Science.gov

Sample records for cone-beam ct system

  1. X-ray cone beam CT system calibration

    NASA Astrophysics Data System (ADS)

    Sire, Pascal; Rizo, Philippe; Martin, M.

    1993-12-01

    Recently x-ray cone beam computed tomography (CT) has become of interest for nondestructive testing (NDT) of advanced materials. Such a technique takes advantage of the cone beam geometry, to reduce the acquisition time and increase the resolution. Performances of CT systems rely mainly on geometric precision and measurement quality. Inaccurate geometry or incorrect data produce artifacts and blurring which limit the spatial resolution. A precise geometric calibration procedure is required and some corrections must be applied to the raw attenuation data in order to obtain accurate measurements. An x-ray cone beam CT system has been developed at the LETI. This machine was designed to control small parts limited to a few centimeters, with a high spatial resolution close to 30 microns. This paper introduces the machine setup and describes the calibration computing resources involved in the system. Then, we discuss the performances on experimental data.

  2. A geometric calibration method for cone beam CT systems

    SciTech Connect

    Yang, Kai; Kwan, Alexander L. C.; Miller, DeWitt F.; Boone, John M.

    2006-06-15

    Cone beam CT systems are being deployed in large numbers for small animal imaging, dental imaging, and other specialty applications. A new high-precision method for cone beam CT system calibration is presented in this paper. It uses multiple projection images acquired from rotating point-like objects (metal ball bearings) and the angle information generated from the rotating gantry system is also used. It is assumed that the whole system has a mechanically stable rotation center and that the detector does not have severe out-of-plane rotation (<2 deg.). Simple geometrical relationships between the orbital paths of individual BBs and five system parameters were derived. Computer simulations were employed to validate the accuracy of this method in the presence of noise. Equal or higher accuracy was achieved compared with previous methods. This method was implemented for the geometrical calibration of both a micro CT scanner and a breast CT scanner. The reconstructed tomographic images demonstrated that the proposed method is robust and easy to implement with high precision.

  3. A novel cone beam breast CT scanner: system evaluation

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Conover, David; Yu, Yong; Zhang, Yan; Cai, Weixing; Betancourt-Benitez, Ricardo; Lu, Xianghua

    2007-03-01

    The purpose of the study is to characterize the imaging performance of the recently built novel cone beam breast CT (CBBCT) scanner. This CBBCT scanner system has one x-ray source and one flat panel detector (Varian's PaxScan 4030CB) mounted on a rotating assembly. A patient table is mounted above the rotating tube/detector assembly. The table has a hole through it that allows a woman's breast to hang pendant in the imaging volume at the rotation axis. The tube/detector assembly rotates around the rotation axis and acquires multiple 2D projection images of the uncompressed breast located at the rotation axis in 10 seconds. Slip ring technology allows continuous rotation of the x-ray tube/detector assembly concentric to the opening in the table to achieve multiple circle scans. Also, it has a controlled vertical motion during the rotation to perform a spiral scan over 20 cm of travel. The continuous 360° rotation is designed to have speeds up to 1 rev/sec. This system was validated through a series of breast-imaging phantom studies and and patient studies. The results show that the image quality of the CBBCT scanner is excellent and all phantom masses (tissue-equivalent carcinomas) and calcifications as well as human subjects' masses, calcifications and abnormalities can be detected faithfully using the CBBCT technique with a glandular dose level less than or equal to that of a single two-view mammography exam. The results indicate that the CBBCT imaging system has much better detectability of small breast tumors compared to the conventional mammography system.

  4. Cardiac cone-beam CT

    SciTech Connect

    Manzke, Robert . E-mail: robert.manzke@philips.com

    2005-10-15

    This doctoral thesis addresses imaging of the heart with retrospectively gated helical cone-beam computed tomography (CT). A thorough review of the CT reconstruction literature is presented in combination with a historic overview of cardiac CT imaging and a brief introduction to other cardiac imaging modalities. The thesis includes a comprehensive chapter about the theory of CT reconstruction, familiarizing the reader with the problem of cone-beam reconstruction. The anatomic and dynamic properties of the heart are outlined and techniques to derive the gating information are reviewed. With the extended cardiac reconstruction (ECR) framework, a new approach is presented for the heart-rate-adaptive gated helical cardiac cone-beam CT reconstruction. Reconstruction assessment criteria such as the temporal resolution, the homogeneity in terms of the cardiac phase, and the smoothness at cycle-to-cycle transitions are developed. Several reconstruction optimization approaches are described: An approach for the heart-rate-adaptive optimization of the temporal resolution is presented. Streak artifacts at cycle-to-cycle transitions can be minimized by using an improved cardiac weighting scheme. The optimal quiescent cardiac phase for the reconstruction can be determined automatically with the motion map technique. Results for all optimization procedures applied to ECR are presented and discussed based on patient and phantom data. The ECR algorithm is analyzed for larger detector arrays of future cone-beam systems throughout an extensive simulation study based on a four-dimensional cardiac CT phantom. The results of the scientific work are summarized and an outlook proposing future directions is given. The presented thesis is available for public download at www.cardiac-ct.net.

  5. Current role of hybrid CT/angiography system compared with C-arm cone beam CT for interventional oncology.

    PubMed

    Tanaka, T; Arai, Y; Inaba, Y; Inoue, M; Nishiofuku, H; Anai, H; Hori, S; Sakaguchi, H; Kichikawa, K

    2014-09-01

    Hybrid CT/angiography (angiography) system and C-arm cone beam CT provide cross-sectional imaging as an adjunct to angiography. Current interventional oncological procedures can be conducted precisely using these two technologies. In this article, several cases using a hybrid CT/angiography system are shown first, and then the advantages and disadvantages of the hybrid CT/angiography and C-arm cone beam CT are discussed with literature reviews.

  6. Comparison of two detector systems for cone beam CT small animal imaging - a preliminary study.

    PubMed

    Meng, Yang; Shaw, Chris C; Liu, Xinming; Altunbas, Mustafa C; Wang, Tianpeng; Chen, Lingyun; Tu, Shu-Ju; Kappadath, S Cheenu; Lai, Chao-Jen

    2006-03-01

    To compare two detector systems - one based on the charge-coupled device (CCD) and image amplifier, the other based on a-Si/CsI flat panel, for cone beam computed-tomography (CT) imaging of small animals.A high resolution, high framing rate detector system for the cone beam CT imaging of small animals was developed. The system consists of a 2048x3072x12 bit CCD optically coupled to an image amplifier and an x-ray phosphor screen. The CCD has an intrinsic pixel size of 12 mum but the effective pixel size can be adjusted through the magnification adjustment of the optical coupling systems. The system is used in conjunction with an x-ray source and a rotating stage for holding and rotating the scanned object in the cone beam CT imaging experiments. The advantages of the system include but are not limited to the ability to adjust the effective pixel size and to achieve extremely high spatial resolution and temporal resolution. However, the need to use optical coupling compromises the detective quanta efficiency (DQE) of the system. In this paper, the imaging characteristics of the system were presented and compared with those of an a-Si/CsI flat-panel detector system. PMID:18160972

  7. Comparison of two detector systems for cone beam CT small animal imaging - a preliminary study

    PubMed Central

    Meng, Yang; Shaw, Chris C.; Liu, Xinming; Altunbas, Mustafa C.; Wang, Tianpeng; Chen, Lingyun; Tu, Shu-Ju; Kappadath, S. Cheenu; Lai, Chao-Jen

    2007-01-01

    Purpose To compare two detector systems - one based on the charge-coupled device (CCD) and image amplifier, the other based on a-Si/CsI flat panel, for cone beam computed-tomography (CT) imaging of small animals. A high resolution, high framing rate detector system for the cone beam CT imaging of small animals was developed. The system consists of a 2048×3072×12 bit CCD optically coupled to an image amplifier and an x-ray phosphor screen. The CCD has an intrinsic pixel size of 12 μm but the effective pixel size can be adjusted through the magnification adjustment of the optical coupling systems. The system is used in conjunction with an x-ray source and a rotating stage for holding and rotating the scanned object in the cone beam CT imaging experiments. The advantages of the system include but are not limited to the ability to adjust the effective pixel size and to achieve extremely high spatial resolution and temporal resolution. However, the need to use optical coupling compromises the detective quanta efficiency (DQE) of the system. In this paper, the imaging characteristics of the system were presented and compared with those of an a-Si/CsI flat-panel detector system. PMID:18160972

  8. Beam hardening correction for a cone-beam CT system and its effect on spatial resolution

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Fu, Guo-Tao; Sun, Cui-Li; Wang, Yan-Fang; Wei, Cun-Feng; Cao, Da-Quan; Que, Jie-Min; Tang, Xiao; Shi, Rong-Jian; Wei, Long; Yu, Zhong-Qiang

    2011-10-01

    In this paper, we present a beam hardening correction (BHC) method in three-dimension space for a cone-beam computed tomography (CBCT) system in a mono-material case and investigate its effect on the spatial resolution. Due to the polychromatic character of the X-ray spectrum used, cupping and streak artifacts called beam hardening artifacts arise in the reconstructed CT images, causing reduced image quality. In addition, enhanced edges are introduced in the reconstructed CT images because of the beam hardening effect. The spatial resolution of the CBCT system is calculated from the edge response function (ERF) on different planes in space. Thus, in the CT images with beam hardening artifacts, enhanced ERFs will be extracted to calculate the modulation transfer function (MTF), obtaining a better spatial resolution that deviates from the real value. Reasonable spatial resolution can be obtained after reducing the artifacts. The 10% MTF value and the full width at half maximum (FWHM) of the point spread function with and without BHC are presented.

  9. Variation in costs of cone beam CT examinations among healthcare systems

    PubMed Central

    Christell, H; Birch, S; Hedesiu, M; Horner, K; Ivanauskaité, D; Nackaerts, O; Rohlin, M; Lindh, C

    2012-01-01

    Objectives To analyse the costs of cone beam CT (CBCT) in different healthcare systems for patients with different clinical conditions. Methods Costs were calculated for CBCT performed in Cluj (Romania), Leuven (Belgium), Malmö (Sweden) and Vilnius (Lithuania) on patients with (i) a maxillary canine with eruption disturbance, (ii) an area with tooth loss prior to implant treatment or (iii) a lower wisdom tooth planned for removal. The costs were calculated using an approach based on the identification, measurement and valuation of all resources used in the delivery of the service that combined direct costs (capital equipment, accommodation, labour) with indirect costs (patients' and accompanying persons' time, “out of pocket” costs for examination fee and visits). Results The estimates for direct and indirect costs varied among the healthcare systems, being highest in Malmö and lowest in Leuven. Variation in direct costs was mainly owing to different capital costs for the CBCT equipment arising from differences in purchase prices (range €148 000–227 000). Variation in indirect costs were mainly owing to examination fees (range €0–102.02). Conclusions Cost analysis provides an important input for economic evaluations of diagnostic methods in different healthcare systems and for planning of service delivery. Additionally, it enables decision-makers to separate variations in costs between systems into those due to external influences and those due to policy decisions. A cost evaluation of a dental radiographic method cannot be generalized from one healthcare system to another, but must take into account these specific circumstances. PMID:22499131

  10. SU-E-I-11: A New Cone-Beam CT System for Bedside Head Imaging

    SciTech Connect

    Sun, H; Zeng, W; Xu, P; Wang, Z; Xing, X; Sun, M

    2015-06-15

    Purpose: To design and develop a new mobile cone-beam CT (CBCT) system for head imaging with good soft-tissue visibility, to be used bedside in ICU and neurosurgery department to monitor treatment and operation outcome in brain patients. Methods: The imaging chain consists of a 30cmx25cm amorphous silicon flat panel detector and a pulsed, stationary anode monoblock x-ray source of 100kVp at a maximal tube current of 10mA. The detector and source are supported on motorized mechanisms to provide detector lateral shift and source angular tilt, enabling a centered digital radiographic imaging mode and half-fan CBCT, while maximizing the use of the x-ray field and keep the source to detector distance short. A focused linear anti-scatter grid is mounted on the detector, and commercial software with scatter and other corrective algorithms is used for data processing and image reconstruction. The gantry rotates around a horizontal axis, and is able to adjust its height for different patient table positions. Cables are routed through a custom protective sleeve over a large bore with an in-plane twister band, facilitating single 360-degree rotation without a slip-ring at a speed up to 5 seconds per rotation. A UPS provides about 10 minutes of operation off the battery when unplugged. The gantry is on locked casters, whose brake is control by two push handles on both sides for easy reposition. The entire system is designed to have a light weight and a compact size for excellent maneuverability. Results: System design is complete and main imaging components are tested. Initial results will be presented and discussed later in the presentation. Conclusion: A new mobile CBCT system for head imaging is being developed. With its compact size, a large bore, and quality design, it is expected to be a useful imaging tool for bedside uses. The work is supported by a grant from Chinese Academy of Sciences.

  11. A dual cone-beam CT system for image guided radiotherapy: Initial performance characterization

    SciTech Connect

    Li Hao; Bowsher, James; Yin Fangfang; Giles, William

    2013-02-15

    Purpose: The purpose of this study is to evaluate the performance of a recently developed benchtop dual cone-beam computed tomography (CBCT) system with two orthogonally placed tube/detector sets. Methods: The benchtop dual CBCT system consists of two orthogonally placed 40 Multiplication-Sign 30 cm flat-panel detectors and two conventional x-ray tubes with two individual high-voltage generators sharing the same rotational axis. The x-ray source to detector distance is 150 cm and x-ray source to rotational axis distance is 100 cm for both subsystems. The objects are scanned through 200 Degree-Sign of rotation. The dual CBCT system utilized 110 Degree-Sign of projection data from one detector and 90 Degree-Sign from the other while the two individual single CBCTs utilized 200 Degree-Sign data from each detector. The system performance was characterized in terms of uniformity, contrast, spatial resolution, noise power spectrum, and CT number linearity. The uniformities, within the axial slice and along the longitudinal direction, and noise power spectrum were assessed by scanning a water bucket; the contrast and CT number linearity were measured using the Catphan phantom; and the spatial resolution was evaluated using a tungsten wire phantom. A skull phantom and a ham were also scanned to provide qualitative evaluation of high- and low-contrast resolution. Each measurement was compared between dual and single CBCT systems. Results: Compared to single CBCT, the dual CBCT presented: (1) a decrease in uniformity by 1.9% in axial view and 1.1% in the longitudinal view, as averaged for four energies (80, 100, 125, and 150 kVp); (2) comparable or slightly better contrast (0{approx}25 HU) for low-contrast objects and comparable contrast for high-contrast objects; (3) comparable spatial resolution; (4) comparable CT number linearity with R{sup 2}{>=} 0.99 for all four tested energies; (5) lower noise power spectrum in magnitude. Dual CBCT images of the skull phantom and the

  12. Self-calibration of a cone-beam micro-CT system

    SciTech Connect

    Patel, V.; Chityala, R. N.; Hoffmann, K. R.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2009-01-15

    Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CB{mu}CT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CB{mu}CT system constructed in the authors' laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantified using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 {mu}m in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only obviates

  13. C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation

    NASA Astrophysics Data System (ADS)

    Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E.; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2008-03-01

    The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.

  14. C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation.

    PubMed

    Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2008-01-01

    The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.

  15. Dose and scatter characteristics of a novel cone beam CT system for musculoskeletal extremities

    NASA Astrophysics Data System (ADS)

    Zbijewski, W.; Sisniega, A.; Vaquero, J. J.; Muhit, A.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2012-03-01

    A novel cone-beam CT (CBCT) system has been developed with promising capabilities for musculoskeletal imaging (e.g., weight-bearing extremities and combined radiographic / volumetric imaging). The prototype system demonstrates diagnostic-quality imaging performance, while the compact geometry and short scan orbit raise new considerations for scatter management and dose characterization that challenge conventional methods. The compact geometry leads to elevated, heterogeneous x-ray scatter distributions - even for small anatomical sites (e.g., knee or wrist), and the short scan orbit results in a non-uniform dose distribution. These complex dose and scatter distributions were investigated via experimental measurements and GPU-accelerated Monte Carlo (MC) simulation. The combination provided a powerful basis for characterizing dose distributions in patient-specific anatomy, investigating the benefits of an antiscatter grid, and examining distinct contributions of coherent and incoherent scatter in artifact correction. Measurements with a 16 cm CTDI phantom show that the dose from the short-scan orbit (0.09 mGy/mAs at isocenter) varies from 0.16 to 0.05 mGy/mAs at various locations on the periphery (all obtained at 80 kVp). MC estimation agreed with dose measurements within 10-15%. Dose distribution in patient-specific anatomy was computed with MC, confirming such heterogeneity and highlighting the elevated energy deposition in bone (factor of ~5-10) compared to soft-tissue. Scatter-to-primary ratio (SPR) up to ~1.5-2 was evident in some regions of the knee. A 10:1 antiscatter grid was found earlier to result in significant improvement in soft-tissue imaging performance without increase in dose. The results of MC simulations elucidated the mechanism behind scatter reduction in the presence of a grid. A ~3-fold reduction in average SPR was found in the MC simulations; however, a linear grid was found to impart additional heterogeneity in the scatter distribution

  16. Investigation on viewing direction dependent detectability in a reconstructed 3D volume for a cone beam CT system

    NASA Astrophysics Data System (ADS)

    Park, Junhan; Lee, Changwoo; Baek, Jongduk

    2015-03-01

    In medical imaging systems, several factors (e.g., reconstruction algorithm, noise structures, target size, contrast, etc) affect the detection performance and need to be considered for object detection. In a cone beam CT system, FDK reconstruction produces different noise structures in axial and coronal slices, and thus we analyzed directional dependent detectability of objects using detection SNR of Channelized Hotelling observer. To calculate the detection SNR, difference-of-Gaussian channel model with 10 channels was implemented, and 20 sphere objects with different radius (i.e., 0.25 (mm) to 5 (mm) equally spaced by 0.25 (mm)), reconstructed by FDK algorithm, were used as object templates. Covariance matrix in axial and coronal direction was estimated from 3000 reconstructed noise volumes, and then the SNR ratio between axial and coronal direction was calculated. Corresponding 2D noise power spectrum was also calculated. The results show that as the object size increases, the SNR ratio decreases, especially lower than 1 when the object size is larger than 2.5 mm radius. The reason is because the axial (coronal) noise power is higher in high (low) frequency band, and therefore the detectability of a small (large) object is higher in coronal (axial) images. Our results indicate that it is more beneficial to use coronal slices in order to improve the detectability of a small object in a cone beam CT system.

  17. Scatter corrections for cone beam optical CT

    NASA Astrophysics Data System (ADS)

    Olding, Tim; Holmes, Oliver; Schreiner, L. John

    2009-05-01

    Cone beam optical computed tomography (OptCT) employing the VISTA scanner (Modus Medical, London, ON) has been shown to have significant promise for fast, three dimensional imaging of polymer gel dosimeters. One distinct challenge with this approach arises from the combination of the cone beam geometry, a diffuse light source, and the scattering polymer gel media, which all contribute scatter signal that perturbs the accuracy of the scanner. Beam stop array (BSA), beam pass array (BPA) and anti-scatter polarizer correction methodologies have been employed to remove scatter signal from OptCT data. These approaches are investigated through the use of well-characterized phantom scattering solutions and irradiated polymer gel dosimeters. BSA corrected scatter solutions show good agreement in attenuation coefficient with the optically absorbing dye solutions, with considerable reduction of scatter-induced cupping artifact at high scattering concentrations. The application of BSA scatter corrections to a polymer gel dosimeter lead to an overall improvement in the number of pixel satisfying the (3%, 3mm) gamma value criteria from 7.8% to 0.15%.

  18. A static multi-slit collimator system for scatter reduction in cone-beam CT.

    PubMed

    Chang, Jina; Kim, Siyong; Jang, Doh-Yun; Suh, Tae-Suk

    2010-01-01

    A multiple-slit collimator (MSC) design was introduced for scatter reduction in cone-beam computed tomography (CBCT). Unlike most other collimators, the open and closed septa of the proposed MSC are placed in an equi-angular interval on a circular track of the central sagittal plane. Therefore, one gantry rotation provides only the half of necessary dataset and two gantry rotations are needed to obtain full information. During the first gantry rotation, the MSC position relative to the source is fixed. For the second rotation, the MSC is rotated by the equi-angle interval. We assume signals under the closed septa are totally attributed to scatter radiation. Then, scatter contributions under open septa are determined by interpolating them.Monte Carlo (MC) simulations for two virtual phantoms (one with a simple geometry and the other with two heterogeneities simulating the bone and the lung) were performed to evaluate the effectiveness of the system. Using the method developed, we could obtain images with significant scatter reduction. Contrast ratio (CR) improvement factors were 1.165 in a 2D projection view, and 1.210 and 1.223 at the central and peripheral slice of the reconstructed CBCT image of the simple geometry phantom.This preliminary study demonstrated that the proposed MSC, together with the imaging process technique, had a great potential to reduce scatter contribution in CBCT. Further studies will be performed to investigate the effect of various factors, such as reducing the detector size, increasing the number of history of MC simulation, and including many structures with different densities. PMID:21081885

  19. Dosimetric accuracy of the cone-beam CT-based treatment planning of the Vero system: a phantom study.

    PubMed

    Yohannes, Indra; Prasetio, Heru; Kallis, Karoline; Bert, Christoph

    2016-01-01

    We report an investigation on the accuracy of dose calculation based on the cone-beam computed tomography (CBCT) images of the nonbowtie filter kV imaging system of the Vero linear accelerator. Different sets of materials and tube voltages were employed to generate the Hounsfield unit lookup tables (HLUTs) for both CBCT and fan-beam CT (FBCT) systems. The HLUTs were then implemented for the dose calculation in a treatment planning system (TPS). Dosimetric evaluation was carried out on an in-house-developed cube phantom that consists of water-equivalent slabs and inhomogeneity inserts. Two independent dosimeters positioned in the cube phantom were used in this study for point-dose and two-dimensional (2D) dose distribution measurements. The differences of HLUTs from various materials and tube voltages in both CT systems resulted in differences in dose calculation accuracy. We found that the higher the tube voltage used to obtain CT images, the better the point-dose calculation and the gamma passing rate of the 2D dose distribution agree to the values determined in the TPS. Moreover, the insert materials that are not tissue-equivalent led to higher dose-calculation inaccuracy. There were negligible differences in dosimetric evaluation between the CBCT- and FBCT-based treatment planning if the HLUTs were generated using the tissue-equivalent materials. In this study, the CBCT images of the Vero system from a complex inhomogeneity phantom can be applied for the TPS dose calculation if the system is calibrated using tissue-equivalent materials scanned at high tube voltage (i.e., 120 kV). PMID:27455496

  20. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  1. CUSTOMISATION OF A MONTE CARLO DOSIMETRY TOOL FOR DENTAL CONE-BEAM CT SYSTEMS.

    PubMed

    Stratis, A; Zhang, G; Lopez-Rendon, X; Jacobs, R; Bogaerts, R; Bosmans, H

    2016-06-01

    A versatile EGSnrc Monte Carlo (MC) framework, initially designed to explicitly simulate X-ray tubes and record the output data into phase space data files, was modified towards dental cone-beam computed tomography (CBCT) dosimetric applications by introducing equivalent sources. Half value layer (HVL) measurements were conducted to specify protocol-specific energy spectra. Air kerma measurements were carried out with an ionisation chamber positioned against the X-ray tube to obtain the total filtration attenuation characteristics. The framework is applicable to bowtie and non-bowtie inherent filtrations, and it accounts for the anode heel effect and the total filtration of the tube housing. The code was adjusted to the Promax 3D Max (Planmeca, Helsinki, Finland) dental CBCT scanner. For each clinical protocol, calibration factors were produced to allow absolute MC dose calculations. The framework was validated by comparing MC calculated doses and measured doses in a cylindrical water phantom. Validation results demonstrate the reliability of the framework for dental CBCT dosimetry purposes. PMID:26922781

  2. Size-specific dose estimates (SSDE) for a prototype orthopedic cone-beam CT system

    NASA Astrophysics Data System (ADS)

    Richard, Samuel; Packard, Nathan; Yorkston, John

    2014-03-01

    Patient specific dose evaluation and reporting is becoming increasingly important for x-ray imaging systems. Even imaging systems with lower patient dose such as CBCT scanners for extremities can benefit from accurate and size-specific dose assessment and reporting. This paper presents CTDI dose measurements performed on a prototype CBCT extremity imaging system across a range of body part sizes (5, 10, 16, and 20 cm effective diameter) and kVp (70, 80, and 90 kVp - with 0.1 mm Cu added filtration). The ratio of the CTDI measurements for the 5, 10, and 20 cm phantoms to the CTDI measurements for the 16 cm phantom were calculated and results were compared to size-specific dose estimates conversion factors (AAPM Report 204), which were evaluated on a conventional CT scanner. Due to the short scan nature of the system (220 degree acquisition angle), the dependence of CTDI values on the initial angular orientation of the phantom with respect to the imager was also evaluated. The study demonstrated that for a 220 degree acquisition sequence, the initial angular position of the conventional CTDI phantom with respect to the scanner does not significantly affect CTDI measurements (varying by less than 2% overall across the range of possible initial angular positions). The size-specific conversion factor was found to be comparable to the Report 204 factors for the large phantom size (20 cm) but lower, by up to 12%, for the 5 cm phantom (i.e., 1.35 for CBCT vs 1.54 for CT). The factors dependence on kVp was minimal, but dependence on kVp was most significant for smaller diameters. These results indicate that specific conversion factors need to be used for CBCT systems with short scans in order to provide more accurate dose reporting across the range of body sizes found in extremity scanners.

  3. Dose and image quality for a cone-beam C-arm CT system

    SciTech Connect

    Fahrig, Rebecca; Dixon, Robert; Payne, Thomas; Morin, Richard L.; Ganguly, Arundhuti; Strobel, Norbert

    2006-12-15

    We assess dose and image quality of a state-of-the-art angiographic C-arm system (Axiom Artis dTA, Siemens Medical Solutions, Forchheim, Germany) for three-dimensional neuro-imaging at various dose levels and tube voltages and an associated measurement method. Unlike conventional CT, the beam length covers the entire phantom, hence, the concept of computed tomography dose index (CTDI) is not the metric of choice, and one can revert to conventional dosimetry methods by directly measuring the dose at various points using a small ion chamber. This method allows us to define and compute a new dose metric that is appropriate for a direct comparison with the familiar CTDI{sub W} of conventional CT. A perception study involving the CATPHAN 600 indicates that one can expect to see at least the 9 mm inset with 0.5% nominal contrast at the recommended head-scan dose (60 mGy) when using tube voltages ranging from 70 kVp to 125 kVp. When analyzing the impact of tube voltage on image quality at a fixed dose, we found that lower tube voltages gave improved low contrast detectability for small-diameter objects. The relationships between kVp, image noise, dose, and contrast perception are discussed.

  4. Towards cone-beam CT thermometry

    NASA Astrophysics Data System (ADS)

    Li, Ming; Abi-Jaoudeh, Nadine; Kapoor, Ankur; Kadoury, Samuel; Xu, Sheng; Noordhoek, Niels; Radaelli, Alessandro; Carelsen, Bart; Wood, Bradford J.

    2013-03-01

    Temperature monitoring and therefore the final treatment zone achieved during a cone-beam CT (CBCT) guided ablation can prevent overtreatment and undertreatment. A novel method is proposed to detect changes in consecutive CBCT images obtained from projection reconstructions during an ablation procedure. The possibility is explored of using this method to generate thermometry maps from CBCT images, which can be used as an input function for ablation treatment planning. This novel method uses a baseline and an intermittent CBCT scan, which are routinely acquired to confirm the needle position and monitor progress of the ablation. Accurate registration is required and assumed in vitro and ex vivo. A Wronskian change detector algorithm is applied on the compensated images to obtain a difference image between the intermittent and baseline scans. Finally, a thermal map created by applying a calibration determined experimentally is used to obtain the corresponding temperature at each pixel or voxel. We applied Wronskian change detector to detect the difference of two CBCT images, which have low signal to noise ratio, and calibrate Wronskian change model to temperature data using a gel phantom. We tested the temperature mapping with water and gel phantoms as well as pig shoulder. The experimental results show this method can detect temperature change within 5°C for a voxel size of 1mm3 (within clinical relevancy), and by consequence delineate the ablation zone. The preliminary experimental results show that CBCT thermometry is possible and promising, but may require pre-processing, such as registration for motion compensation between the baseline and intermittent scans. Further, quantitative evaluations have to be conducted for validation prior to clinical assessment and translation. CBCT is a widely available technology that could make thermometry clinically practical as an enabling component of iterative ablation treatment planning.

  5. Cardiac cone-beam CT volume reconstruction using ART

    SciTech Connect

    Nielsen, T.; Manzke, R.; Proksa, R.; Grass, M.

    2005-04-01

    Modern computed tomography systems allow volume imaging of the heart. Up to now, approximately two-dimensional (2D) and 3D algorithms based on filtered backprojection are used for the reconstruction. These algorithms become more sensitive to artifacts when the cone angle of the x-ray beam increases as it is the current trend of computed tomography (CT) technology. In this paper, we investigate the potential of iterative reconstruction based on the algebraic reconstruction technique (ART) for helical cardiac cone-beam CT. Iterative reconstruction has the advantages that it takes the cone angle into account exactly and that it can be combined with retrospective cardiac gating fairly easily. We introduce a modified ART algorithm for cardiac CT reconstruction. We apply it to clinical cardiac data from a 16-slice CT scanner and compare the images to those obtained with a current analytical reconstruction method. In a second part, we investigate the potential of iterative reconstruction for a large area detector with 256 slices. For the clinical cases, iterative reconstruction produces excellent images of diagnostic quality. For the large area detector, iterative reconstruction produces images superior to analytical reconstruction in terms of cone-beam artifacts.

  6. A surgical navigation system for non-contact diffuse optical tomography and intraoperative cone-beam CT

    NASA Astrophysics Data System (ADS)

    Daly, Michael J.; Muhanna, Nidal; Chan, Harley; Wilson, Brian C.; Irish, Jonathan C.; Jaffray, David A.

    2014-02-01

    A freehand, non-contact diffuse optical tomography (DOT) system has been developed for multimodal imaging with intraoperative cone-beam CT (CBCT) during minimally-invasive cancer surgery. The DOT system is configured for near-infrared fluorescence imaging with indocyanine green (ICG) using a collimated 780 nm laser diode and a nearinfrared CCD camera (PCO Pixelfly USB). Depending on the intended surgical application, the camera is coupled to either a rigid 10 mm diameter endoscope (Karl Storz) or a 25 mm focal length lens (Edmund Optics). A prototype flatpanel CBCT C-Arm (Siemens Healthcare) acquires low-dose 3D images with sub-mm spatial resolution. A 3D mesh is extracted from CBCT for finite-element DOT implementation in NIRFAST (Dartmouth College), with the capability for soft/hard imaging priors (e.g., segmented lymph nodes). A stereoscopic optical camera (NDI Polaris) provides real-time 6D localization of reflective spheres mounted to the laser and camera. Camera calibration combined with tracking data is used to estimate intrinsic (focal length, principal point, non-linear distortion) and extrinsic (translation, rotation) lens parameters. Source/detector boundary data is computed from the tracked laser/camera positions using radiometry models. Target registration errors (TRE) between real and projected boundary points are ~1-2 mm for typical acquisition geometries. Pre-clinical studies using tissue phantoms are presented to characterize 3D imaging performance. This translational research system is under investigation for clinical applications in head-and-neck surgery including oral cavity tumour resection, lymph node mapping, and free-flap perforator assessment.

  7. Investigation into image quality and dose for different patient geometries with multiple cone-beam CT systems

    SciTech Connect

    Gardner, Stephen J.; Studenski, Matthew T.; Giaddui, Tawfik; Galvin, James; Yu, Yan; Xiao, Ying; Cui, Yunfeng

    2014-03-15

    Purpose: To provide quantitative and qualitative image quality metrics and imaging dose for modern Varian On-board Imager (OBI) (ver. 1.5) and Elekta X-ray Volume Imager (XVI) (ver. 4.5R) cone-beam computed tomography (CBCT) systems in a clinical adaptive radiation therapy environment by accounting for varying patient thickness. Methods: Image quality measurements were acquired with Catphan 504 phantom (nominal diameter and with additional 10 cm thickness) for OBI and XVI systems and compared to planning CT (pCT) (GE LightSpeed). Various clinical protocols were analyzed for the OBI and XVI systems and analyzed using image quality metrics, including spatial resolution, low contrast detectability, uniformity, and HU sensitivity. Imaging dose measurements were acquired in Wellhofer Scanditronix i'mRT phantom at nominal phantom diameter and with additional 4 cm phantom diameter using GafChromic XRQA2 film. Calibration curves were generated using previously published in-air Air Kerma calibration method. Results: The OBI system full trajectory scans exhibited very little dependence on phantom thickness for accurate HU calculation, while half-trajectory scans with full-fan filter exhibited dependence of HU calculation on phantom thickness. The contrast-to-noise ratio (CNR) for the OBI scans decreased with additional phantom thickness. The uniformity of Head protocol scan was most significantly affected with additional phantom thickness. The spatial resolution and CNR compared favorably with pCT, while the uniformity of the OBI system was slightly inferior to pCT. The OBI scan protocol dose levels for nominal phantom thickness at the central portion of the phantom were 2.61, 0.72, and 1.88 cGy, and for additional phantom thickness were 1.95, 0.48, and 1.52 cGy, for the Pelvis, Thorax, and Spotlight protocols, respectively. The XVI system scans exhibited dependence on phantom thickness for accurate HU calculation regardless of trajectory. The CNR for the XVI scans decreased

  8. Online planning and delivery technique for radiotherapy of spinal metastases using cone-beam CT: Image quality and system performance

    SciTech Connect

    Letourneau, Daniel . E-mail: daniel.letourneau@rmp.uhn.on.ca; Wong, Rebecca; Moseley, Douglas; Sharpe, Michael B.; Ansell, Stephen B.Sc.; Gospodarowicz, Mary; Jaffray, David A.

    2007-03-15

    Purpose: To assess the feasibility of an online strategy for palliative radiotherapy (RT) of spinal bone metastasis, which integrates imaging, planning, and treatment delivery in a single step at the treatment unit. The technical challenges of this approach include cone-beam CT (CBCT) image quality for target definition, online planning, and efficient process integration. Methods and Materials: An integrated imaging, planning, and delivery system was constructed and tested with phantoms. The magnitude of CBCT image artifacts following the use of an antiscatter grid and a nonlinear scatter correction was quantified using phantom data and images of patients receiving conventional palliative RT of the spine. The efficacy of online planning was then assessed using corrected CBCT images. Testing of the complete process was performed on phantoms with assessment of timing and dosimetric accuracy. Results: The use of image corrections reduced the cupping artifact from 30% to 4.5% on CBCT images of a body phantom and improved the accuracy of CBCT numbers (water: {+-} 20 Hounsfield unit [HU], and lung and bone: to within {+-} 130 HU). Bony anatomy was clearly visible and was deemed sufficient for target definition. The mean total time (n = 5) for application of the online approach was 23.1 min. Image-guided dose placement was assessed using radiochromic film measurements with good agreement (within 5% of dose difference and 2 mm of distance to agreement). Conclusions: The technical feasibility of CBCT-guided online planning and delivery for palliative single treatment has been demonstrated. The process was performed in one session equivalent to an initial treatment slot (<30 min) with dosimetric accuracy satisfying accepted RT standards.

  9. A dedicated cone-beam CT system for musculoskeletal extremities imaging: Design, optimization, and initial performance characterization

    SciTech Connect

    Zbijewski, W.; De Jean, P.; Prakash, P.; Ding, Y.; Stayman, J. W.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Machado, A.; Carrino, J. A.; Siewerdsen, J. H.

    2011-08-15

    Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a {approx}55 cm source-to-detector distance; 1.3 magnification; a

  10. Ring artifact corrections in flat-panel detector based cone beam CT

    NASA Astrophysics Data System (ADS)

    Anas, Emran Mohammad Abu; Kim, Jaegon; Lee, Soo Yeol; Hasan, Md. Kamrul

    2011-03-01

    The use of flat-panel detectors (FPDs) is becoming increasingly popular in the cone beam volume and multi-slice CT imaging. But due to the deficient semiconductor array processing, the diagnostic quality of the FPD-based CT images in both CT systems is degraded by different types of artifacts known as the ring and radiant artifacts. Several techniques have been already published in eliminating the stripe artifacts from the projection data of the multi-slice CT system or in other words, from the sinogram image with a view to suppress the ring and radiant artifacts from the 2-D reconstructed CT images. On the other hand, till now a few articles have been reported to remove the artifacts from the cone beam CT images. In this paper, an effective approach is presented to eliminate the artifacts from the cone beam projection data using the sinogram based stripe artifact removal methods. The improvement in the required diagnostic quality is achieved by applying them both in horizontal and vertical sinograms constituted sequentially from the stacked cone beam projections. Finally, some real CT images have been used to demonstrate the effectiveness of the proposed technique in eliminating the ring and radiant artifacts from the cone beam volume CT images. A comparative study with the conventional sinogram based approaches is also presented to see the effectiveness of the proposed technique.

  11. Biplane interventional pediatric system with cone-beam CT: dose and image quality characterization for the default protocols.

    PubMed

    Corredoira, Eva; Vañó, Eliseo; Alejo, Luis; Ubeda, Carlos; Gutiérrez-Larraya, Federico; Garayoa, Julia

    2016-07-08

    The aim of this study was to assess image quality and radiation dose of a biplane angiographic system with cone-beam CT (CBCT) capability tuned for pediatric cardiac procedures. The results of this study can be used to explore dose reduction techniques. For pulsed fluoroscopy and cine modes, polymethyl methacrylate phantoms of various thicknesses and a Leeds TOR 18-FG test object were employed. Various fields of view (FOV) were selected. For CBCT, the study employed head and body dose phantoms, Catphan 504, and an anthropomorphic cardiology phantom. The study also compared two 3D rotational angiography protocols. The entrance surface air kerma per frame increases by a factor of 3-12 when comparing cine and fluoroscopy frames. The biggest difference in the signal-to- noise ratio between fluoroscopy and cine modes occurs at FOV 32 cm because fluoroscopy is acquired at a 1440 × 1440 pixel matrix size and in unbinned mode, whereas cine is acquired at 720 × 720 pixels and in binned mode. The high-contrast spatial resolution of cine is better than that of fluoroscopy, except for FOV 32 cm, because fluoroscopy mode with 32 cm FOV is unbinned. Acquiring CBCT series with a 16 cm head phantom using the standard dose protocol results in a threefold dose increase compared with the low-dose protocol. Although the amount of noise present in the images acquired with the low-dose protocol is much higher than that obtained with the standard mode, the images present better spatial resolution. A 1 mm diameter rod with 250 Hounsfield units can be distinguished in reconstructed images with an 8 mm slice width. Pediatric-specific protocols provide lower doses while maintaining sufficient image quality. The system offers a novel 3D imaging mode. The acquisition of CBCT images results in increased doses administered to the patients, but also provides further diagnostic information contained in the volumetric images. The assessed CBCT protocols provide images that are noisy, but with

  12. Biplane interventional pediatric system with cone-beam CT: dose and image quality characterization for the default protocols.

    PubMed

    Corredoira, Eva; Vañó, Eliseo; Alejo, Luis; Ubeda, Carlos; Gutiérrez-Larraya, Federico; Garayoa, Julia

    2016-01-01

    The aim of this study was to assess image quality and radiation dose of a biplane angiographic system with cone-beam CT (CBCT) capability tuned for pediatric cardiac procedures. The results of this study can be used to explore dose reduction techniques. For pulsed fluoroscopy and cine modes, polymethyl methacrylate phantoms of various thicknesses and a Leeds TOR 18-FG test object were employed. Various fields of view (FOV) were selected. For CBCT, the study employed head and body dose phantoms, Catphan 504, and an anthropomorphic cardiology phantom. The study also compared two 3D rotational angiography protocols. The entrance surface air kerma per frame increases by a factor of 3-12 when comparing cine and fluoroscopy frames. The biggest difference in the signal-to- noise ratio between fluoroscopy and cine modes occurs at FOV 32 cm because fluoroscopy is acquired at a 1440 × 1440 pixel matrix size and in unbinned mode, whereas cine is acquired at 720 × 720 pixels and in binned mode. The high-contrast spatial resolution of cine is better than that of fluoroscopy, except for FOV 32 cm, because fluoroscopy mode with 32 cm FOV is unbinned. Acquiring CBCT series with a 16 cm head phantom using the standard dose protocol results in a threefold dose increase compared with the low-dose protocol. Although the amount of noise present in the images acquired with the low-dose protocol is much higher than that obtained with the standard mode, the images present better spatial resolution. A 1 mm diameter rod with 250 Hounsfield units can be distinguished in reconstructed images with an 8 mm slice width. Pediatric-specific protocols provide lower doses while maintaining sufficient image quality. The system offers a novel 3D imaging mode. The acquisition of CBCT images results in increased doses administered to the patients, but also provides further diagnostic information contained in the volumetric images. The assessed CBCT protocols provide images that are noisy, but with

  13. Development of an advanced 3D cone beam tomographic system

    NASA Astrophysics Data System (ADS)

    Sire, Pascal; Rizo, Philippe; Martin, M.; Grangeat, Pierre; Morisseau, P.

    Due to its high spatial resolution, the 3D X-ray cone-beam tomograph (CT) maximizes understanding of test object microstructure. In order for the present X-ray CT NDT system to control ceramics and ceramic-matrix composites, its spatial resolution must exceed 50 microns. Attention is given to two experimental data reconstructions that have been conducted to illustrate system capabilities.

  14. Auto calibration of a cone-beam-CT

    SciTech Connect

    Gross, Daniel; Heil, Ulrich; Schulze, Ralf; Schoemer, Elmar; Schwanecke, Ulrich

    2012-10-15

    Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferably form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of the CBCT device to

  15. Comparison of full-scan and half-scan for cone beam breast CT imaging

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Lai, Chao-jen; Altunbas, Mustafa C.; Wang, Tianpeng; Tu, Shu-ju; Liu, Xinming

    2006-03-01

    The half-scan cone beam technique, requiring a scan for 180° plus detector width only, can help achieve both shorter scan time as well as higher exposure in each individual projection image. This purpose of this paper is to investigate whether half-scan cone beam CT technique can provide acceptable images for clinical application. The half-scan cone beam reconstruction algorithm uses modified Parker's weighting function and reconstructs from slightly more than half of the projection views for full-scan, giving out promising results. A rotation phantom, stationary gantry bench top system was built to conduct experiments to evaluate half-scan cone beam breast CT technique. A post-mastectomy breast specimen, a stack of lunch meat slices embedded with various sizes of calcifications and a polycarbonate phantom inserted with glandular and adipose tissue equivalents are imaged and reconstructed for comparison study. A subset of full-scan projection images of a mastectomy specimen were extracted and used as the half-scan projection data for reconstruction. The results show half-scan reconstruction algorithm for cone beam breast CT images does not significantly degrade image quality when compared with the images of same or even half the radiation dose level. Our results are encouraging, emphasizing the potential advantages in the use of half-scan technique for cone beam breast imaging.

  16. 4D-Imaging of the Lung: Reproducibility of Lesion Size and Displacement on Helical CT, MRI, and Cone Beam CT in a Ventilated Ex Vivo System

    SciTech Connect

    Biederer, Juergen Dinkel, Julien; Remmert, Gregor; Jetter, Siri; Nill, Simeon; Moser, Torsten; Bendl, Rolf; Thierfelder, Carsten; Fabel, Michael; Oelfke, Uwe; Bock, Michael; Plathow, Christian; Bolte, Hendrik; Welzel, Thomas; Hoffmann, Beata; Hartmann, Guenter; Schlegel, Wolfgang; Debus, Juergen; Heller, Martin

    2009-03-01

    Purpose: Four-dimensional (4D) imaging is a key to motion-adapted radiotherapy of lung tumors. We evaluated in a ventilated ex vivo system how size and displacement of artificial pulmonary nodules are reproduced with helical 4D-CT, 4D-MRI, and linac-integrated cone beam CT (CBCT). Methods and Materials: Four porcine lungs with 18 agarose nodules (mean diameters 1.3-1.9 cm), were ventilated inside a chest phantom at 8/min and subject to 4D-CT (collimation 24 x 1.2 mm, pitch 0.1, slice/increment 24x10{sup 2}/1.5/0.8 mm, pitch 0.1, temporal resolution 0.5 s), 4D-MRI (echo-shared dynamic three-dimensional-flash; repetition/echo time 2.13/0.72 ms, voxel size 2.7 x 2.7 x 4.0 mm, temporal resolution 1.4 s) and linac-integrated 4D-CBCT (720 projections, 3-min rotation, temporal resolution {approx}1 s). Static CT without respiration served as control. Three observers recorded lesion size (RECIST-diameters x/y/z) and axial displacement. Interobserver- and interphase-variation coefficients (IO/IP VC) of measurements indicated reproducibility. Results: Mean x/y/z lesion diameters in cm were equal on static and dynamic CT (1.88/1.87; 1.30/1.39; 1.71/1.73; p > 0.05), but appeared larger on MRI and CBCT (2.06/1.95 [p < 0.05 vs. CT]; 1.47/1.28 [MRI vs. CT/CBCT p < 0.05]; 1.86/1.83 [CT vs. CBCT p < 0.05]). Interobserver-VC for lesion sizes were 2.54-4.47% (CT), 2.29-4.48% (4D-CT); 5.44-6.22% (MRI) and 4.86-6.97% (CBCT). Interphase-VC for lesion sizes ranged from 2.28% (4D-CT) to 10.0% (CBCT). Mean displacement in cm decreased from static CT (1.65) to 4D-CT (1.40), CBCT (1.23) and MRI (1.16). Conclusions: Lesion sizes are exactly reproduced with 4D-CT but overestimated on 4D-MRI and CBCT with a larger variability due to limited temporal and spatial resolution. All 4D-modalities underestimate lesion displacement.

  17. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions

    PubMed Central

    Sisniega, A.; Zbijewski, W.; Badal, A.; Kyprianou, I. S.; Stayman, J. W.; Vaquero, J. J.; Siewerdsen, J. H.

    2013-01-01

    Purpose: The proliferation of cone-beam CT (CBCT) has created interest in performance optimization, with x-ray scatter identified among the main limitations to image quality. CBCT often contends with elevated scatter, but the wide variety of imaging geometry in different CBCT configurations suggests that not all configurations are affected to the same extent. Graphics processing unit (GPU) accelerated Monte Carlo (MC) simulations are employed over a range of imaging geometries to elucidate the factors governing scatter characteristics, efficacy of antiscatter grids, guide system design, and augment development of scatter correction. Methods: A MC x-ray simulator implemented on GPU was accelerated by inclusion of variance reduction techniques (interaction splitting, forced scattering, and forced detection) and extended to include x-ray spectra and analytical models of antiscatter grids and flat-panel detectors. The simulator was applied to small animal (SA), musculoskeletal (MSK) extremity, otolaryngology (Head), breast, interventional C-arm, and on-board (kilovoltage) linear accelerator (Linac) imaging, with an axis-to-detector distance (ADD) of 5, 12, 22, 32, 60, and 50 cm, respectively. Each configuration was modeled with and without an antiscatter grid and with (i) an elliptical cylinder varying 70–280 mm in major axis; and (ii) digital murine and anthropomorphic models. The effects of scatter were evaluated in terms of the angular distribution of scatter incident upon the detector, scatter-to-primary ratio (SPR), artifact magnitude, contrast, contrast-to-noise ratio (CNR), and visual assessment. Results: Variance reduction yielded improvements in MC simulation efficiency ranging from ∼17-fold (for SA CBCT) to ∼35-fold (for Head and C-arm), with the most significant acceleration due to interaction splitting (∼6 to ∼10-fold increase in efficiency). The benefit of a more extended geometry was evident by virtue of a larger air gap—e.g., for a 16 cm

  18. Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph

    NASA Astrophysics Data System (ADS)

    Madhav, P.; Crotty, D. J.; McKinley, R. L.; Tornai, M. P.

    2009-06-01

    A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient's pendant breast. This study evaluated stationary-tilt angles for the CT sub-system that will enable maximal volumetric sampling and viewing of the breast and chest wall. Images of geometric/anthropomorphic phantoms were acquired using various fixed-tilt circular and 3D sinusoidal trajectories. The iteratively reconstructed images showed more distortion and attenuation coefficient inaccuracy from tilted cone-beam orbits than from the complex trajectory. Additionally, line profiles illustrated cupping artifacts in planes distal to the central plane of the tilted cone-beam, otherwise not apparent for images acquired with complex trajectories. This indicates that undersampled cone-beam data may be an additional cause of cupping artifacts. High-frequency objects could be distinguished for all trajectories, but their shapes and locations were corrupted by out-of-plane frequency information. Although more acrylic balls were visualized with a fixed-tilt and nearly flat cone-beam at the posterior of the breast, 3D complex trajectories have less distortion and more complete sampling throughout the reconstruction volume. While complex trajectories would ideally be preferred, negatively fixed-tilt source-detector configuration demonstrates minimally distorted patient images.

  19. Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph

    PubMed Central

    Crotty, D J; McKinley, R L; Tornai, M P

    2010-01-01

    A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient’s pendant breast. This study evaluated stationary-tilt angles for the CT subsystem that will enable maximal volumetric sampling and viewing of the breast and chest wall. Images of geometric/anthropomorphic phantoms were acquired using various fixed-tilt circular and 3D sinusoidal trajectories. The iteratively reconstructed images showed more distortion and attenuation coefficient inaccuracy from tilted cone-beam orbits than from the complex trajectory. Additionally, line profiles illustrated cupping artifacts in planes distal to the central plane of the tilted cone-beam, otherwise not apparent for images acquired with complex trajectories. This indicates that undersampled cone-beam data may be an additional cause of cupping artifacts. High-frequency objects could be distinguished for all trajectories, but their shapes and locations were corrupted by out-of-plane frequency information. Although more acrylic balls were visualized with a fixed-tilt and nearly flat cone-beam at the posterior of the breast, 3D complex trajectories have less distortion and more complete sampling throughout the reconstruction volume. While complex trajectories would ideally be preferred, negatively fixed-tilt source–detector configuration demonstrates minimally distorted patient images. PMID:19478374

  20. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    SciTech Connect

    Cai Weixing; Zhao Binghui; Conover, David; Liu Jiangkun; Ning Ruola

    2012-01-15

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.

  1. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    SciTech Connect

    Matenine, Dmitri Mascolo-Fortin, Julia; Goussard, Yves

    2015-11-15

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can

  2. Design and development of C-arm based cone-beam CT for image-guided interventions: initial results

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hong; Zambelli, Joseph; Nett, Brian E.; Supanich, Mark; Riddell, Cyril; Belanger, Barry; Mistretta, Charles A.

    2006-03-01

    X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.

  3. Development and validation of a hybrid simulation technique for cone beam CT: application to an oral imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Pauwels, R.; Marshall, N.; Shaheen, E.; Nuyts, J.; Jacobs, R.; Bosmans, H.

    2011-09-01

    This paper proposes a hybrid technique to simulate the complete chain of an oral cone beam computed tomography (CBCT) system for the study of both radiation dose and image quality. The model was developed around a 3D Accuitomo 170 unit (J Morita, Japan) with a tube potential range of 60-90 kV. The Monte Carlo technique was adopted to simulate the x-ray generation, filtration and collimation. Exact dimensions of the bow-tie filter were estimated iteratively using experimentally acquired flood images. Non-flat radiation fields for different exposure settings were mediated via 'phase spaces'. Primary projection images were obtained by ray tracing at discrete energies and were fused according to the two-dimensional energy modulation templates derived from the phase space. Coarse Monte Carlo simulations were performed for scatter projections and the resulting noisy images were smoothed by Richardson-Lucy fitting. Resolution and noise characteristics of the flat panel detector were included using the measured modulation transfer function (MTF) and the noise power spectrum (NPS), respectively. The Monte Carlo dose calculation was calibrated in terms of kerma free-in-air about the isocenter, using an ionization chamber, and was subsequently validated by comparison against the measured air kerma in water at various positions of a cylindrical water phantom. The resulting dose discrepancies were found <10% for most cases. Intensity profiles of the experimentally acquired and simulated projection images of the water phantom showed comparable fractional increase over the common area as changing from a small to a large field of view, suggesting that the scatter was accurately accounted. Image validation was conducted using two small phantoms and the built-in quality assurance protocol of the system. The reconstructed simulated images showed high resemblance on contrast resolution, noise appearance and artifact pattern in comparison to experimentally acquired images, with <5

  4. A quantitative analysis of breast densities using cone beam CT images

    NASA Astrophysics Data System (ADS)

    Betancourt Benítez, Ricardo; Ning, Ruola; Conover, David; Liu, Shaohua

    2009-02-01

    Duct patterns are formed by desmoplastic reactions as most breast carcinomas are. Hence, it has been suggested that the denser a breast is, the higher the likelihood to develop breast cancer. Consequently, breast density has been one of the suggested parameters to estimate the risk to develop breast cancer. Currently, the main technique to evaluate breast densities is through mammograms. However, mammograms have the disadvantage of displaying overlapping structures within the breast. Although there are efficient techniques to obtain breast densities from mammograms, mammography can only provide a rough estimate because of the overlapping breast tissue. In this study, cone beam CT images were utilized to evaluate the breast density of sixteen breast images. First, a breast phantom with known volumes representing fatty, glandular and calcified tissues was designed to calibrate the system. Since cone beam CT provides 3D-isotropic resolution images throughout the field of view, the issue of overlapping structures disappears, allowing greater accuracy in evaluating the volumes of each different part of the phantom. Then, using cone beam CT breast images, the breast density of eight patients was evaluated using a semi-automatic segmentation algorithm that differentiates between fatty, glandular and calcified tissues. The results demonstrated that cone beam CT images provide a better tool to evaluate the breast density of the whole breast more accurately. The results also demonstrated that using this semi-automatic segmentation algorithm improves the efficiency of classifying the breast into the four classifications as recommended by the American College of Radiology.

  5. Development of a 3D CT scanner using cone beam

    NASA Astrophysics Data System (ADS)

    Endo, Masahiro; Kamagata, Nozomu; Sato, Kazumasa; Hattori, Yuichi; Kobayashi, Shigeo; Mizuno, Shinichi; Jimbo, Masao; Kusakabe, Masahiro

    1995-05-01

    In order to acquire 3D data of high contrast objects such as bone, lung and vessels enhanced by contrast media for use in 3D image processing, we have developed a 3D CT-scanner using cone beam x ray. The 3D CT-scanner consists of a gantry and a patient couch. The gantry consists of an x-ray tube designed for cone beam CT and a large area two-dimensional detector mounted on a single frame and rotated around an object in 12 seconds. The large area detector consists of a fluorescent plate and a charge coupled device video camera. The size of detection area was 600 mm X 450 mm capable of covering the total chest. While an x-ray tube was rotated around an object, pulsed x ray was exposed 30 times a second and 360 projected images were collected in a 12 second scan. A 256 X 256 X 256 matrix image (1.25 mm X 1.25 mm X 1.25 mm voxel) was reconstructed by a high-speed reconstruction engine. Reconstruction time was approximately 6 minutes. Cylindrical water phantoms, anesthetized rabbits with or without contrast media, and a Japanese macaque were scanned with the 3D CT-scanner. The results seem promising because they show high spatial resolution in three directions, though there existed several point to be improved. Possible improvements are discussed.

  6. Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system

    SciTech Connect

    Breitbach, Elizabeth K.; Maltz, Jonathan S.; Gangadharan, Bijumon; Bani-Hashemi, Ali; Anderson, Carryn M.; Bhatia, Sudershan K.; Stiles, Jared; Edwards, Drake S.; Flynn, Ryan T.

    2011-11-15

    Purpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd{sub 2}O{sub 2}S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to which the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. Methods: A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVision{sup TM} image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. Results: For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p < 10{sup -8}), 1.64 (p < 10{sup -13}), 2.66 (p < 10{sup -9}), respectively. For all imaging

  7. CT thermometry for cone-beam CT guided ablation

    NASA Astrophysics Data System (ADS)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  8. High resolution dual detector volume-of-interest cone beam breast CT - Demonstration with a bench top system

    SciTech Connect

    Shen Youtao; Yi Ying; Zhong Yuncheng; Lai Chaojen; Liu Xinming; You Zhicheng; Ge Shuaiping; Wang Tianpeng; Shaw, Chris C.

    2011-12-15

    Purpose: In this study, we used a small field high resolution detector in conjunction with a full field flat panel detector to implement and investigate the dual detector volume-of-interest (VOI) cone beam breast computed tomography (CBCT) technique on a bench-top system. The potential of using this technique to image small calcifications without increasing the overall dose to the breast was demonstrated. Significant reduction of scatter components in the high resolution projection image data of the VOI was also shown. Methods: With the regular flat panel based CBCT technique, exposures were made at 80 kVp to generate an air kerma of 6 mGys at the isocenter. With the dual detector VOI CBCT technique, a high resolution small field CMOS detector was used to scan a cylindrical VOI (2.5 cm in diameter and height, 4.5 cm off-center) with collimated x-rays at four times of regular exposure level. A flat panel detector was used for full field scan with low x-ray exposures at half of the regular exposure level. The low exposure full field image data were used to fill in the truncated space in the VOI scan data and generate a complete projection image set. The Feldkamp-Davis-Kress (FDK) filtered backprojection algorithm was used to reconstruct high resolution images for the VOI. Two scanning techniques, one breast centered and the other VOI centered, were implemented and investigated. Paraffin cylinders with embedded thin aluminum (Al) wires were imaged and used in conjunction with optically stimulated luminescence (OSL) dose measurements to demonstrate the ability of this technique to image small calcifications without increasing the mean glandular dose (MGD). Results: Using exposures that produce an air kerma of 6 mGys at the isocenter, the regular CBCT technique was able to resolve the cross-sections of Al wires as thin as 254 {mu}m in diameter in the phantom. For the specific VOI studied, by increasing the exposure level by a factor of 4 for the VOI scan and reducing

  9. A diamond target for megavoltage cone-beam CT

    SciTech Connect

    Sawkey, D.; Lu, M.; Morin, O.; Aubin, M.; Yom, S. S.; Gottschalk, A. R.; Bani-Hashemi, A.; Faddegon, B. A.

    2010-03-15

    Purpose: To determine the properties of a megavoltage cone-beam CT system using the unflattened beam from a sintered diamond target at 4 and 6 MV. Methods: A sintered diamond target was used in place of a graphite target as part of an imaging beam line (an unflattened beam from a graphite target) installed on a linear accelerator. The diamond target, with a greater density than the graphite target, permitted imaging at the lower beam energy (4 MV) required with the graphite target and the higher beam energy (6 MV) conventionally used with the tungsten/stainless steel target and stainless steel flattening filter. Images of phantoms and patients were acquired using the different beam lines and compared. The beam spectra and dose distributions were determined using Monte Carlo simulation. Results: The diamond target allowed use of the same beam energy as for treatment, simplifying commissioning and quality assurance. Images acquired with the diamond target at 4 MV were similar to those obtained with the graphite target at 4 MV. The slight reduction in low energy photons due to the higher-Z sintering material in the diamond target had minimal effect on image quality. Images acquired at 6 MV with the diamond target showed a small decrease in contrast-to-noise ratio, resulting from a decrease in the fraction of photons in the beam in the energy range to which the detector is most sensitive. Conclusions: The diamond target provides images of a similar quality to the graphite target. Diamond allows use of the higher beam energy conventionally used for treatment, provides a higher dose rate for the same beam current, and potentially simplifies installation and maintenance of the beam line.

  10. Repositioning accuracy of two different mask systems-3D revisited: Comparison using true 3D/3D matching with cone-beam CT

    SciTech Connect

    Boda-Heggemann, Judit . E-mail: judit.boda-heggemann@radonk.ma.uni-heidelberg.de; Walter, Cornelia; Rahn, Angelika; Wertz, Hansjoerg; Loeb, Iris; Lohr, Frank; Wenz, Frederik

    2006-12-01

    Purpose: The repositioning accuracy of mask-based fixation systems has been assessed with two-dimensional/two-dimensional or two-dimensional/three-dimensional (3D) matching. We analyzed the accuracy of commercially available head mask systems, using true 3D/3D matching, with X-ray volume imaging and cone-beam CT. Methods and Materials: Twenty-one patients receiving radiotherapy (intracranial/head-and-neck tumors) were evaluated (14 patients with rigid and 7 with thermoplastic masks). X-ray volume imaging was analyzed online and offline separately for the skull and neck regions. Translation/rotation errors of the target isocenter were analyzed. Four patients were treated to neck sites. For these patients, repositioning was aided by additional body tattoos. A separate analysis of the setup error on the basis of the registration of the cervical vertebra was performed. The residual error after correction and intrafractional motility were calculated. Results: The mean length of the displacement vector for rigid masks was 0.312 {+-} 0.152 cm (intracranial) and 0.586 {+-} 0.294 cm (neck). For the thermoplastic masks, the value was 0.472 {+-} 0.174 cm (intracranial) and 0.726 {+-} 0.445 cm (neck). Rigid masks with body tattoos had a displacement vector length in the neck region of 0.35 {+-} 0.197 cm. The intracranial residual error and intrafractional motility after X-ray volume imaging correction for rigid masks was 0.188 {+-} 0.074 cm, and was 0.134 {+-} 0.14 cm for thermoplastic masks. Conclusions: The results of our study have demonstrated that rigid masks have a high intracranial repositioning accuracy per se. Given the small residual error and intrafractional movement, thermoplastic masks may also be used for high-precision treatments when combined with cone-beam CT. The neck region repositioning accuracy was worse than the intracranial accuracy in both cases. However, body tattoos and image guidance improved the accuracy. Finally, the combination of both mask

  11. Performance investigation of a hospital-grade x-ray tube-based differential phase-contrast cone beam CT system

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Ning, Ruola; Cai, Weixing; Liu, Jiangkun; Conover, David

    2012-03-01

    Differential phase contrast technique could be the next breakthrough in the field of CT imaging. While traditional absorption-based X-ray CT imaging is inefficient at differentiating soft tissues, phase-contrast technique offers great advantage as being able to produce higher contrast images utilizing the phase information of objects. Our long term goal is to develop a gantry-based hospital-grade X-ray tube differential phase contrast cone-beam CT (DPC-CBCT) technology which is able to achieve higher contrast noise ratio (CNR) in soft tissue imaging without increasing the dose level. Based on the micro-focus system built last year, a bench-top hospital-grade X-ray tube DPC-CBCT system is designed and constructed. The DPC-CBCT system consists of an X-ray source, i.e. a hospital-grade X-ray tube and a source grating, a high-resolution detector, a rotating phantom holder, a phase grating and an analyzer grating. Threedimensional (3-D) phase-coefficients are reconstructed, providing us with images enjoying higher CNR than, yet equivalent dose level to, a conventional CBCT scan. Three important aspects of the system are investigated: a) The The system's performance in term of CNR of the reconstruction image with regard to dose levels, b) the impacts of different phase stepping schemes, i.e. 5 steps to 8 steps, in term of CNR on the reconstruction images, and c) the influence of magnification or position of the phantom on image quality, chiefly CNR. The investigations are accomplished via phantom study.

  12. Direct aneurysm sac catheterization and embolization of an enlarging internal iliac aneurysm using cone-beam CT

    PubMed Central

    Merchant, Monish; Shah, Rohan; Resnick, Scott

    2015-01-01

    Since cone-beam computed tomography (CT) has been adapted for use with a C-arm system it has brought volumetric CT capabilities in the interventional suite. Although cone-beam CT image resolution is far inferior to that generated by traditional CT scanners, the system offers the ability to place an access needle into position under tomographic guidance and use the access to immediately begin a fluoroscopic procedure without moving the patient. We describe a case of a “jailed” enlarging internal iliac artery aneurysm secondary to abdominal aortic aneurysm repair, in which direct percutaneous puncture of the internal iliac artery aneurysm sac was performed under cone-beam CT guidance. PMID:25858522

  13. An object-specific and dose-sparing scatter correction approach for a dedicated cone-beam breast CT system using a parallel-hole collimator

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Burkett, George, Jr.; Boone, John M.

    2012-03-01

    X-ray scatter is a common cause of image artifacts for cone-beam CT systems due to the expanded field of view and degrades the quantitative accuracy of measured Hounsfield Units (HU). Due to the strong dependency of scatter on the object being scanned, it is crucial to measure the scatter signal for each object. We propose to use a beam pass array (BPA) composed of parallel-holes within a tungsten plate to measure scatter for a dedicated breast CT system. A complete study of the performance of the BPA was conducted. The goal of this study was to explore the feasibility of measuring and compensating for the scatter signal for each individual object. Different clinical study schemes were investigated, including a full rotation scan with BPA and discrete projections acquired with BPA followed by interpolation for full rotation. Different sized cylindrical phantoms and a breast shaped polyethylene phantom were used to test for the robustness of the proposed method. Physically measured scatter signals were converted into scatter to primary ratios (SPRs) at discrete locations through the projection image. A complete noise-free 2D SPR was generated from these discrete measurements. SPR results were compared to Monte Carlo simulation results and scatter corrected CT images were quantitatively evaluated for "cupping" artifact. With the proposed method, a reduction of up to 47 HU of "cupping" was demonstrated. In conclusion, the proposed BPA method demonstrated effective and accurate objectspecific scatter correction with the main advantage of dose-sparing compared to beam stop array (BSA) approaches.

