CALCULATION OF NONLINEAR CONFIDENCE AND PREDICTION INTERVALS FOR GROUND-WATER FLOW MODELS.
Cooley, Richard L.; Vecchia, Aldo V.
1987-01-01
A method is derived to efficiently compute nonlinear confidence and prediction intervals on any function of parameters derived as output from a mathematical model of a physical system. The method is applied to the problem of obtaining confidence and prediction intervals for manually-calibrated ground-water flow models. To obtain confidence and prediction intervals resulting from uncertainties in parameters, the calibrated model and information on extreme ranges and ordering of the model parameters within one or more independent groups are required. If random errors in the dependent variable are present in addition to uncertainties in parameters, then calculation of prediction intervals also requires information on the extreme range of error expected. A simple Monte Carlo method is used to compute the quantiles necessary to establish probability levels for the confidence and prediction intervals. Application of the method to a hypothetical example showed that inclusion of random errors in the dependent variable in addition to uncertainties in parameters can considerably widen the prediction intervals.
Towards the development of rapid screening techniques for shale gas core properties
NASA Astrophysics Data System (ADS)
Cave, Mark R.; Vane, Christopher; Kemp, Simon; Harrington, Jon; Cuss, Robert
2013-04-01
Shale gas has been produced for many years in the U.S.A. and forms around 8% of total their natural gas production. Recent testing for gas on the Fylde Coast in Lancashire UK suggests there are potentially large reserves which could be exploited. The increasing significance of shale gas has lead to the need for deeper understanding of shale behaviour. There are many factors which govern whether a particular shale will become a shale gas resource and these include: i) Organic matter abundance, type and thermal maturity; ii) Porosity-permeability relationships and pore size distribution; iii) Brittleness and its relationship to mineralogy and rock fabric. Measurements of these properties require sophisticated and time consuming laboratory techniques (Josh et al 2012), whereas rapid screening techniques could provide timely results which could improve the efficiency and cost effectiveness of exploration. In this study, techniques which are portable and provide rapid on-site measurements (X-ray Fluorescence (XRF) and Infra-red (IR) spectroscopy) have been calibrated against standard laboratory techniques (Rock-Eval 6 analyser-Vinci Technologies) and Powder whole-rock XRD analysis was carried out using a PANalytical X'Pert Pro series diffractometer equipped with a cobalt-target tube, X'Celerator detector and operated at 45kV and 40mA, to predict properties of potential shale gas material from core material from the Bowland shale Roosecote, south Cumbria. Preliminary work showed that, amongst various mineralogical and organic matter properties of the core, regression models could be used so that the total organic carbon content could be predicted from the IR spectra with a 95 percentile confidence prediction error of 0.6% organic carbon, the free hydrocarbons could be predicted with a 95 percentile confidence prediction error of 0.6 mgHC/g rock, the bound hydrocarbons could be predicted with a 95 percentile confidence prediction error of 2.4 mgHC/g rock, mica content with a 95 percentile confidence prediction error of 14% and quartz content with a 95 percentile confidence prediction error of 14% . References M. Josh *, L. Esteban, C. Delle Piane, J. Sarout, D.N. Dewhurst, M.B. Clennell 2012. Journal of Petroleum Science and Engineering , 88-89, 107-124.
Mesolimbic confidence signals guide perceptual learning in the absence of external feedback
Guggenmos, Matthias; Wilbertz, Gregor; Hebart, Martin N; Sterzer, Philipp
2016-01-01
It is well established that learning can occur without external feedback, yet normative reinforcement learning theories have difficulties explaining such instances of learning. Here, we propose that human observers are capable of generating their own feedback signals by monitoring internal decision variables. We investigated this hypothesis in a visual perceptual learning task using fMRI and confidence reports as a measure for this monitoring process. Employing a novel computational model in which learning is guided by confidence-based reinforcement signals, we found that mesolimbic brain areas encoded both anticipation and prediction error of confidence—in remarkable similarity to previous findings for external reward-based feedback. We demonstrate that the model accounts for choice and confidence reports and show that the mesolimbic confidence prediction error modulation derived through the model predicts individual learning success. These results provide a mechanistic neurobiological explanation for learning without external feedback by augmenting reinforcement models with confidence-based feedback. DOI: http://dx.doi.org/10.7554/eLife.13388.001 PMID:27021283
Water quality management using statistical analysis and time-series prediction model
NASA Astrophysics Data System (ADS)
Parmar, Kulwinder Singh; Bhardwaj, Rashmi
2014-12-01
This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.
2013-09-01
based confidence metric is used to compare several different model predictions with the experimental data. II. Aerothermal Model Definition and...whereas 5% measurement uncertainty is assumed for aerodynamic pressure and heat flux measurements 4p y and 4Q y . Bayesian updating according... definitive conclusions for these particular aerodynamic models. However, given the confidence associated with the 4 sdp predictions for Run 30 (H/D
Bias and uncertainty in regression-calibrated models of groundwater flow in heterogeneous media
Cooley, R.L.; Christensen, S.
2006-01-01
Groundwater models need to account for detailed but generally unknown spatial variability (heterogeneity) of the hydrogeologic model inputs. To address this problem we replace the large, m-dimensional stochastic vector ?? that reflects both small and large scales of heterogeneity in the inputs by a lumped or smoothed m-dimensional approximation ????*, where ?? is an interpolation matrix and ??* is a stochastic vector of parameters. Vector ??* has small enough dimension to allow its estimation with the available data. The consequence of the replacement is that model function f(????*) written in terms of the approximate inputs is in error with respect to the same model function written in terms of ??, ??,f(??), which is assumed to be nearly exact. The difference f(??) - f(????*), termed model error, is spatially correlated, generates prediction biases, and causes standard confidence and prediction intervals to be too small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate ??* and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear regression methods are extended to analyze the revised method. The analysis develops analytical expressions for bias terms reflecting the interaction of model nonlinearity and model error, for correction factors needed to adjust the sizes of confidence and prediction intervals for this interaction, and for correction factors needed to adjust the sizes of confidence and prediction intervals for possible use of a diagonal weight matrix in place of the correct one. If terms expressing the degree of intrinsic nonlinearity for f(??) and f(????*) are small, then most of the biases are small and the correction factors are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is large to test robustness of the methodology. Numerical results conform with the theoretical analysis. ?? 2005 Elsevier Ltd. All rights reserved.
Large Sample Confidence Limits for Goodman and Kruskal's Proportional Prediction Measure TAU-b
ERIC Educational Resources Information Center
Berry, Kenneth J.; Mielke, Paul W.
1976-01-01
A Fortran Extended program which computes Goodman and Kruskal's Tau-b, its asymmetrical counterpart, Tau-a, and three sets of confidence limits for each coefficient under full multinomial and proportional stratified sampling is presented. A correction of an error in the calculation of the large sample standard error of Tau-b is discussed.…
Confidence intervals in Flow Forecasting by using artificial neural networks
NASA Astrophysics Data System (ADS)
Panagoulia, Dionysia; Tsekouras, George
2014-05-01
One of the major inadequacies in implementation of Artificial Neural Networks (ANNs) for flow forecasting is the development of confidence intervals, because the relevant estimation cannot be implemented directly, contrasted to the classical forecasting methods. The variation in the ANN output is a measure of uncertainty in the model predictions based on the training data set. Different methods for uncertainty analysis, such as bootstrap, Bayesian, Monte Carlo, have already proposed for hydrologic and geophysical models, while methods for confidence intervals, such as error output, re-sampling, multi-linear regression adapted to ANN have been used for power load forecasting [1-2]. The aim of this paper is to present the re-sampling method for ANN prediction models and to develop this for flow forecasting of the next day. The re-sampling method is based on the ascending sorting of the errors between real and predicted values for all input vectors. The cumulative sample distribution function of the prediction errors is calculated and the confidence intervals are estimated by keeping the intermediate value, rejecting the extreme values according to the desired confidence levels, and holding the intervals symmetrical in probability. For application of the confidence intervals issue, input vectors are used from the Mesochora catchment in western-central Greece. The ANN's training algorithm is the stochastic training back-propagation process with decreasing functions of learning rate and momentum term, for which an optimization process is conducted regarding the crucial parameters values, such as the number of neurons, the kind of activation functions, the initial values and time parameters of learning rate and momentum term etc. Input variables are historical data of previous days, such as flows, nonlinearly weather related temperatures and nonlinearly weather related rainfalls based on correlation analysis between the under prediction flow and each implicit input variable of different ANN structures [3]. The performance of each ANN structure is evaluated by the voting analysis based on eleven criteria, which are the root mean square error (RMSE), the correlation index (R), the mean absolute percentage error (MAPE), the mean percentage error (MPE), the mean percentage error (ME), the percentage volume in errors (VE), the percentage error in peak (MF), the normalized mean bias error (NMBE), the normalized root mean bias error (NRMSE), the Nash-Sutcliffe model efficiency coefficient (E) and the modified Nash-Sutcliffe model efficiency coefficient (E1). The next day flow for the test set is calculated using the best ANN structure's model. Consequently, the confidence intervals of various confidence levels for training, evaluation and test sets are compared in order to explore the generalisation dynamics of confidence intervals from training and evaluation sets. [1] H.S. Hippert, C.E. Pedreira, R.C. Souza, "Neural networks for short-term load forecasting: A review and evaluation," IEEE Trans. on Power Systems, vol. 16, no. 1, 2001, pp. 44-55. [2] G. J. Tsekouras, N.E. Mastorakis, F.D. Kanellos, V.T. Kontargyri, C.D. Tsirekis, I.S. Karanasiou, Ch.N. Elias, A.D. Salis, P.A. Kontaxis, A.A. Gialketsi: "Short term load forecasting in Greek interconnected power system using ANN: Confidence Interval using a novel re-sampling technique with corrective Factor", WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal Processing, (CSECS '10), Vouliagmeni, Athens, Greece, December 29-31, 2010. [3] D. Panagoulia, I. Trichakis, G. J. Tsekouras: "Flow Forecasting via Artificial Neural Networks - A Study for Input Variables conditioned on atmospheric circulation", European Geosciences Union, General Assembly 2012 (NH1.1 / AS1.16 - Extreme meteorological and hydrological events induced by severe weather and climate change), Vienna, Austria, 22-27 April 2012.
Bergen, Silas; Sheppard, Lianne; Kaufman, Joel D.; Szpiro, Adam A.
2016-01-01
Summary Air pollution epidemiology studies are trending towards a multi-pollutant approach. In these studies, exposures at subject locations are unobserved and must be predicted using observed exposures at misaligned monitoring locations. This induces measurement error, which can bias the estimated health effects and affect standard error estimates. We characterize this measurement error and develop an analytic bias correction when using penalized regression splines to predict exposure. Our simulations show bias from multi-pollutant measurement error can be severe, and in opposite directions or simultaneously positive or negative. Our analytic bias correction combined with a non-parametric bootstrap yields accurate coverage of 95% confidence intervals. We apply our methodology to analyze the association of systolic blood pressure with PM2.5 and NO2 in the NIEHS Sister Study. We find that NO2 confounds the association of systolic blood pressure with PM2.5 and vice versa. Elevated systolic blood pressure was significantly associated with increased PM2.5 and decreased NO2. Correcting for measurement error bias strengthened these associations and widened 95% confidence intervals. PMID:27789915
Tarone, Aaron M; Foran, David R
2008-07-01
Forensic entomologists use blow fly development to estimate a postmortem interval. Although accurate, fly age estimates can be imprecise for older developmental stages and no standard means of assigning confidence intervals exists. Presented here is a method for modeling growth of the forensically important blow fly Lucilia sericata, using generalized additive models (GAMs). Eighteen GAMs were created to predict the extent of juvenile fly development, encompassing developmental stage, length, weight, strain, and temperature data, collected from 2559 individuals. All measures were informative, explaining up to 92.6% of the deviance in the data, though strain and temperature exerted negligible influences. Predictions made with an independent data set allowed for a subsequent examination of error. Estimates using length and developmental stage were within 5% of true development percent during the feeding portion of the larval life cycle, while predictions for postfeeding third instars were less precise, but within expected error.
NASA Astrophysics Data System (ADS)
Lilly, P.; Yanai, R. D.; Buckley, H. L.; Case, B. S.; Woollons, R. C.; Holdaway, R. J.; Johnson, J.
2016-12-01
Calculations of forest biomass and elemental content require many measurements and models, each contributing uncertainty to the final estimates. While sampling error is commonly reported, based on replicate plots, error due to uncertainty in the regression used to estimate biomass from tree diameter is usually not quantified. Some published estimates of uncertainty due to the regression models have used the uncertainty in the prediction of individuals, ignoring uncertainty in the mean, while others have propagated uncertainty in the mean while ignoring individual variation. Using the simple case of the calcium concentration of sugar maple leaves, we compare the variation among individuals (the standard deviation) to the uncertainty in the mean (the standard error) and illustrate the declining importance in the prediction of individual concentrations as the number of individuals increases. For allometric models, the analogous statistics are the prediction interval (or the residual variation in the model fit) and the confidence interval (describing the uncertainty in the best fit model). The effect of propagating these two sources of error is illustrated using the mass of sugar maple foliage. The uncertainty in individual tree predictions was large for plots with few trees; for plots with 30 trees or more, the uncertainty in individuals was less important than the uncertainty in the mean. Authors of previously published analyses have reanalyzed their data to show the magnitude of these two sources of uncertainty in scales ranging from experimental plots to entire countries. The most correct analysis will take both sources of uncertainty into account, but for practical purposes, country-level reports of uncertainty in carbon stocks, as required by the IPCC, can ignore the uncertainty in individuals. Ignoring the uncertainty in the mean will lead to exaggerated estimates of confidence in estimates of forest biomass and carbon and nutrient contents.
Auslander, Margeaux V; Thomas, Ayanna K; Gutchess, Angela H
2017-01-01
Background/Study Context: The present experiment investigated the role of confidence and control beliefs in susceptibility to the misinformation effect in young and older adults. Control beliefs are perceptions about one's abilities or competence and the extent to which one can influence performance outcomes. It was predicted that level of control beliefs would influence misinformation susceptibility and overall memory confidence. Fifty university students (ages 18-26) and 37 community-dwelling older adults (ages 62-86) were tested. Participants viewed a video, answered questions containing misinformation, and then completed a source-recognition test to determine whether the information presented was seen in the video, the questionnaire only, both, or neither. For each response, participants indicated their level of confidence. The relationship between control beliefs and memory performance was moderated by confidence. That is, individuals with lower control beliefs made more errors as confidence decreased. Additionally, the relationship between confidence and memory performance differed by age, with greater confidence related to more errors for young adults. Confidence is an important factor in how control beliefs and age are related to memory errors in the misinformation effect. This may have implications for the legal system, particularly with eyewitness testimony. The confidence of an individual should be considered if the eyewitness is a younger adult.
Dang, Mia; Ramsaran, Kalinda D; Street, Melissa E; Syed, S Noreen; Barclay-Goddard, Ruth; Stratford, Paul W; Miller, Patricia A
2011-01-01
To estimate the predictive accuracy and clinical usefulness of the Chedoke-McMaster Stroke Assessment (CMSA) predictive equations. A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from -0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted.
Nouretdinov, Ilia; Costafreda, Sergi G; Gammerman, Alexander; Chervonenkis, Alexey; Vovk, Vladimir; Vapnik, Vladimir; Fu, Cynthia H Y
2011-05-15
There is rapidly accumulating evidence that the application of machine learning classification to neuroimaging measurements may be valuable for the development of diagnostic and prognostic prediction tools in psychiatry. However, current methods do not produce a measure of the reliability of the predictions. Knowing the risk of the error associated with a given prediction is essential for the development of neuroimaging-based clinical tools. We propose a general probabilistic classification method to produce measures of confidence for magnetic resonance imaging (MRI) data. We describe the application of transductive conformal predictor (TCP) to MRI images. TCP generates the most likely prediction and a valid measure of confidence, as well as the set of all possible predictions for a given confidence level. We present the theoretical motivation for TCP, and we have applied TCP to structural and functional MRI data in patients and healthy controls to investigate diagnostic and prognostic prediction in depression. We verify that TCP predictions are as accurate as those obtained with more standard machine learning methods, such as support vector machine, while providing the additional benefit of a valid measure of confidence for each prediction. Copyright © 2010 Elsevier Inc. All rights reserved.
Using beta binomials to estimate classification uncertainty for ensemble models.
Clark, Robert D; Liang, Wenkel; Lee, Adam C; Lawless, Michael S; Fraczkiewicz, Robert; Waldman, Marvin
2014-01-01
Quantitative structure-activity (QSAR) models have enormous potential for reducing drug discovery and development costs as well as the need for animal testing. Great strides have been made in estimating their overall reliability, but to fully realize that potential, researchers and regulators need to know how confident they can be in individual predictions. Submodels in an ensemble model which have been trained on different subsets of a shared training pool represent multiple samples of the model space, and the degree of agreement among them contains information on the reliability of ensemble predictions. For artificial neural network ensembles (ANNEs) using two different methods for determining ensemble classification - one using vote tallies and the other averaging individual network outputs - we have found that the distribution of predictions across positive vote tallies can be reasonably well-modeled as a beta binomial distribution, as can the distribution of errors. Together, these two distributions can be used to estimate the probability that a given predictive classification will be in error. Large data sets comprised of logP, Ames mutagenicity, and CYP2D6 inhibition data are used to illustrate and validate the method. The distributions of predictions and errors for the training pool accurately predicted the distribution of predictions and errors for large external validation sets, even when the number of positive and negative examples in the training pool were not balanced. Moreover, the likelihood of a given compound being prospectively misclassified as a function of the degree of consensus between networks in the ensemble could in most cases be estimated accurately from the fitted beta binomial distributions for the training pool. Confidence in an individual predictive classification by an ensemble model can be accurately assessed by examining the distributions of predictions and errors as a function of the degree of agreement among the constituent submodels. Further, ensemble uncertainty estimation can often be improved by adjusting the voting or classification threshold based on the parameters of the error distribution. Finally, the profiles for models whose predictive uncertainty estimates are not reliable provide clues to that effect without the need for comparison to an external test set.
Laboratory evaluation of the pointing stability of the ASPS Vernier System
NASA Technical Reports Server (NTRS)
1980-01-01
The annular suspension and pointing system (ASPS) is an end-mount experiment pointing system designed for use in the space shuttle. The results of the ASPS Vernier System (AVS) pointing stability tests conducted in a laboratory environment are documented. A simulated zero-G suspension was used to support the test payload in the laboratory. The AVS and the suspension were modelled and incorporated into a simulation of the laboratory test. Error sources were identified and pointing stability sensitivities were determined via simulation. Statistical predictions of laboratory test performance were derived and compared to actual laboratory test results. The predicted mean pointing stability during simulated shuttle disturbances was 1.22 arc seconds; the actual mean laboratory test pointing stability was 1.36 arc seconds. The successful prediction of laboratory test results provides increased confidence in the analytical understanding of the AVS magnetic bearing technology and allows confident prediction of in-flight performance. Computer simulations of ASPS, operating in the shuttle disturbance environment, predict in-flight pointing stability errors less than 0.01 arc seconds.
Dang, Mia; Ramsaran, Kalinda D.; Street, Melissa E.; Syed, S. Noreen; Barclay-Goddard, Ruth; Miller, Patricia A.
2011-01-01
ABSTRACT Purpose: To estimate the predictive accuracy and clinical usefulness of the Chedoke–McMaster Stroke Assessment (CMSA) predictive equations. Method: A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Results: Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from −0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. Conclusions: This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted. PMID:22654239
Thomas, D C; Bowman, J D; Jiang, L; Jiang, F; Peters, J M
1999-10-01
Case-control data on childhood leukemia in Los Angeles County were reanalyzed with residential magnetic fields predicted from the wiring configurations of nearby transmission and distribution lines. As described in a companion paper, the 24-h means of the magnetic field's magnitude in subjects' homes were predicted by a physically based regression model that had been fitted to 24-h measurements and wiring data. In addition, magnetic field exposures were adjusted for the most likely form of exposure assessment errors: classic errors for the 24-h measurements and Berkson errors for the predictions from wire configurations. Although the measured fields had no association with childhood leukemia (P for trend=.88), the risks were significant for predicted magnetic fields above 1.25 mG (odds ratio=2.00, 95% confidence interval=1.03-3.89), and a significant dose-response was seen (P for trend=.02). When exposures were determined by a combination of predictions and measurements that corrects for errors, the odds ratio (odd ratio=2.19, 95% confidence interval=1.12-4.31) and the trend (p =.007) showed somewhat greater significance. These findings support the hypothesis that magnetic fields from electrical lines are causally related to childhood leukemia but that this association has been inconsistent among epidemiologic studies due to different types of exposure assessment error. In these data, the leukemia risks from a child's residential magnetic field exposure appears to be better assessed by wire configurations than by 24-h area measurements. However, the predicted fields only partially account for the effect of the Wertheimer-Leeper wire code in a multivariate analysis and do not completely explain why these wire codes have been so often associated with childhood leukemia. The most plausible explanation for our findings is that the causal factor is another magnetic field exposure metric correlated to both wire code and the field's time-averaged magnitude. Copyright 1999 Wiley-Liss, Inc.
Smalheiser, Neil R; McDonagh, Marian S; Yu, Clement; Adams, Clive E; Davis, John M; Yu, Philip S
2015-01-01
Objective: For many literature review tasks, including systematic review (SR) and other aspects of evidence-based medicine, it is important to know whether an article describes a randomized controlled trial (RCT). Current manual annotation is not complete or flexible enough for the SR process. In this work, highly accurate machine learning predictive models were built that include confidence predictions of whether an article is an RCT. Materials and Methods: The LibSVM classifier was used with forward selection of potential feature sets on a large human-related subset of MEDLINE to create a classification model requiring only the citation, abstract, and MeSH terms for each article. Results: The model achieved an area under the receiver operating characteristic curve of 0.973 and mean squared error of 0.013 on the held out year 2011 data. Accurate confidence estimates were confirmed on a manually reviewed set of test articles. A second model not requiring MeSH terms was also created, and performs almost as well. Discussion: Both models accurately rank and predict article RCT confidence. Using the model and the manually reviewed samples, it is estimated that about 8000 (3%) additional RCTs can be identified in MEDLINE, and that 5% of articles tagged as RCTs in Medline may not be identified. Conclusion: Retagging human-related studies with a continuously valued RCT confidence is potentially more useful for article ranking and review than a simple yes/no prediction. The automated RCT tagging tool should offer significant savings of time and effort during the process of writing SRs, and is a key component of a multistep text mining pipeline that we are building to streamline SR workflow. In addition, the model may be useful for identifying errors in MEDLINE publication types. The RCT confidence predictions described here have been made available to users as a web service with a user query form front end at: http://arrowsmith.psych.uic.edu/cgi-bin/arrowsmith_uic/RCT_Tagger.cgi. PMID:25656516
NASA Astrophysics Data System (ADS)
Pernot, Pascal; Savin, Andreas
2018-06-01
Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of a method through error statistics. The commonly used error statistics, such as the mean signed and mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached to these methods. We show that, the distributions of model errors being neither normal nor zero-centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this limitation, we advocate for the use of more informative statistics, based on the empirical cumulative distribution function of unsigned errors, namely, (1) the probability for a new calculation to have an absolute error below a chosen threshold and (2) the maximal amplitude of errors one can expect with a chosen high confidence level. Those statistics are also shown to be well suited for benchmarking and ranking studies. Moreover, the standard error on all benchmarking statistics depends on the size of the reference dataset. Systematic publication of these standard errors would be very helpful to assess the statistical reliability of benchmarking conclusions.
Effect of correlated observation error on parameters, predictions, and uncertainty
Tiedeman, Claire; Green, Christopher T.
2013-01-01
Correlations among observation errors are typically omitted when calculating observation weights for model calibration by inverse methods. We explore the effects of omitting these correlations on estimates of parameters, predictions, and uncertainties. First, we develop a new analytical expression for the difference in parameter variance estimated with and without error correlations for a simple one-parameter two-observation inverse model. Results indicate that omitting error correlations from both the weight matrix and the variance calculation can either increase or decrease the parameter variance, depending on the values of error correlation (ρ) and the ratio of dimensionless scaled sensitivities (rdss). For small ρ, the difference in variance is always small, but for large ρ, the difference varies widely depending on the sign and magnitude of rdss. Next, we consider a groundwater reactive transport model of denitrification with four parameters and correlated geochemical observation errors that are computed by an error-propagation approach that is new for hydrogeologic studies. We compare parameter estimates, predictions, and uncertainties obtained with and without the error correlations. Omitting the correlations modestly to substantially changes parameter estimates, and causes both increases and decreases of parameter variances, consistent with the analytical expression. Differences in predictions for the models calibrated with and without error correlations can be greater than parameter differences when both are considered relative to their respective confidence intervals. These results indicate that including observation error correlations in weighting for nonlinear regression can have important effects on parameter estimates, predictions, and their respective uncertainties.
Experiences from the testing of a theory for modelling groundwater flow in heterogeneous media
Christensen, S.; Cooley, R.L.
2002-01-01
Usually, small-scale model error is present in groundwater modelling because the model only represents average system characteristics having the same form as the drift and small-scale variability is neglected. These errors cause the true errors of a regression model to be correlated. Theory and an example show that the errors also contribute to bias in the estimates of model parameters. This bias originates from model nonlinearity. In spite of this bias, predictions of hydraulic head are nearly unbiased if the model intrinsic nonlinearity is small. Individual confidence and prediction intervals are accurate if the t-statistic is multiplied by a correction factor. The correction factor can be computed from the true error second moment matrix, which can be determined when the stochastic properties of the system characteristics are known.
