation therapist, psychiatry, and nursing) are encouraged to consider how the Foundational Principles underlie and can shape their research and practice. (c) 2016 APA, all rights reserved).
... grade cone biopsy; High-grade cone biopsy; Carcinoma in situ-cone biopsy; CIS - cone biopsy; ASCUS - cone biopsy; ... marked dysplasia CIN III -- severe dysplasia to carcinoma in situ Abnormal results may also be due to cervical ...
AONE Foundation celebrates 10 years of supporting research and special projects.
2010-01-01
This bimonthly department, sponsored by the American Organization of Nurse Executives (AONE), presents information to assist nurse leaders in shaping the future of healthcare through creative and innovative leadership. The strategic priorities of AONE anchor the editorial content. They reflect contemporary healthcare and nursing practice issues that challenge nurse executives as they strive to meet the needs of patients. In this month's article, AONE staff discuss AONE's Foundation for Nursing Leadership Research and Education and recipients of its recent research grants.
Spectral characteristics of light sources for S-cone stimulation.
Schlegelmilch, F; Nolte, R; Schellhorn, K; Husar, P; Henning, G; Tornow, R P
2002-11-01
Electrophysiological investigations of the short-wavelength sensitive pathway of the human eye require the use of a suitable light source as a S-cone stimulator. Different light sources with their spectral distribution properties were investigated and compared with the ideal S-cone stimulator. First, the theoretical background of the calculation of relative cone energy absorption from the spectral distribution function of the light source is summarized. From the results of the calculation, the photometric properties of the ideal S-cone stimulator will be derived. The calculation procedure was applied to virtual light sources (computer generated spectral distribution functions with different medium wavelengths and spectrum widths) and to real light sources (blue and green light emitting diodes, blue phosphor of CRT-monitor, multimedia projector, LCD monitor and notebook display). The calculated relative cone absorbencies are compared to the conditions of an ideal S-cone stimulator. Monochromatic light sources with wavelengths of less than 456 nm are close to the conditions of an ideal S-cone stimulator. Spectrum widths up to 21 nm do not affect the S-cone activation significantly (S-cone activation change < 0.2%). Blue light emitting diodes with peak wavelength at 448 nm and spectrum bandwidth of 25 nm are very useful for S-cone stimulation (S-cone activation approximately 95%). A suitable display for S-cone stimulation is the Trinitron computer monitor (S-cone activation approximately 87%). The multimedia projector has a S-cone activation up to 91%, but their spectral distribution properties depends on the selected intensity. LCD monitor and notebook displays have a lower S-cone activation (< or = 74%). Carefully selecting the blue light source for S-cone stimulation can reduce the unwanted L-and M-cone activation down to 4% for M-cones and 1.5% for L-cones.
Legal and Institutional Foundations of Adaptive Environmental Governance
Legal and institutional structures fundamentally shape opportunities for adaptive governance of environmental resources at multiple ecological and societal scales. Properties of adaptive governance are widely studied. However, these studies have not resulted in consolidated frame...
de Zee, Mark; Cattaneo, Paolo M; Svensson, Peter; Pedersen, Thomas K; Melsen, Birte; Rasmussen, John; Dalstra, Michel
2009-05-29
The aim of this work was to predict the shape of the articular eminence in a patient with unilateral hypoplasia of the right mandibular ramus before and after distraction osteogenesis (DO). Using a patient-specific musculoskeletal model of the mandible the hypothesis that the observed differences in this patient in the left and right articular eminence inclinations were consistent with minimisation of joint loads was tested. Moreover, a prediction was made of the final shape of the articular eminence after DO when the expected remodelling has reached a steady state. The individual muscle forces and the average TMJ loading were computed for each combination of articular eminence angles both before and after DO. This exhaustive parameter study provides a full overview of average TMJ loading depending on the angles of the articular eminences. Before DO the parameter study resulted in different articular eminence inclinations between left and right sides consistent with patient data obtained from CT scans, indicating that in this patient the articular eminence shapes result from minimisation of joint loads. The simulation model predicts development of almost equal articular eminence shapes after DO. The same tendency was observed in cone beam CT scans (NewTom) of the patient taken 6.5 years after surgery.
Push-out bond strength of different tricalcium silicate-based filling materials to root dentin.
Stefaneli Marques, Jorge Henrique; Silva-Sousa, Yara Teresinha Corrêa; Rached-Júnior, Fuad Jacob Abi; Macedo, Luciana Martins Domingues de; Mazzi-Chaves, Jardel Francisco; Camilleri, Josette; Sousa-Neto, Manoel Damião
2018-03-08
The aim of this study was to evaluate the bond strength of different triccalcium silicate cements to retrograde cavity using a push out test. Thirty maxillary central incisors were shaped using #80 hand files and sectioned transversally. Root slices were obtained from the apical 4 mm after eliminating the apical extremity. The specimens were embedded in acrylic resin and positioned at 45° to the horizontal plane for preparation of root-end cavities with a diamond ultrasonic retrotip. The samples were divided into three groups according to the root-end filling material (n = 10): MTA Angelus, ProRoot MTA and Biodentine. A gutta-percha cone (#80) was tugged-back at the limit between the canal and the root-end cavity. The root-end cavity was filled and the gutta-percha cone was removed after complete setting of the materials. The specimens were placed in an Instron machine with the root-end filling turned downwards. The push-out shaft was inserted in the space previously occupied by the gutta-percha cone and push out testing was performed at a crosshead speed of 1.0 mm/min. There was no statistically significant difference in resistance to push out by the materials tested (p > 0.01). MTA Angelus and ProRoot MTA showed predominantly mixed failure while Biodentine exhibited mixed and cohesive failures. The tricalcium silicate-based root-end filling materials showed similar bond strength retrograde cavity.