  14. Cone beam CT: a current overview of devices

    PubMed Central

    Nemtoi, A; Czink, C; Haba, D; Gahleitner, A

    2013-01-01

    The purpose of this study was to review and compare the properties of all the available cone beam CT (CBCT) devices offered on the market, while focusing especially on Europe. In this study, we included all the different commonly used CBCT devices currently available on the European market. Information about the properties of each device was obtained from the manufacturers’ official available data, which was later confirmed by their representatives in cases where it was necessary. The main features of a total of 47 CBCT devices that are currently marketed by 20 companies were presented, compared and discussed in this study. All these CBCT devices differ in specific properties according to the companies that produce them. The summarized technical data from a large number of CBCT devices currently on the market offer a wide range of imaging possibilities in the oral and maxillofacial region. PMID:23818529

  15. Cone beam CT: a current overview of devices.

    PubMed

    Nemtoi, A; Czink, C; Haba, D; Gahleitner, A

    2013-01-01

    The purpose of this study was to review and compare the properties of all the available cone beam CT (CBCT) devices offered on the market, while focusing especially on Europe. In this study, we included all the different commonly used CBCT devices currently available on the European market. Information about the properties of each device was obtained from the manufacturers' official available data, which was later confirmed by their representatives in cases where it was necessary. The main features of a total of 47 CBCT devices that are currently marketed by 20 companies were presented, compared and discussed in this study. All these CBCT devices differ in specific properties according to the companies that produce them. The summarized technical data from a large number of CBCT devices currently on the market offer a wide range of imaging possibilities in the oral and maxillofacial region. PMID:23818529

  16. Diagnostic Applications of Cone-Beam CT for Periodontal Diseases

    PubMed Central

    AlJehani, Yousef A.

    2014-01-01

    Objectives. This paper aims to review the diagnostic application of cone beam computed tomography (CBCT) in the field of periodontology. Data. Original articles that reported on the use of CBCT for periodontal disease diagnosis were included. Sources. MEDLINE (1990 to January 2014), PubMed (using medical subject headings), and Google Scholar were searched using the following terms in different combinations: “CBCT,” “volumetric CT,” “periodontal disease ,” and “periodontitis.” This was supplemented by hand-searching in peer-reviewed journals and cross-referenced with the articles accessed. Conclusions. Bony defects, caters, and furcation involvements seem to be better depicted on CBCT, whereas bone quality and periodontal ligament space scored better on conventional intraoral radiography. CBCT does not offer a significant advantage over conventional radiography for assessing the periodontal bone levels. PMID:24803932

  17. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Sramek, Benjamin Koerner

    neck phantoms. The conclusions of this investigation were: (1) the implementation of intermediate view estimation techniques to megavoltage cone-beam CT produced improvements in image quality, with the largest impact occurring for smaller numbers of initially-acquired projections, (2) the SPECS scatter correction algorithm could be successfully incorporated into projection data acquired using an electronic portal imaging device during megavoltage cone-beam CT image reconstruction, (3) a large range of SPECS parameters were shown to reduce cupping artifacts as well as improve reconstruction accuracy, with application to anthropomorphic phantom geometries improving the percent difference in reconstructed electron density for soft tissue from -13.6% to -2.0%, and for cortical bone from -9.7% to 1.4%, (4) dose measurements in the anthropomorphic phantoms showed consistent agreement between planar measurements using radiochromic film and point measurements using thermoluminescent dosimeters, and (5) a comparison of normalized dose measurements acquired with radiochromic film to those calculated using multiple treatment planning systems, accelerator-detector combinations, patient geometries and accelerator outputs produced a relatively good agreement.

  18. SU-E-CAMPUS-J-03: Commissioning of the On-Board Cone-Beam CT System Equipped On the Rotating Gantry of a Proton Therapy System

    SciTech Connect

    Takao, S; Miyamoto, N; Matsuura, T; Toramatsu, C; Nihongi, H; Yamada, T; Umegaki, K; Shimizu, S; Shirato, H; Matsuda, K; Sasaki, T; Nagamine, Y; Baba, R; Umekawa, T

    2014-06-15

    Purpose: Proton therapy requires highly-precise image guidance in patient setup to ensure accurate dose delivery. Cone-beam CT (CBCT) is expected to play an important role to reduce uncertainties in patient setup. Hokkaido University has developed a new proton therapy system dedicated to spot-scanning under a collaborative work with Hitachi Ltd. In our system, an orthogonal X-ray imaging system is mounted on a full-rotating gantry. On-board CBCT imaging is therefore available. We have conducted commissioning of the CBCT system for clinical use in proton therapy. Methods: The orthogonal X-ray imaging system, which consists of two sets of X-ray tubes and flat panel detectors (FPDs), are equipped on the rotating gantry. The FPDs are mounted on the proton beam nozzle and can be retracted when not in use. The distance between the X-ray source and the FPD is about 2.1 m. The maximum rotation speed of the gantry is 1 rpm, so CBCT images can be acquired in approximately 1 minute. The maximum reconstruction volume is nearly 40 cm in diameter and 20 cm in axial length. For commissioning of the CBCT system, mechanical accuracy of the rotating gantry first was evaluated. Imaging performance was examined via quantitative evaluation of image quality. Results: Through the mechanical test, the isocentricity of the gantry was confirmed to be less than 1 mm. Moreover, it was improved to 0.5 mm with an appropriate correction. The accurate rotation of the gantry contributes to the CBCT image quality. In the image quality test, objects with 7 line-pairs per cm, which corresponds to a line spacing of 0.071 cm, could be discerned. Spatial linearity and uniformity were also sufficient. Conclusion: Clinical commissioning of the on-board CBCT system for proton therapy was conducted, and CBCT images with sufficient quality were successfully obtained. This research was supported by the Cabinet Office, Government of Japan and the Japan Society for the Promotion of Science (JSPS) through the

  19. Automated planning of breast radiotherapy using cone beam CT imaging

    SciTech Connect

    Amit, Guy; Purdie, Thomas G.

    2015-02-15

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation.

  20. Dose calculation using megavoltage cone-beam CT

    SciTech Connect

    Morin, Olivier . E-mail: Morin@radonc17.ucsf.edu; Chen, Josephine; Aubin, Michele; Gillis, Amy; Aubry, Jean-Francois; Bose, Supratik; Chen Hong; Descovich, Martina; Xia Ping; Pouliot, Jean

    2007-03-15

    Purpose: To demonstrate the feasibility of performing dose calculation on megavoltage cone-beam CT (MVCBCT) of head-and-neck patients in order to track the dosimetric errors produced by anatomic changes. Methods and Materials: A simple geometric model was developed using a head-size water cylinder to correct an observed cupping artifact occurring with MVCBCT. The uniformity-corrected MVCBCT was calibrated for physical density. Beam arrangements and weights from the initial treatment plans defined using the conventional CT were applied to the MVCBCT image, and the dose distribution was recalculated. The dosimetric inaccuracies caused by the cupping artifact were evaluated on the water phantom images. An ideal test patient with no observable anatomic changes and a patient imaged with both CT and MVCBCT before and after considerable weight loss were used to clinically validate MVCBCT for dose calculation and to determine the dosimetric impact of large anatomic changes. Results: The nonuniformity of a head-size water phantom ({approx}30%) causes a dosimetric error of less than 5%. The uniformity correction method developed greatly reduces the cupping artifact, resulting in dosimetric inaccuracies of less than 1%. For the clinical cases, the agreement between the dose distributions calculated using MVCBCT and CT was better than 3% and 3 mm where all tissue was encompassed within the MVCBCT. Dose-volume histograms from the dose calculations on CT and MVCBCT were in excellent agreement. Conclusion: MVCBCT can be used to estimate the dosimetric impact of changing anatomy on several structures in the head-and-neck region.

  1. Cone beam CT for dental and maxillofacial imaging: dose matters.

    PubMed

    Pauwels, Ruben

    2015-07-01

    The widespread use of cone-beam CT (CBCT) in dentistry has led to increasing concern regarding justification and optimisation of CBCT exposures. When used as a substitute to multidetector CT (MDCT), CBCT can lead to significant dose reduction; however, low-dose protocols of current-generation MDCTs show that there is an overlap between CBCT and MDCT doses. More importantly, although the 3D information provided by CBCT can often lead to improved diagnosis and treatment compared with 2D radiographs, a routine or excessive use of CBCT would lead to a substantial increase of the collective patient dose. The potential use of CBCT for paediatric patients (e.g. developmental disorders, trauma and orthodontic treatment planning) further increases concern regarding its proper application. This paper provides an overview of justification and optimisation issues in dental and maxillofacial CBCT. The radiation dose in CBCT will be briefly reviewed. The European Commission's Evidence Based Guidelines prepared by the SEDENTEXCT Project Consortium will be summarised, and (in)appropriate use of CBCT will be illustrated for various dental applications. PMID:25805884

  2. Upright cone beam CT imaging using the onboard imager

    SciTech Connect

    Fave, Xenia Martin, Rachael; Yang, Jinzhong; Balter, Peter; Court, Laurence; Carvalho, Luis; Pan, Tinsu

    2014-06-15

    Purpose: Many patients could benefit from being treated in an upright position. The objectives of this study were to determine whether cone beam computed tomography (CBCT) could be used to acquire upright images for treatment planning and to demonstrate whether reconstruction of upright images maintained accurate geometry and Hounsfield units (HUs). Methods: A TrueBeam linac was programmed in developer mode to take upright CBCT images. The gantry head was positioned at 0°, and the couch was rotated to 270°. The x-ray source and detector arms were extended to their lateral positions. The x-ray source and gantry remained stationary as fluoroscopic projections were taken and the couch was rotated from 270° to 90°. The x-ray tube current was normalized to deposit the same dose (measured using a calibrated Farmer ion chamber) as that received during a clinical helical CT scan to the center of a cylindrical, polyethylene phantom. To extend the field of view, two couch rotation scans were taken with the detector offset 15 cm superiorly and then 15 cm inferiorly. The images from these two scans were stitched together before reconstruction. Upright reconstructions were compared to reconstructions from simulation CT scans of the same phantoms. Two methods were investigated for correcting the HUs, including direct calibration and mapping the values from a simulation CT. Results: Overall geometry, spatial linearity, and high contrast resolution were maintained in upright reconstructions. Some artifacts were created and HU accuracy was compromised; however, these limitations could be removed by mapping the HUs from a simulation CT to the upright reconstruction for treatment planning. Conclusions: The feasibility of using the TrueBeam linac to take upright CBCT images was demonstrated. This technique is straightforward to implement and could be of enormous benefit to patients with thoracic tumors or those who find a supine position difficult to endure.

  3. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Thomas, T. Hannah Mary; Devakumar, D.; Purnima, S.; Ravindran, B. Paul

    2009-04-01

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm × 10 cm beam at a gantry angle of 0° and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between ±6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible.

  4. Effective doses from cone beam CT investigation of the jaws

    PubMed Central

    Davies, J; Johnson, B; Drage, NA

    2012-01-01

    Objectives The purpose of the study was to calculate the effective dose delivered to the patient undergoing cone beam (CB) CT of the jaws and maxillofacial complex using the i-CAT Next Generation CBCT scanner (Imaging Sciences International, Hatfield, PA). Methods A RANDO® phantom (The Phantom Laboratory, Salem, NY) containing thermoluminence dosemeters were scanned 10 times for each of the 6 imaging protocols. Effective doses for each protocol were calculated using the 1990 and approved 2007 International Commission on Radiological Protection (ICRP) recommended tissue weighting factors (E1990, E2007). Results The effective dose for E1990 and E2007, respectively, were: full field of view (FOV) of the head, 47 μSv and 78 μSv; 13 cm scan of the jaws, 44 μSv and 77 μSv; 6 cm standard mandible, 35 μSv and 58 μSv; 6 cm high resolution mandible, 69 μSv and 113 μSv; 6 cm standard maxilla, 18 μSv and 32 μSv; and 6 cm high resolution maxilla, 35 μSv and 60 μSv. Conclusions Using the new generation of CBCT scanner, the effective dose is lower than the original generation machine for a similar FOV using the ICRP 2007 tissue weighting factors. PMID:22184626

  5. Metal artifacts correction in cone-beam CT bone imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Ning, Ruola; Conover, David

    2007-03-01

    Cone-beam CT (CBCT) technique is needed by orthopaedists in their new studies to monitor bone volume growth and blood vessel growth of structural bone grafts used in reconstruction surgery. However, titanium plate and screws, which are commonly used to connect bone grafts to host bones, can cause severe streaking artifacts and shading artifact in the reconstructed images due to their high attenuation of x-rays. These metal artifacts will distort the information of the bone and cause difficulties when measuring bone volume growth and the inside blood vessel growth. To solve this problem and help orthopaedists quantitatively record the growth of bone grafts, we present a three-dimensional metal artifact correction technique to correct the streaking artifacts generated by titanium implants. In this project not only the artifacts need to be corrected but also the correct information of the bone is required in the image for the quantitative measurements. Both phantom studies and animal studies were conducted to test this correction method. Images without metal correction and images with metal correction were compared together, as well as the reference bone images acquired without metal. It's shown the streaking and shading artifacts were greatly reduced after metal correction. The accuracy of bone volume measurements was also greatly increased by 79% for phantom studies and 53% for animal studies.

  6. Impact of flat panel-imager veiling glare on scatter-estimation accuracy and image quality of a commercial on-board cone-beam CT imaging system

    SciTech Connect

    Lazos, Dimitrios; Williamson, Jeffrey F.

    2012-09-15

    Purpose: The purposes of this study is to measure the low frequency drop (LFD) of the modulation transfer function (MTF), associated with the long tails of the detector point spread function (PSF) of an on-board flat panel imager and study its impact on cone-beam CT (CBCT) image quality and scatter measurement accuracy. Methods: Two different experimental methods were used to characterize LFD and its associated PSF of a Varian OBI flat-panel detector system: the edge response function (ERF) method and the disk transfer function (DTF) method. PSF was estimated by fitting parametric models to these measurements for four values of the applied voltage (kVp). The resultant PSF was used to demonstrate the effect of LFD on image contrast and CT number accuracy in CBCT images reconstructed from synthetic datasets, as well as, accuracy of scatter measurements with the beam-stop method. Results: The MTFs derived from the measured ERF data revealed LFDs varying from 8% (at 60 kVp) to 10.5% (at 120 kVp), while the intensity of the long PSF tails was found to increase with increasing kVp. The veiling glare line spread functions derived from the ERF and DTF methods were in excellent agreement. Uncorrected veiling glare reduced contrast and the image intensity in CBCT reconstruction, near the phantom periphery (by 67 Hounsfield units in a 20 cm-in-diameter water phantom) and (to a smaller degree) near inhomogeneities. Use of the bow-tie filter mitigated these effects. Veiling glare also resulted in about 10%-15% overestimation of the scatter-to-primary ratio when measured with the beam-stop or beam-stop array method. Conclusions: The long tails of the detector PSF were found to have a modest dependence of beam spectrum, which is reflected on the MTF curve LFD. Our findings show that uncorrected veiling glare can affect quantitative accuracy and contrast in CBCT imaging, based on flat panel imager. In addition, it results in overestimation of the scatter-to-primary ratio, measured

  7. Architecture of a high-performance surgical guidance system based on C-arm cone-beam CT: software platform for technical integration and clinical translation

    NASA Astrophysics Data System (ADS)

    Uneri, Ali; Schafer, Sebastian; Mirota, Daniel; Nithiananthan, Sajendra; Otake, Yoshito; Reaungamornrat, Sureerat; Yoo, Jongheun; Stayman, J. Webster; Reh, Douglas; Gallia, Gary L.; Khanna, A. Jay; Hager, Gregory; Taylor, Russell H.; Kleinszig, Gerhard; Siewerdsen, Jeffrey H.

    2011-03-01

    Intraoperative imaging modalities are becoming more prevalent in recent years, and the need for integration of these modalities with surgical guidance is rising, creating new possibilities as well as challenges. In the context of such emerging technologies and new clinical applications, a software architecture for cone-beam CT (CBCT) guided surgery has been developed with emphasis on binding open-source surgical navigation libraries and integrating intraoperative CBCT with novel, application-specific registration and guidance technologies. The architecture design is focused on accelerating translation of task-specific technical development in a wide range of applications, including orthopaedic, head-and-neck, and thoracic surgeries. The surgical guidance system is interfaced with a prototype mobile C-arm for high-quality CBCT and through a modular software architecture, integration of different tools and devices consistent with surgical workflow in each of these applications is realized. Specific modules are developed according to the surgical task, such as: 3D-3D rigid or deformable registration of preoperative images, surgical planning data, and up-to-date CBCT images; 3D-2D registration of planning and image data in real-time fluoroscopy and/or digitally reconstructed radiographs (DRRs); compatibility with infrared, electromagnetic, and video-based trackers used individually or in hybrid arrangements; augmented overlay of image and planning data in endoscopic or in-room video; real-time "virtual fluoroscopy" computed from GPU-accelerated DRRs; and multi-modality image display. The platform aims to minimize offline data processing by exposing quantitative tools that analyze and communicate factors of geometric precision. The system was translated to preclinical phantom and cadaver studies for assessment of fiducial (FRE) and target registration error (TRE) showing sub-mm accuracy in targeting and video overlay within intraoperative CBCT. The work culminates in

  8. Dentomaxillofacial imaging with panoramic views and cone beam CT.

    PubMed

    Suomalainen, Anni; Pakbaznejad Esmaeili, Elmira; Robinson, Soraya

    2015-02-01

    Panoramic and intraoral radiographs are the basic imaging modalities used in dentistry. Often they are the only imaging techniques required for delineation of dental anatomy or pathology. Panoramic radiography produces a single image of the maxilla, mandible, teeth, temporomandibular joints and maxillary sinuses. During the exposure the x-ray source and detector rotate synchronously around the patient producing a curved surface tomography. It can be supplemented with intraoral radiographs. However, these techniques give only a two-dimensional view of complicated three-dimensional (3D) structures. As in the other fields of imaging also dentomaxillofacial imaging has moved towards 3D imaging. Since the late 1990s cone beam computed tomography (CBCT) devices have been designed specifically for dentomaxillofacial imaging, allowing accurate 3D imaging of hard tissues with a lower radiation dose, lower cost and easier availability for dentists when compared with multislice CT. Panoramic and intraoral radiographies are still the basic imaging methods in dentistry. CBCT should be used in more demanding cases. In this review the anatomy with the panoramic view will be presented as well as the benefits of the CBCT technique in comparison to the panoramic technique with some examples. Also the basics as well as common errors and pitfalls of these techniques will be discussed. Teaching Points • Panoramic and intraoral radiographs are the basic imaging methods in dentomaxillofacial radiology.• CBCT imaging allows accurate 3D imaging of hard tissues.• CBCT offers lower costs and a smaller size and radiation dose compared with MSCT.• The disadvantages of CBCT imaging are poor soft tissue contrast and artefacts.• The Sedentexct project has developed evidence-based guidelines on the use of CBCT in dentistry. PMID:25575868

  9. Automated volume of interest delineation and rendering of cone beam CT images in interventional cardiology

    NASA Astrophysics Data System (ADS)

    Lorenz, Cristian; Schäfer, Dirk; Eshuis, Peter; Carroll, John; Grass, Michael

    2012-02-01

    Interventional C-arm systems allow the efficient acquisition of 3D cone beam CT images. They can be used for intervention planning, navigation, and outcome assessment. We present a fast and completely automated volume of interest (VOI) delineation for cardiac interventions, covering the whole visceral cavity including mediastinum and lungs but leaving out rib-cage and spine. The problem is addressed in a model based approach. The procedure has been evaluated on 22 patient cases and achieves an average surface error below 2mm. The method is able to cope with varying image intensities, varying truncations due to the limited reconstruction volume, and partially with heavy metal and motion artifacts.

  10. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT

    PubMed Central

    Zhao, Jintao; Hu, Xiaodong; Zou, Jing; Hu, Xiaotang

    2015-01-01

    The quality of Computed Tomography (CT) images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB) phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration. PMID:26371008

  11. Magnitude and effects of X-ray scatter of a cone-beam micro-CT for small animal imaging

    NASA Astrophysics Data System (ADS)

    Ni, Y. C.; Jan, M. L.; Chen, K. W.; Cheng, Y. D.; Chuang, K. S.; Fu, Y. K.

    2006-12-01

    We have developed a micro-CT system to provide high-resolution and anatomic information to combine with a microPET ® R4 system. This study was to evaluate the magnitude and effects of scatter for low kVp X-ray in this cone-beam micro-CT system. Slit collimators were used to simulate fan-beam micro-CT for comparison. The magnitudes of X-ray scatter were measured using the beam-stop method and were estimated by polynomial-fitting extrapolation to 0 mm size of stoppers. The scatter-to-primary ratio at center of the cone-beam system were 45% and 20% for rat and mouse phantoms, respectively, and were reduced to 5.86% and 4.2% in fan-beam geometric setup. The effects of X-ray scatter on image uniformity and contrast ratio were evaluated also. The uniformity response was examined by the profile of the reconstructed image. The degrees of "cupping" in the fan-beam and cone-beam conditions were 1.75% and 3.81%, respectively, in rat phantom. A contrast phantom consisting of four inserts with physical densities similar to that of acrylic was used for measuring the effect of X-ray scatter on image contrast. Contrast ratios of the inserts and acrylic in cone-beam setup degraded 36.9% in average compared with fan-beam setup. A tumor-bearing mouse was scanned by the micro-CT system. The tumor-to-background contrast ratios were measured to be 0.331 and 0.249, respectively, with fan-beam and cone-beam setups.

  12. Coupling the use of anti-scatter grid with analytical scatter estimation in cone beam CT

    NASA Astrophysics Data System (ADS)

    Rinkel, J.; Gerfault, L.; Estève, F.; Dinten, J.-M.

    2007-03-01

    Cone-Beam Computed Tomography (CBCT) enables three-dimensional imaging with isotropic resolution. X-ray scatter estimation is a big challenge for quantitative CBCT imaging: even in the presence of anti-scatter grid, the scatter level is significantly higher on cone beam systems compared to collimated fan beam systems. The effects of this scattered radiation include cupping artifacts, streaks, and quantification inaccuracies. In this paper, a scatter management process for tomographic projections, without supplementary on-line acquisition, is presented. The scattered radiation is corrected using a method based on scatter calibration through off-line acquisitions. This is combined with on-line analytical transformation based on physical equations, to perform an estimation adapted to the object observed. This approach has been previously applied to a system without anti-scatter grid. The focus of this paper is to show how to combine this approach with an anti-scatter grid. First, the interest of the grid is evaluated in terms of noise to signal ratio and scatter rejection. Then, the method of scatter correction is evaluated by testing it on an anthropomorphic phantom of thorax. The reconstructed volume of the phantom is compared to that obtained with a strongly collimated conventional multi-slice CT scanner. The new method provides results that closely agree with the conventional CT scanner, eliminating cupping artifacts and significantly improving quantification.

  13. SU-E-J-47: Comparison of Online Image Registrations of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac Imaging Systems

    SciTech Connect

    Li, J; Shi, W; Andrews, D; Werner-Wasik, M; Yu, Y; Liu, H

    2015-06-15

    Purpose To compare online image registrations of TrueBeam cone-beam CT (CBCT) and BrainLab ExacTrac imaging systems. Methods Tests were performed on a Varian TrueBeam STx linear accelerator (Version 2.0), which is integrated with a BrainLab ExacTrac imaging system (Version 6.0.5). The study was focused on comparing the online image registrations for translational shifts. A Rando head phantom was placed on treatment couch and immobilized with a BrainLab mask. The phantom was shifted by moving the couch translationally for 8 mm with a step size of 1 mm, in vertical, longitudinal, and lateral directions, respectively. At each location, the phantom was imaged with CBCT and ExacTrac x-ray. CBCT images were registered with TrueBeam and ExacTrac online registration algorithms, respectively. And ExacTrac x-ray image registrations were performed. Shifts calculated from different registrations were compared with nominal couch shifts. Results The averages and ranges of absolute differences between couch shifts and calculated phantom shifts obtained from ExacTrac x-ray registration, ExacTrac CBCT registration with default window, ExaxTrac CBCT registration with adjusted window (bone), Truebeam CBCT registration with bone window, and Truebeam CBCT registration with soft tissue window, were: 0.07 (0.02–0.14), 0.14 (0.01–0.35), 0.12 (0.02–0.28), 0.09 (0–0.20), and 0.06 (0–0.10) mm, in vertical direction; 0.06 (0.01–0.12), 0.27 (0.07–0.57), 0.23 (0.02–0.48), 0.04 (0–0.10), and 0.08 (0– 0.20) mm, in longitudinal direction; 0.05 (0.01–0.21), 0.35 (0.14–0.80), 0.25 (0.01–0.56), 0.19 (0–0.40), and 0.20 (0–0.40) mm, in lateral direction. Conclusion The shifts calculated from ExacTrac x-ray and TrueBeam CBCT registrations were close to each other (the differences between were less than 0.40 mm in any direction), and had better agreements with couch shifts than those from ExacTrac CBCT registrations. There were no significant differences between True

  14. The influence of exposure parameters on jawbone model accuracy using cone beam CT and multislice CT

    PubMed Central

    Vandenberghe, B; Luchsinger, S; Hostens, J; Dhoore, E; Jacobs, R

    2012-01-01

    Objective The main purpose of this study was to investigate the influence of exposure parameters on jawbone model accuracy when using cone beam CT (CBCT) and multislice CT (MSCT). Methods A lower and an upper edentulous human cadaver jaw were scanned using micro-CT (Skyscan 1173 high energy spiral scan micro-CT; Skyscan NV, Kontich, Belgium) at 35 μm to serve as true reference. The in vitro samples were exposed using six CBCT units and one MSCT system. CBCT exposure protocols were chosen according to clinically available settings. The variables were kilovoltage, milliamperage, voxel size and/or scan time. Image segmentation was based on local thresholds using profile lines. The resulting jawbone segmentations were registered with the reference and image processing was done to internally fill the segmentations. A point-based distance calculation was performed between the three-dimensional objects and reference scans and deviation percentages were calculated for 2 mm, 1 mm and 0.5 mm intervals. Results All points of the MSCT surface models lay within a 1 mm deviation range and 98.5% within 0.5 mm compared with micro-CT. For the different CBCT systems, accuracy came close to MSCT with mean percentages of 98.9% within 1 mm deviation and 92.8% within 0.5 mm. A difference of approximately 1% between lower and upper jaws could be perceived. For the specific CBCT exposure protocols, only scan time and voxel size revealed certain significant differences. Conclusion Jawbone model accuracy using CBCT was comparable with MSCT. The surface models of the upper jaws deviated slightly more than those for lower jaws. CBCT exposure settings had a limited influence on accuracy with scan time and voxel size as the main factors. PMID:22282512

  15. Actively triggered 4d cone-beam CT acquisition

    SciTech Connect

    Fast, Martin F.; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  16. Single-slice reconstruction method for helical cone-beam differential phase-contrast CT.

    PubMed

    Fu, Jian; Chen, Liyuan

    2014-01-01

    X-ray phase-contrast computed tomography (PC-CT) can provide the internal structure information of biomedical specimens with high-quality cross-section images and has become an invaluable analysis tool. Here a simple and fast reconstruction algorithm is reported for helical cone-beam differential PC-CT (DPC-CT), which is called the DPC-CB-SSRB algorithm. It combines the existing CB-SSRB method of helical cone-beam absorption-contrast CT with the differential nature of DPC imaging. The reconstruction can be performed using 2D fan-beam filtered back projection algorithm with the Hilbert imaginary filter. The quality of the results for large helical pitches is surprisingly good. In particular, with this algorithm comparable quality is obtained using helical cone-beam DPC-CT data with a normalized pitch of 10 to that obtained using the traditional inter-row interpolation reconstruction with a normalized pitch of 2. This method will push the future medical helical cone-beam DPC-CT imaging applications.

  17. Evaluation for Basic Image Qualities Dependence on the Position in XYZ Directions and Acquisition Parameters of the Cone Beam CT for Angiography System with Flat Panel Detector.

    PubMed

    Tsuda, Norisato; Mitsui, Kota; Oda, Shinichiro

    2016-08-01

    The purpose of this study was to investigate the effect of the position in XYZ directions and acquisition parameters on the basic image qualities of for cone beam computed tomography (CBCT) in an angiography system with flat panel detector. The resolution property (modulation transfer function: MTF) and the noise property (Wiener spectrum: WS) of CBCT images in X-Y plane were measured with different acquisition parameters (scan matrix number and projection number) and the effect of the position in XYZ directions. The MTFs with 1024×1024 matrix were higher than those of 512×512 matrix and decreased in the peripheral areas due to the reduction of projection number. The highest and the lowest MTFs were measured at the X-ray tube side and on the detector side of the position in X-Y plane, respectively. The WS-doubled projection number showed about 50% lesser noise level. There were differences in the Wiener spectra (WS) at the position in XYZ directions. We conclude that the resolution and the noise property of CBCT image in X-Y plane showed dependences on the position in XYZ directions and acquisition parameters of the CBCT. PMID:27546079

  18. Simulation of mammograms and tomosynthesis imaging with cone beam breast CT images

    NASA Astrophysics Data System (ADS)

    Han, Tao; Shaw, Chris C.; Chen, Lingyun; Lai, Chao-jen; Liu, Xinming; Wang, Tianpeng

    2008-03-01

    The use of mammography techniques for the screening and diagnosis of breast cancers has been limited by the overlapping of cancer symptoms with normal tissue structures. To overcome this problem, two methods have been developed and actively investigated recently: digital tomosynthesis mammography and cone beam breast CT. Comparison study with these three techniques will be helpful to understand their difference and further might be supervise the direction of breast imaging. This paper describes and discusses about a technique using a general-purpose PC cluster to develop a parallel computer simulation model to simulate mammograms and tomosynthesis imaging with cone beam CT images of a mastectomy breast specimen. The breast model used in simulating mammography and tomosynthesis was developed by re-scaling the CT numbers of cone beam CT images from 80kVp to 20 kev. The compression of breast was simulated by deformation of the breast model. Re-projection software with parallel computation was developed and used to compute projection images of this simulated compressed breast for a stationary detector and a linearly shifted x-ray source. The resulting images were then used to reconstruct tomosynthesis mammograms using shift-and-add algorithms. It was found that MCs in cone beam CT images were not visible in regular mammograms but faintly visible in tomosynthesis images. The scatter signal and noise property needs to be simulated and incorporated in the future.

  19. Point spread function modeling and image restoration for cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Huang, Kui-Dong; Shi, Yi-Kai; Xu, Zhe

    2015-03-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Young Scientists Fund of National Natural Science Foundation of China (51105315), Natural Science Basic Research Program of Shaanxi Province of China (2013JM7003) and Northwestern Polytechnical University Foundation for Fundamental Research (JC20120226, 3102014KYJD022)

  20. Dual-energy imaging of bone marrow edema on a dedicated multi-source cone-beam CT system for the extremities

    NASA Astrophysics Data System (ADS)

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Thawait, G.; Packard, N.; Yorkston, J.; Demehri, S.; Fritz, J.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Arthritis and bone trauma are often accompanied by bone marrow edema (BME). BME is challenging to detect in CT due to the overlaying trabecular structure but can be visualized using dual-energy (DE) techniques to discriminate water and fat. We investigate the feasibility of DE imaging of BME on a dedicated flat-panel detector (FPD) extremities cone-beam CT (CBCT) with a unique x-ray tube with three longitudinally mounted sources. Methods: Simulations involved a digital BME knee phantom imaged with a 60 kVp low-energy beam (LE) and 105 kVp high-energy beam (HE) (+0.25 mm Ag filter). Experiments were also performed on a test-bench with a Varian 4030CB FPD using the same beam energies as the simulation study. A three-source configuration was implemented with x-ray sources distributed along the longitudinal axis and DE CBCT acquisition in which the superior and inferior sources operate at HE (and collect half of the projection angles each) and the central source operates at LE. Three-source DE CBCT was compared to a double-scan, single-source orbit. Experiments were performed with a wrist phantom containing a 50 mg/ml densitometry insert submerged in alcohol (simulating fat) with drilled trabeculae down to ~1 mm to emulate the trabecular matrix. Reconstruction-based three-material decomposition of fat, soft tissue, and bone was performed. Results: For a low-dose scan (36 mAs in the HE and LE data), DE CBCT achieved combined accuracy of ~0.80 for a pattern of BME spherical lesions ranging 2.5 - 10 mm diameter in the knee phantom. The accuracy increased to ~0.90 for a 360 mAs scan. Excellent DE discrimination of the base materials was achieved in the experiments. Approximately 80% of the alcohol (fat) voxels in the trabecular phantom was properly identified both for single and 3-source acquisitions, indicating the ability to detect edemous tissue (water-equivalent plastic in the body of the densitometry insert) from the fat inside the trabecular matrix

  1. Tilted helical Feldkamp cone-beam reconstruction algorithm for multislice CT

    NASA Astrophysics Data System (ADS)

    Hein, Ilmar A.; Taguchi, Katsuyuki; Mori, Issei; Kazama, Masahiro; Silver, Michael D.

    2003-05-01

    In many clinical applications, it is necessary to tilt the gantry of an X-ray CT system with respect to the patient. Tilting the gantry introduces no complications for single-slice fan-beam systems; however, most systems today are helical multislice systems with up to 16 slices (and this number is sure to increase in the future). The image reconstruction algorithms used in multislice helical CT systems must be modified to compensate for the tilt. If they are not, the quality of reconstructed images will be poor with the presence of significant artifacts produced by the tilt. Practical helical multislice algorithms currently incorporated in today"s systems include helical fan-beam, ASSR (Advanced single-slice rebinning), and Feldkamp algorithms. This paper presents the modifications necessary to compensate for gantry tilt for the helical cone-beam Feldkamp algorithm implemented by Toshiba (referred to as TCOT for true cone-beam tomography). Unlike some of the other algorithms, gantry tilt compensation is simple and straightforward to implement with no significant increase in computational complexity. It will be shown that the effect of the gantry tilt is to introduce a lateral shift in the isocenter of the reconstructed slice of interest, which is a function of the tilt, couch speed, and view angle. This lateral shift is easily calculated and incorporated into the backprojection algorithm. The tilt-compensated algorithm is called T-TCOT. Experimental tilted-gantry data has been obtained with 8- and 16 slice Toshiba Aquilion systems, and examples of uncompensated and tilt compensated images are presented.

  2. The application of cone-beam CT in the aging of bone calluses: a new perspective?

    PubMed

    Cappella, A; Amadasi, A; Gaudio, D; Gibelli, D; Borgonovo, S; Di Giancamillo, M; Cattaneo, C

    2013-11-01

    In the forensic and anthropological fields, the assessment of the age of a bone callus can be crucial for a correct analysis of injuries in the skeleton. To our knowledge, the studies which have focused on this topic are mainly clinical and still leave much to be desired for forensic purposes, particularly in looking for better methods for aging calluses in view of criminalistic applications. This study aims at evaluating the aid cone-beam CT can give in the investigation of the inner structure of fractures and calluses, thus acquiring a better knowledge of the process of bone remodeling. A total of 13 fractures (three without callus formation and ten with visible callus) of known age from cadavers were subjected to radiological investigations with digital radiography (DR) (conventional radiography) and cone-beam CT with the major aim of investigating the differences between DR and tomographic images when studying the inner and outer structures of bone healing. Results showed how with cone-beam CT the structure of the callus is clearly visible with higher specificity and definition and much more information on mineralization in different sections and planes. These results could lay the foundation for new perspectives on bone callus evaluation and aging with cone-beam CT, a user-friendly and skillful technique which in some instances can also be used extensively on the living (e.g., in cases of child abuse) with reduced exposition to radiation.

  3. Feasibility of a Modified cone-Beam cT rotation Trajectory to improve liver Periphery Visualization during Transarterial chemoembolization

    PubMed Central

    Schernthaner, Rüdiger E.; Chapiro, Julius; Sahu, Sonia; Withagen, Paul; Duran, Rafael; Sohn, Jae Ho; Radaelli, Alessandro; van der Bom, Imramsjah Martin; Geschwind, Jean-François H.; Lin, MingDe

    2015-01-01

    Purpose To compare liver coverage and tumor detectability by using preprocedural magnetic resonance (MR) images as a reference, as well as radiation exposure of cone-beam computed tomography (CT) with different rotational trajectories. Materials and Methods Fifteen patients (nine men and six women; mean age ± standard deviation, 65 years ± 5) with primary or secondary liver cancer were retrospectively included in this institutional review board–approved study. A modified conebeam CT protocol was used in which the C-arm rotates from +55° to –185° (open arc cone-beam CT) instead of –120° to +120° (closed arc cone-beam CT). Each patient underwent two sessions of transarterial chemoembolization between February 2013 and March 2014 with closed arc and open arc cone-beam CT (during the first and second transarterial chemoembolization sessions, respectively, as part of the institutional transarterial chemoembolization protocol). For each cone-beam CT examination, liver volume and tumor detectability were assessed by using MR images as the reference. Radiation exposure was compared by means of a phantom study. For statistical analysis, paired t tests and a Wilcoxon signed rank test were performed. Results Mean liver volume imaged was 1695 cm3 ± 542 and 1857 cm3 ± 571 at closed arc and open arc cone-beam CT, respectively. The coverage of open arc cone-beam CT was significantly higher compared with closed arc cone-beam CT (97% vs 86% of the MR imaging liver volume, P = .002). In eight patients (53%), tumors were partially or completely outside the closed arc cone-beam CT field of view. All tumors were within the open arc cone-beam CT field of view. The open arc cone-beam CT radiation exposure by means of weighted CT index was slightly lower compared with that of closed arc cone-beam CT (–5.1%). Conclusion Open arc cone-beam CT allowed for a significantly improved intraprocedural depiction of peripheral hepatic tumors while achieving a slight radiation

  4. Theoretical aspects of implementation of kilovoltage cone-beam CT onboard linear accelerator for image-guided radiotherapy.

    PubMed

    Rodríguez Cordón, Marta; Ferrer Albiach, Carlos

    2009-08-01

    The main objective of image-guided radiation therapy (IGRT) equipment is to reduce and correct inherent errors in external radiotherapy processes. At the present time, there are different IGRT systems available, but here we will refer exclusively to the kilovoltage cone-beam CT onboard linear accelerator (CBkVCT) and the different aspects that, from a clinical point of view, should be taken into consideration before the implementation of this equipment.

  5. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    PubMed Central

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  6. Performance of standard fluoroscopy antiscatter grids in flat-detector-based cone-beam CT

    NASA Astrophysics Data System (ADS)

    Wiegert, Jens; Bertram, Matthias; Schaefer, Dirk; Conrads, Norbert; Timmer, Jan; Aach, Til; Rose, Georg

    2004-05-01

    In this paper, the performance of focused lamellar anti-scatter grids, which are currently used in fluoroscopy, is studied in order to determine guidelines of grid usage for flat detector based cone beam CT. The investigation aims at obtaining the signal to noise ratio improvement factor by the use of anti-scatter grids. First, the results of detailed Monte Carlo simulations as well as measurements are presented. From these the general characteristics of the impinging field of scattered and primary photons are derived. Phantoms modeling the head, thorax and pelvis regions have been studied for various imaging geometries with varying phantom size, cone and fan angles and patient-detector distances. Second, simulation results are shown for ideally focused and vacuum spaced grids as best case approach as well as for grids with realistic spacing materials. The grid performance is evaluated by means of the primary and scatter transmission and the signal to noise ratio improvement factor as function of imaging geometry and grid parameters. For a typical flat detector cone beam CT setup, the grid selectivity and thus the performance of anti-scatter grids is much lower compared to setups where the grid is located directly behind the irradiated object. While for small object-to-grid distances a standard grid improves the SNR, the SNR for geometries as used in flat detector based cone beam CT is deteriorated by the use of an anti-scatter grid for many application scenarios. This holds even for the pelvic region. Standard fluoroscopy anti-scatter grids were found to decrease the SNR in many application scenarios of cone beam CT due to the large patient-detector distance and have, therefore, only a limited benefit in flat detector based cone beam CT.

  7. Experimental Scatter Correction Methods in Industrial X-Ray Cone-Beam CT

    NASA Astrophysics Data System (ADS)

    Schörner, K.; Goldammer, M.; Stephan, J.

    2011-06-01

    Scattered radiation presents a major source of image degradation in industrial cone-beam computed tomography systems. Scatter artifacts introduce streaks, cupping and a loss of contrast in the reconstructed CT-volumes. In order to overcome scatter artifacts, we present two complementary experimental correction methods: the beam-stop array (BSA) and an inverse technique we call beam-hole array (BHA). Both correction methods are examined in comparative measurements where it is shown that the aperture-based BHA technique has practical and scatter-reducing advantages over the BSA. The proposed BHA correction method is successfully applied to a large-scale industrial specimen whereby scatter artifacts are reduced and contrast is enhanced significantly.

  8. Assessment of buccal marginal alveolar peri-implant and periodontal defects using a cone beam CT system with and without the application of metal artefact reduction mode

    PubMed Central

    Kamburoğlu, K; Kolsuz, E; Murat, S; Eren, H; Yüksel, S; Paksoy, C S

    2013-01-01

    Objectives: To investigate the accuracy of cone beam CT (CBCT) images obtained with and without artefact reduction (AR) in detecting simulated buccal peri-implant and buccal periodontal defects. Methods: 42 implants inserted into edentulous mandibles, and 38 teeth present in dry mandibles were used. Simulated buccal peri-implant defects (n = 22) and buccal periodontal defects (n = 22) were prepared. 20 implants and 18 teeth without simulated defects were the control group. Images of the mandibles were obtained using a Planmeca ProMax® 3D Max CBCT unit (Planmeca Oy, Helsinki, Finland). Image reconstructions were prepared without and with low, medium and high AR modes. Images were viewed randomly by six observers twice for the presence of defects. Kappa coefficient was calculated. F2_LD_F1 design for non-parametric analysis of longitudinal data was used. Area under curves (AUCs) were calculated for each observer. Significance level was taken as α = 0.05. Results: Intraobserver kappa ranged from 0.140 to 0.792 for peri-implant and from 0.189 to 1.0 for periodontal defects. All factors were statistically significant (p < 0.001), except for image mode and implant brand. Pairwise interactions were found between periodontal defects and peri-implant defects (p < 0.001), observers (p < 0.001), observer and image mode (p < 0.001), defect model and observer (p < 0.001) and defect model, image mode and observer (p = 0.04). AUC values ranged from 0.39 to 0.52 for peri-implant and from 0.45 to 0.71 for periodontal defects. Higher AUC values were found for periodontal defects than for peri-implant defects. Conclusions: Buccal peri-implant defects were more difficult to detect than buccal periodontal defects. No difference was found among CBCT images obtained with and without AR modes. PMID:23956236

  9. Detection of cavitated approximal surfaces using cone beam CT and intraoral receptors

    PubMed Central

    Wenzel, A; Hirsch, E; Christensen, J; Matzen, L H; Scaf, G; Frydenberg, M

    2013-01-01

    Objectives The aim of this study was to compare cone beam CT (CBCT) in a small field of view (FOV) with a solid-state sensor and a photostimulable phosphor plate system for detection of cavitated approximal surfaces. Methods 257 non-filled approximal surfaces from human permanent premolars and molars were recorded by two intraoral digital receptors, a storage phosphor plate (Digora Optime, Soredex) and a solid-state CMOS sensor (Digora Toto, Soredex), and scanned in a cone beam CT unit (3D Accuitomo FPD80, Morita) with a FOV of 4 cm and a voxel size of 0.08 mm. Image sections were carried out in the axial and mesiodistal tooth planes. Six observers recorded surface cavitation in all images. Validation of the true absence or presence of surface cavitation was performed by inspecting the surfaces under strong light with the naked eye. Differences in sensitivity, specificity and agreement were estimated by analysing the binary data in a generalized linear model using an identity link function. Results : A significantly higher sensitivity was obtained by all observers with CBCT (p < 0.001), which was not compromised by a lower specificity. Therefore, a significantly higher overall agreement was obtained with CBCT (p < 0.001). There were no significant differences between the Digora Optime phosphor plate system and the Digora Toto CMOS sensor for any parameter. Conclusions CBCT was much more accurate in the detection of surface cavitation in approximal surfaces than intraoral receptors. The differences are interpreted as clinically significant. A CBCT examination performed for other reasons should also be assessed for approximal surface cavities in teeth without restorations. PMID:22842638

  10. FFT and cone-beam CT reconstruction on graphics hardware

    NASA Astrophysics Data System (ADS)

    Després, Philippe; Sun, Mingshan; Hasegawa, Bruce H.; Prevrhal, Sven

    2007-03-01

    Graphics processing units (GPUs) are increasingly used for general purpose calculations. Their pipelined architecture can be exploited to accelerate various parallelizable algorithms. Medical imaging applications are inherently well suited to benefit from the development of GPU-based computational platforms. We evaluate in this work the potential of GPUs to improve the execution speed of two common medical imaging tasks, namely Fourier transforms and tomographic reconstructions. A two-dimensional fast Fourier transform (FFT) algorithm was GPU-implemented and compared, in terms of execution speed, to two popular CPU-based FFT routines. Similarly, the Feldkamp, David and Kress (FDK) algorithm for cone-beam tomographic reconstruction was implemented on the GPU and its performance compared to a CPU version. Different reconstruction strategies were employed to assess the performance of various GPU memory layouts. For the specific hardware used, GPU implementations of the FFT were up to 20 times faster than their CPU counterparts, but slower than highly optimized CPU versions of the algorithm. Tomographic reconstructions were faster on the GPU by a factor up to 30, allowing 256 3 voxel reconstructions of 256 projections in about 20 seconds. Overall, GPUs are an attractive alternative to other imaging-dedicated computing hardware like application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) in terms of cost, simplicity and versatility. With the development of simpler language extensions and programming interfaces, GPUs are likely to become essential tools in medical imaging.

  11. Visibility of microcalcifications in CCD-based cone beam CT: a preliminary study

    NASA Astrophysics Data System (ADS)

    Shen, Youtao; Chen, Lingyun; Ge, Shuaiping; Yi, Ying; Han, Tao; Zhong, Yuncheng; Lai, Chao-Jen; Liu, Xinming; Wang, Tianpeng; Shaw, Chris C.

    2009-02-01

    In this work, we investigated the visibility of microcalcifications in CCD-based cone beam CT (CBCT) breast imaging. A paraffin cylinder with a diameter of 135 mm and a thickness of 40 mm was used to simulate a 100% adipose breast. Calcium carbonate grains, ranging from 140-150 to 200-212 μm in size, were used to simulate the microcalcifications. Groups of 25 same size microcalcifications were arranged into 5 × 5 clusters. Each cluster was embedded at the center of a smaller (15 mm diameter) cylindrical paraffin phantom, which were inserted into a hole at the center of the breast phantom. The breast phantom with the simulated microcalcifications was scanned on a bench top experimental CCDbased cone beam CT system at various exposure levels with two CCD cameras: Hamamatsu's C4742-56-12ER and Dalsa 99-66-0000-00. 300 projection images were acquired over 360° and reconstructed with Feldkamp's backprojection algorithm using a ramp filter. The images were reviewed by 6 readers independently. The ratios of visible microcalcifications were recorded and averaged over all readers. These ratios were plotted as the function of measured image signal-to-noise ratio (SNR) for various scans. It was found that 94% visibility was achieved for 200-212 μm calcifications at an SNR of 48.2 while 50% visibility was achieved for 200-212, 180-200, 160-180, 150-160 and 140-150 μm calcifications at an SNR of 25.0, 35.3, 38.2, 42.2 and 64.4, respectively.

  12. Automatic segmentation of maxillofacial cysts in cone beam CT images.

    PubMed

    Abdolali, Fatemeh; Zoroofi, Reza Aghaeizadeh; Otake, Yoshito; Sato, Yoshinobu

    2016-05-01

    Accurate segmentation of cysts and tumors is an essential step for diagnosis, monitoring and planning therapeutic intervention. This task is usually done manually, however manual identification and segmentation is tedious. In this paper, an automatic method based on asymmetry analysis is proposed which is general enough to segment various types of jaw cysts. The key observation underlying this approach is that normal head and face structure is roughly symmetric with respect to midsagittal plane: the left part and the right part can be divided equally by an axis of symmetry. Cysts and tumors typically disturb this symmetry. The proposed approach consists of three main steps as follows: At first, diffusion filtering is used for preprocessing and symmetric axis is detected. Then, each image is divided into two parts. In the second stage, free form deformation (FFD) is used to correct slight displacement of corresponding pixels of the left part and a reflected copy of the right part. In the final stage, intensity differences are analyzed and a number of constraints are enforced to remove false positive regions. The proposed method has been validated on 97 Cone Beam Computed Tomography (CBCT) sets containing various jaw cysts which were collected from various image acquisition centers. Validation is performed using three similarity indicators (Jaccard index, Dice's coefficient and Hausdorff distance). The mean Dice's coefficient of 0.83, 0.87 and 0.80 is achieved for Radicular, Dentigerous and KCOT classes, respectively. For most of the experiments done, we achieved high true positive (TP). This means that a large number of cyst pixels are correctly classified. Quantitative results of automatic segmentation show that the proposed method is more effective than one of the recent methods in the literature.

  13. Cone beam CT--anatomic assessment and legal issues: the new standards of care.

    PubMed

    Curley, Arthur; Hatcher, David C

    2010-01-01

    Until the recent introduction of cone beam computed tomography scanners, standard 2-D imaging provided a moderate contribution to overall treatment planning when considering the diagnostic potential, costs of study and risks to the patient. Cone beam computed tomography-dedicated maxillofacial imaging scanners provide broader imaging tools for anatomic assessment and have become widely available. This article discusses the uses and benefits of 3-D imaging, as well as the impact on the standard of care. Many phases of patient care involve imaging to assist with diagnosis, treatment planning, risk assessment and treatment. Techniques employing X-rays, visible light, ultrasound, lasers and magnetic fields have been used in medicine and dentistry to create images. All forms of imaging require a coupled system of emitters and sensors. For example, a cephalometric image is produced using an X-ray emitter and film sensor. Imaging systems can be categorized in many different ways based upon emitter or output type (examples; film-based, digital, 2-D and 3-D images). The resultant images can be used to evaluate the anatomy of interest, including surface and subsurface. The ultimate quest of all forms of imaging is to reveal the anatomic truth; that is, to portray the anatomy as it exists in nature. Thoughtful clinical application of image acquisition requires matching the uses and limitations of the available imaging choices to achieve the desired diagnostic information (imaging goal) while keeping the risks and costs to the patient as low as possible. Imaging data must provide a benefit at an acceptable cost and risk. Two-dimensional representation of 3-D anatomies creates images that have poor spatial accuracy, are static in space and time, and contain information voids. These 2-D measurements have propagated legacy databases of inaccurate morphometric measurements. Current development in imaging technology for dentistry includes digital imaging and improved sensor

  14. SU-E-J-135: Feasibility of Using Quantitative Cone Beam CT for Proton Adaptive Planning

    SciTech Connect

    Jingqian, W; Wang, Q; Zhang, X; Wen, Z; Zhu, X; Frank, S; Li, H; Tsui, T; Zhu, L; Wei, J

    2015-06-15

    Purpose: To investigate the feasibility of using scatter corrected cone beam CT (CBCT) for proton adaptive planning. Methods: Phantom study was used to evaluate the CT number difference between the planning CT (pCT), quantitative CBCT (qCBCT) with scatter correction and calibrated Hounsfield units using adaptive scatter kernel superposition (ASKS) technique, and raw CBCT (rCBCT). After confirming the CT number accuracy, prostate patients, each with a pCT and several sets of weekly CBCT, were investigated for this study. Spot scanning proton treatment plans were independently generated on pCT, qCBCT and rCBCT. The treatment plans were then recalculated on all images. Dose-volume-histogram (DVH) parameters and gamma analysis were used to compare between dose distributions. Results: Phantom study suggested that Hounsfield unit accuracy for different materials are within 20 HU for qCBCT and over 250 HU for rCBCT. For prostate patients, proton dose could be calculated accurately on qCBCT but not on rCBCT. When the original plan was recalculated on qCBCT, tumor coverage was maintained when anatomy was consistent with pCT. However, large dose variance was observed when patient anatomy change. Adaptive plan using qCBCT was able to recover tumor coverage and reduce dose to normal tissue. Conclusion: It is feasible to use qu antitative CBCT (qCBCT) with scatter correction and calibrated Hounsfield units for proton dose calculation and adaptive planning in proton therapy. Partly supported by Varian Medical Systems.

  15. Dynamic Bowtie Filter for Cone-Beam/Multi-Slice CT

    PubMed Central

    Liu, Fenglin; Yang, Qingsong; Cong, Wenxiang; Wang, Ge

    2014-01-01

    A pre-patient attenuator (“bowtie filter” or “bowtie”) is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB) filled in with heavy liquid and a weakly attenuating bowtie (WB) immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV). The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection. PMID:25051067

  16. Dynamic bowtie filter for cone-beam/multi-slice CT.

    PubMed

    Liu, Fenglin; Yang, Qingsong; Cong, Wenxiang; Wang, Ge

    2014-01-01

    A pre-patient attenuator ("bowtie filter" or "bowtie") is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB) filled in with heavy liquid and a weakly attenuating bowtie (WB) immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV). The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection. PMID:25051067

  17. The influence of bowtie filtration on cone-beam CT image quality

    SciTech Connect

    Mail, N.; Moseley, D. J.; Siewerdsen, J. H.; Jaffray, D. A.

    2009-01-15

    The large variation of x-ray fluence at the detector in cone-beam CT (CBCT) poses a significant challenge to detectors' limited dynamic range, resulting in the loss of skinline as well as reduction of CT number accuracy, contrast-to-noise ratio, and image uniformity. The authors investigate the performance of a bowtie filter implemented in a system for image-guided radiation therapy (Elekta oncology system, XVI) as a compensator for improved image quality through fluence modulation, reduction in x-ray scatter, and reduction in patient dose. Dose measurements with and without the bowtie filter were performed on a CTDI Dose phantom and an empirical fit was made to calculate dose for any radial distance from the central axis of the phantom. Regardless of patient size, shape, anatomical site, and field of view, the bowtie filter results in an overall improvement in CT number accuracy, image uniformity, low-contrast detectability, and imaging dose. The implemented bowtie filter offers a significant improvement in imaging performance and is compatible with the current clinical system for image-guided radiation therapy.

  18. Respiratory Motional Effect on Cone-Beam CT in Lung Radiation Surgery

    SciTech Connect

    Song, Ju-Young Nam, Taek-Keun; Ahn, Sung-Ja; Chung, Woong-Ki; Yoon, Mee-Sun; Nah, Byunk-Sik

    2009-07-01

    The cone-beam CT (CBCT), which is acquired using an on-board imager (OBI) attached to a linear accelerator, is used effectively in the verification of setup accuracy for lung radiation surgery. In this study, the respiratory organ motional effect on the CBCT was evaluated with a properly devised phantom system, and the level of possible error in conditions of a real clinical process was assessed. In a comparison study between the CBCT in static status and CBCT images acquired in 20 different motional cases, we confirmed that the image quality and information of CBCT were degraded, with an increase of motional ranges in the region of inhomogeneous structures. The 4D-CT MIP (50{approx}55%) for the planning of lung radiation surgery and the 4D-CT MIP (full phase) were compared with CBCT in the various motional cases for the evaluation of the influence of the motional effect on CBCT in the process of the setup error correction. The average ratio of relative difference between plan CT: 4D-CT MIP (50%{approx}55%) and CBCT was 5.79% and between plan CT: 4D-CT MIP (50%{approx}55%) and 4D-CT MIP (full phase) was 42.95% in the phantom study. In the analysis of clinical cases of lung radiation surgery, the gross tumor volumes were compared in each CT image. The average ratio of relative difference between plan CT: 4D-CT MIP (50{approx}55%) and CBCT was 10.72% and between plan CT: 4D-CT MIP (50{approx}55%) and 4D-CT MIP (full phase) was 28.19%. These results showed that, although a respiratory organ motional effect on CBCT introduced variation in image quality, the error as a result of this variation could be estimated relatively low in the setup error correction for a gated-lung radiation surgery when the planning was performed in 4D-CT MIP (50{approx}55%), which already included a related signal of motional effect.

  19. Marker-free lung tumor trajectory estimation from a cone beam CT sinogram

    NASA Astrophysics Data System (ADS)

    Hugo, Geoffrey D.; Liang, Jian; Yan, Di

    2010-05-01

    An algorithm was developed to estimate the 3D lung tumor position using the projection data forming a cone beam CT sinogram and a template registration method. A pre-existing respiration-correlated CT image was used to generate templates of the target, which were then registered to the individual cone beam CT projections, and estimates of the target position were made for each projection. The registration search region was constrained based on knowledge of the mean tumor position during the cone beam CT scan acquisition. Several template registration algorithms were compared, including correlation coefficient and robust methods such as block correlation, robust correlation coefficient and robust gradient correlation. Robust registration metrics were found to be less sensitive to occlusions such as overlying tissue and the treatment couch. The mean accuracy of the position estimation was 1.4 mm in phantom with a robust registration algorithm. In two research subjects with peripheral tumors, the mean position and mean target excursion were estimated to within 2.0 mm compared to the results obtained with a '4D' registration of 4D image volumes.

  20. MR cone-beam CT fusion image overlay for fluoroscopically guided percutaneous biopsies in pediatric patients.

    PubMed

    Thakor, Avnesh S; Patel, Premal A; Gu, Richard; Rea, Vanessa; Amaral, Joao; Connolly, Bairbre L

    2016-03-01

    Lesions only visible on magnetic resonance (MR) imaging cannot easily be targeted for image-guided biopsy using ultrasound or X-rays but instead require MR guidance with MR-compatible needles and long procedure times (acquisition of multiple MR sequences). We developed an alternative method for performing these difficult biopsies in a standard interventional suite, by fusing MR with cone-beam CT images. The MR cone-beam CT fusion image is then used as an overlay to guide a biopsy needle to the target area under live fluoroscopic guidance. Advantages of this technique include (i) the ability for it to be performed in a conventional interventional suite, (ii) three-dimensional planning of the needle trajectory using cross-sectional imaging, (iii) real-time fluoroscopic guidance for needle trajectory correction and (iv) targeting within heterogeneous lesions based on MR signal characteristics to maximize the potential biopsy yield.

  1. A virtual source model for Kilo-voltage cone beam CT: Source characteristics and model validation

    SciTech Connect

    Spezi, E.; Volken, W.; Frei, D.; Fix, M. K.

    2011-09-15

    Purpose: The purpose of this investigation was to study the source characteristics of a clinical kilo-voltage cone beam CT unit and to develop and validate a virtual source model that could be used for treatment planning purposes. Methods: We used a previously commissioned full Monte Carlo model and new bespoke software to study the source characteristics of a clinical kilo-voltage cone beam CT (CBCT) unit. We identified the main particle sources, their spatial, energy and angular distribution for all the image acquisition presets currently used in our clinical practice. This includes a combination of two energies (100 and 120 kVp), two filters (neutral and bowtie), and eight different x-ray beam apertures. We subsequently built a virtual source model which we validated against full Monte Carlo calculations. Results: We found that the radiation output of the clinical kilo-voltage cone beam CT unit investigated in this study could be reproduced with a virtual model comprising of two sources (target and filtration cone) or three sources (target, filtration cone and bowtie filter) when additional filtration was used. With this model, we accounted for more than 97% of the photons exiting the unit. Each source in our model was characterised by a origin distribution in both X and Y directions, a fluence map, a single energy spectrum for unfiltered beams and a two dimensional energy spectrum for bowtie filtered beams. The percentage dose difference between full Monte Carlo and virtual source model based dose distributions was well within the statistical uncertainty associated with the calculations ( {+-} 2%, one standard deviation) in all cases studied. Conclusions: The virtual source that we developed is accurate in calculating the dose delivered from a commercial kilo-voltage cone beam CT unit operating with routine clinical image acquisition settings. Our data have also shown that target, filtration cone, and bowtie filter sources needed to be all included in the model

  2. Pre-surgical treatment planning of maxillary canine impactions using panoramic vs cone beam CT imaging

    PubMed Central

    Alqerban, A; Hedesiu, M; Baciut, M; Nackaerts, O; Jacobs, R; Fieuws, S; Willems, G

    2013-01-01

    Objectives: The aim of this prospective study was to compare the impact of using two-dimensional (2D) panoramic radiographs and three-dimensional (3D) cone beam CT for the surgical treatment planning of impacted maxillary canines. Methods: This study consisted of 32 subjects (19 females, 13 males) with a mean age of 25 years, referred for surgical intervention of 39 maxillary impacted canines. Initial 2D panoramic radiography was available, and 3D cone beam CT imaging was obtained upon clinical indication. Both 2D and 3D pre-operative radiographic diagnostic sets were subsequently analysed by six observers. Perioperative evaluations were conducted by the treating surgeon. McNemar tests, hierarchical logistic regression and linear mixed models were used to explore the differences in evaluations between imaging modalities. Results: Significantly higher confidence levels were observed for 3D image-based treatment plans than for 2D image-based plans (p < 0.001). The evaluations of canine crown position, contact relationship and lateral incisor root resorption were significantly different between the 2D and 3D images. By contrast, pre- and perioperative evaluations were not significantly different between the two image modalities. Conclusions: Surgical treatment planning of impacted maxillary canines was not significantly different between panoramic and cone beam CT images. PMID:23906975

  3. Chord-based image reconstruction in cone-beam CT with a curved detector

    SciTech Connect

    Zuo Nianming; Xia Dan; Zou Yu; Jiang Tianzi; Pan Xiaochuan

    2006-10-15

    Modern computed tomography (CT) scanners use cone-beam configurations for increasing volume coverage, improving x-ray-tube utilization, and yielding isotropic spatial resolution. Recently, there have been significant developments in theory and algorithms for exact image reconstruction from cone-beam projections. In particular, algorithms have been proposed for image reconstruction on chords; and advantages over the existing algorithms offered by the chord-based algorithms include the high flexibility of exact image reconstruction for general scanning trajectories and the capability of exact reconstruction of images within a region of interest from truncated data. These chord-based algorithms have been developed only for flat-panel detectors. Many cone-beam CT scanners employ curved detectors for important practical considerations. Therefore, in this work, we have derived chord-based algorithms for a curved detector so that they can be applied to reconstructing images directly from data acquired by use of a CT scanner with a curved detector. We have also conducted preliminary numerical studies to demonstrate and evaluate the reconstruction properties of the derived chord-based algorithms for curved detectors.

  4. The effects of field-of-view and patient size on CT numbers from cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Seet, Katrina Y. T.; Barghi, Arvand; Yartsev, Slav; Van Dyk, Jake

    2009-10-01

    Cone-beam computed tomography (CBCT) is used for patient alignment before treatment and is ideal for use in adaptive radiotherapy to account for tumor shrinkage, organ deformation and weight loss. However, CBCT images are prone to artifacts such as streaking and cupping effects, reducing image quality and CT number accuracy. Our goal was to determine the optimum combination of cone-beam imaging options to increase the accuracy of image CT numbers. Several phantoms with and without inserts of known relative electron densities were imaged using the Varian on-board imaging system. It was found that CT numbers are most influenced by the selection of field-of-view and are dependent on object size and filter type. Image acquisition in half-fan mode consistently produced more accurate CT numbers, regardless of phantom size. Values measured using full-fan mode can differ by up to 7% from planning CT values. No differences were found between CT numbers of all phantom images with low and standard dose modes.

  5. CT to cone-beam CT deformable registration with simultaneous intensity correction

    NASA Astrophysics Data System (ADS)

    Zhen, Xin; Gu, Xuejun; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.

    2012-11-01

    Computed tomography (CT) to cone-beam CT (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called deformation with intensity simultaneously corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer graphics processing units in compute unified device architecture (CUDA) programming environment. The performance of DISC is evaluated on a simulated patient case and six clinical head-and-neck cancer patient data. It is found that DISC is robust against the CBCT artifacts and intensity inconsistency and significantly improves the registration accuracy when compared with the original demons.

  6. Cone-beam CT breast imaging with a flat panel detector: a simulation study

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Tu, Shu-Ju; Altunbas, Mustafa C.; Wang, Tianpeng; Lai, Chao-Jen; Liu, Xinming; Kappadath, S. C.

    2005-04-01

    This paper investigates the feasibility of using a flat panel based cone-beam computer tomography (CT) system for 3-D breast imaging with computer simulation and imaging experiments. In our simulation study, 3-D phantoms were analytically modeled to simulate a breast loosely compressed into cylindrical shape with embedded soft tissue masses and calcifications. Attenuation coefficients were estimated to represent various types of breast tissue, soft tissue masses and calcifications to generate realistic image signal and contrast. Projection images were computed to incorporate x-ray attenuation, geometric magnification, x-ray detection, detector blurring, image pixelization and digitization. Based on the two-views mammography comparable dose level on the central axis of the phantom (also the rotation axis), x-ray kVp/filtration, transmittance through the phantom, detected quantum efficiency (DQE), exposure level, and imaging geometry, the photon fluence was estimated and used to estimate the phantom noise level on a pixel-by-pixel basis. This estimated noise level was then used with the random number generator to produce and add a fluctuation component to the noiseless transmitted image signal. The noise carrying projection images were then convolved with a Gaussian-like kernel, computed from measured 1-D line spread function (LSF) to simulated detector blurring. Additional 2-D Gaussian-like kernel is designed to suppress the noise fluctuation that inherently originates from projection images so that the reconstructed image detectability of low contrast masses phantom can be improved. Image reconstruction was performed using the Feldkamp algorithm. All simulations were performed on a 24 PC (2.4 GHz Dual-Xeon CPU) cluster with MPI parallel programming. With 600 mrads mean glandular dose (MGD) at the phantom center, soft tissue masses as small as 1 mm in diameter can be detected in a 10 cm diameter 50% glandular 50% adipose or fatter breast tissue, and 2 mm or larger

  7. Task-driven image acquisition and reconstruction in cone-beam CT.

    PubMed

    Gang, Grace J; Stayman, J Webster; Ehtiati, Tina; Siewerdsen, Jeffrey H

    2015-04-21

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d') is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ± 30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d' for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d' by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the tilt

  8. Deformable image registration of CT and truncated cone-beam CT for adaptive radiation therapy

    NASA Astrophysics Data System (ADS)

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.

    2013-11-01

    Truncation of a cone-beam computed tomography (CBCT) image, mainly caused by the limited field of view (FOV) of CBCT imaging, poses challenges to the problem of deformable image registration (DIR) between computed tomography (CT) and CBCT images in adaptive radiation therapy (ART). The missing information outside the CBCT FOV usually causes incorrect deformations when a conventional DIR algorithm is utilized, which may introduce significant errors in subsequent operations such as dose calculation. In this paper, based on the observation that the missing information in the CBCT image domain does exist in the projection image domain, we propose to solve this problem by developing a hybrid deformation/reconstruction algorithm. As opposed to deforming the CT image to match the truncated CBCT image, the CT image is deformed such that its projections match all the corresponding projection images for the CBCT image. An iterative forward-backward projection algorithm is developed. Six head-and-neck cancer patient cases are used to evaluate our algorithm, five with simulated truncation and one with real truncation. It is found that our method can accurately register the CT image to the truncated CBCT image and is robust against image truncation when the portion of the truncated image is less than 40% of the total image. Part of this work was presented at the 54th AAPM Annual Meeting (Charlotte, NC, USA, 29 July-2 August 2012).