Experience gained in testing a theory for modelling groundwater flow in heterogeneous media
Christensen, S.; Cooley, R.L.
2002-01-01
Usually, small-scale model error is present in groundwater modelling because the model only represents average system characteristics having the same form as the drift, and small-scale variability is neglected. These errors cause the true errors of a regression model to be correlated. Theory and an example show that the errors also contribute to bias in the estimates of model parameters. This bias originates from model nonlinearity. In spite of this bias, predictions of hydraulic head are nearly unbiased if the model intrinsic nonlinearity is small. Individual confidence and prediction intervals are accurate if the t-statistic is multiplied by a correction factor. The correction factor can be computed from the true error second moment matrix, which can be determined when the stochastic properties of the system characteristics are known.
TU-AB-202-03: Prediction of PET Transfer Uncertainty by DIR Error Estimating Software, AUTODIRECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chen, J; Phillips, J
2016-06-15
Purpose: Deformable image registration (DIR) is a powerful tool, but DIR errors can adversely affect its clinical applications. To estimate voxel-specific DIR uncertainty, a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), has been developed and validated. This work tests the ability of this software to predict uncertainty for the transfer of standard uptake values (SUV) from positron-emission tomography (PET) with DIR. Methods: Virtual phantoms are used for this study. Each phantom has a planning computed tomography (CT) image and a diagnostic PET-CT image set. A deformation was digitally applied to the diagnostic CT to create the planningmore » CT image and establish a known deformation between the images. One lung and three rectum patient datasets were employed to create the virtual phantoms. Both of these sites have difficult deformation scenarios associated with them, which can affect DIR accuracy (lung tissue sliding and changes in rectal filling). The virtual phantoms were created to simulate these scenarios by introducing discontinuities in the deformation field at the lung rectum border. The DIR algorithm from Plastimatch software was applied to these phantoms. The SUV mapping errors from the DIR were then compared to that predicted by AUTODIRECT. Results: The SUV error distributions closely followed the AUTODIRECT predicted error distribution for the 4 test cases. The minimum and maximum PET SUVs were produced from AUTODIRECT at 95% confidence interval before applying gradient-based SUV segmentation for each of these volumes. Notably, 93.5% of the target volume warped by the true deformation was included within the AUTODIRECT-predicted maximum SUV volume after the segmentation, while 78.9% of the target volume was within the target volume warped by Plastimatch. Conclusion: The AUTODIRECT framework is able to predict PET transfer uncertainty caused by DIR, which enables an understanding of the associated target volume uncertainty.« less
Local-search based prediction of medical image registration error
NASA Astrophysics Data System (ADS)
Saygili, Görkem
2018-03-01
Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.
NASA Technical Reports Server (NTRS)
Hruby, R. J.; Bjorkman, W. S.; Schmidt, S. F.; Carestia, R. A.
1979-01-01
Algorithms were developed that attempt to identify which sensor in a tetrad configuration has experienced a step failure. An algorithm is also described that provides a measure of the confidence with which the correct identification was made. Experimental results are presented from real-time tests conducted on a three-axis motion facility utilizing an ortho-skew tetrad strapdown inertial sensor package. The effects of prediction errors and of quantization on correct failure identification are discussed as well as an algorithm for detecting second failures through prediction.
Beyond hypercorrection: remembering corrective feedback for low-confidence errors.
Griffiths, Lauren; Higham, Philip A
2018-02-01
Correcting errors based on corrective feedback is essential to successful learning. Previous studies have found that corrections to high-confidence errors are better remembered than low-confidence errors (the hypercorrection effect). The aim of this study was to investigate whether corrections to low-confidence errors can also be successfully retained in some cases. Participants completed an initial multiple-choice test consisting of control, trick and easy general-knowledge questions, rated their confidence after answering each question, and then received immediate corrective feedback. After a short delay, they were given a cued-recall test consisting of the same questions. In two experiments, we found high-confidence errors to control questions were better corrected on the second test compared to low-confidence errors - the typical hypercorrection effect. However, low-confidence errors to trick questions were just as likely to be corrected as high-confidence errors. Most surprisingly, we found that memory for the feedback and original responses, not confidence or surprise, were significant predictors of error correction. We conclude that for some types of material, there is an effortful process of elaboration and problem solving prior to making low-confidence errors that facilitates memory of corrective feedback.
Driving Errors in Parkinson’s Disease: Moving Closer to Predicting On-Road Outcomes
Brumback, Babette; Monahan, Miriam; Malaty, Irene I.; Rodriguez, Ramon L.; Okun, Michael S.; McFarland, Nikolaus R.
2014-01-01
Age-related medical conditions such as Parkinson’s disease (PD) compromise driver fitness. Results from studies are unclear on the specific driving errors that underlie passing or failing an on-road assessment. In this study, we determined the between-group differences and quantified the on-road driving errors that predicted pass or fail on-road outcomes in 101 drivers with PD (mean age = 69.38 ± 7.43) and 138 healthy control (HC) drivers (mean age = 71.76 ± 5.08). Participants with PD had minor differences in demographics and driving habits and history but made more and different driving errors than HC participants. Drivers with PD failed the on-road test to a greater extent than HC drivers (41% vs. 9%), χ2(1) = 35.54, HC N = 138, PD N = 99, p < .001. The driving errors predicting on-road pass or fail outcomes (95% confidence interval, Nagelkerke R2 =.771) were made in visual scanning, signaling, vehicle positioning, speeding (mainly underspeeding, t(61) = 7.004, p < .001, and total errors. Although it is difficult to predict on-road outcomes, this study provides a foundation for doing so. PMID:24367958
The role of bias in simulation of the Indian monsoon and its relationship to predictability
NASA Astrophysics Data System (ADS)
Kelly, P.
2016-12-01
Confidence in future projections of how climate change will affect the Indian monsoon is currently limited by- among other things-model biases. That is, the systematic error in simulating the mean present day climate. An important priority question in seamless prediction involves the role of the mean state. How much of the prediction error in imperfect models stems from a biased mean state (itself a result of many interacting process errors), and how much stems from the flow dependence of processes during an oscillation or variation we are trying to predict? Using simple but effective nudging techniques, we are able to address this question in a clean and incisive framework that teases apart the roles of the mean state vs. transient flow dependence in constraining predictability. The role of bias in model fidelity of simulations of the Indian monsoon is investigated in CAM5, and the relationship to predictability in remote regions in the "free" (non-nudged) domain is explored.
Ensemble of classifiers for confidence-rated classification of NDE signal
NASA Astrophysics Data System (ADS)
Banerjee, Portia; Safdarnejad, Seyed; Udpa, Lalita; Udpa, Satish
2016-02-01
Ensemble of classifiers in general, aims to improve classification accuracy by combining results from multiple weak hypotheses into a single strong classifier through weighted majority voting. Improved versions of ensemble of classifiers generate self-rated confidence scores which estimate the reliability of each of its prediction and boost the classifier using these confidence-rated predictions. However, such a confidence metric is based only on the rate of correct classification. In existing works, although ensemble of classifiers has been widely used in computational intelligence, the effect of all factors of unreliability on the confidence of classification is highly overlooked. With relevance to NDE, classification results are affected by inherent ambiguity of classifica-tion, non-discriminative features, inadequate training samples and noise due to measurement. In this paper, we extend the existing ensemble classification by maximizing confidence of every classification decision in addition to minimizing the classification error. Initial results of the approach on data from eddy current inspection show improvement in classification performance of defect and non-defect indications.
Predictability of Bristol Bay, Alaska, sockeye salmon returns one to four years in the future
Adkison, Milo D.; Peterson, R.M.
2000-01-01
Historically, forecast error for returns of sockeye salmon Oncorhynchus nerka to Bristol Bay, Alaska, has been large. Using cross-validation forecast error as our criterion, we selected forecast models for each of the nine principal Bristol Bay drainages. Competing forecast models included stock-recruitment relationships, environmental variables, prior returns of siblings, or combinations of these predictors. For most stocks, we found prior returns of siblings to be the best single predictor of returns; however, forecast accuracy was low even when multiple predictors were considered. For a typical drainage, an 80% confidence interval ranged from one half to double the point forecast. These confidence intervals appeared to be appropriately wide.
Validation of the Kp Geomagnetic Index Forecast at CCMC
NASA Astrophysics Data System (ADS)
Frechette, B. P.; Mays, M. L.
2017-12-01
The Community Coordinated Modeling Center (CCMC) Space Weather Research Center (SWRC) sub-team provides space weather services to NASA robotic mission operators and science campaigns and prototypes new models, forecasting techniques, and procedures. The Kp index is a measure of geomagnetic disturbances for space weather in the magnetosphere such as geomagnetic storms and substorms. In this study, we performed validation on the Newell et al. (2007) Kp prediction equation from December 2010 to July 2017. The purpose of this research is to understand the Kp forecast performance because it's critical for NASA missions to have confidence in the space weather forecast. This research was done by computing the Kp error for each forecast (average, minimum, maximum) and each synoptic period. Then to quantify forecast performance we computed the mean error, mean absolute error, root mean square error, multiplicative bias and correlation coefficient. A contingency table was made for each forecast and skill scores were computed. The results are compared to the perfect score and reference forecast skill score. In conclusion, the skill score and error results show that the minimum of the predicted Kp over each synoptic period from the Newell et al. (2007) Kp prediction equation performed better than the maximum or average of the prediction. However, persistence (reference forecast) outperformed all of the Kp forecasts (minimum, maximum, and average). Overall, the Newell Kp prediction still predicts within a range of 1, even though persistence beats it.
Confidence Preserving Machine for Facial Action Unit Detection
Zeng, Jiabei; Chu, Wen-Sheng; De la Torre, Fernando; Cohn, Jeffrey F.; Xiong, Zhang
2016-01-01
Facial action unit (AU) detection from video has been a long-standing problem in automated facial expression analysis. While progress has been made, accurate detection of facial AUs remains challenging due to ubiquitous sources of errors, such as inter-personal variability, pose, and low-intensity AUs. In this paper, we refer to samples causing such errors as hard samples, and the remaining as easy samples. To address learning with the hard samples, we propose the Confidence Preserving Machine (CPM), a novel two-stage learning framework that combines multiple classifiers following an “easy-to-hard” strategy. During the training stage, CPM learns two confident classifiers. Each classifier focuses on separating easy samples of one class from all else, and thus preserves confidence on predicting each class. During the testing stage, the confident classifiers provide “virtual labels” for easy test samples. Given the virtual labels, we propose a quasi-semi-supervised (QSS) learning strategy to learn a person-specific (PS) classifier. The QSS strategy employs a spatio-temporal smoothness that encourages similar predictions for samples within a spatio-temporal neighborhood. In addition, to further improve detection performance, we introduce two CPM extensions: iCPM that iteratively augments training samples to train the confident classifiers, and kCPM that kernelizes the original CPM model to promote nonlinearity. Experiments on four spontaneous datasets GFT [15], BP4D [56], DISFA [42], and RU-FACS [3] illustrate the benefits of the proposed CPM models over baseline methods and state-of-the-art semisupervised learning and transfer learning methods. PMID:27479964
NASA Technical Reports Server (NTRS)
Grimes-Ledesma, Lorie; Murthy, Pappu L. N.; Phoenix, S. Leigh; Glaser, Ronald
2007-01-01
In conjunction with a recent NASA Engineering and Safety Center (NESC) investigation of flight worthiness of Kevlar Overwrapped Composite Pressure Vessels (COPVs) on board the Orbiter, two stress rupture life prediction models were proposed independently by Phoenix and by Glaser. In this paper, the use of these models to determine the system reliability of 24 COPVs currently in service on board the Orbiter is discussed. The models are briefly described, compared to each other, and model parameters and parameter uncertainties are also reviewed to understand confidence in reliability estimation as well as the sensitivities of these parameters in influencing overall predicted reliability levels. Differences and similarities in the various models will be compared via stress rupture reliability curves (stress ratio vs. lifetime plots). Also outlined will be the differences in the underlying model premises, and predictive outcomes. Sources of error and sensitivities in the models will be examined and discussed based on sensitivity analysis and confidence interval determination. Confidence interval results and their implications will be discussed for the models by Phoenix and Glaser.
Pleil, Joachim D
2016-01-01
This commentary is the second of a series outlining one specific concept in interpreting biomarkers data. In the first, an observational method was presented for assessing the distribution of measurements before making parametric calculations. Here, the discussion revolves around the next step, the choice of using standard error of the mean or the calculated standard deviation to compare or predict measurement results.
Tzetzis, George; Votsis, Evandros; Kourtessis, Thomas
2008-01-01
This experiment investigated the effects of three corrective feedback methods, using different combinations of correction, or error cues and positive feedback for learning two badminton skills with different difficulty (forehand clear - low difficulty, backhand clear - high difficulty). Outcome and self-confidence scores were used as dependent variables. The 48 participants were randomly assigned into four groups. Group A received correction cues and positive feedback. Group B received cues on errors of execution. Group C received positive feedback, correction cues and error cues. Group D was the control group. A pre, post and a retention test was conducted. A three way analysis of variance ANOVA (4 groups X 2 task difficulty X 3 measures) with repeated measures on the last factor revealed significant interactions for each depended variable. All the corrective feedback methods groups, increased their outcome scores over time for the easy skill, but only groups A and C for the difficult skill. Groups A and B had significantly better outcome scores than group C and the control group for the easy skill on the retention test. However, for the difficult skill, group C was better than groups A, B and D. The self confidence scores of groups A and C improved over time for the easy skill but not for group B and D. Again, for the difficult skill, only group C improved over time. Finally a regression analysis depicted that the improvement in performance predicted a proportion of the improvement in self confidence for both the easy and the difficult skill. It was concluded that when young athletes are taught skills of different difficulty, different type of instruction, might be more appropriate in order to improve outcome and self confidence. A more integrated approach on teaching will assist coaches or physical education teachers to be more efficient and effective. Key pointsThe type of the skill is a critical factor in determining the effectiveness of the feedback types.Different instructional methods of corrective feedback could have beneficial effects in the outcome and self-confidence of young athletesInstructions focusing on the correct cues or errors increase performance of easy skills.Positive feedback or correction cues increase self-confidence of easy skills but only the combination of error and correction cues increase self confidence and outcome scores of difficult skills. PMID:24149905
NASA Technical Reports Server (NTRS)
Lienert, Barry R.
1991-01-01
Monte Carlo perturbations of synthetic tensors to evaluate the Hext/Jelinek elliptical confidence regions for anisotropy of magnetic susceptibility (AMS) eigenvectors are used. When the perturbations are 33 percent of the minimum anisotropy, both the shapes and probability densities of the resulting eigenvector distributions agree with the elliptical distributions predicted by the Hext/Jelinek equations. When the perturbation size is increased to 100 percent of the minimum eigenvalue difference, the major axis of the 95 percent confidence ellipse underestimates the observed eigenvector dispersion by about 10 deg. The observed distributions of the principal susceptibilities (eigenvalues) are close to being normal, with standard errors that agree well with the calculated Hext/Jelinek errors. The Hext/Jelinek ellipses are also able to describe the AMS dispersions due to instrumental noise and provide reasonable limits for the AMS dispersions observed in two Hawaiian basaltic dikes. It is concluded that the Hext/Jelinek method provides a satisfactory description of the errors in AMS data and should be a standard part of any AMS data analysis.
Confidence Intervals for Error Rates Observed in Coded Communications Systems
NASA Astrophysics Data System (ADS)
Hamkins, J.
2015-05-01
We present methods to compute confidence intervals for the codeword error rate (CWER) and bit error rate (BER) of a coded communications link. We review several methods to compute exact and approximate confidence intervals for the CWER, and specifically consider the situation in which the true CWER is so low that only a handful, if any, codeword errors are able to be simulated. In doing so, we answer the question of how long an error-free simulation must be run in order to certify that a given CWER requirement is met with a given level of confidence, and discuss the bias introduced by aborting a simulation after observing the first codeword error. Next, we turn to the lesser studied problem of determining confidence intervals for the BER of coded systems. Since bit errors in systems that use coding or higher-order modulation do not occur independently, blind application of a method that assumes independence leads to inappropriately narrow confidence intervals. We present a new method to compute the confidence interval properly, using the first and second sample moments of the number of bit errors per codeword. This is the first method we know of to compute a confidence interval for the BER of a coded or higher-order modulation system.
Boiret, Mathieu; Meunier, Loïc; Ginot, Yves-Michel
2011-02-20
A near infrared (NIR) method was developed for determination of tablet potency of active pharmaceutical ingredient (API) in a complex coated tablet matrix. The calibration set contained samples from laboratory and production scale batches. The reference values were obtained by high performance liquid chromatography (HPLC) and partial least squares (PLS) regression was used to establish a model. The model was challenged by calculating tablet potency of two external test sets. Root mean square errors of prediction were respectively equal to 2.0% and 2.7%. To use this model with a second spectrometer from the production field, a calibration transfer method called piecewise direct standardisation (PDS) was used. After the transfer, the root mean square error of prediction of the first test set was 2.4% compared to 4.0% without transferring the spectra. A statistical technique using bootstrap of PLS residuals was used to estimate confidence intervals of tablet potency calculations. This method requires an optimised PLS model, selection of the bootstrap number and determination of the risk. In the case of a chemical analysis, the tablet potency value will be included within the confidence interval calculated by the bootstrap method. An easy to use graphical interface was developed to easily determine if the predictions, surrounded by minimum and maximum values, are within the specifications defined by the regulatory organisation. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauk, F.J.; Christensen, D.H.
1980-09-01
Probabilistic estimations of earthquake detection and location capabilities for the states of Illinois, Indiana, Kentucky, Ohio and West Virginia are presented in this document. The algorithm used in these epicentrality and minimum-magnitude estimations is a version of the program NETWORTH by Wirth, Blandford, and Husted (DARPA Order No. 2551, 1978) which was modified for local array evaluation at the University of Michigan Seismological Observatory. Estimations of earthquake detection capability for the years 1970 and 1980 are presented in four regional minimum m/sub b/ magnitude contour maps. Regional 90% confidence error ellipsoids are included for m/sub b/ magnitude events from 2.0more » through 5.0 at 0.5 m/sub b/ unit increments. The close agreement between these predicted epicentral 90% confidence estimates and the calculated error ellipses associated with actual earthquakes within the studied region suggest that these error determinations can be used to estimate the reliability of epicenter location. 8 refs., 14 figs., 2 tabs.« less
Design of Probabilistic Random Forests with Applications to Anticancer Drug Sensitivity Prediction
Rahman, Raziur; Haider, Saad; Ghosh, Souparno; Pal, Ranadip
2015-01-01
Random forests consisting of an ensemble of regression trees with equal weights are frequently used for design of predictive models. In this article, we consider an extension of the methodology by representing the regression trees in the form of probabilistic trees and analyzing the nature of heteroscedasticity. The probabilistic tree representation allows for analytical computation of confidence intervals (CIs), and the tree weight optimization is expected to provide stricter CIs with comparable performance in mean error. We approached the ensemble of probabilistic trees’ prediction from the perspectives of a mixture distribution and as a weighted sum of correlated random variables. We applied our methodology to the drug sensitivity prediction problem on synthetic and cancer cell line encyclopedia dataset and illustrated that tree weights can be selected to reduce the average length of the CI without increase in mean error. PMID:27081304
Sargent, Daniel J.; Buyse, Marc; Burzykowski, Tomasz
2011-01-01
SUMMARY Using multiple historical trials with surrogate and true endpoints, we consider various models to predict the effect of treatment on a true endpoint in a target trial in which only a surrogate endpoint is observed. This predicted result is computed using (1) a prediction model (mixture, linear, or principal stratification) estimated from historical trials and the surrogate endpoint of the target trial and (2) a random extrapolation error estimated from successively leaving out each trial among the historical trials. The method applies to either binary outcomes or survival to a particular time that is computed from censored survival data. We compute a 95% confidence interval for the predicted result and validate its coverage using simulation. To summarize the additional uncertainty from using a predicted instead of true result for the estimated treatment effect, we compute its multiplier of standard error. Software is available for download. PMID:21838732
NASA Astrophysics Data System (ADS)
Shi, Yongli; Wu, Zhong; Zhi, Kangyi; Xiong, Jun
2018-03-01
In order to realize reliable commutation of brushless DC motors (BLDCMs), a simple approach is proposed to detect and correct signal faults of Hall position sensors in this paper. First, the time instant of the next jumping edge for Hall signals is predicted by using prior information of pulse intervals in the last electrical period. Considering the possible errors between the predicted instant and the real one, a confidence interval is set by using the predicted value and a suitable tolerance for the next pulse edge. According to the relationship between the real pulse edge and the confidence interval, Hall signals can be judged and the signal faults can be corrected. Experimental results of a BLDCM at steady speed demonstrate the effectiveness of the approach.
Laharz_py: GIS tools for automated mapping of lahar inundation hazard zones
Schilling, Steve P.
2014-01-01
Laharz_py is written in the Python programming language as a suite of tools for use in ArcMap Geographic Information System (GIS). Primarily, Laharz_py is a computational model that uses statistical descriptions of areas inundated by past mass-flow events to forecast areas likely to be inundated by hypothetical future events. The forecasts use physically motivated and statistically calibrated power-law equations that each has a form A = cV2/3, relating mass-flow volume (V) to planimetric or cross-sectional areas (A) inundated by an average flow as it descends a given drainage. Calibration of the equations utilizes logarithmic transformation and linear regression to determine the best-fit values of c. The software uses values of V, an algorithm for idenitifying mass-flow source locations, and digital elevation models of topography to portray forecast hazard zones for lahars, debris flows, or rock avalanches on maps. Laharz_py offers two methods to construct areas of potential inundation for lahars: (1) Selection of a range of plausible V values results in a set of nested hazard zones showing areas likely to be inundated by a range of hypothetical flows; and (2) The user selects a single volume and a confidence interval for the prediction. In either case, Laharz_py calculates the mean expected A and B value from each user-selected value of V. However, for the second case, a single value of V yields two additional results representing the upper and lower values of the confidence interval of prediction. Calculation of these two bounding predictions require the statistically calibrated prediction equations, a user-specified level of confidence, and t-distribution statistics to calculate the standard error of regression, standard error of the mean, and standard error of prediction. The portrayal of results from these two methods on maps compares the range of inundation areas due to prediction uncertainties with uncertainties in selection of V values. The Open-File Report document contains an explanation of how to install and use the software. The Laharz_py software includes an example data set for Mount Rainier, Washington. The second part of the documentation describes how to use all of the Laharz_py tools in an example dataset at Mount Rainier, Washington.
Elloumi, Fathi; Hu, Zhiyuan; Li, Yan; Parker, Joel S; Gulley, Margaret L; Amos, Keith D; Troester, Melissa A
2011-06-30
Genomic tests are available to predict breast cancer recurrence and to guide clinical decision making. These predictors provide recurrence risk scores along with a measure of uncertainty, usually a confidence interval. The confidence interval conveys random error and not systematic bias. Standard tumor sampling methods make this problematic, as it is common to have a substantial proportion (typically 30-50%) of a tumor sample comprised of histologically benign tissue. This "normal" tissue could represent a source of non-random error or systematic bias in genomic classification. To assess the performance characteristics of genomic classification to systematic error from normal contamination, we collected 55 tumor samples and paired tumor-adjacent normal tissue. Using genomic signatures from the tumor and paired normal, we evaluated how increasing normal contamination altered recurrence risk scores for various genomic predictors. Simulations of normal tissue contamination caused misclassification of tumors in all predictors evaluated, but different breast cancer predictors showed different types of vulnerability to normal tissue bias. While two predictors had unpredictable direction of bias (either higher or lower risk of relapse resulted from normal contamination), one signature showed predictable direction of normal tissue effects. Due to this predictable direction of effect, this signature (the PAM50) was adjusted for normal tissue contamination and these corrections improved sensitivity and negative predictive value. For all three assays quality control standards and/or appropriate bias adjustment strategies can be used to improve assay reliability. Normal tissue sampled concurrently with tumor is an important source of bias in breast genomic predictors. All genomic predictors show some sensitivity to normal tissue contamination and ideal strategies for mitigating this bias vary depending upon the particular genes and computational methods used in the predictor.
Cook, Sarah F; Roberts, Jessica K; Samiee-Zafarghandy, Samira; Stockmann, Chris; King, Amber D; Deutsch, Nina; Williams, Elaine F; Allegaert, Karel; Wilkins, Diana G; Sherwin, Catherine M T; van den Anker, John N
2016-01-01
The aims of this study were to develop a population pharmacokinetic model for intravenous paracetamol in preterm and term neonates and to assess the generalizability of the model by testing its predictive performance in an external dataset. Nonlinear mixed-effects models were constructed from paracetamol concentration-time data in NONMEM 7.2. Potential covariates included body weight, gestational age, postnatal age, postmenstrual age, sex, race, total bilirubin, and estimated glomerular filtration rate. An external dataset was used to test the predictive performance of the model through calculation of bias, precision, and normalized prediction distribution errors. The model-building dataset included 260 observations from 35 neonates with a mean gestational age of 33.6 weeks [standard deviation (SD) 6.6]. Data were well-described by a one-compartment model with first-order elimination. Weight predicted paracetamol clearance and volume of distribution, which were estimated as 0.348 L/h (5.5 % relative standard error; 30.8 % coefficient of variation) and 2.46 L (3.5 % relative standard error; 14.3 % coefficient of variation), respectively, at the mean subject weight of 2.30 kg. An external evaluation was performed on an independent dataset that included 436 observations from 60 neonates with a mean gestational age of 35.6 weeks (SD 4.3). The median prediction error was 10.1 % [95 % confidence interval (CI) 6.1-14.3] and the median absolute prediction error was 25.3 % (95 % CI 23.1-28.1). Weight predicted intravenous paracetamol pharmacokinetics in neonates ranging from extreme preterm to full-term gestational status. External evaluation suggested that these findings should be generalizable to other similar patient populations.