Kranenburg, Onno; Poland, Mieke; van Horck, Francis P. G.; Drechsel, David; Hall, Alan; Moolenaar, Wouter H.
1999-01-01
Neuronal cells undergo rapid growth cone collapse, neurite retraction, and cell rounding in response to certain G protein–coupled receptor agonists such as lysophosphatidic acid (LPA). These shape changes are driven by Rho-mediated contraction of the actomyosin-based cytoskeleton. To date, however, detection of Rho activation has been hampered by the lack of a suitable assay. Furthermore, the nature of the G protein(s) mediating LPA-induced neurite retraction remains unknown. We have developed a Rho activation assay that is based on the specific binding of active RhoA to its downstream effector Rho-kinase (ROK). A fusion protein of GST and the Rho-binding domain of ROK pulls down activated but not inactive RhoA from cell lysates. Using GST-ROK, we show that in N1E-115 neuronal cells LPA activates endogenous RhoA within 30 s, concomitant with growth cone collapse. Maximal activation occurs after 3 min when neurite retraction is complete and the actin cytoskeleton is fully contracted. LPA-induced RhoA activation is completely inhibited by tyrosine kinase inhibitors (tyrphostin 47 and genistein). Activated Gα12 and Gα13 subunits mimic LPA both in activating RhoA and in inducing RhoA-mediated cytoskeletal contraction, thereby preventing neurite outgrowth. We conclude that in neuronal cells, LPA activates RhoA to induce growth cone collapse and neurite retraction through a G12/13-initiated pathway that involves protein-tyrosine kinase activity. PMID:10359601
Kang, Jeong Hoon; Lee, Sang Hong; Jung, Sung
2015-12-01
The current study aims to evaluate the clinical and the radiological outcome of bipolar hemiarthroplasty using cementless cone stem to treat osteoporotic femoral neck fracture and compare the results according to the proximal femur geometry. Seventy-five hips (75 patients) that underwent bipolar hemiarthroplasty with cementless cone stem between September 2006 and December 2011 were analyzed. The minimum follow-up period was 3 years. Thirty-three hips were classified as type B and 41 as type C. The clinical outcome was assessed using Harris hip score and the walking ability score. Radiographic evaluation was performed to evaluate the stability of the prosthesis. At the most recent follow up, the mean Harris hip score was 86 (range, 70-92) and 65% recovered to preoperative ambulatory status. In the radiographic exam, stable stem fixation was achieved in all cases. For the complications, eight hips developed deep vein thrombosis while three hips showed heterotopic ossification. Dislocation and delayed deep infection occurred in one hip resepectively. There were no significance differences in Harris hip score and walking ability score when the type B group was compare with the type C. Bipolar hemiarthroplasty with cementless cone stem showed an excellent early outcome both clinically and radiographically regardless of the shape of the proximal femur. We believe this prosthesis can provide early stability to the Dorr type B and C femur and is an effective treatment for treating osteoporotic femoral neck fracture.
Madan, H R; Sharma, S C; Udayabhanu; Suresh, D; Vidya, Y S; Nagabhushana, H; Rajanaik, H; Anantharaju, K S; Prashantha, S C; Sadananda Maiya, P
2016-01-05
Green synthesis of multifunctional Zinc oxide nanoparticles (NPs) with a variety of morphologies were achieved by low temperature solution combustion route employing neem (Azadirachta indica) extract as fuel. The nanoparticles were characterized by PXRD, FTIR, XPS, Raman and UV-Visible spectroscopic studies. The Morphologies were studied by SEM and TEM analysis. The NPs were subjected for photoluminescence, photocatalytic, antibacterial and antioxidant activity studies. PXRD pattern confirmed the hexagonal wurtzite structure of the product. SEM images indicated the transformation of mushroom like hexagonal disks to bullets, buds, cones, bundles and closed pine cone structured NPs with increase in the concentration of neem extract in reaction mixture. The NPs exhibited prominent green emission due to the presence of intrinsic defect centers. The as-formed bullet shaped ZnO with 4ml of neem extract was found to decolorize Methylene blue (MB) under Sunlight and UV light irradiation. The antibacterial studies indicated that ZnO NPs of concentration 500, 750 and 1000μg resulted in significant antibacterial activity on Klebsiella aerogenes and Staphylococcus aureus but not against Escherichia coli and Pseudomonas aeruginosa in agar well diffusion method. Further, ZnO NPs exhibited significant antioxidant activity against scavenging DPPH free radicals. The current investigation demonstrated green engineering method for the synthesis of multifunctional ZnO NPs with interesting morphologies using neem extract. Copyright © 2015 Elsevier B.V. All rights reserved.
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Caqscade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670/sup 0/K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
NASA Astrophysics Data System (ADS)
Dremin, I. M.
2016-10-01
I begin with a tribute to V.N. Gribov and then come to a particular problem which would be of interest for him. His first paper on reggeology was devoted to elastic scatterings of hadrons. Here, using the unitarity relation in combination with experimental data about the elastic scattering in the diffraction cone, I show how the shape and the darkness of the interaction region of colliding protons change with the increase of their energies. In particular, the collisions become fully absorptive at small impact parameters at LHC energies that results in some special features of inelastic processes as well. The possible evolution with increasing energy of the shape from the dark core at the LHC to the fully transparent one at higher energies is discussed. It implies that the terminology of the black disk would be replaced by the black torus.