  9. Cone beam CT guidance provides superior accuracy for complex needle paths compared with CT guidance

    PubMed Central

    Braak, S J; Fütterer, J J; van Strijen, M J L; Hoogeveen, Y L; de Lange, F; Schultze Kool, L J

    2013-01-01

    Objective: To determine the accuracy of cone beam CT (CBCT) guidance and CT guidance in reaching small targets in relation to needle path complexity in a phantom. Methods: CBCT guidance combines three-dimensional CBCT imaging with fluoroscopy overlay and needle planning software to provide real-time needle guidance. The accuracy of needle positioning, quantified as deviation from a target, was assessed for inplane, angulated and double angulated needle paths. Four interventional radiologists reached four targets along the three paths using CBCT and CT guidance. Accuracies were compared between CBCT and CT for each needle path and between the three approaches within both modalities. The effect of user experience in CBCT guidance was also assessed. Results: Accuracies for CBCT were significantly better than CT for the double angulated needle path (2.2 vs 6.7 mm, p<0.001) for all radiologists. CBCT guidance showed no significant differences between the three approaches. For CT, deviations increased with increasing needle path complexity from 3.3 mm for the inplane placements to 4.4 mm (p=0.007) and 6.7 mm (p<0.001) for the angulated and double angulated CT-guided needle placements, respectively. For double angulated needle paths, experienced CBCT users showed consistently higher accuracies than trained users [1.8 mm (range 1.2–2.2) vs 3.3 mm (range 2.1–7.2) deviation from target, respectively; p=0.003]. Conclusion: In terms of accuracy, CBCT is the preferred modality, irrespective of the level of user experience, for more difficult guidance procedures requiring double angulated needle paths as in oncological interventions. Advances in knowledge: Accuracy of CBCT guidance has not been discussed before. CBCT guidance allows accurate needle placement irrespective of needle path complexity. For angulated and double-angulated needle paths, CBCT is more accurate than CT guidance. PMID:23913308

  10. Handling of long objects in iterative improvement of nonexact reconstruction in helical cone-beam CT.

    PubMed

    Magnusson, Maria; Danielsson, Per-Erik; Sunnegårdh, Johan

    2006-07-01

    In medical helical cone-beam CT, it is common that the region-of-interest (ROI) is contained inside the helix cylinder, while the complete object is long and extends outside the top and the bottom of the cylinder. This is the Long Object Problem. Analytical reconstruction methods for helical cone-beam CT have been designed to handle this problem. It has been shown that a moderate amount of over-scanning is sufficient for reconstruction of a certain ROI. The over-scanning projection rays travel both through the ROI, as well as outside the ROI. This is unfortunate for iterative methods since it seems impossible to compute accurate values for the projection rays which travel partly inside and partly outside the ROI. Therefore, it seems that the useful ROI will diminish for every iteration step. We propose the following solution to the problem. First, we reconstruct volume regions also outside the ROI. These volume regions will certainly be incompletely reconstructed, but our experimental results show that they serve well for projection generation. This is rather counter-intuitive and contradictory to our initial assumptions. Second, we use careful extrapolation and masking of projection data. This is not a general necessity, but needed for the chosen iterative algorithm, which includes rebinning and iterative filtered backprojection. Our idea here was to use an approximate reconstruction method which gives cone-beam artifacts and then improve the reconstructed result by iterative filtered backprojection. The experimental results seem very encouraging. The cone-beam artifacts can indeed be removed. Even voxels close to the boundary of the ROI are as well enhanced by the iterative loop as those in the middle of the ROI.

  11. An accurate scatter measurement and correction technique for cone beam breast CT imaging using scanning sampled measurement (SSM)technique

    NASA Astrophysics Data System (ADS)

    Liu, Xinming; Shaw, Chris C.; Wang, Tianpeng; Chen, Lingyun; Altunbas, Mustafa C.; Kappadath, S. Cheenu

    2006-03-01

    We developed and investigated a scanning sampled measurement (SSM) technique for scatter measurement and correction in cone beam breast CT imaging. A cylindrical polypropylene phantom (water equivalent) was mounted on a rotating table in a stationary gantry experimental cone beam breast CT imaging system. A 2-D array of lead beads, with the beads set apart about ~1 cm from each other and slightly tilted vertically, was placed between the object and x-ray source. A series of projection images were acquired as the phantom is rotated 1 degree per projection view and the lead beads array shifted vertically from one projection view to the next. A series of lead bars were also placed at the phantom edge to produce better scatter estimation across the phantom edges. Image signals in the lead beads/bars shadow were used to obtain sampled scatter measurements which were then interpolated to form an estimated scatter distribution across the projection images. The image data behind the lead bead/bar shadows were restored by interpolating image data from two adjacent projection views to form beam-block free projection images. The estimated scatter distribution was then subtracted from the corresponding restored projection image to obtain the scatter removed projection images. Our preliminary experiment has demonstrated that it is feasible to implement SSM technique for scatter estimation and correction for cone beam breast CT imaging. Scatter correction was successfully performed on all projection images using scatter distribution interpolated from SSM and restored projection image data. The resultant scatter corrected projection image data resulted in elevated CT number and largely reduced the cupping effects.

  12. Reduction of beam hardening artifacts in cone-beam CT imaging via SMART-RECON algorithm

    NASA Astrophysics Data System (ADS)

    Li, Yinsheng; Garrett, John; Chen, Guang-Hong

    2016-03-01

    When an automatic exposure control is introduced in C-arm cone beam CT data acquisition, the spectral inconsistencies between acquired projection data are exacerbated. As a result, conventional water/bone correction schemes are not as effective as in conventional diagnostic x-ray CT acquisitions with a fixed tube potential. In this paper, a new method was proposed to reconstruct several images with different degrees of spectral consistency and thus different levels of beam hardening artifacts. The new method relies neither on prior knowledge of the x-ray beam spectrum nor on prior compositional information of the imaging object. Numerical simulations were used to validate the algorithm.

  13. Evaluation of a 4D cone-beam CT reconstruction approach using a simulation framework.

    PubMed

    Hartl, Alexander; Yaniv, Ziv

    2009-01-01

    Current image-guided navigation systems for thoracic abdominal interventions utilize three dimensional (3D) images acquired at breath-hold. As a result they can only provide guidance at a specific point in the respiratory cycle. The intervention is thus performed in a gated manner, with the physician advancing only when the patient is at the same respiratory cycle in which the 3D image was acquired. To enable a more continuous workflow we propose to use 4D image data. We describe an approach to constructing a set of 4D images from a diagnostic CT acquired at breath-hold and a set of intraoperative cone-beam CT (CBCT) projection images acquired while the patient is freely breathing. Our approach is based on an initial reconstruction of a gated 4D CBCT data set. The 3D CBCT images for each respiratory phase are then non-rigidly registered to the diagnostic CT data. Finally the diagnostic CT is deformed based on the registration results, providing a 4D data set with sufficient quality for navigation purposes. In this work we evaluate the proposed reconstruction approach using a simulation framework. A 3D CBCT dataset of an anthropomorphic phantom is deformed using internal motion data acquired from an animal model to create a ground truth 4D CBCT image. Simulated projection images are then created from the 4D image and the known CBCT scan parameters. Finally, the original 3D CBCT and the simulated X-ray images are used as input to our reconstruction method. The resulting 4D data set is then compared to the known ground truth by normalized cross correlation(NCC). We show that the deformed diagnostic CTs are of better quality than the gated reconstructions with a mean NCC value of 0.94 versus a mean 0.81 for the reconstructions. PMID:19964143

  14. Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy

    SciTech Connect

    Paquin, Dana; Levy, Doron; Xing Lei

    2009-01-15

    Adaptive radiation therapy (ART) is the incorporation of daily images in the radiotherapy treatment process so that the treatment plan can be evaluated and modified to maximize the amount of radiation dose to the tumor while minimizing the amount of radiation delivered to healthy tissue. Registration of planning images with daily images is thus an important component of ART. In this article, the authors report their research on multiscale registration of planning computed tomography (CT) images with daily cone beam CT (CBCT) images. The multiscale algorithm is based on the hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese [Multiscale Model. Simul. 2(4), pp. 554-579 (2004)]. Registration is achieved by decomposing the images to be registered into a series of scales using the (BV, L{sup 2}) decomposition and initially registering the coarsest scales of the image using a landmark-based registration algorithm. The resulting transformation is then used as a starting point to deformably register the next coarse scales with one another. This procedure is iterated at each stage using the transformation computed by the previous scale registration as the starting point for the current registration. The authors present the results of studies of rectum, head-neck, and prostate CT-CBCT registration, and validate their registration method quantitatively using synthetic results in which the exact transformations our known, and qualitatively using clinical deformations in which the exact results are not known.

  15. Variation of patient imaging doses with scanning parameters for linac-integrated kilovoltage cone beam CT.

    PubMed

    Liao, Xiongfei; Wang, Yunlai; Lang, Jinyi; Wang, Pei; Li, Jie; Ge, Ruigang; Yang, Jack

    2015-01-01

    To evaluate the Elekta kilovoltage CBCT doses and the associated technical protocols with patient dosimetry estimation. Image guidance technique with cone-beam CT (CBCT) in radiation oncology on a daily basis can deliver a significant dose to the patient. To evaluate the patient dose from LINAC-integrated kV cone beam CT imaging in image-guided radiotherapy. CT dose index (CTDI) were measured with PTW TM30009 CT ion chamber in air, in head phantom and body phantom, respectively; with different combinations of tube voltage, current, exposure time per frame, collimator and gantry rotation range. Dose length products (DLP) were subsequently calculated to account for volume integration effects. The CTDI and DLP were also compared to AcQSim™ simulator CT for routine clinical protocols. Both CTDIair and CTDIw depended quadratically on the voltage, while linearly on milliampere x seconds (mAs) settings. It was shown that CTDIw and DLP had very close relationship with the collimator settings and the gantry rotation ranges. Normalized CTDIw for Elekta XVI™ CBCT was lower than that of ACQSim simulator CT owing to its pulsed radiation output characteristics. CTDIw can be used to assess the patient dose in CBCT due to its simplicity for measurement and reproducibility. Regular measurement should be performed in QA & QC program. Optimal image parameters should be chosen to reduce patient dose during CBCT. PMID:26405932

  16. Deformable planning CT to cone-beam CT image registration in head-and-neck cancer

    SciTech Connect

    Hou Jidong; Guerrero, Mariana; Chen, Wenjuan; D'Souza, Warren D.

    2011-04-15

    Purpose: The purpose of this work was to implement and validate a deformable CT to cone-beam computed tomography (CBCT) image registration method in head-and-neck cancer to eventually facilitate automatic target delineation on CBCT. Methods: Twelve head-and-neck cancer patients underwent a planning CT and weekly CBCT during the 5-7 week treatment period. The 12 planning CT images (moving images) of these patients were registered to their weekly CBCT images (fixed images) via the symmetric force Demons algorithm and using a multiresolution scheme. Histogram matching was used to compensate for the intensity difference between the two types of images. Using nine known anatomic points as registration targets, the accuracy of the registration was evaluated using the target registration error (TRE). In addition, region-of-interest (ROI) contours drawn on the planning CT were morphed to the CBCT images and the volume overlap index (VOI) between registered contours and manually delineated contours was evaluated. Results: The mean TRE value of the nine target points was less than 3.0 mm, the slice thickness of the planning CT. Of the 369 target points evaluated for registration accuracy, the average TRE value was 2.6{+-}0.6 mm. The mean TRE for bony tissue targets was 2.4{+-}0.2 mm, while the mean TRE for soft tissue targets was 2.8{+-}0.2 mm. The average VOI between the registered and manually delineated ROI contours was 76.2{+-}4.6%, which is consistent with that reported in previous studies. Conclusions: The authors have implemented and validated a deformable image registration method to register planning CT images to weekly CBCT images in head-and-neck cancer cases. The accuracy of the TRE values suggests that they can be used as a promising tool for automatic target delineation on CBCT.

  17. Contrast-to-noise ratio improvement in volume-of-interest cone beam breast CT

    NASA Astrophysics Data System (ADS)

    Shen, Youtao; Liu, Xinming; Lai, Chao-Jen; Zhong, Yuncheng; Yi, Ying; You, Zhicheng; Wang, Tianpeng; Shaw, Chris C.

    2012-03-01

    In this study, we demonstrated the contrast-to-noise ratio (CNR) improvement in breast cone beam CT (CBCT) using the volume-of-interest (VOI) scanning technique. In VOI breast CBCT, the breast is first scanned at a low exposure level. A pre-selected VOI is then scanned at a higher exposure level with collimated x-rays. The two image sets are combined together to reconstruct high quality 3-D images of the VOI. A flat panel detector based system was built to demonstrate and investigate the CNR improvement in VOI breast CBCT. The CNRs of the 8 plastic cones (Teflon, Delrin, polycarbonate, Lucite, solid water, high density polystyrene, nylon and polystyrene) in a breast phantom were measured in images obtained with the VOI CBCT technique and compared to those measured in standard full field CBCT images. CNRs in VOI CBCT images were found to be higher than those in regular CBCT images in all plastic cones. The mean glandular doses (MGDs) from the combination of a high exposure VOI scan and a low exposure full-field scan was estimated to be similar to that from regular full-field scan at standard exposure level. The VOI CBCT technique allows a VOI to be imaged with enhanced image quality with an MGD similar to that from regular CBCT technique.

  18. High-performance soft-tissue imaging in extremity cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Muhit, A.; Thawait, G.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2014-03-01

    Purpose: Clinical performance studies of an extremity cone-beam CT (CBCT) system indicate excellent bone visualization, but point to the need for improvement of soft-tissue image quality. To this end, a rapid Monte Carlo (MC) scatter correction is proposed, and Penalized Likelihood (PL) reconstruction is evaluated for noise management. Methods: The accelerated MC scatter correction involved fast MC simulation with low number of photons implemented on a GPU (107 photons/sec), followed by Gaussian kernel smoothing in the detector plane and across projection angles. PL reconstructions were investigated for reduction of imaging dose for projections acquired at ~2 mGy. Results: The rapid scatter estimation yielded root-mean-squared-errors of scatter projections of ~15% of peak scatter intensity for 5ṡ106 photons/projection (runtime ~0.5 sec/projection) and 25% improvement in fat-muscle contrast in reconstructions of a cadaveric knee. PL reconstruction largely restored soft-tissue visualization at 2 mGy dose to that of 10 mGy FBP image. Conclusion: The combination of rapid (5-10 minutes/scan) MC-based, patient-specific scatter correction and PL reconstruction offers an important means to overcome the current limitations of extremity CBCT in soft-tissue imaging.

  19. Clinical Implementation Of Megavoltage Cone Beam CT As Part Of An IGRT Program

    SciTech Connect

    Gonzalez, Albin; Kinney, Vicki; Crooks, Cheryl; Bauer, Lisa

    2008-03-13

    Knowing where the tumor is at all times during treatment is the next challenge in the field of radiation therapy. This issue has become more important because with treatments such as Intensity Modulated Radiation Therapy (IMRT), healthy tissue is spared by using very tight margins around the tumor. These tight margins leave very small room for patient setup errors. The use of an imaging modality in the treatment room as a way to localize the tumor for patient set up is generally known as 'Image Guided Radiation Therapy' or IGRT. This article deals with a form of IGRT known as Megavoltage Cone Beam Computed Tomography (MCBCT) using a Siemens Oncor linear accelerator currently in use at Firelands Regional Medical Center. With MCBCT, we are capable of acquiring CT images right before the treatment of the patient and then use this information to position the patient tumor according to the treatment plan. This article presents the steps followed in order to clinically implement this system, as well as some of the quality assurance tests suggested by the manufacturer and some tests developed in house.

  20. Breast density quantification with cone-beam CT: a post-mortem study.

    PubMed

    Johnson, Travis; Ding, Huanjun; Le, Huy Q; Ducote, Justin L; Molloi, Sabee

    2013-12-01

    Forty post-mortem breasts were imaged with a flat-panel based cone-beam x-ray CT system at 50 kVp. The feasibility of breast density quantification has been investigated using standard histogram thresholding and an automatic segmentation method based on the fuzzy c-means algorithm (FCM). The breasts were chemically decomposed into water, lipid, and protein immediately after image acquisition was completed. The per cent fibroglandular volume (%FGV) from chemical analysis was used as the gold standard for breast density comparison. Both image-based segmentation techniques showed good precision in breast density quantification with high linear coefficients between the right and left breast of each pair. When comparing with the gold standard using %FGV from chemical analysis, Pearson's r-values were estimated to be 0.983 and 0.968 for the FCM clustering and the histogram thresholding techniques, respectively. The standard error of the estimate was also reduced from 3.92% to 2.45% by applying the automatic clustering technique. The results of the postmortem study suggested that breast tissue can be characterized in terms of water, lipid and protein contents with high accuracy by using chemical analysis, which offers a gold standard for breast density studies comparing different techniques. In the investigated image segmentation techniques, the FCM algorithm had high precision and accuracy in breast density quantification. In comparison to conventional histogram thresholding, it was more efficient and reduced inter-observer variation.

  1. Cupping artifacts analysis and correction for a FPD-based cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Gao, Hewei; Li, Shuanglei; Chen, Zhiqiang; Xing, Yuxiang

    2006-02-01

    Cupping artifact is one of the most serious problems in a middle-low energy X-ray Flat panel detector (FPD)-based cone beam CT system. Both beam hardening effects and scatter could induce cupping artifacts in reconstructions and degrade image quality. In this paper, a two-step cupping-correction method is proposed to eliminate cupping: 1) scatter removal; 2) beam hardening correction. By experimental measurement using Beam Stop Array (BSA), the X-ray scatter distribution of a specific object is estimated in the projection image. After interpolation and subtraction, the primary intensity of the projection image is computed. The scatter distribution can also be obtained using convolution with a low-pass filter as kernel. The linearization is used as beam hardening correction method for one-material object. For two-material cylindrical objects, a new approach without iteration involved is present. There are three processes in this approach. Firstly, correct raw projections by the mapping function of the outer material. Secondly, reconstruct the cross-section image from the modified projections. Finally, scale the image by a simple weighting function. After scatter removal and beam hardening correction, the cupping artifacts are well removed, and the contrast of the reconstructed image is remarkably improved.

  2. A quality assurance program for image quality of cone-beam CT guidance in radiation therapy

    SciTech Connect

    Bissonnette, Jean-Pierre; Moseley, Douglas J.; Jaffray, David A.

    2008-05-15

    The clinical introduction of volumetric x-ray image-guided radiotherapy systems necessitates formal commissioning of the hardware and image-guided processes to be used and drafts quality assurance (QA) for both hardware and processes. Satisfying both requirements provides confidence on the system's ability to manage geometric variations in patient setup and internal organ motion. As these systems become a routine clinical modality, the authors present data from their QA program tracking the image quality performance of ten volumetric systems over a period of 3 years. These data are subsequently used to establish evidence-based tolerances for a QA program. The volumetric imaging systems used in this work combines a linear accelerator with conventional x-ray tube and an amorphous silicon flat-panel detector mounted orthogonally from the accelerator central beam axis, in a cone-beam computed tomography (CBCT) configuration. In the spirit of the AAPM Report No. 74, the present work presents the image quality portion of their QA program; the aspects of the QA protocol addressing imaging geometry have been presented elsewhere. Specifically, the authors are presenting data demonstrating the high linearity of CT numbers, the uniformity of axial reconstructions, and the high contrast spatial resolution of ten CBCT systems (1-2 mm) from two commercial vendors. They are also presenting data accumulated over the period of several months demonstrating the long-term stability of the flat-panel detector and of the distances measured on reconstructed volumetric images. Their tests demonstrate that each specific CBCT system has unique performance. In addition, scattered x rays are shown to influence the imaging performance in terms of spatial resolution, axial reconstruction uniformity, and the linearity of CT numbers.

  3. GPU-accelerated regularized iterative reconstruction for few-view cone beam CT

    SciTech Connect

    Matenine, Dmitri; Goussard, Yves

    2015-04-15

    Purpose: The present work proposes an iterative reconstruction technique designed for x-ray transmission computed tomography (CT). The main objective is to provide a model-based solution to the cone-beam CT reconstruction problem, yielding accurate low-dose images via few-views acquisitions in clinically acceptable time frames. Methods: The proposed technique combines a modified ordered subsets convex (OSC) algorithm and the total variation minimization (TV) regularization technique and is called OSC-TV. The number of subsets of each OSC iteration follows a reduction pattern in order to ensure the best performance of the regularization method. Considering the high computational cost of the algorithm, it is implemented on a graphics processing unit, using parallelization to accelerate computations. Results: The reconstructions were performed on computer-simulated as well as human pelvic cone-beam CT projection data and image quality was assessed. In terms of convergence and image quality, OSC-TV performs well in reconstruction of low-dose cone-beam CT data obtained via a few-view acquisition protocol. It compares favorably to the few-view TV-regularized projections onto convex sets (POCS-TV) algorithm. It also appears to be a viable alternative to full-dataset filtered backprojection. Execution times are of 1–2 min and are compatible with the typical clinical workflow for nonreal-time applications. Conclusions: Considering the image quality and execution times, this method may be useful for reconstruction of low-dose clinical acquisitions. It may be of particular benefit to patients who undergo multiple acquisitions by reducing the overall imaging radiation dose and associated risks.

  4. Computer aided breast calcification auto-detection in cone beam breast CT

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohua; Ning, Ruola; Liu, Jiangkun

    2010-03-01

    In Cone Beam Breast CT (CBBCT), breast calcifications have higher intensities than the surrounding tissues. Without the superposition of breast structures, the three-dimensional distribution of the calcifications can be revealed. In this research, based on the fact that calcifications have higher contrast, a local thresholding and a histogram thresholding were used to select candidate calcification areas. Six features were extracted from each candidate calcification: average foreground CT number value, foreground CT number standard deviation, average background CT number value, background CT number standard deviation, foreground-background contrast, and average edge gradient. To reduce the false positive candidate calcifications, a feed-forward back propagation artificial neural network was designed. The artificial neural network was trained with the radiologists confirmed calcifications and used as classifier in the calcification auto-detection task. In the preliminary experiments, 90% of the calcifications in the testing data sets were detected correctly with an average of 10 false positives per data set.

  5. Performance Characteristics and Quality Assurance Aspects of Kilovoltage Cone-Beam CT on Medical Linear Accelerator

    SciTech Connect

    Saw, Cheng B. . E-mail: cbsaw2003@yahoo.com; Yang, Yong; Li Fang; Yue, Ning J.; Ding Chuxiong; Komanduri, Krishna; Huq, Saiful; Heron, Dwight E.

    2007-07-01

    A medical linear accelerator equipped with optical position tracking, ultrasound imaging, portal imaging, and radiographic imaging systems was installed at University of Pittsburgh Cancer Institute for the purpose of performing image-guided radiation therapy (IGRT) and image-guided radiosurgery (IGRS) in October 2005. We report the performance characteristics and quality assurance aspects of the kilovoltage cone-beam computed tomography (kV-CBCT) technique. This radiographic imaging system consists of a kilovoltage source and a large-area flat panel amorphous silicon detector mounted on the gantry of the medical linear accelerator via controlled arms. The performance characteristics and quality assurance aspects of this kV-CBCT technique involves alignment of the kilovoltage imaging system to the isocenter of the medical linear accelerator and assessment of (a) image contrast, (b) spatial accuracy of the images, (c) image uniformity, and (d) computed tomography (CT)-to-electron density conversion relationship were investigated. Using the image-guided tools, the alignment of the radiographic imaging system was assessed to be within a millimeter. The low-contrast resolution was found to be a 6-mm diameter hole at 1% contrast level and high-contrast resolution at 9 line pairs per centimeter. The spatial accuracy (50 mm {+-} 1%), slice thickness (2.5 mm and 5.0 mm {+-} 5%), and image uniformity ({+-} 20 HU) were found to be within the manufacturer's specifications. The CT-to-electron density relationship was also determined. By using well-designed procedures and phantom, the number of parameter checks for quality assurance of the IGRT system can be carried out in a relatively short time.

  6. Deformable registration of CT and cone-beam CT by local CBCT intensity correction

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Plishker, William; Shekhar, Raj; Quon, Harry; Wong, John; Lee, Junghoon

    2015-03-01

    In this paper, we propose a method to accurately register CT to cone-beam CT (CBCT) by iteratively correcting local CBCT intensity. CBCT is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. To address this issue, we correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. This correction-registration step is repeated until the result image converges. We tested the proposed method on eight head-and-neck cancer cases and compared its performance with state-of-the-art registration methods, Bspline, demons, and optical flow, which are widely used for CT-CBCT registration. Normalized mutual-information (NMI), normalized cross-correlation (NCC), and structural similarity (SSIM) were computed as similarity measures for the performance evaluation. Our method produced overall NMI of 0.59, NCC of 0.96, and SSIM of 0.93, outperforming existing methods by 3.6%, 2.4%, and 2.8% in terms of NMI, NCC, and SSIM scores, respectively. Experimental results show that our method is more consistent and roust than existing algorithms, and also computationally efficient with faster convergence.

  7. Radiographic observers' ability to recognize patient movement during cone beam CT

    PubMed Central

    Matzen, L H; Schropp, L; Liedke, G S; Gotfredsen, E; Wenzel, A

    2014-01-01

    Objectives: To assess radiographic observers' ability to recognize patient movement during cone beam CT and to decide early termination of the examination. Methods: 100 patients were video-recorded during cone beam CT examination. Patients' videos were cropped twice: fitting the active 20-s examination time or the initial non-radiation 3 s of the examination. x- and y-coordinates of pre-defined points marked on the patient's face were used to define the reference standard for movement in the 20-s videos. A sample of 40 non-moving and 20 moving patients was selected. Eight observers scored the videos. The 3-s videos were scored: 0, the patient did not move; 1, the patient moved and the examination should be terminated. The 20-s videos were scored: 0, the patient did not move; 1, the patient moved. Re-assessment of 15% of the videos provided intra-observer reproducibility. The 20-s videos were compared with the reference standard providing sensitivity and specificity values (movement/non-movement recognition). The scores of the 3-s videos were compared with the scores of the 20-s videos. Results: Intra- and interobserver reproducibility ranged from substantial to almost perfect for both videos. The 20-s videos allowed patient movement recognition with a high specificity and a medium to high sensitivity. The 3-s videos allowed early termination of the examination with a small number of incorrect positive scores. The majority of the patients scored as moving in the 20-s videos were detected in the 3-s videos. Conclusions: By observing video recordings, trained observers are able to recognize patient movement during cone beam CT examination with high specificity and to decide an early termination of the examination. PMID:24660954

  8. 3D In Vivo Dosimetry Using Megavoltage Cone-Beam CT and EPID Dosimetry

    SciTech Connect

    Elmpt, Wouter van Nijsten, Sebastiaan; Petit, Steven; Mijnheer, Ben; Lambin, Philippe; Dekker, Andre

    2009-04-01

    Purpose: To develop a method that reconstructs, independently of previous (planning) information, the dose delivered to patients by combining in-room imaging with transit dose measurements during treatment. Methods and Materials: A megavoltage cone-beam CT scan of the patient anatomy was acquired with the patient in treatment position. During treatment, delivered fields were measured behind the patient with an electronic portal imaging device. The dose information in these images was back-projected through the cone-beam CT scan and used for Monte Carlo simulation of the dose distribution inside the cone-beam CT scan. Validation was performed using various phantoms for conformal and IMRT plans. Clinical applicability is shown for a head-and-neck cancer patient treated with IMRT. Results: For single IMRT beams and a seven-field IMRT step-and-shoot plan, the dose distribution was reconstructed within 3%/3mm compared with the measured or planned dose. A three-dimensional conformal plan, verified using eight point-dose measurements, resulted in a difference of 1.3 {+-} 3.3% (1 SD) compared with the reconstructed dose. For the patient case, planned and reconstructed dose distribution was within 3%/3mm for about 95% of the points within the 20% isodose line. Reconstructed mean dose values, obtained from dose-volume histograms, were within 3% of prescribed values for target volumes and normal tissues. Conclusions: We present a new method that verifies the dose delivered to a patient by combining in-room imaging with the transit dose measured during treatment. This verification procedure opens possibilities for offline adaptive radiotherapy and dose-guided radiotherapy strategies taking into account the dose distribution delivered during treatment sessions.

  9. Small field of view cone beam CT temporomandibular joint imaging dosimetry

    PubMed Central

    Lukat, T D; Wong, J C M; Lam, E W N

    2013-01-01

    Objectives: Cone beam CT (CBCT) is generally accepted as the imaging modality of choice for visualisation of the osseous structures of the temporomandibular joint (TMJ). The purpose of this study was to compare the radiation dose of a protocol for CBCT TMJ imaging using a large field of view Hitachi CB MercuRay™ unit (Hitachi Medical Systems, Tokyo, Japan) with an alternative approach that utilizes two CBCT acquisitions of the right and left TMJs using the Kodak 9000® 3D system (Carestream, Rochester, NY). Methods: 25 optically stimulated luminescence dosemeters were placed in various locations of an anthropomorphic RANDO® Man phantom (Alderson Research Laboratories, Stanford, CT). Dosimetric measurements were performed for each technique, and effective doses were calculated using the 2007 International Commission on Radiological Protection tissue weighting factor recommendations for all protocols. Results: The radiation effective dose for the CB MercuRay technique was 223.6 ± 1.1 μSv compared with 9.7 ± 0.1 μSv (child), 13.5 ± 0.9 μSv (adolescent/small adult) and 20.5 ± 1.3 μSv (adult) for the bilateral Kodak acquisitions. Conclusions: Acquisitions of individual right and left TMJ volumes using the Kodak 9000 3D CBCT imaging system resulted in a more than ten-fold reduction in the effective dose compared with the larger single field acquisition with the Hitachi CB MercuRay. This decrease is made even more significant when lower tube potential and tube current settings are used. PMID:24048693

  10. Cone beam CT dosimetry: A unified and self-consistent approach including all scan modalities—With or without phantom motion

    PubMed Central

    Dixon, Robert L.; Boone, John M.

    2010-01-01

    Purpose: This article describes a common methodology and measurement technique, encompassing both conventional (helical and axial) CT scanning using phantom translation and cone beam (or narrow fan beam) CT scans about a stationary phantom. Cone beam CT systems having beam widths along the z-axis wide enough to cover a significant anatomical length (50–160 mm) in a single axial rotation (e.g., in cardiac CT) are rapidly proliferating in the clinic, referred to herein as stationary cone beam CT (SCBCT). The integral format of the CTDI paradigm is not appropriate for a stationary phantom, and is not useful for predicting the dose in SCBCT, nor for perfusion studies or CT fluoroscopy. Likewise, the pencil chamber has limited utility in this domain (even one of extended length). Methods: By demonstrating, both experimentally and theoretically, the match between the dose distribution f(z) for a wide cone beam and that due to an axial scan series D˜(z), it is shown that the dose on the central ray of the cone beam f(0) is both spatially colocated and numerically equal to the dose predicted by CTDI for the axial series; and thus f(0) is the logical (and unique) choice for a SCBCT dose-descriptor consistent with the CTDI-based dose of conventional CT. This dose f(0) can be readily measured using a conventional (short) ionization chamber. Additionally, Monte Carlo simulations of Boone [J. M. Boone, “Dose spread functions in computed tomography: A Monte Carlo study,” Med. Phys. 36, 4547–4554 (2009)], expressed as a scatter LSF (or DSF), allow the application of a convolution-based model [R. L. Dixon, M. T. Munley, and E. Bayram, “An improved analytical model for CT dose simulation with a new look at the theory of CT dose,” Med. Phys. 32, 3712–3728 (2005)] of the axial dose profile f(z) for any primary beam width a (anyn×T), fan beam and cone beam alike, from a single LSF kernel; its simple form allows the results to be expressed as simple analytical equations

  11. High-performance C-arm cone-beam CT guidance of thoracic surgery

    NASA Astrophysics Data System (ADS)

    Schafer, Sebastian; Otake, Yoshito; Uneri, Ali; Mirota, Daniel J.; Nithiananthan, Sajendra; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Graumann, Rainer; Sussman, Marc; Siewerdsen, Jeffrey H.

    2012-02-01

    Localizing sub-palpable nodules in minimally invasive video-assisted thoracic surgery (VATS) presents a significant challenge. To overcome inherent problems of preoperative nodule tagging using CT fluoroscopic guidance, an intraoperative C-arm cone-beam CT (CBCT) image-guidance system has been developed for direct localization of subpalpable tumors in the OR, including real-time tracking of surgical tools (including thoracoscope), and video-CBCT registration for augmentation of the thoracoscopic scene. Acquisition protocols for nodule visibility in the inflated and deflated lung were delineated in phantom and animal/cadaver studies. Motion compensated reconstruction was implemented to account for motion induced by the ventilated contralateral lung. Experience in CBCT-guided targeting of simulated lung nodules included phantoms, porcine models, and cadavers. Phantom studies defined low-dose acquisition protocols providing contrast-to-noise ratio sufficient for lung nodule visualization, confirmed in porcine specimens with simulated nodules (3-6mm diameter PE spheres, ~100-150HU contrast, 2.1mGy). Nodule visibility in CBCT of the collapsed lung, with reduced contrast according to air volume retention, was more challenging, but initial studies confirmed visibility using scan protocols at slightly increased dose (~4.6-11.1mGy). Motion compensated reconstruction employing a 4D deformation map in the backprojection process reduced artifacts associated with motion blur. Augmentation of thoracoscopic video with renderings of the target and critical structures (e.g., pulmonary artery) showed geometric accuracy consistent with camera calibration and the tracking system (2.4mm registration error). Initial results suggest a potentially valuable role for CBCT guidance in VATS, improving precision in minimally invasive, lungconserving surgeries, avoid critical structures, obviate the burdens of preoperative localization, and improve patient safety.

  12. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    SciTech Connect

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; and others

    2011-04-15

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm compared to (3.5{+-}3.0) mm

  13. Evaluation of a physical based approach of scattered radiation correction in cone beam CT with an anthropomorphic thorax phantom

    NASA Astrophysics Data System (ADS)

    Rinkel, Jean; Gerfault, Laurent; Estève, François; Dinten, Jean-Marc

    2006-03-01

    Cone beam Computed Tomography (CBCT) enables three-dimensional imaging with isotropic resolution. X-rays scatter estimation is a big challenge for quantitative CBCT imaging of thorax: scatter level is significantly higher on cone beam systems compared to collimated fan beam systems. The effects of this scattered radiation are cupping artifacts, streaks, and quantification inaccuracies. In this paper, an original scatter management process on tomographic projections without supplementary on-line acquisitions is presented. The correction method is based on scatter calibration through off-line acquisitions, combined to an on-line analytical transformation issued from physical equations to adapt calibration to the observed object. Evaluations of the method were performed on an anthropomorphic thorax phantom. First, tomographic acquisitions were performed with a flat panel detector. Reconstructed volume obtained with the proposed scatter correction method has been compared with the one obtained through a classical beam stops method. Secondly, reconstructed volume has been compared with the one obtained through a fan beam system (Philips multi slice CT scanner). The new method provided results in good agreement with the beam stops approach and with the multi slice CT scanner, suppressing cupping artifacts and improving quantification significantly. Compared to the beam stops method, lower X-rays doses (divided by a factor 9) and shorter acquisition times were needed.

  14. Volume-of-change cone-beam CT for image-guided surgery

    NASA Astrophysics Data System (ADS)

    Lee, Junghoon; Webster Stayman, J.; Otake, Yoshito; Schafer, Sebastian; Zbijewski, Wojciech; Khanna, A. Jay; Prince, Jerry L.; Siewerdsen, Jeffrey H.

    2012-08-01

    C-arm cone-beam CT (CBCT) can provide intraoperative 3D imaging capability for surgical guidance, but workflow and radiation dose are the significant barriers to broad utilization. One main reason is that each 3D image acquisition requires a complete scan with a full radiation dose to present a completely new 3D image every time. In this paper, we propose to utilize patient-specific CT or CBCT as prior knowledge to accurately reconstruct the aspects of the region that have changed by the surgical procedure from only a sparse set of x-rays. The proposed methods consist of a 3D-2D registration between the prior volume and a sparse set of intraoperative x-rays, creating digitally reconstructed radiographs (DRRs) from the registered prior volume, computing difference images by subtracting DRRs from the intraoperative x-rays, a penalized likelihood reconstruction of the volume of change (VOC) from the difference images, and finally a fusion of VOC reconstruction with the prior volume to visualize the entire surgical field. When the surgical changes are local and relatively small, the VOC reconstruction involves only a small volume size and a small number of projections, allowing less computation and lower radiation dose than is needed to reconstruct the entire surgical field. We applied this approach to sacroplasty phantom data obtained from a CBCT test bench and vertebroplasty data with a fresh cadaver acquired from a C-arm CBCT system with a flat-panel detector. The VOCs were reconstructed from a varying number of images (10-66 images) and compared to the CBCT ground truth using four different metrics (mean squared error, correlation coefficient, structural similarity index and perceptual difference model). The results show promising reconstruction quality with structural similarity to the ground truth close to 1 even when only 15-20 images were used, allowing dose reduction by the factor of 10-20.

  15. Reducing metal artifacts in cone-beam CT images by preprocessing projection data

    SciTech Connect

    Zhang Yongbin; Zhang Lifei; Zhu, X. Ronald; Lee, Andrew K.; Chambers, Mark; Dong Lei . E-mail: ldong@mdanderson.org

    2007-03-01

    Purpose: Computed tomography (CT) streak artifacts caused by metallic implants remain a challenge for the automatic processing of image data. The impact of metal artifacts in the soft-tissue region is magnified in cone-beam CT (CBCT), because the soft-tissue contrast is usually lower in CBCT images. The goal of this study was to develop an effective offline processing technique to minimize the effect. Methods and Materials: The geometry calibration cue of the CBCT system was used to track the position of the metal object in projection views. The three-dimensional (3D) representation of the object can be established from only two user-selected viewing angles. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used followed by a Laplacian diffusion method to replace the pixels inside the metal object with the boundary pixels. The modified projection data were then used to reconstruct a new CBCT image. The procedure was tested in phantoms, prostate cancer patients with implanted gold markers and metal prosthesis, and a head-and-neck patient with dental amalgam in the teeth. Results: Both phantom and patient studies demonstrated that the procedure was able to minimize the metal artifacts. Soft-tissue visibility was improved near or away from the metal object. The processing time was 1-2 s per projection. Conclusion: We have implemented an effective metal artifact-suppressing algorithm to improve the quality of CBCT images.

  16. A novel research platform for electromagnetic navigated bronchoscopy using cone beam CT imaging and an animal model.

    PubMed

    Leira, Håkon Olav; Amundsen, Tore; Tangen, Geir Arne; Bø, Lars Eirik; Manstad-Hulaas, Frode; Langø, Thomas

    2011-01-01

    Electromagnetic guided bronchoscopy is a new field of research, essential for the development of advanced investigation of the airways and lung tissue. Consecutive problem-based solutions and refinements are urgent requisites to achieve improvements. For that purpose, our intention is to build a complete research platform for electromagnetic guided bronchoscopy. The experimental interventional electromagnetic field tracking system in conjunction with a C-arm cone beam CT unit is presented in this paper. The animal model and the navigation platform performed well and the aims were achieved; the 3D localization of foreign bodies and their navigated and tracked removal, assessment of tracking accuracy that showed a high level of precision, and assessment of image quality. The platform may prove to be a suitable platform for further research and development and a full-fledged electromagnetic guided bronchoscopy navigation system. The inclusion of the C-arm cone beam CT unit in the experimental setup adds a number of new possibilities for diagnostic procedures and accuracy measurements. Among other future challenges that need to be solved are the interaction between the C-arm and the electromagnetic navigation field, as we demonstrate in this feasibility study.

  17. Task-based modeling and optimization of a cone-beam CT scanner for musculoskeletal imaging

    SciTech Connect

    Prakash, P.; Zbijewski, W.; Gang, G. J.; Ding, Y.; Stayman, J. W.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2011-10-15

    Purpose: This work applies a cascaded systems model for cone-beam CT imaging performance to the design and optimization of a system for musculoskeletal extremity imaging. The model provides a quantitative guide to the selection of system geometry, source and detector components, acquisition techniques, and reconstruction parameters. Methods: The model is based on cascaded systems analysis of the 3D noise-power spectrum (NPS) and noise-equivalent quanta (NEQ) combined with factors of system geometry (magnification, focal spot size, and scatter-to-primary ratio) and anatomical background clutter. The model was extended to task-based analysis of detectability index (d') for tasks ranging in contrast and frequency content, and d' was computed as a function of system magnification, detector pixel size, focal spot size, kVp, dose, electronic noise, voxel size, and reconstruction filter to examine trade-offs and optima among such factors in multivariate analysis. The model was tested quantitatively versus the measured NPS and qualitatively in cadaver images as a function of kVp, dose, pixel size, and reconstruction filter under conditions corresponding to the proposed scanner. Results: The analysis quantified trade-offs among factors of spatial resolution, noise, and dose. System magnification (M) was a critical design parameter with strong effect on spatial resolution, dose, and x-ray scatter, and a fairly robust optimum was identified at M {approx} 1.3 for the imaging tasks considered. The results suggested kVp selection in the range of {approx}65-90 kVp, the lower end (65 kVp) maximizing subject contrast and the upper end maximizing NEQ (90 kVp). The analysis quantified fairly intuitive results--e.g., {approx}0.1-0.2 mm pixel size (and a sharp reconstruction filter) optimal for high-frequency tasks (bone detail) compared to {approx}0.4 mm pixel size (and a smooth reconstruction filter) for low-frequency (soft-tissue) tasks. This result suggests a specific protocol for

  18. Investigation of noise and contrast sensitivity of an electron multiplying charge-coupled device (EMCCD) based cone beam micro-CT system

    NASA Astrophysics Data System (ADS)

    Bysani Krishnakumar, Sumukh; Podgorsak, Alexander R.; Setlur Nagesh, S. V.; Jain, Amit; Rudin, Stephen; Bednarek, Daniel R.; Ionita, Ciprian N.

    2016-03-01

    A small animal micro-CT system was built using an EMCCD detectors having complex pre-digitization amplification technology, high-resolution, high-sensitivity and low-noise. Noise in CBCT reconstructed images when using predigitization amplification behaves differently than commonly used detectors and warrants a detailed investigation. In this study, noise power and contrast sensitivity were estimated for the newly built system. Noise analysis was performed by scanning a water phantom. Tube voltage was lowered to minimum delivered by the tube (20 kVp and 0.5 mA) and detector gain was varied. Contrast sensitivity was analyzed by using a phantom containing different iodine contrast solutions (20% to 70%) filled in six different tubes. First, we scanned the phantom using various x-ray exposures at 40 kVp while changing the gain to maintain the background air value of the projection images constant. Next, the exposure was varied while the detector gain was maintained constant. Radial NPS plots show that noise power level increases as gain increases. Contrast sensitivity was analyzed by calculating ratio of signal-to-noise ratios (SNR) for increased gain with those of low constant gain at each exposure. The SNR value at low constant gain was always lower than SNR of high detector gain at all x-ray settings and iodine contrast. The largest increase of SNR approached 1.3 for low contrast feature for an iodine concentration of 20%. Despite an increase in noise level as gain increases, the SNR improvement shows that signal level also increases because of the unique on-chip gain of the detector.

  19. Presentation of floating mass transducer and Vibroplasty couplers on CT and cone beam CT.

    PubMed

    Mlynski, Robert; Nguyen, Thi Dao; Plontke, Stefan K; Kösling, Sabrina

    2014-04-01

    Various titanium coupling elements, Vibroplasty Couplers, maintaining the attachment of the Floating Mass Transducer (FMT) of the active middle ear implant Vibrant Soundbridge (VSB) to the round window, the stapes suprastructure or the stapes footplate are in use to optimally transfer energy from the FMT to the inner ear fluids. In certain cases it is of interest to radiologically verify the correct position of the FMT coupler assembly. The imaging appearance of FMT connected to these couplers, however, is not well known. The aim of this study was to present the radiological appearance of correctly positioned Vibroplasty Couplers together with the FMT using two different imaging techniques. Vibroplasty Couplers were attached to the FMT of a Vibrant Soundbridge and implanted in formalin fixed human temporal bones. Five FMT coupler assemblies were implanted in different positions: conventionally to the incus, a Bell-Coupler, a CliP-Coupler, a Round Window-Coupler and an Oval Window-Coupler. High spatial resolution imaging with Multi-Detector CT (MDCT) and Cone Beam CT (CBCT) was performed in each specimen. Images were blind evaluated by two radiologists on a visual basis. Middle ear details, identification of FMT and coupler, position of FMT coupler assembly and artefacts were assessed. CBCT showed a better spatial resolution and a higher visual image quality than MDCT, but there was no significant advantage over MDCT in delineating the structures or the temporal bone of the FMT Coupler assemblies. The FMT with its coupler element could be clearly identified in the two imaging techniques. The correct positioning of the FMT and all types of couplers could be demonstrated. Both methods, MDCT and CBCT, are appropriate methods for postoperative localization of FMT in combination with Vibroplasty Couplers and for verifying their correct position. If CBCT is available, this method is recommended due to the better spatial resolution and less metal artifacts. PMID:23529745

  20. Image quality assessment of three cone beam CT machines using the SEDENTEXCT CT phantom

    PubMed Central

    Bamba, J; Araki, K; Endo, A; Okano, T

    2013-01-01

    Objectives: The SEDENTEXCT Project proposed quality assurance (QA) methods and introduced a QA image quality phantom. A new prototype was recently introduced that may be improved according to previous reports. The purpose of this study is to evaluate image quality in various protocols of three cone beam CT (CBCT) machines using the proposed QA phantom. Methods: Using three CBCT machines, nine image quality parameters, including image homogeneity (noise), uniformity, geometrical distortion, pixel intensity value, contrast resolution, spatial resolution [line pair (LP) chart, point spread function (PSF) and modulation transfer function (MTF)] and metal artefacts, were evaluated using a QA phantom proposed by SEDENTEXCT. Exposure parameters, slice thickness and field of view position changed variously, and the number of total protocols was 22. Results: Many protocols showed a uniform gray value distribution except in the minimum slice thickness image acquired using 3D Accuitomo 80 (Morita, Kyoto, Japan) and Veraviewepocs 3Df (Morita). Noise levels differed among the protocols. There was no geometric distortion, and the pixel intensity values were correlated with the CT value. Low contrast resolution differed among the protocols, but high contrast resolution performed well in all. Many protocols showed that the maximum line pair was larger than 1 LP mm−1 but smaller than 3 LP mm−1. PSF and MTF did not correlate well with the pixel size. The measured metal artefact areas varied for each device. Conclusions: We studied the image quality of three CBCT machines using the SEDENTEXCT phantom. Image quality varied with exposure protocols and machines. PMID:23956235

  1. Three-dimensional C-arm cone-beam CT: applications in the interventional suite.

    PubMed

    Wallace, Michael J; Kuo, Michael D; Glaiberman, Craig; Binkert, Christoph A; Orth, Robert C; Soulez, Gilles

    2008-06-01

    C-arm cone-beam computed tomography (CT) with a flat-panel detector represents the next generation of imaging technology available in the interventional radiology suite and is predicted to be the platform for many of the three-dimensional (3D) roadmapping and navigational tools that will emerge in parallel with its integration. The combination of current and unappreciated capabilities may be the foundation on which improvements in both safety and effectiveness of complex vascular and nonvascular interventional procedures become possible. These improvements include multiplanar soft tissue imaging, enhanced pretreatment target lesion roadmapping and guidance, and the ability for immediate multiplanar posttreatment assessment. These key features alone may translate to a reduction in the use of iodinated contrast media, a decrease in the radiation dose to the patient and operator, and an increase in the therapeutic index (increase in the safety-vs-benefit ratio). In routine practice, imaging information obtained with C-arm cone-beam CT provides a subjective level of confidence factor to the operator that has not yet been thoroughly quantified. PMID:18503893

  2. Three-dimensional C-arm cone-beam CT: applications in the interventional suite.

    PubMed

    Wallace, Michael J; Kuo, Michael D; Glaiberman, Craig; Binkert, Christoph A; Orth, Robert C; Soulez, Gilles

    2009-07-01

    C-arm cone-beam computed tomography (CT) with a flat-panel detector represents the next generation of imaging technology available in the interventional radiology suite and is predicted to be the platform for many of the three-dimensional (3D) roadmapping and navigational tools that will emerge in parallel with its integration. The combination of current and unappreciated capabilities may be the foundation on which improvements in both safety and effectiveness of complex vascular and nonvascular interventional procedures become possible. These improvements include multiplanar soft tissue imaging, enhanced pretreatment target lesion roadmapping and guidance, and the ability for immediate multiplanar posttreatment assessment. These key features alone may translate to a reduction in the use of iodinated contrast media, a decrease in the radiation dose to the patient and operator, and an increase in the therapeutic index (increase in safety-vs-benefit ratio). In routine practice, imaging information obtained with C-arm cone-beam CT provides a subjective level of confidence factor to the operator that has not yet been thoroughly quantified. PMID:19560037

  3. Cone beam CT evaluation of the presence of anatomic accessory canals in the jaws

    PubMed Central

    Eshak, M; Brooks, S; Abdel-Wahed, N

    2014-01-01

    Objectives: To assess the prevalence, location and anatomical course of accessory canals of the jaws using cone beam CT. Methods: A retrospective analysis of 4200 successive cone beam CT scans, for patients of both genders and ages ranging from 7 to 88 years, was performed. They were exposed at the School of Dentistry, University of Michigan, Ann Arbor, MI. After applying the exclusion criteria (the presence of severe ridge resorption, pre-existing implants, a previously reported history of craniofacial malformations or syndromes, a previous history of trauma or surgery, inadequate image quality and subsequent scans from the same individuals), 4051 scans were ultimately included in this study. Results: Of the 4051 scans (2306 females and 1745 males) that qualified for inclusion in this study, accessory canals were identified in 1737 cases (42.9%; 1004 females and 733 males). 532 scans were in the maxilla (13.1%; 296 females and 236 males) and 1205 in the mandible (29.8%; 708 females and 497 males). Conclusions: A network of accessory canals bringing into communication the inner and outer cortical plates of the jaws was identified. In light of these findings, clinicians should carefully assess for the presence of accessory canals prior to any surgical intervention to decrease the risk for complications. PMID:24670010

  4. Ring artifacts removal via spatial sparse representation in cone beam CT

    NASA Astrophysics Data System (ADS)

    Li, Zhongyuan; Li, Guang; Sun, Yi; Luo, Shouhua

    2016-03-01

    This paper is about the ring artifacts removal method in cone beam CT. Cone beam CT images often suffer from disturbance of ring artifacts which caused by the non-uniform responses of the elements in detectors. Conventional ring artifacts removal methods focus on the correlation of the elements and the ring artifacts' structural characteristics in either sinogram domain or cross-section image. The challenge in the conventional methods is how to distinguish the artifacts from the intrinsic structures; hence they often give rise to the blurred image results due to over processing. In this paper, we investigate the characteristics of the ring artifacts in spatial space, different from the continuous essence of 3D texture feature of the scanned objects, the ring artifacts are displayed discontinuously in spatial space, specifically along z-axis. Thus we can easily recognize the ring artifacts in spatial space than in cross-section. As a result, we choose dictionary representation for ring artifacts removal due to its high sensitivity to structural information. We verified our theory both in spatial space and coronal-section, the experimental results demonstrate that our methods can remove the artifacts efficiently while maintaining image details.

  5. Does cone beam CT actually ameliorate stab wound analysis in bone?

    PubMed

    Gaudio, D; Di Giancamillo, M; Gibelli, D; Galassi, A; Cerutti, E; Cattaneo, C

    2014-01-01

    This study aims at verifying the potential of a recent radiological technology, cone beam CT (CBCT), for the reproduction of digital 3D models which may allow the user to verify the inner morphology of sharp force wounds within the bone tissue. Several sharp force wounds were produced by both single and double cutting edge weapons on cancellous and cortical bone, and then acquired by cone beam CT scan. The lesions were analysed by different software (a DICOM file viewer and reverse engineering software). Results verified the limited performances of such technology for lesions made on cortical bone, whereas on cancellous bone reliable models were obtained, and the precise morphology within the bone tissues was visible. On the basis of such results, a method for differential diagnosis between cutmarks by sharp tools with a single and two cutting edges can be proposed. On the other hand, the metrical computerised analysis of lesions highlights a clear increase of error range for measurements under 3 mm. Metric data taken by different operators shows a strong dispersion (% relative standard deviation). This pilot study shows that the use of CBCT technology can improve the investigation of morphological stab wounds on cancellous bone. Conversely metric analysis of the lesions as well as morphological analysis of wound dimension under 3 mm do not seem to be reliable.

  6. Potential of software-based scatter corrections in cone-beam volume CT

    NASA Astrophysics Data System (ADS)

    Bertram, Matthias; Wiegert, Jens; Rose, Georg

    2005-04-01

    This study deals with a systematic assessment of the potential of different schemes for computerized scatter correction in flat detector based cone-beam X-ray computed tomography. The analysis is based on simulated scatter of a CT image of a human head. Using a Monte-Carlo cone-beam CT simulator, the spatial distribution of scattered radiation produced by this object has been calculated with high accuracy for the different projected views of a circular tomographic scan. Using this data and, as a reference, a scatter-free forward projection of the phantom, the potential of different schemes for scatter correction has been evaluated. In particular, the ideally achievable degree of accuracy of schemes based on estimating a constant scatter level in each projection was compared to approaches aiming at estimation of a more complex spatial shape of the scatter distribution. For each scheme, remaining cupping artifacts in the reconstructed volumetric image were quantified and analyzed. It was found that already accurate estimation of a constant scatter level for each projection allows for comparatively accurate compensation of scatter-caused artifacts.

  7. Ex vivo comparison of Galileos cone beam CT and intraoral radiographs in detecting occlusal caries

    PubMed Central

    Rathore, S; Tyndall, D; Wright, JT; Everett, E

    2012-01-01

    Objective The aim of this study was to compare the accuracy of cone beam CT (CBCT) with intraoral radiographs for detection of occlusal caries. Methods A set of 60 extracted teeth were imaged using a Sirona Galileos CBCT system (Sirona Dental Systems, Bensheim, Germany) and an intraoral Planmeca® system (Planmeca OY, Helsinki, Finland). Six observers looked at both modalities and used a five-point confidence scale to evaluate presence or absence of occlusal caries. Histology was used as the gold standard. Receiver operating characteristic analysis and weighted kappa statistics were used for statistical analysis. Differences in the area under the curve (AUC) values between observers and modalities were analysed using analysis of variance (ANOVA). Differences in sensitivity and specificity were analysed using the Wilcoxon test. Interobserver and intraobserver reliability was assessed by weighted kappa scores. Results The mean value and standard deviation of AUC was 0.719 ± 0.038 for CBCT and 0.649 ± 0.062 for the intraoral radiographs. The ANOVA results demonstrated that there was no significant difference between the modalities and the observers. The interobserver kappa for pairs of observers ranged from fair to substantial for bitewings (0.244–0.543) and CBCT (0.152–0.401). Four out of six observers reported higher sensitivity but lower specificity with CBCT. The Wilcoxon exact p-value showed no difference in sensitivity (0.175) or specificity (0.573) between the two modalities. Conclusion Based on the results we conclude that the Sirona CBCT unit cannot be used for the sole purpose of looking at occlusal caries. PMID:22184471

  8. Evaluation of imaging performance of megavoltage cone-beam CT over an extended period

    PubMed Central

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Yamada, Yuji; Koizumi, Masahiko; Yoshioka, Yasuo; Ogawa, Kazuhiko; Kakimoto, Naoya; Murakami, Shumei; Furukawa, Souhei

    2014-01-01

    A linear accelerator vendor and the AAPM TG-142 report propose that quality assurance testing for image-guided devices such megavoltage cone-beam CT (MV-CBCT) be conducted on a monthly basis. In clinical settings, however, unpredictable errors such as image artifacts can occur even when quality assurance results performed at this frequency are within tolerance limits. Here, we evaluated the imaging performance of MV-CBCT on a weekly basis for ∼ 1 year using a Siemens ONCOR machine with a 6-MV X-ray and an image-quality phantom. Image acquisition was undertaken using 15 monitor units. Geometric distortion was evaluated with beads evenly distributed in the phantom, and the results were compared with the expected position in three dimensions. Image-quality characteristics of the system were measured and assessed qualitatively and quantitatively, including image noise and uniformity, low-contrast resolution, high-contrast resolution and spatial resolution. All evaluations were performed 100 times each. For geometric distortion, deviation between the measured and expected values was within the tolerance limit of 2 mm. However, a subtle systematic error was found which meant that the phantom was rotated slightly in a clockwise manner, possibly due to geometry calibration of the MV-CBCT system. Regarding image noise and uniformity, two incidents over tolerance occurred in 100 measurements. This phenomenon disappeared after dose calibration of beam output for MV-CBCT. In contrast, all results for low-contrast resolution, high-contrast resolution and spatial resolution were within their respective tolerances. PMID:23979076

  9. Effects of radiation dose level on calcification visibility in cone beam breast CT: a preliminary study

    NASA Astrophysics Data System (ADS)

    Lai, Chao-Jen; Shaw, Chris C.; Altunbas, Mustafa C.; Meng, Yang; Chen, Lingyun; Tu, Shu-Ju; Wang, Tianpeng; Liu, Xinming; Yang, Wei T.; Whitman, Gary J.

    2006-03-01

    To investigate how the radiation dose level affects the detection of microcalcifications (MCs) in cone beam breast CT (CBCT), simulated MCs were embedded in simulated breast tissue and imaged with an experimental CBCT system. The system employs a 30 x 40 cm2 a-Si/CsI based flat panel detector with a pixel size of 194 microns. Three 5 x 5 clusters of simulated calcifications (212-224, 250-280, and 300-355 μm) were embedded in a stack of 11 cm diameter lunch meat and positioned at the center of each slice of lunch meat. 300 projection images over 360 degrees were acquired in the non-binning mode at various dose levels (4.2, 6, 12, 18, and 24 mGy) three times, and were reconstructed with the Feldkamp algorithm. After that, 767 x 767 x 9 volume data were extracted from the fifteen reconstructed images for each size group, resulting in 45 CBCT MC phantom images. An observer experiment was performed by counting the number of visible MCs for each MC phantom image. The phantom images were displayed on a review workstation with a 1600 x 1200 CRT monitor and reviewed by six readers independently. The order of the images was randomized for each reader. The ratios of the visible MCs were averaged over all readers and plotted as a function of the dose level. The CNR was calculated for each MC size and each doe level as well. The results showed that the performance of the reconstructed images acquired with 4.2 mGy was similar to the images acquired with 6 mGy, and the images acquired with 18 mGy performed similarly to those acquired with 24 mGy.

  10. Enlarged longitudinal dose profiles in cone-beam CT and the need for modified dosimetry

    SciTech Connect

    Mori, Shinichiro; Endo, Masahiro; Nishizawa, Kanae; Tsunoo, Takanori; Aoyama, Takahiko; Fujiwara, Hideaki; Murase, Kenya

    2005-04-01

    In order to examine phantom length necessary to assess radiation dose delivered to patients in cone-beam CT with an enlarged beamwidth, we measured dose profiles in cylindrical phantoms of sufficient length using a prototype 256-slice CT-scanner developed at our institute. Dose profiles parallel to the rotation axis were measured at the central and peripheral positions in PMMA (polymethylmethacrylate) phantoms of 160 or 320 mm diameter and 900 mm length. For practical application, we joined unit cylinders (150 mm long) together to provide phantoms of 900 mm length. Dose profiles were measured with a pin photodiode sensor having a sensitive region of approximately 2.8x2.8 mm{sup 2} and 2.7 mm thickness. Beamwidths of the scanner were varied from 20 to 138 mm. Dose profile integrals (DPI) were calculated using the measured dose profiles for various beamwidths and integration ranges. For the body phantom (320-mm-diam phantom), 76% of the DPI was represented for a 20 mm beamwidth and 60% was represented for a 138 mm beamwidth if dose profiles were integrated over a 100 mm range, while more than 90% of the DPI was represented for beamwidths between 20 and 138 mm if integration was carried out over a 300 mm range. The phantom length and integration range for dosimetry of cone-beam CT needed to be more than 300 mm to represent more than 90% of the DPI for the body phantom with the beamwidth of more than 20 mm. Although we reached this conclusion using the prototype 256-slice CT-scanner, it may be applied to other multislice CT-scanners as well.

  11. Evaluation of x-ray scatter properties in a dedicated cone-beam breast CT scanner

    SciTech Connect

    Kwan, Alexander L.C.; Boone, John M.; Shah, Nikula

    2005-09-15

    The magnitude of scatter contamination on a first-generation prototype breast computed tomography (CT) scanner was evaluated using the scatter-to-primary ratio (SPR) metric. The SPR was measured and characterized over a wide range of parameters relevant to breast CT imaging, including x-ray beam energy, breast diameter, breast composition, isocenter-to-detector distance, collimated slot thickness, and grid ratio. The results demonstrated that in the absence of scatter reduction techniques, the SPR levels for the average breast (e.g., 14 cm diameter 50/50 composition cylindrical phantom) are quite high ({approx}0.5 at the center of the phantom for 80 kVp in true cone-beam CT geometry), and increases as the diameter of the phantom is increased (to {approx}1.0 at the center of a 18 cm diameter 50/50 phantom). The x-ray beam energy and the phantom compositions had only minimal impact on the measured SPR. When an ideal bowtie filter was used, the SPRs at the central axis of the 14 and 18 cm cylindrical phantoms were reduced while the SPRs at the edge of the phantoms were increased. Lastly, collimation in the vertical direction had a significant impact on the SPRs at the central axis of the phantoms. These high SPR levels might lead to cupping artifacts and increased noise in the reconstructed CT images, and this suggests that efficient scatter rejection and/or correction techniques may be required to improve the quality and accuracy of cone beam CT images.

  12. A megavoltage scatter correction technique for cone-beam CT images acquired during VMAT delivery.

    PubMed

    Boylan, C J; Marchant, T E; Stratford, J; Malik, J; Choudhury, A; Shrimali, R; Rodgers, J; Rowbottom, C G

    2012-06-21

    Kilovoltage cone-beam CT (kV CBCT) can be acquired during the delivery of volumetric modulated arc therapy (VMAT), in order to obtain an image of the patient during treatment. However, the quality of such CBCTs is degraded by megavoltage (MV) scatter from the treatment beam onto the imaging panel. The objective of this paper is to introduce a novel MV scatter correction method for simultaneous CBCT during VMAT, and to investigate its effectiveness when compared to other techniques. The correction requires the acquisition of a separate set of images taken during VMAT delivery, while the kV beam is off. These images--which contain only the MV scatter contribution on the imaging panel--are then used to correct the corresponding kV/MV projections. To test this method, CBCTs were taken of an image quality phantom during VMAT delivery and measurements of contrast to noise ratio were made. Additionally, the correction was applied to the datasets of three VMAT prostate patients, who also received simultaneous CBCTs. The clinical image quality was assessed using a validated scoring system, comparing standard CBCTs to the uncorrected simultaneous CBCTs and a variety of correction methods. Results show that the correction is able to recover some of the low and high-contrast signal to noise ratio lost due to MV scatter. From the patient study, the corrected CBCT scored significantly higher than the uncorrected images in terms of the ability to identify the boundary between the prostate and surrounding soft tissue. In summary, a simple MV scatter correction method has been developed and, using both phantom and patient data, is shown to improve the image quality of simultaneous CBCTs taken during VMAT delivery.

  13. Evaluation of robustness of maximum likelihood cone-beam CT reconstruction with total variation regularization

    NASA Astrophysics Data System (ADS)

    Stsepankou, D.; Arns, A.; Ng, S. K.; Zygmanski, P.; Hesser, J.

    2012-10-01

    The objective of this paper is to evaluate an iterative maximum likelihood (ML) cone-beam computed tomography (CBCT) reconstruction with total variation (TV) regularization with respect to the robustness of the algorithm due to data inconsistencies. Three different and (for clinical application) typical classes of errors are considered for simulated phantom and measured projection data: quantum noise, defect detector pixels and projection matrix errors. To quantify those errors we apply error measures like mean square error, signal-to-noise ratio, contrast-to-noise ratio and streak indicator. These measures are derived from linear signal theory and generalized and applied for nonlinear signal reconstruction. For quality check, we focus on resolution and CT-number linearity based on a Catphan phantom. All comparisons are made versus the clinical standard, the filtered backprojection algorithm (FBP). In our results, we confirm and substantially extend previous results on iterative reconstruction such as massive undersampling of the number of projections. Errors of projection matrix parameters of up to 1° projection angle deviations are still in the tolerance level. Single defect pixels exhibit ring artifacts for each method. However using defect pixel compensation, allows up to 40% of defect pixels for passing the standard clinical quality check. Further, the iterative algorithm is extraordinarily robust in the low photon regime (down to 0.05 mAs) when compared to FPB, allowing for extremely low-dose image acquisitions, a substantial issue when considering daily CBCT imaging for position correction in radiotherapy. We conclude that the ML method studied herein is robust under clinical quality assurance conditions. Consequently, low-dose regime imaging, especially for daily patient localization in radiation therapy is possible without change of the current hardware of the imaging system.