Cook, Sarah F.; Roberts, Jessica K.; Samiee-Zafarghandy, Samira; Stockmann, Chris; King, Amber D.; Deutsch, Nina; Williams, Elaine F.; Allegaert, Karel; Sherwin, Catherine M. T.; van den Anker, John N.
2017-01-01
Objectives The aims of this study were to develop a population pharmacokinetic model for intravenous paracetamol in preterm and term neonates and to assess the generalizability of the model by testing its predictive performance in an external dataset. Methods Nonlinear mixed-effects models were constructed from paracetamol concentration–time data in NONMEM 7.2. Potential covariates included body weight, gestational age, postnatal age, postmenstrual age, sex, race, total bilirubin, and estimated glomerular filtration rate. An external dataset was used to test the predictive performance of the model through calculation of bias, precision, and normalized prediction distribution errors. Results The model-building dataset included 260 observations from 35 neonates with a mean gestational age of 33.6 weeks [standard deviation (SD) 6.6]. Data were well-described by a one-compartment model with first-order elimination. Weight predicted paracetamol clearance and volume of distribution, which were estimated as 0.348 L/h (5.5 % relative standard error; 30.8 % coefficient of variation) and 2.46 L (3.5 % relative standard error; 14.3 % coefficient of variation), respectively, at the mean subject weight of 2.30 kg. An external evaluation was performed on an independent dataset that included 436 observations from 60 neonates with a mean gestational age of 35.6 weeks (SD 4.3). The median prediction error was 10.1 % [95 % confidence interval (CI) 6.1–14.3] and the median absolute prediction error was 25.3 % (95 % CI 23.1–28.1). Conclusions Weight predicted intravenous paracetamol pharmacokinetics in neonates ranging from extreme preterm to full-term gestational status. External evaluation suggested that these findings should be generalizable to other similar patient populations. PMID:26201306
Scherer, Laura D; Yates, J Frank; Baker, S Glenn; Valentine, Kathrene D
2017-06-01
Human judgment often violates normative standards, and virtually no judgment error has received as much attention as the conjunction fallacy. Judgment errors have historically served as evidence for dual-process theories of reasoning, insofar as these errors are assumed to arise from reliance on a fast and intuitive mental process, and are corrected via effortful deliberative reasoning. In the present research, three experiments tested the notion that conjunction errors are reduced by effortful thought. Predictions based on three different dual-process theory perspectives were tested: lax monitoring, override failure, and the Tripartite Model. Results indicated that participants higher in numeracy were less likely to make conjunction errors, but this association only emerged when participants engaged in two-sided reasoning, as opposed to one-sided or no reasoning. Confidence was higher for incorrect as opposed to correct judgments, suggesting that participants were unaware of their errors.
Motl, Robert W; Fernhall, Bo
2012-03-01
To examine the accuracy of predicting peak oxygen consumption (VO(2peak)) primarily from peak work rate (WR(peak)) recorded during a maximal, incremental exercise test on a cycle ergometer among persons with relapsing-remitting multiple sclerosis (RRMS) who had minimal disability. Cross-sectional study. Clinical research laboratory. Women with RRMS (n=32) and sex-, age-, height-, and weight-matched healthy controls (n=16) completed an incremental exercise test on a cycle ergometer to volitional termination. Not applicable. Measured and predicted VO(2peak) and WR(peak). There were strong, statistically significant associations between measured and predicted VO(2peak) in the overall sample (R(2)=.89, standard error of the estimate=127.4 mL/min) and subsamples with (R(2)=.89, standard error of the estimate=131.3 mL/min) and without (R(2)=.85, standard error of the estimate=126.8 mL/min) multiple sclerosis (MS) based on the linear regression analyses. Based on the 95% confidence limits for worst-case errors, the equation predicted VO(2peak) within 10% of its true value in 95 of every 100 subjects with MS. Peak VO(2) can be accurately predicted in persons with RRMS who have minimal disability as it is in controls by using established equations and WR(peak) recorded from a maximal, incremental exercise test on a cycle ergometer. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Francq, Bernard G; Govaerts, Bernadette
2016-06-30
Two main methodologies for assessing equivalence in method-comparison studies are presented separately in the literature. The first one is the well-known and widely applied Bland-Altman approach with its agreement intervals, where two methods are considered interchangeable if their differences are not clinically significant. The second approach is based on errors-in-variables regression in a classical (X,Y) plot and focuses on confidence intervals, whereby two methods are considered equivalent when providing similar measures notwithstanding the random measurement errors. This paper reconciles these two methodologies and shows their similarities and differences using both real data and simulations. A new consistent correlated-errors-in-variables regression is introduced as the errors are shown to be correlated in the Bland-Altman plot. Indeed, the coverage probabilities collapse and the biases soar when this correlation is ignored. Novel tolerance intervals are compared with agreement intervals with or without replicated data, and novel predictive intervals are introduced to predict a single measure in an (X,Y) plot or in a Bland-Atman plot with excellent coverage probabilities. We conclude that the (correlated)-errors-in-variables regressions should not be avoided in method comparison studies, although the Bland-Altman approach is usually applied to avert their complexity. We argue that tolerance or predictive intervals are better alternatives than agreement intervals, and we provide guidelines for practitioners regarding method comparison studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Charonko, John J.; Vlachos, Pavlos P.
2013-06-01
Numerous studies have established firmly that particle image velocimetry (PIV) is a robust method for non-invasive, quantitative measurements of fluid velocity, and that when carefully conducted, typical measurements can accurately detect displacements in digital images with a resolution well below a single pixel (in some cases well below a hundredth of a pixel). However, to date, these estimates have only been able to provide guidance on the expected error for an average measurement under specific image quality and flow conditions. This paper demonstrates a new method for estimating the uncertainty bounds to within a given confidence interval for a specific, individual measurement. Here, cross-correlation peak ratio, the ratio of primary to secondary peak height, is shown to correlate strongly with the range of observed error values for a given measurement, regardless of flow condition or image quality. This relationship is significantly stronger for phase-only generalized cross-correlation PIV processing, while the standard correlation approach showed weaker performance. Using an analytical model of the relationship derived from synthetic data sets, the uncertainty bounds at a 95% confidence interval are then computed for several artificial and experimental flow fields, and the resulting errors are shown to match closely to the predicted uncertainties. While this method stops short of being able to predict the true error for a given measurement, knowledge of the uncertainty level for a PIV experiment should provide great benefits when applying the results of PIV analysis to engineering design studies and computational fluid dynamics validation efforts. Moreover, this approach is exceptionally simple to implement and requires negligible additional computational cost.
ERIC Educational Resources Information Center
Du, Yunfei
This paper discusses the impact of sampling error on the construction of confidence intervals around effect sizes. Sampling error affects the location and precision of confidence intervals. Meta-analytic resampling demonstrates that confidence intervals can haphazardly bounce around the true population parameter. Special software with graphical…
Application of a bioenergetics model for hatchery production: Largemouth bass fed commercial diets
Csargo, Isak J.; Michael L. Brown,; Chipps, Steven R.
2012-01-01
Fish bioenergetics models based on natural prey items have been widely used to address research and management questions. However, few attempts have been made to evaluate and apply bioenergetics models to hatchery-reared fish receiving commercial feeds that contain substantially higher energy densities than natural prey. In this study, we evaluated a bioenergetics model for age-0 largemouth bass Micropterus salmoidesreared on four commercial feeds. Largemouth bass (n ≈ 3,504) were reared for 70 d at 25°C in sixteen 833-L circular tanks connected in parallel to a recirculation system. Model performance was evaluated using error components (mean, slope, and random) derived from decomposition of the mean square error obtained from regression of observed on predicted values. Mean predicted consumption was only 8.9% lower than mean observed consumption and was similar to error rates observed for largemouth bass consuming natural prey. Model evaluation showed that the 97.5% joint confidence region included the intercept of 0 (−0.43 ± 3.65) and slope of 1 (1.08 ± 0.20), which indicates the model accurately predicted consumption. Moreover model error was similar among feeds (P = 0.98), and most error was probably attributable to sampling error (unconsumed feed), underestimated predator energy densities, or consumption-dependent error, which is common in bioenergetics models. This bioenergetics model could provide a valuable tool in hatchery production of largemouth bass. Furthermore, we believe that bioenergetics modeling could be useful in aquaculture production, particularly for species lacking historical hatchery constants or conventional growth models.
Doubková, Marcela; Van Dijk, Albert I.J.M.; Sabel, Daniel; Wagner, Wolfgang; Blöschl, Günter
2012-01-01
The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have the same basic physical measurement characteristics, and therefore very similar retrieval error estimation method can be applied. Because of the expected improvements in radiometric resolution of the Sentinel-1 backscatter measurements, soil moisture estimation errors can be expected to be an order of magnitude less than those for ASAR GM. This opens the possibility for operationally available medium resolution soil moisture estimates with very well-specified errors that can be assimilated into hydrological or crop yield models, with potentially large benefits for land-atmosphere fluxes, crop growth, and water balance monitoring and modelling. PMID:23483015
Forensic surface metrology: tool mark evidence.
Gambino, Carol; McLaughlin, Patrick; Kuo, Loretta; Kammerman, Frani; Shenkin, Peter; Diaczuk, Peter; Petraco, Nicholas; Hamby, James; Petraco, Nicholas D K
2011-01-01
Over the last several decades, forensic examiners of impression evidence have come under scrutiny in the courtroom due to analysis methods that rely heavily on subjective morphological comparisons. Currently, there is no universally accepted system that generates numerical data to independently corroborate visual comparisons. Our research attempts to develop such a system for tool mark evidence, proposing a methodology that objectively evaluates the association of striated tool marks with the tools that generated them. In our study, 58 primer shear marks on 9 mm cartridge cases, fired from four Glock model 19 pistols, were collected using high-resolution white light confocal microscopy. The resulting three-dimensional surface topographies were filtered to extract all "waviness surfaces"-the essential "line" information that firearm and tool mark examiners view under a microscope. Extracted waviness profiles were processed with principal component analysis (PCA) for dimension reduction. Support vector machines (SVM) were used to make the profile-gun associations, and conformal prediction theory (CPT) for establishing confidence levels. At the 95% confidence level, CPT coupled with PCA-SVM yielded an empirical error rate of 3.5%. Complementary, bootstrap-based computations for estimated error rates were 0%, indicating that the error rate for the algorithmic procedure is likely to remain low on larger data sets. Finally, suggestions are made for practical courtroom application of CPT for assigning levels of confidence to SVM identifications of tool marks recorded with confocal microscopy. Copyright © 2011 Wiley Periodicals, Inc.
Evaluating segmentation error without ground truth.
Kohlberger, Timo; Singh, Vivek; Alvino, Chris; Bahlmann, Claus; Grady, Leo
2012-01-01
The automatic delineation of the boundaries of organs and other anatomical structures is a key component of many medical image processing systems. In this paper we present a generic learning approach based on a novel space of segmentation features, which can be trained to predict the overlap error and Dice coefficient of an arbitrary organ segmentation without knowing the ground truth delineation. We show the regressor to be much stronger a predictor of these error metrics than the responses of probabilistic boosting classifiers trained on the segmentation boundary. The presented approach not only allows us to build reliable confidence measures and fidelity checks, but also to rank several segmentation hypotheses against each other during online usage of the segmentation algorithm in clinical practice.
Hypercorrection of high-confidence errors in the classroom.
Carpenter, Shana K; Haynes, Cynthia L; Corral, Daniel; Yeung, Kam Leung
2018-05-19
People often have erroneous knowledge about the world that is firmly entrenched in memory and endorsed with high confidence. Although strong errors in memory would seem difficult to "un-learn," evidence suggests that errors are more likely to be corrected through feedback when they are originally endorsed with high confidence compared to low confidence. This hypercorrection effect has been predominantly studied in laboratory settings with general knowledge (i.e., trivia) questions, however, and has not been systematically explored in authentic classroom contexts. In the current study, college students in an introductory horticulture class answered questions about the course content, rated their confidence in their answers, received feedback of the correct answers, and then later completed a posttest. Results revealed a significant hypercorrection effect, along with a tendency for students with higher prior knowledge of the material to express higher confidence in, and in turn more effective correction of, their error responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chen, J; Pouliot, J
2015-06-15
Purpose: Deformable image registration (DIR) is a powerful tool with the potential to deformably map dose from one computed-tomography (CT) image to another. Errors in the DIR, however, will produce errors in the transferred dose distribution. We have proposed a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), which predicts voxel-specific dose mapping errors on a patient-by-patient basis. This work validates the effectiveness of AUTODIRECT to predict dose mapping errors with virtual and physical phantom datasets. Methods: AUTODIRECT requires 4 inputs: moving and fixed CT images and two noise scans of a water phantom (for noise characterization). Then,more » AUTODIRECT uses algorithms to generate test deformations and applies them to the moving and fixed images (along with processing) to digitally create sets of test images, with known ground-truth deformations that are similar to the actual one. The clinical DIR algorithm is then applied to these test image sets (currently 4) . From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. This work compares these uncertainty estimates to the actual errors made by the Velocity Deformable Multi Pass algorithm on 11 virtual and 1 physical phantom datasets. Results: For 11 of the 12 tests, the predicted dose error distributions from AUTODIRECT are well matched to the actual error distributions within 1–6% for 10 virtual phantoms, and 9% for the physical phantom. For one of the cases though, the predictions underestimated the errors in the tail of the distribution. Conclusion: Overall, the AUTODIRECT algorithm performed well on the 12 phantom cases for Velocity and was shown to generate accurate estimates of dose warping uncertainty. AUTODIRECT is able to automatically generate patient-, organ- , and voxel-specific DIR uncertainty estimates. This ability would be useful for patient-specific DIR quality assurance.« less
Kellman, Philip J; Mnookin, Jennifer L; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E
2014-01-01
Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and subjective assessment of difficulty in fingerprint comparisons.
NASA Technical Reports Server (NTRS)
Amer, Tahani; Tripp, John; Tcheng, Ping; Burkett, Cecil; Sealey, Bradley
2004-01-01
This paper presents the calibration results and uncertainty analysis of a high-precision reference pressure measurement system currently used in wind tunnels at the NASA Langley Research Center (LaRC). Sensors, calibration standards, and measurement instruments are subject to errors due to aging, drift with time, environment effects, transportation, the mathematical model, the calibration experimental design, and other factors. Errors occur at every link in the chain of measurements and data reduction from the sensor to the final computed results. At each link of the chain, bias and precision uncertainties must be separately estimated for facility use, and are combined to produce overall calibration and prediction confidence intervals for the instrument, typically at a 95% confidence level. The uncertainty analysis and calibration experimental designs used herein, based on techniques developed at LaRC, employ replicated experimental designs for efficiency, separate estimation of bias and precision uncertainties, and detection of significant parameter drift with time. Final results, including calibration confidence intervals and prediction intervals given as functions of the applied inputs, not as a fixed percentage of the full-scale value are presented. System uncertainties are propagated beginning with the initial reference pressure standard, to the calibrated instrument as a working standard in the facility. Among the several parameters that can affect the overall results are operating temperature, atmospheric pressure, humidity, and facility vibration. Effects of factors such as initial zeroing and temperature are investigated. The effects of the identified parameters on system performance and accuracy are discussed.
Quantifying uncertainty on sediment loads using bootstrap confidence intervals
NASA Astrophysics Data System (ADS)
Slaets, Johanna I. F.; Piepho, Hans-Peter; Schmitter, Petra; Hilger, Thomas; Cadisch, Georg
2017-01-01
Load estimates are more informative than constituent concentrations alone, as they allow quantification of on- and off-site impacts of environmental processes concerning pollutants, nutrients and sediment, such as soil fertility loss, reservoir sedimentation and irrigation channel siltation. While statistical models used to predict constituent concentrations have been developed considerably over the last few years, measures of uncertainty on constituent loads are rarely reported. Loads are the product of two predictions, constituent concentration and discharge, integrated over a time period, which does not make it straightforward to produce a standard error or a confidence interval. In this paper, a linear mixed model is used to estimate sediment concentrations. A bootstrap method is then developed that accounts for the uncertainty in the concentration and discharge predictions, allowing temporal correlation in the constituent data, and can be used when data transformations are required. The method was tested for a small watershed in Northwest Vietnam for the period 2010-2011. The results showed that confidence intervals were asymmetric, with the highest uncertainty in the upper limit, and that a load of 6262 Mg year-1 had a 95 % confidence interval of (4331, 12 267) in 2010 and a load of 5543 Mg an interval of (3593, 8975) in 2011. Additionally, the approach demonstrated that direct estimates from the data were biased downwards compared to bootstrap median estimates. These results imply that constituent loads predicted from regression-type water quality models could frequently be underestimating sediment yields and their environmental impact.
Biased relevance filtering in the auditory system: A test of confidence-weighted first-impressions.
Mullens, D; Winkler, I; Damaso, K; Heathcote, A; Whitson, L; Provost, A; Todd, J
2016-03-01
Although first-impressions are known to impact decision-making and to have prolonged effects on reasoning, it is less well known that the same type of rapidly formed assumptions can explain biases in automatic relevance filtering outside of deliberate behavior. This paper features two studies in which participants have been asked to ignore sequences of sound while focusing attention on a silent movie. The sequences consisted of blocks, each with a high-probability repetition interrupted by rare acoustic deviations (i.e., a sound of different pitch or duration). The probabilities of the two different sounds alternated across the concatenated blocks within the sequence (i.e., short-to-long and long-to-short). The sound probabilities are rapidly and automatically learned for each block and a perceptual inference is formed predicting the most likely characteristics of the upcoming sound. Deviations elicit a prediction-error signal known as mismatch negativity (MMN). Computational models of MMN generally assume that its elicitation is governed by transition statistics that define what sound attributes are most likely to follow the current sound. MMN amplitude reflects prediction confidence, which is derived from the stability of the current transition statistics. However, our prior research showed that MMN amplitude is modulated by a strong first-impression bias that outweighs transition statistics. Here we test the hypothesis that this bias can be attributed to assumptions about predictable vs. unpredictable nature of each tone within the first encountered context, which is weighted by the stability of that context. The results of Study 1 show that this bias is initially prevented if there is no 1:1 mapping between sound attributes and probability, but it returns once the auditory system determines which properties provide the highest predictive value. The results of Study 2 show that confidence in the first-impression bias drops if assumptions about the temporal stability of the transition-statistics are violated. Both studies provide compelling evidence that the auditory system extrapolates patterns on multiple timescales to adjust its response to prediction-errors, while profoundly distorting the effects of transition-statistics by the assumptions formed on the basis of first-impressions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maheshwera Reddy Paturi, Uma; Devarasetti, Harish; Abimbola Fadare, David; Reddy Narala, Suresh Kumar
2018-04-01
In the present paper, the artificial neural network (ANN) and response surface methodology (RSM) are used in modeling of surface roughness in WS2 (tungsten disulphide) solid lubricant assisted minimal quantity lubrication (MQL) machining. The real time MQL turning of Inconel 718 experimental data considered in this paper was available in the literature [1]. In ANN modeling, performance parameters such as mean square error (MSE), mean absolute percentage error (MAPE) and average error in prediction (AEP) for the experimental data were determined based on Levenberg–Marquardt (LM) feed forward back propagation training algorithm with tansig as transfer function. The MATLAB tool box has been utilized in training and testing of neural network model. Neural network model with three input neurons, one hidden layer with five neurons and one output neuron (3-5-1 architecture) is found to be most confidence and optimal. The coefficient of determination (R2) for both the ANN and RSM model were seen to be 0.998 and 0.982 respectively. The surface roughness predictions from ANN and RSM model were related with experimentally measured values and found to be in good agreement with each other. However, the prediction efficacy of ANN model is relatively high when compared with RSM model predictions.
NASA Technical Reports Server (NTRS)
Slutz, R. J.; Gray, T. B.; West, M. L.; Stewart, F. G.; Leftin, M.
1971-01-01
A statistical study of formulas for predicting the sunspot number several years in advance is reported. By using a data lineup with cycle maxima coinciding, and by using multiple and nonlinear predictors, a new formula which gives better error estimates than former formulas derived from the work of McNish and Lincoln is obtained. A statistical analysis is conducted to determine which of several mathematical expressions best describes the relationship between 10.7 cm solar flux and Zurich sunspot numbers. Attention is given to the autocorrelation of the observations, and confidence intervals for the derived relationships are presented. The accuracy of predicting a value of 10.7 cm solar flux from a predicted sunspot number is dicussed.
Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting.
Khan, Tarik A; Friedensohn, Simon; Gorter de Vries, Arthur R; Straszewski, Jakub; Ruscheweyh, Hans-Joachim; Reddy, Sai T
2016-03-01
High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion-the intraclonal diversity index-which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology.
Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting
Khan, Tarik A.; Friedensohn, Simon; de Vries, Arthur R. Gorter; Straszewski, Jakub; Ruscheweyh, Hans-Joachim; Reddy, Sai T.
2016-01-01
High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion—the intraclonal diversity index—which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology. PMID:26998518
Space-Time Earthquake Prediction: The Error Diagrams
NASA Astrophysics Data System (ADS)
Molchan, G.
2010-08-01
The quality of earthquake prediction is usually characterized by a two-dimensional diagram n versus τ, where n is the rate of failures-to-predict and τ is a characteristic of space-time alarm. Unlike the time prediction case, the quantity τ is not defined uniquely. We start from the case in which τ is a vector with components related to the local alarm times and find a simple structure of the space-time diagram in terms of local time diagrams. This key result is used to analyze the usual 2-d error sets { n, τ w } in which τ w is a weighted mean of the τ components and w is the weight vector. We suggest a simple algorithm to find the ( n, τ w ) representation of all random guess strategies, the set D, and prove that there exists the unique case of w when D degenerates to the diagonal n + τ w = 1. We find also a confidence zone of D on the ( n, τ w ) plane when the local target rates are known roughly. These facts are important for correct interpretation of ( n, τ w ) diagrams when we discuss the prediction capability of the data or prediction methods.
Self-evaluation of decision-making: A general Bayesian framework for metacognitive computation.
Fleming, Stephen M; Daw, Nathaniel D
2017-01-01
People are often aware of their mistakes, and report levels of confidence in their choices that correlate with objective performance. These metacognitive assessments of decision quality are important for the guidance of behavior, particularly when external feedback is absent or sporadic. However, a computational framework that accounts for both confidence and error detection is lacking. In addition, accounts of dissociations between performance and metacognition have often relied on ad hoc assumptions, precluding a unified account of intact and impaired self-evaluation. Here we present a general Bayesian framework in which self-evaluation is cast as a "second-order" inference on a coupled but distinct decision system, computationally equivalent to inferring the performance of another actor. Second-order computation may ensue whenever there is a separation between internal states supporting decisions and confidence estimates over space and/or time. We contrast second-order computation against simpler first-order models in which the same internal state supports both decisions and confidence estimates. Through simulations we show that second-order computation provides a unified account of different types of self-evaluation often considered in separate literatures, such as confidence and error detection, and generates novel predictions about the contribution of one's own actions to metacognitive judgments. In addition, the model provides insight into why subjects' metacognition may sometimes be better or worse than task performance. We suggest that second-order computation may underpin self-evaluative judgments across a range of domains. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Self-Evaluation of Decision-Making: A General Bayesian Framework for Metacognitive Computation
2017-01-01
People are often aware of their mistakes, and report levels of confidence in their choices that correlate with objective performance. These metacognitive assessments of decision quality are important for the guidance of behavior, particularly when external feedback is absent or sporadic. However, a computational framework that accounts for both confidence and error detection is lacking. In addition, accounts of dissociations between performance and metacognition have often relied on ad hoc assumptions, precluding a unified account of intact and impaired self-evaluation. Here we present a general Bayesian framework in which self-evaluation is cast as a “second-order” inference on a coupled but distinct decision system, computationally equivalent to inferring the performance of another actor. Second-order computation may ensue whenever there is a separation between internal states supporting decisions and confidence estimates over space and/or time. We contrast second-order computation against simpler first-order models in which the same internal state supports both decisions and confidence estimates. Through simulations we show that second-order computation provides a unified account of different types of self-evaluation often considered in separate literatures, such as confidence and error detection, and generates novel predictions about the contribution of one’s own actions to metacognitive judgments. In addition, the model provides insight into why subjects’ metacognition may sometimes be better or worse than task performance. We suggest that second-order computation may underpin self-evaluative judgments across a range of domains. PMID:28004960
Modeling longitudinal data, I: principles of multivariate analysis.
Ravani, Pietro; Barrett, Brendan; Parfrey, Patrick
2009-01-01
Statistical models are used to study the relationship between exposure and disease while accounting for the potential role of other factors' impact on outcomes. This adjustment is useful to obtain unbiased estimates of true effects or to predict future outcomes. Statistical models include a systematic component and an error component. The systematic component explains the variability of the response variable as a function of the predictors and is summarized in the effect estimates (model coefficients). The error element of the model represents the variability in the data unexplained by the model and is used to build measures of precision around the point estimates (confidence intervals).
NASA Technical Reports Server (NTRS)
Massey, J. L.
1976-01-01
The very low error probability obtained with long error-correcting codes results in a very small number of observed errors in simulation studies of practical size and renders the usual confidence interval techniques inapplicable to the observed error probability. A natural extension of the notion of a 'confidence interval' is made and applied to such determinations of error probability by simulation. An example is included to show the surprisingly great significance of as few as two decoding errors in a very large number of decoding trials.
Darrington, Richard T; Jiao, Jim
2004-04-01
Rapid and accurate stability prediction is essential to pharmaceutical formulation development. Commonly used stability prediction methods include monitoring parent drug loss at intended storage conditions or initial rate determination of degradants under accelerated conditions. Monitoring parent drug loss at the intended storage condition does not provide a rapid and accurate stability assessment because often <0.5% drug loss is all that can be observed in a realistic time frame, while the accelerated initial rate method in conjunction with extrapolation of rate constants using the Arrhenius or Eyring equations often introduces large errors in shelf-life prediction. In this study, the shelf life prediction of a model pharmaceutical preparation utilizing sensitive high-performance liquid chromatography-mass spectrometry (LC/MS) to directly quantitate degradant formation rates at the intended storage condition is proposed. This method was compared to traditional shelf life prediction approaches in terms of time required to predict shelf life and associated error in shelf life estimation. Results demonstrated that the proposed LC/MS method using initial rates analysis provided significantly improved confidence intervals for the predicted shelf life and required less overall time and effort to obtain the stability estimation compared to the other methods evaluated. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association.
Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.
Keller, Joshua P; Chang, Howard H; Strickland, Matthew J; Szpiro, Adam A
2017-05-01
Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.
Bao, Yi; Chen, Yizheng; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda
2017-01-01
This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C.
Prediction of resource volumes at untested locations using simple local prediction models
Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.
2006-01-01
This paper shows how local spatial nonparametric prediction models can be applied to estimate volumes of recoverable gas resources at individual undrilled sites, at multiple sites on a regional scale, and to compute confidence bounds for regional volumes based on the distribution of those estimates. An approach that combines cross-validation, the jackknife, and bootstrap procedures is used to accomplish this task. Simulation experiments show that cross-validation can be applied beneficially to select an appropriate prediction model. The cross-validation procedure worked well for a wide range of different states of nature and levels of information. Jackknife procedures are used to compute individual prediction estimation errors at undrilled locations. The jackknife replicates also are used with a bootstrap resampling procedure to compute confidence bounds for the total volume. The method was applied to data (partitioned into a training set and target set) from the Devonian Antrim Shale continuous-type gas play in the Michigan Basin in Otsego County, Michigan. The analysis showed that the model estimate of total recoverable volumes at prediction sites is within 4 percent of the total observed volume. The model predictions also provide frequency distributions of the cell volumes at the production unit scale. Such distributions are the basis for subsequent economic analyses. ?? Springer Science+Business Media, LLC 2007.
NASA Astrophysics Data System (ADS)
Liang, Zhongmin; Li, Yujie; Hu, Yiming; Li, Binquan; Wang, Jun
2017-06-01
Accurate and reliable long-term forecasting plays an important role in water resources management and utilization. In this paper, a hybrid model called SVR-HUP is presented to predict long-term runoff and quantify the prediction uncertainty. The model is created based on three steps. First, appropriate predictors are selected according to the correlations between meteorological factors and runoff. Second, a support vector regression (SVR) model is structured and optimized based on the LibSVM toolbox and a genetic algorithm. Finally, using forecasted and observed runoff, a hydrologic uncertainty processor (HUP) based on a Bayesian framework is used to estimate the posterior probability distribution of the simulated values, and the associated uncertainty of prediction was quantitatively analyzed. Six precision evaluation indexes, including the correlation coefficient (CC), relative root mean square error (RRMSE), relative error (RE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE), and qualification rate (QR), are used to measure the prediction accuracy. As a case study, the proposed approach is applied in the Han River basin, South Central China. Three types of SVR models are established to forecast the monthly, flood season and annual runoff volumes. The results indicate that SVR yields satisfactory accuracy and reliability at all three scales. In addition, the results suggest that the HUP cannot only quantify the uncertainty of prediction based on a confidence interval but also provide a more accurate single value prediction than the initial SVR forecasting result. Thus, the SVR-HUP model provides an alternative method for long-term runoff forecasting.
Confidence limits for data mining models of options prices
NASA Astrophysics Data System (ADS)
Healy, J. V.; Dixon, M.; Read, B. J.; Cai, F. F.
2004-12-01
Non-parametric methods such as artificial neural nets can successfully model prices of financial options, out-performing the Black-Scholes analytic model (Eur. Phys. J. B 27 (2002) 219). However, the accuracy of such approaches is usually expressed only by a global fitting/error measure. This paper describes a robust method for determining prediction intervals for models derived by non-linear regression. We have demonstrated it by application to a standard synthetic example (29th Annual Conference of the IEEE Industrial Electronics Society, Special Session on Intelligent Systems, pp. 1926-1931). The method is used here to obtain prediction intervals for option prices using market data for LIFFE “ESX” FTSE 100 index options ( http://www.liffe.com/liffedata/contracts/month_onmonth.xls). We avoid special neural net architectures and use standard regression procedures to determine local error bars. The method is appropriate for target data with non constant variance (or volatility).
NASA Astrophysics Data System (ADS)
Ziemba, Alexander; El Serafy, Ghada
2016-04-01
Ecological modeling and water quality investigations are complex processes which can require a high level of parameterization and a multitude of varying data sets in order to properly execute the model in question. Since models are generally complex, their calibration and validation can benefit from the application of data and information fusion techniques. The data applied to ecological models comes from a wide range of sources such as remote sensing, earth observation, and in-situ measurements, resulting in a high variability in the temporal and spatial resolution of the various data sets available to water quality investigators. It is proposed that effective fusion into a comprehensive singular set will provide a more complete and robust data resource with which models can be calibrated, validated, and driven by. Each individual product contains a unique valuation of error resulting from the method of measurement and application of pre-processing techniques. The uncertainty and error is further compounded when the data being fused is of varying temporal and spatial resolution. In order to have a reliable fusion based model and data set, the uncertainty of the results and confidence interval of the data being reported must be effectively communicated to those who would utilize the data product or model outputs in a decision making process[2]. Here we review an array of data fusion techniques applied to various remote sensing, earth observation, and in-situ data sets whose domains' are varied in spatial and temporal resolution. The data sets examined are combined in a manner so that the various classifications, complementary, redundant, and cooperative, of data are all assessed to determine classification's impact on the propagation and compounding of error. In order to assess the error of the fused data products, a comparison is conducted with data sets containing a known confidence interval and quality rating. We conclude with a quantification of the performance of the data fusion techniques and a recommendation on the feasibility of applying of the fused products in operating forecast systems and modeling scenarios. The error bands and confidence intervals derived can be used in order to clarify the error and confidence of water quality variables produced by prediction and forecasting models. References [1] F. Castanedo, "A Review of Data Fusion Techniques", The Scientific World Journal, vol. 2013, pp. 1-19, 2013. [2] T. Keenan, M. Carbone, M. Reichstein and A. Richardson, "The model-data fusion pitfall: assuming certainty in an uncertain world", Oecologia, vol. 167, no. 3, pp. 587-597, 2011.
Rank score and permutation testing alternatives for regression quantile estimates
Cade, B.S.; Richards, J.D.; Mielke, P.W.
2006-01-01
Performance of quantile rank score tests used for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1) were evaluated by simulation for models with p = 2 and 6 predictors, moderate collinearity among predictors, homogeneous and hetero-geneous errors, small to moderate samples (n = 20–300), and central to upper quantiles (0.50–0.99). Test statistics evaluated were the conventional quantile rank score T statistic distributed as χ2 random variable with q degrees of freedom (where q parameters are constrained by H 0:) and an F statistic with its sampling distribution approximated by permutation. The permutation F-test maintained better Type I errors than the T-test for homogeneous error models with smaller n and more extreme quantiles τ. An F distributional approximation of the F statistic provided some improvements in Type I errors over the T-test for models with > 2 parameters, smaller n, and more extreme quantiles but not as much improvement as the permutation approximation. Both rank score tests required weighting to maintain correct Type I errors when heterogeneity under the alternative model increased to 5 standard deviations across the domain of X. A double permutation procedure was developed to provide valid Type I errors for the permutation F-test when null models were forced through the origin. Power was similar for conditions where both T- and F-tests maintained correct Type I errors but the F-test provided some power at smaller n and extreme quantiles when the T-test had no power because of excessively conservative Type I errors. When the double permutation scheme was required for the permutation F-test to maintain valid Type I errors, power was less than for the T-test with decreasing sample size and increasing quantiles. Confidence intervals on parameters and tolerance intervals for future predictions were constructed based on test inversion for an example application relating trout densities to stream channel width:depth.
Model Update of a Micro Air Vehicle (MAV) Flexible Wing Frame with Uncertainty Quantification
NASA Technical Reports Server (NTRS)
Reaves, Mercedes C.; Horta, Lucas G.; Waszak, Martin R.; Morgan, Benjamin G.
2004-01-01
This paper describes a procedure to update parameters in the finite element model of a Micro Air Vehicle (MAV) to improve displacement predictions under aerodynamics loads. Because of fabrication, materials, and geometric uncertainties, a statistical approach combined with Multidisciplinary Design Optimization (MDO) is used to modify key model parameters. Static test data collected using photogrammetry are used to correlate with model predictions. Results show significant improvements in model predictions after parameters are updated; however, computed probabilities values indicate low confidence in updated values and/or model structure errors. Lessons learned in the areas of wing design, test procedures, modeling approaches with geometric nonlinearities, and uncertainties quantification are all documented.
Zlotnik, Alexander; Gallardo-Antolín, Ascensión; Cuchí Alfaro, Miguel; Pérez Pérez, María Carmen; Montero Martínez, Juan Manuel
2015-08-01
Although emergency department visit forecasting can be of use for nurse staff planning, previous research has focused on models that lacked sufficient resolution and realistic error metrics for these predictions to be applied in practice. Using data from a 1100-bed specialized care hospital with 553,000 patients assigned to its healthcare area, forecasts with different prediction horizons, from 2 to 24 weeks ahead, with an 8-hour granularity, using support vector regression, M5P, and stratified average time-series models were generated with an open-source software package. As overstaffing and understaffing errors have different implications, error metrics and potential personnel monetary savings were calculated with a custom validation scheme, which simulated subsequent generation of predictions during a 4-year period. Results were then compared with a generalized estimating equation regression. Support vector regression and M5P models were found to be superior to the stratified average model with a 95% confidence interval. Our findings suggest that medium and severe understaffing situations could be reduced in more than an order of magnitude and average yearly savings of up to €683,500 could be achieved if dynamic nursing staff allocation was performed with support vector regression instead of the static staffing levels currently in use.
Ballesteros Peña, Sendoa
2013-04-01
To estimate the frequency of therapeutic errors and to evaluate the diagnostic accuracy in the recognition of shockable rhythms by automated external defibrillators. A retrospective descriptive study. Nine basic life support units from Biscay (Spain). Included 201 patients with cardiac arrest, since 2006 to 2011. The study was made of the suitability of treatment (shock or not) after each analysis and medical errors identified. The sensitivity, specificity and predictive values with 95% confidence intervals were then calculated. A total of 811 electrocardiographic rhythm analyses were obtained, of which 120 (14.1%), from 30 patients, corresponded to shockable rhythms. Sensitivity and specificity for appropriate automated external defibrillators management of a shockable rhythm were 85% (95% CI, 77.5% to 90.3%) and 100% (95% CI, 99.4% to 100%), respectively. Positive and negative predictive values were 100% (95% CI, 96.4% to 100%) and 97.5% (95% CI, 96% to 98.4%), respectively. There were 18 (2.2%; 95% CI, 1.3% to 3.5%) errors associated with defibrillator management, all relating to cases of shockable rhythms that were not shocked. One error was operator dependent, 6 were defibrillator dependent (caused by interaction of pacemakers), and 11 were unclassified. Automated external defibrillators have a very high specificity and moderately high sensitivity. There are few operator dependent errors. Implanted pacemakers interfere with defibrillator analyses. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Kellman, Philip J.; Mnookin, Jennifer L.; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E.
2014-01-01
Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and subjective assessment of difficulty in fingerprint comparisons. PMID:24788812
Filgueiras, Paulo R; Terra, Luciana A; Castro, Eustáquio V R; Oliveira, Lize M S L; Dias, Júlio C M; Poppi, Ronei J
2015-09-01
This paper aims to estimate the temperature equivalent to 10% (T10%), 50% (T50%) and 90% (T90%) of distilled volume in crude oils using (1)H NMR and support vector regression (SVR). Confidence intervals for the predicted values were calculated using a boosting-type ensemble method in a procedure called ensemble support vector regression (eSVR). The estimated confidence intervals obtained by eSVR were compared with previously accepted calculations from partial least squares (PLS) models and a boosting-type ensemble applied in the PLS method (ePLS). By using the proposed boosting strategy, it was possible to identify outliers in the T10% property dataset. The eSVR procedure improved the accuracy of the distillation temperature predictions in relation to standard PLS, ePLS and SVR. For T10%, a root mean square error of prediction (RMSEP) of 11.6°C was obtained in comparison with 15.6°C for PLS, 15.1°C for ePLS and 28.4°C for SVR. The RMSEPs for T50% were 24.2°C, 23.4°C, 22.8°C and 14.4°C for PLS, ePLS, SVR and eSVR, respectively. For T90%, the values of RMSEP were 39.0°C, 39.9°C and 39.9°C for PLS, ePLS, SVR and eSVR, respectively. The confidence intervals calculated by the proposed boosting methodology presented acceptable values for the three properties analyzed; however, they were lower than those calculated by the standard methodology for PLS. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Williams, David M.; Bergström, Zara; Grainger, Catherine
2018-01-01
Among neurotypical adults, errors made with high confidence (i.e. errors a person strongly believed they would not make) are corrected more reliably than errors made with low confidence. This 'hypercorrection effect' is thought to result from enhanced attention to information that reflects a 'metacognitive mismatch' between one's beliefs and…
Performance of statistical models to predict mental health and substance abuse cost.
Montez-Rath, Maria; Christiansen, Cindy L; Ettner, Susan L; Loveland, Susan; Rosen, Amy K
2006-10-26
Providers use risk-adjustment systems to help manage healthcare costs. Typically, ordinary least squares (OLS) models on either untransformed or log-transformed cost are used. We examine the predictive ability of several statistical models, demonstrate how model choice depends on the goal for the predictive model, and examine whether building models on samples of the data affects model choice. Our sample consisted of 525,620 Veterans Health Administration patients with mental health (MH) or substance abuse (SA) diagnoses who incurred costs during fiscal year 1999. We tested two models on a transformation of cost: a Log Normal model and a Square-root Normal model, and three generalized linear models on untransformed cost, defined by distributional assumption and link function: Normal with identity link (OLS); Gamma with log link; and Gamma with square-root link. Risk-adjusters included age, sex, and 12 MH/SA categories. To determine the best model among the entire dataset, predictive ability was evaluated using root mean square error (RMSE), mean absolute prediction error (MAPE), and predictive ratios of predicted to observed cost (PR) among deciles of predicted cost, by comparing point estimates and 95% bias-corrected bootstrap confidence intervals. To study the effect of analyzing a random sample of the population on model choice, we re-computed these statistics using random samples beginning with 5,000 patients and ending with the entire sample. The Square-root Normal model had the lowest estimates of the RMSE and MAPE, with bootstrap confidence intervals that were always lower than those for the other models. The Gamma with square-root link was best as measured by the PRs. The choice of best model could vary if smaller samples were used and the Gamma with square-root link model had convergence problems with small samples. Models with square-root transformation or link fit the data best. This function (whether used as transformation or as a link) seems to help deal with the high comorbidity of this population by introducing a form of interaction. The Gamma distribution helps with the long tail of the distribution. However, the Normal distribution is suitable if the correct transformation of the outcome is used.
2017-01-01
Previous reviews estimated that approximately 20 to 25% of assertions cited from original research articles, or “facts,” are inaccurately quoted in the medical literature. These reviews noted that the original studies were dissimilar and only began to compare the methods of the original studies. The aim of this review is to examine the methods of the original studies and provide a more specific rate of incorrectly cited assertions, or quotation errors, in original research articles published in medical journals. Additionally, the estimate of quotation errors calculated here is based on the ratio of quotation errors to quotations examined (a percent) rather than the more prevalent and weighted metric of quotation errors to the references selected. Overall, this resulted in a lower estimate of the quotation error rate in original medical research articles. A total of 15 studies met the criteria for inclusion in the primary quantitative analysis. Quotation errors were divided into two categories: content ("factual") or source (improper indirect citation) errors. Content errors were further subdivided into major and minor errors depending on the degree that the assertion differed from the original source. The rate of quotation errors recalculated here is 14.5% (10.5% to 18.6% at a 95% confidence interval). These content errors are predominantly, 64.8% (56.1% to 73.5% at a 95% confidence interval), major errors or cited assertions in which the referenced source either fails to substantiate, is unrelated to, or contradicts the assertion. Minor errors, which are an oversimplification, overgeneralization, or trivial inaccuracies, are 35.2% (26.5% to 43.9% at a 95% confidence interval). Additionally, improper secondary (or indirect) citations, which are distinguished from calculations of quotation accuracy, occur at a rate of 10.4% (3.4% to 17.5% at a 95% confidence interval). PMID:28910404
Mogull, Scott A
2017-01-01
Previous reviews estimated that approximately 20 to 25% of assertions cited from original research articles, or "facts," are inaccurately quoted in the medical literature. These reviews noted that the original studies were dissimilar and only began to compare the methods of the original studies. The aim of this review is to examine the methods of the original studies and provide a more specific rate of incorrectly cited assertions, or quotation errors, in original research articles published in medical journals. Additionally, the estimate of quotation errors calculated here is based on the ratio of quotation errors to quotations examined (a percent) rather than the more prevalent and weighted metric of quotation errors to the references selected. Overall, this resulted in a lower estimate of the quotation error rate in original medical research articles. A total of 15 studies met the criteria for inclusion in the primary quantitative analysis. Quotation errors were divided into two categories: content ("factual") or source (improper indirect citation) errors. Content errors were further subdivided into major and minor errors depending on the degree that the assertion differed from the original source. The rate of quotation errors recalculated here is 14.5% (10.5% to 18.6% at a 95% confidence interval). These content errors are predominantly, 64.8% (56.1% to 73.5% at a 95% confidence interval), major errors or cited assertions in which the referenced source either fails to substantiate, is unrelated to, or contradicts the assertion. Minor errors, which are an oversimplification, overgeneralization, or trivial inaccuracies, are 35.2% (26.5% to 43.9% at a 95% confidence interval). Additionally, improper secondary (or indirect) citations, which are distinguished from calculations of quotation accuracy, occur at a rate of 10.4% (3.4% to 17.5% at a 95% confidence interval).
Bao, Yi; Chen, Yizheng; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda
2016-01-01
This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C. PMID:28239230
Bansal, Ravi; Staib, Lawrence H.; Laine, Andrew F.; Xu, Dongrong; Liu, Jun; Posecion, Lainie F.; Peterson, Bradley S.
2010-01-01
Images from different individuals typically cannot be registered precisely because anatomical features within the images differ across the people imaged and because the current methods for image registration have inherent technological limitations that interfere with perfect registration. Quantifying the inevitable error in image registration is therefore of crucial importance in assessing the effects that image misregistration may have on subsequent analyses in an imaging study. We have developed a mathematical framework for quantifying errors in registration by computing the confidence intervals of the estimated parameters (3 translations, 3 rotations, and 1 global scale) for the similarity transformation. The presence of noise in images and the variability in anatomy across individuals ensures that estimated registration parameters are always random variables. We assume a functional relation among intensities across voxels in the images, and we use the theory of nonlinear, least-squares estimation to show that the parameters are multivariate Gaussian distributed. We then use the covariance matrix of this distribution to compute the confidence intervals of the transformation parameters. These confidence intervals provide a quantitative assessment of the registration error across the images. Because transformation parameters are nonlinearly related to the coordinates of landmark points in the brain, we subsequently show that the coordinates of those landmark points are also multivariate Gaussian distributed. Using these distributions, we then compute the confidence intervals of the coordinates for landmark points in the image. Each of these confidence intervals in turn provides a quantitative assessment of the registration error at a particular landmark point. Because our method is computationally intensive, however, its current implementation is limited to assessing the error of the parameters in the similarity transformation across images. We assessed the performance of our method in computing the error in estimated similarity parameters by applying that method to real world dataset. Our results showed that the size of the confidence intervals computed using our method decreased – i.e. our confidence in the registration of images from different individuals increased – for increasing amounts of blur in the images. Moreover, the size of the confidence intervals increased for increasing amounts of noise, misregistration, and differing anatomy. Thus, our method precisely quantified confidence in the registration of images that contain varying amounts of misregistration and varying anatomy across individuals. PMID:19138877
Four Bootstrap Confidence Intervals for the Binomial-Error Model.
ERIC Educational Resources Information Center
Lin, Miao-Hsiang; Hsiung, Chao A.
1992-01-01
Four bootstrap methods are identified for constructing confidence intervals for the binomial-error model. The extent to which similar results are obtained and the theoretical foundation of each method and its relevance and ranges of modeling the true score uncertainty are discussed. (SLD)
The hypercorrection effect in younger and older adults.
Eich, Teal S; Stern, Yaakov; Metcalfe, Janet
2013-01-01
ABSTRACT The hypercorrection effect, which refers to the finding that errors committed with high confidence are more likely to be corrected than are low confidence errors, has been replicated many times, and with both young adults and children. In the present study, we contrasted older with younger adults. Participants answered general-information questions, made confidence ratings about their answers, were given corrective feedback, and then were retested on questions that they had gotten wrong. While younger adults showed the hypercorrection effect, older adults, despite higher overall accuracy on the general-information questions and excellent basic metacognitive ability, showed a diminished hypercorrection effect. Indeed, the correspondence between their confidence in their errors and the probability of correction was not significantly greater than zero, showing, for the first time, that a particular participant population is selectively impaired on this error correction task. These results potentially offer leverage both on the mechanisms underlying the hypercorrection effect and on reasons for older adults' memory impairments, as well as on memory functions that are spared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarovar, Mohan; Zhang, Jun; Zeng, Lishan
Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these twomore » points of view is a critical step in making the most of this promising technology. In this paper we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. Finally, to demonstrate the approach, we characterize the robust features of a variety of quantum many-body models.« less
Reliability of analog quantum simulation
Sarovar, Mohan; Zhang, Jun; Zeng, Lishan
2017-01-03
Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these twomore » points of view is a critical step in making the most of this promising technology. In this paper we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. Finally, to demonstrate the approach, we characterize the robust features of a variety of quantum many-body models.« less
Syamlal, Madhava; Celik, Ismail B.; Benyahia, Sofiane
2017-07-12
The two-fluid model (TFM) has become a tool for the design and troubleshooting of industrial fluidized bed reactors. To use TFM for scale up with confidence, the uncertainty in its predictions must be quantified. Here, we study two sources of uncertainty: discretization and time-averaging. First, we show that successive grid refinement may not yield grid-independent transient quantities, including cross-section–averaged quantities. Successive grid refinement would yield grid-independent time-averaged quantities on sufficiently fine grids. A Richardson extrapolation can then be used to estimate the discretization error, and the grid convergence index gives an estimate of the uncertainty. Richardson extrapolation may not workmore » for industrial-scale simulations that use coarse grids. We present an alternative method for coarse grids and assess its ability to estimate the discretization error. Second, we assess two methods (autocorrelation and binning) and find that the autocorrelation method is more reliable for estimating the uncertainty introduced by time-averaging TFM data.« less
The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation
NASA Astrophysics Data System (ADS)
Dumbović, Mateja; Čalogović, Jaša; Vršnak, Bojan; Temmer, Manuela; Mays, M. Leila; Veronig, Astrid; Piantschitsch, Isabell
2018-02-01
The drag-based model for heliospheric propagation of coronal mass ejections (CMEs) is a widely used analytical model that can predict CME arrival time and speed at a given heliospheric location. It is based on the assumption that the propagation of CMEs in interplanetary space is solely under the influence of magnetohydrodynamical drag, where CME propagation is determined based on CME initial properties as well as the properties of the ambient solar wind. We present an upgraded version, the drag-based ensemble model (DBEM), that covers ensemble modeling to produce a distribution of possible ICME arrival times and speeds. Multiple runs using uncertainty ranges for the input values can be performed in almost real-time, within a few minutes. This allows us to define the most likely ICME arrival times and speeds, quantify prediction uncertainties, and determine forecast confidence. The performance of the DBEM is evaluated and compared to that of ensemble WSA-ENLIL+Cone model (ENLIL) using the same sample of events. It is found that the mean error is ME = ‑9.7 hr, mean absolute error MAE = 14.3 hr, and root mean square error RMSE = 16.7 hr, which is somewhat higher than, but comparable to ENLIL errors (ME = ‑6.1 hr, MAE = 12.8 hr and RMSE = 14.4 hr). Overall, DBEM and ENLIL show a similar performance. Furthermore, we find that in both models fast CMEs are predicted to arrive earlier than observed, most likely owing to the physical limitations of models, but possibly also related to an overestimation of the CME initial speed for fast CMEs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morley, Steven
The PyForecastTools package provides Python routines for calculating metrics for model validation, forecast verification and model comparison. For continuous predictands the package provides functions for calculating bias (mean error, mean percentage error, median log accuracy, symmetric signed bias), and for calculating accuracy (mean squared error, mean absolute error, mean absolute scaled error, normalized RMSE, median symmetric accuracy). Convenience routines to calculate the component parts (e.g. forecast error, scaled error) of each metric are also provided. To compare models the package provides: generic skill score; percent better. Robust measures of scale including median absolute deviation, robust standard deviation, robust coefficient ofmore » variation and the Sn estimator are all provided by the package. Finally, the package implements Python classes for NxN contingency tables. In the case of a multi-class prediction, accuracy and skill metrics such as proportion correct and the Heidke and Peirce skill scores are provided as object methods. The special case of a 2x2 contingency table inherits from the NxN class and provides many additional metrics for binary classification: probability of detection, probability of false detection, false alarm ration, threat score, equitable threat score, bias. Confidence intervals for many of these quantities can be calculated using either the Wald method or Agresti-Coull intervals.« less
Predictors of driving safety in early Alzheimer disease
Dawson, J D.; Anderson, S W.; Uc, E Y.; Dastrup, E; Rizzo, M
2009-01-01
Objective: To measure the association of cognition, visual perception, and motor function with driving safety in Alzheimer disease (AD). Methods: Forty drivers with probable early AD (mean Mini-Mental State Examination score 26.5) and 115 elderly drivers without neurologic disease underwent a battery of cognitive, visual, and motor tests, and drove a standardized 35-mile route in urban and rural settings in an instrumented vehicle. A composite cognitive score (COGSTAT) was calculated for each subject based on eight neuropsychological tests. Driving safety errors were noted and classified by a driving expert based on video review. Results: Drivers with AD committed an average of 42.0 safety errors/drive (SD = 12.8), compared to an average of 33.2 (SD = 12.2) for drivers without AD (p < 0.0001); the most common errors were lane violations. Increased age was predictive of errors, with a mean of 2.3 more errors per drive observed for each 5-year age increment. After adjustment for age and gender, COGSTAT was a significant predictor of safety errors in subjects with AD, with a 4.1 increase in safety errors observed for a 1 SD decrease in cognitive function. Significant increases in safety errors were also found in subjects with AD with poorer scores on Benton Visual Retention Test, Complex Figure Test-Copy, Trail Making Subtest-A, and the Functional Reach Test. Conclusion: Drivers with Alzheimer disease (AD) exhibit a range of performance on tests of cognition, vision, and motor skills. Since these tests provide additional predictive value of driving performance beyond diagnosis alone, clinicians may use these tests to help predict whether a patient with AD can safely operate a motor vehicle. GLOSSARY AD = Alzheimer disease; AVLT = Auditory Verbal Learning Test; Blocks = Block Design subtest; BVRT = Benton Visual Retention Test; CFT = Complex Figure Test; CI = confidence interval; COWA = Controlled Oral Word Association; CS = contrast sensitivity; FVA = far visual acuity; JLO = Judgment of Line Orientation; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; NVA = near visual acuity; SFM = structure from motion; TMT = Trail-Making Test; UFOV = Useful Field of View. PMID:19204261
Quantifying confidence in density functional theory predictions of magnetic ground states
NASA Astrophysics Data System (ADS)
Houchins, Gregory; Viswanathan, Venkatasubramanian
2017-10-01
Density functional theory (DFT) simulations, at the generalized gradient approximation (GGA) level, are being routinely used for material discovery based on high-throughput descriptor-based searches. The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, oftentimes good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first-principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a postprocessing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li-ion and Na-ion cathode materials and the c-value metric correctly identifies that GGA-level DFT will have low predictability for NaFePO4F . Further, there needs to be a systematic test of a collection of plausible magnetic states, especially in identifying antiferromagnetic (AFM) ground states. We believe that our approach of estimating uncertainty can be readily incorporated into all high-throughput computational material discovery efforts and this will lead to a dramatic increase in the likelihood of finding good candidate materials.