  14. WE-G-18A-03: Cone Artifacts Correction in Iterative Cone Beam CT Reconstruction

    SciTech Connect

    Yan, H; Folkerts, M; Jiang, S; Jia, X; Wang, X; Bai, T; Lu, W

    2014-06-15

    Purpose: For iterative reconstruction (IR) in cone-beam CT (CBCT) imaging, data truncation along the superior-inferior (SI) direction causes severe cone artifacts in the reconstructed CBCT volume images. Not only does it reduce the effective SI coverage of the reconstructed volume, it also hinders the IR algorithm convergence. This is particular a problem for regularization based IR, where smoothing type regularization operations tend to propagate the artifacts to a large area. It is our purpose to develop a practical cone artifacts correction solution. Methods: We found it is the missing data residing in the truncated cone area that leads to inconsistency between the calculated forward projections and measured projections. We overcome this problem by using FDK type reconstruction to estimate the missing data and design weighting factors to compensate the inconsistency caused by the missing data. We validate the proposed methods in our multi-GPU low-dose CBCT reconstruction system on multiple patients' datasets. Results: Compared to the FDK reconstruction with full datasets, while IR is able to reconstruct CBCT images using a subset of projection data, the severe cone artifacts degrade overall image quality. For head-neck case under a full-fan mode, 13 out of 80 slices are contaminated. It is even more severe in pelvis case under half-fan mode, where 36 out of 80 slices are affected, leading to inferior soft-tissue delineation. By applying the proposed method, the cone artifacts are effectively corrected, with a mean intensity difference decreased from ∼497 HU to ∼39HU for those contaminated slices. Conclusion: A practical and effective solution for cone artifacts correction is proposed and validated in CBCT IR algorithm. This study is supported in part by NIH (1R01CA154747-01)

  15. A dual modality phantom for cone beam CT and ultrasound image fusion in prostate implant

    SciTech Connect

    Ng, Angela; Beiki-Ardakan, Akbar; Tong, Shidong; Moseley, Douglas; Siewerdsen, Jeffrey; Jaffray, David; Yeung, Ivan W. T.

    2008-05-15

    In transrectal ultrasound (TRUS) guided prostate seed brachytherapy, TRUS provides good delineation of the prostate while x-ray imaging, e.g., C-arm, gives excellent contrast for seed localization. With the recent availability of cone beam CT (CBCT) technology, the combination of the two imaging modalities may provide an ideal system for intraoperative dosimetric feedback during implantation. A dual modality phantom made of acrylic and copper wire was designed to measure the accuracy and precision of image coregistration between a C-arm based CBCT and 3D TRUS. The phantom was scanned with TRUS and CBCT under the same setup condition. Successive parallel transverse ultrasound (US) images were acquired through manual stepping of the US probe across the phantom at an increment of 1 mm over 7.5 cm. The CBCT imaging was done with three reconstructed slice thicknesses (0.4, 0.8, and 1.6 mm) as well as at three different tilt angles (0 deg., 15 deg., 30 deg. ), and the coregistration between CBCT and US images was done using the Variseed system based on four fiducial markers. Fiducial localization error (FLE), fiducial registration error (FRE), and target registration error (TRE) were calculated for all registered image sets. Results showed that FLE were typically less than 0.4 mm, FRE were less than 0.5 mm, and TRE were typically less than 1 mm within the range of operation for prostate implant (i.e., <6 cm to surface of US probe). An analysis of variance test showed no significant difference in TRE for the CBCT-US fusion among the three slice thicknesses (p=0.37). As a comparison, the experiment was repeated with a US-conventional CT scanner combination. No significant difference in TRE was noted between the US-conventional CT fusion and that for all three CBCT image slice thicknesses (p=0.21). CBCT imaging was also performed at three different C-arm tilt angles of 0 deg., 15 deg., and 30 deg. and reconstructed at a slice thickness of 0.8 mm. There is no significant

  16. Scattered radiation in flat-detector based cone-beam CT: analysis of voxelized patient simulations

    NASA Astrophysics Data System (ADS)

    Wiegert, Jens; Bertram, Matthias

    2006-03-01

    This paper presents a systematic assessment of scattered radiation in flat-detector based cone-beam CT. The analysis is based on simulated scatter projections of voxelized CT images of different body regions allowing to accurately quantify scattered radiation of realistic and clinically relevant patient geometries. Using analytically computed primary projection data of high spatial resolution in combination with Monte-Carlo simulated scattered radiation, practically noise-free reference data sets are computed with and without inclusion of scatter. The impact of scatter is studied both in the projection data and in the reconstructed volume for the head, thorax, and pelvis regions. Currently available anti-scatter grid geometries do not sufficiently compensate scatter induced cupping and streak artifacts, requiring additional software-based scatter correction. The required accuracy of scatter compensation approaches increases with increasing patient size.

  17. Cone beam computed tomography: Development of system characterization metrics and applications

    NASA Astrophysics Data System (ADS)

    Betancourt Benitez, Jose Ricardo

    Cone beam computed tomography has emerged as a promising medical imaging tool due to its short scanning time, large volume coverage and its isotropic spatial resolution in three dimensions among other characteristics. However, due to its inherent three-dimensionality, it is important to understand and characterize its physical characteristics to be able to improve its performance and extends its applications in medical imaging. One of the main components of a Cone beam computed tomography system is its flat panel detector. Its physical characteristics were evaluated in terms of spatial resolution, linearity, image lag, noise power spectrum and detective quantum efficiency. After evaluating the physical performance of the flat panel detector, metrics to evaluate the image quality of the system were developed and used to evaluate the systems image quality. Especially, the modulation transfer function and the noise power spectrum were characterized and evaluated for a PaxScan 4030CB FPD-based cone beam computed tomography system. Finally, novel applications using cone beam computed tomography images were suggested and evaluated for its practical application. For example, the characterization of breast density was evaluated and further studies were suggested that could impact the health system related to breast cancer. Another novel application was the utilization of cone beam computed tomography for orthopedic imaging. In this thesis, an initial assessment of its practical application was perform. Overall, three cone beam computed tomography systems were evaluated and utilized for different novel applications that would advance the field of medical imaging.

  18. Linac-integrated 4D cone beam CT: first experimental results

    NASA Astrophysics Data System (ADS)

    Dietrich, Lars; Jetter, Siri; Tücking, Thomas; Nill, Simeon; Oelfke, Uwe

    2006-06-01

    A new online imaging approach, linac-integrated cone beam CT (CBCT), has been developed over the past few years. It has the advantage that a patient can be examined in their treatment position directly before or during a radiotherapy treatment. Unfortunately, respiratory organ motion, one of the largest intrafractional organ motions, often leads to artefacts in the reconstructed 3D images. One way to take this into account is to register the breathing phase during image acquisition for a phase-correlated image reconstruction. Therefore, the main focus of this work is to present a system which has the potential to investigate the correlation between internal (movement of the diaphragm) and external (data of a respiratory gating system) information about breathing phase and amplitude using an inline CBCT scanner. This also includes a feasibility study about using the acquired information for a respiratory-correlated 4D CBCT reconstruction. First, a moving lung phantom was used to develop and to specify the required methods which are based on an image reconstruction using only projections belonging to a certain moving phase. For that purpose, the corresponding phase has to be detected for each projection. In the case of the phantom, an electrical signal allows one to track the movement in real time. The number of projections available for the image reconstruction depends on the breathing phase and the size of the position range from which projections should be used for the reconstruction. The narrower this range is, the better the inner structures can be located, but also the noise of the images increases due to the limited number of projections. This correlation has also been analysed. In a second step, the methods were clinically applied using data sets of patients with lung tumours. In this case, the breathing phase was detected by an external gating system (AZ-733V, Anzai Medical Co.) based on a pressure sensor attached to the patient's abdominal region with a

  19. Dose indices in dental cone beam CT and correlation with dose–area product

    PubMed Central

    Araki, K; Patil, S; Endo, A; Okano, T

    2013-01-01

    Objectives: In the 2011 project “Safety and efficacy of a new and emerging dental X-ray modality (SEDENTEXCT)”, it was suggested that dose index (DI) and dose–area product (DAP) could be easily measured and used as diagnostic reference levels (DRLs), which would help in the management of radiation doses to patients in optimum exposure settings. Such indices could be directly related to effective dose. The purposes of this study, therefore, were to measure and calculate the DI and DAP in cone beam CT (CBCT) machines and to evaluate the correlation between the two. Methods: Dose measurements were performed on three-dimensional cone beam CT (3D-CBCT) machines [3D Accuitomo (J. Morita Mfg. Corp., Kyoto, Japan), Veraviewepocs (J. Morita Mfg. Corp.) and CS9300 (Carestream, New York, NY)] by exposing a cylindrical poly-methyl methacrylate (PMMA) phantom using a CT ionization chamber. These dose measurements were used for the calculation of Dose Indices 1 and 2, according to the methodology suggested by SEDENTEXCT. The DAP was measured using a DAP meter that was attached to the detector to cover the entire irradiated area. Results: The DI1 ranged from 53.6 mR to 216.6 mR, the DI2 ranged from 77.1 mR to 325.0 mR and the DAP ranged from 101.1 mGy cm2 to 457.9 mGy cm2, depending on the machines and exposure settings. Index 2 had a better correlation with the DAP than Index 1. Conclusions: The DIs and DAP proposed by SEDENTEXCT may be useful for establishing DRLs for dental CBCT machines; however, further studies are necessary to determine which of these indices provide accurate dose estimates proportionally relating to the effective dose. PMID:23520392

  20. Nonlinear dual-spectral image fusion for improving cone-beam-CT-based breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Ning, Ruola; Conover, David; Willison, Kathleen

    2006-03-01

    Cone-beam breast computed tomography (CB Breast CT) can easily detect micro-calcifications and distinguish fat and glandular tissues from normal breast tissue. However, it may be a challenging task for CB Breast CT to distinguish benign from malignant tumors because of the subtle difference in x-ray attenuation. Due to the use of polyenergetic x-ray source, the x-ray and tissue interaction exhibits energy-dependent attenuation behavior, a phenomenon that, to date, has not been used for breast tissue characterization. We will exploit this spectral nature by equipping our CB Breast CT with dual-spectral imaging. The dual-spectral cone-beam scanning produces two spectral image datasets, from which we propose a nonlinear dual-spectral image fusion scheme to combine them into a single dataset, thereby incorporating the spectral information. In implementation, we will perform dual-spectral image fusion through a bi-variable polynomial that can be established by applying dual-spectral imaging to a reference material (with eight different thicknesses). From the fused dataset, we can reconstruct a volume, called a reference-equivalent volume or a fusion volume. By selecting the benign tissue as a reference material, we obtain a benign-equivalent volume. Likewise, we obtain a malignant-equivalent volume as well. In the pursuit of the discrimination of benign versus malignant tissues in a breast image, we perform intra-image as well as inter-image processing. The intra-image processing is an intensity transformation imposed only to a tomographic breast image itself, while the inter-image processing is exerted on two tomographic images extracted from two volumes. The nonlinear fusion scheme possesses these properties: 1) no noise magnification; 2) no feature dimensionality problem, and 3) drastic enhancement among specific features offered by nonlinear mapping. Its disadvantage lies in the possible misinterpretation resulting from nonlinear mapping.

  1. High-fidelity artifact correction for cone-beam CT imaging of the brain.

    PubMed

    Sisniega, A; Zbijewski, W; Xu, J; Dang, H; Stayman, J W; Yorkston, J; Aygun, N; Koliatsos, V; Siewerdsen, J H

    2015-02-21

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening.The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT.Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement

  2. High-fidelity artifact correction for cone-beam CT imaging of the brain

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-02-01

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement

  3. Target delineation for radiosurgery of a small brain arteriovenous malformation using high-resolution contrast-enhanced cone beam CT

    PubMed Central

    van der Bom, Imramsjah M J; Gounis, Matthew J; Ding, Linda; Kühn, Anna Luisa; Goff, David; Puri, Ajit S; Wakhloo, Ajay K

    2013-01-01

    Three years following endovascular embolization of a 3 mm ruptured arteriovenous malformation (AVM) of the left superior colliculus in a 42-year-old man, digital subtraction angiography showed continuous regrowth of the lesion. Thin-slice MRI acquired for treatment planning did not show the AVM nidus. The patient was brought back to the angiography suite for high-resolution contrast-enhanced cone beam CT (VasoCT) acquired using an angiographic c-arm system. The lesion and nidus were visualized with VasoCT. MRI, CT and VasoCT data were transferred to radiation planning software and mutually co-registered. The nidus was annotated for radiation on VasoCT data by an experienced neurointerventional radiologist and a dose/treatment plan was completed. Due to image registration, the treatment area could be directly adopted into the MRI and CT data. The AVM was completely obliterated 10 months following completion of the radiosurgery treatment. PMID:23946527

  4. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    SciTech Connect

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-11-15

    speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.

  5. Estimation of organ doses from kilovoltage cone-beam CT imaging used during radiotherapy patient position verification

    SciTech Connect

    Hyer, Daniel E.; Hintenlang, David E.

    2010-09-15

    Purpose: The purpose of this study was to develop a practical method for estimating organ doses from kilovoltage cone-beam CT (CBCT) that can be performed with readily available phantoms and dosimeters. The accuracy of organ dose estimates made using the ImPACT patient dose calculator was also evaluated. Methods: A 100 mm pencil chamber and standard CT dose index (CTDI) phantoms were used to measure the cone-beam dose index (CBDI). A weighted CBDI (CBDI{sup w}) was then calculated from these measurements to represent the average volumetric dose in the CTDI phantom. By comparing CBDI{sup w} to the previously published organ doses, organ dose conversion coefficients were developed. The measured CBDI values were also used as inputs for the ImPACT calculator to estimate organ doses. All CBDI dose measurements were performed on both the Elekta XVI and Varian OBI at three clinically relevant locations: Head, chest, and pelvis. Results: The head, chest, and pelvis protocols yielded CBDI{sup w} values of 0.98, 16.62, and 24.13 mGy for the XVI system and 5.17, 6.14, and 21.57 mGy for the OBI system, respectively. Organ doses estimated with the ImPACT CT dose calculator showed a large range of variation from the previously measured organ doses, demonstrating its limitations for use with CBCT. Conclusions: The organ dose conversion coefficients developed in this work relate CBDI{sup w} values to organ doses previously measured using the same clinical protocols. Ultimately, these coefficients will allow for the quick estimation of organ doses from routine measurements performed using standard CTDI phantoms and pencil chambers.

  6. Optimization of cone beam CT exposure for pre-surgical evaluation of the implant site

    PubMed Central

    Dawood, A; Brown, J; Sauret-Jackson, V; Purkayastha, S

    2012-01-01

    Objectives The aim of this study was to investigate the possibility of reducing patient X-ray dose in the course of implant site evaluation. Methods Retrospective practice-based study using a Morita F170 Accuitomo cone beam CT (CBCT) scanner with variable exposure parameters and operating a small cylindrical field of view of 4 cm diameter and 4 cm height. 6 experienced dental surgeons scored the image quality of dental scans on a 5-point scale for adequacy in providing the required information in 2 categories: bone height from alveolar crest to the relevant anatomical structure and bone width. Results Lower-dose protocols only marginally affected the preference of the reviewers of the resulting images. Conclusions There is potential to reduce patient dose very significantly in CBCT examinations for implant site evaluation. PMID:22184628

  7. Limited-angle reverse helical cone-beam CT for pipeline with low rank decomposition

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Zeng, Li

    2014-10-01

    In this paper, tomographic imaging of pipeline in service by cone-beam computed tomography (CBCT) is studied. With the developed scanning strategy and image model, the quality of reconstructed image is improved. First, a limited-angle reverse helical scanning strategy based on C-arm computed tomography (C-arm CT) is developed for the projection data acquisition of pipeline in service. Then, an image model which considering the resemblance among slices of pipeline is developed. Finally, split Bregman method based algorithm is implemented in solving the model aforementioned. Preliminary results of simulation experiments show that the projection data acquisition strategy and reconstruction method are efficient and feasible, and our method is superior to Feldkamp-Davis-Kress (FDK) algorithm and simultaneous algebraic reconstruction technique (SART).

  8. Comparative dose evaluations between XVI and OBI cone beam CT systems using Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters

    SciTech Connect

    Giaddui, Tawfik; Cui Yunfeng; Galvin, James; Yu Yan; Xiao Ying

    2013-06-15

    Purpose: To investigate the effect of energy (kVp) and filters (no filter, half Bowtie, and full Bowtie) on the dose response curves of the Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters (OSLDs) in CBCT dose fields. To measure surface and internal doses received during x-ray volume imager (XVI) (Version R4.5) and on board imager (OBI) (Version 1.5) CBCT imaging protocols using these two types of dosimeters. Methods: Gafchromic XRQA2 film and nanoDot OSLD dose response curves were generated at different kV imaging settings used by XVI (software version R4.5) and OBI (software version 1.5) CBCT systems. The settings for the XVI system were: 100 kVp/F0 (no filter), 120 kVp/F0, and 120 kVp/F1 (Bowtie filter), and for the OBI system were: 100 kVp/full fan, 125 kVp/full fan, and 125 kVp/half fan. XRQA2 film was calibrated in air to air kerma levels between 0 and 11 cGy and scanned using reflection scanning mode with the Epson Expression 10000 XL flat-bed document scanner. NanoDot OSLDs were calibrated on phantom to surface dose levels between 0 and 14 cGy and read using the inLight{sup TM} MicroStar reader. Both dosimeters were used to measure in field surface and internal doses in a male Alderson Rando Phantom. Results: Dose response curves of XRQA2 film and nanoDot OSLDs at different XVI and OBI CBCT settings were reported. For XVI system, the surface dose ranged between 0.02 cGy in head region during fast head and neck scan and 4.99 cGy in the chest region during symmetry scan. On the other hand, the internal dose ranged between 0.02 cGy in the head region during fast head and neck scan and 3.17 cGy in the chest region during chest M20 scan. The average (internal and external) dose ranged between 0.05 cGy in the head region during fast head and neck scan and 2.41 cGy in the chest region during chest M20 scan. For OBI system, the surface dose ranged between 0.19 cGy in head region during head scan and 4.55 cGy in the pelvis region during

  9. Regularized iterative weighted filtered backprojection for helical cone-beam CT

    SciTech Connect

    Sunnegaardh, Johan; Danielsson, Per-Erik

    2008-09-15

    Contemporary reconstruction methods employed for clinical helical cone-beam computed tomography (CT) are analytical (noniterative) but mathematically nonexact, i.e., the reconstructed image contains so called cone-beam artifacts, especially for higher cone angles. Besides cone artifacts, these methods also suffer from windmill artifacts: alternating dark and bright regions creating spiral-like patterns occurring in the vicinity of high z-direction derivatives. In this article, the authors examine the possibility to suppress cone and windmill artifacts by means of iterative application of nonexact three-dimensional filtered backprojection, where the analytical part of the reconstruction brings about accelerated convergence. Specifically, they base their investigations on the weighted filtered backprojection method [Stierstorfer et al., Phys. Med. Biol. 49, 2209-2218 (2004)]. Enhancement of high frequencies and amplification of noise is a common but unwanted side effect in many acceleration attempts. They have employed linear regularization to avoid these effects and to improve the convergence properties of the iterative scheme. Artifacts and noise, as well as spatial resolution in terms of modulation transfer functions and slice sensitivity profiles have been measured. The results show that for cone angles up to {+-}2.78 deg., cone artifacts are suppressed and windmill artifacts are alleviated within three iterations. Furthermore, regularization parameters controlling spatial resolution can be tuned so that image quality in terms of spatial resolution and noise is preserved. Simulations with higher number of iterations and long objects (exceeding the measured region) verify that the size of the reconstructible region is not reduced, and that the regularization greatly improves the convergence properties of the iterative scheme. Taking these results into account, and the possibilities to extend the proposed method with more accurate modeling of the acquisition

  10. Automatic tracking of implanted fiducial markers in cone beam CT projection images

    SciTech Connect

    Marchant, T. E.; Skalski, A.; Matuszewski, B. J.

    2012-03-15

    Purpose: This paper describes a novel method for simultaneous intrafraction tracking of multiple fiducial markers. Although the proposed method is generic and can be adopted for a number of applications including fluoroscopy based patient position monitoring and gated radiotherapy, the tracking results presented in this paper are specific to tracking fiducial markers in a sequence of cone beam CT projection images. Methods: The proposed method is accurate and robust thanks to utilizing the mean shift and random sampling principles, respectively. The performance of the proposed method was evaluated with qualitative and quantitative methods, using data from two pancreatic and one prostate cancer patients and a moving phantom. The ground truth, for quantitative evaluation, was calculated based on manual tracking preformed by three observers. Results: The average dispersion of marker position error calculated from the tracking results for pancreas data (six markers tracked over 640 frames, 3840 marker identifications) was 0.25 mm (at iscoenter), compared with an average dispersion for the manual ground truth estimated at 0.22 mm. For prostate data (three markers tracked over 366 frames, 1098 marker identifications), the average error was 0.34 mm. The estimated tracking error in the pancreas data was < 1 mm (2 pixels) in 97.6% of cases where nearby image clutter was detected and in 100.0% of cases with no nearby image clutter. Conclusions: The proposed method has accuracy comparable to that of manual tracking and, in combination with the proposed batch postprocessing, superior robustness. Marker tracking in cone beam CT (CBCT) projections is useful for a variety of purposes, such as providing data for assessment of intrafraction motion, target tracking during rotational treatment delivery, motion correction of CBCT, and phase sorting for 4D CBCT.

  11. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    NASA Astrophysics Data System (ADS)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  12. Reconstruction of a cone-beam CT image via forward iterative projection matching

    SciTech Connect

    Brock, R. Scott; Docef, Alen; Murphy, Martin J.

    2010-12-15

    Purpose: To demonstrate the feasibility of reconstructing a cone-beam CT (CBCT) image by deformably altering a prior fan-beam CT (FBCT) image such that it matches the anatomy portrayed in the CBCT projection data set. Methods: A prior FBCT image of the patient is assumed to be available as a source image. A CBCT projection data set is obtained and used as a target image set. A parametrized deformation model is applied to the source FBCT image, digitally reconstructed radiographs (DRRs) that emulate the CBCT projection image geometry are calculated and compared to the target CBCT projection data, and the deformation model parameters are adjusted iteratively until the DRRs optimally match the CBCT projection data set. The resulting deformed FBCT image is hypothesized to be an accurate representation of the patient's anatomy imaged by the CBCT system. The process is demonstrated via numerical simulation. A known deformation is applied to a prior FBCT image and used to create a synthetic set of CBCT target projections. The iterative projection matching process is then applied to reconstruct the deformation represented in the synthetic target projections; the reconstructed deformation is then compared to the known deformation. The sensitivity of the process to the number of projections and the DRR/CBCT projection mismatch is explored by systematically adding noise to and perturbing the contrast of the target projections relative to the iterated source DRRs and by reducing the number of projections. Results: When there is no noise or contrast mismatch in the CBCT projection images, a set of 64 projections allows the known deformed CT image to be reconstructed to within a nRMS error of 1% and the known deformation to within a nRMS error of 7%. A CT image nRMS error of less than 4% is maintained at noise levels up to 3% of the mean projection intensity, at which the deformation error is 13%. At 1% noise level, the number of projections can be reduced to 8 while maintaining

  13. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    SciTech Connect

    Cazzato, Roberto Luigi Battistuzzi, Jean-Benoit Catena, Vittorio; Grasso, Rosario Francesco Zobel, Bruno Beomonte; Schena, Emiliano; Buy, Xavier Palussiere, Jean

    2015-10-15

    AimTo compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours.Materials and MethodsPatients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (<10, 10–20, >20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported.ResultsForty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = −9.45, t = −3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %).ConclusionCBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  14. Anatomical background and generalized detectability in tomosynthesis and cone-beam CT

    PubMed Central

    Gang, G. J.; Tward, D. J.; Lee, J.; Siewerdsen, J. H.

    2010-01-01

    Purpose: Anatomical background presents a major impediment to detectability in 2D radiography as well as 3D tomosynthesis and cone-beam CT (CBCT). This article incorporates theoretical and experimental analysis of anatomical background “noise” in cascaded systems analysis of 2D and 3D imaging performance to yield “generalized” metrics of noise-equivalent quanta (NEQ) and detectability index as a function of the orbital extent of the (circular arc) source-detector orbit. Methods: A physical phantom was designed based on principles of fractal self-similarity to exhibit power-law spectral density (κ∕fβ) comparable to various anatomical sites (e.g., breast and lung). Background power spectra [SB(f)] were computed as a function of source-detector orbital extent, including tomosynthesis (∼10°–180°) and CBCT (180°+fan to 360°) under two acquisition schemes: (1) Constant angular separation between projections (variable dose) and (2) constant total number of projections (constant dose). The resulting SB was incorporated in the generalized NEQ, and detectability index was computed from 3D cascaded systems analysis for a variety of imaging tasks. Results: The phantom yielded power-law spectra within the expected spatial frequency range, quantifying the dependence of clutter magnitude (κ) and correlation (β) with increasing tomosynthesis angle. Incorporation of SB in the 3D NEQ provided a useful framework for analyzing the tradeoffs among anatomical, quantum, and electronic noise with dose and orbital extent. Distinct implications are posed for breast and chest tomosynthesis imaging system design—applications varying significantly in κ and β, and imaging task and, therefore, in optimal selection of orbital extent, number of projections, and dose. For example, low-frequency tasks (e.g., soft-tissue masses or nodules) tend to benefit from larger orbital extent and more fully 3D tomographic imaging, whereas high-frequency tasks (e.g., microcalcifications

  15. Anatomical background and generalized detectability in tomosynthesis and cone-beam CT

    SciTech Connect

    Gang, G. J.; Tward, D. J.; Lee, J.; Siewerdsen, J. H.

    2010-05-15

    Purpose: Anatomical background presents a major impediment to detectability in 2D radiography as well as 3D tomosynthesis and cone-beam CT (CBCT). This article incorporates theoretical and experimental analysis of anatomical background ''noise'' in cascaded systems analysis of 2D and 3D imaging performance to yield ''generalized'' metrics of noise-equivalent quanta (NEQ) and detectability index as a function of the orbital extent of the (circular arc) source-detector orbit. Methods: A physical phantom was designed based on principles of fractal self-similarity to exhibit power-law spectral density ({kappa}/f{sup {beta}}) comparable to various anatomical sites (e.g., breast and lung). Background power spectra [S{sub B}(f)] were computed as a function of source-detector orbital extent, including tomosynthesis ({approx}10 deg. - 180 deg.) and CBCT (180 deg. +fan to 360 deg.) under two acquisition schemes: (1) Constant angular separation between projections (variable dose) and (2) constant total number of projections (constant dose). The resulting S{sub B} was incorporated in the generalized NEQ, and detectability index was computed from 3D cascaded systems analysis for a variety of imaging tasks. Results: The phantom yielded power-law spectra within the expected spatial frequency range, quantifying the dependence of clutter magnitude ({kappa}) and correlation ({beta}) with increasing tomosynthesis angle. Incorporation of S{sub B} in the 3D NEQ provided a useful framework for analyzing the tradeoffs among anatomical, quantum, and electronic noise with dose and orbital extent. Distinct implications are posed for breast and chest tomosynthesis imaging system design--applications varying significantly in {kappa} and {beta}, and imaging task and, therefore, in optimal selection of orbital extent, number of projections, and dose. For example, low-frequency tasks (e.g., soft-tissue masses or nodules) tend to benefit from larger orbital extent and more fully 3D tomographic

  16. SU-E-I-07: Response Characteristics and Signal Conversion Modeling of KV Flat-Panel Detector in Cone Beam CT System

    SciTech Connect

    Wang, Yu; Cao, Ruifen; Pei, Xi; Wang, Hui; Hu, Liqin

    2015-06-15

    Purpose: The flat-panel detector response characteristics are investigated to optimize the scanning parameter considering the image quality and less radiation dose. The signal conversion model is also established to predict the tumor shape and physical thickness changes. Methods: With the ELEKTA XVI system, the planar images of 10cm water phantom were obtained under different image acquisition conditions, including tube voltage, electric current, exposure time and frames. The averaged responses of square area in center were analyzed using Origin8.0. The response characteristics for each scanning parameter were depicted by different fitting types. The transmission measured for 10cm water was compared to Monte Carlo simulation. Using the quadratic calibration method, a series of variable-thickness water phantoms images were acquired to derive the signal conversion model. A 20cm wedge water phantom with 2cm step thickness was used to verify the model. At last, the stability and reproducibility of the model were explored during a four week period. Results: The gray values of image center all decreased with the increase of different image acquisition parameter presets. The fitting types adopted were linear fitting, quadratic polynomial fitting, Gauss fitting and logarithmic fitting with the fitting R-Square 0.992, 0.995, 0.997 and 0.996 respectively. For 10cm water phantom, the transmission measured showed better uniformity than Monte Carlo simulation. The wedge phantom experiment show that the radiological thickness changes prediction error was in the range of (-4mm, 5mm). The signal conversion model remained consistent over a period of four weeks. Conclusion: The flat-panel response decrease with the increase of different scanning parameters. The preferred scanning parameter combination was 100kV, 10mA, 10ms, 15frames. It is suggested that the signal conversion model could effectively be used for tumor shape change and radiological thickness prediction. Supported by

  17. Practical dose point-based methods to characterize dose distribution in a stationary elliptical body phantom for a cone-beam C-arm CT system

    PubMed Central

    Choi, Jang-Hwan; Constantin, Dragos; Ganguly, Arundhuti; Girard, Erin; Morin, Richard L.; Dixon, Robert L.; Fahrig, Rebecca

    2015-01-01

    Purpose: To propose new dose point measurement-based metrics to characterize the dose distributions and the mean dose from a single partial rotation of an automatic exposure control-enabled, C-arm-based, wide cone angle computed tomography system over a stationary, large, body-shaped phantom. Methods: A small 0.6 cm3 ion chamber (IC) was used to measure the radiation dose in an elliptical body-shaped phantom made of tissue-equivalent material. The IC was placed at 23 well-distributed holes in the central and peripheral regions of the phantom and dose was recorded for six acquisition protocols with different combinations of minimum kVp (109 and 125 kVp) and z-collimator aperture (full: 22.2 cm; medium: 14.0 cm; small: 8.4 cm). Monte Carlo (MC) simulations were carried out to generate complete 2D dose distributions in the central plane (z = 0). The MC model was validated at the 23 dose points against IC experimental data. The planar dose distributions were then estimated using subsets of the point dose measurements using two proposed methods: (1) the proximity-based weighting method (method 1) and (2) the dose point surface fitting method (method 2). Twenty-eight different dose point distributions with six different point number cases (4, 5, 6, 7, 14, and 23 dose points) were evaluated to determine the optimal number of dose points and their placement in the phantom. The performances of the methods were determined by comparing their results with those of the validated MC simulations. The performances of the methods in the presence of measurement uncertainties were evaluated. Results: The 5-, 6-, and 7-point cases had differences below 2%, ranging from 1.0% to 1.7% for both methods, which is a performance comparable to that of the methods with a relatively large number of points, i.e., the 14- and 23-point cases. However, with the 4-point case, the performances of the two methods decreased sharply. Among the 4-, 5-, 6-, and 7-point cases, the 7-point case (1.0% [±0

  18. Self-calibration of cone-beam CT geometry using 3D–2D image registration

    PubMed Central

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-01-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional

  19. Self-calibration of cone-beam CT geometry using 3D-2D image registration.

    PubMed

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a 'self-calibration' of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM-e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE-e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  20. Self-calibration of cone-beam CT geometry using 3D-2D image registration.

    PubMed

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a 'self-calibration' of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM-e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE-e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  1. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  2. Dose measurements for dental cone-beam CT: a comparison with MSCT and panoramic imaging

    NASA Astrophysics Data System (ADS)

    Deman, P.; Atwal, P.; Duzenli, C.; Thakur, Y.; Ford, N. L.

    2014-06-01

    To date there is a lack of published information on appropriate methods to determine patient doses from dental cone-beam computed tomography (CBCT) equipment. The goal of this study is to apply and extend the methods recommended in the American Association of Physicists in Medicine (AAPM) Report 111 for CBCT equipment to characterize dose and effective dose for a range of dental imaging equipment. A protocol derived from the one proposed by Dixon et al (2010 Technical Report 111, American Association of Physicist in Medicine, MD, USA), was applied to dose measurements of multi-slice CT, dental CBCT (small and large fields of view (FOV)) and a dental panoramic system. The computed tomography dose index protocol was also performed on the MSCT to compare both methods. The dose distributions in a cylindrical polymethyl methacrylate phantom were characterized using a thimble ionization chamber and Gafchromic™ film (beam profiles). Gafchromic™ films were used to measure the dose distribution in an anthropomorphic phantom. A method was proposed to extend dose estimates to planes superior and inferior to the central plane. The dose normalized to 100 mAs measured in the center of the phantom for the large FOV dental CBCT (11.4 mGy/100 mAs) is two times lower than that of MSCT (20.7 mGy/100 mAs) for the same FOV, but approximately 15 times higher than for a panoramic system (0.6 mGy/100 mAs). The effective dose per scan (in clinical conditions) found for the dental CBCT are 167.60 ± 3.62, 61.30 ± 3.88 and 92.86 ± 7.76 mSv for the Kodak 9000 (fixed scan length of 3.7 cm), and the iCAT Next Generation for 6 cm and 13 cm scan lengths respectively. The method to extend the dose estimates from the central slice to superior and inferior slices indicates a good agreement between theory and measurement. The Gafchromic™ films provided useful beam profile data and 2D distributions of dose in phantom.

  3. Variability of dental cone beam CT grey values for density estimations

    PubMed Central

    Pauwels, R; Nackaerts, O; Bellaiche, N; Stamatakis, H; Tsiklakis, K; Walker, A; Bosmans, H; Bogaerts, R; Jacobs, R; Horner, K

    2013-01-01

    Objective The aim of this study was to investigate the use of dental cone beam CT (CBCT) grey values for density estimations by calculating the correlation with multislice CT (MSCT) values and the grey value error after recalibration. Methods A polymethyl methacrylate (PMMA) phantom was developed containing inserts of different density: air, PMMA, hydroxyapatite (HA) 50 mg cm−3, HA 100, HA 200 and aluminium. The phantom was scanned on 13 CBCT devices and 1 MSCT device. Correlation between CBCT grey values and CT numbers was calculated, and the average error of the CBCT values was estimated in the medium-density range after recalibration. Results Pearson correlation coefficients ranged between 0.7014 and 0.9996 in the full-density range and between 0.5620 and 0.9991 in the medium-density range. The average error of CBCT voxel values in the medium-density range was between 35 and 1562. Conclusion Even though most CBCT devices showed a good overall correlation with CT numbers, large errors can be seen when using the grey values in a quantitative way. Although it could be possible to obtain pseudo-Hounsfield units from certain CBCTs, alternative methods of assessing bone tissue should be further investigated. Advances in knowledge The suitability of dental CBCT for density estimations was assessed, involving a large number of devices and protocols. The possibility for grey value calibration was thoroughly investigated. PMID:23255537

  4. A stationary wavelet transform based approach to registration of planning CT and setup cone beam-CT images in radiotherapy.

    PubMed

    Deng, Jun-Min; Yue, Hai-Zhen; Zhuo, Zhi-Zheng; Yan, Hua-Gang; Liu, Di; Li, Hai-Yun

    2014-05-01

    Image registration between planning CT images and cone beam-CT (CBCT) images is one of the key technologies of image guided radiotherapy (IGRT). Current image registration methods fall roughly into two categories: geometric features-based and image grayscale-based. Mutual information (MI) based registration, which belongs to the latter category, has been widely applied to multi-modal and mono-modal image registration. However, the standard mutual information method only focuses on the image intensity information and overlooks spatial information, leading to the instability of intensity interpolation. Due to its use of positional information, wavelet transform has been applied to image registration recently. In this study, we proposed an approach to setup CT and cone beam-CT (CBCT) image registration in radiotherapy based on the combination of mutual information (MI) and stationary wavelet transform (SWT). Firstly, SWT was applied to generate gradient images and low frequency components produced in various levels of image decomposition were eliminated. Then inverse SWT was performed on the remaining frequency components. Lastly, the rigid registration of gradient images and original images was implemented using a weighting function with the normalized mutual information (NMI) being the similarity measure, which compensates for the lack of spatial information in mutual information based image registration. Our experiment results showed that the proposed method was highly accurate and robust, and indicated a significant clinical potential in improving the accuracy of target localization in image guided radiotherapy (IGRT).

  5. Correlating cone beam CT results with temporomandibular joint pain of osteoarthritic origin

    PubMed Central

    Palconet, G; Ludlow, JB; Tyndall, DA; Lim, PF

    2012-01-01

    Objectives The purpose of this study was to determine whether bony changes in temporomandibular joint (TMJ) osteoarthritis (OA) is correlated with pain and other clinical signs and symptoms. Methods Clinical data and cone beam CT (CBCT) images of 30 patients with TMJ OA were analysed. The criteria of Koyama et al (Koyama J, Nishiyama H, Hayashi T. Follow-up study of condylar bony changes using helical computed tomography in patients with temporomandibular disorder. Dentomaxillofac Radiol 2007; 36: 472–477.) and Ahmad et al [Ahmad M, Hollender L, Anderson Q, Kartha K, Ohrbach R, Truelove EL, et al. Research diagnostic criteria for temporomandibular disorders (RDC/TMD): development of image analysis criteria and examiner reliability for image analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 844–860.] were used to classify the condyles observed on the CBCT. Clinical measures included self-reported pain, mandibular range of motion, TMJ sound, pain on palpation of the TMJ and masticatory muscles, and pain on jaw function. Generalized linear modelling was used to correlate the clinical and radiographic findings and Spearman's rho was used to correlate the two classification systems. Results There was poor correlation between the maximum condyle change and pain rating (Koyama: r2 = 0.1443, p = 0.3995; Ahmad: r2 = 0.0273, p = 0.9490), maximum mouth opening (Koyama: r2 = 0.2910, p = 0.0629; Ahmad: r2 = 0.2626, p = 0.0951), protrusion (Koyama: r2 = 0.0875, p = 0.7001; Ahmad: r2 = 0.1658, p = 0.3612), right lateral motion (Koyama: r2 = 0.0394, p = 0.9093; Ahmad: r2 = 0.0866, p = 0.6877) and left lateral motion (Koyama: r2 = 0.0943, p = 0.6494; Ahmad: r2 = 0.1704, p = 0.3236). Strong correlation was observed between Koyama et al's and Ahmad et al's classifications for average (r = 0.9216, p < 0.001) and maximum (r = 0.7694; p < 0.0001) bony change. Conclusions There was poor correlation between condylar changes (as observed on CBCT images), pain and

  6. Multiresolution iterative reconstruction in high-resolution extremity cone-beam CT

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2016-10-01

    Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size  <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution penalized-weighted least squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10×  can be used without introducing artifacts, yielding a ~50×  speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of

  7. Data consistency-driven scatter kernel optimization for x-ray cone-beam CT

    NASA Astrophysics Data System (ADS)

    Kim, Changhwan; Park, Miran; Sung, Younghun; Lee, Jaehak; Choi, Jiyoung; Cho, Seungryong

    2015-08-01

    Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation.

  8. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images.

  9. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy.

    PubMed

    Thing, Rune Slot; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images.

  10. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy.

    PubMed

    Thing, Rune Slot; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images. PMID:27405692

  11. SU-D-207-01: Markerless Respiratory Motion Tracking with Contrast Enhanced Thoracic Cone Beam CT Projections

    SciTech Connect

    Chao, M; Yuan, Y; Rosenzweig, K; Lo, Y; Brousmiche, S

    2015-06-15

    Purpose: To develop a novel technique to enhance the image contrast of clinical cone beam CT projections and extract respiratory signals based on anatomical motion using the modified Amsterdam Shroud (AS) method to benefit image guided radiation therapy. Methods: Thoracic cone beam CT projections acquired prior to treatment were preprocessed to increase their contrast for better respiratory signal extraction. Air intensity on raw images was firstly estimated and then applied to correct the projections to generate new attenuation images that were subsequently improved with deeper anatomy feature enhancement through taking logarithm operation, derivative along superior-inferior direction, respectively. All pixels on individual post-processed two dimensional images were horizontally summed to one column and all projections were combined side by side to create an AS image from which patient’s respiratory signal was extracted. The impact of gantry rotation on the breathing signal rendering was also investigated. Ten projection image sets from five lung cancer patients acquired with the Varian Onboard Imager on 21iX Clinac (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Results: Application of the air correction on raw projections showed that more than an order of magnitude of contrast enhancement was achievable. The typical contrast on the raw projections is around 0.02 while that on attenuation images could greater than 0.5. Clear and stable breathing signal can be reliably extracted from the new images while the uncorrected projection sets failed to yield clear signals most of the time. Conclusion: Anatomy feature plays a key role in yielding breathing signal from the projection images using the AS technique. The air correction process facilitated the contrast enhancement significantly and attenuation images thus obtained provides a practical solution to obtaining markerless breathing motion tracking.

  12. A comprehensive study on decreasing the kilovoltage cone-beam CT dose by reducing the projection number.

    PubMed

    Lu, Bo; Lu, Haibin; Palta, Jatinder

    2010-01-01

    The objective of this study was to evaluate the effect of kilovoltage cone-beam computed tomography (CBCT) on registration accuracy and image qualities with a reduced number of planar projections used in volumetric imaging reconstruction. The ultimate goal is to evaluate the possibility of reducing the patient dose while maintaining registration accuracy under different projection-number schemes for various clinical sites. An Elekta Synergy Linear accelerator with an onboard CBCT system was used in this study. The quality of the Elekta XVI cone-beam three-dimensional volumetric images reconstructed with a decreasing number of projections was quantitatively evaluated by a Catphan phantom. Subsequently, we tested the registration accuracy of imaging data sets on three rigid anthropomorphic phantoms and three real patient sites under the reduced projection-number (as low as 1/6th) reconstruction of CBCT data with different rectilinear shifts and rota-tions. CBCT scan results of the Catphan phantom indicated the CBCT images got noisier when the number of projections was reduced, but their spatial resolution and uniformity were hardly affected. The maximum registration errors under the small amount transformation of the reference CT images were found to be within 0.7 mm translation and 0.3 masculine rotation. However, when the projection number was lower than one-fourth of the full set with a large amount of transformation of reference CT images, the registration could easily be trapped into local minima solutions for a nonrigid anatomy. We concluded, by using projection-number reduction strategy under conscientious care, imaging-guided localization procedure could achieve a lower patient dose without losing the registration accuracy for various clinical sites and situations. A faster scanning time is the main advantage compared to the mA decrease-based, dose-reduction method.

  13. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    PubMed Central

    Aootaphao, Sorapong; Thongvigitmanee, Saowapak S.; Rajruangrabin, Jartuwat; Thanasupsombat, Chalinee; Srivongsa, Tanapon; Thajchayapong, Pairash

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain. PMID:27022608

  14. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT.

    PubMed

    Aootaphao, Sorapong; Thongvigitmanee, Saowapak S; Rajruangrabin, Jartuwat; Thanasupsombat, Chalinee; Srivongsa, Tanapon; Thajchayapong, Pairash

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain. PMID:27022608

  15. Physical performance and image optimization of megavoltage cone-beam CT

    SciTech Connect

    Morin, Olivier; Aubry, Jean-Francois; Aubin, Michele; Chen, Josephine; Descovich, Martina; Hashemi, Ali-Bani; Pouliot, Jean

    2009-04-15

    Megavoltage cone-beam CT (MVCBCT) is the most recent addition to the in-room CT systems developed for image-guided radiation therapy. The first generation MVCBCT system consists of a 6 MV treatment x-ray beam produced by a conventional linear accelerator equipped with a flat panel amorphous silicon detector. The objective of this study was to evaluate the physical performance of MVCBCT in order to optimize the system acquisition and reconstruction parameters for image quality. MVCBCT acquisitions were performed with the clinical system but images were reconstructed and analyzed with a separate research workstation. The geometrical stability and the positioning accuracy of the system were evaluated by comparing geometrical calibrations routinely performed over a period of 12 months. The beam output and detector intensity stability during MVCBCT acquisition were also evaluated by analyzing in-air acquisitions acquired at different exposure levels. Several system parameters were varied to quantify their impact on image quality including the exposure (2.7, 4.5, 9.0, 18.0, and 54.0 MU), the craniocaudal imaging length (2, 5, 15, and 27.4 cm), the voxel size (0.5, 1, and 2 mm), the slice thickness (1, 3, and 5 mm), and the phantom size. For the reconstruction algorithm, the study investigated the effect of binning, averaging and diffusion filtering of raw projections as well as three different projection filters. A head-sized water cylinder was used to measure and improve the uniformity of MVCBCT images. Inserts of different electron densities were placed in a water cylinder to measure the contrast-to-noise ratio (CNR). The spatial resolution was obtained by measuring the point-spread function of the system using an iterative edge blurring technique. Our results showed that the geometric stability and accuracy of MVCBCT were better than 1 mm over a period of 12 months. Beam intensity variations per projection of up to 35.4% were observed for a 2.7 MU MVCBCT acquisition

  16. Image-domain shading correction for cone-beam CT without prior patient information.

    PubMed

    Fan, Qiyong; Lu, Bo; Park, Justin C; Niu, Tianye; Li, Jonathan G; Liu, Chihray; Zhu, Lei

    2015-01-01

    In the era of high-precision radiotherapy, cone-beam CT (CBCT) is frequently utilized for on-board treatment guidance. However, CBCT images usually contain severe shading artifacts due to strong photon scatter from illumination of a large volume and non-optimized patient-specific data measurements, limiting the full clinical applications of CBCT. Many algorithms have been proposed to alleviate this problem by data correction on projections. Sophisticated methods have also been designed when prior patient information is available. Nevertheless, a standard, efficient, and effective approach with large applicability remains elusive for current clinical practice. In this work, we develop a novel algorithm for shading correction directly on CBCT images. Distinct from other image-domain correction methods, our approach does not rely on prior patient information or prior assumption of patient data. In CBCT, projection errors (mostly from scatter and non-ideal usage of bowtie filter) result in dominant low-frequency shading artifacts in image domain. In circular scan geometry, these artifacts often show global or local radial patterns. Hence, the raw CBCT images are first preprocessed into the polar coordinate system. Median filtering and polynomial fitting are applied on the transformed image to estimate the low-frequency shading artifacts (referred to as the bias field) angle-by-angle and slice-by-slice. The low-pass filtering process is done firstly along the angular direction and then the radial direction to preserve image contrast. The estimated bias field is then converted back to the Cartesian coordinate system, followed by 3D low-pass filtering to eliminate possible high-frequency components. The shading-corrected image is finally obtained as the uncorrected volume divided by the bias field. The proposed algorithm was evaluated on CBCT images of a pelvis patient and a head patient. Mean CT number values and spatial non-uniformity on the reconstructed images were

  17. SU-E-T-416: VMAT Dose Calculations Using Cone Beam CT Images: A Preliminary Study

    SciTech Connect

    Yu, S; Sehgal, V; Kuo, J; Daroui, P; Ramsinghani, N; Al-Ghazi, M

    2014-06-01

    Purpose: Cone beam CT (CBCT) images have been used routinely for patient positioning throughout the treatment course. However, use of CBCT for dose calculation is still investigational. The purpose of this study is to assess the utility of CBCT images for Volumetric Modulated Arc Therapy (VMAT) plan dose calculation. Methods: A CATPHAN 504 phantom (The Phantom Laboratory, Salem, NY) was used to compare the dosimetric and geometric accuracy between conventional CT and CBCT (in both full and half fan modes). Hounsfield units (HU) profiles at different density areas were evaluated. A C shape target that surrounds a central avoidance structure was created and a VMAT plan was generated on the CT images and copied to the CBCT phantom images. Patient studies included three brain patients, and one head and neck (H'N) patient. VMAT plans generated on the patients treatment planning CT was applied to CBCT images obtained during the first treatment. Isodose distributions and dosevolume- histograms (DVHs) were compared. Results: For the phantom study, the HU difference between CT and CBCT is within 100 (maximum 96 HU for Teflon CBCT images in full fan mode). The impact of these differences on the calculated dose distributions was clinically insignificant. In both phantom and patient studies, target DVHs based on CBCT images were in excellent agreement with those based on planning CT images. Mean, Median, near minimum (D98%), and near maximum (D2%) doses agreed within 0-2.5%. A slightly larger discrepancy is observed in the patient studies compared to that seen in the phantom study, (0-1% vs. 0 - 2.5%). Conclusion: CBCT images can be used to accurately predict dosimetric results, without any HU correction. It is feasible to use CBCT to evaluate the actual dose delivered at each fraction. The dosimetric consequences resulting from tumor response and patient geometry changes could be monitored.

  18. Evaluation of Radiation Dose and Image Quality for the Varian Cone Beam Computed Tomography System

    SciTech Connect

    Cheng, Harry C.Y.; Wu, Vincent W.C.; Liu, Eva S.F.; Kwong, Dora L.W.

    2011-05-01

    Purpose: To compare the image quality and dosimetry on the Varian cone beam computed tomography (CBCT) system between software Version 1.4.13 and Version 1.4.11 (referred to as 'new' and 'old' protocols, respectively, in the following text). This study investigated organ absorbed dose, total effective dose, and image quality of the CBCT system for the head-and-neck and pelvic regions. Methods and Materials: A calibrated Farmer chamber and two standard cylindrical Perspex CT dosimetry phantoms with diameter of 16 cm (head phantom) and 32 cm (body phantom) were used to measure the weighted cone-beam computed tomography dose index (CBCTDIw) of the Varian CBCT system. The absorbed dose of different organs was measured in a female anthropomorphic phantom with thermoluminescent dosimeters (TLD) and the total effective dose was estimated according to International Commission on Radiological Protection (ICRP) Publication 103. The dose measurement and image quality were studied for head-and-neck and pelvic regions, and comparison was made between the new and old protocols. Results: The values of the new CBCTDIw head-and-neck and pelvic protocols were 36.6 and 29.4 mGy, respectively. The total effective doses from the new head-and-neck and pelvic protocols were 1.7 and 8.2 mSv, respectively. The absorbed doses of lens for the new 200{sup o} and old 360{sup o} head-and-neck protocols were 3.8 and 59.4 mGy, respectively. The additional secondary cancer risk from daily CBCT might be up to 2.8%. Conclusions: The new Varian CBCT provided volumetric information for image guidance with acceptable image quality and lower radiation dose. This imaging tool gave a better standard for patient daily setup verification.

  19. A One-Step Cone-Beam CT-Enabled Planning-to-Treatment Model for Palliative Radiotherapy-From Development to Implementation

    SciTech Connect

    Wong, Rebecca K.S.; Letourneau, Daniel; Varma, Anita; Bissonnette, Jean Pierre; Fitzpatrick, David; Grabarz, Daniel; Elder, Christine; Martin, Melanie; Bezjak, Andrea; Panzarella, Tony; Gospodarowicz, Mary; Jaffray, David A.

    2012-11-01

    Purpose: To develop a cone-beam computed tomography (CT)-enabled one-step simulation-to-treatment process for the treatment of bone metastases. Methods and Materials: A three-phase prospective study was conducted. Patients requiring palliative radiotherapy to the spine, mediastinum, or abdomen/pelvis suitable for treatment with simple beam geometry ({<=}2 beams) were accrued. Phase A established the accuracy of cone-beam CT images for the purpose of gross tumor target volume (GTV) definition. Phase B evaluated the feasibility of implementing the cone-beam CT-enabled planning process at the treatment unit. Phase C evaluated the online cone-beam CT-enabled process for the planning and treatment of patients requiring radiotherapy for bone metastases. Results: Eighty-four patients participated in this study. Phase A (n = 9) established the adequacy of cone-beam CT images for target definition. Phase B (n = 45) established the quality of treatment plans to be adequate for clinical implementation for bone metastases. When the process was applied clinically in bone metastases (Phase C), the degree of overlap between planning computed tomography (PCT) and cone-beam CT for GTV and between PCT and cone-beam CT for treatment field was 82% {+-} 11% and 97% {+-} 4%, respectively. The oncologist's decision to accept the plan under a time-pressured environment remained of high quality, with the cone-beam CT-generated treatment plan delivering at least 90% of the prescribed dose to 100% {+-} 0% of the cone-beam CT planning target volume (PTV). With the assumption that the PCT PTV is the gold-standard target, the cone-beam CT-generated treatment plan delivered at least 90% and at least 95% of dose to 98% {+-} 2% and 97% {+-} 5% of the PCT PTV, respectively. The mean time for the online planning and treatment process was 32.7 {+-} 4.0 minutes. Patient satisfaction was high, with a trend for superior satisfaction with the cone-beam CT-enabled process. Conclusions: The cone-beam CT

  20. Measurement of small lesions near metallic implants with mega-voltage cone beam CT

    NASA Astrophysics Data System (ADS)

    Grigorescu, Violeta; Prevrhal, Sven; Pouliot, Jean

    2008-03-01

    Metallic objects severely limit diagnostic CT imaging because of their high X-ray attenuation in the diagnostic energy range. In contrast, radiation therapy linear accelerators now offer CT imaging with X-ray energies in the megavolt range, where the attenuation coefficients of metals are significantly lower. We hypothesized that Mega electron-Voltage Cone-Beam CT (MVCT) implemented on a radiation therapy linear accelerator can detect and quantify small features in the vicinity of metallic implants with accuracy comparable to clinical Kilo electron-Voltage CT (KVCT) for imaging. Our test application was detection of osteolytic lesions formed near the metallic stem of a hip prosthesis, a condition of severe concern in hip replacement surgery. Both MVCT and KVCT were used to image a phantom containing simulated osteolytic bone lesions centered around a Chrome-Cobalt hip prosthesis stem with hemispherical lesions with sizes and densities ranging from 0.5 to 4 mm radius and 0 to 500 mg•cm -3, respectively. Images for both modalities were visually graded to establish lower limits of lesion visibility as a function of their size. Lesion volumes and mean density were determined and compared to reference values. Volume determination errors were reduced from 34%, on KVCT, to 20% for all lesions on MVCT, and density determination errors were reduced from 71% on KVCT to 10% on MVCT. Localization and quantification of lesions was improved with MVCT imaging. MVCT offers a viable alternative to clinical CT in cases where accurate 3D imaging of small features near metallic hardware is critical. These results need to be extended to other metallic objects of different composition and geometry.

  1. SU-E-T-161: Evaluation of Dose Calculation Based On Cone-Beam CT

    SciTech Connect

    Abe, T; Nakazawa, T; Saitou, Y; Nakata, A; Yano, M; Tateoka, K; Fujimoto, K; Sakata, K

    2014-06-01

    Purpose: The purpose of this study is to convert pixel values in cone-beam CT (CBCT) using histograms of pixel values in the simulation CT (sim-CT) and the CBCT images and to evaluate the accuracy of dose calculation based on the CBCT. Methods: The sim-CT and CBCT images immediately before the treatment of 10 prostate cancer patients were acquired. Because of insufficient calibration of the pixel values in the CBCT, it is difficult to be directly used for dose calculation. The pixel values in the CBCT images were converted using an in-house program. A 7 fields treatment plans (original plan) created on the sim-CT images were applied to the CBCT images and the dose distributions were re-calculated with same monitor units (MUs). These prescription doses were compared with those of original plans. Results: In the results of the pixel values conversion in the CBCT images,the mean differences of pixel values for the prostate,subcutaneous adipose, muscle and right-femur were −10.78±34.60, 11.78±41.06, 29.49±36.99 and 0.14±31.15 respectively. In the results of the calculated doses, the mean differences of prescription doses for 7 fields were 4.13±0.95%, 0.34±0.86%, −0.05±0.55%, 1.35±0.98%, 1.77±0.56%, 0.89±0.69% and 1.69±0.71% respectively and as a whole, the difference of prescription dose was 1.54±0.4%. Conclusion: The dose calculation on the CBCT images achieve an accuracy of <2% by using this pixel values conversion program. This may enable implementation of efficient adaptive radiotherapy.

  2. Optimized dynamic contrast-enhanced cone-beam CT for target visualization during liver SBRT

    NASA Astrophysics Data System (ADS)

    Jones, Bernard L.; Altunbas, Cem; Kavanagh, Brian; Schefter, Tracey; Miften, Moyed

    2014-03-01

    The pharmacokinetic behavior of iodine contrast agents makes it difficult to achieve significant enhancement during contrast-enhanced cone-beam CT (CE-CBCT). This study modeled this dynamic behavior to optimize CE-CBCT and improve the localization of liver lesions for SBRT. We developed a model that allows for controlled study of changing iodine concentrations using static phantoms. A projection database consisting of multiple phantom images of differing iodine/scan conditions was built. To reconstruct images of dynamic hepatic concentrations, hepatic contrast enhancement data from conventional CT scans were used to re-assemble the projections to match the expected amount of contrast. In this way the effect of various parameters on image quality was isolated, and using our dynamic model we found parameters for iodine injection, CBCT scanning, and injection/scanning timing which optimize contrast enhancement. Increasing the iodine dose, iodine injection rate, and imaging dose led to significant increases in signal-to-noise ratio (SNR). Reducing the CBCT imaging time also increased SNR, as the image can be completed before the iodine exits the liver. Proper timing of image acquisition played a significant role, as a 30 second error in start time resulted in a 40% SNR decrease. The effect of IV contrast is severely degraded in CBCT, but there is promise that, with optimization of the injection and scan parameters to account for iodine pharmacokinetics, CE-CBCT which models venous-phase blood flow kinetics will be feasible for accurate localization of liver lesions.

  3. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    SciTech Connect

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong; Kim, Insoo; Han, Bumsoo

    2015-11-15

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  4. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    NASA Astrophysics Data System (ADS)

    Wu, T.-H.; Liang, C.-H.; Wu, J.-K.; Lien, C.-Y.; Yang, B.-H.; Huang, Y.-H.; Lee, J. J. S.

    2009-07-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18F-fluorodeoxyglucose (18F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  5. How I Do It: Cone-Beam CT during Transarterial Chemoembolization for Liver Cancer

    PubMed Central

    Tacher, Vania; Radaelli, Alessandro; Lin, MingDe

    2015-01-01

    Cone-beam computed tomography (CBCT) is an imaging technique that provides computed tomographic (CT) images from a rotational scan acquired with a C-arm equipped with a flat panel detector. Utilizing CBCT images during interventional procedures bridges the gap between the world of diagnostic imaging (typically three-dimensional imaging but performed separately from the procedure) and that of interventional radiology (typically two-dimensional imaging). CBCT is capable of providing more information than standard two-dimensional angiography in localizing and/or visualizing liver tumors (“seeing” the tumor) and targeting tumors though precise microcatheter placement in close proximity to the tumors (“reaching” the tumor). It can also be useful in evaluating treatment success at the time of procedure (“assessing” treatment success). CBCT technology is rapidly evolving along with the development of various contrast material injection protocols and multiphasic CBCT techniques. The purpose of this article is to provide a review of the principles of CBCT imaging, including purpose and clinical evidence of the different techniques, and to introduce a decision-making algorithm as a guide for the routine utilization of CBCT during transarterial chemoembolization of liver cancer. © RSNA, 2015 Online supplemental material is available for this article. PMID:25625741

  6. Implementation of the FDK algorithm for cone-beam CT on the cell broadband engine architecture

    NASA Astrophysics Data System (ADS)

    Scherl, Holger; Koerner, Mario; Hofmann, Hannes; Eckert, Wieland; Kowarschik, Markus; Hornegger, Joachim

    2007-03-01

    In most of today's commercially available cone-beam CT scanners, the well known FDK method is used for solving the 3D reconstruction task. The computational complexity of this algorithm prohibits its use for many medical applications without hardware acceleration. The brand-new Cell Broadband Engine Architecture (CBEA) with its high level of parallelism is a cost-efficient processor for performing the FDK reconstruction according to the medical requirements. The programming scheme, however, is quite different to any standard personal computer hardware. In this paper, we present an innovative implementation of the most time-consuming parts of the FDK algorithm: filtering and back-projection. We also explain the required transformations to parallelize the algorithm for the CBEA. Our software framework allows to compute the filtering and back-projection in parallel, making it possible to do an on-the-fly-reconstruction. The achieved results demonstrate that a complete FDK reconstruction is computed with the CBEA in less than seven seconds for a standard clinical scenario. Given the fact that scan times are usually much higher, we conclude that reconstruction is finished right after the end of data acquisition. This enables us to present the reconstructed volume to the physician in real-time, immediately after the last projection image has been acquired by the scanning device.

  7. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.

    PubMed

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  8. Observer Reliability of Three-Dimensional Cephalometric Landmark Identification on Cone-Beam CT

    PubMed Central

    de Oliveira, Ana Emilia F.; Cevidanes, Lucia Helena S.; Phillips, Ceib; Motta, Alexandre; Burke, Brandon; Tyndall, Donald

    2009-01-01

    Objective To evaluate reliability in 3D landmark identification using Cone-Beam CT. Study Design Twelve pre-surgery CBCTs were randomly selected from 159 orthognathic surgery patients. Three observers independently repeated three times the identification of 30 landmarks in the sagittal, coronal, and axial slices. A mixed effects ANOVA model estimated the Intraclass Correlations (ICC) and assessed systematic bias. Results The ICC was >0.9 for 86% of intra-observer assessments and 66% of inter-observer assessments. Only 1% of intra-observer and 3% of inter-observer coefficients were <0.45. The systematic difference among observers was greater in X and Z than in Y dimensions, but the maximum mean difference was quite small. Conclusion Overall, the intra- and inter-observer reliability was excellent. 3D landmark identification using CBCT can offer consistent and reproducible data, if a protocol for operator training and calibration is followed. This is particularly important for landmarks not easily specified in all three planes of space. PMID:18718796

  9. Automatic extraction of mandibular nerve and bone from cone-beam CT data.

    PubMed

    Kainmueller, Dagmar; Lamecker, Hans; Seim, Heiko; Zinser, Max; Zachow, Stefan

    2009-01-01

    The exact localization of the mandibular nerve with respect to the bone is important for applications in dental implantology and maxillofacial surgery. Cone beam computed tomography (CBCT), often also called digital volume tomography (DVT), is increasingly utilized in maxillofacial or dental imaging. Compared to conventional CT, however, soft tissue discrimination is worse due to a reduced dose. Thus, small structures like the alveolar nerves are even harder recognizable within the image data. We show that it is nonetheless possible to accurately reconstruct the 3D bone surface and the course of the nerve in a fully automatic fashion, with a method that is based on a combined statistical shape model of the nerve and the bone and a Dijkstra-based optimization procedure. Our method has been validated on 106 clinical datasets: the average reconstruction error for the bone is 0.5 +/- 0.1 mm, and the nerve can be detected with an average error of 1.0 +/- 0.6 mm. PMID:20426098

  10. Dose distribution for dental cone beam CT and its implication for defining a dose index

    PubMed Central

    Pauwels, R; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Horner, K; Bogaerts, R

    2012-01-01

    Objectives To characterize the dose distribution for a range of cone beam CT (CBCT) units, investigating different field of view sizes, central and off-axis geometries, full or partial rotations of the X-ray tube and different clinically applied beam qualities. The implications of the dose distributions on the definition and practicality of a CBCT dose index were assessed. Methods Dose measurements on CBCT devices were performed by scanning cylindrical head-size water and polymethyl methacrylate phantoms, using thermoluminescent dosemeters, a small-volume ion chamber and radiochromic films. Results It was found that the dose distribution can be asymmetrical for dental CBCT exposures throughout a homogeneous phantom, owing to an asymmetrical positioning of the isocentre and/or partial rotation of the X-ray source. Furthermore, the scatter tail along the z-axis was found to have a distinct shape, generally resulting in a strong drop (90%) in absorbed dose outside the primary beam. Conclusions There is no optimal dose index available owing to the complicated exposure geometry of CBCT and the practical aspects of quality control measurements. Practical validation of different possible dose indices is needed, as well as the definition of conversion factors to patient dose. PMID:22752320

  11. Measurement of inter and intra fraction organ motion in radiotherapy using cone beam CT projection images

    NASA Astrophysics Data System (ADS)

    Marchant, T. E.; Amer, A. M.; Moore, C. J.

    2008-02-01

    A method is presented for extraction of intra and inter fraction motion of seeds/markers within the patient from cone beam CT (CBCT) projection images. The position of the marker is determined on each projection image and fitted to a function describing the projection of a fixed point onto the imaging panel at different gantry angles. The fitted parameters provide the mean marker position with respect to the isocentre. Differences between the theoretical function and the actual projected marker positions are used to estimate the range of intra fraction motion and the principal motion axis in the transverse plane. The method was validated using CBCT projection images of a static marker at known locations and of a marker moving with known amplitude. The mean difference between actual and measured motion range was less than 1 mm in all directions, although errors of up to 5 mm were observed when large amplitude motion was present in an orthogonal direction. In these cases it was possible to calculate the range of motion magnitudes consistent with the observed marker trajectory. The method was shown to be feasible using clinical CBCT projections of a pancreas cancer patient.

  12. Detection accuracy of condylar defects in cone beam CT images scanned with different resolutions and units

    PubMed Central

    Zhang, Z-l; Shi, X-q; Ma, X-c

    2014-01-01

    Objectives: To assess the impact of spatial resolution and cone beam CT (CBCT) unit on CBCT images for the detection accuracy of condylar defects. Methods: 42 temporomandibular joints were scanned, respectively, with the CBCT units ProMax® 3D (Planmeca Oy, Helsinki, Finland) and DCT PRO (Vatech, Co., Ltd., Yongin-Si, Republic of Korea) at normal and high resolutions. Seven dentists evaluated all the test images with respect to the presence or the absence of condylar defects. Receiver operating characteristic curve analysis was employed to define the detection accuracy. Two-way analysis of variance was used to analyse the values under the receiver operating characteristic curves for the differences among imaging groups and observers. Intraobserver variation was analysed using the Wilcoxon test. Results: Macroscopic anatomy examination revealed that, of the 42 temporomandibular joint condylar surfaces, 18 were normal and 24 had defects on the surface of condyles. No significant differences were found between the images scanned with normal and high resolutions for both CBCT units ProMax 3D (p = 0.119) and DCT PRO (p = 0.740). Significant differences exist between image groups of DCT PRO and ProMax 3D (p < 0.05). Neither the inter- nor the intraobserver variability were significant. Conclusions: The spatial resolution per se did not have an impact on the detection accuracy of condylar defects. The detection accuracy of condylar defects highly depends on the CBCT unit used for examination. PMID:24408818

  13. Automatic delineation of body contours on cone-beam CT images using a delineation booster

    NASA Astrophysics Data System (ADS)

    Stippel, G.; van Rooijen, D. C.; Crezee, J.; Bel, A.