Jackson, Simon A.; Kleitman, Sabina; Howie, Pauline; Stankov, Lazar
2016-01-01
In this paper, we investigate whether individual differences in performance on heuristic and biases tasks can be explained by cognitive abilities, monitoring confidence, and control thresholds. Current theories explain individual differences in these tasks by the ability to detect errors and override automatic but biased judgments, and deliberative cognitive abilities that help to construct the correct response. Here we retain cognitive abilities but disentangle error detection, proposing that lower monitoring confidence and higher control thresholds promote error checking. Participants (N = 250) completed tasks assessing their fluid reasoning abilities, stable monitoring confidence levels, and the control threshold they impose on their decisions. They also completed seven typical heuristic and biases tasks such as the cognitive reflection test and Resistance to Framing. Using structural equation modeling, we found that individuals with higher reasoning abilities, lower monitoring confidence, and higher control threshold performed significantly and, at times, substantially better on the heuristic and biases tasks. Individuals with higher control thresholds also showed lower preferences for risky alternatives in a gambling task. Furthermore, residual correlations among the heuristic and biases tasks were reduced to null, indicating that cognitive abilities, monitoring confidence, and control thresholds accounted for their shared variance. Implications include the proposal that the capacity to detect errors does not differ between individuals. Rather, individuals might adopt varied strategies that promote error checking to different degrees, regardless of whether they have made a mistake or not. The results support growing evidence that decision-making involves cognitive abilities that construct actions and monitoring and control processes that manage their initiation. PMID:27790170
Jackson, Simon A; Kleitman, Sabina; Howie, Pauline; Stankov, Lazar
2016-01-01
In this paper, we investigate whether individual differences in performance on heuristic and biases tasks can be explained by cognitive abilities, monitoring confidence, and control thresholds. Current theories explain individual differences in these tasks by the ability to detect errors and override automatic but biased judgments, and deliberative cognitive abilities that help to construct the correct response. Here we retain cognitive abilities but disentangle error detection, proposing that lower monitoring confidence and higher control thresholds promote error checking. Participants ( N = 250) completed tasks assessing their fluid reasoning abilities, stable monitoring confidence levels, and the control threshold they impose on their decisions. They also completed seven typical heuristic and biases tasks such as the cognitive reflection test and Resistance to Framing. Using structural equation modeling, we found that individuals with higher reasoning abilities, lower monitoring confidence, and higher control threshold performed significantly and, at times, substantially better on the heuristic and biases tasks. Individuals with higher control thresholds also showed lower preferences for risky alternatives in a gambling task. Furthermore, residual correlations among the heuristic and biases tasks were reduced to null, indicating that cognitive abilities, monitoring confidence, and control thresholds accounted for their shared variance. Implications include the proposal that the capacity to detect errors does not differ between individuals. Rather, individuals might adopt varied strategies that promote error checking to different degrees, regardless of whether they have made a mistake or not. The results support growing evidence that decision-making involves cognitive abilities that construct actions and monitoring and control processes that manage their initiation.
WASP (Write a Scientific Paper) using Excel - 6: Standard error and confidence interval.
Grech, Victor
2018-03-01
The calculation of descriptive statistics includes the calculation of standard error and confidence interval, an inevitable component of data analysis in inferential statistics. This paper provides pointers as to how to do this in Microsoft Excel™. Copyright © 2018 Elsevier B.V. All rights reserved.
The Applicability of Confidence Intervals of Quantiles for the Generalized Logistic Distribution
NASA Astrophysics Data System (ADS)
Shin, H.; Heo, J.; Kim, T.; Jung, Y.
2007-12-01
The generalized logistic (GL) distribution has been widely used for frequency analysis. However, there is a little study related to the confidence intervals that indicate the prediction accuracy of distribution for the GL distribution. In this paper, the estimation of the confidence intervals of quantiles for the GL distribution is presented based on the method of moments (MOM), maximum likelihood (ML), and probability weighted moments (PWM) and the asymptotic variances of each quantile estimator are derived as functions of the sample sizes, return periods, and parameters. Monte Carlo simulation experiments are also performed to verify the applicability of the derived confidence intervals of quantile. As the results, the relative bias (RBIAS) and relative root mean square error (RRMSE) of the confidence intervals generally increase as return period increases and reverse as sample size increases. And PWM for estimating the confidence intervals performs better than the other methods in terms of RRMSE when the data is almost symmetric while ML shows the smallest RBIAS and RRMSE when the data is more skewed and sample size is moderately large. The GL model was applied to fit the distribution of annual maximum rainfall data. The results show that there are little differences in the estimated quantiles between ML and PWM while distinct differences in MOM.
Mammalian cell culture monitoring using in situ spectroscopy: Is your method really optimised?
André, Silvère; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Duponchel, Ludovic
2017-03-01
In recent years, as a result of the process analytical technology initiative of the US Food and Drug Administration, many different works have been carried out on direct and in situ monitoring of critical parameters for mammalian cell cultures by Raman spectroscopy and multivariate regression techniques. However, despite interesting results, it cannot be said that the proposed monitoring strategies, which will reduce errors of the regression models and thus confidence limits of the predictions, are really optimized. Hence, the aim of this article is to optimize some critical steps of spectroscopic acquisition and data treatment in order to reach a higher level of accuracy and robustness of bioprocess monitoring. In this way, we propose first an original strategy to assess the most suited Raman acquisition time for the processes involved. In a second part, we demonstrate the importance of the interbatch variability on the accuracy of the predictive models with a particular focus on the optical probes adjustment. Finally, we propose a methodology for the optimization of the spectral variables selection in order to decrease prediction errors of multivariate regressions. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:308-316, 2017. © 2017 American Institute of Chemical Engineers.
Cawyer, Chase R; Anderson, Sarah B; Szychowski, Jeff M; Neely, Cherry; Owen, John
2018-03-01
To compare the accuracy of a new regression-derived formula developed from the National Fetal Growth Studies data to the common alternative method that uses the average of the gestational ages (GAs) calculated for each fetal biometric measurement (biparietal diameter, head circumference, abdominal circumference, and femur length). This retrospective cross-sectional study identified nonanomalous singleton pregnancies that had a crown-rump length plus at least 1 additional sonographic examination with complete fetal biometric measurements. With the use of the crown-rump length to establish the referent estimated date of delivery, each method's (National Institute of Child Health and Human Development regression versus Hadlock average [Radiology 1984; 152:497-501]), error at every examination was computed. Error, defined as the difference between the crown-rump length-derived GA and each method's predicted GA (weeks), was compared in 3 GA intervals: 1 (14 weeks-20 weeks 6 days), 2 (21 weeks-28 weeks 6 days), and 3 (≥29 weeks). In addition, the proportion of each method's examinations that had errors outside prespecified (±) day ranges was computed by using odds ratios. A total of 16,904 sonograms were identified. The overall and prespecified GA range subset mean errors were significantly smaller for the regression compared to the average (P < .01), and the regression had significantly lower odds of observing examinations outside the specified range of error in GA intervals 2 (odds ratio, 1.15; 95% confidence interval, 1.01-1.31) and 3 (odds ratio, 1.24; 95% confidence interval, 1.17-1.32) than the average method. In a contemporary unselected population of women dated by a crown-rump length-derived GA, the National Institute of Child Health and Human Development regression formula produced fewer estimates outside a prespecified margin of error than the commonly used Hadlock average; the differences were most pronounced for GA estimates at 29 weeks and later. © 2017 by the American Institute of Ultrasound in Medicine.
Crawford, Charles G.
1985-01-01
The modified tracer technique was used to determine reaeration-rate coefficients in the Wabash River in reaches near Lafayette and Terre Haute, Indiana, at streamflows ranging from 2,310 to 7,400 cu ft/sec. Chemically pure (CP grade) ethylene was used as the tracer gas, and rhodamine-WT dye was used as the dispersion-dilution tracer. Reaeration coefficients determined for a 13.5-mi reach near Terre Haute, Indiana, at streamflows of 3,360 and 7,400 cu ft/sec (71% and 43% flow duration) were 1.4/day and 1.1/day at 20 C, respectively. Reaeration-rate coefficients determined for a 18.4-mile reach near Lafayette, Indiana, at streamflows of 2,310 and 3,420 cu ft/sec (70% and 53 % flow duration), were 1.2/day and 0.8/day at 20 C, respectively. None of the commonly used equations found in the literature predicted reaeration-rate coefficients similar to those measured for reaches of the Wabash River near Lafayette and Terre Haute. The average absolute prediction error for 10 commonly used reaeration equations ranged from 22% to 154%. Prediction error was much smaller in the reach near Terre Haute than in the reach near Lafayette. The overall average of the absolute prediction error for all 10 equations was 22% for the reach near Terre Haute and 128% for the reach near Lafayette. Confidence limits of results obtained from the modified tracer technique were smaller than those obtained from the equations in the literature.
Results from a NIST-EPA Interagency Agreement on Understanding Systematic Measurement Error in Thermal-Optical Analysis for PM Black Carbon Using Response Surfaces and Surface Confidence Intervals will be presented at the American Association for Aerosol Research (AAAR) 24th Annu...
Confidence Intervals for Weighted Composite Scores under the Compound Binomial Error Model
ERIC Educational Resources Information Center
Kim, Kyung Yong; Lee, Won-Chan
2018-01-01
Reporting confidence intervals with test scores helps test users make important decisions about examinees by providing information about the precision of test scores. Although a variety of estimation procedures based on the binomial error model are available for computing intervals for test scores, these procedures assume that items are randomly…
Reflexion on linear regression trip production modelling method for ensuring good model quality
NASA Astrophysics Data System (ADS)
Suprayitno, Hitapriya; Ratnasari, Vita
2017-11-01
Transport Modelling is important. For certain cases, the conventional model still has to be used, in which having a good trip production model is capital. A good model can only be obtained from a good sample. Two of the basic principles of a good sampling is having a sample capable to represent the population characteristics and capable to produce an acceptable error at a certain confidence level. It seems that this principle is not yet quite understood and used in trip production modeling. Therefore, investigating the Trip Production Modelling practice in Indonesia and try to formulate a better modeling method for ensuring the Model Quality is necessary. This research result is presented as follows. Statistics knows a method to calculate span of prediction value at a certain confidence level for linear regression, which is called Confidence Interval of Predicted Value. The common modeling practice uses R2 as the principal quality measure, the sampling practice varies and not always conform to the sampling principles. An experiment indicates that small sample is already capable to give excellent R2 value and sample composition can significantly change the model. Hence, good R2 value, in fact, does not always mean good model quality. These lead to three basic ideas for ensuring good model quality, i.e. reformulating quality measure, calculation procedure, and sampling method. A quality measure is defined as having a good R2 value and a good Confidence Interval of Predicted Value. Calculation procedure must incorporate statistical calculation method and appropriate statistical tests needed. A good sampling method must incorporate random well distributed stratified sampling with a certain minimum number of samples. These three ideas need to be more developed and tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etingov, Pavel; Makarov, PNNL Yuri; Subbarao, PNNL Kris
RUT software is designed for use by the Balancing Authorities to predict and display additional requirements caused by the variability and uncertainty in load and generation. The prediction is made for the next operating hours as well as for the next day. The tool predicts possible deficiencies in generation capability and ramping capability. This deficiency of balancing resources can cause serious risks to power system stability and also impact real-time market energy prices. The tool dynamically and adaptively correlates changing system conditions with the additional balancing needs triggered by the interplay between forecasted and actual load and output of variablemore » resources. The assessment is performed using a specially developed probabilistic algorithm incorporating multiple sources of uncertainty including wind, solar and load forecast errors. The tool evaluates required generation for a worst case scenario, with a user-specified confidence level.« less
Liu, Xiaofeng Steven
2011-05-01
The use of covariates is commonly believed to reduce the unexplained error variance and the standard error for the comparison of treatment means, but the reduction in the standard error is neither guaranteed nor uniform over different sample sizes. The covariate mean differences between the treatment conditions can inflate the standard error of the covariate-adjusted mean difference and can actually produce a larger standard error for the adjusted mean difference than that for the unadjusted mean difference. When the covariate observations are conceived of as randomly varying from one study to another, the covariate mean differences can be related to a Hotelling's T(2) . Using this Hotelling's T(2) statistic, one can always find a minimum sample size to achieve a high probability of reducing the standard error and confidence interval width for the adjusted mean difference. ©2010 The British Psychological Society.
Hypercorrection of high confidence errors in lexical representations.
Iwaki, Nobuyoshi; Matsushima, Hiroko; Kodaira, Kazumasa
2013-08-01
Memory errors associated with higher confidence are more likely to be corrected than errors made with lower confidence, a phenomenon called the hypercorrection effect. This study investigated whether the hypercorrection effect occurs with phonological information of lexical representations. In Experiment 1, 15 participants performed a Japanese Kanji word-reading task, in which the words had several possible pronunciations. In the initial task, participants were required to read aloud each word and indicate their confidence in their response; this was followed by receipt of visual feedback of the correct response. A hypercorrection effect was observed, indicating generality of this effect beyond previous observations in memories based upon semantic or episodic representations. This effect was replicated in Experiment 2, in which 40 participants performed the same task as in Experiment 1. When the participant's ratings of the practical value of the words were controlled, a partial correlation between confidence and likelihood of later correcting the initial mistaken response was reduced. This suggests that the hypercorrection effect may be partially caused by an individual's recognition of the practical value of reading the words correctly.
NASA Technical Reports Server (NTRS)
Rutledge, Charles K.
1988-01-01
The validity of applying chi-square based confidence intervals to far-field acoustic flyover spectral estimates was investigated. Simulated data, using a Kendall series and experimental acoustic data from the NASA/McDonnell Douglas 500E acoustics test, were analyzed. Statistical significance tests to determine the equality of distributions of the simulated and experimental data relative to theoretical chi-square distributions were performed. Bias and uncertainty errors associated with the spectral estimates were easily identified from the data sets. A model relating the uncertainty and bias errors to the estimates resulted, which aided in determining the appropriateness of the chi-square distribution based confidence intervals. Such confidence intervals were appropriate for nontonally associated frequencies of the experimental data but were inappropriate for tonally associated estimate distributions. The appropriateness at the tonally associated frequencies was indicated by the presence of bias error and noncomformity of the distributions to the theoretical chi-square distribution. A technique for determining appropriate confidence intervals at the tonally associated frequencies was suggested.
Neural basis for recognition confidence in younger and older adults.
Chua, Elizabeth F; Schacter, Daniel L; Sperling, Reisa A
2009-03-01
Although several studies have examined the neural basis for age-related changes in objective memory performance, less is known about how the process of memory monitoring changes with aging. The authors used functional magnetic resonance imaging to examine retrospective confidence in memory performance in aging. During low confidence, both younger and older adults showed behavioral evidence that they were guessing during recognition and that they were aware they were guessing when making confidence judgments. Similarly, both younger and older adults showed increased neural activity during low- compared to high-confidence responses in the lateral prefrontal cortex, anterior cingulate cortex, and left intraparietal sulcus. In contrast, older adults showed more high-confidence errors than younger adults. Younger adults showed greater activity for high compared to low confidence in medial temporal lobe structures, but older adults did not show this pattern. Taken together, these findings may suggest that impairments in the confidence-accuracy relationship for memory in older adults, which are often driven by high-confidence errors, may be primarily related to altered neural signals associated with greater activity for high-confidence responses.
Neural basis for recognition confidence in younger and older adults
Chua, Elizabeth F.; Schacter, Daniel L.; Sperling, Reisa A.
2008-01-01
Although several studies have examined the neural basis for age-related changes in objective memory performance, less is known about how the process of memory monitoring changes with aging. We used fMRI to examine retrospective confidence in memory performance in aging. During low confidence, both younger and older adults showed behavioral evidence that they were guessing during recognition, and that they were aware they were guessing when making confidence judgments. Similarly, both younger and older adults showed increased neural activity during low compared to high confidence responses in lateral prefrontal cortex, anterior cingulate cortex, and left intraparietal sulcus. In contrast, older adults showed more high confidence errors than younger adults. Younger adults showed greater activity for high compared to low confidence in medial temporal lobe structures, but older adults did not show this pattern. Taken together, these findings may suggest that impairments in the confidence-accuracy relationship for memory in older adults, which are often driven by high confidence errors, may be primarily related to altered neural signals associated with greater activity for high confidence responses. PMID:19290745
Is there any electrophysiological evidence for subliminal error processing?
Shalgi, Shani; Deouell, Leon Y
2013-08-29
The role of error awareness in executive control and modification of behavior is not fully understood. In line with many recent studies showing that conscious awareness is unnecessary for numerous high-level processes such as strategic adjustments and decision making, it was suggested that error detection can also take place unconsciously. The Error Negativity (Ne) component, long established as a robust error-related component that differentiates between correct responses and errors, was a fine candidate to test this notion: if an Ne is elicited also by errors which are not consciously detected, it would imply a subliminal process involved in error monitoring that does not necessarily lead to conscious awareness of the error. Indeed, for the past decade, the repeated finding of a similar Ne for errors which became aware and errors that did not achieve awareness, compared to the smaller negativity elicited by correct responses (Correct Response Negativity; CRN), has lent the Ne the prestigious status of an index of subliminal error processing. However, there were several notable exceptions to these findings. The study in the focus of this review (Shalgi and Deouell, 2012) sheds new light on both types of previous results. We found that error detection as reflected by the Ne is correlated with subjective awareness: when awareness (or more importantly lack thereof) is more strictly determined using the wagering paradigm, no Ne is elicited without awareness. This result effectively resolves the issue of why there are many conflicting findings regarding the Ne and error awareness. The average Ne amplitude appears to be influenced by individual criteria for error reporting and therefore, studies containing different mixtures of participants who are more confident of their own performance or less confident, or paradigms that either encourage or don't encourage reporting low confidence errors will show different results. Based on this evidence, it is no longer possible to unquestioningly uphold the notion that the amplitude of the Ne is unrelated to subjective awareness, and therefore, that errors are detected without conscious awareness.
Kranz, R
2015-01-01
Objective: To establish the prevalence of red dot markers in a sample of wrist radiographs and to identify any anatomical and/or pathological characteristics that predict “incorrect” red dot classification. Methods: Accident and emergency (A&E) wrist cases from a digital imaging and communications in medicine/digital teaching library were examined for red dot prevalence and for the presence of several anatomical and pathological features. Binary logistic regression analyses were run to establish if any of these features were predictors of incorrect red dot classification. Results: 398 cases were analysed. Red dot was “incorrectly” classified in 8.5% of cases; 6.3% were “false negatives” (“FNs”)and 2.3% false positives (FPs) (one decimal place). Old fractures [odds ratio (OR), 5.070 (1.256–20.471)] and reported degenerative change [OR, 9.870 (2.300–42.359)] were found to predict FPs. Frykman V [OR, 9.500 (1.954–46.179)], Frykman VI [OR, 6.333 (1.205–33.283)] and non-Frykman positive abnormalities [OR, 4.597 (1.264–16.711)] predict “FNs”. Old fractures and Frykman VI were predictive of error at 90% confidence interval (CI); the rest at 95% CI. Conclusion: The five predictors of incorrect red dot classification may inform the image interpretation training of radiographers and other professionals to reduce diagnostic error. Verification with larger samples would reinforce these findings. Advances in knowledge: All healthcare providers strive to eradicate diagnostic error. By examining specific anatomical and pathological predictors on radiographs for such error, as well as extrinsic factors that may affect reporting accuracy, image interpretation training can focus on these “problem” areas and influence which radiographic abnormality detection schemes are appropriate to implement in A&E departments. PMID:25496373
Intertester agreement in refractive error measurements.
Huang, Jiayan; Maguire, Maureen G; Ciner, Elise; Kulp, Marjean T; Quinn, Graham E; Orel-Bixler, Deborah; Cyert, Lynn A; Moore, Bruce; Ying, Gui-Shuang
2013-10-01
To determine the intertester agreement of refractive error measurements between lay and nurse screeners using the Retinomax Autorefractor and the SureSight Vision Screener. Trained lay and nurse screeners measured refractive error in 1452 preschoolers (3 to 5 years old) using the Retinomax and the SureSight in a random order for screeners and instruments. Intertester agreement between lay and nurse screeners was assessed for sphere, cylinder, and spherical equivalent (SE) using the mean difference and the 95% limits of agreement. The mean intertester difference (lay minus nurse) was compared between groups defined based on the child's age, cycloplegic refractive error, and the reading's confidence number using analysis of variance. The limits of agreement were compared between groups using the Brown-Forsythe test. Intereye correlation was accounted for in all analyses. The mean intertester differences (95% limits of agreement) were -0.04 (-1.63, 1.54) diopter (D) sphere, 0.00 (-0.52, 0.51) D cylinder, and -0.04 (1.65, 1.56) D SE for the Retinomax and 0.05 (-1.48, 1.58) D sphere, 0.01 (-0.58, 0.60) D cylinder, and 0.06 (-1.45, 1.57) D SE for the SureSight. For either instrument, the mean intertester differences in sphere and SE did not differ by the child's age, cycloplegic refractive error, or the reading's confidence number. However, for both instruments, the limits of agreement were wider when eyes had significant refractive error or the reading's confidence number was below the manufacturer's recommended value. Among Head Start preschool children, trained lay and nurse screeners agree well in measuring refractive error using the Retinomax or the SureSight. Both instruments had similar intertester agreement in refractive error measurements independent of the child's age. Significant refractive error and a reading with low confidence number were associated with worse intertester agreement.
Body mass prediction from skeletal frame size in elite athletes.
Ruff, C B
2000-12-01
Body mass can be estimated from measures of skeletal frame size (stature and bi-iliac (maximum pelvic) breadth) fairly accurately in modern human populations. However, it is not clear whether such a technique will lead to systematic biases in body mass estimation when applied to earlier hominins. Here the stature/bi-iliac method is tested, using data available for modern Olympic and Olympic-caliber athletes, with the rationale that these individuals may be more representative of the general physique and degree of physical conditioning characteristic of earlier populations. The average percent prediction error of body mass among both male and female athletes is less than 3%, with males slightly underestimated and females slightly overestimated. Among males, the ratio of shoulder to hip (biacromial/bi-iliac) breadth is correlated with prediction error, while lower limb/trunk length has only a weak inconsistent effect. In both sexes, athletes in "weight" events (e.g. , shot put, weight-lifting), which emphasize strength, are underestimated, while those in more endurance-related events (e.g., long distance running) are overestimated. It is likely that the environmental pressures facing earlier hominins would have favored more generalized physiques adapted for a combination of strength, speed, agility, and endurance. The events most closely approximating these requirements in Olympic athletes are the decathlon, pentathlon, and wrestling, all of which have average percent prediction errors of body mass of 5% or less. Thus, "morphometric" estimation of body mass from skeletal frame size appears to work reasonably well in both "normal" and highly athletic modern humans, increasing confidence that the technique will also be applicable to earlier hominins. Copyright 2000 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Bergeron, Charles; Labelle, Hubert; Ronsky, Janet; Zernicke, Ronald
2005-04-01
Spinal curvature progression in scoliosis patients is monitored from X-rays, and this serial exposure to harmful radiation increases the incidence of developing cancer. With the aim of reducing the invasiveness of follow-up, this study seeks to relate the three-dimensional external surface to the internal geometry, having assumed that that the physiological links between these are sufficiently regular across patients. A database was used of 194 quasi-simultaneous acquisitions of two X-rays and a 3D laser scan of the entire trunk. Data was processed to sets of datapoints representing the trunk surface and spinal curve. Functional data analyses were performed using generalized Fourier series using a Haar basis and functional minimum noise fractions. The resulting coefficients became inputs and outputs, respectively, to an array of support vector regression (SVR) machines. SVR parameters were set based on theoretical results, and cross-validation increased confidence in the system's performance. Predicted lateral and frontal views of the spinal curve from the back surface demonstrated average L2-errors of 6.13 and 4.38 millimetres, respectively, across the test set; these compared favourably with measurement error in data. This constitutes a first robust prediction of the 3D spinal curve from external data using learning techniques.
Farwell, Lawrence A.; Richardson, Drew C.; Richardson, Graham M.; Furedy, John J.
2014-01-01
A classification concealed information test (CIT) used the “brain fingerprinting” method of applying P300 event-related potential (ERP) in detecting information that is (1) acquired in real life and (2) unique to US Navy experts in military medicine. Military medicine experts and non-experts were asked to push buttons in response to three types of text stimuli. Targets contain known information relevant to military medicine, are identified to subjects as relevant, and require pushing one button. Subjects are told to push another button to all other stimuli. Probes contain concealed information relevant to military medicine, and are not identified to subjects. Irrelevants contain equally plausible, but incorrect/irrelevant information. Error rate was 0%. Median and mean statistical confidences for individual determinations were 99.9% with no indeterminates (results lacking sufficiently high statistical confidence to be classified). We compared error rate and statistical confidence for determinations of both information present and information absent produced by classification CIT (Is a probe ERP more similar to a target or to an irrelevant ERP?) vs. comparison CIT (Does a probe produce a larger ERP than an irrelevant?) using P300 plus the late negative component (LNP; together, P300-MERMER). Comparison CIT produced a significantly higher error rate (20%) and lower statistical confidences: mean 67%; information-absent mean was 28.9%, less than chance (50%). We compared analysis using P300 alone with the P300 + LNP. P300 alone produced the same 0% error rate but significantly lower statistical confidences. These findings add to the evidence that the brain fingerprinting methods as described here provide sufficient conditions to produce less than 1% error rate and greater than 95% median statistical confidence in a CIT on information obtained in the course of real life that is characteristic of individuals with specific training, expertise, or organizational affiliation. PMID:25565941
Eisele, Thomas P; Rhoda, Dale A; Cutts, Felicity T; Keating, Joseph; Ren, Ruilin; Barros, Aluisio J D; Arnold, Fred
2013-01-01
Nationally representative household surveys are increasingly relied upon to measure maternal, newborn, and child health (MNCH) intervention coverage at the population level in low- and middle-income countries. Surveys are the best tool we have for this purpose and are central to national and global decision making. However, all survey point estimates have a certain level of error (total survey error) comprising sampling and non-sampling error, both of which must be considered when interpreting survey results for decision making. In this review, we discuss the importance of considering these errors when interpreting MNCH intervention coverage estimates derived from household surveys, using relevant examples from national surveys to provide context. Sampling error is usually thought of as the precision of a point estimate and is represented by 95% confidence intervals, which are measurable. Confidence intervals can inform judgments about whether estimated parameters are likely to be different from the real value of a parameter. We recommend, therefore, that confidence intervals for key coverage indicators should always be provided in survey reports. By contrast, the direction and magnitude of non-sampling error is almost always unmeasurable, and therefore unknown. Information error and bias are the most common sources of non-sampling error in household survey estimates and we recommend that they should always be carefully considered when interpreting MNCH intervention coverage based on survey data. Overall, we recommend that future research on measuring MNCH intervention coverage should focus on refining and improving survey-based coverage estimates to develop a better understanding of how results should be interpreted and used.
Eisele, Thomas P.; Rhoda, Dale A.; Cutts, Felicity T.; Keating, Joseph; Ren, Ruilin; Barros, Aluisio J. D.; Arnold, Fred
2013-01-01
Nationally representative household surveys are increasingly relied upon to measure maternal, newborn, and child health (MNCH) intervention coverage at the population level in low- and middle-income countries. Surveys are the best tool we have for this purpose and are central to national and global decision making. However, all survey point estimates have a certain level of error (total survey error) comprising sampling and non-sampling error, both of which must be considered when interpreting survey results for decision making. In this review, we discuss the importance of considering these errors when interpreting MNCH intervention coverage estimates derived from household surveys, using relevant examples from national surveys to provide context. Sampling error is usually thought of as the precision of a point estimate and is represented by 95% confidence intervals, which are measurable. Confidence intervals can inform judgments about whether estimated parameters are likely to be different from the real value of a parameter. We recommend, therefore, that confidence intervals for key coverage indicators should always be provided in survey reports. By contrast, the direction and magnitude of non-sampling error is almost always unmeasurable, and therefore unknown. Information error and bias are the most common sources of non-sampling error in household survey estimates and we recommend that they should always be carefully considered when interpreting MNCH intervention coverage based on survey data. Overall, we recommend that future research on measuring MNCH intervention coverage should focus on refining and improving survey-based coverage estimates to develop a better understanding of how results should be interpreted and used. PMID:23667331
Emotion perception and overconfidence in errors under stress in psychosis.
Köther, Ulf; Lincoln, Tania M; Moritz, Steffen
2018-03-21
Vulnerability stress models are well-accepted in psychosis research, but the mechanisms that link stress to psychotic symptoms remain vague. Little is known about how social cognition and overconfidence in errors, two putative mechanisms for the pathogenesis of delusions, relate to stress. Using a repeated measures design, we tested four groups (N=120) with different liability to psychosis (schizophrenia patients [n=35], first-degree relatives [n=24], participants with attenuated positive symptoms [n=19] and healthy controls [n=28]) and depression patients (n=14) as a clinical control group under three randomized experimental conditions (no stress, noise and social stress). Parallel versions of the Emotion Perception and Confidence Task, which taps both emotion perception and confidence, were used in each condition. We recorded subjective stress, heart rate, skin conductance level and salivary cortisol to assess the stress response across different dimensions. Independent of the stress condition, patients with schizophrenia showed poorer emotion perception performance and higher confidence in emotion perception errors than participants with attenuated positive symptoms and healthy controls. However, they did not differ from patients with depression or first-degree relatives. Stress did not influence emotion perception or the extent of high-confident errors, but patients with schizophrenia showed an increase in high-confident emotion perception errors conditional on higher arousal. A possible clinical implication of our findings is the necessity to provide stress management programs that aim to reduce arousal. Moreover, patients with schizophrenia might benefit from interventions that help them to reduce overconfidence in their social cognition judgements in times in which they feel being under pressure. Copyright © 2018 Elsevier B.V. All rights reserved.
Paudel, Prakash; Ramson, Prasidh; Naduvilath, Thomas; Wilson, David; Phuong, Ha Thanh; Ho, Suit M; Giap, Nguyen V
2014-01-01
Background To assess the prevalence of vision impairment and refractive error in school children 12–15 years of age in Ba Ria – Vung Tau province, Vietnam. Design Prospective, cross-sectional study. Participants 2238 secondary school children. Methods Subjects were selected based on stratified multistage cluster sampling of 13 secondary schools from urban, rural and semi-urban areas. The examination included visual acuity measurements, ocular motility evaluation, cycloplegic autorefraction, and examination of the external eye, anterior segment, media and fundus. Main Outcome Measures Visual acuity and principal cause of vision impairment. Results The prevalence of uncorrected and presenting visual acuity ≤6/12 in the better eye were 19.4% (95% confidence interval, 12.5–26.3) and 12.2% (95% confidence interval, 8.8–15.6), respectively. Refractive error was the cause of vision impairment in 92.7%, amblyopia in 2.2%, cataract in 0.7%, retinal disorders in 0.4%, other causes in 1.5% and unexplained causes in the remaining 2.6%. The prevalence of vision impairment due to myopia in either eye (–0.50 diopter or greater) was 20.4% (95% confidence interval, 12.8–28.0), hyperopia (≥2.00 D) was 0.4% (95% confidence interval, 0.0–0.7) and emmetropia with astigmatism (≥0.75 D) was 0.7% (95% confidence interval, 0.2–1.2). Vision impairment due to myopia was associated with higher school grade and increased time spent reading and working on a computer. Conclusions Uncorrected refractive error, particularly myopia, among secondary school children in Vietnam is a major public health problem. School-based eye health initiative such as refractive error screening is warranted to reduce vision impairment. PMID:24299145
Paudel, Prakash; Ramson, Prasidh; Naduvilath, Thomas; Wilson, David; Phuong, Ha Thanh; Ho, Suit M; Giap, Nguyen V
2014-04-01
To assess the prevalence of vision impairment and refractive error in school children 12-15 years of age in Ba Ria - Vung Tau province, Vietnam. Prospective, cross-sectional study. 2238 secondary school children. Subjects were selected based on stratified multistage cluster sampling of 13 secondary schools from urban, rural and semi-urban areas. The examination included visual acuity measurements, ocular motility evaluation, cycloplegic autorefraction, and examination of the external eye, anterior segment, media and fundus. Visual acuity and principal cause of vision impairment. The prevalence of uncorrected and presenting visual acuity ≤6/12 in the better eye were 19.4% (95% confidence interval, 12.5-26.3) and 12.2% (95% confidence interval, 8.8-15.6), respectively. Refractive error was the cause of vision impairment in 92.7%, amblyopia in 2.2%, cataract in 0.7%, retinal disorders in 0.4%, other causes in 1.5% and unexplained causes in the remaining 2.6%. The prevalence of vision impairment due to myopia in either eye (-0.50 diopter or greater) was 20.4% (95% confidence interval, 12.8-28.0), hyperopia (≥2.00 D) was 0.4% (95% confidence interval, 0.0-0.7) and emmetropia with astigmatism (≥0.75 D) was 0.7% (95% confidence interval, 0.2-1.2). Vision impairment due to myopia was associated with higher school grade and increased time spent reading and working on a computer. Uncorrected refractive error, particularly myopia, among secondary school children in Vietnam is a major public health problem. School-based eye health initiative such as refractive error screening is warranted to reduce vision impairment. © 2013 The Authors. Clinical & Experimental Ophthalmology published by Wiley Publishing Asia Pty Ltd on behalf of Royal Australian and New Zealand College of Ophthalmologists.
Aeroacoustic Analysis of a Simplified Landing Gear
NASA Technical Reports Server (NTRS)
Lockard, David P.; Khorrami, Mehdi, R.; Li, Fei
2004-01-01
A hybrid approach is used to investigate the noise generated by a simplified landing gear without small scale parts such as hydraulic lines and fasteners. The Ffowcs Williams and Hawkings equation is used to predict the noise at far-field observer locations from flow data provided by an unsteady computational fluid dynamics calculation. A simulation with 13 million grid points has been completed, and comparisons are made between calculations with different turbulence models. Results indicate that the turbulence model has a profound effect on the levels and character of the unsteadiness. Flow data on solid surfaces and a set of permeable surfaces surrounding the gear have been collected. Noise predictions using the porous surfaces appear to be contaminated by errors caused by large wake fluctuations passing through the surfaces. However, comparisons between predictions using the solid surfaces with the near-field CFD solution are in good agreement giving confidence in the far-field results.
Standard Errors and Confidence Intervals of Norm Statistics for Educational and Psychological Tests.
Oosterhuis, Hannah E M; van der Ark, L Andries; Sijtsma, Klaas
2016-11-14
Norm statistics allow for the interpretation of scores on psychological and educational tests, by relating the test score of an individual test taker to the test scores of individuals belonging to the same gender, age, or education groups, et cetera. Given the uncertainty due to sampling error, one would expect researchers to report standard errors for norm statistics. In practice, standard errors are seldom reported; they are either unavailable or derived under strong distributional assumptions that may not be realistic for test scores. We derived standard errors for four norm statistics (standard deviation, percentile ranks, stanine boundaries and Z-scores) under the mild assumption that the test scores are multinomially distributed. A simulation study showed that the standard errors were unbiased and that corresponding Wald-based confidence intervals had good coverage. Finally, we discuss the possibilities for applying the standard errors in practical test use in education and psychology. The procedure is provided via the R function check.norms, which is available in the mokken package.
Using an R Shiny to Enhance the Learning Experience of Confidence Intervals
ERIC Educational Resources Information Center
Williams, Immanuel James; Williams, Kelley Kim
2018-01-01
Many students find understanding confidence intervals difficult, especially because of the amalgamation of concepts such as confidence levels, standard error, point estimates and sample sizes. An R Shiny application was created to assist the learning process of confidence intervals using graphics and data from the US National Basketball…
Why hard-nosed executives should care about management theory.
Christensen, Clayton M; Raynor, Michael E
2003-09-01
Theory often gets a bum rap among managers because it's associated with the word "theoretical," which connotes "impractical." But it shouldn't. Because experience is solely about the past, solid theories are the only way managers can plan future actions with any degree of confidence. The key word here is "solid." Gravity is a solid theory. As such, it lets us predict that if we step off a cliff we will fall, without actually having to do so. But business literature is replete with theories that don't seem to work in practice or actually contradict each other. How can a manager tell a good business theory from a bad one? The first step is understanding how good theories are built. They develop in three stages: gathering data, organizing it into categories highlighting significant differences, then making generalizations explaining what causes what, under which circumstances. For instance, professor Ananth Raman and his colleagues collected data showing that bar code-scanning systems generated notoriously inaccurate inventory records. These observations led them to classify the types of errors the scanning systems produced and the types of shops in which those errors most often occurred. Recently, some of Raman's doctoral students have worked as clerks to see exactly what kinds of behavior cause the errors. From this foundation, a solid theory predicting under which circumstances bar code systems work, and don't work, is beginning to emerge. Once we forgo one-size-fits-all explanations and insist that a theory describes the circumstances under which it does and doesn't work, we can bring predictable success to the world of management.
Mueller, Silke C; Drewelow, Bernd
2013-05-01
The area under the concentration-time curve (AUC) after oral midazolam administration is commonly used for cytochrome P450 (CYP) 3A phenotyping studies. The aim of this investigation was to evaluate a limited sampling strategy for the prediction of AUC with oral midazolam. A total of 288 concentration-time profiles from 123 healthy volunteers who participated in four previously performed drug interaction studies with intense sampling after a single oral dose of 7.5 mg midazolam were available for evaluation. Of these, 45 profiles served for model building, which was performed by stepwise multiple linear regression, and the remaining 243 datasets served for validation. Mean prediction error (MPE), mean absolute error (MAE) and root mean squared error (RMSE) were calculated to determine bias and precision The one- to four-sampling point models with the best coefficient of correlation were the one-sampling point model (8 h; r (2) = 0.84), the two-sampling point model (0.5 and 8 h; r (2) = 0.93), the three-sampling point model (0.5, 2, and 8 h; r (2) = 0.96), and the four-sampling point model (0.5,1, 2, and 8 h; r (2) = 0.97). However, the one- and two-sampling point models were unable to predict the midazolam AUC due to unacceptable bias and precision. Only the four-sampling point model predicted the very low and very high midazolam AUC of the validation dataset with acceptable precision and bias. The four-sampling point model was also able to predict the geometric mean ratio of the treatment phase over the baseline (with 90 % confidence interval) results of three drug interaction studies in the categories of strong, moderate, and mild induction, as well as no interaction. A four-sampling point limited sampling strategy to predict the oral midazolam AUC for CYP3A phenotyping is proposed. The one-, two- and three-sampling point models were not able to predict midazolam AUC accurately.
Confidence set inference with a prior quadratic bound
NASA Technical Reports Server (NTRS)
Backus, George E.
1989-01-01
In the uniqueness part of a geophysical inverse problem, the observer wants to predict all likely values of P unknown numerical properties z=(z sub 1,...,z sub p) of the earth from measurement of D other numerical properties y (sup 0) = (y (sub 1) (sup 0), ..., y (sub D (sup 0)), using full or partial knowledge of the statistical distribution of the random errors in y (sup 0). The data space Y containing y(sup 0) is D-dimensional, so when the model space X is infinite-dimensional the linear uniqueness problem usually is insoluble without prior information about the correct earth model x. If that information is a quadratic bound on x, Bayesian inference (BI) and stochastic inversion (SI) inject spurious structure into x, implied by neither the data nor the quadratic bound. Confidence set inference (CSI) provides an alternative inversion technique free of this objection. Confidence set inference is illustrated in the problem of estimating the geomagnetic field B at the core-mantle boundary (CMB) from components of B measured on or above the earth's surface.
ERIC Educational Resources Information Center
Goedeme, Tim
2013-01-01
If estimates are based on samples, they should be accompanied by appropriate standard errors and confidence intervals. This is true for scientific research in general, and is even more important if estimates are used to inform and evaluate policy measures such as those aimed at attaining the Europe 2020 poverty reduction target. In this article I…
Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi
2014-01-09
A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.
Is there any electrophysiological evidence for subliminal error processing?
Shalgi, Shani; Deouell, Leon Y.
2013-01-01
The role of error awareness in executive control and modification of behavior is not fully understood. In line with many recent studies showing that conscious awareness is unnecessary for numerous high-level processes such as strategic adjustments and decision making, it was suggested that error detection can also take place unconsciously. The Error Negativity (Ne) component, long established as a robust error-related component that differentiates between correct responses and errors, was a fine candidate to test this notion: if an Ne is elicited also by errors which are not consciously detected, it would imply a subliminal process involved in error monitoring that does not necessarily lead to conscious awareness of the error. Indeed, for the past decade, the repeated finding of a similar Ne for errors which became aware and errors that did not achieve awareness, compared to the smaller negativity elicited by correct responses (Correct Response Negativity; CRN), has lent the Ne the prestigious status of an index of subliminal error processing. However, there were several notable exceptions to these findings. The study in the focus of this review (Shalgi and Deouell, 2012) sheds new light on both types of previous results. We found that error detection as reflected by the Ne is correlated with subjective awareness: when awareness (or more importantly lack thereof) is more strictly determined using the wagering paradigm, no Ne is elicited without awareness. This result effectively resolves the issue of why there are many conflicting findings regarding the Ne and error awareness. The average Ne amplitude appears to be influenced by individual criteria for error reporting and therefore, studies containing different mixtures of participants who are more confident of their own performance or less confident, or paradigms that either encourage or don't encourage reporting low confidence errors will show different results. Based on this evidence, it is no longer possible to unquestioningly uphold the notion that the amplitude of the Ne is unrelated to subjective awareness, and therefore, that errors are detected without conscious awareness. PMID:24009548
Reliability of analog quantum simulation
NASA Astrophysics Data System (ADS)
Sarovar, Mohan; Zhang, Jun; Zeng, Lishan
Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. We formalize the notion of AQS reliability to calibration errors by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach connects to the notion of parameter space compression in statistical physics and naturally reveals the importance of model symmetries in dictating the robust properties. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
Can we predict 4-year graduation in podiatric medical school using admission data?
Sesodia, Sanjay; Molnar, David; Shaw, Graham P
2012-01-01
This study examined the predictive ability of educational background and demographic variables, available at the admission stage, to identify applicants who will graduate in 4 years from podiatric medical school. A logistic regression model was used to identify two predictors of 4-year graduation: age at matriculation and total Medical College Admission Test score. The model was cross-validated using a second independent sample from the same population. Cross-validation gives greater confidence that the results could be more generally applied. Total Medical College Admission Test score was the strongest predictor of 4-year graduation, with age at matriculation being a statistically significant but weaker predictor. Despite the model's capacity to predict 4-year graduation better than random assignment, a sufficient amount of error in prediction remained, suggesting that important predictors are missing from the model. Furthermore, the high rate of false-positives makes it inappropriate to use age and Medical College Admission Test score as admission screens in an attempt to eliminate attrition by not accepting at-risk students.
CFD Modeling of Launch Vehicle Aerodynamic Heating
NASA Technical Reports Server (NTRS)
Tashakkor, Scott B.; Canabal, Francisco; Mishtawy, Jason E.
2011-01-01
The Loci-CHEM 3.2 Computational Fluid Dynamics (CFD) code is being used to predict Ares-I launch vehicle aerodynamic heating. CFD has been used to predict both ascent and stage reentry environments and has been validated against wind tunnel tests and the Ares I-X developmental flight test. Most of the CFD predictions agreed with measurements. On regions where mismatches occurred, the CFD predictions tended to be higher than measured data. These higher predictions usually occurred in complex regions, where the CFD models (mainly turbulence) contain less accurate approximations. In some instances, the errors causing the over-predictions would cause locations downstream to be affected even though the physics were still being modeled properly by CHEM. This is easily seen when comparing to the 103-AH data. In the areas where predictions were low, higher grid resolution often brought the results closer to the data. Other disagreements are attributed to Ares I-X hardware not being present in the grid, as a result of computational resources limitations. The satisfactory predictions from CHEM provide confidence that future designs and predictions from the CFD code will provide an accurate approximation of the correct values for use in design and other applications
Abstract: Inference and Interval Estimation for Indirect Effects With Latent Variable Models.
Falk, Carl F; Biesanz, Jeremy C
2011-11-30
Models specifying indirect effects (or mediation) and structural equation modeling are both popular in the social sciences. Yet relatively little research has compared methods that test for indirect effects among latent variables and provided precise estimates of the effectiveness of different methods. This simulation study provides an extensive comparison of methods for constructing confidence intervals and for making inferences about indirect effects with latent variables. We compared the percentile (PC) bootstrap, bias-corrected (BC) bootstrap, bias-corrected accelerated (BC a ) bootstrap, likelihood-based confidence intervals (Neale & Miller, 1997), partial posterior predictive (Biesanz, Falk, and Savalei, 2010), and joint significance tests based on Wald tests or likelihood ratio tests. All models included three reflective latent variables representing the independent, dependent, and mediating variables. The design included the following fully crossed conditions: (a) sample size: 100, 200, and 500; (b) number of indicators per latent variable: 3 versus 5; (c) reliability per set of indicators: .7 versus .9; (d) and 16 different path combinations for the indirect effect (α = 0, .14, .39, or .59; and β = 0, .14, .39, or .59). Simulations were performed using a WestGrid cluster of 1680 3.06GHz Intel Xeon processors running R and OpenMx. Results based on 1,000 replications per cell and 2,000 resamples per bootstrap method indicated that the BC and BC a bootstrap methods have inflated Type I error rates. Likelihood-based confidence intervals and the PC bootstrap emerged as methods that adequately control Type I error and have good coverage rates.
Dopamine reward prediction error coding.
Schultz, Wolfram
2016-03-01
Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.
Dopamine reward prediction error coding
Schultz, Wolfram
2016-01-01
Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377
Kim, Joo Hyoung; Cha, Jung Yul; Hwang, Chung Ju
2012-12-01
This in vitro study was undertaken to evaluate the physical, chemical, and biological properties of commercially available metal orthodontic brackets in South Korea, because national standards for these products are lacking. FOUR BRACKET BRANDS WERE TESTED FOR DIMENSIONAL ACCURACY, (MANUFACTURING ERRORS IN ANGULATION AND TORQUE), CYTOTOXICITY, COMPOSITION, ELUTION, AND CORROSION: Archist (Daeseung Medical), Victory (3M Unitek), Kosaka (Tomy), and Confidence (Shinye Odontology Materials). The tested rackets showed no significant differences in manufacturing errors in angulation, but Confidence brackets showed a significant difference in manufacturing errors in torque. None of the brackets were cytotoxic to mouse fibroblasts. The metal ion components did not show a regular increasing or decreasing trend of elution over time, but the volume of the total eluted metal ions increased: Archist brackets had the maximal Cr elution and Confidence brackets appeared to have the largest volume of total eluted metal ions because of excessive Ni elution. Confidence brackets showed the lowest corrosion resistance during potentiodynamic polarization. The results of this study could potentially be applied in establishing national standards for metal orthodontic brackets and in evaluating commercially available products.
NASA Technical Reports Server (NTRS)
Murphy, P. C.
1986-01-01
An algorithm for maximum likelihood (ML) estimation is developed with an efficient method for approximating the sensitivities. The ML algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). MNRES determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. With the fitted surface, sensitivity information can be updated at each iteration with less computational effort than that required by either a finite-difference method or integration of the analytically determined sensitivity equations. MNRES eliminates the need to derive sensitivity equations for each new model, and thus provides flexibility to use model equations in any convenient format. A random search technique for determining the confidence limits of ML parameter estimates is applied to nonlinear estimation problems for airplanes. The confidence intervals obtained by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. The degree of nonlinearity in the estimation problem is an important factor in the relationship between CR bounds and the error bounds determined by the search technique. Beale's measure of nonlinearity is developed in this study for airplane identification problems; it is used to empirically correct confidence levels and to predict the degree of agreement between CR bounds and search estimates.