    2012-07-01

    In radiotherapy, cone-beam computerized tomography (CBCT) scans are used for position correction for various tumour sites. At the start of the treatment, a CT scan that serves as input for a treatment planning is acquired. A CBCT scan is made prior to the irradiation of the tumour. Because there might be significant interfractional tumour movement, online recalculation of the dose improves decision making on how to proceed. A prerequisite for such recalculation is an accurately delineated body contour. In this note, we present an automatic delineation method for the body contour in the unprocessed CBCT scans, that employs a novel delineation boosting technique. The main idea of this technique is to construct an accurate delineation by combining the strength of several edge detectors in an innovative way. Quantitative validation reveals that the algorithm performs comparably with the manual delineations of two trained observers. Furthermore, because of the generic nature of the delineation boosting procedure, the algorithm can easily be extended with additional edge detectors to further increase the accuracy. Finally, the processing time of one scan when delineated manually is 3 h, and the total processing time is 24 min for one scan if the algorithm is used in its present form. Current investigation includes the conversion of the Matlab algorithm to C++ and the development of a visual tool to quickly detect which automatically delineated slices need manual correction. From this we expect further speeding up of the process, allowing online computation.

  14. Descriptive study of the bifid mandibular canals and retromolar foramina: cone beam CT vs panoramic radiography

    PubMed Central

    Muinelo-Lorenzo, J; Suárez-Quintanilla, J A; Fernández-Alonso, A; Marsillas-Rascado, S

    2014-01-01

    Objectives: To examine the presence and morphologic characteristics of bifid mandibular canals (BMCs) and retromolar foramens (RFs) using cone beam CT (CBCT) and to determine their visualization on panoramic radiographs (PANs). Methods: A sample of 225 CBCT examinations was analysed for the presence of BMCs, as well as length, height, diameter and angle. The diameter of the RF was also determined. Subsequently, corresponding PANs were analysed to determine whether the BMCs and RFs were visible or not. Results: The BMCs were observed on CBCT in 83 out of the 225 patients (36.8%). With respect to gender, statistically significant differences were found in the number of BMCs. There were also significant differences in anatomical characteristics of the types of BMCs. Only 37.8% of the BMCs and 32.5% of the RFs identified on CBCT were also visible on PANs. The diameter had a significant effect on the capability of PANs to visualize BMCs and RFs (B = 0.791, p = 0.035; B = 1.900, p = 0.017, respectively). Conclusions: PANs are unable to sufficiently identify BMCs and RFs. The diameter of these anatomical landmarks represents a relevant factor for visualization on PANs. Pre-operative images using only PANs may lead to underestimation of the presence of BMCs and to surgical complications and anaesthetic failures, which could have been avoided. For true determination of BMCs, a CBCT device should be considered better than a PAN. PMID:24785820

  15. Can cone beam CT predict the hardness of interradicular cortical bone?

    PubMed Central

    2014-01-01

    Objectives Orthodontic mini implants can be inserted at the interradicular site. The bone quality at this site may affect the stability and anchorage of the implant. Bone density is clinically evaluated by Hounsfield units (HU) obtained from cone beam CT (CBCT). The objective of this study was to determine the correlations between HU, microhardness and cortical bone thickness of interradicular site at various segments (anterior/posterior) and aspects (buccal/lingual) of both jaws in a swine model. Materials and methods Eight mandible and maxilla swine bones were scanned by CBCT. The HU and thickness of the above-mentioned sites were determined. Then, a Knoop microhardness test was applied and the Knoop Hardness Number was obtained (KHN). Results The mandible parameters spread over a wider range than the maxilla. The buccal aspect of the maxilla had higher HU and KHN values than the mandible. The lingual aspect of the mandible had higher KHN values than the maxilla. Posterior segments had higher HU and KHN values. The thickness of the alveolar cortical bone was greater in the maxilla than in the mandible. Correlations were found between HU and KHN for 3 of the 4 sites (anterior or posterior, buccal or lingual) of the mandible only. No correlations were found for the maxilla. Upon pooling the HU and KHN data for the whole jaw, correlation was found for the maxilla as well. Conclusions Relying on HU values as a predictor of cortical bone hardness should be considered with caution. PMID:24735746

  16. Segmentation of cone-beam CT using a hidden Markov random field with informative priors

    NASA Astrophysics Data System (ADS)

    Moores, M.; Hargrave, C.; Harden, F.; Mengersen, K.

    2014-03-01

    Cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. The rich sources of prior information in IGRT are incorporated into a hidden Markov random field model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk. The voxel labels are estimated using iterated conditional modes. The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom. The mean voxel-wise misclassification rate was 6.2%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.

  17. Effect of anatomical backgrounds on detectability in volumetric cone beam CT images

    NASA Astrophysics Data System (ADS)

    Han, Minah; Park, Subok; Baek, Jongduk

    2016-03-01

    As anatomical noise is often a dominating factor affecting signal detection in medical imaging, we investigate the effects of anatomical backgrounds on signal detection in volumetric cone beam CT images. Signal detection performances are compared between transverse and longitudinal planes with either uniform or anatomical backgrounds. Sphere objects with diameters of 1mm, 5mm, 8mm, and 11mm are used as the signals. Three-dimensional (3D) anatomical backgrounds are generated using an anatomical noise power spectrum, 1/fβ, with β=3, equivalent to mammographic background [1]. The mean voxel value of the 3D anatomical backgrounds is used as an attenuation coefficient of the uniform background. Noisy projection data are acquired by the forward projection of the uniform and anatomical 3D backgrounds with/without sphere lesions and by the addition of quantum noise. Then, images are reconstructed by an FDK algorithm [2]. For each signal size, signal detection performances in transverse and longitudinal planes are measured by calculating the task SNR of a channelized Hotelling observer with Laguerre-Gauss channels. In the uniform background case, transverse planes yield higher task SNR values for all sphere diameters but 1mm. In the anatomical background case, longitudinal planes yield higher task SNR values for all signal diameters. The results indicate that it is beneficial to use longitudinal planes to detect spherical signals in anatomical backgrounds.

  18. Extra projection data identification method for fast-continuous-rotation industrial cone-beam CT.

    PubMed

    Yang, Min; Duan, Shengling; Duan, Jinghui; Wang, Xiaolong; Li, Xingdong; Meng, Fanyong; Zhang, Jianhai

    2013-01-01

    Fast-continuous-rotation is an effective measure to improve the scanning speed and decrease the radiation dose for cone-beam CT. However, because of acceleration and deceleration of the motor, as well as the response lag of the scanning control terminals to the host PC, uneven-distributed and redundant projections are inevitably created, which seriously decrease the quality of the reconstruction images. In this paper, we first analyzed the aspects of the theoretical sequence chart of the fast-continuous-rotation mode. Then, an optimized sequence chart was proposed by extending the rotation angle span to ensure the effective 2π-span projections were situated in the stable rotation stage. In order to match the rotation angle with the projection image accurately, structure similarity (SSIM) index was used as a control parameter for extraction of the effective projection sequence which was exactly the complete projection data for image reconstruction. The experimental results showed that SSIM based method had a high accuracy of projection view locating and was easy to realize.

  19. [Motion-compensated compressed sensing four-dimensional cone-beam CT reconstruction].

    PubMed

    Yang, Xuan; Zhang, Hua; He, Ji; Zeng, Dong; Zhang, Xin-Yu; Bian, Zhao-Ying; Zhang, Jing; Ma, Jian-Hua

    2016-06-20

    Restriction by hardware caused the very low projection number at a single phase for 4-dimensional cone beam (4D-CBCT) CT imaging, and reconstruction using conventional reconstruction algorithms is thus constrained by serious streak artifacts and noises. To address this problem, we propose an approach to reconstructing 4D-CBCT images with multi-phase projections based on the assumption that the image at one phase can be viewed as the motion-compensated image at another phase. Specifically, we formulated a cost function using multi-phase projections to construct the fidelity term and the TV regularization method. For fidelity term construction, the projection data of the current phase and those at other phases were jointly used by reformulating the imaging model. The Gradient-Projection-Barzilai-Line search (GPBL) method was used to optimize the complex cost function. Physical phantom and patient data results showed that the proposed approach could effectively reduce the noise and artifacts, and the introduction of additional temporal correlation did not introduce new artifacts or motion blur. PMID:27435778

  20. Three-dimensional focus of attention for iterative cone-beam micro-CT reconstruction

    NASA Astrophysics Data System (ADS)

    Benson, T. M.; Gregor, J.

    2006-09-01

    Three-dimensional iterative reconstruction of high-resolution, circular orbit cone-beam x-ray CT data is often considered impractical due to the demand for vast amounts of computer cycles and associated memory. In this paper, we show that the computational burden can be reduced by limiting the reconstruction to a small, well-defined portion of the image volume. We first discuss using the support region defined by the set of voxels covered by all of the projection views. We then present a data-driven preprocessing technique called focus of attention that heuristically separates both image and projection data into object and background before reconstruction, thereby further reducing the reconstruction region of interest. We present experimental results for both methods based on mouse data and a parallelized implementation of the SIRT algorithm. The computational savings associated with the support region are substantial. However, the results for focus of attention are even more impressive in that only about one quarter of the computer cycles and memory are needed compared with reconstruction of the entire image volume. The image quality is not compromised by either method.

  1. Scatter correction method for cone-beam CT based on interlacing-slit scan

    NASA Astrophysics Data System (ADS)

    Huang, Kui-Dong; Zhang, Hua; Shi, Yi-Kai; Zhang, Liang; Xu, Zhe

    2014-09-01

    Cone-beam computed tomography (CBCT) has the notable features of high efficiency and high precision, and is widely used in areas such as medical imaging and industrial non-destructive testing. However, the presence of the ray scatter reduces the quality of CT images. By referencing the slit collimation approach, a scatter correction method for CBCT based on the interlacing-slit scan is proposed. Firstly, according to the characteristics of CBCT imaging, a scatter suppression plate with interlacing slits is designed and fabricated. Then the imaging of the scatter suppression plate is analyzed, and a scatter correction calculation method for CBCT based on the image fusion is proposed, which can splice out a complete set of scatter suppression projection images according to the interlacing-slit projection images of the left and the right imaging regions in the scatter suppression plate, and simultaneously complete the scatter correction within the flat panel detector (FPD). Finally, the overall process of scatter suppression and correction is provided. The experimental results show that this method can significantly improve the clarity of the slice images and achieve a good scatter correction.

  2. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    NASA Astrophysics Data System (ADS)

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  3. Prevalence of apical periodontitis detected in cone beam CT images of a Brazilian subpopulation

    PubMed Central

    Paes da Silva Ramos Fernandes, LM; Ordinola-Zapata, R; Húngaro Duarte, MA; Alvares Capelozza, AL

    2013-01-01

    Objectives The aim of this study was to determine the prevalence of apical periodontitis (AP) detected in cone beam CT (CBCT) images from a database. Methods CBCT images of 300 Brazilian patients were assessed. AP images were measured in three dimensions. Age, gender, number and location of total teeth in each patient were considered. AP location was considered according to tooth groups. The extent of AP was determined by the largest diameter in any of the three dimensions. Percentages and the χ2 test were used for statistical analysis. Results AP was found in 51.4% of the patients and in 3.4% of the teeth. Higher prevalence of AP was found in 60- to 69-year-olds (73.1%) and in mandibular molars (5.9%) (p < 0.05). Inadequate endodontic treatment presented higher prevalence of AP (78.1%). Conclusions AP can be frequently found in CBCT examinations. The presence of AP has a significant association with patients' age, and tooth type and condition. CBCT databases are useful for cross-sectional studies about AP prevalence in a population. PMID:22752318

  4. 3D Alternating Direction TV-Based Cone-Beam CT Reconstruction with Efficient GPU Implementation

    PubMed Central

    Cai, Ailong; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Guan, Min; Li, Jianxin

    2014-01-01

    Iterative image reconstruction (IIR) with sparsity-exploiting methods, such as total variation (TV) minimization, claims potentially large reductions in sampling requirements. However, the computation complexity becomes a heavy burden, especially in 3D reconstruction situations. In order to improve the performance for iterative reconstruction, an efficient IIR algorithm for cone-beam computed tomography (CBCT) with GPU implementation has been proposed in this paper. In the first place, an algorithm based on alternating direction total variation using local linearization and proximity technique is proposed for CBCT reconstruction. The applied proximal technique avoids the horrible pseudoinverse computation of big matrix which makes the proposed algorithm applicable and efficient for CBCT imaging. The iteration for this algorithm is simple but convergent. The simulation and real CT data reconstruction results indicate that the proposed algorithm is both fast and accurate. The GPU implementation shows an excellent acceleration ratio of more than 100 compared with CPU computation without losing numerical accuracy. The runtime for the new 3D algorithm is about 6.8 seconds per loop with the image size of 256 × 256 × 256 and 36 projections of the size of 512 × 512. PMID:25045400

  5. Enhanced 4D cone-beam CT with inter-phase motion model.

    PubMed

    Li, Tianfang; Koong, Albert; Xing, Lei

    2007-09-01

    Four-dimensional (4D) cone-beam CT (CBCT) is commonly obtained by respiratory phase binning of the projections, followed by independent reconstructions of the rebinned data in each phase bin. Due to the significantly reduced number of projections per reconstruction, the quality of the 4DCBCT images is often degraded by view-aliasing artifacts easily seen in the axial view. Acquisitions using multiple gantry rotations or slow gantry rotation can increase the number of projections and substantially improve the 4D images. However, the extra cost of the scan time may set fundamental limits to their applications in clinics. Improving the trade-off between image quality and scan time is the key to making 4D onboard imaging practical and more useful. In this article, we present a novel technique toward high-quality 4DCBCT imaging without prolonging the acquisition time, referred to as the "enhanced 4DCBCT". The method correlates the data in different phase bins and integrates the internal motion into the 4DCBCT image formulation. Several strategies of the motion derivation are discussed, and the resultant images are assessed with numerical simulations as well as a clinical case.

  6. An energy minimization method for the correction of cupping artifacts in cone-beam CT.

    PubMed

    Xie, Shipeng; Zhuang, Wenqin; Li, Haibo

    2016-01-01

    The purpose of this study was to reduce cupping artifacts and improve quantitative accuracy of the images in cone-beam CT (CBCT). An energy minimization method (EMM) is proposed to reduce cupping artifacts in reconstructed image of the CBCT. The cupping artifacts are iteratively optimized by using efficient matrix computations, which are verified to be numerically stable by matrix analysis. Moreover, the energy in our formulation is convex in each of its variables, which brings the robustness of the proposed energy minimization algorithm. The cupping artifacts are estimated as a result of minimizing this energy. The results indicate that proposed algorithm is effective for reducing the cupping artifacts and preserving the quality of the reconstructed image. The proposed method focuses on the reconstructed image without requiring any additional physical equipment; it is easily implemented and provides cupping correction using a single scan acquisition. The experimental results demonstrate that this method can successfully reduce the magnitude of cupping artifacts. The correction algorithm reported here may improve the uniformity of the reconstructed images, thus assisting the development of perfect volume visualization and threshold-based visualization techniques for reconstructed images. PMID:27455478

  7. Development and applicability of a quality control phantom for dental cone-beam CT.

    PubMed

    Pauwels, Ruben; Stamatakis, Harry; Manousaridis, Giorgos; Walker, Adrian; Michielsen, Koen; Bosmans, Hilde; Bogaerts, Ria; Jacobs, Reinhilde; Horner, Keith; Tsiklakis, Kostas

    2011-01-01

    Cone-beam CT (CBCT) has shown to be a useful imaging modality for various dentomaxillofacial applications. However, optimization and quality control of dental CBCT devices is hampered due to the lack of an appropriate tool for image quality assessment. To investigate the application of different image quality parameters for CBCT, a prototype polymethyl methacrylate (PMMA) cylindrical phantom with inserts for image quality analysis was developed. Applicability and reproducibility of the phantom were assessed using seven CBCT devices with different scanning protocols. Image quality parameters evaluated were: CT number correlation, contrast resolution, image homogeneity and uniformity, point spread function, and metal artifacts. Deviations of repeated measurements were between 0.0% and 3.3%. Correlation coefficients of CBCT voxel values with CT numbers ranged between 0.68 and 1.00. Contrast-to-noise ratio (CNR) values were much lower for hydroxyapatite (0 < CNR < 7.7) than for air and aluminum (5.0 < CNR < 32.8). Noise values ranged between 35 and 419. The uniformity index was between 3.3% and 11.9%. Full width at half maximum (FWHM) measurements varied between 0.43 mm and 1.07 mm. The increase of mean voxel values surrounding metal objects ranged between 6.7% and 43.0%. Results from preliminary analyses of the prototype quality control phantom showed its potential for routine quality assurance on CBCT. Large differences in image quality performance were seen between CBCT devices. Based on the initial evaluations, the phantom can be optimized and validated. PMID:22089004

  8. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    SciTech Connect

    Dang, H.; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H.

    2012-10-15

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. Methods: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. Results: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within {approx}200 mm of C-arm isocenter. Marker localization in projection data was robust across all

  9. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    PubMed Central

    Dang, H.; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H.

    2012-01-01

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. Methods: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. Results: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within ∼200 mm of C-arm isocenter. Marker localization in projection data was robust across all

  10. View-dependent geometric calibration for offset flat-panel cone beam computed tomography systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Giang

    2016-04-01

    Geometric parameters that define the geometry of imaging systems are crucial for image reconstruction and image quality in x-ray computed tomography (CT). The problem of determining geometric parameters for an offset flat-panel cone beam CT (CBCT) system, a recently introduced modality with a large field of view, with the assumption of an unstable mechanism and geometric parameters that vary in each view, is considered. To accurately and rapidly find the geometric parameters for each projection view, we use the projection matrix method and design a dedicated phantom that is partially visible in all projection views. The phantom consists of balls distributed symmetrically in a cylinder to ensure the inclusion of the phantom in all views, and a large portion of the phantom is covered in the projection image. To efficiently use calibrated geometric information in the reconstruction process and get rid of approximation errors, instead of decomposing the projection matrix into actual geometric parameters that are manually corrected before being used in reconstruction, as in conventional methods, we directly use the projection matrix and its pseudo-inverse in projection and backprojection operations of reconstruction algorithms. The experiments illustrate the efficacy of the proposed method with a real offset flat-panel CBCT system in dental imaging.

  11. Reconstruction-plane-dependent weighted FDK algorithm for cone beam volumetric CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Hsieh, Jiang

    2005-04-01

    The original FDK algorithm has been extensively employed in medical and industrial imaging applications. With an increased cone angle, cone beam (CB) artifacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called data sufficiency condition (DSC). A few "circular plus" trajectories have been proposed in the past to reduce CB artifacts by meeting the DSC. However, the circular trajectory has distinct advantages over other scanning trajectories in practical CT imaging, such as cardiac, vascular and perfusion applications. In addition to looking into the DSC, another insight into the CB artifacts of the original FDK algorithm is the inconsistency between conjugate rays that are 180° apart in view angle. The inconsistence between conjugate rays is pixel dependent, i.e., it varies dramatically over pixels within the image plane to be reconstructed. However, the original FDK algorithm treats all conjugate rays equally, resulting in CB artifacts that can be avoided if appropriate view weighting strategy is exercised. In this paper, a modified FDK algorithm is proposed, along with an experimental evaluation and verification, in which the helical body phantom and a humanoid head phantom scanned by a volumetric CT (64 x 0.625 mm) are utilized. Without extra trajectories supplemental to the circular trajectory, the modified FDK algorithm applies reconstruction-plane-dependent view weighting on projection data before 3D backprojection, which reduces the inconsistency between conjugate rays by suppressing the contribution of one of the conjugate rays with a larger cone angle. Both computer-simulated and real phantom studies show that, up to a moderate cone angle, the CB artifacts can be substantially suppressed by the modified FDK algorithm, while advantages of the original FDK algorithm, such as the filtered backprojection algorithm structure, 1D ramp filtering, and data manipulation efficiency, can be

  12. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction

    NASA Astrophysics Data System (ADS)

    Wang, Adam S.; Webster Stayman, J.; Otake, Yoshito; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L.; Khanna, A. Jay; Siewerdsen, Jeffrey H.

    2014-02-01

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (˜40-80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4-2.2× over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ˜1.7 mGy and benefits from 50% sparsity at dose below ˜1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose.

  13. Regularization design for high-quality cone-beam CT of intracranial hemorrhage using statistical reconstruction

    NASA Astrophysics Data System (ADS)

    Dang, H.; Stayman, J. W.; Xu, J.; Sisniega, A.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-03-01

    Intracranial hemorrhage (ICH) is associated with pathologies such as hemorrhagic stroke and traumatic brain injury. Multi-detector CT is the current front-line imaging modality for detecting ICH (fresh blood contrast 40-80 HU, down to 1 mm). Flat-panel detector (FPD) cone-beam CT (CBCT) offers a potential alternative with a smaller scanner footprint, greater portability, and lower cost potentially well suited to deployment at the point of care outside standard diagnostic radiology and emergency room settings. Previous studies have suggested reliable detection of ICH down to 3 mm in CBCT using high-fidelity artifact correction and penalized weighted least-squared (PWLS) image reconstruction with a post-artifact-correction noise model. However, ICH reconstructed by traditional image regularization exhibits nonuniform spatial resolution and noise due to interaction between the statistical weights and regularization, which potentially degrades the detectability of ICH. In this work, we propose three regularization methods designed to overcome these challenges. The first two compute spatially varying certainty for uniform spatial resolution and noise, respectively. The third computes spatially varying regularization strength to achieve uniform "detectability," combining both spatial resolution and noise in a manner analogous to a delta-function detection task. Experiments were conducted on a CBCT test-bench, and image quality was evaluated for simulated ICH in different regions of an anthropomorphic head. The first two methods improved the uniformity in spatial resolution and noise compared to traditional regularization. The third exhibited the highest uniformity in detectability among all methods and best overall image quality. The proposed regularization provides a valuable means to achieve uniform image quality in CBCT of ICH and is being incorporated in a CBCT prototype for ICH imaging.

  14. The influence of bowtie filtration on x-ray photons distribution in cone beam CT

    NASA Astrophysics Data System (ADS)

    Jiang, Shanghai; Feng, Peng; Wei, Biao; He, Peng; Deng, Luzhen; Zhang, Wei

    2015-10-01

    Bowtie filters are used to modulate an incoming x-ray beam as a function of the angle of the x-ray to balance the photon flux on a detector array. Because of their key roles in radiation dose reduction and multi-energy imaging, bowtie filters have attracted a major attention in modern X-ray computed tomography (CT). However, few researches are concerned on the effects of the structure and materials for the bowtie filter in the Cone Beam CT (CBCT). In this study, the influence of bowtie filters' structure and materials on X-ray photons distribution are analyzed using Monte Carlo (MC) simulations by MCNP5 code. In the current model, the phantom was radiated by virtual X-ray source (its' energy spectrum calculated by SpekCalc program) filtered using bowtie, then all photons were collected through array photoncounting detectors. In the process above, two bowtie filters' parameters which include center thickness (B), edge thickness (controlled by A), changed respectively. Two kinds of situation are simulated: 1) A=0.036, B=1, 2, 3, 4, 5, 6mm and the material is aluminum; 2) A=0.016, 0.036, 0.056, 0.076, 0.096, B=2mm and the material is aluminum. All the X-ray photons' distribution are measured through MCNP. The results show that reduction in center thickness and edge thickness can reduce the number of background photons in CBCT. Our preliminary research shows that structure parameters of bowtie filter can influence X-ray photons, furthermore, radiation dose distribution, which provide some evidences in design of bowtie filter for reducing radiation dose in CBCT.

  15. Clinical implementation of intraoperative cone-beam CT in head and neck surgery

    NASA Astrophysics Data System (ADS)

    Daly, M. J.; Chan, H.; Nithiananthan, S.; Qiu, J.; Barker, E.; Bachar, G.; Dixon, B. J.; Irish, J. C.; Siewerdsen, J. H.

    2011-03-01

    A prototype mobile C-arm for cone-beam CT (CBCT) has been translated to a prospective clinical trial in head and neck surgery. The flat-panel CBCT C-arm was developed in collaboration with Siemens Healthcare, and demonstrates both sub-mm spatial resolution and soft-tissue visibility at low radiation dose (e.g., <1/5th of a typical diagnostic head CT). CBCT images are available ~15 seconds after scan completion (~1 min acquisition) and reviewed at bedside using custom 3D visualization software based on the open-source Image-Guided Surgery Toolkit (IGSTK). The CBCT C-arm has been successfully deployed in 15 head and neck cases and streamlined into the surgical environment using human factors engineering methods and expert feedback from surgeons, nurses, and anesthetists. Intraoperative imaging is implemented in a manner that maintains operating field sterility, reduces image artifacts (e.g., carbon fiber OR table) and minimizes radiation exposure. Image reviews conducted with surgical staff indicate bony detail and soft-tissue visualization sufficient for intraoperative guidance, with additional artifact management (e.g., metal, scatter) promising further improvements. Clinical trial deployment suggests a role for intraoperative CBCT in guiding complex head and neck surgical tasks, including planning mandible and maxilla resection margins, guiding subcranial and endonasal approaches to skull base tumours, and verifying maxillofacial reconstruction alignment. Ongoing translational research into complimentary image-guidance subsystems include novel methods for real-time tool tracking, fusion of endoscopic video and CBCT, and deformable registration of preoperative volumes and planning contours with intraoperative CBCT.

  16. A projection-driven pre-correction technique for iterative reconstruction of helical cone-beam cardiac CT images

    NASA Astrophysics Data System (ADS)

    Do, Synho; Liang, Zhuangli; Karl, William Clem; Brady, Thomas; Pien, Homer

    2008-03-01

    Modern CT systems have advanced at a dramatic rate. Algebraic iterative reconstruction techniques have shown promising and desirable image characteristics, but are seldom used due to their high computational cost for complete reconstruction of large volumetric datasets. In many cases, however, interest in high resolution reconstructions is restricted to smaller regions of interest within the complete volume. In this paper we present an implementation of a simple and practical method to produce iterative reconstructions of reduced-sized ROI from 3D helical tomographic data. We use the observation that the conventional filtered back-projection reconstruction is generally of high quality throughout the entire volume to predict the contributions to ROI-related projections arising from volumes outside the ROI. These predictions are then used to pre-correct the data to produce a tomographic inversion problem of substantially reduced size and memory demands. Our work expands on those of other researchers who have observed similar potential computational gains by exploiting FBP results. We demonstrate our approach using cardiac CT cone-beam imaging, illustrating our results with both ex vivo and in vivo multi-cycle EKG-gated examples.

  17. Quality Assurance for the Geometric Accuracy of Cone-Beam CT Guidance in Radiation Therapy

    SciTech Connect

    Bissonnette, Jean-Pierre Moseley, Doug; White, Elizabeth; Sharpe, Michael; Purdie, Tom; Jaffray, David A.

    2008-05-01

    The introduction of volumetric X-ray image-guided radiotherapy systems allows improved management of geometric variations in patient setup and internal organ motion. As these systems become a routine clinical modality, we propose a daily quality assurance (QA) program for cone-beam computed tomography (CBCT) integrated with a linear accelerator. The image-guided system used in this work combines a linear accelerator with conventional X-ray tube and an amorphous silicon flat-panel detector mounted orthogonally from the accelerator central beam axis. This article focuses on daily QA protocols germane to geometric accuracy of the CBCT systems and proposes tolerance levels on the basis of more than 3 years of experience with seven CBCT systems used in our clinic. Monthly geometric calibration tests demonstrate the long-term stability of the flex movements, which are reproducible within {+-}0.5 mm (95% confidence interval). The daily QA procedure demonstrates that, for rigid phantoms, the accuracy of the image-guided process can be within 1 mm on average, with a 99% confidence interval of {+-}2 mm.

  18. High-quality four-dimensional cone-beam CT by deforming prior images

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Gu, Xuejun

    2013-01-01

    Due to a limited number of projections at each phase, severe view aliasing artifacts are present in four-dimensional cone beam computed tomography (4D-CBCT) when reconstruction is performed using conventional algorithms. In this work, we aim to obtain high-quality 4D-CBCT of lung cancer patients in radiation therapy by deforming the planning CT. The deformation vector fields (DVF) to deform the planning CT are estimated through matching the forward projection of the deformed prior image and measured on-treatment CBCT projection. The estimation of the DVF is formulated as an unconstrained optimization problem, where the objective function to be minimized is the sum of the squared difference between the forward projection of the deformed planning CT and the measured 4D-CBCT projection. A nonlinear conjugate gradient method is used to solve the DVF. As the number of the variables in the DVF is much greater than the number of measurements, the solution to such a highly ill-posed problem is very sensitive to the initials during the optimization process. To improve the estimation accuracy of DVF, we proposed a new strategy to obtain better initials for the optimization. In this strategy, 4D-CBCT is first reconstructed by total variation minimization. Demons deformable registration is performed to register the planning CT and the 4D-CBCT reconstructed by total variation minimization. The resulted DVF from demons registration is then used as the initial parameters in the optimization process. A 4D nonuniform rotational B-spline-based cardiac-torso (NCAT) phantom and a patient 4D-CBCT are used to evaluate the algorithm. Image quality of 4D-CBCT is substantially improved by using the proposed strategy in both NCAT phantom and patient studies. The proposed method has the potential to improve the temporal resolution of 4D-CBCT. Improved 4D-CBCT can better characterize the motion of lung tumors and will be a valuable tool for image-guided adaptive radiation therapy.

  19. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging

    SciTech Connect

    Yan, Hao; Folkerts, Michael; Jiang, Steve B. E-mail: steve.jiang@UTSouthwestern.edu; Jia, Xun E-mail: steve.jiang@UTSouthwestern.edu; Zhen, Xin; Li, Yongbao; Pan, Tinsu; Cervino, Laura

    2014-07-15

    Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. Methods: The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase

  20. SU-E-J-153: Reconstructing 4D Cone Beam CT Images for Clinical QA of Lung SABR Treatments

    SciTech Connect

    Beaudry, J; Bergman, A; Cropp, R

    2015-06-15

    Purpose: To verify that the planned Primary Target Volume (PTV) and Internal Gross Tumor Volume (IGTV) fully enclose a moving lung tumor volume as visualized on a pre-SABR treatment verification 4D Cone Beam CT. Methods: Daily 3DCBCT image sets were acquired immediately prior to treatment for 10 SABR lung patients using the on-board imaging system integrated into a Varian TrueBeam (v1.6: no 4DCBCT module available). Respiratory information was acquired during the scan using the Varian RPM system. The CBCT projections were sorted into 8 bins offline, both by breathing phase and amplitude, using in-house software. An iterative algorithm based on total variation minimization, implemented in the open source reconstruction toolkit (RTK), was used to reconstruct the binned projections into 4DCBCT images. The relative tumor motion was quantified by tracking the centroid of the tumor volume from each 4DCBCT image. Following CT-CBCT registration, the planning CT volumes were compared to the location of the CBCT tumor volume as it moves along its breathing trajectory. An overlap metric quantified the ability of the planned PTV and IGTV to contain the tumor volume at treatment. Results: The 4DCBCT reconstructed images visibly show the tumor motion. The mean overlap between the planned PTV (IGTV) and the 4DCBCT tumor volumes was 100% (94%), with an uncertainty of 5% from the 4DCBCT tumor volume contours. Examination of the tumor motion and overlap metric verify that the IGTV drawn at the planning stage is a good representation of the tumor location at treatment. Conclusion: It is difficult to compare GTV volumes from a 4DCBCT and a planning CT due to image quality differences. However, it was possible to conclude the GTV remained within the PTV 100% of the time thus giving the treatment staff confidence that SABR lung treatements are being delivered accurately.

  1. Validation of a deformable image registration technique for cone beam CT-based dose verification

    SciTech Connect

    Moteabbed, M. Sharp, G. C.; Wang, Y.; Trofimov, A.; Efstathiou, J. A.; Lu, H.-M.

    2015-01-15

    Purpose: As radiation therapy evolves toward more adaptive techniques, image guidance plays an increasingly important role, not only in patient setup but also in monitoring the delivered dose and adapting the treatment to patient changes. This study aimed to validate a method for evaluation of delivered intensity modulated radiotherapy (IMRT) dose based on multimodal deformable image registration (DIR) for prostate treatments. Methods: A pelvic phantom was scanned with CT and cone-beam computed tomography (CBCT). Both images were digitally deformed using two realistic patient-based deformation fields. The original CT was then registered to the deformed CBCT resulting in a secondary deformed CT. The registration quality was assessed as the ability of the DIR method to recover the artificially induced deformations. The primary and secondary deformed CT images as well as vector fields were compared to evaluate the efficacy of the registration method and it’s suitability to be used for dose calculation. PLASTIMATCH, a free and open source software was used for deformable image registration. A B-spline algorithm with optimized parameters was used to achieve the best registration quality. Geometric image evaluation was performed through voxel-based Hounsfield unit (HU) and vector field comparison. For dosimetric evaluation, IMRT treatment plans were created and optimized on the original CT image and recomputed on the two warped images to be compared. The dose volume histograms were compared for the warped structures that were identical in both warped images. This procedure was repeated for the phantom with full, half full, and empty bladder. Results: The results indicated mean HU differences of up to 120 between registered and ground-truth deformed CT images. However, when the CBCT intensities were calibrated using a region of interest (ROI)-based calibration curve, these differences were reduced by up to 60%. Similarly, the mean differences in average vector field

  2. SU-E-QI-08: Fourier Properties of Cone Beam CT Projection

    SciTech Connect

    Bai, T; Yan, H; Jia, X; Jiang, Steve B.; Mou, X

    2014-06-15

    Purpose: To explore the Fourier properties of cone beam CT (CBCT) projections and apply the property to directly estimate noise level of CBCT projections without any prior information. Methods: By utilizing the property of Bessel function, we derivate the Fourier properties of the CBCT projections for an arbitrary point object. It is found that there exists a double-wedge shaped region in the Fourier space where the intensity is approximately zero. We further derivate the Fourier properties of independent noise added to CBCT projections. The expectation of the square of the module in any point of the Fourier space is constant and the value approximately equals to noise energy. We further validate the theory in numerical simulations for both a delta function object and a NCAT phantom with different levels of noise added. Results: Our simulation confirmed the existence of the double-wedge shaped region in Fourier domain for the x-ray projection image. The boundary locations of this region agree well with theoretical predictions. In the experiments of estimating noise level, the mean relative error between the theory estimation and the ground truth values is 2.697%. Conclusion: A novel theory on the Fourier properties of CBCT projections has been discovered. Accurate noise level estimation can be achieved by applying this theory directly to the measured CBCT projections. This work was supported in part by NIH(1R01CA154747-01), NSFC((No. 61172163), Research Fund for the Doctoral Program of Higher Education of China (No. 20110201110011) and China Scholarship Council.

  3. WE-G-18A-05: Cone-Beam CT Reconstruction with Deformed Prior Image

    SciTech Connect

    Zhang, H; Huang, J; Ma, J; Chen, W; Ouyang, L; Wang, J

    2014-06-15

    Purpose: Prior image can be incorporated into image reconstruction process to improve the quality of on-treatment cone-beam CT (CBCT) from sparseview or low-dose projections. However, the deformation between the prior image and on-treatment CBCT are not considered in current prior image based reconstructions (e.g., prior image constrained compressed sensing (PICCS)). The purpose of this work is to develop a deformed-prior-imagebased- reconstruction strategy (DPIR) to address the mismatch problem between the prior image and target image. Methods: The deformed prior image is obtained by a projection based registration approach. Specifically, the deformation vector fields (DVF) used to deform the prior image is estimated through matching the forward projection of the prior image and the measured on-treatment projection. The deformed prior image is then used as the prior image in the standard PICCS algorithm. Simulation studies on the XCAT phantom was conducted to evaluate the performance of the projection based registration procedure and the proposed DPIR strategy. Results: The deformed prior image matches the geometry of on-treatment CBCT closer as compared to the original prior image. Using the deformed prior image, the quality of the image reconstructed by DPIR from few-view projection data is greatly improved as compared to the standard PICCS algorithm. The relative image reconstruction error is reduced to 11.13% in the proposed DPIR from 17.57% in the original PICCS. Conclusion: The proposed DPIR approach can solve the mismatch problem between the prior image and target image, which overcomes the limitation of the original PICCS algorithm for CBCT reconstruction from sparse-view or low-dose projections.

  4. Few-view cone-beam CT reconstruction with deformed prior image

    SciTech Connect

    Zhang, Hua; Ouyang, Luo; Wang, Jing E-mail: jing.wang@utsouthwestern.edu; Huang, Jing; Ma, Jianhua E-mail: jing.wang@utsouthwestern.edu; Chen, Wufan

    2014-12-15

    Purpose: Prior images can be incorporated into the image reconstruction process to improve the quality of subsequent cone-beam CT (CBCT) images from sparse-view or low-dose projections. The purpose of this work is to develop a deformed prior image-based reconstruction (DPIR) strategy to mitigate the deformation between the prior image and the target image. Methods: The deformed prior image is obtained by a projection-based registration approach. Specifically, the deformation vector fields used to deform the prior image are estimated through iteratively matching the forward projection of the deformed prior image and the measured on-treatment projections. The deformed prior image is then used as the prior image in the standard prior image constrained compressed sensing (PICCS) algorithm. A simulation study on an XCAT phantom and a clinical study on a head-and-neck cancer patient were conducted to evaluate the performance of the proposed DPIR strategy. Results: The deformed prior image matches the geometry of the on-treatment CBCT more closely as compared to the original prior image. Consequently, the performance of the DPIR strategy from few-view projections is improved in comparison to the standard PICCS algorithm, based on both visual inspection and quantitative measures. In the XCAT phantom study using 20 projections, the average root mean squared error is reduced from 14% in PICCS to 10% in DPIR, and the average universal quality index increases from 0.88 in PICCS to 0.92 in DPIR. Conclusions: The present DPIR approach provides a practical solution to the mismatch problem between the prior image and target image, which improves the performance of the original PICCS algorithm for CBCT reconstruction from few-view or low-dose projections.

  5. Evaluation of juxta-apical radiolucency in cone beam CT images

    PubMed Central

    Harada, N; Araki, K; Sano, T; Goto, T K

    2014-01-01

    Objectives: The aim of this study was to analyse the position and relationship of juxta-apical radiolucency (JAR) to the mandibular canal and buccal and/or lingual cortical plates using cone beam CT (CBCT). Methods: A retrospective study was carried out to analyse the JAR on CBCT for 27 patients. These findings were compared with 27 age- and sex-matched patients without the presence of JAR, which acted as the control group. The CBCT images were analysed according to a checklist, to evaluate the position of the JAR and its relationship to the mandibular canal. Then, any thinning or perforation of either the buccal or lingual cortical plate due to JAR was noted, and a classification to quantify the thinning of cortical plates was proposed. The findings in the two groups were analysed using a paired comparison by McNemar test. Results: A statistical increased thinning of cortical plates was seen in the JAR group compared with the control group, and most of the cases were in the J3 group. None of the patients in either the JAR or the control group showed perforation of the buccal and/or lingual cortical plate on CBCT images. Conclusions: A classification to quantify the thinning of cortical plates was proposed, which may be used for objective evaluation of the thinning of the cortical plates in future studies. The present study gives an insight into the relationship of the juxta-apical area with the mandibular canal and cortical plates in the mandible using CBCT. PMID:24694213

  6. Effective dose of cone beam CT (CBCT) of the facial skeleton: a systematic review

    PubMed Central

    Al-Okshi, A; Salé, H; Gunnarsson, M; Rohlin, M

    2015-01-01

    Objective: To estimate effective dose of cone beam CT (CBCT) of the facial skeleton with focus on measurement methods and scanning protocols. Methods: A systematic review, which adhered to the preferred reporting items for systematic reviews (PRISMA) Statement, of the literature up to April 2014 was conducted. Data sources included MEDLINE®, The Cochrane Library and Web of Science. A model was developed to underpin data extraction from 38 included studies. Results: Technical specifications of the CBCT units were insufficiently described. Heterogeneity in measurement methods and scanning protocols between studies made comparisons of effective doses of different CBCT units and scanning protocols difficult. Few studies related doses to image quality. Reported effective dose varied across studies, ranging between 9.7 and 197.0 μSv for field of views (FOVs) with height ≤5 cm, between 3.9 and 674.0 μSv for FOVs of heights 5.1–10.0 cm and between 8.8 and 1073.0 μSv for FOVs >10 cm. There was an inconsistency regarding reported effective dose of studies of the same CBCT unit with the same FOV dimensions. Conclusion: The review reveals a need for studies on radiation dosages related to image quality. Reporting quality of future studies has to be improved to facilitate comparison of effective doses obtained from examinations with different CBCT units and scanning protocols. A model with minimum data set on important parameters based on this observation is proposed. Advances in knowledge: Data important when estimating effective dose were insufficiently reported in most studies. A model with minimum data based on this observation is proposed. Few studies related effective dose to image quality. PMID:25486387

  7. Estimation of paediatric organ and effective doses from dental cone beam CT using anthropomorphic phantoms

    PubMed Central

    Theodorakou, C; Walker, A; Horner, K; Pauwels, R; Bogaerts, R; Jacobs Dds, R

    2012-01-01

    Objectives Cone beam CT (CBCT) is an emerging X-ray technology applied in dentomaxillofacial imaging. Previous published studies have estimated the effective dose and radiation risks using adult anthropomorphic phantoms for a wide range of CBCT units and imaging protocols. Methods Measurements were made five dental CBCT units for a range of imaging protocols, using 10-year-old and adolescent phantoms and thermoluminescent dosimeters. The purpose of the study was to estimate paediatric organ and effective doses from dental CBCT. Results The average effective doses to the 10-year-old and adolescent phantoms were 116 μSv and 79 μSv, respectively, which are similar to adult doses. The salivary glands received the highest organ dose and there was a fourfold increase in the thyroid dose of the 10-year-old relative to that of the adolescent because of its smaller size. The remainder tissues and salivary and thyroid glands contributed most significantly to the effective dose for a 10-year-old, whereas for an adolescent the remainder tissues and the salivary glands contributed the most significantly. It was found that the percentage attributable lifetime mortality risks were 0.002% and 0.001% for a 10-year-old and an adolescent patient, respectively, which are considerably higher than the risk to an adult having received the same doses. Conclusion It is therefore imperative that dental CBCT examinations on children should be fully justified over conventional X-ray imaging and that dose optimisation by field of view collimation is particularly important in young children. PMID:22308220

  8. Library-based scatter correction for dedicated cone beam breast CT: a feasibility study

    NASA Astrophysics Data System (ADS)

    Shi, Linxi; Vedantham, Srinivasan; Karellas, Andrew; Zhu, Lei

    2016-04-01

    Purpose: Scatter errors are detrimental to cone-beam breast CT (CBBCT) accuracy and obscure the visibility of calcifications and soft-tissue lesions. In this work, we propose practical yet effective scatter correction for CBBCT using a library-based method and investigate its feasibility via small-group patient studies. Method: Based on a simplified breast model with varying breast sizes, we generate a scatter library using Monte-Carlo (MC) simulation. Breasts are approximated as semi-ellipsoids with homogeneous glandular/adipose tissue mixture. On each patient CBBCT projection dataset, an initial estimate of scatter distribution is selected from the pre-computed scatter library by measuring the corresponding breast size on raw projections and the glandular fraction on a first-pass CBBCT reconstruction. Then the selected scatter distribution is modified by estimating the spatial translation of the breast between MC simulation and the clinical scan. Scatter correction is finally performed by subtracting the estimated scatter from raw projections. Results: On two sets of clinical patient CBBCT data with different breast sizes, the proposed method effectively reduces cupping artifact and improves the image contrast by an average factor of 2, with an efficient processing time of 200ms per conebeam projection. Conclusion: Compared with existing scatter correction approaches on CBBCT, the proposed library-based method is clinically advantageous in that it requires no additional scans or hardware modifications. As the MC simulations are pre-computed, our method achieves a high computational efficiency on each patient dataset. The library-based method has shown great promise as a practical tool for effective scatter correction on clinical CBBCT.

  9. Classification of impacted mandibular third molars on cone-beam CT images

    PubMed Central

    Maglione, Michele; Bazzocchi, Gabriele

    2015-01-01

    Background Neurological involvement is a serious complication associated to the surgical removal of impacted mandibular third molars and the radiological investigation is the first mandatory step to assess the risk of a possible post-operative injury to the inferior alveolar nerve (IAN). The aim of this study was to introduce a new radiological classification that could be normally used in clinical practice to assess the relationship between an impacted third molar and mandibular canal on cone beam CT (CBCT) images. Material and Methods CBCT images of 80 patients (133 mandibular third molars) were independently studied by three members of the surgical team to draw a classification that could describe all the possible relationships between third molar and IAN on the cross-sectional images. Subsequently, the study population was subdivided according to this classification. The SPSS software, version 15.0 (SPSS® Inc., Chicago, Illinois, USA) was used for the statistical analysis. Results Eight different classes were proposed (classes 0-7) and six of them (classes 1-6) were subdivided in two subtypes (subtypes A-B). The distribution of classes showed a prevalence of buccal or apical course of the mandibular canal followed by lingual position and inter-radicular one. No differences have resulted in terms of anatomic relationship between males and females apart from a higher risk of real contact without corticalization of the canal when the IAN had a lingual course for female group. Younger patients showed an increased rate of direct contact with a reduced calibre of the canal and/or without corticalization. Conclusions The use of this classification could be a valid support in clinical practice to obtain a common language among operators in order to define the possible relationships between an impacted third molar and the mandibular canal on CBCT images. Key words:CBCT, classification, inferior alveolar nerve, third molars. PMID:26155337

  10. Conversion coefficients for the estimation of effective dose in cone-beam CT

    PubMed Central

    Kim, Dong-Soo; Rashsuren, Oyuntugs

    2014-01-01

    Purpose To determine the conversion coefficients (CCs) from the dose-area product (DAP) value to effective dose in cone-beam CT. Materials and Methods A CBCT scanner with four fields of view (FOV) was used. Using two exposure settings of the adult standard and low dose exposure, DAP values were measured with a DAP meter in C mode (200mm×179 mm), P mode (154 mm×154 mm), I mode (102 mm×102 mm), and D mode (51 mm×51 mm). The effective doses were also investigated at each mode using an adult male head and neck phantom and thermoluminescent chips. Linear regressive analysis of the DAP and effective dose values was used to calculate the CCs for each CBCT examination. Results For the C mode, the P mode at the maxilla, and the P mode at the mandible, the CCs were 0.049 µSv/mGycm2, 0.067 µSv/mGycm2, and 0.064 µSv/mGycm2, respectively. For the I mode, the CCs at the maxilla and mandible were 0.076 µSv/mGycm2 and 0.095 µSv/mGycm2, respectively. For the D mode at the maxillary incisors, molars, and mandibular molars, the CCs were 0.038 µSv/mGycm2, 0.041 µSv/mGycm2, and 0.146 µSv/mGycm2, respectively. Conclusion The CCs in one CBCT device with fixed 80 kV ranged from 0.038 µSv/mGycm2 to 0.146 µSv/mGycm2 according to the imaging modes and irradiated region and were highest for the D mode at the mandibular molar. PMID:24701455

  11. Automatic intrinsic cardiac and respiratory gating from cone-beam CT scans of the thorax region

    NASA Astrophysics Data System (ADS)

    Hahn, Andreas; Sauppe, Sebastian; Lell, Michael; Kachelrieß, Marc

    2016-03-01

    We present a new algorithm that allows for raw data-based automated cardiac and respiratory intrinsic gating in cone-beam CT scans. It can be summarized in three steps: First, a median filter is applied to an initially reconstructed volume. The forward projection of this volume contains less motion information and is subtracted from the original projections. This results in new raw data that contain only moving and not static anatomy like bones, that would otherwise impede the cardiac or respiratory signal acquisition. All further steps are applied to these modified raw data. Second, the raw data are cropped to a region of interest (ROI). The ROI in the raw data is determined by the forward projection of a binary volume of interest (VOI) that includes the diaphragm for respiratory gating and most of the edge of the heart for cardiac gating. Third, the mean gray value in this ROI is calculated for every projection and the respiratory/cardiac signal is acquired using a bandpass filter. Steps two and three are carried out simultaneously for 64 or 1440 overlapping VOI inside the body for the respiratory or cardiac signal respectively. The signals acquired from each ROI are compared and the most consistent one is chosen as the desired cardiac or respiratory motion signal. Consistency is assessed by the standard deviation of the time between two maxima. The robustness and efficiency of the method is evaluated using simulated and measured patient data by computing the standard deviation of the mean signal difference between the ground truth and the intrinsic signal.

  12. Noise suppression in reconstruction of low-Z target megavoltage cone-beam CT images

    SciTech Connect

    Wang Jing; Robar, James; Guan Huaiqun

    2012-08-15

    Purpose: To improve the image contrast-to-noise (CNR) ratio for low-Z target megavoltage cone-beam CT (MV CBCT) using a statistical projection noise suppression algorithm based on the penalized weighted least-squares (PWLS) criterion. Methods: Projection images of a contrast phantom, a CatPhan{sup Registered-Sign} 600 phantom and a head phantom were acquired by a Varian 2100EX LINAC with a low-Z (Al) target and low energy x-ray beam (2.5 MeV) at a low-dose level and at a high-dose level. The projections were then processed by minimizing the PWLS objective function. The weighted least square (WLS) term models the noise of measured projection and the penalty term enforces the smoothing constraints of the projection image. The variance of projection data was chosen as the weight for the PWLS objective function and it determined the contribution of each measurement. An anisotropic quadratic form penalty that incorporates the gradient information of projection image was used to preserve edges during noise reduction. Low-Z target MV CBCT images were reconstructed by the FDK algorithm after each projection was processed by the PWLS smoothing. Results: Noise in low-Z target MV CBCT images were greatly suppressed after the PWLS projection smoothing, without noticeable sacrifice of the spatial resolution. Depending on the choice of smoothing parameter, the CNR of selected regions of interest in the PWLS processed low-dose low-Z target MV CBCT image can be higher than the corresponding high-dose image.Conclusion: The CNR of low-Z target MV CBCT images was substantially improved by using PWLS projection smoothing. The PWLS projection smoothing algorithm allows the reconstruction of high contrast low-Z target MV CBCT image with a total dose of as low as 2.3 cGy.

  13. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Gu, Xuejun

    2014-03-01

    Image reconstruction and motion model estimation in four dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4DCBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR). The proposed SMEIR algorithm consists of two alternating steps: 1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and 2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction (SART) technique coupled with total variation minimization. During the forward- and back-projection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.

  14. Image-based motion compensation for high-resolution extremities cone-beam CT

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  15. Fast radioactive seed localization in intraoperative cone beam CT for low-dose-rate prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Hu, Yu-chi; Xiong, Jian-ping; Cohan, Gilad; Zaider, Marco; Mageras, Gig; Zelefsky, Michael

    2013-03-01

    A fast knowledge-based radioactive seed localization method for brachytherapy was developed to automatically localize radioactive seeds in an intraoperative volumetric cone beam CT (CBCT) so that corrections, if needed, can be made during prostate implant surgery. A transrectal ultrasound (TRUS) scan is acquired for intraoperative treatment planning. Planned seed positions are transferred to intraoperative CBCT following TRUS-to-CBCT registration using a reference CBCT scan of the TRUS probe as a template, in which the probe and its external fiducial markers are pre-segmented and their positions in TRUS are known. The transferred planned seeds and probe serve as an atlas to reduce the search space in CBCT. Candidate seed voxels are identified based on image intensity. Regions are grown from candidate voxels and overlay regions are merged. Region volume and intensity variance is checked against known seed volume and intensity profile. Regions meeting the above criteria are flagged as detected seeds; otherwise they are flagged as likely seeds and sorted by a score that is based on volume, intensity profile and distance to the closest planned seed. A graphical interface allows users to review and accept or reject likely seeds. Likely seeds with approximately twice the seed volume are automatically split. Five clinical cases are tested. Without any manual correction in seed detection, the method performed the localization in 5 seconds (excluding registration time) for a CBCT scan with 512×512×192 voxels. The average precision rate per case is 99% and the recall rate is 96% for a total of 416 seeds. All false negative seeds are found with 15 in likely seeds and 1 included in a detected seed. With the new method, updating of calculations of dose distribution during the procedure is possible and thus facilitating evaluation and improvement of treatment quality.

  16. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections

    SciTech Connect

    Poulsen, Per Rugaard; Fledelius, Walther; Keall, Paul J.; Weiss, Elisabeth; Lu Jun; Brackbill, Emily; Hugo, Geoffrey D.

    2011-04-15

    Purpose: Implanted markers are commonly used in radiotherapy for x-ray based target localization. The projected marker position in a series of cone-beam CT (CBCT) projections can be used to estimate the three dimensional (3D) target trajectory during the CBCT acquisition. This has important applications in tumor motion management such as motion inclusive, gating, and tumor tracking strategies. However, for irregularly shaped markers, reliable segmentation is challenged by large variations in the marker shape with projection angle. The purpose of this study was to develop a semiautomated method for robust and reliable segmentation of arbitrarily shaped radiopaque markers in CBCT projections. Methods: The segmentation method involved the following three steps: (1) Threshold based segmentation of the marker in three to six selected projections with large angular separation, good marker contrast, and uniform background; (2) construction of a 3D marker model by coalignment and backprojection of the threshold-based segmentations; and (3) construction of marker templates at all imaging angles by projection of the 3D model and use of these templates for template-based segmentation. The versatility of the segmentation method was demonstrated by segmentation of the following structures in the projections from two clinical CBCT scans: (1) Three linear fiducial markers (Visicoil) implanted in or near a lung tumor and (2) an artificial cardiac valve in a lung cancer patient. Results: Automatic marker segmentation was obtained in more than 99.9% of the cases. The segmentation failed in a few cases where the marker was either close to a structure of similar appearance or hidden behind a dense structure (data cable). Conclusions: A robust template-based method for segmentation of arbitrarily shaped radiopaque markers in CBCT projections was developed.

  17. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    SciTech Connect

    Jones, Bernard L. Westerly, David; Miften, Moyed

    2015-02-15

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. The authors developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. The accuracies of the proposed methods were evaluated by comparing the known and calculated BB trajectories in phantom-simulated clinical scenarios using abdominal tumor volumes. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square trajectory errors averaged 3.8% ± 1.1% of the marker amplitude. Dosimetric calculations using Phase methods were more accurate, with mean absolute error less than 0.5%, and with error less than 1% in the highest-noise trajectory. MC-based trajectories prevent the overestimation of dose, but when viewed in an absolute sense, add a small amount of dosimetric error (<0.1%). Conclusions: Marker trajectory and target dose-of-the-day were accurately calculated using CBCT projections. This technique provides a method to evaluate highly mobile tumors using ordinary CBCT data, and could facilitate better strategies to mitigate or compensate for motion during

  18. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery.

    PubMed

    Reaungamornrat, S; Wang, A S; Uneri, A; Otake, Y; Khanna, A J; Siewerdsen, J H

    2014-07-21

    Image-guided spine surgery (IGSS) is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced three properties of a rigid transformation-namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation (D = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear (S = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively

  19. Deformable Image Registration for Cone-Beam CT Guided Transoral Robotic Base of Tongue Surgery

    PubMed Central

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-01-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base of tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam CT (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e., volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC), and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid, and Demons steps was 4.6, 2.1, and 1.7 mm, respectively. The respective ECC was 0.57, 0.70, and 0.73 and NPMI was 0.46, 0.57, and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to support

  20. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Khanna, A. J.; Siewerdsen, J. H.

    2014-07-01

    Image-guided spine surgery (IGSS) is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced three properties of a rigid transformation—namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation ({ D} = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear ({ S} = 0.08, compared to 0.36 and 0.44 for uFFD and Demons

  1. Reduction of radiation exposure by lead curtain shielding in dedicated extremity cone beam CT

    PubMed Central

    Lee, C-H; Ryu, J H; Lee, Y-H

    2015-01-01

    Objective: A dedicated extremity cone beam CT (CBCT) was introduced recently, and is rapidly becoming an attractive modality for extremity imaging. This study aimed to evaluate the effectiveness of a curtain-shaped lead shielding in reducing the exposure of patients to scattered radiation in dedicated extremity CBCT. Methods: A dedicated extremity CBCT scanner was used. The lead shielding curtain was 42 × 60 cm with 0.5-mm lead equivalent. Scattered radiation dose from CBCT was measured using thermoluminescence dosimetry chips at 20 points, at different distances and directions from the CT gantry. Two sets of scattered radiation dose measurements were performed before and after installation of curtain-shaped lead shield, and the percentage reduction in dose in air was calculated. Results: Mean radiation exposure dose at measured points was 34.46 ± 48.40 μGy without curtains and 9.67 ± 4.53 μGy with curtains, exhibiting 71.94% reduction (p = 0.000). The use of lead shielding curtains significantly reduced scattered radiation at 0.5, 1.0 and 1.5 m from the CT gantry, with percent reductions of 84.8%, 58.0% and 35.5%, respectively (p = 0.000, 0.000 and 0.002). The percent reduction in the diagonal (+45°, −45°) and vertical forward (0°) directions were 86.3%, 83.1% and 77.7%, respectively, and were statistically significant (p = 0.029, 0.020 and 0.041). Conclusion: Shielding with lead curtains suggests an easy and effective method for reducing patient exposure to radiation in extremity CBCT imaging. Advances in knowledge: Lead shielding curtains are an effective technique to reduce scattered radiation dose in dedicated extremity CBCT, with higher dose reduction closer to the gantry opening. PMID:25811096

  2. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery.

    PubMed

    Reaungamornrat, S; Wang, A S; Uneri, A; Otake, Y; Khanna, A J; Siewerdsen, J H

    2014-07-21

    Image-guided spine surgery (IGSS) is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced three properties of a rigid transformation-namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation (D = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear (S = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively

  3. SU-D-207-06: Clinical Validations of Shading Correction for Cone-Beam CT Using Planning CT as a Prior

    SciTech Connect

    Tsui, T; Zhu, L; Wei, J

    2015-06-15

    Purpose: Current cone-beam CT (CBCT) images contain severe shading artifacts mainly due to scatter, hindering their quantitative use in current radiation therapy. We have previously proposed an effective shading correction method for CBCT using planning CT (pCT) as prior knowledge. In this work, we investigate the method robustness via statistical analyses on studies of a large patient group and compare the performance with that of a state-of-the-art method implemented on the current commercial radiation therapy machine -- the Varian Truebeam system. Methods: Since radiotherapy patients routinely undergo multiple-detector CT (MDCT) scans in the planning procedure, we use the high-quality pCT as “free” prior knowledge for CBCT image improvement. The CBCT image with no correction is first spatially registered with the pCT. Primary CBCT projections are estimated via forward projections of the registered image. The low frequency errors in the projections, which stem from mainly scatter, are estimated by filtering the difference between original line integral and the estimated scatter projections. The corrected CBCT image is then reconstructed from the scatter corrected projections. The proposed method is evaluated on 40 cancer patients. Results: On all patient images, we compare errors on CT number, spatial non-uniformity (SNU) and image contrast, using pCT as the ground truth. T-tests show that our algorithm improves over the Varian method on CBCT accuracies of CT number and SNU with 90% confident. The average CT number error is reduced from 54.8 HU on the Varian method to 40.9 HU, and the SNU error is reduced from 7.7% to 3.8%. There is no obvious improvement on image contrast. Conclusion: Large-group patient studies show that the proposed pCT-based algorithm outperforms the Varian method of the Truebeam system on CBCT shading correction, by providing CBCT images with higher CT number accuracy and greater image uniformity.

  4. WE-D-9A-02: Automated Landmark-Guided CT to Cone-Beam CT Deformable Image Registration

    SciTech Connect

    Kearney, V; Gu, X; Chen, S; Jiang, L; Liu, H; Chiu, T; Yordy, J; Nedzi, L; Mao, W

    2014-06-15

    Purpose: The anatomical changes that occur between the simulation CT and daily cone-beam CT (CBCT) are investigated using an automated landmark-guided deformable image registration (LDIR) algorithm with simultaneous intensity correction. LDIR was designed to be accurate in the presence of tissue intensity mismatch and heavy noise contamination. Method: An auto-landmark generation algorithm was used in conjunction with a local small volume (LSV) gradient matching search engine to map corresponding landmarks between the CBCT and planning CT. The LSVs offsets were used to perform an initial deformation, generate landmarks, and correct local intensity mismatch. The landmarks act as stabilizing controlpoints in the Demons objective function. The accuracy of the LDIR algorithm was evaluated on one synthetic case with ground truth and data of ten head and neck cancer patients. The deformation vector field (DVF) accuracy was accessed using a synthetic case. The Root mean square error of the 3D canny edge (RMSECE), mutual information (MI), and feature similarity index metric (FSIM) were used to access the accuracy of LDIR on the patient data. The quality of the corresponding deformed contours was verified by an attending physician. Results: The resulting 90 percentile DVF error for the synthetic case was within 5.63mm for the original demons algorithm, 2.84mm for intensity correction alone, 2.45mm using controlpoints without intensity correction, and 1.48 mm for the LDIR algorithm. For the five patients the mean RMSECE of the original CT, Demons deformed CT, intensity corrected Demons CT, control-point stabilized deformed CT, and LDIR CT was 0.24, 0.26, 0.20, 0.20, and 0.16 respectively. Conclusion: LDIR is accurate in the presence of multimodal intensity mismatch and CBCT noise contamination. Since LDIR is GPU based it can be implemented with minimal additional strain on clinical resources. This project has been supported by a CPRIT individual investigator award RP11032.

  5. 4D cone beam CT phase sorting using high frequency optical surface measurement during image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Price, G. J.; Marchant, T. E.; Parkhurst, J. M.; Sharrock, P. J.; Whitfield, G. A.; Moore, C. J.

    2011-03-01

    In image guided radiotherapy (IGRT) two of the most promising recent developments are four dimensional cone beam CT (4D CBCT) and dynamic optical metrology of patient surfaces. 4D CBCT is now becoming commercially available and finds use in treatment planning and verification, and whilst optical monitoring is a young technology, its ability to measure during treatment delivery without dose consequences has led to its uptake in many institutes. In this paper, we demonstrate the use of dynamic patient surfaces, simultaneously captured during CBCT acquisition using an optical sensor, to phase sort projection images for 4D CBCT volume reconstruction. The dual modality approach we describe means that in addition to 4D volumetric data, the system provides correlated wide field measurements of the patient's skin surface with high spatial and temporal resolution. As well as the value of such complementary data in verification and motion analysis studies, it introduces flexibility into the acquisition of the signal required for phase sorting. The specific technique used may be varied according to individual patient circumstances and the imaging target. We give details of three different methods of obtaining a suitable signal from the optical surfaces: simply following the motion of triangulation spots used to calibrate the surfaces' absolute height; monitoring the surface height in a single, arbitrarily selected, camera pixel; and tracking, in three dimensions, the movement of a surface feature. In addition to describing the system and methodology, we present initial results from a case study oesophageal cancer patient.

  6. Measurement of cone beam CT coincidence with megavoltage isocentre and image sharpness using the QUASAR Penta-Guide phantom.

    PubMed

    Sykes, J R; Lindsay, R; Dean, C J; Brettle, D S; Magee, D R; Thwaites, D I

    2008-10-01

    For image-guided radiotherapy (IGRT) systems based on cone beam CT (CBCT) integrated into a linear accelerator, the reproducible alignment of imager to x-ray source is critical to the registration of both the x-ray-volumetric image with the megavoltage (MV) beam isocentre and image sharpness. An enhanced method of determining the CBCT to MV isocentre alignment using the QUASAR Penta-Guide phantom was developed which improved both precision and accuracy. This was benchmarked against our existing method which used software and a ball-bearing (BB) phantom provided by Elekta. Additionally, a method of measuring an image sharpness metric (MTF(50)) from the edge response function of a spherical air cavity within the Penta-Guide phantom was developed and its sensitivity was tested by simulating misalignments of the kV imager. Reproducibility testing of the enhanced Penta-Guide method demonstrated a systematic error of <0.2 mm when compared to the BB method with near equivalent random error (s=0.15 mm). The mean MTF(50) for five measurements was 0.278+/-0.004 lp mm(-1) with no applied misalignment. Simulated misalignments exhibited a clear peak in the MTF(50) enabling misalignments greater than 0.4 mm to be detected. The Penta-Guide phantom can be used to precisely measure CBCT-MV coincidence and image sharpness on CBCT-IGRT systems.

  7. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT

    SciTech Connect

    Siewerdsen, J.H.; Daly, M.J.; Bakhtiar, B.