Global Bathymetry: Machine Learning for Data Editing
NASA Astrophysics Data System (ADS)
Sandwell, D. T.; Tea, B.; Freund, Y.
2017-12-01
The accuracy of global bathymetry depends primarily on the coverage and accuracy of the sounding data and secondarily on the depth predicted from gravity. A main focus of our research is to add newly-available data to the global compilation. Most data sources have 1-12% of erroneous soundings caused by a wide array of blunders and measurement errors. Over the years we have hand-edited this data using undergraduate employees at UCSD (440 million soundings at 500 m resolution). We are developing a machine learning approach to refine the flagging of the older soundings and provide automated editing of newly-acquired soundings. The approach has three main steps: 1) Combine the sounding data with additional information that may inform the machine learning algorithm. The additional parameters include: depth predicted from gravity; distance to the nearest sounding from other cruises; seafloor age; spreading rate; sediment thickness; and vertical gravity gradient. 2) Use available edit decisions as training data sets for a boosted tree algorithm with a binary logistic objective function and L2 regularization. Initial results with poor quality single beam soundings show that the automated algorithm matches the hand-edited data 89% of the time. The results show that most of the information for detecting outliers comes from predicted depth with secondary contributions from distance to the nearest sounding and longitude. A similar analysis using very high quality multibeam data shows that the automated algorithm matches the hand-edited data 93% of the time. Again, most of the information for detecting outliers comes from predicted depth secondary contributions from distance to the nearest sounding and longitude. 3) The third step in the process is to use the machine learning parameters, derived from the training data, to edit 12 million newly acquired single beam sounding data provided by the National Geospatial-Intelligence Agency. The output of the learning algorithm will be confidence ratedindicating which edits the algorithm is confident on and which it is not confident. We expect the majority ( 90%) of edits to be confident and not require human intervention. Human intervention will be required only on the 10% unconfident decisions, thus reducing the amount of human work by a factor of 10 or more.
New method for finding multiple meaningful trajectories
NASA Astrophysics Data System (ADS)
Bao, Zhonghao; Flachs, Gerald M.; Jordan, Jay B.
1995-07-01
Mathematical foundations and algorithms for efficiently finding multiple meaningful trajectories (FMMT) in a sequence of digital images are presented. A meaningful trajectory is motion created by a sentient being or by a device under the control of a sentient being. It is smooth and predictable over short time intervals. A meaningful trajectory can suddenly appear or disappear in sequence images. The development of the FMMT is based on these assumptions. A finite state machine in the FMMT is used to model the trajectories under the conditions of occlusions and false targets. Each possible trajectory is associated with an initial state of a finite state machine. When two frames of data are available, a linear predictor is used to predict the locations of all possible trajectories. All trajectories within a certain error bound are moved to a monitoring trajectory state. When trajectories attain three consecutive good predictions, they are moved to a valid trajectory state and considered to be locked into a tracking mode. If an object is occluded while in the valid trajectory state, the predicted position is used to continue to track; however, the confidence in the trajectory is lowered. If the trajectory confidence falls below a lower limit, the trajectory is terminated. Results are presented that illustrate the FMMT applied to track multiple munitions fired from a missile in a sequence of images. Accurate trajectories are determined even in poor images where the probabilities of miss and false alarm are very high.
On the Estimation of Errors in Sparse Bathymetric Geophysical Data Sets
NASA Astrophysics Data System (ADS)
Jakobsson, M.; Calder, B.; Mayer, L.; Armstrong, A.
2001-05-01
There is a growing demand in the geophysical community for better regional representations of the world ocean's bathymetry. However, given the vastness of the oceans and the relative limited coverage of even the most modern mapping systems, it is likely that many of the older data sets will remain part of our cumulative database for several more decades. Therefore, regional bathymetrical compilations that are based on a mixture of historic and contemporary data sets will have to remain the standard. This raises the problem of assembling bathymetric compilations and utilizing data sets not only with a heterogeneous cover but also with a wide range of accuracies. In combining these data to regularly spaced grids of bathymetric values, which the majority of numerical procedures in earth sciences require, we are often forced to use a complex interpolation scheme due to the sparseness and irregularity of the input data points. Consequently, we are faced with the difficult task of assessing the confidence that we can assign to the final grid product, a task that is not usually addressed in most bathymetric compilations. We approach the problem of assessing the confidence via a direct-simulation Monte Carlo method. We start with a small subset of data from the International Bathymetric Chart of the Arctic Ocean (IBCAO) grid model [Jakobsson et al., 2000]. This grid is compiled from a mixture of data sources ranging from single beam soundings with available metadata to spot soundings with no available metadata, to digitized contours; the test dataset shows examples of all of these types. From this database, we assign a priori error variances based on available meta-data, and when this is not available, based on a worst-case scenario in an essentially heuristic manner. We then generate a number of synthetic datasets by randomly perturbing the base data using normally distributed random variates, scaled according to the predicted error model. These datasets are then re-gridded using the same methodology as the original product, generating a set of plausible grid models of the regional bathymetry that we can use for standard error estimates. Finally, we repeat the entire random estimation process and analyze each run's standard error grids in order to examine sampling bias and variance in the predictions. The final products of the estimation are a collection of standard error grids, which we combine with the source data density in order to create a grid that contains information about the bathymetry model's reliability. Jakobsson, M., Cherkis, N., Woodward, J., Coakley, B., and Macnab, R., 2000, A new grid of Arctic bathymetry: A significant resource for scientists and mapmakers, EOS Transactions, American Geophysical Union, v. 81, no. 9, p. 89, 93, 96.
Real-time Upstream Monitoring System: Using ACE Data to Predict the Arrival of Interplanetary Shocks
NASA Astrophysics Data System (ADS)
Donegan, M. M.; Wagstaff, K. L.; Ho, G. C.; Vandegriff, J.
2003-12-01
We have developed an algorithm to predict Earth arrival times for interplanetary (IP) shock events originating at the Sun. Our predictions are generated from real-time data collected by the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. The high intensities of energetic ions that occur prior to and during an IP shock pose a radiation hazard to astronauts as well as to electronics in Earth orbit. The potential to predict such events is based on characteristic signatures in the Energetic Storm Particle (ESP) event ion intensities which are often associated with IP shocks. We have previously reported on the development and implementation of an algorithm to forecast the arrival of ESP events. Historical ion data from ACE/EPAM was used to train an artificial neural network which uses the signature of an approaching event to predict the time remaining until the shock arrives. Tests on the trained network have been encouraging, with an average error of 9.4 hours for predictions made 24 hours in advance, and an reduced average error of 4.9 hours when the shock is 12 hours away. The prediction engine has been integrated into a web-based system that uses real-time ACE/EPAM data provided by the NOAA Space Environment Center (http://sd-www.jhuapl.edu/UPOS/RISP/ index.html.) This system continually processes the latest ACE data, reports whether or not there is an impending shock, and predicts the time remaining until the shock arrival. Our predictions are updated every five minutes and provide significant lead-time, thereby supplying critical information that can be used by mission planners, satellite operations controllers, and scientists. We have continued to refine the prediction capabilities of this system; in addition to forecasting arrival times for shocks, we now provide confidence estimates for those predictions.
Malinowski, Kathleen; McAvoy, Thomas J; George, Rohini; Dieterich, Sonja; D'Souza, Warren D
2013-07-01
To determine how best to time respiratory surrogate-based tumor motion model updates by comparing a novel technique based on external measurements alone to three direct measurement methods. Concurrently measured tumor and respiratory surrogate positions from 166 treatment fractions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor position from marker motion were created from the first six measurements in each dataset. Successive tumor localizations were obtained at a rate of once per minute on average. Model updates were timed according to four methods: never, respiratory surrogate-based (when metrics based on respiratory surrogate measurements exceeded confidence limits), error-based (when localization error ≥ 3 mm), and always (approximately once per minute). Radial tumor displacement prediction errors (mean ± standard deviation) for the four schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively. The never-update error was significantly larger than errors of the other methods. Mean update counts over 20 min were 0, 4, 9, and 24, respectively. The same improvement in tumor localization accuracy could be achieved through any of the three update methods, but significantly fewer updates were required when the respiratory surrogate method was utilized. This study establishes the feasibility of timing image acquisitions for updating respiratory surrogate models without direct tumor localization.
A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.
Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing
2018-01-15
Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.
Mukhopadhyay, Nitai D; Sampson, Andrew J; Deniz, Daniel; Alm Carlsson, Gudrun; Williamson, Jeffrey; Malusek, Alexandr
2012-01-01
Correlated sampling Monte Carlo methods can shorten computing times in brachytherapy treatment planning. Monte Carlo efficiency is typically estimated via efficiency gain, defined as the reduction in computing time by correlated sampling relative to conventional Monte Carlo methods when equal statistical uncertainties have been achieved. The determination of the efficiency gain uncertainty arising from random effects, however, is not a straightforward task specially when the error distribution is non-normal. The purpose of this study is to evaluate the applicability of the F distribution and standardized uncertainty propagation methods (widely used in metrology to estimate uncertainty of physical measurements) for predicting confidence intervals about efficiency gain estimates derived from single Monte Carlo runs using fixed-collision correlated sampling in a simplified brachytherapy geometry. A bootstrap based algorithm was used to simulate the probability distribution of the efficiency gain estimates and the shortest 95% confidence interval was estimated from this distribution. It was found that the corresponding relative uncertainty was as large as 37% for this particular problem. The uncertainty propagation framework predicted confidence intervals reasonably well; however its main disadvantage was that uncertainties of input quantities had to be calculated in a separate run via a Monte Carlo method. The F distribution noticeably underestimated the confidence interval. These discrepancies were influenced by several photons with large statistical weights which made extremely large contributions to the scored absorbed dose difference. The mechanism of acquiring high statistical weights in the fixed-collision correlated sampling method was explained and a mitigation strategy was proposed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Walter, Donald A.; LeBlanc, Denis R.
2008-01-01
Historical weapons testing and disposal activities at Camp Edwards, which is located on the Massachusetts Military Reservation, western Cape Cod, have resulted in the release of contaminants into an underlying sand and gravel aquifer that is the sole source of potable water to surrounding communities. Ground-water models have been used at the site to simulate advective transport in the aquifer in support of field investigations. Reasonable models developed by different groups and calibrated by trial and error often yield different predictions of advective transport, and the predictions lack quantitative measures of uncertainty. A recently (2004) developed regional model of western Cape Cod, modified to include the sensitivity and parameter-estimation capabilities of MODFLOW-2000, was used in this report to evaluate the utility of inverse (statistical) methods to (1) improve model calibration and (2) assess model-prediction uncertainty. Simulated heads and flows were most sensitive to recharge and to the horizontal hydraulic conductivity of the Buzzards Bay and Sandwich Moraines and the Buzzards Bay and northern parts of the Mashpee outwash plains. Conversely, simulated heads and flows were much less sensitive to vertical hydraulic conductivity. Parameter estimation (inverse calibration) improved the match to observed heads and flows; the absolute mean residual for heads improved by 0.32 feet and the absolute mean residual for streamflows improved by about 0.2 cubic feet per second. Advective-transport predictions in Camp Edwards generally were most sensitive to the parameters with the highest precision (lowest coefficients of variation), indicating that the numerical model is adequate for evaluating prediction uncertainties in and around Camp Edwards. The incorporation of an advective-transport observation, representing the leading edge of a contaminant plume that had been difficult to match by using trial-and-error calibration, improved the match between an observed and simulated plume path; however, a modified representation of local geology was needed to simultaneously maintain a reasonable calibration to heads and flows and to the plume path. Advective-transport uncertainties were expressed as about 68-, 95-, and 99-percent confidence intervals on three dimensional simulated particle positions. The confidence intervals can be graphically represented as ellipses around individual particle positions in the X-Y (geographic) plane and in the X-Z or Y-Z (vertical) planes. The merging of individual ellipses allows uncertainties on forward particle tracks to be displayed in map or cross-sectional view as a cone of uncertainty around a simulated particle path; uncertainties on reverse particle-track endpoints - representing simulated recharge locations - can be geographically displayed as areas at the water table around the discrete particle endpoints. This information gives decisionmakers insight into the level of confidence they can have in particle-tracking results and can assist them in the efficient use of available field resources.
Inverse modeling with RZWQM2 to predict water quality
Nolan, Bernard T.; Malone, Robert W.; Ma, Liwang; Green, Christopher T.; Fienen, Michael N.; Jaynes, Dan B.
2011-01-01
This chapter presents guidelines for autocalibration of the Root Zone Water Quality Model (RZWQM2) by inverse modeling using PEST parameter estimation software (Doherty, 2010). Two sites with diverse climate and management were considered for simulation of N losses by leaching and in drain flow: an almond [Prunus dulcis (Mill.) D.A. Webb] orchard in the San Joaquin Valley, California and the Walnut Creek watershed in central Iowa, which is predominantly in corn (Zea mays L.)–soybean [Glycine max (L.) Merr.] rotation. Inverse modeling provides an objective statistical basis for calibration that involves simultaneous adjustment of model parameters and yields parameter confidence intervals and sensitivities. We describe operation of PEST in both parameter estimation and predictive analysis modes. The goal of parameter estimation is to identify a unique set of parameters that minimize a weighted least squares objective function, and the goal of predictive analysis is to construct a nonlinear confidence interval for a prediction of interest by finding a set of parameters that maximizes or minimizes the prediction while maintaining the model in a calibrated state. We also describe PEST utilities (PAR2PAR, TSPROC) for maintaining ordered relations among model parameters (e.g., soil root growth factor) and for post-processing of RZWQM2 outputs representing different cropping practices at the Iowa site. Inverse modeling provided reasonable fits to observed water and N fluxes and directly benefitted the modeling through: (i) simultaneous adjustment of multiple parameters versus one-at-a-time adjustment in manual approaches; (ii) clear indication by convergence criteria of when calibration is complete; (iii) straightforward detection of nonunique and insensitive parameters, which can affect the stability of PEST and RZWQM2; and (iv) generation of confidence intervals for uncertainty analysis of parameters and model predictions. Composite scaled sensitivities, which reflect the total information provided by the observations for a parameter, indicated that most of the RZWQM2 parameters at the California study site (CA) and Iowa study site (IA) could be reliably estimated by regression. Correlations obtained in the CA case indicated that all model parameters could be uniquely estimated by inverse modeling. Although water content at field capacity was highly correlated with bulk density (−0.94), the correlation is less than the threshold for nonuniqueness (0.95, absolute value basis). Additionally, we used truncated singular value decomposition (SVD) at CA to mitigate potential problems with highly correlated and insensitive parameters. Singular value decomposition estimates linear combinations (eigenvectors) of the original process-model parameters. Parameter confidence intervals (CIs) at CA indicated that parameters were reliably estimated with the possible exception of an organic pool transfer coefficient (R45), which had a comparatively wide CI. However, the 95% confidence interval for R45 (0.03–0.35) is mostly within the range of values reported for this parameter. Predictive analysis at CA generated confidence intervals that were compared with independently measured annual water flux (groundwater recharge) and median nitrate concentration in a collocated monitoring well as part of model evaluation. Both the observed recharge (42.3 cm yr−1) and nitrate concentration (24.3 mg L−1) were within their respective 90% confidence intervals, indicating that overall model error was within acceptable limits.
Evaluating concentration estimation errors in ELISA microarray experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, Don S.; White, Amanda M.; Varnum, Susan M.
Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to predict a protein concentration in a sample. Deploying ELISA in a microarray format permits simultaneous prediction of the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Evaluating prediction error is critical to interpreting biological significance and improving the ELISA microarray process. Evaluating prediction error must be automated to realize a reliable high-throughput ELISA microarray system. Methods: In this paper, we present a statistical method based on propagation of error to evaluate prediction errors in the ELISA microarray process. Althoughmore » propagation of error is central to this method, it is effective only when comparable data are available. Therefore, we briefly discuss the roles of experimental design, data screening, normalization and statistical diagnostics when evaluating ELISA microarray prediction errors. We use an ELISA microarray investigation of breast cancer biomarkers to illustrate the evaluation of prediction errors. The illustration begins with a description of the design and resulting data, followed by a brief discussion of data screening and normalization. In our illustration, we fit a standard curve to the screened and normalized data, review the modeling diagnostics, and apply propagation of error.« less
A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM
Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei
2018-01-01
Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model’s performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM’s parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models’ performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors. PMID:29342942
NASA Astrophysics Data System (ADS)
Eldardiry, H. A.; Habib, E. H.
2014-12-01
Radar-based technologies have made spatially and temporally distributed quantitative precipitation estimates (QPE) available in an operational environmental compared to the raingauges. The floods identified through flash flood monitoring and prediction systems are subject to at least three sources of uncertainties: (a) those related to rainfall estimation errors, (b) those due to streamflow prediction errors due to model structural issues, and (c) those due to errors in defining a flood event. The current study focuses on the first source of uncertainty and its effect on deriving important climatological characteristics of extreme rainfall statistics. Examples of such characteristics are rainfall amounts with certain Average Recurrence Intervals (ARI) or Annual Exceedance Probability (AEP), which are highly valuable for hydrologic and civil engineering design purposes. Gauge-based precipitation frequencies estimates (PFE) have been maturely developed and widely used over the last several decades. More recently, there has been a growing interest by the research community to explore the use of radar-based rainfall products for developing PFE and understand the associated uncertainties. This study will use radar-based multi-sensor precipitation estimates (MPE) for 11 years to derive PFE's corresponding to various return periods over a spatial domain that covers the state of Louisiana in southern USA. The PFE estimation approach used in this study is based on fitting generalized extreme value distribution to hydrologic extreme rainfall data based on annual maximum series (AMS). Some of the estimation problems that may arise from fitting GEV distributions at each radar pixel is the large variance and seriously biased quantile estimators. Hence, a regional frequency analysis approach (RFA) is applied. The RFA involves the use of data from different pixels surrounding each pixel within a defined homogenous region. In this study, region of influence approach along with the index flood technique are used in the RFA. A bootstrap technique procedure is carried out to account for the uncertainty in the distribution parameters to construct 90% confidence intervals (i.e., 5% and 95% confidence limits) on AMS-based precipitation frequency curves.
[A site index model for Larix principis-rupprechtii plantation in Saihanba, north China].
Wang, Dong-zhi; Zhang, Dong-yan; Jiang, Feng-ling; Bai, Ye; Zhang, Zhi-dong; Huang, Xuan-rui
2015-11-01
It is often difficult to estimate site indices for different types of plantation by using an ordinary site index model. The objective of this paper was to establish a site index model for plantations in varied site conditions, and assess the site qualities. In this study, a nonlinear mixed site index model was constructed based on data from the second class forest resources inventory and 173 temporary sample plots. The results showed that the main limiting factors for height growth of Larix principis-rupprechtii were elevation, slope, soil thickness and soil type. A linear regression model was constructed for the main constraining site factors and dominant tree height, with the coefficient of determination being 0.912, and the baseline age of Larix principis-rupprechtii determined as 20 years. The nonlinear mixed site index model parameters for the main site types were estimated (R2 > 0.85, the error between the predicted value and the actual value was in the range of -0.43 to 0.45, with an average root mean squared error (RMSE) in the range of 0.907 to 1.148). The estimation error between the predicted value and the actual value of dominant tree height for the main site types was in the confidence interval of [-0.95, 0.95]. The site quality of the high altitude-shady-sandy loam-medium soil layer was the highest and that of low altitude-sunny-sandy loam-medium soil layer was the lowest, while the other two sites were moderate.
NASA Technical Reports Server (NTRS)
Ranaudo, R. J.; Batterson, J. G.; Reehorst, A. L.; Bond, T. H.; Omara, T. M.
1989-01-01
A flight test was performed with the NASA Lewis Research Center's DH-6 icing research aircraft. The purpose was to employ a flight test procedure and data analysis method, to determine the accuracy with which the effects of ice on aircraft stability and control could be measured. For simplicity, flight testing was restricted to the short period longitudinal mode. Two flights were flown in a clean (baseline) configuration, and two flights were flown with simulated horizontal tail ice. Forty-five repeat doublet maneuvers were performed in each of four test configurations, at a given trim speed, to determine the ensemble variation of the estimated stability and control derivatives. Additional maneuvers were also performed in each configuration, to determine the variation in the longitudinal derivative estimates over a wide range of trim speeds. Stability and control derivatives were estimated by a Modified Stepwise Regression (MSR) technique. A measure of the confidence in the derivative estimates was obtained by comparing the standard error for the ensemble of repeat maneuvers, to the average of the estimated standard errors predicted by the MSR program. A multiplicative relationship was determined between the ensemble standard error, and the averaged program standard errors. In addition, a 95 percent confidence interval analysis was performed for the elevator effectiveness estimates, C sub m sub delta e. This analysis identified the speed range where changes in C sub m sub delta e could be attributed to icing effects. The magnitude of icing effects on the derivative estimates were strongly dependent on flight speed and aircraft wing flap configuration. With wing flaps up, the estimated derivatives were degraded most at lower speeds corresponding to that configuration. With wing flaps extended to 10 degrees, the estimated derivatives were degraded most at the higher corresponding speeds. The effects of icing on the changes in longitudinal stability and control derivatives were adequately determined by the flight test procedure and the MSR analysis method discussed herein.
Relationships of Measurement Error and Prediction Error in Observed-Score Regression
ERIC Educational Resources Information Center
Moses, Tim
2012-01-01
The focus of this paper is assessing the impact of measurement errors on the prediction error of an observed-score regression. Measures are presented and described for decomposing the linear regression's prediction error variance into parts attributable to the true score variance and the error variances of the dependent variable and the predictor…
Experimental investigation of false positive errors in auditory species occurrence surveys
Miller, David A.W.; Weir, Linda A.; McClintock, Brett T.; Grant, Evan H. Campbell; Bailey, Larissa L.; Simons, Theodore R.
2012-01-01
False positive errors are a significant component of many ecological data sets, which in combination with false negative errors, can lead to severe biases in conclusions about ecological systems. We present results of a field experiment where observers recorded observations for known combinations of electronically broadcast calling anurans under conditions mimicking field surveys to determine species occurrence. Our objectives were to characterize false positive error probabilities for auditory methods based on a large number of observers, to determine if targeted instruction could be used to reduce false positive error rates, and to establish useful predictors of among-observer and among-species differences in error rates. We recruited 31 observers, ranging in abilities from novice to expert, that recorded detections for 12 species during 180 calling trials (66,960 total observations). All observers made multiple false positive errors and on average 8.1% of recorded detections in the experiment were false positive errors. Additional instruction had only minor effects on error rates. After instruction, false positive error probabilities decreased by 16% for treatment individuals compared to controls with broad confidence interval overlap of 0 (95% CI: -46 to 30%). This coincided with an increase in false negative errors due to the treatment (26%; -3 to 61%). Differences among observers in false positive and in false negative error rates were best predicted by scores from an online test and a self-assessment of observer ability completed prior to the field experiment. In contrast, years of experience conducting call surveys was a weak predictor of error rates. False positive errors were also more common for species that were played more frequently, but were not related to the dominant spectral frequency of the call. Our results corroborate other work that demonstrates false positives are a significant component of species occurrence data collected by auditory methods. Instructing observers to only report detections they are completely certain are correct is not sufficient to eliminate errors. As a result, analytical methods that account for false positive errors will be needed, and independent testing of observer ability is a useful predictor for among-observer variation in observation error rates.
NASA Astrophysics Data System (ADS)
Duan, Wansuo; Zhao, Peng
2017-04-01
Within the Zebiak-Cane model, the nonlinear forcing singular vector (NFSV) approach is used to investigate the role of model errors in the "Spring Predictability Barrier" (SPB) phenomenon within ENSO predictions. NFSV-related errors have the largest negative effect on the uncertainties of El Niño predictions. NFSV errors can be classified into two types: the first is characterized by a zonal dipolar pattern of SST anomalies (SSTA), with the western poles centered in the equatorial central-western Pacific exhibiting positive anomalies and the eastern poles in the equatorial eastern Pacific exhibiting negative anomalies; and the second is characterized by a pattern almost opposite the first type. The first type of error tends to have the worst effects on El Niño growth-phase predictions, whereas the latter often yields the largest negative effects on decaying-phase predictions. The evolution of prediction errors caused by NFSV-related errors exhibits prominent seasonality, with the fastest error growth in the spring and/or summer seasons; hence, these errors result in a significant SPB related to El Niño events. The linear counterpart of NFSVs, the (linear) forcing singular vector (FSV), induces a less significant SPB because it contains smaller prediction errors. Random errors cannot generate a SPB for El Niño events. These results show that the occurrence of an SPB is related to the spatial patterns of tendency errors. The NFSV tendency errors cause the most significant SPB for El Niño events. In addition, NFSVs often concentrate these large value errors in a few areas within the equatorial eastern and central-western Pacific, which likely represent those areas sensitive to El Niño predictions associated with model errors. Meanwhile, these areas are also exactly consistent with the sensitive areas related to initial errors determined by previous studies. This implies that additional observations in the sensitive areas would not only improve the accuracy of the initial field but also promote the reduction of model errors to greatly improve ENSO forecasts.