    2006-01-15

    X-ray scatter poses a significant limitation to image quality in cone-beam CT (CBCT), resulting in contrast reduction, image artifacts, and lack of CT number accuracy. We report the performance of a simple scatter correction method in which scatter fluence is estimated directly in each projection from pixel values near the edge of the detector behind the collimator leaves. The algorithm operates on the simple assumption that signal in the collimator shadow is attributable to x-ray scatter, and the 2D scatter fluence is estimated by interpolating between pixel values measured along the top and bottom edges of the detector behind the collimator leaves. The resulting scatter fluence estimate is subtracted from each projection to yield an estimate of the primary-only images for CBCT reconstruction. Performance was investigated in phantom experiments on an experimental CBCT benchtop, and the effect on image quality was demonstrated in patient images (head, abdomen, and pelvis sites) obtained on a preclinical system for CBCT-guided radiation therapy. The algorithm provides significant reduction in scatter artifacts without compromise in contrast-to-noise ratio (CNR). For example, in a head phantom, cupping artifact was essentially eliminated, CT number accuracy was restored to within 3%, and CNR (breast-to-water) was improved by up to 50%. Similarly in a body phantom, cupping artifact was reduced by at least a factor of 2 without loss in CNR. Patient images demonstrate significantly increased uniformity, accuracy, and contrast, with an overall improvement in image quality in all sites investigated. Qualitative evaluation illustrates that soft-tissue structures that are otherwise undetectable are clearly delineated in scatter-corrected reconstructions. Since scatter is estimated directly in each projection, the algorithm is robust with respect to system geometry, patient size and heterogeneity, patient motion, etc. Operating without prior information, analytical modeling

  8. Cone-beam CT of traumatic brain injury using statistical reconstruction with a post-artifact-correction noise model

    NASA Astrophysics Data System (ADS)

    Dang, H.; Stayman, J. W.; Sisniega, A.; Xu, J.; Zbijewski, W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. The current front-line imaging modality for TBI detection is CT, which reliably detects intracranial hemorrhage (fresh blood contrast 30-50 HU, size down to 1 mm) in non-contrast-enhanced exams. Compared to CT, flat-panel detector (FPD) cone-beam CT (CBCT) systems offer lower cost, greater portability, and smaller footprint suitable for point-of-care deployment. We are developing FPD-CBCT to facilitate TBI detection at the point-of-care such as in emergent, ambulance, sports, and military applications. However, current FPD-CBCT systems generally face challenges in low-contrast, soft-tissue imaging. Model-based reconstruction can improve image quality in soft-tissue imaging compared to conventional filtered back-projection (FBP) by leveraging high-fidelity forward model and sophisticated regularization. In FPD-CBCT TBI imaging, measurement noise characteristics undergo substantial change following artifact correction, resulting in non-negligible noise amplification. In this work, we extend the penalized weighted least-squares (PWLS) image reconstruction to include the two dominant artifact corrections (scatter and beam hardening) in FPD-CBCT TBI imaging by correctly modeling the variance change following each correction. Experiments were performed on a CBCT test-bench using an anthropomorphic phantom emulating intra-parenchymal hemorrhage in acute TBI, and the proposed method demonstrated an improvement in blood-brain contrast-to-noise ratio (CNR = 14.2) compared to FBP (CNR = 9.6) and PWLS using conventional weights (CNR = 11.6) at fixed spatial resolution (1 mm edge-spread width at the target contrast). The results support the hypothesis that FPD-CBCT can fulfill the image quality requirements for reliable TBI detection, using high-fidelity artifact correction and statistical reconstruction with accurate post-artifact-correction noise models.

  9. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery.

    PubMed

    Reaungamornrat, S; Liu, W P; Wang, A S; Otake, Y; Nithiananthan, S; Uneri, A; Schafer, S; Tryggestad, E; Richmon, J; Sorger, J M; Siewerdsen, J H; Taylor, R H

    2013-07-21

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated

  10. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-07-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  11. Cone beam CT for determining breast cancer margin: an initial experience and its comparison with mammography and specimen radiograph

    PubMed Central

    Yao, Juan; Shaw, Chris; Lai, CJ; Rong, John; Wang, Jian; Liu, Wenya

    2015-01-01

    Purpose: To assess the ability of cone beam CT (CBCT) in determining the breast cancer margin using, to compare the results with mammography and specimen radiography, and to explore the clinical potential of CBCT for breast imaging. Methods: Specimens of 46 breast cancer patients were imaged by using a prototype CBCT system. Each patient underwent mammography, CBCT and X-ray of breast surgical specimen within 6 months. Images of mammography, breast surgical specimen radiography and CBCT were evaluated by an experienced radiologist. Indicators, such as: morphology, glitch, density, invasion, structural distortion and calcification, were observed. Result: There was no significant difference of the calcification, glitch and morphology among three methods. However, there was significant difference in indicators of breast tumor invasion among three methods. There was statistical significance in detecting invasions of breast cancer cells in peripheral tissues among three methods. Conclusion: CBCT shows no superiority over mammography and specimen radiography in determining tumor’s outline and detecting calcification. On the other hand, CBCT demonstrates its advantage in determining the 3 dimensional position of a lesion which could be a potential clinical application in future practices of breast imaging. PMID:26629005

  12. Intraoperative imaging for patient safety and QA: detection of intracranial hemorrhage using C-arm cone-beam CT

    NASA Astrophysics Data System (ADS)

    Schafer, Sebastian; Wang, Adam; Otake, Yoshito; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Xia, Xuewei; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2013-03-01

    Intraoperative imaging could improve patient safety and quality assurance (QA) via the detection of subtle complications that might otherwise only be found hours after surgery. Such capability could therefore reduce morbidity and the need for additional intervention. Among the severe adverse events that could be more quickly detected by high-quality intraoperative imaging is acute intracranial hemorrhage (ICH), conventionally assessed using post-operative CT. A mobile C-arm capable of high-quality cone-beam CT (CBCT) in combination with advanced image reconstruction techniques is reported as a means of detecting ICH in the operating room. The system employs an isocentric C-arm with a flat-panel detector in dual gain mode, correction of x-ray scatter and beam-hardening, and a penalized likelihood (PL) iterative reconstruction method. Performance in ICH detection was investigated using a quantitative phantom focusing on (non-contrast-enhanced) blood-brain contrast, an anthropomorphic head phantom, and a porcine model with injection of fresh blood bolus. The visibility of ICH was characterized in terms of contrast-to-noise ratio (CNR) and qualitative evaluation of images by a neurosurgeon. Across a range of size and contrast of the ICH as well as radiation dose from the CBCT scan, the CNR was found to increase from ~2.2-3.7 for conventional filtered backprojection (FBP) to ~3.9-5.4 for PL at equivalent spatial resolution. The porcine model demonstrated superior ICH detectability for PL. The results support the role of high-quality mobile C-arm CBCT employing advanced reconstruction algorithms for detecting subtle complications in the operating room at lower radiation dose and lower cost than intraoperative CT scanners and/or fixedroom C-arms. Such capability could present a potentially valuable aid to patient safety and QA.

  13. Patient-specific scatter correction for flat-panel detector-based cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Brunner, Stephen; Niu, Kai; Schafer, Sebastian; Royalty, Kevin; Chen, Guang-Hong

    2015-02-01

    A patient-specific scatter correction algorithm is proposed to mitigate scatter artefacts in cone-beam CT (CBCT). The approach belongs to the category of convolution-based methods in which a scatter potential function is convolved with a convolution kernel to estimate the scatter profile. A key step in this method is to determine the free parameters introduced in both scatter potential and convolution kernel using a so-called calibration process, which is to seek for the optimal parameters such that the models for both scatter potential and convolution kernel is able to optimally fit the previously known coarse estimates of scatter profiles of the image object. Both direct measurements and Monte Carlo (MC) simulations have been proposed by other investigators to achieve the aforementioned rough estimates. In the present paper, a novel method has been proposed and validated to generate the needed coarse scatter profile for parameter calibration in the convolution method. The method is based upon an image segmentation of the scatter contaminated CBCT image volume, followed by a reprojection of the segmented image volume using a given x-ray spectrum. The reprojected data is subtracted from the scatter contaminated projection data to generate a coarse estimate of the needed scatter profile used in parameter calibration. The method was qualitatively and quantitatively evaluated using numerical simulations and experimental CBCT data acquired on a clinical CBCT imaging system. Results show that the proposed algorithm can significantly reduce scatter artefacts and recover the correct CT number. Numerical simulation results show the method is patient specific, can accurately estimate the scatter, and is robust with respect to segmentation procedure. For experimental and in vivo human data, the results show the CT number can be successfully recovered and anatomical structure visibility can be significantly improved.

  14. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    SciTech Connect

    Tselikas, Lambros Joskin, Julien; Roquet, Florian; Farouil, Geoffroy; Dreuil, Serge; Hakimé, Antoine Teriitehau, Christophe; Auperin, Anne; Baere, Thierry de Deschamps, Frederic

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsies were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.

  15. Multimode C-arm fluoroscopy, tomosynthesis, and cone-beam CT for image-guided interventions: from proof of principle to patient protocols

    NASA Astrophysics Data System (ADS)

    Siewerdsen, J. H.; Daly, M. J.; Bachar, G.; Moseley, D. J.; Bootsma, G.; Brock, K. K.; Ansell, S.; Wilson, G. A.; Chhabra, S.; Jaffray, D. A.; Irish, J. C.

    2007-03-01

    High-performance intraoperative imaging is essential to an ever-expanding scope of therapeutic procedures ranging from tumor surgery to interventional radiology. The need for precise visualization of bony and soft-tissue structures with minimal obstruction to the therapy setup presents challenges and opportunities in the development of novel imaging technologies specifically for image-guided procedures. Over the past ~5 years, a mobile C-arm has been modified in collaboration with Siemens Medical Solutions for 3D imaging. Based upon a Siemens PowerMobil, the device includes: a flat-panel detector (Varian PaxScan 4030CB); a motorized orbit; a system for geometric calibration; integration with real-time tracking and navigation (NDI Polaris); and a computer control system for multi-mode fluoroscopy, tomosynthesis, and cone-beam CT. Investigation of 3D imaging performance (noise-equivalent quanta), image quality (human observer studies), and image artifacts (scatter, truncation, and cone-beam artifacts) has driven the development of imaging techniques appropriate to a host of image-guided interventions. Multi-mode functionality presents a valuable spectrum of acquisition techniques: i.) fluoroscopy for real-time 2D guidance; ii.) limited-angle tomosynthesis for fast 3D imaging (e.g., ~10 sec acquisition of coronal slices containing the surgical target); and iii.) fully 3D cone-beam CT (e.g., ~30-60 sec acquisition providing bony and soft-tissue visualization across the field of view). Phantom and cadaver studies clearly indicate the potential for improved surgical performance - up to a factor of 2 increase in challenging surgical target excisions. The C-arm system is currently being deployed in patient protocols ranging from brachytherapy to chest, breast, spine, and head and neck surgery.

  16. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques.

    PubMed

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi

    2016-04-21

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients.

  17. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    NASA Astrophysics Data System (ADS)

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E.; Lo, Yeh-Chi

    2016-04-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as  -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients.

  18. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques.

    PubMed

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi

    2016-04-21

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients. PMID:27008349

  19. An index of beam hardening artifact for two-dimensional cone-beam CT tomographic images: establishment and preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Yuan, Fusong; Lv, Peijun; Yang, Huifang; Wang, Yong; Sun, Yuchun

    2015-07-01

    Objectives: Based on the pixel gray value measurements, establish a beam-hardening artifacts index of the cone-beam CT tomographic image, and preliminarily evaluate its applicability. Methods: The 5mm-diameter metal ball and resin ball were fixed on the light-cured resin base plate respectively, while four vitro molars were fixed above and below the ball, on the left and right respectively, which have 10mm distance with the metal ball. Then, cone beam CT was used to scan the fixed base plate twice. The same layer tomographic images were selected from the two data and imported into the Photoshop software. The circle boundary was built through the determination of the center and radius of the circle, according to the artifact-free images section. Grayscale measurement tools were used to measure the internal boundary gray value G0, gray value G1 and G2 of 1mm and 20mm artifacts outside the circular boundary, the length L1 of the arc with artifacts in the circular boundary, the circumference L2. Hardening artifacts index was set A = (G1 / G0) * 0.5 + (G2 / G1) * 0.4 + (L2 / L1) * 0.1. Then, the A values of metal and resin materials were calculated respectively. Results: The A value of cobalt-chromium alloy material is 1, and resin material is 0. Conclusion: The A value reflects comprehensively the three factors of hardening artifacts influencing normal oral tissue image sharpness of cone beam CT. The three factors include relative gray value, the decay rate and range of artifacts.

  20. TH-A-18C-01: Design Optimization of Segmented Scintillators for Megavoltage Cone- Beam CT

    SciTech Connect

    Liu, L; Antonuk, L; El-Mohri, Y; Zhao, Q; Jiang, H

    2014-06-15

    Purpose: Active matrix flat-panel imagers incorporating thick, segmented scintillators for megavoltage cone-beam CT (MV CBCT) imaging have demonstrated strong potential for facilitating soft-tissue visualization at low, clinically practical doses. In order to identify scintillator design parameters that optimize performance for this purpose, a modeling technique which includes both radiation and optical effects and which lends itself to computationally practical implementation has been developed and explored. Methods: A hybrid modeling technique, based on Monte Carlo event-by-event simulation of radiation transport and separate determination of optical effects, was devised as an alternative to computationally prohibitive event-by- event simulations of both radiation and optical transport. The technique was validated against empirical results from a previously reported 1.13 cm thick, 1.016 mm element-to-element pitch BGO scintillator prototype. Using this technique, the contrast-to-noise ratio (CNR) and spatial resolution performance of numerous scintillator designs, with thicknesses ranging from 0.5 to 6 cm and pitches ranging from 0.508 to 1.524 mm, were examined. Results: CNR and spatial resolution performance for the various scintillator designs demonstrate complex behavior as scintillator thickness and pitch are varied - exhibiting a clear trade-off between these two imaging metrics up to a thickness of ~3 cm. Based on these results, an optimization map highlighting those regions of design that provide a balance between these metrics was created. The map indicates that, for a given set of optical parameters, scintillator thickness and pitch can be judiciously chosen to maximize performance without resorting to thicker, more costly scintillators. Conclusion: Modeling radiation and optical effects in thick, segmented scintillators through use of a hybrid modeling technique provides a practical way to gain insight as to how to optimize the performance of such

  1. Improved compressed sensing-based cone-beam CT reconstruction using adaptive prior image constraints

    NASA Astrophysics Data System (ADS)

    Lee, Ho; Xing, Lei; Davidi, Ran; Li, Ruijiang; Qian, Jianguo; Lee, Rena

    2012-04-01

    Volumetric cone-beam CT (CBCT) images are acquired repeatedly during a course of radiation therapy and a natural question to ask is whether CBCT images obtained earlier in the process can be utilized as prior knowledge to reduce patient imaging dose in subsequent scans. The purpose of this work is to develop an adaptive prior image constrained compressed sensing (APICCS) method to solve this problem. Reconstructed images using full projections are taken on the first day of radiation therapy treatment and are used as prior images. The subsequent scans are acquired using a protocol of sparse projections. In the proposed APICCS algorithm, the prior images are utilized as an initial guess and are incorporated into the objective function in the compressed sensing (CS)-based iterative reconstruction process. Furthermore, the prior information is employed to detect any possible mismatched regions between the prior and current images for improved reconstruction. For this purpose, the prior images and the reconstructed images are classified into three anatomical regions: air, soft tissue and bone. Mismatched regions are identified by local differences of the corresponding groups in the two classified sets of images. A distance transformation is then introduced to convert the information into an adaptive voxel-dependent relaxation map. In constructing the relaxation map, the matched regions (unchanged anatomy) between the prior and current images are assigned with smaller weight values, which are translated into less influence on the CS iterative reconstruction process. On the other hand, the mismatched regions (changed anatomy) are associated with larger values and the regions are updated more by the new projection data, thus avoiding any possible adverse effects of prior images. The APICCS approach was systematically assessed by using patient data acquired under standard and low-dose protocols for qualitative and quantitative comparisons. The APICCS method provides an

  2. Delayed-Phase Cone-Beam CT Improves Detectability of Intrahepatic Cholangiocarcinoma During Conventional Transarterial Chemoembolization

    SciTech Connect

    Schernthaner, Ruediger Egbert; Lin, MingDe; Duran, Rafael; Chapiro, Julius; Wang, Zhijun; Geschwind, Jean-François

    2015-08-15

    PurposeTo evaluate the detectability of intrahepatic cholangiocarcinoma (ICC) on dual-phase cone-beam CT (DPCBCT) during conventional transarterial chemoembolization (cTACE) compared to that of digital subtraction angiography (DSA) with respect to pre-procedure contrast-enhanced magnetic resonance imaging (CE-MRI) of the liver.MethodsThis retrospective study included 17 consecutive patients (10 male, mean age 64) with ICC who underwent pre-procedure CE-MRI of the liver, and DSA and DPCBCT (early-arterial phase (EAP) and delayed-arterial phase (DAP)) just before cTACE. The visibility of each ICC lesion was graded by two radiologists on a three-rank scale (complete, partial, and none) on DPCBCT and DSA images, and then compared to pre-procedure CE-MRI.ResultsOf 61 ICC lesions, only 45.9 % were depicted by DSA, whereas EAP- and DAP-CBCT yielded a significantly higher detectability rate of 73.8 % and 93.4 %, respectively (p < 0.01). Out of the 33 lesions missed on DSA, 18 (54.5 %) and 30 (90.9 %) were revealed on EAP- and DAP-CBCT images, respectively. DSA depicted only one lesion that was missed by DPCBCT due to streak artifacts caused by a prosthetic mitral valve. DAP-CBCT identified significantly more lesions than EAP-CBCT (p < 0.01). Conversely, EAP-CBCT did not detect lesions missed by DAP-CBCT. For complete lesion visibility, DAP-CBCT yielded significantly higher detectability (78.7 %) compared to EAP (31.1 %) and DSA (21.3 %) (p < 0.01).ConclusionDPCBCT, and especially the DAP-CBCT, significantly improved the detectability of ICC lesions during cTACE compared to DSA. We recommend the routine use of DAP-CBCT in patients with ICC for per-procedure detectability and treatment planning in the setting of TACE.

  3. Should image rotation be addressed during routine cone-beam CT quality assurance?

    NASA Astrophysics Data System (ADS)

    Ayan, Ahmet S.; Lin, Haibo; Yeager, Caitlyn; Deville, Curtiland; McDonough, James; Zhu, Timothy C.; Anderson, Nathan; Bar Ad, Voichita; Lu, Hsiao-Ming; Both, Stefan

    2013-02-01

    The purpose of this study is to investigate whether quality assurance (QA) for cone-beam computed tomography (CBCT) image rotation is necessary in order to ensure the accuracy of CBCT based image-guided radiation therapy (IGRT) and adaptive radiotherapy (ART). Misregistration of angular coordinates during CBCT acquisition may lead to a rotated reconstructed image. If target localization is performed based on this image, an under- or over-dosage of the target volume (TV) and organs at risk (OARs) may occur. Therefore, patient CT image sets were rotated by 1° up to 3° and the treatment plans were recalculated to quantify changes in dose-volume histograms. A computer code in C++ was written to model the TV displacement and overlap area of an ellipse shape at the target and dose prescription levels corresponding to the image rotation. We investigated clinical scenarios in IGRT and ART in order to study the implications of image rotation on dose distributions for: (1) lateral TV and isocenter (SBRT), (2) central TV and isocenter (IMRT), (3) lateral TV and isocenter (IMRT). Mathematical analysis showed the dose coverage of TV depends on its shape, size, location, and orientation relative to the isocenter. Evaluation of three first scenario for θ = 1° showed variations in TV D95 in the context of IGRT and ART when compared to the original plan were within 2.7 ± 2.6% and 7.7 ± 6.9% respectively while variations in the second and third scenarios were less significant (<0.5%) for the angular range evaluated. However a larger degree of variation was found in terms of minimum and maximum doses for target and OARs. The rotation of CBCT image data sets may have significant dosimetric consequences in IGRT and ART. The TV's location relative to isocenter and shape determine the extent of alterations in dose indicators. Our findings suggest that a CBCT QA criterion of 1° would be a reasonable action level to ensure accurate dose delivery.

  4. SU-E-I-59: Image Quality and Dose Measurement for Partial Cone-Beam CT

    SciTech Connect

    Abouei, E; Ford, N

    2014-06-01

    Purpose: To characterize performance of cone beam CT (CBCT) used in dentistry investigating quantitatively the image quality and radiation dose during dental CBCT over different settings for partial rotation of the x-ray tube. Methods: Image quality and dose measurements were done on a variable field of view (FOV) dental CBCT (Carestream 9300). X-ray parameters for clinical settings were adjustable for 2–10 mA, 60–90 kVp, and two optional voxel size values, but time was fixed for each FOV. Image quality was assessed by scanning cylindrical poly-methyl methacrylate (PMMA) image quality phantom (SEDENTEXCT IQ), and then the images were analyzed using ImageJ to calculate image quality parameters such as noise, uniformity, and contrast to noise ratio (CNR). A protocol proposed by SEDENTEXCT, dose index 1 (DI1), was applied to dose measurements obtained using a thimble ionization chamber and cylindrical PMMA dose index phantom (SEDENTEXCT DI). Dose distributions were obtained using Gafchromic film. The phantoms were positioned in the FOV to imitate a clinical positioning. Results: The image noise was 6–12.5% which, when normalized to the difference of mean voxel value of PMMA and air, was comparable between different FOVs. Uniformity was 93.5ß 99.7% across the images. CNR was 1.7–4.2 and 6.3–14.3 for LDPE and Aluminum, respectively. Dose distributions were symmetric about the rotation angle's bisector. For large and medium FOVs at 4 mA and 80–90 kVp, DI1 values were in the range of 1.26–3.23 mGy. DI1 values were between 1.01–1.93 mGy for small FOV (5×5 cm{sup 2}) at 4–5 mA and 75–84 kVp. Conclusion: Noise decreased by increasing kVp, and the CNR increased for each FOV. When FOV size increased, image noise increased and CNR decreased. DI1 values were increased by increasing tube current (mA), tube voltage (kVp), and/or FOV. Funding for this project from NSERC Discovery grant, UBC Faculty of Dentistry Research Equipment Grant and UBC Faculty of

  5. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans

    SciTech Connect

    Okada, Kazunori; Rysavy, Steven; Flores, Arturo; Linguraru, Marius George

    2015-04-15

    Purpose: This paper proposes a novel application of computer-aided diagnosis (CAD) to an everyday clinical dental challenge: the noninvasive differential diagnosis of periapical lesions between periapical cysts and granulomas. A histological biopsy is the most reliable method currently available for this differential diagnosis; however, this invasive procedure prevents the lesions from healing noninvasively despite a report that they may heal without surgical treatment. A CAD using cone-beam computed tomography (CBCT) offers an alternative noninvasive diagnostic tool which helps to avoid potentially unnecessary surgery and to investigate the unknown healing process and rate for the lesions. Methods: The proposed semiautomatic solution combines graph-based random walks segmentation with machine learning-based boosted classifiers and offers a robust clinical tool with minimal user interaction. As part of this CAD framework, the authors provide two novel technical contributions: (1) probabilistic extension of the random walks segmentation with likelihood ratio test and (2) LDA-AdaBoost: a new integration of weighted linear discriminant analysis to AdaBoost. Results: A dataset of 28 CBCT scans is used to validate the approach and compare it with other popular segmentation and classification methods. The results show the effectiveness of the proposed method with 94.1% correct classification rate and an improvement of the performance by comparison with the Simon’s state-of-the-art method by 17.6%. The authors also compare classification performances with two independent ground-truth sets from the histopathology and CBCT diagnoses provided by endodontic experts. Conclusions: Experimental results of the authors show that the proposed CAD system behaves in clearer agreement with the CBCT ground-truth than with histopathology, supporting the Simon’s conjecture that CBCT diagnosis can be as accurate as histopathology for differentiating the periapical lesions.

  6. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    NASA Astrophysics Data System (ADS)

    Siewerdsen, Jeffrey H.

    2011-08-01

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions—for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in

  7. Percutaneous transthoracic localization of pulmonary nodules under C-arm cone-beam CT virtual navigation guidance

    PubMed Central

    Kim, Tae Ho; Park, Chang Min; Lee, Sang Min; McAdams, H. Page; Kim, Young Tae; Goo, Jin Mo

    2016-01-01

    PURPOSE We aimed to describe our initial experience with percutaneous transthoracic localization (PTL) of pulmonary nodules using a C-arm cone-beam CT (CBCT) virtual navigation guidance system. METHODS From February 2013 to March 2014, 79 consecutive patients (mean age, 61±10 years) with 81 solid or ground-glass nodules (mean size, 12.36±7.21 mm; range, 4.8–25 mm) underwent PTLs prior to video-assisted thoracoscopic surgery (VATS) excision under CBCT virtual navigation guidance using lipiodol (mean volume, 0.18±0.04 mL). Their procedural details, radiation dose, and complication rates were described. RESULTS All 81 target nodules were successfully localized within 10 mm (mean distance, 2.54±3.24 mm) from the lipiodol markings. Mean number of CT acquisitions was 3.2±0.7, total procedure time was 14.6±5.14 min, and estimated radiation exposure during the localization was 5.21±2.51 mSv. Postprocedural complications occurred in 14 cases (17.3%); complications were minimal pneumothorax (n=10, 12.3%), parenchymal hemorrhage (n=3, 3.7%), and a small amount of hemoptysis (n=1, 1.2%). All target nodules were completely resected; pathologic diagnosis included invasive adenocarcinoma (n=53), adenocarcinoma-in-situ (n=10), atypical adenomatous hyperplasia (n=4), metastasis (n=7), and benign lesions (n=7). CONCLUSION PTL procedures can be performed safely and accurately under the guidance of a CBCT virtual navigation system. PMID:27015318

  8. Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region

    NASA Astrophysics Data System (ADS)

    Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc

    2016-03-01

    We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.

  9. Tumor Localization Using Cone-Beam CT Reduces Setup Margins in Conventionally Fractionated Radiotherapy for Lung Tumors

    SciTech Connect

    Yeung, Anamaria R.; Li, Jonathan G.; Shi Wenyin; Newlin, Heather E.; Chvetsov, Alexei; Liu, Chihray; Palta, Jatinder R.; Olivier, Kenneth

    2009-07-15

    Purpose: To determine whether setup margins can be reduced using cone-beam computed tomography (CBCT) to localize tumor in conventionally fractionated radiotherapy for lung tumors. Methods and Materials: A total of 22 lung cancer patients were treated with curative intent with conventionally fractionated radiotherapy using daily image guidance with CBCT. Of these, 13 lung cancer patients had sufficient CBCT scans for analysis (389 CBCT scans). The patients underwent treatment simulation in the BodyFix immobilization system using four-dimensional CT to account for respiratory motion. Daily alignment was first done according to skin tattoos, followed by CBCT. All 389 CBCT scans were retrospectively registered to the planning CT scans using automated soft-tissue and bony registration; the resulting couch shifts in three dimensions were recorded. Results: The daily alignment to skin tattoos with no image guidance resulted in systematic ({sigma}) and random ({sigma}) errors of 3.2-5.6 mm and 2.0-3.5 mm, respectively. The margin required to account for the setup error introduced by aligning to skin tattoos with no image guidance was approximately 1-1.6 cm. The difference in the couch shifts obtained from the bone and soft-tissue registration resulted in systematic ({sigma}) and random ({sigma}) errors of 1.5-4.1 mm and 1.8-5.3 mm, respectively. The margin required to account for the setup error introduced using bony anatomy as a surrogate for the target, instead of localizing the target itself, was 0.5-1.4 cm. Conclusion: Using daily CBCT soft-tissue registration to localize the tumor in conventionally fractionated radiotherapy reduced the required setup margin by up to approximately 1.5 cm compared with both no image guidance and image guidance using bony anatomy as a surrogate for the target.

  10. Development of in vivo characterization of breast tissues through absolute attenuation coefficients using dedicated cone-beam CT

    NASA Astrophysics Data System (ADS)

    Madhav, Priti; Li, Christina M.; Tornai, Martin P.

    2010-04-01

    With advances in 3D in vivo imaging technology, non-invasive procedures can be used to characterize tissues to identify tumors and monitor changes over time. Using a dedicated breast CT system with a quasi-monochromatic cone-beam x-ray source and flat-panel digital detector, this study was performed in an effort to directly characterize different materials in vivo based on their absolute attenuation coefficients. CT acquisitions were first acquired using a multi-material rod phantom with acrylic, delrin, polyethylene, fat-equivalent, and glandular-equivalent plastic rods, and also with a human cadaver breast. Projections were collected with and without a beam stop array for scatter correction. For each projection, the 2D scatter was estimated with cubic spline interpolation of the average values behind the shadow of each beam stop overlapping the object. Scatter-corrected projections were subsequently calculated by subtracting the scatter images containing only the region of the object from corresponding projections (consisting of primary and scatter x-rays) without the beam stop array. Iterative OSTR was used to reconstruct the data and estimate the non-uniform attenuation distribution. Preliminary results show that with reduced beam hardening from the x-ray beam, scatter correction further reduces the cupping artifact, improves image contrast, and yields attenuation coefficients < 8% of narrow-beam values of the known materials (range 1.2 - 7.8%). Peaks in the histogram showed clear separation between the different material attenuation coefficients. These findings indicate that minimizing beam hardening and applying scatter correction make it practical to directly characterize different tissues in vivo using absolute attenuation coefficients.

  11. Image quality of a cone beam O-arm 3D imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Weir, Victor; Lin, Jingying; Hsiung, Hsiang; Ritenour, E. Russell

    2009-02-01

    The O-arm is a cone beam imaging system designed primarily to support orthopedic surgery and is also used for image-guided and vascular surgery. Using a gantry that can be opened or closed, the O-arm can function as a 2-dimensional (2D) fluoroscopy device or collect 3-dimensional (3D) volumetric imaging data like a CT system. Clinical applications of the O-arm in spine surgical procedures, assessment of pedicle screw position, and kyphoplasty procedures show that the O-arm 3D mode provides enhanced imaging information compared to radiographs or fluoroscopy alone. In this study, the image quality of an O-arm system was quantitatively evaluated. A 20 cm diameter CATPHAN 424 phantom was scanned using the pre-programmed head protocols: small/medium (120 kVp, 100 mAs), large (120 kVp, 128 mAs), and extra-large (120 kVp, 160 mAs) in 3D mode. High resolution reconstruction mode (512×512×0.83 mm) was used to reconstruct images for the analysis of low and high contrast resolution, and noise power spectrum. MTF was measured using the point spread function. The results show that the O-arm image is uniform but with a noise pattern which cannot be removed by simply increasing the mAs. The high contrast resolution of the O-arm system was approximately 9 lp/cm. The system has a 10% MTF at 0.45 mm. The low-contrast resolution cannot be decided due to the noise pattern. For surgery where locations of a structure are emphasized over a survey of all image details, the image quality of the O-arm is well accepted clinically.

  12. SU-C-207-03: Optimization of a Collimator-Based Sparse Sampling Technique for Low-Dose Cone-Beam CT

    SciTech Connect

    Lee, T; Cho, S; Kim, I; Han, B

    2015-06-15

    Purpose: In computed tomography (CT) imaging, radiation dose delivered to the patient is one of the major concerns. Sparse-view CT takes projections at sparser view angles and provides a viable option to reducing dose. However, a fast power switching of an X-ray tube, which is needed for the sparse-view sampling, can be challenging in many CT systems. We have earlier proposed a many-view under-sampling (MVUS) technique as an alternative to sparse-view CT. In this study, we investigated the effects of collimator parameters on the image quality and aimed to optimize the collimator design. Methods: We used a bench-top circular cone-beam CT system together with a CatPhan600 phantom, and took 1440 projections from a single rotation. The multi-slit collimator made of tungsten was mounted on the X-ray source for beam blocking. For image reconstruction, we used a total-variation minimization (TV) algorithm and modified the backprojection step so that only the measured data through the collimator slits are to be used in the computation. The number of slits and the reciprocation frequency have been varied and the effects of them on the image quality were investigated. We also analyzed the sampling efficiency: the sampling density and data incoherence in each case. We tested three sets of slits with their number of 6, 12 and 18, each at reciprocation frequencies of 10, 30, 50 and 70 Hz/ro. Results: Consistent results in the image quality have been produced with the sampling efficiency, and the optimum condition was found to be using 12 slits at 30 Hz/ro. As image quality indices, we used the CNR and the detectability. Conclusion: We conducted an experiment with a moving multi-slit collimator to realize a sparse-sampled cone-beam CT. Effects of collimator parameters on the image quality have been systematically investigated, and the optimum condition has been reached.

  13. The Relationships of the Maxillary Sinus With the Superior Alveolar Nerves and Vessels as Demonstrated by Cone-Beam CT Combined With μ-CT and Histological Analyses.

    PubMed

    Kasahara, Norio; Morita, Wataru; Tanaka, Ray; Hayashi, Takafumi; Kenmotsu, Shinichi; Ohshima, Hayato

    2016-05-01

    There are no available detailed data on the three-dimensional courses of the human superior alveolar nerves and vessels. This study aimed to clarify the relationships of the maxillary sinus with the superior alveolar nerves and vessels using cone-beam computed tomography (CT) combined with μ-CT and histological analyses. Digital imaging and communication in medicine data obtained from the scanned heads/maxillae of cadavers used for undergraduate/postgraduate dissection practice and skulls using cone-beam CT were reconstructed into three-dimensional (3D) images using software. The 3D images were compared with μ-CT images and histological sections. Cone-beam CT clarified the relationships of the maxillary sinus with the superior alveolar canals/grooves. The main anterior superior alveolar canal/groove ran anteriorly through the upper part of the sinus and terminated at the bottom of the nasal cavity near the piriform aperture. The main middle alveolar canal ran downward from the upper part of the sinus to ultimately join the anterior one. The main posterior alveolar canal ran through the lateral lower part of the sinus and communicated with the anterior one. Histological analyses demonstrated the existence of nerves and vessels in these canals/grooves, and the quantities of these structures varied across each canal/groove. Furthermore, the superior dental nerve plexus exhibited a network that was located horizontally to the occlusal plane, although these nerve plexuses appeared to be the vertical network that is described in most textbooks. In conclusion, cone-beam CT is suggested to be a useful method for clarifying the superior alveolar canals/grooves including the nerves and vessels.

  14. A sinogram based technique for image correction and removal of metal clip artifacts in cone beam breast CT

    NASA Astrophysics Data System (ADS)

    Wang, T.; Shen, Y.; Zhong, Y.; Lai, C.-J.; Wang, J.; Shaw, C. C.

    2014-03-01

    Cone beam CT (CBCT) technique provides true three-dimensional (3D) images of a breast; however, metal clips and needles used for surgical planning can cause artifacts, which may extend to many adjacent slices, in the reconstructed images obtained by the Feldkamp-Davis-Kress (FDK) filtered backprojection method,. In this paper, a sinogram based method to remove the metal clips in the projection image data is described and discussed for improving the quality of reconstructed breast images. First, the original projection data was reconstructed using the FDK algorithm to obtain a volumetric image with metal clips and artifacts. Second, the volumetric image was segmented by using the threshold method to obtain a 3D map of metal objects. Third, a forward projection algorithm is applied to the metal object map to obtain projection map of metal objects. Finally, the original projection images and projection map of metal objects are reorganized into sinograms for correction in the angular space on a pixel-by-pixel basis. Cone beam CT images of a mastectomy breast specimen are used to demonstrate the feasibility of using this technique for removal of metal object artifacts. Preliminary results have demonstrated that metal objects artifacts in 3D images were reduced and the image quality were improved.

  15. Three-dimensional image analysis of a head of the giant panda by the cone-beam type CT.

    PubMed

    Endo, Hideki; Komiya, Teruyuki; Narushima, Etsuo; Suzuki, Naoki

    2002-12-01

    The cone-beam type CT (Computed Tomography) enabled us to collect the three-dimensional (3D) digitalized data directly from the animal carcass. In this study, we applied the techniques of the cone-beam type CT for a carcass head of the giant panda (Ailuropoda melanoleuca) to obtain the 3D images easily without reconstruction process, and could morphologically examine the sections from the 3D data by means of non-destructive observations. The important results of the study represent the two following points. 1) We could show the morphological relationships between the muscles of mastication and the mandible in non-destructive status from the 3D data. The exact position of the coronoid process could be recognized in the rostro-lateral space of the temporal fossa. 2) By the serial sections from the 3D data sets, the morphological characteristics in the nasal cavity were detailed with high resolution in this rare species. The nasal concha was well-developed in the nasal cavity. The ethmoidal labyrinth was encountered immediately caudal to the nasal cavity and close to the region of the olfactory bulb. The ethmoidal labyrinth consisted of the complicated osseous structure in this area. The data will be useful to discuss the olfactory function in the reproduction behavior of this species.

  16. The Reconstruction Toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the Insight Toolkit (ITK)

    NASA Astrophysics Data System (ADS)

    Rit, S.; Vila Oliva, M.; Brousmiche, S.; Labarbe, R.; Sarrut, D.; Sharp, G. C.

    2014-03-01

    We propose the Reconstruction Toolkit (RTK, http://www.openrtk.org), an open-source toolkit for fast cone-beam CT reconstruction, based on the Insight Toolkit (ITK) and using GPU code extracted from Plastimatch. RTK is developed by an open consortium (see affiliations) under the non-contaminating Apache 2.0 license. The quality of the platform is daily checked with regression tests in partnership with Kitware, the company supporting ITK. Several features are already available: Elekta, Varian and IBA inputs, multi-threaded Feldkamp-David-Kress reconstruction on CPU and GPU, Parker short scan weighting, multi-threaded CPU and GPU forward projectors, etc. Each feature is either accessible through command line tools or C++ classes that can be included in independent software. A MIDAS community has been opened to share CatPhan datasets of several vendors (Elekta, Varian and IBA). RTK will be used in the upcoming cone-beam CT scanner developed by IBA for proton therapy rooms. Many features are under development: new input format support, iterative reconstruction, hybrid Monte Carlo / deterministic CBCT simulation, etc. RTK has been built to freely share tomographic reconstruction developments between researchers and is open for new contributions.

  17. Sci—Fri AM: Mountain — 02: A comparison of dose reduction methods on image quality for cone beam CT

    SciTech Connect

    Webb, R; Buckley, LA

    2014-08-15

    Modern radiotherapy uses highly conformai dose distributions and therefore relies on daily image guidance for accurate patient positioning. Kilovoltage cone beam CT is one technique that is routinely used for patient set-up and results in a high dose to the patient relative to planar imaging techniques. This study uses an Elekta Synergy linac equipped with XVI cone beam CT to investigate the impact of various imaging parameters on dose and image quality. Dose and image quality are assessed as functions of x-ray tube voltage, tube current and the number of projections in the scan. In each case, the dose measurements confirm that as each parameter increases the dose increases. The assessment of high contrast resolution shows little dependence on changes to the image technique. However, low contrast visibility suggests a trade off between dose and image quality. Particularly for changes in tube potential, the dose increases much faster as a function of voltage than the corresponding increase in low contrast image quality. This suggests using moderate values of the peak tube voltage (100 – 120 kVp) since higher values result in significant dose increases with little gain in image quality. Measurements also indicate that increasing tube current achieves the greatest degree of improvement in the low contrast visibility. The results of this study highlight the need to establish careful imaging protocols to limit dose to the patient and to limit changes to the imaging parameters to those cases where there is a clear clinical requirement for improved image quality.

  18. Nonlinear statistical reconstruction for flat-panel cone-beam CT with blur and correlated noise models

    NASA Astrophysics Data System (ADS)

    Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster

    2016-03-01

    Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications.

  19. Nonlinear Statistical Reconstruction for Flat-Panel Cone-Beam CT with Blur and Correlated Noise Models

    PubMed Central

    Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster

    2016-01-01

    Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications. PMID:27110051

  20. Low-dose megavoltage cone-beam CT imaging using thick, segmented scintillators

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Jiang, Hao; Liu, Langechuan

    2011-03-01

    Megavoltage, cone-beam computed tomography (MV CBCT) employing an electronic portal imaging device (EPID) is a highly promising technique for providing soft-tissue visualization in image-guided radiotherapy. However, current EPIDs based on active matrix flat-panel imagers (AMFPIs), which are regarded as the gold standard for portal imaging and referred to as conventional MV AMFPIs, require high radiation doses to achieve this goal due to poor x-ray detection efficiency (~2% at 6 MV). To overcome this limitation, the incorporation of thick, segmented, crystalline scintillators, as a replacement for the phosphor screens used in these AMFPIs, has been shown to significantly improve the detective quantum efficiency (DQE) performance, leading to improved image quality for projection imaging at low dose. Toward the realization of practical AMFPIs capable of low dose, soft-tissue visualization using MV CBCT imaging, two prototype AMFPIs incorporating segmented scintillators with ~11 mm thick CsI:Tl and Bi4Ge3O12 (BGO) crystals were evaluated. Each scintillator consists of 120 × 60 crystalline elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm. The prototypes were evaluated using a bench-top CBCT system, allowing the acquisition of 180 projection, 360° tomographic scans with a 6 MV radiotherapy photon beam. Reconstructed images of a spatial resolution phantom, as well as of a water-equivalent phantom, embedded with tissue equivalent objects having electron densities (relative to water) varying from ~0.28 to ~1.70, were obtained down to one beam pulse per projection image, corresponding to a scan dose of ~4 cGy--a dose similar to that required for a single portal image obtained from a conventional MV AMFPI. By virtue of their significantly improved DQE, the prototypes provided low contrast visualization, allowing clear delineation of an object with an electron density difference of ~2.76%. Results of contrast, noise and contrast

  1. Design and characterization of a dedicated cone-beam CT scanner for detection of acute intracranial hemorrhage

    NASA Astrophysics Data System (ADS)

    Xu, J.; Sisniega, A.; Zbijewski, W.; Dang, H.; Stayman, J. W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-03-01

    Purpose: Prompt and reliable detection of intracranial hemorrhage (ICH) has substantial clinical impact in diagnosis and treatment of stroke and traumatic brain injury. This paper describes the design, development, and preliminary performance characterization of a dedicated cone-beam CT (CBCT) head scanner prototype for imaging of acute ICH. Methods: A task-based image quality model was used to analyze the detectability index as a function of system configuration, and hardware design was guided by the results of this model-based optimization. A robust artifact correction pipeline was developed using GPU-accelerated Monte Carlo (MC) scatter simulation, beam hardening corrections, detector veiling glare, and lag deconvolution. An iterative penalized weighted least-squares (PWLS) reconstruction framework with weights adjusted for artifact-corrected projections was developed. Various bowtie filters were investigated for potential dose and image quality benefits, with a MC-based tool providing estimates of spatial dose distribution. Results: The initial prototype will feature a source-detector distance of 1000 mm and source-axis distance of 550 mm, a 43x43 cm2 flat panel detector, and a 15° rotating anode x-ray source with 15 kW power and 0.6 focal spot size. Artifact correction reduced image nonuniformity by ~250 HU, and PWLS reconstruction with modified weights improved the contrast to noise ratio by 20%. Inclusion of a bowtie filter can potentially reduce dose by 50% and improve CNR by 25%. Conclusions: A dedicated CBCT system capable of imaging millimeter-scale acute ICH was designed. Preliminary findings support feasibility of point-of-care applications in TBI and stroke imaging, with clinical studies beginning on a prototype.

  2. X-ray flat-panel imager (FPI)-based cone-beam volume CT (CBVCT) under a circle-plus-two-arc data acquisition orbit

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    2001-06-01

    The potential of cone beam volume CT (CBVCT) to improve the data acquisition efficiency for volume tomographic imaging is well recognized. A novel x-ray FPI based CBVCT prototype and its preliminary performance evaluation are presented in this paper. To meet the data sufficiency condition, the CBVCT prototype employs a circle-plus-two-arc orbit accomplished by a tiltable circular gantry. A cone beam filtered back-projection (CB-FBP) algorithm is derived for this data acquisition orbit, which employs a window function in the Radon domain to exclude the redundancy between the Radon information obtained from the circular cone beam (CB) data and that from the arc CB data. The number of projection images along the circular sub-orbit and each arc sub-orbit is 512 and 43, respectively. The reconstruction exactness of the prototype x-ray FPI based CBVCT system is evaluated using a disc phantom in which seven acrylic discs are stacked at fixed intervals. Images reconstructed with this algorithm show that both the contrast and geometric distortion existing in the disc phantom images reconstructed by the Feldkamp algorithm are substantially reduced. Meanwhile, the imaging performance of the prototype, such as modulation transfer function (MTF) and low contrast resolution, are quantitatively evaluated in detail through corresponding phantom studies. Furthermore, the capability of the prototype to reconstruct an ROI within a longitudinally unbounded object is verified. The results obtained from this preliminary performance evaluation encourage an expectation of medical applications of the x-ray FPI based CBVCT under the circle-plus-two-arc data acquisition, particularly the application in image-guided interventional procedures and radiotherapy where the movement of a patient table is to be avoided.

  3. Radiobiologically optimized couch shift: A new localization paradigm using cone-beam CT for prostate radiotherapy

    SciTech Connect

    Huang, Yimei Gardner, Stephen J.; Wen, Ning; Zhao, Bo; Gordon, James; Brown, Stephen; Chetty, Indrin J.

    2015-10-15

    Purpose: To present a novel positioning strategy which optimizes radiation delivery by utilizing radiobiological response knowledge and evaluate its use during prostate external beam radiotherapy. Methods: Five patients with low or intermediate risk prostate cancer were evaluated retrospectively in this IRB-approved study. For each patient, a VMAT plan with one 358° arc was generated on the planning CT (PCT) to deliver 78 Gy in 39 fractions. Five representative pretreatment cone beam CTs (CBCT) were selected for each patient. The CBCT images were registered to PCT by a human observer, which consisted of an initial automated registration with three degrees-of-freedom, followed by manual adjustment for agreement at the prostate/rectal wall interface. To determine the optimal treatment position for each CBCT, a search was performed centering on the observer-matched position (OM-position) utilizing a score function based on radiobiological and dosimetric indices (EUD{sub prostate}, D99{sub prostate}, NTCP{sub rectum}, and NTCP{sub bladder}) for the prostate, rectum, and bladder. We termed the optimal treatment position the radiobiologically optimized couch shift position (ROCS-position). Results: The dosimetric indices, averaged over the five patients’ treatment plans, were (mean ± SD) 79.5 ± 0.3 Gy (EUD{sub prostate}), 78.2 ± 0.4 Gy (D99{sub prostate}), 11.1% ± 2.7% (NTCP{sub rectum}), and 46.9% ± 7.6% (NTCP{sub bladder}). The corresponding values from CBCT at the OM-positions were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.8 ± 0.7 Gy (D99{sub prostate}), 12.1% ± 5.6% (NTCP{sub rectum}), and 51.6% ± 15.2% (NTCP{sub bladder}), respectively. In comparison, from CBCT at the ROCS-positions, the dosimetric indices were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.3 ± 0.6 Gy (D99{sub prostate}), 8.0% ± 3.3% (NTCP{sub rectum}), and 46.9% ± 15.7% (NTCP{sub bladder}). Excessive NTCP{sub rectum} was observed on Patient 5 (19.5% ± 6.6%) corresponding to localization at OM

  4. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    SciTech Connect

    Toftegaard, Jakob Fledelius, Walther; Worm, Esben S.; Poulsen, Per R.; Seghers, Dieter; Huber, Michael; Brehm, Marcus; Elstrøm, Ulrik V.

    2014-12-15

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  5. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    SciTech Connect

    Wang, Jing; Gu, Xuejun

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  6. Deformable registration of the inflated and deflated lung for cone-beam CT-guided thoracic surgery

    NASA Astrophysics Data System (ADS)

    Uneri, Ali; Nithiananthan, Sajendra; Schafer, Sebastian; Otake, Yoshito; Stayman, J. Webster; Kleinszig, Gerhard; Sussman, Marc S.; Taylor, Russell H.; Prince, Jerry L.; Siewerdsen, Jeffrey H.

    2012-02-01

    Intraoperative cone-beam CT (CBCT) could offer an important advance to thoracic surgeons in directly localizing subpalpable nodules during surgery. An image-guidance system is under development using mobile C-arm CBCT to directly localize tumors in the OR, potentially reducing the cost and logistical burden of conventional preoperative localization and facilitating safer surgery by visualizing critical structures surrounding the surgical target (e.g., pulmonary artery, airways, etc.). To utilize the wealth of preoperative image/planning data and to guide targeting under conditions in which the tumor may not be directly visualized, a deformable registration approach has been developed that geometrically resolves images of the inflated (i.e., inhale or exhale) and deflated states of the lung. This novel technique employs a coarse model-driven approach using lung surface and bronchial airways for fast registration, followed by an image-driven registration using a variant of the Demons algorithm to improve target localization to within ~1 mm. Two approaches to model-driven registration are presented and compared - the first involving point correspondences on the surface of the deflated and inflated lung and the second a mesh evolution approach. Intensity variations (i.e., higher image intensity in the deflated lung) due to expulsion of air from the lungs are accounted for using an a priori lung density modification, and its improvement on the performance of the intensity-driven Demons algorithm is demonstrated. Preliminary results of the combined model-driven and intensity-driven registration process demonstrate accuracy consistent with requirements in minimally invasive thoracic surgery in both target localization and critical structure avoidance.

  7. SU-E-J-92: On-Line Cone Beam CT Based Planning for Emergency and Palliative Radiation Therapy

    SciTech Connect

    Held, M; Morin, O; Pouliot, J

    2014-06-01

    Purpose: To evaluate and develop the feasibility of on-line cone beam CT based planning for emergency and palliative radiotherapy treatments. Methods: Subsequent to phantom studies, a case library of 28 clinical megavoltage cone beam CT (MVCBCT) was built to assess dose-planning accuracies on MVCBCT for all anatomical sites. A simple emergency treatment plan was created on the MVCBCT and copied to its reference CT. The agreement between the dose distributions of each image pair was evaluated by the mean dose difference of the dose volume and the gamma index of the central 2D axial plane. An array of popular urgent and palliative cases was also evaluated for imaging component clearance and field-of-view. Results: The treatment cases were categorized into four groups (head and neck, thorax/spine, pelvis and extremities). Dose distributions for head and neck treatments were predicted accurately in all cases with a gamma index of >95% for 2% and 2 mm criteria. Thoracic spine treatments had a gamma index as low as 60% indicating a need for better uniformity correction and tissue density calibration. Small anatomy changes between CT and MVCBCT could contribute to local errors. Pelvis and sacral spine treatment cases had a gamma index between 90% and 98% for 3%/3 mm criteria. The limited FOV became an issue for large pelvis patients. Imaging clearance was difficult for cases where the tumor was positioned far off midline. Conclusion: The MVCBCT based dose planning and delivery approach is feasible in many treatment cases. Dose distributions for head and neck patients are unrestrictedly predictable. Some FOV restrictions apply to other treatment sites. Lung tissue is most challenging for accurate dose calculations given the current imaging filters and corrections. Additional clinical cases for extremities need to be included in the study to assess the full range of site-specific planning accuracies. This work is supported by Siemens.

  8. Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector

    SciTech Connect

    Zhao, Z.; Gang, G. J.; Siewerdsen, J. H.

    2014-06-15

    Purpose: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. Methods: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated “clutter”) and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σ{sub Q}), electronic noise (σ{sub E}), and view aliasing (σ{sub view}). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (N{sub proj}), dose (D{sub tot}), and voxel size (b{sub vox}). Results: The results reveal a nonmonotonic relationship between image noise andN{sub proj} at fixed total dose: for the CBCT system considered, noise decreased with increasing N{sub proj} due to reduction of view sampling effects in the regime N{sub proj} <∼200, above which noise increased with N{sub proj} due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f {sup β}—and a general model of individual noise components (σ{sub Q}, σ{sub E}, and σ{sub view}) demonstrated agreement with measurements over a broad range in N{sub proj}, D{sub tot}, and b{sub vox}. Conclusions: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a “sweet spot” (i.e., minimum noise) in the rangeN{sub proj} ∼ 250–350, nearly an order of magnitude lower in N{sub proj} than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis

  9. Development and validation of a measurement-based source model for kilovoltage cone-beam CT Monte Carlo dosimetry simulations

    SciTech Connect

    McMillan, Kyle; McNitt-Gray, Michael; Ruan, Dan

    2013-11-15

    Purpose: The purpose of this study is to adapt an equivalent source model originally developed for conventional CT Monte Carlo dose quantification to the radiation oncology context and validate its application for evaluating concomitant dose incurred by a kilovoltage (kV) cone-beam CT (CBCT) system integrated into a linear accelerator.Methods: In order to properly characterize beams from the integrated kV CBCT system, the authors have adapted a previously developed equivalent source model consisting of an equivalent spectrum module that takes into account intrinsic filtration and an equivalent filter module characterizing the added bowtie filtration. An equivalent spectrum was generated for an 80, 100, and 125 kVp beam with beam energy characterized by half-value layer measurements. An equivalent filter description was generated from bowtie profile measurements for both the full- and half-bowtie. Equivalent source models for each combination of equivalent spectrum and filter were incorporated into the Monte Carlo software package MCNPX. Monte Carlo simulations were then validated against in-phantom measurements for both the radiographic and CBCT mode of operation of the kV CBCT system. Radiographic and CBCT imaging dose was measured for a variety of protocols at various locations within a body (32 cm in diameter) and head (16 cm in diameter) CTDI phantom. The in-phantom radiographic and CBCT dose was simulated at all measurement locations and converted to absolute dose using normalization factors calculated from air scan measurements and corresponding simulations. The simulated results were compared with the physical measurements and their discrepancies were assessed quantitatively.Results: Strong agreement was observed between in-phantom simulations and measurements. For the radiographic protocols, simulations uniformly underestimated measurements by 0.54%–5.14% (mean difference =−3.07%, SD = 1.60%). For the CBCT protocols, simulations uniformly underestimated

  10. SU-E-J-43: Deformed Planning CT as An Electron Density Substitute for Cone-Beam CT

    SciTech Connect

    Mishra, K; Godley, A

    2014-06-01

    Purpose: To confirm that deforming the planning CT to the daily Cone-Beam CTs (CBCT) can provide suitable electron density for adaptive planning. We quantify the dosimetric difference between plans calculated on deformed planning CTs (DPCT) and daily CT-on-rails images (CTOR). CTOR is used as a test of the method as CTOR already contains accurate electron density to compare against. Methods: Five prostate only IMRT patients, each with five CTOR images, were selected and re-planned on Panther (Prowess Inc.) with a uniform 5 mm PTV expansion, prescribed 78 Gy. The planning CT was deformed to match each CTOR using ABAS (Elekta Inc.). Contours were drawn on the CTOR, and copied to the DPCT. The original treatment plan was copied to both the CTOR and DPCT, keeping the center of the prostate as the isocenter. The plans were then calculated using the collapsed cone heterogeneous dose engine of Prowess and typical DVH planning parameters used to compare them. Results: Each DPCT was visually compared to its CTOR with no differences observed. The agreement of the copied CTOR contours with the DPCT anatomy further demonstrated the deformation accuracy. The plans calculated using CTOR and DPCT were compared. Over the 25 plan pairs, the average difference between them for prostate D100, D98 and D95 were 0.5%, 0.2%, and 0.2%; PTV D98, D95 and mean dose: 0.3%, 0.2% and 0.3%; bladder V70, V60 and mean dose: 1.1%, 0.7%, and 0.2%; and rectum mean dose: 0.3%. (D100 is the dose covering 100% of the target; V70 is the volume of the organ receiving 70 Gy). Conclusion: We observe negligible difference between the dose calculated on the DPCT and the CTOR, implying that deformed planning CTs are a suitable substitute for electron density. The method can now be applied to CBCTs. Research version of Panther provided by Prowess Inc. Research version of ABAS provided by Elekta Inc.

  11. Role of C-Arm Cone-Beam CT in Chemoembolization for Hepatocellular Carcinoma

    PubMed Central

    2015-01-01

    With the advent of C-arm cone-beam computed tomography (CBCT), minimally-invasive procedures in the angiography suite made a new leap beyond the limitations of 2-dimensional (D) angiography alone. C-arm CBCT can help interventional radiologists in several ways with the treatment of hepatocellular carcinoma (HCC); visualization of small tumors and tumor-feeding arteries, identification of occult lesion and 3D configuration of tortuous hepatic arteries, assurance of completeness of chemoembolization, suggestion of presence of extrahepatic collateral arteries supplying HCCs, and prevention of nontarget embolization. With more improvements in the technology, C-arm CBCT may be essential in all kinds of interventional procedures in the near future. PMID:25598679

  12. A Diagnosis of Maxillary Sinus Fracture with Cone-Beam CT: Case Report and Literature Review

    PubMed Central

    Yilmaz, Selmi Yardimci; Misirlioglu, Melda; Adisen, Mehmet Zahit

    2014-01-01

    The purpose of this article is to present the case of maxillofacial trauma patient with maxillary sinus fracture diagnosed with cone-beam computed tomography (CBCT) and to explore the applications of this technique in evaluating the maxillofacial region. A 23-year-old male patient attempted to our clinic who had an injury at midface with complaints of swelling, numbness. The patient was examined before in emergency center but any diagnosis was made about the maxillofacial trauma. The patient re-examined clinically and radiographically. A fracture on the frontal wall of maxillary sinus is determined with the aid of CBCT. The patient consulted with the department of maxillofacial surgery and it is decided that any surgical treatment was not necessary. The emerging technique CBCT would not be the primary choice of imaging maxillofacial trauma. Nevertheless, when advantages considered this imaging procedure could be the modality of choice according to the case. PMID:25045417

  13. Role of C-arm cone-beam CT in chemoembolization for hepatocellular carcinoma.

    PubMed

    Kim, Hyo-Cheol

    2015-01-01

    With the advent of C-arm cone-beam computed tomography (CBCT), minimally-invasive procedures in the angiography suite made a new leap beyond the limitations of 2-dimensional (D) angiography alone. C-arm CBCT can help interventional radiologists in several ways with the treatment of hepatocellular carcinoma (HCC); visualization of small tumors and tumor-feeding arteries, identification of occult lesion and 3D configuration of tortuous hepatic arteries, assurance of completeness of chemoembolization, suggestion of presence of extrahepatic collateral arteries supplying HCCs, and prevention of nontarget embolization. With more improvements in the technology, C-arm CBCT may be essential in all kinds of interventional procedures in the near future.

  14. Effective one step-iterative fiducial marker-based compensation for involuntary motion in weight-bearing C-arm cone-beam CT scanning of knees

    NASA Astrophysics Data System (ADS)

    Choi, Jang-Hwan; Maier, Andreas; Berger, Martin; Fahrig, Rebecca

    2014-03-01

    We previously introduced three different fiducial marker-based correction methods (2D projection shifting, 2D projection warping, and 3D image warping) for patients' involuntary motion in the lower body during weight-bearing Carm CT scanning. The 3D warping method performed better than 2D methods since it could more accurately take into account the lower body motion in 3D. However, as the 3D warping method applies different rotational and translational movement to the reconstructed image for each projection frame, distance-related weightings were slightly twisted and thus result in overlaying background noise over the entire image. In order to suppress background noise and artifacts (e.g. metallic marker-caused streaks), the 3D warping method has been improved by incorporating bilateral filtering and a Landwebertype iteration in one step. A series of projection images of five healthy volunteers standing at various flexion angles were acquired using a C-arm cone-beam CT system with a flat panel. A horizontal scanning trajectory of the C-arm was calibrated to generate projection matrices. Using the projection matrices, the static reference marker coordinates in 3D were estimated and used for the improved 3D warping method. The improved 3D warping method effectively reduced background noise down below the noise level of 2D methods and also eliminated metal-generated streaks. Thus, improved visibility of soft tissue structures (e.g. fat and muscle) was achieved while maintaining sharp edges at bone-tissue interfaces. Any high resolution weight-bearing cone-beam CT system can apply this method for motion compensation.

  15. SU-E-J-99: Reconstruction of Cone Beam CT Image Using Volumetric Modulated Arc Therapy Exit Beams

    SciTech Connect

    Jeong, K; Goddard, L; Savacool, M; Mynampati, D; Godoy Scripes, P; Tome', W; Kuo, H; Basavatia, A; Hong, L; Yaparpalvi, R; Kalnicki, S

    2014-06-01

    Purpose: To test the possibility of obtaining an image of the treated volume during volumetric modulated arc therapy (VMAT) with exit beams. Method: Using a Varian Clinac 21EX and MVCT detector the following three sets of detector projection data were obtained for cone beam CT reconstruction with and without a Catphan 504 phantom. 1) 72 projection images from 20 × 16 cm{sup 2} open beam with 3 MUs, 2) 72 projection images from 20 × 16 cm{sup 2} MLC closed beam with 14 MUs. 3) 137 projection images from a test RapicArc QA plan. All projection images were obtained in ‘integrated image’ mode. We used OSCaR code to reconstruct the cone beam CT images. No attempts were made to reduce scatter or artifacts. Results: With projection set 1) we obtained a good quality MV CBCT image by optimizing the reconstruction parameters. Using projection set 2) we were not able to obtain a CBCT image of the phantom, which was determined to be due to the variation of interleaf leakage with gantry angle. From projection set 3), we were able to obtain a weak but meaningful signal in the image, especially in the target area where open beam signals were dominant. This finding suggests that one might be able to acquire CBCT images with rough body shape and some details inside the irradiated target area. Conclusion: Obtaining patient images using the VMAT exit beam is challenging but possible. We were able to determine sources of image degradation such as gantry angle dependent interleaf leakage and beams with a large scatter component. We are actively working on improving image quality.

  16. Algorithm for x-ray beam hardening and scatter correction in low-dose cone-beam CT: phantom studies

    NASA Astrophysics Data System (ADS)

    Liu, Wenlei; Rong, Junyan; Gao, Peng; Liao, Qimei; Lu, HongBing

    2016-03-01

    X-ray scatter poses a significant limitation to image quality in cone-beam CT (CBCT), as well as beam hardening, resulting in image artifacts, contrast reduction, and lack of CT number accuracy. Meanwhile the x-ray radiation dose is also non-ignorable. Considerable scatter or beam hardening correction methods have been developed, independently, and rarely combined with low-dose CT reconstruction. In this paper, we combine scatter suppression with beam hardening correction for sparse-view CT reconstruction to improve CT image quality and reduce CT radiation. Firstly, scatter was measured, estimated, and removed using measurement-based methods, assuming that signal in the lead blocker shadow is only attributable to x-ray scatter. Secondly, beam hardening was modeled by estimating an equivalent attenuation coefficient at the effective energy, which was integrated into the forward projector of the algebraic reconstruction technique (ART). Finally, the compressed sensing (CS) iterative reconstruction is carried out for sparse-view CT reconstruction to reduce the CT radiation. Preliminary Monte Carlo simulated experiments indicate that with only about 25% of conventional dose, our method reduces the magnitude of cupping artifact by a factor of 6.1, increases the contrast by a factor of 1.4 and the CNR by a factor of 15. The proposed method could provide good reconstructed image from a few view projections, with effective suppression of artifacts caused by scatter and beam hardening, as well as reducing the radiation dose. With this proposed framework and modeling, it may provide a new way for low-dose CT imaging.

  17. Poster — Thur Eve — 06: Dose assessment of cone beam CT imaging protocols as part of SPECT/CT examinations

    SciTech Connect

    Tonkopi, E; Ross, AA

    2014-08-15

    Purpose: To assess radiation dose from the cone beam CT (CBCT) component of SPECT/CT studies and to compare with other CT examinations performed in our institution. Methods: We used an anthropomorphic chest phantom and the 6 cc ion chamber to measure entrance breast dose for several CBCT and diagnostic CT acquisition protocols. The CBCT effective dose was calculated with ImPACT software; the CT effective dose was evaluated from the DLP value and conversion factor, dependent on the anatomic region. The RADAR medical procedure radiation dose calculator was used to assess the nuclear medicine component of exam dose. Results: The entrance dose to the breast measured with the anthropomorphic phantom was 0.48 mGy and 9.41 mGy for cardiac and chest CBCT scans; and 4.59 mGy for diagnostic thoracic CT. The effective doses were 0.2 mSv, 3.2 mSv and 2.8 mSv respectively. For a small patient represented by the anthropomorphic phantom, the dose from the diagnostic CT was lower than from the CBCT scan, as a result of the exposure reduction options available on modern CT scanners. The CBCT protocols used the same fixed scanning techniques. The diagnostic CT dose based on the patient data was 35% higher than the phantom dose. For most SPECT/CT studies the dose from the CBCT component was comparable with the dose from the radiopharmaceutical. Conclusions: The patient radiation dose from the cone beam CT scan can be higher than that from a diagnostic CT and should be taken into consideration in evaluating total SPECT/CT patient dose.

  18. C-arm cone beam CT perfusion imaging using the SMART-RECON algorithm to improve temporal sampling density and temporal resolution

    NASA Astrophysics Data System (ADS)

    Li, Yinsheng; Niu, Kai; Li, Ke; Schafer, Sebastian; Royalty, Kevin; Strother, Charles; Chen, Guang-Hong

    2016-03-01

    In this work, a newly developed reconstruction algorithm, Synchronized MultiArtifact Reduction with Tomographic RECONstruction (SMART-RECON), was applied to C-arm cone beam CT perfusion (CBCTP) imaging. This algorithm contains a special rank regularizer, designed to reduce limited-view artifacts associated with super- short scan reconstructions. As a result, high temporal sampling and temporal resolution image reconstructions were achieved using an interventional C-arm x-ray system. The algorithm was evaluated in terms of the fidelity of the dynamic contrast update curves and the accuracy of perfusion parameters through numerical simulation studies. Results shows that, not only were the dynamic curves accurately recovered (relative root mean square error ∈ [3%, 5%] compared with [13%, 22%] for FBP), but also the noise in the final perfusion maps was dramatically reduced. Compared with filtered backprojection, SMART-RECON generated CBCTP maps with much improved capability in differentiating lesions with perfusion deficits from the surrounding healthy brain tissues.

  19. Tracker-on-C for cone-beam CT-guided surgery: evaluation of geometric accuracy and clinical applications

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Otake, Y.; Uneri, A.; Schafer, S.; Mirota, D. J.; Nithiananthan, S.; Stayman, J. W.; Khanna, A. J.; Reh, D. D.; Gallia, G. L.; Taylor, R. H.; Siewerdsen, J. H.

    2012-02-01

    Conventional surgical tracking configurations carry a variety of limitations in line-of-sight, geometric accuracy, and mismatch with the surgeon's perspective (for video augmentation). With increasing utilization of mobile C-arms, particularly those allowing cone-beam CT (CBCT), there is opportunity to better integrate surgical trackers at bedside to address such limitations. This paper describes a tracker configuration in which the tracker is mounted directly on the Carm. To maintain registration within a dynamic coordinate system, a reference marker visible across the full C-arm rotation is implemented, and the "Tracker-on-C" configuration is shown to provide improved target registration error (TRE) over a conventional in-room setup - (0.9+/-0.4) mm vs (1.9+/-0.7) mm, respectively. The system also can generate digitally reconstructed radiographs (DRRs) from the perspective of a tracked tool ("x-ray flashlight"), the tracker, or the C-arm ("virtual fluoroscopy"), with geometric accuracy in virtual fluoroscopy of (0.4+/-0.2) mm. Using a video-based tracker, planning data and DRRs can be superimposed on the video scene from a natural perspective over the surgical field, with geometric accuracy (0.8+/-0.3) pixels for planning data overlay and (0.6+/-0.4) pixels for DRR overlay across all C-arm angles. The field-of-view of fluoroscopy or CBCT can also be overlaid on real-time video ("Virtual Field Light") to assist C-arm positioning. The fixed transformation between the x-ray image and tracker facilitated quick, accurate intraoperative registration. The workflow and precision associated with a variety of realistic surgical tasks were significantly improved using the Tracker-on-C - for example, nearly a factor of 2 reduction in time required for C-arm positioning, reduction or elimination of dose in "hunting" for a specific fluoroscopic view, and confident placement of the x-ray FOV on the surgical target. The proposed configuration streamlines the integration of C

  20. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    PubMed

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  1. Quantification of dental prostheses on cone-beam CT images by the Taguchi method.

    PubMed

    Kuo, Rong-Fu; Fang, Kwang-Ming; Ty, Wong; Hu, Chia Yu

    2016-01-01

    The gray values accuracy of dental cone-beam computed tomography (CBCT) is affected by dental metal prostheses. The distortion of dental CBCT gray values could lead to inaccuracies of orthodontic and implant treatment. The aim of this study was to quantify the effect of scanning parameters and dental metal prostheses on the accuracy of dental cone-beam computed tomography (CBCT) gray values using the Taguchi method. Eight dental model casts of an upper jaw including prostheses, and a ninth prosthesis-free dental model cast, were scanned by two dental CBCT devices. The mean gray value of the selected circular regions of interest (ROIs) were measured using dental CBCT images of eight dental model casts and were compared with those measured from CBCT images of the prosthesis-free dental model cast. For each image set, four consecutive slices of gingiva were selected. The seven factors (CBCTs, occlusal plane canting, implant connection, prosthesis position, coping material, coping thickness, and types of dental restoration) were used to evaluate scanning parameter and dental prostheses effects. Statistical methods of signal to noise ratio (S/N) and analysis of variance (ANOVA) with 95% confidence were applied to quantify the effects of scanning parameters and dental prostheses on dental CBCT gray values accuracy. For ROIs surrounding dental prostheses, the accuracy of CBCT gray values were affected primarily by implant connection (42%), followed by type of restoration (29%), prostheses position (19%), coping material (4%), and coping thickness (4%). For a single crown prosthesis (without support of implants) placed in dental model casts, gray value differences for ROIs 1-9 were below 12% and gray value differences for ROIs 13-18 away from pros-theses were below 10%. We found the gray value differences set to be between 7% and 8% for regions next to a single implant-supported titanium prosthesis, and between 46% and 59% for regions between double implant

  2. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    PubMed

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  3. Cone Beam CT Imaging Analysis of Interfractional Variations in Bladder Volume and Position During Radiotherapy for Bladder Cancer

    SciTech Connect

    Yee, Don; Parliament, Matthew; Rathee, Satyapal; Ghosh, Sunita; Ko, Lawrence; Murray, Brad

    2010-03-15

    Purpose: To quantify daily bladder size and position variations during bladder cancer radiotherapy. Methods and Materials: Ten bladder cancer patients underwent daily cone beam CT (CBCT) imaging of the bladder during radiotherapy. Bladder and planning target volumes (bladder/PTV) from CBCT and planning CT scans were compared with respect to bladder center-of-mass shifts in the x (lateral), y (anterior-posterior), and z (superior-inferior) coordinates, bladder/PTV size, bladder/PTV margin positions, overlapping areas, and mutually exclusive regions. Results: A total of 262 CBCT images were obtained from 10 bladder cancer patients. Bladder center of mass shifted most in the y coordinate (mean, -0.32 cm). The anterior bladder wall shifted the most (mean, -0.58 cm). Mean ratios of CBCT-derived bladder and PTV volumes to planning CT-derived counterparts were 0.83 and 0.88. The mean CBCT-derived bladder volume (+- standard deviation [SD]) outside the planning CT counterpart was 29.24 cm{sup 3} (SD, 29.71 cm{sup 3}). The mean planning CT-derived bladder volume outside the CBCT counterpart was 47.74 cm{sup 3} (SD, 21.64 cm{sup 3}). The mean CBCT PTV outside the planning CT-derived PTV was 47.35 cm{sup 3} (SD, 36.51 cm{sup 3}). The mean planning CT-derived PTV outside the CBCT-derived PTV was 93.16 cm{sup 3} (SD, 50.21). The mean CBCT-derived bladder volume outside the planning PTV was 2.41 cm{sup 3} (SD, 3.97 cm{sup 3}). CBCT bladder/ PTV volumes significantly differed from planning CT counterparts (p = 0.047). Conclusions: Significant variations in bladder and PTV volume and position occurred in patients in this trial.

  4. Optimization of the design of thick, segmented scintillators for megavoltage cone-beam CT using a novel, hybrid modeling technique

    SciTech Connect

    Liu, Langechuan; Antonuk, Larry E. El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao

    2014-06-15

    Purpose: Active matrix flat-panel imagers (AMFPIs) incorporating thick, segmented scintillators have demonstrated order-of-magnitude improvements in detective quantum efficiency (DQE) at radiotherapy energies compared to systems based on conventional phosphor screens. Such improved DQE values facilitate megavoltage cone-beam CT (MV CBCT) imaging at clinically practical doses. However, the MV CBCT performance of such AMFPIs is highly dependent on the design parameters of the scintillators. In this paper, optimization of the design of segmented scintillators was explored using a hybrid modeling technique which encompasses both radiation and optical effects. Methods: Imaging performance in terms of the contrast-to-noise ratio (CNR) and spatial resolution of various hypothetical scintillator designs was examined through a hybrid technique involving Monte Carlo simulation of radiation transport in combination with simulation of optical gain distributions and optical point spread functions. The optical simulations employed optical parameters extracted from a best fit to measurement results reported in a previous investigation of a 1.13 cm thick, 1016μm pitch prototype BGO segmented scintillator. All hypothetical designs employed BGO material with a thickness and element-to-element pitch ranging from 0.5 to 6 cm and from 0.508 to 1.524 mm, respectively. In the CNR study, for each design, full tomographic scans of a contrast phantom incorporating various soft-tissue inserts were simulated at a total dose of 4 cGy. Results: Theoretical values for contrast, noise, and CNR were found to be in close agreement with empirical results from the BGO prototype, strongly supporting the validity of the modeling technique. CNR and spatial resolution for the various scintillator designs demonstrate complex behavior as scintillator thickness and element pitch are varied—with a clear trade-off between these two imaging metrics up to a thickness of ∼3 cm. Based on these results, an

  5. Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head.

    PubMed

    Xu, Jennifer; Sisniega, Alejandro; Zbijewski, Wojciech; Dang, Hao; Stayman, J Webster; Wang, Xiaohui; Foos, David H; Aygun, Nafi; Koliatsos, Vassillis E; Siewerdsen, Jeffrey H

    2016-08-21

    The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5-20% depending on bowtie thickness, but reduced CNR in the periphery by ~10-40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180°  +  fan angle) scan centered

  6. Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head

    NASA Astrophysics Data System (ADS)

    Xu, Jennifer; Sisniega, Alejandro; Zbijewski, Wojciech; Dang, Hao; Webster Stayman, J.; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassillis E.; Siewerdsen, Jeffrey H.

    2016-08-01

    The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5–20% depending on bowtie thickness, but reduced CNR in the periphery by ~10–40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180°  +  fan angle) scan

  7. Low-dose preview for patient-specific, task-specific technique selection in cone-beam CT

    SciTech Connect

    Wang, Adam S.; Stayman, J. Webster; Otake, Yoshito; Siewerdsen, Jeffrey H.; Vogt, Sebastian; Kleinszig, Gerhard; Khanna, A. Jay; Gallia, Gary L.

    2014-07-15

    Purpose : A method is presented for generating simulated low-dose cone-beam CT (CBCT) preview images from which patient- and task-specific minimum-dose protocols can be confidently selected prospectively in clinical scenarios involving repeat scans. Methods : In clinical scenarios involving a series of CBCT images, the low-dose preview (LDP) method operates upon the first scan to create a projection dataset that accurately simulates the effects of dose reduction in subsequent scans by injecting noise of proper magnitude and correlation, including both quantum and electronic readout noise as important components of image noise in flat-panel detector CBCT. Experiments were conducted to validate the LDP method in both a head phantom and a cadaveric torso by performing CBCT acquisitions spanning a wide dose range (head: 0.8–13.2 mGy, body: 0.8–12.4 mGy) with a prototype mobile C-arm system. After injecting correlated noise to simulate dose reduction, the projections were reconstructed using both conventional filtered backprojection (FBP) and an iterative, model-based image reconstruction method (MBIR). The LDP images were then compared to real CBCT images in terms of noise magnitude, noise-power spectrum (NPS), spatial resolution, contrast, and artifacts. Results : For both FBP and MBIR, the LDP images exhibited accurate levels of spatial resolution and contrast that were unaffected by the correlated noise injection, as expected. Furthermore, the LDP image noise magnitude and NPS were in strong agreement with real CBCT images acquired at the corresponding, reduced dose level across the entire dose range considered. The noise magnitude agreed within 7% for both the head phantom and cadaveric torso, and the NPS showed a similar level of agreement up to the Nyquist frequency. Therefore, the LDP images were highly representative of real image quality across a broad range of dose and reconstruction methods. On the other hand, naïve injection ofuncorrelated noise

  8. Monte Carlo investigations of megavoltage cone-beam CT using thick, segmented scintillating detectors for soft tissue visualization

    SciTech Connect

    Wang Yi; Antonuk, Larry E.; El-Mohri, Youcef; Zhao Qihua; Sawant, Amit; Du Hong

    2008-01-15

    Megavoltage cone-beam computed tomography (MV CBCT) is a highly promising technique for providing volumetric patient position information in the radiation treatment room. Such information has the potential to greatly assist in registering the patient to the planned treatment position, helping to ensure accurate delivery of the high energy therapy beam to the tumor volume while sparing the surrounding normal tissues. Presently, CBCT systems using conventional MV active matrix flat-panel imagers (AMFPIs), which are commonly used in portal imaging, require a relatively large amount of dose to create images that are clinically useful. This is due to the fact that the phosphor screen detector employed in conventional MV AMFPIs utilizes only {approx}2% of the incident radiation (for a 6 MV x-ray spectrum). Fortunately, thick segmented scintillating detectors can overcome this limitation, and the first prototype imager has demonstrated highly promising performance for projection imaging at low doses. It is therefore of definite interest to examine the potential performance of such thick, segmented scintillating detectors for MV CBCT. In this study, Monte Carlo simulations of radiation energy deposition were used to examine reconstructed images of cylindrical CT contrast phantoms, embedded with tissue-equivalent objects. The phantoms were scanned at 6 MV using segmented detectors having various design parameters (i.e., detector thickness as well as scintillator and septal wall materials). Due to constraints imposed by the nature of this study, the size of the phantoms was limited to {approx}6 cm. For such phantoms, the simulation results suggest that a 40 mm thick, segmented CsI detector with low density septal walls can delineate electron density differences of {approx}2.3% and 1.3% at doses of 1.54 and 3.08 cGy, respectively. In addition, it was found that segmented detectors with greater thickness, higher density scintillator material, or lower density septal walls

  9. Monte Carlo investigations of megavoltage cone-beam CT using thick, segmented scintillating detectors for soft tissue visualization

    PubMed Central

    Wang, Yi; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Sawant, Amit; Du, Hong

    2010-01-01

    Megavoltage cone-beam computed tomography (MY CBCT) is a highly promising technique for providing volumetric patient position information in the radiation treatment room. Such information has the potential to greatly assist in registering the patient to the planned treatment position, helping to ensure accurate delivery of the high energy therapy beam to the tumor volume while sparing the surrounding normal tissues. Presently, CBCT systems using conventional MV active matrix flat-panel imagers (AMFPIs), which are commonly used in portal imaging, require a relatively large amount of dose to create images that are clinically useful. This is due to the fact that the phosphor screen detector employed in conventional MV AMFPIs utilizes only ~2% of the incident radiation (for a 6 MV x-ray spectrum). Fortunately, thick, segmented scintillating detectors can overcome this limitation, and the first prototype imager has demonstrated highly promising performance for projection imaging at low doses. It is therefore of definite interest to examine the potential performance of such thick, segmented scintillating detectors for MV CBCT. In this study, Monte Carlo simulations of radiation energy deposition were used to examine reconstructed images of cylindrical CT contrast phantoms, embedded with tissue-equivalent objects. The phantoms were scanned at 6 MV using segmented detectors having various design parameters (i.e., detector thickness, as well as scintillator and septal wall materials). Due to constraints imposed by the nature of this study, the size of the phantoms was limited to ~6 cm. For such phantoms, the simulation results suggest that a 40 mm thick, segmented CsI detector with low density septal walls can delineate electron density differences of ~2.3% and 1.3% at doses of 1.54 and 3.08 cGy, respectively. In addition, it was found that segmented detectors with greater thickness, higher density scintillator material, or lower density septal walls exhibit higher contrast

  10. Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head

    NASA Astrophysics Data System (ADS)

    Xu, Jennifer; Sisniega, Alejandro; Zbijewski, Wojciech; Dang, Hao; Webster Stayman, J.; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassillis E.; Siewerdsen, Jeffrey H.

    2016-08-01

    The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5-20% depending on bowtie thickness, but reduced CNR in the periphery by ~10-40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180°  +  fan angle) scan centered

  11. Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head.

    PubMed

    Xu, Jennifer; Sisniega, Alejandro; Zbijewski, Wojciech; Dang, Hao; Stayman, J Webster; Wang, Xiaohui; Foos, David H; Aygun, Nafi; Koliatsos, Vassillis E; Siewerdsen, Jeffrey H

    2016-08-21

    The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5-20% depending on bowtie thickness, but reduced CNR in the periphery by ~10-40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180°  +  fan angle) scan centered

  12. Investigating the use of texture features for analysis of breast lesions on contrast-enhanced cone beam CT

    NASA Astrophysics Data System (ADS)

    Wang, Xixi; Nagarajan, Mahesh B.; Conover, David; Ning, Ruola; O'Connell, Avice; Wismueller, Axel

    2014-04-01

    Cone beam computed tomography (CBCT) has found use in mammography for imaging the entire breast with sufficient spatial resolution at a radiation dose within the range of that of conventional mammography. Recently, enhancement of lesion tissue through the use of contrast agents has been proposed for cone beam CT. This study investigates whether the use of such contrast agents improves the ability of texture features to differentiate lesion texture from healthy tissue on CBCT in an automated manner. For this purpose, 9 lesions were annotated by an experienced radiologist on both regular and contrast-enhanced CBCT images using two-dimensional (2D) square ROIs. These lesions were then segmented, and each pixel within the lesion ROI was assigned a label - lesion or non-lesion, based on the segmentation mask. On both sets of CBCT images, four three-dimensional (3D) Minkowski Functionals were used to characterize the local topology at each pixel. The resulting feature vectors were then used in a machine learning task involving support vector regression with a linear kernel (SVRlin) to classify each pixel as belonging to the lesion or non-lesion region of the ROI. Classification performance was assessed using the area under the receiver-operating characteristic (ROC) curve (AUC). Minkowski Functionals derived from contrastenhanced CBCT images were found to exhibit significantly better performance at distinguishing between lesion and non-lesion areas within the ROI when compared to those extracted from CBCT images without contrast enhancement (p < 0.05). Thus, contrast enhancement in CBCT can improve the ability of texture features to distinguish lesions from surrounding healthy tissue.

  13. Local intensity feature tracking and motion modeling for respiratory signal extraction in cone beam CT projections.

    PubMed

    Dhou, Salam; Motai, Yuichi; Hugo, Geoffrey D

    2013-02-01

    Accounting for respiration motion during imaging can help improve targeting precision in radiation therapy. We propose local intensity feature tracking (LIFT), a novel markerless breath phase sorting method in cone beam computed tomography (CBCT) scan images. The contributions of this study are twofold. First, LIFT extracts the respiratory signal from the CBCT projections of the thorax depending only on tissue feature points that exhibit respiration. Second, the extracted respiratory signal is shown to correlate with standard respiration signals. LIFT extracts feature points in the first CBCT projection of a sequence and tracks those points in consecutive projections forming trajectories. Clustering is applied to select trajectories showing an oscillating behavior similar to the breath motion. Those "breathing" trajectories are used in a 3-D reconstruction approach to recover the 3-D motion of the lung which represents the respiratory signal. Experiments were conducted on datasets exhibiting regular and irregular breathing patterns. Results showed that LIFT-based respiratory signal correlates with the diaphragm position-based signal with an average phase shift of 1.68 projections as well as with the internal marker-based signal with an average phase shift of 1.78 projections. LIFT was able to detect the respiratory signal in all projections of all datasets.

  14. Robust scatter correction method for cone-beam CT using an interlacing-slit plate

    NASA Astrophysics Data System (ADS)

    Huang, Kui-Dong; Xu, Zhe; Zhang, Ding-Hua; Zhang, Hua; Shi, Wen-Long

    2016-06-01

    Cone-beam computed tomography (CBCT) has been widely used in medical imaging and industrial nondestructive testing, but the presence of scattered radiation will cause significant reduction of image quality. In this article, a robust scatter correction method for CBCT using an interlacing-slit plate (ISP) is carried out for convenient practice. Firstly, a Gaussian filtering method is proposed to compensate the missing data of the inner scatter image, and simultaneously avoid too-large values of calculated inner scatter and smooth the inner scatter field. Secondly, an interlacing-slit scan without detector gain correction is carried out to enhance the practicality and convenience of the scatter correction method. Finally, a denoising step for scatter-corrected projection images is added in the process flow to control the noise amplification The experimental results show that the improved method can not only make the scatter correction more robust and convenient, but also achieve a good quality of scatter-corrected slice images. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Aeronautical Science Fund of China (2014ZE53059), and Fundamental Research Funds for Central Universities of China (3102014KYJD022)

  15. Cone-beam CT analysis of patients with obstructive sleep apnea compared to normal controls

    PubMed Central

    Cohen, Ruben; Looney, Stephen; Kalathingal, Sajitha; De Rossi, Scott

    2016-01-01

    Purpose To evaluate the upper airway dimensions of obstructive sleep apnea (OSA) and control subjects using a cone-beam computed tomography (CBCT) unit commonly applied in clinical practice in order to assess airway dimensions in the same fashion as that routinely employed in a clinical setting. Materials and Methods This was a retrospective analysis utilizing existing CBCT scans to evaluate the dimensions of the upper airway in OSA and control subjects. The CBCT data of sixteen OSA and sixteen control subjects were compared. The average area, average volume, total volume, and total length of the upper airway were computed. Width and anterior-posterior (AP) measurements were obtained on the smallest axial slice. Results OSA subjects had a significantly smaller average airway area, average airway volume, total airway volume, and mean airway width. OSA subjects had a significantly larger airway length measurement. The mean A-P distance was not significantly different between groups. Conclusion OSA subjects have a smaller upper airway compared to controls with the exception of airway length. The lack of a significant difference in the mean A-P distance may indicate that patient position during imaging (upright vs. supine) can affect this measurement. Comparison of this study with a future prospective study design will allow for validation of these results. PMID:27051634

  16. Volume-of-interest reconstruction from severely truncated data in dental cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Kusnoto, Budi; Han, Xiao; Sidky, E. Y.; Pan, Xiaochuan

    2015-03-01

    As cone-beam computed tomography (CBCT) has gained popularity rapidly in dental imaging applications in the past two decades, radiation dose in CBCT imaging remains a potential, health concern to the patients. It is a common practice in dental CBCT imaging that only a small volume of interest (VOI) containing the teeth of interest is illuminated, thus substantially lowering imaging radiation dose. However, this would yield data with severe truncations along both transverse and longitudinal directions. Although images within the VOI reconstructed from truncated data can be of some practical utility, they often are compromised significantly by truncation artifacts. In this work, we investigate optimization-based reconstruction algorithms for VOI image reconstruction from CBCT data of dental patients containing severe truncations. In an attempt to further reduce imaging dose, we also investigate optimization-based image reconstruction from severely truncated data collected at projection views substantially fewer than those used in clinical dental applications. Results of our study show that appropriately designed optimization-based reconstruction can yield VOI images with reduced truncation artifacts, and that, when reconstructing from only one half, or even one quarter, of clinical data, it can also produce VOI images comparable to that of clinical images.

  17. Evaluation of radiation dose delivered by cone beam CT and tomosynthesis employed for setup of external breast irradiation

    SciTech Connect

    Winey, Brian; Zygmanski, Piotr; Lyatskaya, Yulia

    2009-01-15

    A systematic set of measurements is reported for evaluation of doses to critical organs resulting from cone-beam CT (CB-CT) and cone-beam tomosynthesis (CB-TS) as applied to breast setup for external beam irradiation. The specific focus of this study was on evaluation of doses from these modalities in a setting of volumetric breast imaging for target localization in radiotherapy treatments with the goal of minimizing radiation to healthy organs. Ion chamber measurements were performed in an anthropomorphic female thorax phantom at the center of each breast and lung and on the phantom surface at one anterior and two lateral locations (seven points total). The measurements were performed for three different isocenters located at the center of the phantom and at offset locations of the right and left breast. The dependence of the dose on angle selection for the CB-TS arc was also studied. For the most typical situation of centrally located CB-CT isocenter the measured doses ranged between 3 and 7 cGy, in good agreement with previous reports. Dose measurements were performed for a range of start/stop angles commonly used for CB-TS and the impact of direct and scatter dose on organs at risk was analyzed. All measured CB-TS doses were considerably lower than CB-CT doses, with greater decrease in dose for the organs outside of the beam (up to 98% decrease in dose). Remarkably, offsetting the isocenter towards the ipsilateral breast resulted on average to additional 46% dose reduction to organs at risk. The lowest doses to the contralateral breast and lung were less than 0.1 cGy when they were measured for the offset isocenter. The biggest reduction in dose was obtained by using CB-TS beams that completely avoid the critical organ. For points inside the CB-TS beam, the dose was reduced in a linear relation with distance from the center of the imaging arc. The data indicate that it is possible to reduce substantially radiation doses to the contralateral organs by proper

  18. Pulmonary Masses: Initial Results of Cone-beam CT Guidance with Needle Planning Software for Percutaneous Lung Biopsy

    SciTech Connect

    Braak, Sicco J.; Herder, Gerarda J. M.; Heesewijk, Johannes P. M. van Strijen, Marco J. L. van

    2012-12-15

    Purpose: To evaluate the outcome of percutaneous lung biopsy (PLB) findings using cone-beam computed tomographic (CT) guidance (CBCT guidance) and compared to conventional biopsy guidance techniques. Methods: CBCT guidance is a stereotactic technique for needle interventions, combining 3D soft-tissue cone-beam CT, needle planning software, and real-time fluoroscopy. Between March 2007 and August 2010, we performed 84 Tru-Cut PLBs, where bronchoscopy did not provide histopathologic diagnosis. Mean patient age was 64.6 (range 24-85) years; 57 patients were men, and 25 were women. Records were prospectively collected for calculating sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. We also registered fluoroscopy time, room time, interventional time, dose-area product (DAP), and complications. Procedures were divided into subgroups (e.g., location, size, operator). Results: Mean lesion diameter was 32.5 (range 3.0-93.0) mm, and the mean number of samples per biopsy procedure was 3.2 (range 1-7). Mean fluoroscopy time was 161 (range 104-551) s, room time was 34 (range 15-79) min, mean DAP value was 25.9 (range 3.9-80.5) Gy{center_dot}cm{sup -2}, and interventional time was 18 (range 5-65) min. Of 84 lesions, 70 were malignant (83.3%) and 14 were benign (16.7%). Seven (8.3%) of the biopsy samples were nondiagnostic. All nondiagnostic biopsied lesions proved to be malignant during surgical resection. The outcome for sensitivity, specificity, positive predictive value, negative predictive value, and accuracy was 90% (95% confidence interval [CI] 86-96), 100% (95% CI 82-100), 100% (95% CI 96-100), 66.7% (95% CI 55-83), and 91.7% (95% CI 86-96), respectively. Sixteen patients (19%) had minor and 2 (2.4%) had major complications. Conclusion: CBCT guidance is an effective method for PLB, with results comparable to CT/CT fluoroscopy guidance.

  19. Scattered radiation in flat-detector based cone-beam CT: propagation of signal, contrast, and noise into reconstructed volumes

    NASA Astrophysics Data System (ADS)

    Wiegert, Jens; Hohmann, Steffen; Bertram, Matthias

    2007-03-01

    This paper presents a novel framework for the systematic assessment of the impact of scattered radiation in .at-detector based cone-beam CT. While it is well known that scattered radiation causes three di.erent types of artifacts in reconstructed images (inhomogeneity artifacts such as cupping and streaks, degradation of contrast, and enhancement of noise), investigations in the literature quantify the impact of scatter mostly only in terms of inhomogeneity artifacts, giving little insight, e.g., into the visibility of low contrast lesions. Therefore, for this study a novel framework has been developed that in addition to normal reconstruction of the CT (HU) number allows for reconstruction of voxelized expectation values of three additional important characteristics of image quality: signal degradation, contrast reduction, and noise variances. The new framework has been applied to projection data obtained with voxelized Monte-Carlo simulations of clinical CT data sets of high spatial resolution. Using these data, the impact of scattered radiation was thoroughly studied for realistic and clinically relevant patient geometries of the head, thorax, and pelvis region. By means of spatially resolved reconstructions of contrast and noise propagation, the image quality of a scenario with using standard antiscatter grids could be evaluated with great detail. Results show the spatially resolved contrast degradation and the spatially resolved expected standard deviation of the noise at any position in the reconstructed object. The new framework represents a general tool for analyzing image quality in reconstructed images.

  20. Estimating cancer risk from dental cone-beam CT exposures based on skin dosimetry

    NASA Astrophysics Data System (ADS)

    Pauwels, Ruben; Cockmartin, Lesley; Ivanauskaité, Deimante; Urbonienė, Ausra; Gavala, Sophia; Donta, Catherine; Tsiklakis, Kostas; Jacobs, Reinhilde; Bosmans, Hilde; Bogaerts, Ria; Horner, Keith; SEDENTEXCT Project Consortium, The

    2014-07-01

    The aim of this study was to measure entrance skin doses on patients undergoing cone-beam computed tomography (CBCT) examinations, to establish conversion factors between skin and organ doses, and to estimate cancer risk from CBCT exposures. 266 patients (age 8-83) were included, involving three imaging centres. CBCT scans were acquired using the SCANORA 3D (Soredex, Tuusula, Finland) and NewTom 9000 (QR, Verona, Italy). Eight thermoluminescent dosimeters were attached to the patient's skin at standardized locations. Using previously published organ dose estimations on various CBCTs with an anthropomorphic phantom, correlation factors to convert skin dose to organ doses were calculated and applied to estimate patient organ doses. The BEIR VII age- and gender-dependent dose-risk model was applied to estimate the lifetime attributable cancer risk. For the SCANORA 3D, average skin doses over the eight locations varied between 484 and 1788 µGy. For the NewTom 9000 the range was between 821 and 1686 µGy for Centre 1 and between 292 and 2325 µGy for Centre 2. Entrance skin dose measurements demonstrated the combined effect of exposure and patient factors on the dose. The lifetime attributable cancer risk, expressed as the probability to develop a radiation-induced cancer, varied between 2.7 per million (age >60) and 9.8 per million (age 8-11) with an average of 6.0 per million. On average, the risk for female patients was 40% higher. The estimated radiation risk was primarily influenced by the age at exposure and the gender, pointing out the continuing need for justification and optimization of CBCT exposures, with a specific focus on children.

  1. Megavoltage cone beam CT near surface dose measurements: potential implications for breast radiotherapy

    SciTech Connect

    Quinn, Alexandra; Holloway, Lois; Cutajar, Dean; Hardcastle, Nicholas; Rosenfeld, Anatoly; Metcalfe, Peter

    2011-11-15

    Purpose: Cone beam computed tomography (CBCT) is fast becoming standard on modern linear accelerators. CBCT increases the dose to regions within and outside the treatment field, potentially increasing secondary cancer induction and toxicity. This study quantified megavoltage (MV) CBCT skin dose and compared it to skin dose delivered during standard tangential breast radiotherapy.Method: Dosimetry was performed both in- and out-of-field using thermoluminescent dosimeters (TLDs) and a metal-oxide-semiconductor-field-effect-transistor (MOSFET) detector specifically designed for skin dosimetry; these were placed superficially on a female anthropomorphic phantom. Results: The skin dose from a single treatment fraction ranged from 0.5 to 1.4 Gy on the ipsilateral breast, 0.031-0.18 Gy on the contralateral breast, and 0-0.02 Gy in the head and pelvic region. An 8 MU MV CBCT delivered a skin dose that ranged from 0.02 to 0.05 Gy in the chest region and was less than 0.01 Gy in the head and pelvis regions. One MV CBCT per fraction was found to increase the out-of-field skin dose from both the CBCT and the treatment fields by approximately 20%. The imaging dose as a percentage of treatment doses in the ipsilateral breast region was 3% for both dosimeters.Conclusion: Imaging increases the skin dose to regions outside the treatment field particularly regions immediately adjacent the target volume. This small extra dose to the breasts should be considered when developing clinical protocols and assessing dose for clinical trials.

  2. Estimating cancer risk from dental cone-beam CT exposures based on skin dosimetry.

    PubMed

    Pauwels, Ruben; Cockmartin, Lesley; Ivanauskaité, Deimante; Urbonienė, Ausra; Gavala, Sophia; Donta, Catherine; Tsiklakis, Kostas; Jacobs, Reinhilde; Bosmans, Hilde; Bogaerts, Ria; Horner, Keith

    2014-07-21

    The aim of this study was to measure entrance skin doses on patients undergoing cone-beam computed tomography (CBCT) examinations, to establish conversion factors between skin and organ doses, and to estimate cancer risk from CBCT exposures. 266 patients (age 8-83) were included, involving three imaging centres. CBCT scans were acquired using the SCANORA 3D (Soredex, Tuusula, Finland) and NewTom 9000 (QR, Verona, Italy). Eight thermoluminescent dosimeters were attached to the patient's skin at standardized locations. Using previously published organ dose estimations on various CBCTs with an anthropomorphic phantom, correlation factors to convert skin dose to organ doses were calculated and applied to estimate patient organ doses. The BEIR VII age- and gender-dependent dose-risk model was applied to estimate the lifetime attributable cancer risk. For the SCANORA 3D, average skin doses over the eight locations varied between 484 and 1788 µGy. For the NewTom 9000 the range was between 821 and 1686 µGy for Centre 1 and between 292 and 2325 µGy for Centre 2. Entrance skin dose measurements demonstrated the combined effect of exposure and patient factors on the dose. The lifetime attributable cancer risk, expressed as the probability to develop a radiation-induced cancer, varied between 2.7 per million (age >60) and 9.8 per million (age 8-11) with an average of 6.0 per million. On average, the risk for female patients was 40% higher. The estimated radiation risk was primarily influenced by the age at exposure and the gender, pointing out the continuing need for justification and optimization of CBCT exposures, with a specific focus on children. PMID:24957710

  3. How Accurate Are the Fusion of Cone-Beam CT and 3-D Stereophotographic Images?

    PubMed Central

    Jayaratne, Yasas S. N.; McGrath, Colman P. J.; Zwahlen, Roger A.

    2012-01-01

    Background Cone-beam Computed Tomography (CBCT) and stereophotography are two of the latest imaging modalities available for three-dimensional (3-D) visualization of craniofacial structures. However, CBCT provides only limited information on surface texture. This can be overcome by combining the bone images derived from CBCT with 3-D photographs. The objectives of this study were 1) to evaluate the feasibility of integrating 3-D Photos and CBCT images 2) to assess degree of error that may occur during the above processes and 3) to identify facial regions that would be most appropriate for 3-D image registration. Methodology CBCT scans and stereophotographic images from 29 patients were used for this study. Two 3-D images corresponding to the skin and bone were extracted from the CBCT data. The 3-D photo was superimposed on the CBCT skin image using relatively immobile areas of the face as a reference. 3-D colour maps were used to assess the accuracy of superimposition were distance differences between the CBCT and 3-D photo were recorded as the signed average and the Root Mean Square (RMS) error. Principal Findings: The signed average and RMS of the distance differences between the registered surfaces were −0.018 (±0.129) mm and 0.739 (±0.239) mm respectively. The most errors were found in areas surrounding the lips and the eyes, while minimal errors were noted in the forehead, root of the nose and zygoma. Conclusions CBCT and 3-D photographic data can be successfully fused with minimal errors. When compared to RMS, the signed average was found to under-represent the registration error. The virtual 3-D composite craniofacial models permit concurrent assessment of bone and soft tissues during diagnosis and treatment planning. PMID:23185372

  4. Accurate patient dosimetry of kilovoltage cone-beam CT in radiation therapy

    SciTech Connect

    Ding, George X.; Duggan, Dennis M.; Coffey, Charles W.

    2008-03-15

    The increased utilization of x-ray imaging in image-guided radiotherapy has dramatically improved the radiation treatment and the lives of cancer patients. Daily imaging procedures, such as cone-beam computed tomography (CBCT), for patient setup may significantly increase the dose to the patient's normal tissues. This study investigates the dosimetry from a kilovoltage (kV) CBCT for real patient geometries. Monte Carlo simulations were used to study the kV beams from a Varian on-board imager integrated into the Trilogy accelerator. The Monte Carlo calculated results were benchmarked against measurements and good agreement was obtained. The authors developed a novel method to calibrate Monte Carlo simulated beams with measurements using an ionization chamber in which the air-kerma calibration factors are obtained from an Accredited Dosimetry Calibration Laboratory. The authors have introduced a new Monte Carlo calibration factor, f{sub MCcal}, which is determined from the calibration procedure. The accuracy of the new method was validated by experiment. When a Monte Carlo simulated beam has been calibrated, the simulated beam can be used to accurately predict absolute dose distributions in the irradiated media. Using this method the authors calculated dose distributions to patient anatomies from a typical CBCT acquisition for different treatment sites, such as head and neck, lung, and pelvis. Their results have shown that, from a typical head and neck CBCT, doses to soft tissues, such as eye, spinal cord, and brain can be up to 8, 6, and 5 cGy, respectively. The dose to the bone, due to the photoelectric effect, can be as much as 25 cGy, about three times the dose to the soft tissue. The study provides detailed information on the additional doses to the normal tissues of a patient from a typical kV CBCT acquisition. The methodology of the Monte Carlo beam calibration developed and introduced in this study allows the user to calculate both relative and absolute

  5. GPU-based iterative cone-beam CT reconstruction using tight frame regularization

    NASA Astrophysics Data System (ADS)

    Jia, Xun; Dong, Bin; Lou, Yifei; Jiang, Steve B.

    2011-07-01

    The x-ray imaging dose from serial cone-beam computed tomography (CBCT) scans raises a clinical concern in most image-guided radiation therapy procedures. It is the goal of this paper to develop a fast graphic processing unit (GPU)-based algorithm to reconstruct high-quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight-frame (TF)-based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512 × 512 × 70 can be reconstructed in ~5 min. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm is able to reconstruct CBCT in the context of undersampling and low mAs levels. We have also quantitatively analyzed the reconstructed CBCT image quality in terms of the modulation-transfer function and contrast-to-noise ratio under various scanning conditions. The results confirm the high CBCT image quality obtained from our TF algorithm. Moreover, our algorithm has also been validated in a real clinical context using a head-and-neck patient case. Comparisons of the developed TF algorithm and the current state-of-the-art TV algorithm have also been made in various cases studied in terms of reconstructed image quality and computation efficiency.

  6. Robust primary modulation-based scatter estimation for cone-beam CT

    SciTech Connect

    Ritschl, Ludwig; Fahrig, Rebecca; Knaup, Michael; Maier, Joscha; Kachelrieß, Marc

    2015-01-15

    Purpose: Scattered radiation is one of the major problems facing image quality in flat detector cone-beam computed tomography (CBCT). Previously, a new scatter estimation and correction method using primary beam modulation has been proposed. The original image processing technique used a frequency-domain-based analysis, which proved to be sensitive to the accuracy of the modulator pattern both spatially and in amplitude as well as to the frequency of the modulation pattern. In addition, it cannot account for penumbra effects that occur, for example, due to the finite focal spot size and the scatter estimate can be degraded by high-frequency components of the primary image. Methods: In this paper, the authors present a new way to estimate the scatter using primary modulation. It is less sensitive to modulator nonidealities and most importantly can handle arbitrary modulator shapes and changes in modulator attenuation. The main idea is that the scatter estimation can be expressed as an optimization problem, which yields a separation of the scatter and the primary image. The method is evaluated using simulated and experimental CBCT data. The scattering properties of the modulator itself are analyzed using a Monte Carlo simulation. Results: All reconstructions show strong improvements of image quality. To quantify the results, all images are compared to reference images (ideal simulations and collimated scans). Conclusions: The proposed modulator-based scatter reduction algorithm may open the field of flat detector-based imaging to become a quantitative modality. This may have significant impact on C-arm imaging and on image-guided radiation therapy.

  7. Shading correction for on-board cone-beam CT in radiation therapy using planning MDCT images

    SciTech Connect

    Niu Tianye; Sun, Mingshan; Star-Lack, Josh; Gao Hewei; Fan Qiyong; Zhu Lei

    2010-10-15

    Purpose: Applications of cone-beam CT (CBCT) to image-guided radiation therapy (IGRT) are hampered by shading artifacts in the reconstructed images. These artifacts are mainly due to scatter contamination in the projections but also can result from uncorrected beam hardening effects as well as nonlinearities in responses of the amorphous silicon flat panel detectors. While currently, CBCT is mainly used to provide patient geometry information for treatment setup, more demanding applications requiring high-quality CBCT images are under investigation. To tackle these challenges, many CBCT correction algorithms have been proposed; yet, a standard approach still remains unclear. In this work, we propose a shading correction method for CBCT that addresses artifacts from low-frequency projection errors. The method is consistent with the current workflow of radiation therapy. Methods: With much smaller inherent scatter signals and more accurate detectors, diagnostic multidetector CT (MDCT) provides high quality CT images that are routinely used for radiation treatment planning. Using the MDCT image as ''free'' prior information, we first estimate the primary projections in the CBCT scan via forward projection of the spatially registered MDCT data. Since most of the CBCT shading artifacts stem from low-frequency errors in the projections such as scatter, these errors can be accurately estimated by low-pass filtering the difference between the estimated and raw CBCT projections. The error estimates are then subtracted from the raw CBCT projections. Our method is distinct from other published correction methods that use the MDCT image as a prior because it is projection-based and uses limited patient anatomical information from the MDCT image. The merit of CBCT-based treatment monitoring is therefore retained. Results: The proposed method is evaluated using two phantom studies on tabletop systems. On the Catphan(c)600 phantom, our approach reduces the reconstruction error

  8. SU-E-P-41: Imaging Coordination of Cone Beam CT, On-Board Image Conjunction with Optical Image Guidance for SBRT Treatment with Respiratory Motion Management

    SciTech Connect

    Liu, Y; Campbell, J

    2015-06-15

    Purpose: To spare normal tissue for SBRT lung/liver patients, especially for patients with significant tumor motion, image guided respiratory motion management has been widely implemented in clinical practice. The purpose of this study was to evaluate imaging coordination of cone beam CT, on-board X-ray image conjunction with optical image guidance for SBRT treatment with motion management. Methods: Currently in our clinic a Varian Novlis Tx was utilized for treating SBRT patients implementing CBCT. A BrainLAB X-ray ExacTrac imaging system in conjunction with optical guidance was primarily used for SRS patients. CBCT and X-ray imaging system were independently calibrated with 1.0 mm tolerance. For SBRT lung/liver patients, the magnitude of tumor motion was measured based-on 4DCT and the measurement was analyzed to determine if patients would be beneficial with respiratory motion management. For patients eligible for motion management, an additional CT with breath holding would be scanned and used as primary planning CT and as reference images for Cone beam CT. During the SBRT treatment, a CBCT with pause and continuing technology would be performed with patients holding breath, which may require 3–4 partially scanned CBCT to combine as a whole CBCT depending on how long patients capable of holding breath. After patients being setup by CBCT images, the ExactTrac X-ray imaging system was implemented with patients’ on-board X-ray images compared to breath holding CT-based DRR. Results: For breath holding patients SBRT treatment, after initially localizing patients with CBCT, we then position patients with ExacTrac X-ray and optical imaging system. The observed deviations of real-time optical guided position average at 3.0, 2.5 and 1.5 mm in longitudinal, vertical and lateral respectively based on 35 treatments. Conclusion: The respiratory motion management clinical practice improved our physician confidence level to give tighter tumor margin for sparing normal

  9. Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors

    SciTech Connect

    Jensen, Nikolaj K. G.; Stewart, Errol; Lock, Michael; Fisher, Barbara; Kozak, Roman; Chen, Jeff; Lee, Ting-Yim; Wong, Eugene

    2014-05-15

    Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registered to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8 mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors’ animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT.

  10. Experimental evaluation of actual delivered dose using mega-voltage cone-beam CT and direct point dose measurement

    SciTech Connect

    Matsubara, Kana; Kohno, Ryosuke; Nishioka, Shie; Shibuya, Toshiyuki; Ariji, Takaki; Akimoto, Tetsuo; Saitoh, Hidetoshi

    2013-07-01

    Radiation therapy in patients is planned by using computed tomography (CT) images acquired before start of the treatment course. Here, tumor shrinkage or weight loss or both, which are common during the treatment course for patients with head-and-neck (H and N) cancer, causes unexpected differences from the plan, as well as dose uncertainty with the daily positional error of patients. For accurate clinical evaluation, it is essential to identify these anatomical changes and daily positional errors, as well as consequent dosimetric changes. To evaluate the actual delivered dose, the authors proposed direct dose measurement and dose calculation with mega-voltage cone-beam CT (MVCBCT). The purpose of the present study was to experimentally evaluate dose calculation by MVCBCT. Furthermore, actual delivered dose was evaluated directly with accurate phantom setup. Because MVCBCT has CT-number variation, even when the analyzed object has a uniform density, a specific and simple CT-number correction method was developed and applied for the H and N site of a RANDO phantom. Dose distributions were calculated with the corrected MVCBCT images of a cylindrical polymethyl methacrylate phantom. Treatment processes from planning to beam delivery were performed for the H and N site of the RANDO phantom. The image-guided radiation therapy procedure was utilized for the phantom setup to improve measurement reliability. The calculated dose in the RANDO phantom was compared to the measured dose obtained by metal-oxide-semiconductor field-effect transistor detectors. In the polymethyl methacrylate phantom, the calculated and measured doses agreed within about +3%. In the RANDO phantom, the dose difference was less than +5%. The calculated dose based on simulation-CT agreed with the measured dose within±3%, even in the region with a high dose gradient. The actual delivered dose was successfully determined by dose calculation with MVCBCT, and the point dose measurement with the image

  11. Modeling and design of a cone-beam CT head scanner using task-based imaging performance optimization.

    PubMed

    Xu, J; Sisniega, A; Zbijewski, W; Dang, H; Stayman, J W; Wang, X; Foos, D H; Aygun, N; Koliatsos, V E; Siewerdsen, J H

    2016-04-21

    Detection of acute intracranial hemorrhage (ICH) is important for diagnosis and treatment of traumatic brain injury, stroke, postoperative bleeding, and other head and neck injuries. This paper details the design and development of a cone-beam CT (CBCT) system developed specifically for the detection of low-contrast ICH in a form suitable for application at the point of care. Recognizing such a low-contrast imaging task to be a major challenge in CBCT, the system design began with a rigorous analysis of task-based detectability including critical aspects of system geometry, hardware configuration, and artifact correction. The imaging performance model described the three-dimensional (3D) noise-equivalent quanta using a cascaded systems model that included the effects of scatter, scatter correction, hardware considerations of complementary metal-oxide semiconductor (CMOS) and flat-panel detectors (FPDs), and digitization bit depth. The performance was analyzed with respect to a low-contrast (40-80 HU), medium-frequency task representing acute ICH detection. The task-based detectability index was computed using a non-prewhitening observer model. The optimization was performed with respect to four major design considerations: (1) system geometry (including source-to-detector distance (SDD) and source-to-axis distance (SAD)); (2) factors related to the x-ray source (including focal spot size, kVp, dose, and tube power); (3) scatter correction and selection of an antiscatter grid; and (4) x-ray detector configuration (including pixel size, additive electronics noise, field of view (FOV), and frame rate, including both CMOS and a-Si:H FPDs). Optimal design choices were also considered with respect to practical constraints and available hardware components. The model was verified in comparison to measurements on a CBCT imaging bench as a function of the numerous design parameters mentioned above. An extended geometry (SAD = 750 mm, SDD  = 1100 mm) was found to be

  12. Modeling and design of a cone-beam CT head scanner using task-based imaging performance optimization

    NASA Astrophysics Data System (ADS)

    Xu, J.; Sisniega, A.; Zbijewski, W.; Dang, H.; Stayman, J. W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-04-01

    Detection of acute intracranial hemorrhage (ICH) is important for diagnosis and treatment of traumatic brain injury, stroke, postoperative bleeding, and other head and neck injuries. This paper details the design and development of a cone-beam CT (CBCT) system developed specifically for the detection of low-contrast ICH in a form suitable for application at the point of care. Recognizing such a low-contrast imaging task to be a major challenge in CBCT, the system design began with a rigorous analysis of task-based detectability including critical aspects of system geometry, hardware configuration, and artifact correction. The imaging performance model described the three-dimensional (3D) noise-equivalent quanta using a cascaded systems model that included the effects of scatter, scatter correction, hardware considerations of complementary metal-oxide semiconductor (CMOS) and flat-panel detectors (FPDs), and digitization bit depth. The performance was analyzed with respect to a low-contrast (40-80 HU), medium-frequency task representing acute ICH detection. The task-based detectability index was computed using a non-prewhitening observer model. The optimization was performed with respect to four major design considerations: (1) system geometry (including source-to-detector distance (SDD) and source-to-axis distance (SAD)); (2) factors related to the x-ray source (including focal spot size, kVp, dose, and tube power); (3) scatter correction and selection of an antiscatter grid; and (4) x-ray detector configuration (including pixel size, additive electronics noise, field of view (FOV), and frame rate, including both CMOS and a-Si:H FPDs). Optimal design choices were also considered with respect to practical constraints and available hardware components. The model was verified in comparison to measurements on a CBCT imaging bench as a function of the numerous design parameters mentioned above. An extended geometry (SAD  =  750 mm, SDD  =  1100

  13. Over-exposure correction in knee cone-beam CT imaging with automatic exposure control using a partial low dose scan

    NASA Astrophysics Data System (ADS)

    Choi, Jang-Hwan; Muller, Kerstin; Hsieh, Scott; Maier, Andreas; Gold, Garry; Levenston, Marc; Fahrig, Rebecca

    2016-03-01

    C-arm-based cone-beam CT (CBCT) systems with flat-panel detectors are suitable for diagnostic knee imaging due to their potentially flexible selection of CT trajectories and wide volumetric beam coverage. In knee CT imaging, over-exposure artifacts can occur because of limitations in the dynamic range of the flat panel detectors present on most CBCT systems. We developed a straightforward but effective method for correction and detection of over-exposure for an Automatic Exposure Control (AEC)-enabled standard knee scan incorporating a prior low dose scan. The radiation dose associated with the low dose scan was negligible (0.0042mSv, 2.8% increase) which was enabled by partially sampling the projection images considering the geometry of the knees and lowering the dose further to be able to just see the skin-air interface. We combined the line integrals from the AEC and low dose scans after detecting over-exposed regions by comparing the line profiles of the two scans detector row-wise. The combined line integrals were reconstructed into a volumetric image using filtered back projection. We evaluated our method using in vivo human subject knee data. The proposed method effectively corrected and detected over-exposure, and thus recovered the visibility of exterior tissues (e.g., the shape and density of the patella, and the patellar tendon), incorporating a prior low dose scan with a negligible increase in radiation exposure.

  14. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method

    SciTech Connect

    Jia Xun; Tian Zhen; Lou Yifei; Sonke, Jan-Jakob; Jiang, Steve B.

    2012-09-15

    Purpose: Four-dimensional cone beam computed tomography (4D-CBCT) has been developed to provide respiratory phase-resolved volumetric imaging in image guided radiation therapy. Conventionally, it is reconstructed by first sorting the x-ray projections into multiple respiratory phase bins according to a breathing signal extracted either from the projection images or some external surrogates, and then reconstructing a 3D CBCT image in each phase bin independently using FDK algorithm. This method requires adequate number of projections for each phase, which can be achieved using a low gantry rotation or multiple gantry rotations. Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. 4D-CBCT images at different breathing phases share a lot of redundant information, because they represent the same anatomy captured at slightly different temporal points. Taking this redundancy along the temporal dimension into account can in principle facilitate the reconstruction in the situation of inadequate number of projection images. In this work, the authors propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. Methods: The authors define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward-backward splitting algorithm and a Gauss-Jacobi iteration method are employed to solve the problems. The algorithms implementation on

  15. Super-sparsely view-sampled cone-beam CT by incorporating prior data.

    PubMed

    Abbas, Sajid; Min, Jonghwan; Cho, Seungryong

    2013-01-01

    Computed tomography (CT) is widely used in medicine for diagnostics or for image-guided therapies, and is also popular in industrial applications for nondestructive testing. CT conventionally requires a large number of projections to produce volumetric images of a scanned object, because the conventional image reconstruction algorithm is based on filtered-backprojection. This requirement may result in relatively high radiation dose to the patients in medical CT unless the radiation dose at each view angle is reduced, and can cause expensive scanning time and efforts in industrial CT applications. Sparse- view CT may provide a viable option to address both issues including high radiation dose and expensive scanning efforts. However, image reconstruction from sparsely sampled data in CT is in general very challenging, and much efforts have been made to develop algorithms for such an image reconstruction problem. Image total-variation minimization algorithm inspired by compressive sensing theory has recently been developed, which exploits the sparseness of the image derivative magnitude and can reconstruct images from sparse-view data to a similar quality of the images conventionally reconstructed from many views. In successive CT scans, prior CT image of an object and its projection data may be readily available, and the current CT image may have not much difference from the prior image. Considering the sparseness of such a difference image between the successive scans, image reconstruction of the difference image may be achieved from very sparsely sampled data. In this work, we showed that one can further reduce the number of projections, resulting in a super-sparse scan, for a good quality image reconstruction with the aid of a prior data. Both numerical and experimental results are provided.

  16. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    PubMed

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

  17. Topical contrast agents to improve soft-tissue contrast in the upper airway using cone beam CT: a pilot study

    PubMed Central

    Alsufyani, N A; Noga, M L; Finlay, W H; Major, P W

    2013-01-01

    The purpose of this study is to explore the topical use of radiographic contrast agents to enhance soft-tissue contrast on cone beam CT (CBCT) images. Different barium sulphate concentrations were first tested using an airway phantom. Different methods of barium sulphate application (nasal drops, syringe, spray and sinus wash) were then tested on four volunteers, and nebulized iodine was tested in one volunteer. CBCT images were performed and then assessed subjectively by two examiners for contrast agent uniformity and lack of streak artefact. 25.0% barium sulphate presented adequate viscosity and radiodensity. Barium sulphate administered via nasal drops and sprays showed non-uniform collection at the nostrils, along the inferior and/or middle nasal meatuses and posterior nasal choana. The syringe and sinus wash showed similar results with larger volumes collecting in the naso-oropharynx. Nebulized iodine failed to distribute into the nasal cavity and scarcely collected at the nostrils. All methods of nasal application failed to adequately reach or uniformly coat the nasal cavity beyond the inferior nasal meatuses. The key factors to consider for optimum topical radiographic contrast in the nasal airway are particle size, flow velocity and radio-opacity. PMID:23625065

  18. Intraoperative cone-beam CT for correction of periaxial malrotation of the femoral shaft: A surface-matching approach

    SciTech Connect

    Khoury, Amal; Whyne, Cari M.; Daly, Michael; Moseley, Douglas; Bootsma, Greg; Skrinskas, Tomas; Siewerdsen, Jeffrey; Jaffray, David

    2007-04-15

    Limb length, alignment and rotation can be difficult to determine in femoral shaft fractures. Shaft axis rotation is particularly difficult to assess intraoperatively. Femoral malpositioning can cause deformity, pain and secondary degenerative joint damage. The aim of this study is to develop an intraoperative method based on cone-beam computed tomography (CBCT) to guide alignment of femoral shaft fractures. We hypothesize that bone surface matching can predict malrotation even with severe comminution. A cadaveric femur was imaged at 16 femoral periaxial malrotations (-51.2 deg. to 60.1 deg.). The images were processed resulting in an unwrapped bone surface plot consisting of a pattern of ridges and valleys. Fracture gaps were simulated by removing midline CT slices. The gaps were reconstituted by extrapolating the existing proximal and distal fragments to the midline of the fracture. The two bone surfaces were then shifted to align bony features. Periaxial malrotation was accurately assessed using surface matching (r{sup 2}=0.99, slope 1.0). The largest mean error was 2.20 deg. and the average difference between repeated measurements was 0.49 deg. CBCT can provide intraoperative high-resolution images with a large field of view. This quality of imaging enables surface matching algorithms to be utilized even with large areas of comminution.

  19. A fast GPU-based approach to branchless distance-driven projection and back-projection in cone beam CT

    NASA Astrophysics Data System (ADS)

    Schlifske, Daniel; Medeiros, Henry

    2016-03-01

    Modern CT image reconstruction algorithms rely on projection and back-projection operations to refine an image estimate in iterative image reconstruction. A widely-used state-of-the-art technique is distance-driven projection and back-projection. While the distance-driven technique yields superior image quality in iterative algorithms, it is a computationally demanding process. This has a detrimental effect on the relevance of the algorithms in clinical settings. A few methods have been proposed for enhancing the distance-driven technique in order to take advantage of modern computer hardware. This paper explores a two-dimensional extension of the branchless method proposed by Samit Basu and Bruno De Man. The extension of the branchless method is named "pre-integration" because it achieves a significant performance boost by integrating the data before the projection and back-projection operations. It was written with Nvidia's CUDA platform and carefully designed for massively parallel GPUs. The performance and the image quality of the pre-integration method were analyzed. Both projection and back-projection are significantly faster with preintegration. The image quality was analyzed using cone beam image reconstruction algorithms within Jeffrey Fessler's Image Reconstruction Toolbox. Images produced from regularized, iterative image reconstruction algorithms using the pre-integration method show no significant impact to image quality.

  20. The Association between Lower Incisal Inclination and Morphology of the Supporting Alveolar Bone — A Cone-Beam CT Study

    PubMed Central

    Yu, Quan; Pan, Xiao-gang; Ji, Guo-ping; Shen, Gang

    2009-01-01

    Aim To investigate the relationship between the positioning of the lower central incisor and physical morphology of the surrounding alveolar bone. Methodology Thirty-eight patients (18 males, 20 females), with mean age of 13.4 years, were included in this study. As part of orthodontic treatment planning the patients were required to take dental Cone-beam CT (CBCT) covering the region of lower incisors, the surrounding alveolar bone and the mandibular symphysis. The cephalometric parameters were designed and measured to indicate the inclination of lower central incisor and physical morphology of the adjacent alveolar bone. Computer-aided descriptive statistical analysis was performed using SPSS 15.0 software package for Windows. A correlation analysis and a linear regression analysis between the incisor inclination and the alveolar bone morphology were performed. Results Significant positive correlations were found between the lower central incisor inclination and the morphological contour of the alveolar bone (P <0.05). The lower central incisor root apex was closer to the lingual alveolar crest when it was buccally inclined. Conclusion The morphology of the alveolar bone may be affected by incisal inclination. PMID:20690425

  1. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid

    SciTech Connect

    Stankovic, Uros; Herk, Marcel van; Ploeger, Lennert S.; Sonke, Jan-Jakob

    2014-06-15

    Purpose: Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. Methods: The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different

  2. An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering.

    PubMed

    Yan, Ming; Zhang, Cishen; Liang, Hongzhu

    2006-01-01

    FDK algorithm is a well-known 3D (three-dimensional) approximate algorithm for CT (computed tomography) image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional) approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction.

  3. Algorithm for X-ray scatter, beam-hardening, and beam profile correction in diagnostic (kilovoltage) and treatment (megavoltage) cone beam CT.

    PubMed

    Maltz, Jonathan S; Gangadharan, Bijumon; Bose, Supratik; Hristov, Dimitre H; Faddegon, Bruce A; Paidi, Ajay; Bani-Hashemi, Ali R

    2008-12-01

    Quantitative reconstruction of cone beam X-ray computed tomography (CT) datasets requires accurate modeling of scatter, beam-hardening, beam profile, and detector response. Typically, commercial imaging systems use fast empirical corrections that are designed to reduce visible artifacts due to incomplete modeling of the image formation process. In contrast, Monte Carlo (MC) methods are much more accurate but are relatively slow. Scatter kernel superposition (SKS) methods offer a balance between accuracy and computational practicality. We show how a single SKS algorithm can be employed to correct both kilovoltage (kV) energy (diagnostic) and megavoltage (MV) energy (treatment) X-ray images. Using MC models of kV and MV imaging systems, we map intensities recorded on an amorphous silicon flat panel detector to water-equivalent thicknesses (WETs). Scattergrams are derived from acquired projection images using scatter kernels indexed by the local WET values and are then iteratively refined using a scatter magnitude bounding scheme that allows the algorithm to accommodate the very high scatter-to-primary ratios encountered in kV imaging. The algorithm recovers radiological thicknesses to within 9% of the true value at both kV and megavolt energies. Nonuniformity in CT reconstructions of homogeneous phantoms is reduced by an average of 76% over a wide range of beam energies and phantom geometries.

  4. Experimental study on the application of a compressed-sensing (CS) algorithm to dental cone-beam CT (CBCT) for accurate, low-dose image reconstruction

    NASA Astrophysics Data System (ADS)

    Oh, Jieun; Cho, Hyosung; Je, Uikyu; Lee, Minsik; Kim, Hyojeong; Hong, Daeki; Park, Yeonok; Lee, Seonhwa; Cho, Heemoon; Choi, Sungil; Koo, Yangseo

    2013-03-01

    In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient data. In computed tomography (CT); for example, image reconstruction from few views would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction method based on a compressed-sensing (CS) algorithm, which exploits the sparseness of the gradient image with substantially high accuracy, for accurate, low-dose dental cone-beam CT (CBCT) reconstruction. We applied the algorithm to a commercially-available dental CBCT system (Expert7™, Vatech Co., Korea) and performed experimental works to demonstrate the algorithm for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images from several undersampled data and evaluated the reconstruction quality in terms of the universal-quality index (UQI). Experimental demonstrations of the CS-based reconstruction algorithm appear to show that it can be applied to current dental CBCT systems for reducing imaging doses and improving the image quality.

  5. Comparative evaluation of a novel 3D segmentation algorithm on in-treatment radiotherapy cone beam CT images

    NASA Astrophysics Data System (ADS)

    Price, Gareth; Moore, Chris

    2007-03-01

    Image segmentation and delineation is at the heart of modern radiotherapy, where the aim is to deliver as high a radiation dose as possible to a cancerous target whilst sparing the surrounding healthy tissues. This, of course, requires that a radiation oncologist dictates both where the tumour and any nearby critical organs are located. As well as in treatment planning, delineation is of vital importance in image guided radiotherapy (IGRT): organ motion studies demand that features across image databases are accurately segmented, whilst if on-line adaptive IGRT is to become a reality, speedy and correct target identification is a necessity. Recently, much work has been put into the development of automatic and semi-automatic segmentation tools, often using prior knowledge to constrain some grey level, or derivative thereof, interrogation algorithm. It is hoped that such techniques can be applied to organ at risk and tumour segmentation in radiotherapy. In this work, however, we make the assumption that grey levels do not necessarily determine a tumour's extent, especially in CT where the attenuation coefficient can often vary little between cancerous and normal tissue. In this context we present an algorithm that generates a discontinuity free delineation surface driven by user placed, evidence based support points. In regions of sparse user supplied information, prior knowledge, in the form of a statistical shape model, provides guidance. A small case study is used to illustrate the method. Multiple observers (between 3 and 7) used both the presented tool and a commercial manual contouring package to delineate the bladder on a serially imaged (10 cone beam CT volumes ) prostate patient. A previously presented shape analysis technique is used to quantitatively compare the observer variability.

  6. Image-Guided Radiotherapy via Daily Online Cone-Beam CT Substantially Reduces Margin Requirements for Stereotactic Lung Radiotherapy

    SciTech Connect

    Grills, Inga S. Hugo, Geoffrey; Kestin, Larry L.; Galerani, Ana Paula; Chao, K. Kenneth; Wloch, Jennifer; Yan Di

    2008-03-15

    Purpose: To determine treatment accuracy and margins for stereotactic lung radiotherapy with and without cone-beam CT (CBCT) image guidance. Methods and Materials: Acquired for the study were 308 CBCT of 24 patients with solitary peripheral lung tumors treated with stereotactic radiotherapy. Patients were immobilized in a stereotactic body frame (SBF) or alpha-cradle and treated with image guidance using daily CBCT. Four (T1) or five (T2/metastatic) 12-Gy fractions were prescribed to the planning target volume (PTV) edge. The PTV margin was {>=}5 mm depending on a pretreatment estimate of tumor excursion. Initial daily setup was according to SBF coordinates or tattoos for alpha-cradle cases. A CBCT was performed and registered to the planning CT using soft tissue registration of the target. The initial setup error/precorrection position, was recorded for the superior-inferior, anterior-posterior, and medial-lateral directions. The couch was adjusted to correct the tumor positional error. A second CBCT verified tumor position after correction. Patients were treated in the corrected position after the residual errors were {<=}2 mm. A final CBCT after treatment assessed intrafraction tumor displacement. Results: The precorrection systematic ({sigma}) and random errors ({sigma}) for the population ranged from 2-3 mm for SBF and 2-6 mm for alpha-cradle patients; postcorrection errors ranged from 0.4-1.0 mm. Calculated population margins were 9 to 13 mm (SBF) and 10-14 mm (cradle) precorrection, 1-2 mm (SBF), and 2-3 mm (cradle) postcorrection, and 2-4 mm (SBF) and 2-5 mm (cradle) posttreatment. Conclusions: Setup for stereotactic lung radiotherapy using a SBF or alpha-cradle alone is suboptimal. CBCT image guidance significantly improves target positioning and substantially reduces required target margins and normal tissue irradiation.

  7. Evaluation of Elekta 4D cone beam CT-based automatic image registration for radiation treatment of lung cancer

    PubMed Central

    Harrison, Amy; Yu, Yan; Xiao, Ying; Werner-Wasik, Maria; Lu, Bo

    2015-01-01

    Objective: The study was aimed to evaluate the precision of Elekta four-dimensional (4D) cone beam CT (CBCT)-based automatic dual-image registrations using different landmarks for clipbox for radiation treatment of lung cancer. Methods: 30 4D CBCT scans from 15 patients were studied. 4D CBCT images were registered with reference CT images using dual-image registration: a clipbox registration and a mask registration. The image registrations performed in clinic using a physician-defined clipbox, were reviewed by physicians, and were taken as the standard. Studies were conducted to evaluate the automatic dual registrations using three kinds of landmarks for clipbox: spine, spine plus internal target volume (ITV) and lung (including as much of the lung as possible). Translational table shifts calculated from the automatic registrations were compared with those of the standard. Results: The mean of the table shift differences in the lateral direction were 0.03, 0.03 and 0.03 cm, for clipboxes based on spine, spine plus ITV and lung, respectively. The mean of the shift differences in the longitudinal direction were 0.08, 0.08 and 0.08 cm, respectively. The mean of the shift differences in the vertical direction were 0.03, 0.03 and 0.03 cm, respectively. Conclusion: The automatic registrations using three different landmarks for clipbox showed similar results. One can use any of the three landmarks in 4D CBCT dual-image registration. Advance in knowledge: The study provides knowledge and recommendations for application of Elekta 4D CBCT image registration in radiation therapy of lung cancer. PMID:26183932

  8. SU-D-12A-07: Optimization of a Moving Blocker System for Cone-Beam Computed Tomography Scatter Correction

    SciTech Connect

    Ouyang, L; Yan, H; Jia, X; Jiang, S; Wang, J; Zhang, H

    2014-06-01

    Purpose: A moving blocker based strategy has shown promising results for scatter correction in cone-beam computed tomography (CBCT). Different parameters of the system design affect its performance in scatter estimation and image reconstruction accuracy. The goal of this work is to optimize the geometric design of the moving block system. Methods: In the moving blocker system, a blocker consisting of lead strips is inserted between the x-ray source and imaging object and moving back and forth along rotation axis during CBCT acquisition. CT image of an anthropomorphic pelvic phantom was used in the simulation study. Scatter signal was simulated by Monte Carlo calculation with various combinations of the lead strip width and the gap between neighboring lead strips, ranging from 4 mm to 80 mm (projected at the detector plane). Scatter signal in the unblocked region was estimated by cubic B-spline interpolation from the blocked region. Scatter estimation accuracy was quantified as relative root mean squared error by comparing the interpolated scatter to the Monte Carlo simulated scatter. CBCT was reconstructed by total variation minimization from the unblocked region, under various combinations of the lead strip width and gap. Reconstruction accuracy in each condition is quantified by CT number error as comparing to a CBCT reconstructed from unblocked full projection data. Results: Scatter estimation error varied from 0.5% to 2.6% as the lead strip width and the gap varied from 4mm to 80mm. CT number error in the reconstructed CBCT images varied from 12 to 44. Highest reconstruction accuracy is achieved when the blocker lead strip width is 8 mm and the gap is 48 mm. Conclusions: Accurate scatter estimation can be achieved in large range of combinations of lead strip width and gap. However, image reconstruction accuracy is greatly affected by the geometry design of the blocker.

  9. Antiscatter grids in mobile C-arm cone-beam CT: Effect on image quality and dose

    SciTech Connect

    Schafer, S.; Stayman, J.W.; Zbijewski, W.; Schmidgunst, C.; Kleinszig, G.; Siewerdsen, J.H.

    2012-01-15

    Purpose: X-ray scatter is a major detriment to image quality in cone-beam CT (CBCT). Existing geometries exhibit strong differences in scatter susceptibility with more compact geometries, e.g., dental or musculoskeletal, benefiting from antiscatter grids, whereas in more extended geometries, e.g., IGRT, grid use carries tradeoffs in image quality per unit dose. This work assesses the tradeoffs in dose and image quality for grids applied in the context of low-dose CBCT on a mobile C-arm for image-guided surgery. Methods: Studies were performed on a mobile C-arm equipped with a flat-panel detector for high-quality CBCT. Antiscatter grids of grid ratio (GR) 6:1-12:1, 40 lp/cm, were tested in ''body'' surgery, i.e., spine, using protocols for bone and soft-tissue visibility in the thoracic and abdominal spine. Studies focused on grid orientation, CT number accuracy, image noise, and contrast-to-noise ratio (CNR) in quantitative phantoms at constant dose. Results: There was no effect of grid orientation on possible gridline artifacts, given accurate angle-dependent gain calibration. Incorrect calibration was found to result in gridline shadows in the projection data that imparted high-frequency artifacts in 3D reconstructions. Increasing GR reduced errors in CT number from 31%, thorax, and 37%, abdomen, for gridless operation to 2% and 10%, respectively, with a 12:1 grid, while image noise increased by up to 70%. The CNR of high-contrast objects was largely unaffected by grids, but low-contrast soft-tissues suffered reduction in CNR, 2%-65%, across the investigated GR at constant dose. Conclusions: While grids improved CT number accuracy, soft-tissue CNR was reduced due to attenuation of primary radiation. CNR could be restored by increasing dose by factors of {approx}1.6-2.5 depending on GR, e.g., increase from 4.6 mGy for the thorax and 12.5 mGy for the abdomen without antiscatter grids to approximately 12 mGy and 30 mGy, respectively, with a high-GR grid. However

  10. TH-A-18C-04: Ultrafast Cone-Beam CT Scatter Correction with GPU-Based Monte Carlo Simulation

    SciTech Connect

    Xu, Y; Bai, T; Yan, H; Ouyang, L; Wang, J; Pompos, A; Jiang, S; Jia, X; Zhou, L

    2014-06-15

    Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT). We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC) simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstructions within 30 seconds. Methods: The method consists of six steps: 1) FDK reconstruction using raw projection data; 2) Rigid Registration of planning CT to the FDK results; 3) MC scatter calculation at sparse view angles using the planning CT; 4) Interpolation of the calculated scatter signals to other angles; 5) Removal of scatter from the raw projections; 6) FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC scatter noise caused by low photon numbers. The method is validated on head-and-neck cases with simulated and clinical data. Results: We have studied impacts of photo histories, volume down sampling factors on the accuracy of scatter estimation. The Fourier analysis was conducted to show that scatter images calculated at 31 angles are sufficient to restore those at all angles with <0.1% error. For the simulated case with a resolution of 512×512×100, we simulated 10M photons per angle. The total computation time is 23.77 seconds on a Nvidia GTX Titan GPU. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU. Similar results were found for a real patient case. Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. The whole process of scatter correction and reconstruction is accomplished within 30 seconds. This study is supported in part by NIH (1R01CA154747-01), The Core Technology Research

  11. Time-resolved cardiac interventional cone-beam CT reconstruction from fully truncated projections using the prior image constrained compressed sensing (PICCS) algorithm

    NASA Astrophysics Data System (ADS)

    Thériault Lauzier, Pascal; Tang, Jie; Chen, Guang-Hong

    2012-05-01

    C-arm cone-beam CT could replace preoperative multi-detector CT scans in the cardiac interventional setting. However, cardiac gating results in view angle undersampling and the small size of the detector results in projection data truncation. These problems are incompatible with conventional tomographic reconstruction algorithms. In this paper, the prior image constrained compressed sensing (PICCS) reconstruction method was adapted to solve these issues. The performance of the proposed method was compared to that of FDK, FDK with extrapolated projection data (E-FDK), and total variation-based compressed sensing. A canine projection dataset acquired using a clinical C-arm imaging system supplied realistic cardiac motion and anatomy for this evaluation. Three different levels of truncation were simulated. The relative root mean squared error and the universal image quality index were used to quantify the reconstruction accuracy. Three main conclusions were reached. (1) The adapted version of the PICCS algorithm offered the highest image quality and reconstruction accuracy. (2) No meaningful variation in performance was observed when the amount of truncation was changed. (3) This study showed evidence that accurate interior tomography with an undersampled acquisition is possible for realistic objects if a prior image with minimal artifacts is available.

  12. Image-based compensation for involuntary motion in weight-bearing C-arm cone-beam CT scanning of knees

    NASA Astrophysics Data System (ADS)

    Unberath, Mathias; Choi, Jang-Hwan; Berger, Martin; Maier, Andreas; Fahrig, Rebecca

    2015-03-01

    We previously introduced four fiducial marker-based strategies to compensate for involuntary knee-joint motion during weight-bearing C-arm CT scanning of the lower body. 2D methods showed significant reduction of motion- related artifacts, but 3D methods worked best. However, previous methods led to increased examination times and patient discomfort caused by the marker attachment process. Moreover, sub-optimal marker placement may lead to decreased marker detectability and therefore unstable motion estimates. In order to reduce overall patient discomfort, we developed a new image-based 2D projection shifting method. A C-arm cone-beam CT system was used to acquire projection images of five healthy volunteers at various flexion angles. Projection matrices for the horizontal scanning trajectory were calibrated using the Siemens standard PDS-2 phantom. The initial reconstruction was forward projected using maximum-intensity projections (MIP), yielding an estimate of a static scan. This estimate was then used to obtain the 2D projection shifts via registration. For the scan with the most motion, the proposed method reproduced the marker-based results with a mean error of 2.90 mm +/- 1.43 mm (compared to a mean error of 4.10 mm +/- 3.03 mm in the uncorrected case). Bone contour surrounding modeling clay layer was improved. The proposed method is a first step towards automatic image-based, marker-free motion-compensation.

  13. Soft-tissue contrast resolution within the head of human cadaver by means of flat-detector-based cone-beam CT

    NASA Astrophysics Data System (ADS)

    Wiegert, Jens; Bertram, Matthias; Schaefer, Dirk; Conrads, Norbert; Noordhoek, Niels; de Jong, Kees; Aach, Til; Rose, Georg

    2004-05-01

    In this paper, soft tissue contrast visibility in neural applications is investigated for volume imaging based on flat X-ray detector cone-beam CT. Experiments have been performed on a high precision bench-top system with rotating object table and fixed X-ray tube-detector arrangement. Several scans of a post mortem human head specimen have been performed under various conditions. Hereby two different flat X-ray detectors with 366 x 298mm2 (Trixell Pixium 4700) and 176 x 176mm2 (Trixell Pixium 4800) active area have been employed. During a single rotation up to 720 projections have been acquired. For reconstruction of the 3D images a Feldkamp algorithm has been employed. Reconstructed images of the head of human cadaver demonstrate that added soft tissue contrast down to 10 HU is detectable for X-ray dose comparable to CT. However, the limited size of the smaller detector led to truncation artifacts, which were partly compensated by extrapolation of the projections outside the field of view. To reduce cupping artifacts resulting from scattered radiation and to improve visibility of low contrast details, a novel homogenization procedure based on segmentation and polynomial fitting has been developed and applied on the reconstructed voxel data. Even for narrow HU-Windows, limitations due to scatter induced cupping artifacts are no longer noticeable after applying the homogenization procedure.

  14. Optimizing Cone Beam Computed Tomography (CBCT) System for Image Guided Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Park, Chun Joo

    Cone Beam Computed Tomography (CBCT) system is the most widely used imaging device in image guided radiation therapy (IGRT), where set of 3D volumetric image of patient can be reconstructed to identify and correct position setup errors prior to the radiation treatment. This CBCT system can significantly improve precision of on-line setup errors of patient position and tumor target localization prior to the treatment. However, there are still a number of issues that needs to be investigated with CBCT system such as 1) progressively increasing defective pixels in imaging detectors by its frequent usage, 2) hazardous radiation exposure to patients during the CBCT imaging, 3) degradation of image quality due to patients' respiratory motion when CBCT is acquired and 4) unknown knowledge of certain anatomical features such as liver, due to lack of soft-tissue contrast which makes tumor motion verification challenging. In this dissertation, we explore on optimizing the use of cone beam computed tomography (CBCT) system under such circumstances. We begin by introducing general concept of IGRT. We then present the development of automated defective pixel detection algorithm for X-ray imagers that is used for CBCT imaging using wavelet analysis. We next investigate on developing fast and efficient low-dose volumetric reconstruction techniques which includes 1) fast digital tomosynthesis reconstruction using general-purpose graphics processing unit (GPGPU) programming and 2) fast low-dose CBCT image reconstruction based on the Gradient-Projection-Barzilai-Borwein formulation (GP-BB). We further developed two efficient approaches that could reduce the degradation of CBCT images from respiratory motion. First, we propose reconstructing four dimensional (4D) CBCT and DTS using respiratory signal extracted from fiducial markers implanted in liver. Second, novel motion-map constrained image reconstruction (MCIR) is proposed that allows reconstruction of high quality and high phase

  15. [Metal artefact on head and neck cone-beam CT images].

    PubMed

    Kovacs, Miklós; Fejérdy, Pál; Dobó, Nagy Csaba

    2008-10-01

    There are only a few factors, where the properties of the CBCT is inferior compared to conventional CT. One of these properties is the low contrast resolution, which has an importance in the discrimination of different soft tissues. Another difference is the image quality degrading effect by metal objects. This latter factor has much higher importance in head and neck region CBCT application. The metal artifact is closely related to other types of artifacts, like beam-hardening and x-ray photon scattering artifacts. In some of the cases, metal artifacts can be avoided by the proper adjustment of the scanning parameters, but sometimes the problem overgrows the possibilities. The current pre- and post-processing algorithms used for the correction of different artifacts can improve the image quality, but these algorithms are not the ultimate solution to the problem. The introduction of iterative reconstruction algorithms into the CBCT market will effectively reduce the most CT artifacts, however, the spread of this algorithms are set back because of the insufficient computational power of today's PCs. Another advantage of the use of iterative algorithms is that the patient dose could be significantly reduced.

  16. A motion-compensated scheme for helical cone-beam reconstruction in cardiac CT angiography

    SciTech Connect

    Stevendaal, U. van; Berg, J. von; Lorenz, C.; Grass, M.

    2008-07-15

    Since coronary heart disease is one of the main causes of death all over the world, cardiac computed tomography (CT) imaging is an application of very high interest in order to verify indications timely. Due to the cardiac motion, electrocardiogram (ECG) gating has to be implemented into the reconstruction of the measured projection data. However, the temporal and spatial resolution is limited due to the mechanical movement of the gantry and due to the fact that a finite angular span of projections has to be acquired for the reconstruction of each voxel. In this article, a motion-compensated reconstruction method for cardiac CT is described, which can be used to increase the signal-to-noise ratio or to suppress motion blurring. Alternatively, it can be translated into an improvement of the temporal and spatial resolution. It can be applied to the entire heart in common and to high contrast objects moving with the heart in particular, such as calcified plaques or devices like stents. The method is based on three subsequent steps: As a first step, the projection data acquired in low pitch helical acquisition mode together with the ECG are reconstructed at multiple phase points. As a second step, the motion-vector field is calculated from the reconstructed images in relation to the image in a reference phase. Finally, a motion-compensated reconstruction is carried out for the reference phase using those projections, which cover the cardiac phases for which the motion-vector field has been determined.

  17. A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Bai, Ti; Yan, Hao; Ouyang, Luo; Pompos, Arnold; Wang, Jing; Zhou, Linghong; Jiang, Steve B.; Jia, Xun

    2015-05-01

    Cone-beam CT (CBCT) has become the standard image guidance tool for patient setup in image-guided radiation therapy. However, due to its large illumination field, scattered photons severely degrade its image quality. While kernel-based scatter correction methods have been used routinely in the clinic, it is still desirable to develop Monte Carlo (MC) simulation-based methods due to their accuracy. However, the high computational burden of the MC method has prevented routine clinical application. This paper reports our recent development of a practical method of MC-based scatter estimation and removal for CBCT. In contrast with conventional MC approaches that estimate scatter signals using a scatter-contaminated CBCT image, our method used a planning CT image for MC simulation, which has the advantages of accurate image intensity and absence of image truncation. In our method, the planning CT was first rigidly registered with the CBCT. Scatter signals were then estimated via MC simulation. After scatter signals were removed from the raw CBCT projections, a corrected CBCT image was reconstructed. The entire workflow was implemented on a GPU platform for high computational efficiency. Strategies such as projection denoising, CT image downsampling, and interpolation along the angular direction were employed to further enhance the calculation speed. We studied the impact of key parameters in the workflow on the resulting accuracy and efficiency, based on which the optimal parameter values were determined. Our method was evaluated in numerical simulation, phantom, and real patient cases. In the simulation cases, our method reduced mean HU errors from 44 to 3 HU and from 78 to 9 HU in the full-fan and the half-fan cases, respectively. In both the phantom and the patient cases, image artifacts caused by scatter, such as ring artifacts around the bowtie area, were reduced. With all the techniques employed, we achieved computation time of less than 30 s including the

  18. A breast-specific, negligible-dose scatter correction technique for dedicated cone-beam breast CT: a physics-based approach to improve Hounsfield Unit accuracy

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Burkett, George, Jr.; Boone, John M.

    2014-11-01

    The purpose of this research was to develop a method to correct the cupping artifact caused from x-ray scattering and to achieve consistent Hounsfield Unit (HU) values of breast tissues for a dedicated breast CT (bCT) system. The use of a beam passing array (BPA) composed of parallel-holes has been previously proposed for scatter correction in various imaging applications. In this study, we first verified the efficacy and accuracy using BPA to measure the scatter signal on a cone-beam bCT system. A systematic scatter correction approach was then developed by modeling the scatter-to-primary ratio (SPR) in projection images acquired with and without BPA. To quantitatively evaluate the improved accuracy of HU values, different breast tissue-equivalent phantoms were scanned and radially averaged HU profiles through reconstructed planes were evaluated. The dependency of the correction method on object size and number of projections was studied. A simplified application of the proposed method on five clinical patient scans was performed to demonstrate efficacy. For the typical 10-18 cm breast diameters seen in the bCT application, the proposed method can effectively correct for the cupping artifact and reduce the variation of HU values of breast equivalent material from 150 to 40 HU. The measured HU values of 100% glandular tissue, 50/50 glandular/adipose tissue, and 100% adipose tissue were approximately 46, -35, and -94, respectively. It was found that only six BPA projections were necessary to accurately implement this method, and the additional dose requirement is less than 1% of the exam dose. The proposed method can effectively correct for the cupping artifact caused from x-ray scattering and retain consistent HU values of breast tissues.

  19. Automated 2D-3D registration of a radiograph and a cone beam CT using line-segment enhancement

    SciTech Connect

    Munbodh, Reshma; Jaffray, David A.; Moseley, Douglas J.; Chen Zhe; Knisely, Jonathan P.S.; Cathier, Pascal; Duncan, James S.

    2006-05-15

    The objective of this study was to develop a fully automated two-dimensional (2D)-three-dimensional (3D) registration framework to quantify setup deviations in prostate radiation therapy from cone beam CT (CBCT) data and a single AP radiograph. A kilovoltage CBCT image and kilovoltage AP radiograph of an anthropomorphic phantom of the pelvis were acquired at 14 accurately known positions. The shifts in the phantom position were subsequently estimated by registering digitally reconstructed radiographs (DRRs) from the 3D CBCT scan to the AP radiographs through the correlation of enhanced linear image features mainly representing bony ridges. Linear features were enhanced by filtering the images with ''sticks,'' short line segments which are varied in orientation to achieve the maximum projection value at every pixel in the image. The mean (and standard deviations) of the absolute errors in estimating translations along the three orthogonal axes in millimeters were 0.134 (0.096) AP(out-of-plane), 0.021 (0.023) ML and 0.020 (0.020) SI. The corresponding errors for rotations in degrees were 0.011 (0.009) AP, 0.029 (0.016) ML (out-of-plane), and 0.030 (0.028) SI (out-of-plane). Preliminary results with megavoltage patient data have also been reported. The results suggest that it may be possible to enhance anatomic features that are common to DRRs from a CBCT image and a single AP radiography of the pelvis for use in a completely automated and accurate 2D-3D registration framework for setup verification in prostate radiotherapy. This technique is theoretically applicable to other rigid bony structures such as the cranial vault or skull base and piecewise rigid structures such as the spine.

  20. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    SciTech Connect

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J; Guo, X

    2015-06-15

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.

  1. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI.

    PubMed

    Riis, Hans L; Moltke, Lars N; Zimmermann, Sune J; Ebert, Martin A; Rowshanfarzad, Pejman

    2016-06-01

    Accurate determination of the megavoltage (MV) radiation isocentre of a linear accelerator (linac) is an important task in radiotherapy. The localization of the MV radiation isocentre is crucial for correct calibration of the in-room lasers and the cone-beam CT scanner used for patient positioning prior to treatment. Linac manufacturers offer tools for MV radiation isocentre localization. As a user, there is no access to the documentation for the underlying method and calculation algorithm used in the commercial software. The idea of this work was to evaluate the accuracy of the software tool for MV radiation isocentre calculation as delivered by Elekta using independent software. The image acquisition was based on the scheme designed by the manufacturer. Eight MV images were acquired in each series of a ball-bearing (BB) phantom attached to the treatment couch. The images were recorded at cardinal angles of the gantry using the electronic portal imaging device (EPID). Eight Elekta linacs with three different types of multileaf collimators (MLCs) were included in the test. The influence of MLC orientation, x-ray energy, and phantom modifications were examined. The acquired images were analysed using the Elekta x-ray volume imaging (XVI) software and in-house developed (IHD) MATLAB code. Results from the two different software were compared. A discrepancy in the longitudinal direction of the isocentre localization was found averaging 0.23 mm up to a maximum of 0.75 mm. The MLC orientation or the phantom asymmetry in the longitudinal direction do not appear to cause the discrepancy. The main cause of the differences could not be clearly identified. However, it is our opinion that the commercial software delivered by the linac manufacturer should be improved to reach better stability and precise results in the MV radiation isocentre calculations. PMID:27183466

  2. Effect of leaded glasses and thyroid shielding on cone beam CT radiation dose in an adult female phantom

    PubMed Central

    Goren, AD; Prins, RD; Dauer, LT; Quinn, B; Al-Najjar, A; Faber, RD; Patchell, G; Branets, I; Colosi, DC

    2013-01-01

    Objectives: This study aims to demonstrate the effectiveness of leaded glasses in reducing the lens of eye dose and of lead thyroid collars in reducing the dose to the thyroid gland of an adult female from dental cone beam CT (CBCT). The effect of collimation on the radiation dose in head organs is also examined. Methods: Dose measurements were conducted by placing optically stimulated luminescent dosemeters in an anthropomorphic female phantom. Eye lens dose was measured by placing a dosemeter on the anterior surface of the phantom eye location. All exposures were performed on one commercially available dental CBCT machine, using selected collimation and exposure techniques. Each scan technique was performed without any lead shielding and then repeated with lead shielding in place. To calculate the percent reduction from lead shielding, the dose measured with lead shielding was divided by the dose measured without lead shielding. The percent reduction from collimation was calculated by comparing the dose measured with collimation to the dose measured without collimation. Results: The dose to the internal eye for one of the scans without leaded glasses or thyroid shield was 0.450 cGy and with glasses and thyroid shield was 0.116 cGy (a 74% reduction). The reduction to the lens of the eye was from 0.396 cGy to 0.153 cGy (a 61% reduction). Without glasses or thyroid shield, the thyroid dose was 0.158 cGy; and when both glasses and shield were used, the thyroid dose was reduced to 0.091 cGy (a 42% reduction). Conclusions: Collimation alone reduced the dose to the brain by up to 91%, with a similar reduction in other organs. Based on these data, leaded glasses, thyroid collars and collimation minimize the dose to organs outside the field of view. PMID:23412460

  3. A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data

    SciTech Connect

    Yang Yin; Zhong Zichun; Guo Xiaohu; Wang Jing; Anderson, John; Solberg, Timothy; Mao Weihua

    2012-04-01

    Purpose: In this study, we present a novel markerless technique, based on cone beam computed tomography (CBCT) raw projection data, to evaluate lung tumor daily motion. Method and Materials: The markerless technique, which uses raw CBCT projection data and locates tumors directly on every projection, consists of three steps. First, the tumor contour on the planning CT is used to create digitally reconstructed radiographs (DRRs) at every projection angle. Two sets of DRRs are created: one showing only the tumor, and another with the complete anatomy without the tumor. Second, a rigid two-dimensional image registration is performed to register the DRR set without the tumor to the CBCT projections. After the registration, the projections are subtracted from the DRRs, resulting in a projection dataset containing primarily tumor. Finally, a second registration is performed between the subtracted projection and tumor-only DRR. The methodology was evaluated using a chest phantom containing a moving tumor, and retrospectively in 4 lung cancer patients treated by stereotactic body radiation therapy. Tumors detected on projection images were compared with those from three-dimensional (3D) and four-dimensional (4D) CBCT reconstruction results. Results: Results in both static and moving phantoms demonstrate that the accuracy is within 1 mm. The subsequent application to 22 sets of CBCT scan raw projection data of 4 lung cancer patients includes about 11,000 projections, with the detected tumor locations consistent with 3D and 4D CBCT reconstruction results. This technique reveals detailed lung tumor motion and provides additional information than conventional 4D images. Conclusion: This technique is capable of accurately characterizing lung tumor motion on a daily basis based on a conventional CBCT scan. It provides daily verification of the tumor motion to ensure that these motions are within prior estimation and covered by the treatment planning volume.

  4. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation

    SciTech Connect

    Jia Xun; Lou Yifei; Li Ruijiang; Song, William Y.; Jiang, Steve B.

    2010-04-15

    Purpose: Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose. Methods: The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. The authors developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multigrid technique is also employed. Results: It is found that 20-40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 s on an NVIDIA Tesla C1060 (NVIDIA, Santa Clara, CA) GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that the algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mA s/projection. Comparing with currently widely used full-fan head and neck scanning protocol of {approx}360 projections with 0.4 mA s/projection, it is estimated that an overall 36-72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm. Conclusions: This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.

  5. Image and surgery-related costs comparing cone beam CT and panoramic imaging before removal of impacted mandibular third molars

    PubMed Central

    Olsen, K R; Christensen, J; Wenzel, A

    2014-01-01

    Objectives: The aim of this prospective clinical study was to derive the absolute and relative costs of cone beam CT (CBCT) and panoramic imaging before removal of an impacted mandibular third molar. Furthermore, the study aimed to analyse the influence of different cost-setting scenarios on the outcome of the absolute and relative costs and the incremental costs related to surgery. Methods: A randomized clinical trial compared complications following surgical removal of a mandibular third molar, where the pre-operative diagnostic method had been panoramic imaging or CBCT. The resources implied in the two methods were measured with health economic tools. The primary outcome was total costs defined as the sum of absolute imaging costs and incremental surgery-related costs. The basic variables were capital costs, operational costs, radiological costs, radiographic costs, overheads and patient resource utilization. Differences in resources used for surgical and post-surgical management were calculated for each patient. Results: Converted to monetary units, the total costs for panoramic imaging equalized €49.29 and for CBCT examination €184.44. Modifying effects on this outcome such as differences in surgery time, treatment time for complications, pre- and post-surgical medication, sickness absence, specialist treatment and hospitalization were not statistically significant between the two diagnostic method groups. Conclusions: Costs for a CBCT examination were approximately four times the costs for panoramic imaging when used prior to removal of a mandibular third molar. The use of CBCT did not change the resources used for surgery, post-surgical treatment and patient complication management. PMID:24922557

  6. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI

    NASA Astrophysics Data System (ADS)

    Riis, Hans L.; Moltke, Lars N.; Zimmermann, Sune J.; Ebert, Martin A.; Rowshanfarzad, Pejman

    2016-06-01

    Accurate determination of the megavoltage (MV) radiation isocentre of a linear accelerator (linac) is an important task in radiotherapy. The localization of the MV radiation isocentre is crucial for correct calibration of the in-room lasers and the cone-beam CT scanner used for patient positioning prior to treatment. Linac manufacturers offer tools for MV radiation isocentre localization. As a user, there is no access to the documentation for the underlying method and calculation algorithm used in the commercial software. The idea of this work was to evaluate the accuracy of the software tool for MV radiation isocentre calculation as delivered by Elekta using independent software. The image acquisition was based on the scheme designed by the manufacturer. Eight MV images were acquired in each series of a ball-bearing (BB) phantom attached to the treatment couch. The images were recorded at cardinal angles of the gantry using the electronic portal imaging device (EPID). Eight Elekta linacs with three different types of multileaf collimators (MLCs) were included in the test. The influence of MLC orientation, x-ray energy, and phantom modifications were examined. The acquired images were analysed using the Elekta x-ray volume imaging (XVI) software and in-house developed (IHD) MATLAB code. Results from the two different software were compared. A discrepancy in the longitudinal direction of the isocentre localization was found averaging 0.23 mm up to a maximum of 0.75 mm. The MLC orientation or the phantom asymmetry in the longitudinal direction do not appear to cause the discrepancy. The main cause of the differences could not be clearly identified. However, it is our opinion that the commercial software delivered by the linac manufacturer should be improved to reach better stability and precise results in the MV radiation isocentre calculations.

  7. TH-A-18C-06: A Scatter Elimination Scheme for Cone Beam CT Using An Oscillating Narrow Beam

    SciTech Connect

    Yan, H; Folkerts, M; Jia, X; Jiang, S; Xu, Y

    2014-06-15

    Purpose: While cone beam CT (CBCT) has been widely used in image guided radiation therapy, its low image quality, primarily caused by scattered x-rays, hinders advanced clinical applications, e.g., CBCT based on-line adaptive re-planning. We propose in this abstract a new scheme called oscillating narrow beam CBCT (ONB-CBCT) to eliminate scatter signals. Methods: ONB-CBCT consists of two major components. 1) Oscillating narrow beam (ONB) scan and 2) partitioned flat panel containing multiple individual detector strips and their own readouts. Both the beam oscillation and detector partition are along the superior-inferior (SI) direction. During data acquisition, at a given projection, the narrow beam sweep through the detector region, and different portions of the detector acquires projection data in synchrony with the narrow beam. ONB can be generated by a rotating slit collimator design with conventional tube with single focal spot, or by directly using a new source with multiple focal spots. A proof-of-principle study via Monte Carlo simulation is conducted to demonstrate the feasibility of ONB-CBCT. Results: As the beam becomes narrower, more and more scatter signals are eliminated. For the case with a bowtie filter and using 15 ONBs, the maximum and the average intensity error due to scatter are below 20 and 10 HU, respectively. Conclusion: ONB yields a narrowed exposure field at each snapshot and hence an inherently negligible scatter effect. Meanwhile, the individualized detector units guarantee high frame rate detection and hence a same large volume coverage as that in conventional CBCT. In summary, ONB-CBCT is a promising design to achieve high-quality CBCT imaging. This study is supported in part by NIH (1R01CA154747-01)

  8. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections1

    PubMed Central

    Poulsen, Per Rugaard; Fledelius, Walther; Keall, Paul J.; Weiss, Elisabeth; Lu, Jun; Brackbill, Emily; Hugo, Geoffrey D.

    2011-01-01

    Purpose: Implanted markers are commonly used in radiotherapy for x-ray based target localization. The projected marker position in a series of cone-beam CT (CBCT) projections can be used to estimate the three dimensional (3D) target trajectory during the CBCT acquisition. This has important applications in tumor motion management such as motion inclusive, gating, and tumor tracking strategies. However, for irregularly shaped markers, reliable segmentation is challenged by large variations in the marker shape with projection angle. The purpose of this study was to develop a semiautomated method for robust and reliable segmentation of arbitrarily shaped radiopaque markers in CBCT projections. Methods: The segmentation method involved the following three steps: (1) Threshold based segmentation of the marker in three to six selected projections with large angular separation, good marker contrast, and uniform background; (2) construction of a 3D marker model by coalignment and backprojection of the threshold-based segmentations; and (3) construction of marker templates at all imaging angles by projection of the 3D model and use of these templates for template-based segmentation. The versatility of the segmentation method was demonstrated by segmentation of the following structures in the projections from two clinical CBCT scans: (1) Three linear fiducial markers (Visicoil) implanted in or near a lung tumor and (2) an artificial cardiac valve in a lung cancer patient. Results: Automatic marker segmentation was obtained in more than 99.9% of the cases. The segmentation failed in a few cases where the marker was either close to a structure of similar appearance or hidden behind a dense structure (data cable). Conclusions: A robust template-based method for segmentation of arbitrarily shaped radiopaque markers in CBCT projections was developed. PMID:21626948

  9. Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy.

    PubMed

    Bian, Junguo; Sharp, Gregory C; Park, Yang-Kyun; Ouyang, Jinsong; Bortfeld, Thomas; El Fakhri, Georges

    2016-05-01

    It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications. PMID:27032676

  10. Accuracy of peri-implant bone evaluation using cone beam CT, digital intra-oral radiographs and histology

    PubMed Central

    Elger, M C; Rothamel, D; Fienitz, T; Zinser, M; Schwarz, F; Zöller, J E

    2014-01-01

    Objectives: The present study assesses the accuracy of three-dimensional (3D) cone beam CT (CBCT) and intra-oral radiography (CR) in visualizing peri-implant bone compared with histology. Methods: 26 titanium dental implants were placed in dog jaws with chronic type vestibular defects. After a healing period of 2 and 8 weeks (n = 12 dogs) the animals were sacrificed. CBCT scans and CR of the specimen were recorded. Dissected blocks were prepared, and histomorphometric analysis was performed. Both modalities were measured twice by two observers and compared with histomorphometry regarding bone levels and thickness around implants as well as length and diameter of implants. Results: Measurements of CBCT correlated well with histomorphometry of the vestibular bone level, oral bone thickness and implant length (all p-values <0.05). Compared with histomorphometry, the mean differences between CBCT and histomorphometry were between 0.06 and 2.61 mm. Mesial bone level (MBL) and distal bone level (DBL) were underestimated by both CR and CBCT. CR and histology measurements were only significantly correlated for implant length measurements. All intraclass correlations were highly significant. Conclusions: 3D CBCT provides usable information about bone in all dimensions around implants with varying accuracy. CR and CBCT perform similar in assessing MBL and DBL, but, within its limits, the CBCT can assess oral and buccal bone. Metallic artefacts limit the visualization quality of bone around implants and further research could elucidate the value of post-processing algorithms. When information about osseous perforation of implants is needed, CBCT may still provide clinically valuable information. PMID:24786136

  11. Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Bian, Junguo; Sharp, Gregory C.; Park, Yang-Kyun; Ouyang, Jinsong; Bortfeld, Thomas; El Fakhri, Georges

    2016-05-01

    It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications.

  12. SU-E-J-214: Comparative Assessment On IGRT On Partial Bladder Cancer Treatment Between CT-On-Rails (CTOR) and KV Cone Beam CT (CBCT)

    SciTech Connect

    Lin, T; Ma, C

    2014-06-01

    Purpose: Image-Guided radiation therapy(IGRT) depends on reliable online patient-specific anatomy information to address random and progressive anatomy changes. Large margins have been suggested to bladder cancer treatment due to large daily bladder anatomy variation. KV Cone beam CT(CBCT) has been used in IGRT localization prevalently; however, its lack of soft tissue contrast makes clinicians hesitate to perform daily soft tissue alignment with CBCT for partial bladder cancer treatment. This study compares the localization uncertainties of bladder cancer IGRT using CTon- Rails(CTOR) and CBCT. Methods: Three T2N0M0 bladder cancer patients (total of 66 Gy to partial bladder alone) were localized daily with either CTOR or CBCT for their entire treatment course. A total of 71 sets of CTOR and 22 sets of CBCT images were acquired and registered with original planning CT scans by radiation therapists and approved by radiation oncologists for the daily treatment. CTOR scanning entailed 2mm slice thickness, 0.98mm axial voxel size, 120kVp and 240mAs. CBCT used a half fan pelvis protocol from Varian OBI system with 2mm slice thickness, 0.98axial voxel size, 125kVp, and 680mAs. Daily localization distribution was compared. Accuracy of CTOR and CBCT on partial bladder alignment was also evaluated by comparing bladder PTV coverage. Results: 1cm all around PTV margins were used in every patient except target superior limit margin to 0mm due to bowel constraint. Daily shifts on CTOR averaged to 0.48, 0.24, 0.19 mms(SI,Lat,AP directions); CBCT averaged to 0.43, 0.09, 0.19 mms(SI,Lat,AP directions). The CTOR daily localization showed superior results of V100% of PTV(102% CTOR vs. 89% CBCT) and bowel(Dmax 69.5Gy vs. 78Gy CBCT). CTOR images showed much higher contrast on bladder PTV alignment. Conclusion: CTOR daily localization for IGRT is more dosimetrically beneficial for partial bladder cancer treatment than kV CBCT localization and provided better soft tissue PTV

  13. Deformable Image Registration with Local Rigidity Constraints for Cone-Beam CT Guided Spine Surgery

    PubMed Central

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Khanna, A. J.; Siewerdsen, J. H.

    2014-01-01

    Image-guided spine surgery is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative CBCT using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced 3 properties of a rigid transformation – namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (denoted uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation (𝒟 = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear (𝒮 = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively

  14. Using corrected Cone-Beam CT image for accelerated partial breast irradiation treatment dose verification: the preliminary experience

    PubMed Central

    2013-01-01

    Background Accurate target localization is mandatory in the accelerated partial breast irradiation (APBI) delivery. Dosimetric verification for positional error will further guarantee the accuracy of treatment delivery. The purpose of this study is to evaluate the clinical feasibility of a cone beam computer tomographic (CBCT) image correction method in APBI. Methods A CBCT image correction method was developed. First, rigid image registration was proceeded for CTs and CBCTs; second, these images were separated into four parts; then, ratio images for each of the four parts of planning CTs/CBCTs were calculated and filtered to reduce the high spatial frequency; finally, the enhanced CBCT images were generated combing the four parts. An anthropomorphic thorax rando phantom was used to evaluate the feasibility and accuracy of the CBCT correction method. The CBCT images of consecutive 10 patients receiving APBI were corrected using the above method and dosimetric variations were evaluated. Each set of CBCT is composed of three images: one acquired after skin-marker setup, one after online setup correction and one after treatment delivery. Results The phantom study showed the improved accuracy of dose calculation with corrected CBCT. The Dose Volume Histogram (DVH) difference between the planning CT and corrected CBCT is less than the difference between the planning CT and original CBCT. The maximum dose difference between the corrected CBCT and planning CT is 0.8% in PTV_EVAL V100, which is 3.8% between original CBCT and planning. In the patient study, 67.4% of fractions benefit from CBCT setup corrections in PTV_EVAL D95, while in 47.4% of the fractions, reduced dose coverage was found on the post-treatment CBCT. Overall, the CBCT based initial setup correction guaranteed target dose coverage in 9 patients. Conclusions A generic CBCT image correction algorithm was created and proved to be easily implemented in clinic. Compared to the original CBCT, the corrected CBCT

  15. Cone Beam CT-Based Three-Dimensional Planning in High-Dose-Rate Brachytherapy for Cervical Cancer

    SciTech Connect

    Al-Halabi, Hani; Portelance, Lorraine; Duclos, Marie; Reniers, Brigitte; Bahoric, Boris; Souhami, Luis

    2010-07-15

    Purpose: To evaluate dose-volume histograms (DVHs) of bladder and rectum from the use of cone beam CT (CBCT)-based three-dimensional (3D) treatment planning in intracavitary high-dose-rate brachytherapy (HDRB) for cervical cancer patients and to compare these parameters with International Commission on Radiation Units and Measurements (ICRU) of rectal and bladder reference point dose measurements. Methods and Materials: Thirteen patients with cervical cancer underwent HDRB insertions. CT-compatible tandem and ovoid applicators were used to obtain intraoperative CBCT images. The use of a rectal tube and injection of bladder contrast before scanning facilitated contouring the rectum and bladder. All patients underwent intraoperative orthogonal x-ray filming, and treatments were prescribed using standard two-dimensional planning and dosimetry. DVHs for the bladder and rectum were constructed for each treatment. The minimum dose in the most irradiated 2.0-cm{sup 3} volume of bladder (B{sub D2V}) and rectum (R{sub D2V}) were determined from DVHs and compared to ICRU reference point estimates of bladder (B{sub ICRU}) and rectum (R{sub ICRU}) doses. Results: Twenty-six CBCT-based plans were evaluated. The median B{sub ICRU} dose (347 cGy; range, 164-601 cGy) was significantly lower (p < 0.001) than the median B{sub D2V} (594 cGy; range, 260-969 cGy). The median R{sub ICRU} dose (405 cGy; range, 189-700 cGy) was also significantly lower (p = 0.037) than the median R{sub D2V} (488 cGy; range, 227-786 cGy). Conclusions: CBCT-based 3D planning can be used in HDRB for cervical cancer and is a convenient alternative to CT-based planning, with the advantage of minimizing applicator motion. Correlation with late effects will further define the role of CBCT-based 3D dosimetry in HDRB planning.

  16. Algorithm-enabled exploration of image-quality potential of cone-beam CT in image-guided radiation therapy

    PubMed Central

    Han, Xiao; Pearson, Erik; Pelizzari, Charles; Al-Hallaq, Hania; Sidky, Emil Y.; Bian, Junguo; Pan, Xiaochuan

    2015-01-01

    Kilo-voltage (KV) cone-beam computed tomography (CBCT) unit mounted onto a linear accelerator treatment system, often referred to as on-board imager (OBI), plays an increasingly important role in image-guide radiation therapy. While the FDK algorithm is used currently for reconstructing images from clinical OBI data, optimization-based reconstruction has also been investigated for OBI CBCT. An optimization-based reconstruction involves numerous parameters, which can significantly impact reconstruction properties (or utility). The success of an optimization-based reconstruction for a particular class of practical applications thus relies strongly on appropriate selection of parameter values. In the work, we focus on tailoring the constrained-TV-minimization-based reconstruction, an optimization-based reconstruction previously shown of some potential for CBCT imaging conditions of practical interest, to OBI imaging through appropriate selection of parameter values. In particular, for given real data of phantoms and patient collected with OBI CBCT, we first devise utility metrics specific to OBI-quality-assurance tasks and then apply them to guiding the selection of parameter values in constrained-TV-minimization-based reconstruction. The study results show that the reconstructions are with improvement, relative to clinical FDK reconstruction, in both visualization and quantitative assessments in terms of the devised utility metrics. PMID:26020490

  17. Algorithm-enabled exploration of image-quality potential of cone-beam CT in image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Pearson, Erik; Pelizzari, Charles; Al-Hallaq, Hania; Sidky, Emil Y.; Bian, Junguo; Pan, Xiaochuan

    2015-06-01

    Kilo-voltage (KV) cone-beam computed tomography (CBCT) unit mounted onto a linear accelerator treatment system, often referred to as on-board imager (OBI), plays an increasingly important role in image-guided radiation therapy. While the FDK algorithm is currently used for reconstructing images from clinical OBI data, optimization-based reconstruction has also been investigated for OBI CBCT. An optimization-based reconstruction involves numerous parameters, which can significantly impact reconstruction properties (or utility). The success of an optimization-based reconstruction for a particular class of practical applications thus relies strongly on appropriate selection of parameter values. In the work, we focus on tailoring the constrained-TV-minimization-based reconstruction, an optimization-based reconstruction previously shown of some potential for CBCT imaging conditions of practical interest, to OBI imaging through appropriate selection of parameter values. In particular, for given real data of phantoms and patient collected with OBI CBCT, we first devise utility metrics specific to OBI-quality-assurance tasks and then apply them to guiding the selection of parameter values in constrained-TV-minimization-based reconstruction. The study results show that the reconstructions are with improvement, relative to clinical FDK reconstruction, in both visualization and quantitative assessments in terms of the devised utility metrics.

  18. Evaluation of deformable image registration for contour propagation between CT and cone-beam CT images in adaptive head and neck radiotherapy.

    PubMed

    Li, X; Zhang, Y Y; Shi, Y H; Zhou, L H; Zhen, X

    2016-04-29

    Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) to propagate contours between planning computerized tomography (CT) images and treatment CT/Cone-beam CT (CBCT) image to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contours mapping, seven intensity-based DIR strategies are tested on the planning CT and weekly CBCT images from six Head & Neck cancer patients who underwent a 6 ∼ 7 weeks intensity-modulated radiation therapy (IMRT). Three similarity metrics, i.e. the Dice similarity coefficient (DSC), the percentage error (PE) and the Hausdorff distance (HD), are employed to measure the agreement between the propagated contours and the physician delineated ground truths. It is found that the performance of all the evaluated DIR algorithms declines as the treatment proceeds. No statistically significant performance difference is observed between different DIR algorithms (p> 0.05), except for the double force demons (DFD) which yields the worst result in terms of DSC and PE. For the metric HD, all the DIR algorithms behaved unsatisfactorily with no statistically significant performance difference (p= 0.273). These findings suggested that special care should be taken when utilizing the intensity-based DIR algorithms involved in this study to deform OAR contours between CT and CBCT, especially for those organs with low contrast. PMID:27259084

  19. SU-E-T-86: Comparison of Two Commercially Available Programs for the Evaluation of Delivered Daily Dose Using Cone Beam CT (CBCT)

    SciTech Connect

    Tuohy, R; Bosse, C; Mavroidis, P; Shi, Z; Crownover, R; Papanikolaou, N; Stathakis, S

    2014-06-01

    Purpose: In this study, two commercially available programs were compared for the evaluation of delivered daily dose using cone beam CT (CBCT). Methods: Thirty (n=30) patients previously treated in our clinic (10 prostate, 10 SBRT lung and 10 abdomen) were used in this study. The patients' plans were optimized and calculated using the Pinnacle treatment planning system. The daily CBCT scans were imported into Velocity and RayStation along with the corresponding planning CTs, structure sets and 3D dose distributions for each patient. The organs at risk (OAR) were contoured on each CBCT by the prescribing physician and were included in the evaluation of the daily delivered dose. Each CBCT was registered to the planning CT, once with rigid registration and then again, separately, with deformable registration. After registering each CBCT, the dose distribution from the planning CT was overlaid and the dose volume histograms (DVH) for the OAR and the planning target volumes (PTV) were calculated. Results: For prostate patients, we observed daily volume changes for the OARs. The DVH analysis for those patients showed variation in the sparing of the OARs while PTV coverage remained virtually unchanged using both Velocity and RayStation systems. Similar results were observed for abdominal patients. In contrast, for SBRT lung patients, the DVH for the OARs and target were comparable to those from the initial treatment plan. Differences in organ volume and organ doses were also observed when comparing the daily fractions using deformable and rigid registrations. Conclusion: By using daily CBCT dose reconstruction, we proved PTV coverage for prostate and abdominal targets is adequate. However, there is significant dosimetric change for the OARs. For lung SBRT patients, the delivered daily dose for both PTV and OAR is comparable to the planned dose with no significant differences.

  20. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    SciTech Connect

    Schoot, A. J. A. J. van de Schooneveldt, G.; Wognum, S.; Stalpers, L. J. A.; Rasch, C. R. N.; Bel, A.; Hoogeman, M. S.; Chai, X.

    2014-03-15

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used to guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation

  1. Evaluation of scatter mitigation strategies for x-ray cone-beam CT: impact of scatter subtraction and anti-scatter grids on contrast-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Lazos, Dimitrios; Lasio, Giovanni; Evans, Joshua; Williamson, Jeffrey F.

    2007-03-01

    The large contribution of scatter to cone-beam computed tomography (CBCT) x-ray projections significantly degrades image quality, both through streaking and cupping artifacts and by loss of low contrast boundary detectability. The goal of this investigation is to compare the efficacy of three widely used scatter mitigation methods: subtractive scatter correction (SSC); anti-scatter grids (ASG); and beam modulating with bowtie filters; for improving signal-to-noise ratio (SNR), contrast, contrast-to-noise ratio (CNR) and cupping artifacts. A simple analytic model was developed to predict scatter-to-primary ratio (SPR) and CNR as a function of cylindrical phantom thickness. In addition, CBCT x-ray projections of a CatPhan QA phantom were measured, using a Varian CBCT imaging system, and computed, using an inhouse Monte Carlo photon-transport code to more realistically evaluate the impact of scatter mitigation techniques. Images formed with uncorrected sinograms acquired without ASGs and bow-tie filter show pronounced cupping artifacts and loss of contrast. Subtraction of measured scatter profiles restores image uniformity and CT number accuracy, but does not improve CNR, since the improvement in contrast almost exactly offset by the increase in relative x-ray noise. ASGs were found to modestly improve CNR (up to 20%, depending ASG primary transmission and selectivity) only in body scans, while they can reduce CNR for head phantoms where SPR is low.

  2. Developments in megavoltage cone beam CT with an amorphous silicon EPID: reduction of exposure and synchronization with respiratory gating.

    PubMed

    Sillanpaa, J; Chang, J; Mageras, G; Riem, H; Ford, E; Todor, D; Ling, C C; Amols, H

    2005-03-01

    We have studied the feasibility of a low-dose megavoltage cone beam computed tomography (MV CBCT) system for visualizing the gross tumor volume in respiratory gated radiation treatments of nonsmall-cell lung cancer. The system consists of a commercially available linear accelerator (LINAC), an amorphous silicon electronic portal imaging device, and a respiratory gating system. The gantry movement and beam delivery are controlled using dynamic beam delivery toolbox, a commercial software package for executing scripts to control the LINAC. A specially designed interface box synchronizes the LINAC, image acquisition electronics, and the respiratory gating system. Images are preprocessed to remove artifacts due to detector sag and LINAC output fluctuations. We report on the output, flatness, and symmetry of the images acquired using different imaging parameters. We also examine the quality of three-dimensional (3D) tomographic reconstruction with projection images of anthropomorphic thorax, contrast detail, and motion phantoms. The results show that, with the proper choice of imaging parameters, the flatness and symmetry are reasonably good with as low as three beam pulses per projection image. Resolution of 5% electron density differences is possible in a contrast detail phantom using 100 projections and 30 MU. Synchronization of image acquisition with simulated respiration also eliminated motion artifacts in a moving phantom, demonstrating the system's capability for imaging patients undergoing gated radiation therapy. The acquisition time is limited by the patient's respiration (only one image per breathing cycle) and is under 10 min for a scan of 100 projections. In conclusion, we have developed a MV CBCT system using commercially available components to produce 3D reconstructions, with sufficient contrast resolution for localizing a simulated lung tumor, using a dose comparable to portal imaging. PMID:15839355

  3. Bow-tie wobble artifact: Effect of source assembly motion on cone-beam CT

    PubMed Central

    Zheng, Dandan; Ford, John C.; Lu, Jun; Lazos, Dimitrios; Hugo, Geoffrey D.; Pokhrel, Damodar; Zhang, Lisha; Williamson, Jeffrey F.

    2011-01-01

    Purpose: To investigate the cause of a bow-tie wobble artifact (BWA) discovered on Varian OBI CBCT images and to develop practical correction strategies.Method and Materials: The dependence of the BWA on phantom geometry, phantom position, specific system, and reconstruction algorithm was investigated. Simulations were conducted to study the dependence of the BWA on scatter and beam hardening corrections. Geometric calibration was performed to rule out other gantry-angle dependent mechanical non-idealities as BWA causes. Air scans were acquired with ball-bearing markers to study the motions of the x-ray head assembly as functions of gantry angle. Based on measurements, we developed hypothesis regarding the BWA cause. Simulations were performed to validate our hypothesis. Two correction strategies were implemented: a measurement-based method, which acquires gantry-dependent normalization projections (NPs); and a model-based method that involves numerically shifting the single-angle NP to compensate for the previously-measured bow-tie-filter (BTF) motion.Results: The BWA has a diameter of ∼15 cm, is centered at the isocenter, and is reproducible independent of phantom, position, system, reconstruction, and standard corrections, but only when the BTF is used. Measurements identified a 2D sinusoidal gantry-angle-dependent motion of the x-ray head assembly, and it was the BTF motion (>3 mm amplitude projected onto the detector) resulting an intensity mismatch between the all-angle CBCT projections and a single-angle NP that caused the BWA. Both correction strategies were demonstrated effective.Conclusions: A geometric mismatch between the BTF modulation patterns on CBCT projections and on the NP causes the BWA. The BTF wobble requires additional degrees of freedom in CBCT geometric calibration to characterize. PMID:21776785

  4. C-arm cone-beam CT-guided transthoracic lung core needle biopsy as a standard diagnostic tool: an observational study.

    PubMed

    Jaconi, Marta; Pagni, Fabio; Vacirca, Francesco; Leni, Davide; Corso, Rocco; Cortinovis, Diego; Bidoli, Paolo; Bono, Francesca; Cuttin, Maria S; Valente, Maria G; Pesci, Alberto; Bedini, Vittorio A; Leone, Biagio E

    2015-03-01

    C-arm cone-beam computed tomography (CT)-guided transthoracic lung core needle biopsy (CNB) is a safe and accurate procedure for the evaluation of patients with pulmonary nodules. This article will focus on the clinical features related to CNB in terms of diagnostic performance and complication rate. Moreover, the concept of categorizing pathological diagnosis into 4 categories, which could be used for clinical management, follow-up, and quality assurance is also introduced. We retrospectively collected data regarding 375 C-arm cone-beam CT-guided CNBs from January 2010 and June 2014. Clinical and radiological variables were evaluated in terms of success or failure rate. Pathological reports were inserted in 4 homogenous groups (nondiagnostic--L1, benign--L2, malignant not otherwise specified--L3, and malignant with specific histotype--L4), defining for each category a hierarchy of suggested actions. The sensitivity, specificity, and positive and negative predictive value and accuracy for patients subjected to CNBs were of 96.8%, 100%, 100%, 100%, and 97.2%, respectively. Roughly 75% of our samples were diagnosed as malignant, with 60% lung adenocarcinoma diagnoses. Molecular analyses were performed on 85 malignant samples to verify applicability of targeted therapy. The rate of "nondiagnostic" samples was 12%. C-arm cone-beam CT-guided transthoracic lung CNB can represent the gold standard for the diagnostic evaluation of pulmonary nodules. A clinical and pathological multidisciplinary evaluation of CNBs was needed in terms of integration of radiological, histological, and oncological data. This approach provided exceptional performances in terms of specificity, positive and negative predictive values; sensitivity in our series was lower compared with other large studies, probably due to the application of strong criteria of adequacy for CNBs (L1 class rate). The satisfactory rate of collected material was evaluated not only in terms of merely diagnostic

  5. SU-E-J-103: Setup Errors Analysis by Cone-Beam CT (CBCT)-Based Imaged-Guided Intensity Modulated Radiotherapy for Esophageal Cancer

    SciTech Connect

    Yang, H; Wang, W; Hu, W; Chen, X; Wang, X; Yu, C

    2014-06-01

    Purpose: To quantify setup errors by pretreatment kilovolt cone-beam computed tomography(KV-CBCT) scans for middle or distal esophageal carcinoma patients. Methods: Fifty-two consecutive middle or distal esophageal carcinoma patients who underwent IMRT were included this study. A planning CT scan using a big-bore CT simulator was performed in the treatment position and was used as the reference scan for image registration with CBCT. CBCT scans(On-Board Imaging v1. 5 system, Varian Medical Systems) were acquired daily during the first treatment week. A total of 260 CBCT scans was assessed with a registration clip box defined around the PTV-thorax in the reference scan based on(nine CBCTs per patient) bony anatomy using Offline Review software v10.0(Varian Medical Systems). The anterior-posterior(AP), left-right(LR), superiorinferior( SI) corrections were recorded. The systematic and random errors were calculated. The CTV-to-PTV margins in each CBCT frequency was based on the Van Herk formula (2.5Σ+0.7σ). Results: The SD of systematic error (Σ) was 2.0mm, 2.3mm, 3.8mm in the AP, LR and SI directions, respectively. The average random error (σ) was 1.6mm, 2.4mm, 4.1mm in the AP, LR and SI directions, respectively. The CTV-to-PTV safety margin was 6.1mm, 7.5mm, 12.3mm in the AP, LR and SI directions based on van Herk formula. Conclusion: Our data recommend the use of 6 mm, 8mm, and 12 mm for esophageal carcinoma patient setup in AP, LR, SI directions, respectively.

  6. TH-A-18C-02: An Electrostatic Model for Assessment of Joint Space Morphology in Cone-Beam CT

    SciTech Connect

    Cao, Q; Thawait, G; Gang, G; Zbijewski, W; Riegel, T; Demehri, S; Siewerdsen, J

    2014-06-15

    Purpose: High-resolution cone-beam CT (CBCT) of the extremities presents a potentially valuable basis for image-based biomarkers of arthritis, trauma, and risk of injury. We present a new method for 3D joint space analysis that exploits the high isotropic spatial resolution of CBCT and is sensitive to small changes in disease-related morphology. Methods: The approach uses an “electrostatic” model in which joint surfaces (e.g., distal femur and proximal tibia) are labeled as charge densities between which the electric field is solved by approximation to the Laplace equation. The method yields a unique solution determined by the field lines across the “capacitor” and is hypothesized to be more sensitive than conventional (Sharp) scores and immune to degeneracies that limit simple distance-along-axis or closest-point analysis. The algorithm was validated in CBCT phantom images and applied in two clinical scenarios: osteoarthritis (OA, change in loadbearing tibiofemoral joint space); and assessment of injury risk (correlation of 3D joint space to tibial slope). Results: Joint space maps computed from the electrostatic model were accurate to within the voxel size (0.26 mm). The method highlighted subtle regions of morphological change that would likely be missed by conventional scalar metrics. Regions of subtle cartilage erosion were well quantified, and the method confidently discriminated OA and non-OA cohorts. 3D joint space maps correlated well with tibial slope and provide a new basis for principal component analysis of loadbearing injury risk. Runtime was less than 5 min (235×235×121 voxel subvolume in Matlab). Conclusion: A new method for joint space assessment was reported as a possible image-based biomarker of subtle articular change. The algorithm yields accurate quantitation of the joint in a manner that is robust against operator and patient setup variation. The method shows promising initial results in ongoing trials of CBCT in osteoarthritis

  7. Reconstructing cone-beam CT with spatially varying qualities for adaptive radiotherapy: a proof-of-principle study

    NASA Astrophysics Data System (ADS)

    Lu, Wenting; Yan, Hao; Gu, Xuejun; Tian, Zhen; Ouyang, Luo; Yang, Liu; Zhou, Linghong; Cervino, Laura; Wang, Jing; Jiang, Steve; Jia, Xun

    2014-10-01

    With the aim of maximally reducing imaging dose while meeting requirements for adaptive radiation therapy (ART), we propose in this paper a new cone beam CT (CBCT) acquisition and reconstruction method that delivers images with a low noise level inside a region of interest (ROI) and a relatively high noise level outside the ROI. The acquired projection images include two groups: densely sampled projections at a low exposure with a large field of view (FOV) and sparsely sampled projections at a high exposure with a small FOV corresponding to the ROI. A new algorithm combining the conventional filtered back-projection algorithm and the tight-frame iterative reconstruction algorithm is also designed to reconstruct the CBCT based on these projection data. We have validated our method on a simulated head-and-neck (HN) patient case, a semi-real experiment conducted on a HN cancer patient under a full-fan scan mode, as well as a Catphan phantom under a half-fan scan mode. Relative root-mean-square errors (RRMSEs) of less than 3% for the entire image and ~1% within the ROI compared to the ground truth have been observed. These numbers demonstrate the ability of our proposed method to reconstruct high-quality images inside the ROI. As for the part outside ROI, although the images are relatively noisy, it can still provide sufficient information for radiation dose calculations in ART. Dose distributions calculated on our CBCT image and on a standard CBCT image are in agreement, with a mean relative difference of 0.082% inside the ROI and 0.038% outside the ROI. Compared with the standard clinical CBCT scheme, an imaging dose reduction of approximately 3-6 times inside the ROI was achieved, as well as an 8 times outside the ROI. Regarding computational efficiency, it takes 1-3 min to reconstruct a CBCT image depending on the number of projections used. These results indicate that the proposed method has the potential for application in ART.

  8. TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma

    SciTech Connect

    Sisniega, A; Zbijewski, W; Stayman, J; Yorkston, J; Aygun, N; Koliatsos, V; Siewerdsen, J

    2014-06-15

    Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced for additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain

  9. Cone Beam CT Image Guidance for Intracranial Stereotactic Treatments: Comparison With a Frame Guided Set-Up

    SciTech Connect

    Masi, Laura Casamassima, Franco; Polli, Caterina; Menichelli, Claudia; Bonucci, Ivano; Cavedon, Carlo

    2008-07-01

    Purpose: An analysis is performed of the setup errors measured by a kV cone beam computed tomography (CBCT) for intracranial stereotactic radiotherapy (SRT) patients immobilized by a thermoplastic mask and a bite-block and positioned using stereotactic coordinates. We evaluated the overall positioning precision and accuracy of the immobilizing and localizing systems. The potential of image-guided radiotherapy to replace stereotactic methods is discussed. Methods and Materials: Fifty-seven patients received brain SRT. After a frame-guided setup, before each fraction (131 fractions), a CBCT was acquired and the detected displacements corrected online. Translational and rotational errors were analyzed calculating overall mean and standard deviation. A separate analysis was performed for bite-block (in conjunction with mask) and for simple thermoplastic mask. Interobserver variability for CBCT three-dimensional registration was assessed. The residual error after correction and intrafractional motion were calculated. Results: The mean module of the three-dimensional displacement vector was 3.0 {+-} 1.4 mm. Setup errors for bite block and mask were smaller (2.9 {+-} 1.3 mm) than those for thermoplastic mask alone (3.2 {+-} 1.5 mm), but statistical significance was not reached (p = 0.15). Interobserver variability was negligible. The maximum margin calculated for residual errors and intra fraction motion was small but not negligible (1.57 mm). Conclusions: Considering the detected setup errors, daily image guidance is essential for the efficacy of SRT treatments when mask immobilization is used, and even when a bite-block is used in conjunction. The frame setup is still used as a starting point for the opportunity of rotational corrections. Residual margins after on-line corrections must be evaluated.

  10. Kilovoltage cone-beam CT imaging dose during breast radiotherapy: A dose comparison between a left and right breast setup

    SciTech Connect

    Quinn, Alexandra; Holloway, Lois; Begg, Jarrad; Nelson, Vinod; Metcalfe, Peter

    2014-07-01

    The purpose of this study was to investigate the delivered dose from a kilovoltage cone-beam computed tomography (kV-CBCT) acquired in breast treatment position for a left and right breast setup. The dose was measured with thermoluminescent dosimeters positioned within a female anthropomorphic phantom at organ locations. Imaging was performed on an Elekta Synergy XVI system with the phantom setup on a breast board. The image protocol involved 120 kVp, 140 mAs, and a 270° arc rotation clockwise 0° to 270° for the left breast setup and 270° to 180° for the right breast setup (maximum arc rotations possible). The dose delivered to the left breast, right breast, and heart was 5.1 mGy, 3.9 mGy, and 4.0 mGy for the left breast setup kV-CBCT, and 6.4 mGy, 6.0 mGy, and 4.8 mGy for the right breast setup kV-CBCT, respectively. The rotation arc of the kV-CBCT influenced the dose delivered, with the right breast setup kV-CBCT found to deliver a dose of up to 4 mGy or 105% higher to the treated breast′s surface in comparison with the left breast setup. This is attributed to the kV-CBCT source being more proximal to the anterior of the phantom for a right breast setup, whereas the source is more proximal to the posterior of the patient for a left-side scan.

  11. A system to track skin dose for neuro-interventional cone-beam computed tomography (CBCT)

    NASA Astrophysics Data System (ADS)

    Vijayan, Sarath; Xiong, Zhenyu; Rudin, Stephen; Bednarek, Daniel R.

    2016-03-01

    The skin-dose tracking system (DTS) provides a color-coded illustration of the cumulative skin-dose distribution on a closely-matching 3D graphic of the patient during fluoroscopic interventions in real-time for immediate feedback to the interventionist. The skin-dose tracking utility of DTS has been extended to include cone-beam computed tomography (CBCT) of neurointerventions. While the DTS was developed to track the entrance skin dose including backscatter, a significant part of the dose in CBCT is contributed by exit primary radiation and scatter due to the many overlapping projections during the rotational scan. The variation of backscatter inside and outside the collimated beam was measured with radiochromic film and a curve was fit to obtain a scatter spread function that could be applied in the DTS. Likewise, the exit dose distribution was measured with radiochromic film for a single projection and a correction factor was determined as a function of path length through the head. Both of these sources of skin dose are added for every projection in the CBCT scan to obtain a total dose mapping over the patient graphic. Results show the backscatter to follow a sigmoidal falloff near the edge of the beam, extending outside the beam as far as 8 cm. The exit dose measured for a cylindrical CTDI phantom was nearly 10 % of the entrance peak skin dose for the central ray. The dose mapping performed by the DTS for a CBCT scan was compared to that measured with radiochromic film and a CTDI-head phantom with good agreement.

  12. Statistical Reconstruction for Cone-Beam CT with a Post-Artifact-Correction Noise Model: Application to High-Quality Head Imaging

    PubMed Central

    Dang, H.; Stayman, J. W.; Sisniega, A.; Xu, J.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V.

    2015-01-01

    Non-contrast CT reliably detects fresh blood in the brain and is the current front-line imaging modality for intracranial hemorrhage such as that occurring in acute traumatic brain injury (contrast ~40-80 HU, size > 1 mm). We are developing flat-panel detector (FPD) cone-beam CT (CBCT) to facilitate such diagnosis in a low-cost, mobile platform suitable for point-of-care deployment. Such a system may offer benefits in the ICU, urgent care/concussion clinic, ambulance, and sports and military theatres. However, current FPD-CBCT systems face significant challenges that confound low-contrast, soft-tissue imaging. Artifact correction can overcome major sources of bias in FPD-CBCT but imparts noise amplification in filtered backprojection (FBP). Model-based reconstruction improves soft-tissue image quality compared to FBP by leveraging a high-fidelity forward model and image regularization. In this work, we develop a novel penalized weighted least-squares (PWLS) image reconstruction method with a noise model that includes accurate modeling of the noise characteristics associated with the two dominant artifact corrections (scatter and beam-hardening) in CBCT and utilizes modified weights to compensate for noise amplification imparted by each correction. Experiments included real data acquired on a FPD-CBCT test-bench and an anthropomorphic head phantom emulating intra-parenchymal hemorrhage. The proposed PWLS method demonstrated superior noise-resolution tradeoffs in comparison to FBP and PWLS with conventional weights (viz., at matched 0.50 mm spatial resolution, CNR = 11.9 compared to CNR = 5.6 and CNR = 9.9, respectively) and substantially reduced image noise especially in challenging regions such as skull base. The results support the hypothesis that with high-fidelity artifact correction and statistical reconstruction using an accurate post-artifact-correction noise model, FPD-CBCT can achieve image quality allowing reliable detection of intracranial hemorrhage

  13. Evaluation of the resolving potency of a novel reconstruction filter on periodontal ligament space with dental cone-beam CT: a quantitative phantom study

    NASA Astrophysics Data System (ADS)

    Houno, Yuuki; Hishikawa, Toshimitsu; Gotoh, Ken-ichi; Naitoh, Munetaka; Ariji, Eiichiro; Kodera, Yoshie

    2014-03-01

    Diagnosis of the alveolar bone condition is important for the treatment planning of periodontal disease. Especially the determination of periodontal ligament space is the most important remark because it represents the periodontal tissue support for tooth retention. However, owing to the image blur of the current cone-beam CT (CBCT) imaging technique, the periodontal ligament space is difficult to visualize. In this study, we developed an original periodontal ligament phantom (PLP) and evaluated the image quality of simulated periodontal ligament space using a novel reconstruction filter for CBCT that emphasized high frequency component. PLP was composed from two resin blocks of different materials, the bone equivalent block and the dentine equivalent block. They were assembled to make continuously changing space from 0.0 to 1.0 millimeter that mimics periodontal ligament space. PLP was placed in water and the image was obtained by using Alphard-3030 dental cone-beam CT (Asahi Roentgen Industry Co., Ltd.). Then we reconstructed the projection data with a novel reconstruction filter. The axial images were compared with conventional reconstructed images. In novel filter reconstruction images, 0.4 millimeter of the space width was steadily detected by calculation of pixel value, on the other hand 0.6 millimeter was in conventional images. With our method, the resolving potency of conebeam CT images was improved.

  14. Setup Reproducibility for Thoracic and Upper Gastrointestinal Radiation Therapy: Influence of Immobilization Method and On-Line Cone-Beam CT Guidance

    SciTech Connect

    Li, Winnie; Moseley, Douglas J.; Bissonnette, Jean-Pierre; Purdie, Thomas G.; Bezjak, Andrea; Jaffray, David A.

    2010-01-01

    We report the setup reproducibility of thoracic and upper gastrointestinal (UGI) radiotherapy (RT) patients for 2 immobilization methods evaluated through cone-beam computed tomography (CBCT) image guidance, and present planning target volume (PTV) margin calculations made on the basis of these observations. Daily CBCT images from 65 patients immobilized in a chestboard (CB) or evacuated cushion (EC) were registered to the planning CT using automatic bony anatomy registration. The standardized region-of-interest for matching was focused around vertebral bodies adjacent to tumor location. Discrepancies >3 mm between the CBCT and CT datasets were corrected before initiation of RT and verified with a second CBCT to assess residual error (usually taken after 90 s of the initial CBCT). Positional data were analyzed to evaluate the magnitude and frequencies of setup errors before and after correction. The setup distributions were slightly different for the CB (797 scans) and EC (757 scans) methods, and the probability of adjustment at a 3-mm action threshold was not significantly different (p = 0.47). Setup displacements >10 mm in any direction were observed in 10% of CB fractions and 16% of EC fractions (p = 0.0008). Residual error distributions after CBCT guidance were equivalent regardless of immobilization method. Using a published formula, the PTV margins for the CB were L/R, 3.3 mm; S/I,