Attention and prediction in human audition: a lesson from cognitive psychophysiology
Schröger, Erich; Marzecová, Anna; SanMiguel, Iria
2015-01-01
Attention is a hypothetical mechanism in the service of perception that facilitates the processing of relevant information and inhibits the processing of irrelevant information. Prediction is a hypothetical mechanism in the service of perception that considers prior information when interpreting the sensorial input. Although both (attention and prediction) aid perception, they are rarely considered together. Auditory attention typically yields enhanced brain activity, whereas auditory prediction often results in attenuated brain responses. However, when strongly predicted sounds are omitted, brain responses to silence resemble those elicited by sounds. Studies jointly investigating attention and prediction revealed that these different mechanisms may interact, e.g. attention may magnify the processing differences between predicted and unpredicted sounds. Following the predictive coding theory, we suggest that prediction relates to predictions sent down from predictive models housed in higher levels of the processing hierarchy to lower levels and attention refers to gain modulation of the prediction error signal sent up to the higher level. As predictions encode contents and confidence in the sensory data, and as gain can be modulated by the intention of the listener and by the predictability of the input, various possibilities for interactions between attention and prediction can be unfolded. From this perspective, the traditional distinction between bottom-up/exogenous and top-down/endogenous driven attention can be revisited and the classic concepts of attentional gain and attentional trace can be integrated. PMID:25728182
Sauer, James; Hope, Lorraine
2016-09-01
Eyewitnesses regulate the level of detail (grain size) reported to balance competing demands for informativeness and accuracy. However, research to date has predominantly examined metacognitive monitoring for semantic memory tasks, and used relatively artificial phased reporting procedures. Further, although the established role of confidence in this regulation process may affect the confidence-accuracy relation for volunteered responses in predictable ways, previous investigations of the confidence-accuracy relation for eyewitness recall have largely overlooked the regulation of response granularity. Using a non-phased paradigm, Experiment 1 compared reporting and monitoring following optimal and sub-optimal (divided attention) encoding conditions. Participants showed evidence of sacrificing accuracy for informativeness, even when memory quality was relatively weak. Participants in the divided (cf. full) attention condition showed reduced accuracy for fine- but not coarse-grained responses. However, indices of discrimination and confidence diagnosticity showed no effect of divided attention. Experiment 2 compared the effects of divided attention at encoding on reporting and monitoring using both non-phased and 2-phase procedures. Divided attention effects were consistent with Experiment 1. However, compared to those in the non-phased condition, participants in the 2-phase condition displayed a more conservative control strategy, and confidence ratings were less diagnostic of accuracy. When memory quality was reduced, although attempts to balance informativeness and accuracy increased the chance of fine-grained response errors, confidence provided an index of the likely accuracy of volunteered fine-grained responses for both condition. Copyright © 2016 Elsevier B.V. All rights reserved.
In-Flight Pitot-Static Calibration
NASA Technical Reports Server (NTRS)
Foster, John V. (Inventor); Cunningham, Kevin (Inventor)
2016-01-01
A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.
Experimental investigations of turbulent temperature fluctuations and phase angles in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Freethy, Simon
2017-10-01
A complete experimental understanding of the turbulent fluctuations in tokamak plasmas is essential for providing confidence in the extrapolation of heat transport models to future experimental devices and reactors. Guided by ``predict first'' nonlinear gyrokinetic simulations with the GENE code, two new turbulence diagnostics were designed and have been installed on ASDEX Upgrade (AUG) to probe the fundamentals of ion-scale turbulent electron heat transport. The first, a 30-channel correlation ECE (CECE) radiometer, measures radial profiles (0.5
Evaluating Functional Annotations of Enzymes Using the Gene Ontology.
Holliday, Gemma L; Davidson, Rebecca; Akiva, Eyal; Babbitt, Patricia C
2017-01-01
The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25-29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurred to knowing how confident you can be in the annotations assigned to those proteins is critical. In this chapter we explore what makes an enzyme unique and how we can use GO to infer aspects of protein function based on sequence similarity. These can range from identification of misannotation or other errors in a predicted function to accurate function prediction for an enzyme of entirely unknown function. Although GO annotation applies to any gene products, we focus here a describing our approach for hierarchical classification of enzymes in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database issue):D521-530, 2014) as a guide for informed utilisation of annotation transfer based on GO terms.
Risk prediction and aversion by anterior cingulate cortex.
Brown, Joshua W; Braver, Todd S
2007-12-01
The recently proposed error-likelihood hypothesis suggests that anterior cingulate cortex (ACC) and surrounding areas will become active in proportion to the perceived likelihood of an error. The hypothesis was originally derived from a computational model prediction. The same computational model now makes a further prediction that ACC will be sensitive not only to predicted error likelihood, but also to the predicted magnitude of the consequences, should an error occur. The product of error likelihood and predicted error consequence magnitude collectively defines the general "expected risk" of a given behavior in a manner analogous but orthogonal to subjective expected utility theory. New fMRI results from an incentivechange signal task now replicate the error-likelihood effect, validate the further predictions of the computational model, and suggest why some segments of the population may fail to show an error-likelihood effect. In particular, error-likelihood effects and expected risk effects in general indicate greater sensitivity to earlier predictors of errors and are seen in risk-averse but not risk-tolerant individuals. Taken together, the results are consistent with an expected risk model of ACC and suggest that ACC may generally contribute to cognitive control by recruiting brain activity to avoid risk.
Gettings, S D; Lordo, R A; Hintze, K L; Bagley, D M; Casterton, P L; Chudkowski, M; Curren, R D; Demetrulias, J L; Dipasquale, L C; Earl, L K; Feder, P I; Galli, C L; Glaza, S M; Gordon, V C; Janus, J; Kurtz, P J; Marenus, K D; Moral, J; Pape, W J; Renskers, K J; Rheins, L A; Roddy, M T; Rozen, M G; Tedeschi, J P; Zyracki, J
1996-01-01
The CTFA Evaluation of Alternatives Program is an evaluation of the relationship between data from the Draize primary eye irritation test and comparable data from a selection of promising in vitro eye irritation tests. In Phase III, data from the Draize test and 41 in vitro endpoints on 25 representative surfactant-based personal care formulations were compared. As in Phase I and Phase II, regression modelling of the relationship between maximum average Draize score (MAS) and in vitro endpoint was the primary approach adopted for evaluating in vitro assay performance. The degree of confidence in prediction of MAS for a given in vitro endpoint is quantified in terms of the relative widths of prediction intervals constructed about the fitted regression curve. Prediction intervals reflect not only the error attributed to the model but also the material-specific components of variation in both the Draize and the in vitro assays. Among the in vitro assays selected for regression modeling in Phase III, the relationship between MAS and in vitro score was relatively well defined. The prediction bounds on MAS were most narrow for materials at the lower or upper end of the effective irritation range (MAS = 0-45), where variability in MAS was smallest. This, the confidence with which the MAS of surfactant-based formulations is predicted is greatest when MAS approaches zero or when MAS approaches 45 (no comment is made on prediction of MAS > 45 since extrapolation beyond the range of observed data is not possible). No single in vitro endpoint was found to exhibit relative superiority with regard to prediction of MAS. Variability associated with Draize test outcome (e.g. in MAS values) must be considered in any future comparisons of in vivo and in vitro test results if the purpose is to predict in vivo response using in vitro data.
Predicting Secchi disk depth from average beam attenuation in a deep, ultra-clear lake
Larson, G.L.; Hoffman, R.L.; Hargreaves, B.R.; Collier, R.W.
2007-01-01
We addressed potential sources of error in estimating the water clarity of mountain lakes by investigating the use of beam transmissometer measurements to estimate Secchi disk depth. The optical properties Secchi disk depth (SD) and beam transmissometer attenuation (BA) were measured in Crater Lake (Crater Lake National Park, Oregon, USA) at a designated sampling station near the maximum depth of the lake. A standard 20 cm black and white disk was used to measure SD. The transmissometer light source had a nearly monochromatic wavelength of 660 nm and a path length of 25 cm. We created a SD prediction model by regression of the inverse SD of 13 measurements recorded on days when environmental conditions were acceptable for disk deployment with BA averaged over the same depth range as the measured SD. The relationship between inverse SD and averaged BA was significant and the average 95% confidence interval for predicted SD relative to the measured SD was ??1.6 m (range = -4.6 to 5.5 m) or ??5.0%. Eleven additional sample dates tested the accuracy of the predictive model. The average 95% confidence interval for these sample dates was ??0.7 m (range = -3.5 to 3.8 m) or ??2.2%. The 1996-2000 time-series means for measured and predicted SD varied by 0.1 m, and the medians varied by 0.5 m. The time-series mean annual measured and predicted SD's also varied little, with intra-annual differences between measured and predicted mean annual SD ranging from -2.1 to 0.1 m. The results demonstrated that this prediction model reliably estimated Secchi disk depths and can be used to significantly expand optical observations in an environment where the conditions for standardized SD deployments are limited. ?? 2007 Springer Science+Business Media B.V.
Estimation of parameters of dose volume models and their confidence limits
NASA Astrophysics Data System (ADS)
van Luijk, P.; Delvigne, T. C.; Schilstra, C.; Schippers, J. M.
2003-07-01
Predictions of the normal-tissue complication probability (NTCP) for the ranking of treatment plans are based on fits of dose-volume models to clinical and/or experimental data. In the literature several different fit methods are used. In this work frequently used methods and techniques to fit NTCP models to dose response data for establishing dose-volume effects, are discussed. The techniques are tested for their usability with dose-volume data and NTCP models. Different methods to estimate the confidence intervals of the model parameters are part of this study. From a critical-volume (CV) model with biologically realistic parameters a primary dataset was generated, serving as the reference for this study and describable by the NTCP model. The CV model was fitted to this dataset. From the resulting parameters and the CV model, 1000 secondary datasets were generated by Monte Carlo simulation. All secondary datasets were fitted to obtain 1000 parameter sets of the CV model. Thus the 'real' spread in fit results due to statistical spreading in the data is obtained and has been compared with estimates of the confidence intervals obtained by different methods applied to the primary dataset. The confidence limits of the parameters of one dataset were estimated using the methods, employing the covariance matrix, the jackknife method and directly from the likelihood landscape. These results were compared with the spread of the parameters, obtained from the secondary parameter sets. For the estimation of confidence intervals on NTCP predictions, three methods were tested. Firstly, propagation of errors using the covariance matrix was used. Secondly, the meaning of the width of a bundle of curves that resulted from parameters that were within the one standard deviation region in the likelihood space was investigated. Thirdly, many parameter sets and their likelihood were used to create a likelihood-weighted probability distribution of the NTCP. It is concluded that for the type of dose response data used here, only a full likelihood analysis will produce reliable results. The often-used approximations, such as the usage of the covariance matrix, produce inconsistent confidence limits on both the parameter sets and the resulting NTCP values.
Real-Time Stability and Control Derivative Extraction From F-15 Flight Data
NASA Technical Reports Server (NTRS)
Smith, Mark S.; Moes, Timothy R.; Morelli, Eugene A.
2003-01-01
A real-time, frequency-domain, equation-error parameter identification (PID) technique was used to estimate stability and control derivatives from flight data. This technique is being studied to support adaptive control system concepts currently being developed by NASA (National Aeronautics and Space Administration), academia, and industry. This report describes the basic real-time algorithm used for this study and implementation issues for onboard usage as part of an indirect-adaptive control system. A confidence measures system for automated evaluation of PID results is discussed. Results calculated using flight data from a modified F-15 aircraft are presented. Test maneuvers included pilot input doublets and automated inputs at several flight conditions. Estimated derivatives are compared to aerodynamic model predictions. Data indicate that the real-time PID used for this study performs well enough to be used for onboard parameter estimation. For suitable test inputs, the parameter estimates converged rapidly to sufficient levels of accuracy. The devised confidence measures used were moderately successful.
Artificial Intelligence in Medical Practice: The Question to the Answer?
Miller, D Douglas; Brown, Eric W
2018-02-01
Computer science advances and ultra-fast computing speeds find artificial intelligence (AI) broadly benefitting modern society-forecasting weather, recognizing faces, detecting fraud, and deciphering genomics. AI's future role in medical practice remains an unanswered question. Machines (computers) learn to detect patterns not decipherable using biostatistics by processing massive datasets (big data) through layered mathematical models (algorithms). Correcting algorithm mistakes (training) adds to AI predictive model confidence. AI is being successfully applied for image analysis in radiology, pathology, and dermatology, with diagnostic speed exceeding, and accuracy paralleling, medical experts. While diagnostic confidence never reaches 100%, combining machines plus physicians reliably enhances system performance. Cognitive programs are impacting medical practice by applying natural language processing to read the rapidly expanding scientific literature and collate years of diverse electronic medical records. In this and other ways, AI may optimize the care trajectory of chronic disease patients, suggest precision therapies for complex illnesses, reduce medical errors, and improve subject enrollment into clinical trials. Copyright © 2018 Elsevier Inc. All rights reserved.
Guo, Changning; Doub, William H; Kauffman, John F
2010-08-01
Monte Carlo simulations were applied to investigate the propagation of uncertainty in both input variables and response measurements on model prediction for nasal spray product performance design of experiment (DOE) models in the first part of this study, with an initial assumption that the models perfectly represent the relationship between input variables and the measured responses. In this article, we discard the initial assumption, and extended the Monte Carlo simulation study to examine the influence of both input variable variation and product performance measurement variation on the uncertainty in DOE model coefficients. The Monte Carlo simulations presented in this article illustrate the importance of careful error propagation during product performance modeling. Our results show that the error estimates based on Monte Carlo simulation result in smaller model coefficient standard deviations than those from regression methods. This suggests that the estimated standard deviations from regression may overestimate the uncertainties in the model coefficients. Monte Carlo simulations provide a simple software solution to understand the propagation of uncertainty in complex DOE models so that design space can be specified with statistically meaningful confidence levels. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Market Confidence Predicts Stock Price: Beyond Supply and Demand.
Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Zhang, Yuqing
2016-01-01
Stock price prediction is an important and challenging problem in stock market analysis. Existing prediction methods either exploit autocorrelation of stock price and its correlation with the supply and demand of stock, or explore predictive indictors exogenous to stock market. In this paper, using transaction record of stocks with identifier of traders, we introduce an index to characterize market confidence, i.e., the ratio of the number of traders who is active in two successive trading days to the number of active traders in a certain trading day. Strong Granger causality is found between the index of market confidence and stock price. We further predict stock price by incorporating the index of market confidence into a neural network based on time series of stock price. Experimental results on 50 stocks in two Chinese Stock Exchanges demonstrate that the accuracy of stock price prediction is significantly improved by the inclusion of the market confidence index. This study sheds light on using cross-day trading behavior to characterize market confidence and to predict stock price.
A method of bias correction for maximal reliability with dichotomous measures.
Penev, Spiridon; Raykov, Tenko
2010-02-01
This paper is concerned with the reliability of weighted combinations of a given set of dichotomous measures. Maximal reliability for such measures has been discussed in the past, but the pertinent estimator exhibits a considerable bias and mean squared error for moderate sample sizes. We examine this bias, propose a procedure for bias correction, and develop a more accurate asymptotic confidence interval for the resulting estimator. In most empirically relevant cases, the bias correction and mean squared error correction can be performed simultaneously. We propose an approximate (asymptotic) confidence interval for the maximal reliability coefficient, discuss the implementation of this estimator, and investigate the mean squared error of the associated asymptotic approximation. We illustrate the proposed methods using a numerical example.
MRI-guided prostate focal laser ablation therapy using a mechatronic needle guidance system
NASA Astrophysics Data System (ADS)
Cepek, Jeremy; Lindner, Uri; Ghai, Sangeet; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron
2014-03-01
Focal therapy of localized prostate cancer is receiving increased attention due to its potential for providing effective cancer control in select patients with minimal treatment-related side effects. Magnetic resonance imaging (MRI)-guided focal laser ablation (FLA) therapy is an attractive modality for such an approach. In FLA therapy, accurate placement of laser fibers is critical to ensuring that the full target volume is ablated. In practice, error in needle placement is invariably present due to pre- to intra-procedure image registration error, needle deflection, prostate motion, and variability in interventionalist skill. In addition, some of these sources of error are difficult to control, since the available workspace and patient positions are restricted within a clinical MRI bore. In an attempt to take full advantage of the utility of intraprocedure MRI, while minimizing error in needle placement, we developed an MRI-compatible mechatronic system for guiding needles to the prostate for FLA therapy. The system has been used to place interstitial catheters for MRI-guided FLA therapy in eight subjects in an ongoing Phase I/II clinical trial. Data from these cases has provided quantification of the level of uncertainty in needle placement error. To relate needle placement error to clinical outcome, we developed a model for predicting the probability of achieving complete focal target ablation for a family of parameterized treatment plans. Results from this work have enabled the specification of evidence-based selection criteria for the maximum target size that can be confidently ablated using this technique, and quantify the benefit that may be gained with improvements in needle placement accuracy.
Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi
2007-10-01
Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.
Zhang, Huai-zhu; Lin, Jun; Zhang, Huai-Zhu
2014-06-01
In the present paper, the outlier detection methods for determination of oil yield in oil shale using near-infrared (NIR) diffuse reflection spectroscopy was studied. During the quantitative analysis with near-infrared spectroscopy, environmental change and operator error will both produce outliers. The presence of outliers will affect the overall distribution trend of samples and lead to the decrease in predictive capability. Thus, the detection of outliers are important for the construction of high-quality calibration models. The methods including principal component analysis-Mahalanobis distance (PCA-MD) and resampling by half-means (RHM) were applied to the discrimination and elimination of outliers in this work. The thresholds and confidences for MD and RHM were optimized using the performance of partial least squares (PLS) models constructed after the elimination of outliers, respectively. Compared with the model constructed with the data of full spectrum, the values of RMSEP of the models constructed with the application of PCA-MD with a threshold of a value equal to the sum of average and standard deviation of MD, RHM with the confidence level of 85%, and the combination of PCA-MD and RHM, were reduced by 48.3%, 27.5% and 44.8%, respectively. The predictive ability of the calibration model has been improved effectively.
Refractive error and presbyopia among adults in Fiji.
Brian, Garry; Pearce, Matthew G; Ramke, Jacqueline
2011-04-01
To characterize refractive error, presbyopia and their correction among adults aged ≥ 40 years in Fiji, and contribute to a regional overview of these conditions. A population-based cross-sectional survey using multistage cluster random sampling. Presenting distance and near vision were measured and dilated slitlamp examination performed. The survey achieved 73.0% participation (n=1381). Presenting binocular distance vision ≥ 6/18 was achieved by 1223 participants. Another 79 had vision impaired by refractive error. Three of these were blind. At threshold 6/18, 204 participants had refractive error. Among these, 125 had spectacle-corrected presenting vision ≥ 6/18 ("met refractive error need"); 79 presented wearing no (n=74) or under-correcting (n=5) distance spectacles ("unmet refractive error need"). Presenting binocular near vision ≥ N8 was achieved by 833 participants. At threshold N8, 811 participants had presbyopia. Among these, 336 attained N8 with presenting near spectacles ("met presbyopia need"); 475 presented with no (n=402) or under-correcting (n=73) near spectacles ("unmet presbyopia need"). Rural residence was predictive of unmet refractive error (p=0.040) and presbyopia (p=0.016) need. Gender and household income source were not. Ethnicity-gender-age-domicile-adjusted to the Fiji population aged ≥ 40 years, "met refractive error need" was 10.3% (95% confidence interval [CI] 8.7-11.9%), "unmet refractive error need" was 4.8% (95%CI 3.6-5.9%), "refractive error correction coverage" was 68.3% (95%CI 54.4-82.2%),"met presbyopia need" was 24.6% (95%CI 22.4-26.9%), "unmet presbyopia need" was 33.8% (95%CI 31.3-36.3%), and "presbyopia correction coverage" was 42.2% (95%CI 37.6-46.8%). Fiji refraction and dispensing services should encourage uptake by rural dwellers and promote presbyopia correction. Lack of comparable data from neighbouring countries prevents a regional overview.
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.
2013-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. To date, the author is the only person to look at the uncertainty in the entire computational domain. For the flow regime being analyzed (turbulent, threedimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
Malinowski, Kathleen; McAvoy, Thomas J.; George, Rohini; Dieterich, Sonja; D’Souza, Warren D.
2013-01-01
Purpose: To determine how best to time respiratory surrogate-based tumor motion model updates by comparing a novel technique based on external measurements alone to three direct measurement methods. Methods: Concurrently measured tumor and respiratory surrogate positions from 166 treatment fractions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor position from marker motion were created from the first six measurements in each dataset. Successive tumor localizations were obtained at a rate of once per minute on average. Model updates were timed according to four methods: never, respiratory surrogate-based (when metrics based on respiratory surrogate measurements exceeded confidence limits), error-based (when localization error ≥3 mm), and always (approximately once per minute). Results: Radial tumor displacement prediction errors (mean ± standard deviation) for the four schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively. The never-update error was significantly larger than errors of the other methods. Mean update counts over 20 min were 0, 4, 9, and 24, respectively. Conclusions: The same improvement in tumor localization accuracy could be achieved through any of the three update methods, but significantly fewer updates were required when the respiratory surrogate method was utilized. This study establishes the feasibility of timing image acquisitions for updating respiratory surrogate models without direct tumor localization. PMID:23822413
DOE Office of Scientific and Technical Information (OSTI.GOV)
English, Shawn A.; Briggs, Timothy M.; Nelson, Stacy M.
Simulations of low velocity impact with a flat cylindrical indenter upon a carbon fiber fabric reinforced polymer laminate are rigorously validated. Comparison of the impact energy absorption between the model and experiment is used as the validation metric. Additionally, non-destructive evaluation, including ultrasonic scans and three-dimensional computed tomography, provide qualitative validation of the models. The simulations include delamination, matrix cracks and fiber breaks. An orthotropic damage and failure constitutive model, capable of predicting progressive damage and failure, is developed in conjunction and described. An ensemble of simulations incorporating model parameter uncertainties is used to predict a response distribution which ismore » then compared to experimental output using appropriate statistical methods. Lastly, the model form errors are exposed and corrected for use in an additional blind validation analysis. The result is a quantifiable confidence in material characterization and model physics when simulating low velocity impact in structures of interest.« less
Quantitative validation of carbon-fiber laminate low velocity impact simulations
English, Shawn A.; Briggs, Timothy M.; Nelson, Stacy M.
2015-09-26
Simulations of low velocity impact with a flat cylindrical indenter upon a carbon fiber fabric reinforced polymer laminate are rigorously validated. Comparison of the impact energy absorption between the model and experiment is used as the validation metric. Additionally, non-destructive evaluation, including ultrasonic scans and three-dimensional computed tomography, provide qualitative validation of the models. The simulations include delamination, matrix cracks and fiber breaks. An orthotropic damage and failure constitutive model, capable of predicting progressive damage and failure, is developed in conjunction and described. An ensemble of simulations incorporating model parameter uncertainties is used to predict a response distribution which ismore » then compared to experimental output using appropriate statistical methods. Lastly, the model form errors are exposed and corrected for use in an additional blind validation analysis. The result is a quantifiable confidence in material characterization and model physics when simulating low velocity impact in structures of interest.« less
Compound Stimulus Presentation Does Not Deepen Extinction in Human Causal Learning
Griffiths, Oren; Holmes, Nathan; Westbrook, R. Fred
2017-01-01
Models of associative learning have proposed that cue-outcome learning critically depends on the degree of prediction error encountered during training. Two experiments examined the role of error-driven extinction learning in a human causal learning task. Target cues underwent extinction in the presence of additional cues, which differed in the degree to which they predicted the outcome, thereby manipulating outcome expectancy and, in the absence of any change in reinforcement, prediction error. These prediction error manipulations have each been shown to modulate extinction learning in aversive conditioning studies. While both manipulations resulted in increased prediction error during training, neither enhanced extinction in the present human learning task (one manipulation resulted in less extinction at test). The results are discussed with reference to the types of associations that are regulated by prediction error, the types of error terms involved in their regulation, and how these interact with parameters involved in training. PMID:28232809
Wei, Wenjuan; Xiong, Jianyin; Zhang, Yinping
2013-01-01
Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0), the diffusion coefficient (D), and the partition coefficient (K), can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.
Glass viscosity calculation based on a global statistical modelling approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fluegel, Alex
2007-02-01
A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurementmore » and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.« less
Clasey, Jody L; Gater, David R
2005-11-01
To compare (1) total body volume (V(b)) and density (D(b)) measurements obtained by hydrostatic weighing (HW) and air displacement plethysmography (ADP) in adults with spinal cord injury (SCI); (2) measured and predicted thoracic gas volume (V(TG)); and (3) differences in percentage of fat measurements using ADP-obtained D(b) and HW-obtained D(b) measures that were interchanged in a 4-compartment body composition model (4-comp %fat). Twenty adults with SCI underwent ADP and V(TG), and HW testing. In a subgroup (n=13) of subjects, 4-comp %fat procedures were computed. Research laboratories in a university setting. Twenty adults with SCI below the T3 vertebrae and motor complete paraplegia. Not applicable. Statistical analyses, including determination of group mean differences, shared variance, total error, and 95% confidence intervals. The 2 methods yielded small yet significantly different V(b) and D(b). The groups' mean V(TG) did not differ significantly, but the large relative differences indicated an unacceptable amount of individual error. When the 4-comp %fat measurements were compared, there was a trend toward significant differences (P=.08). ADP is a valid alternative method of determining the V(b) and D(b) in adults with SCI; however, the predicted V(TG) should be used with caution.
Schiffer, Anne-Marike; Ahlheim, Christiane; Wurm, Moritz F.; Schubotz, Ricarda I.
2012-01-01
Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts. PMID:22570715
Four applications of permutation methods to testing a single-mediator model.
Taylor, Aaron B; MacKinnon, David P
2012-09-01
Four applications of permutation tests to the single-mediator model are described and evaluated in this study. Permutation tests work by rearranging data in many possible ways in order to estimate the sampling distribution for the test statistic. The four applications to mediation evaluated here are the permutation test of ab, the permutation joint significance test, and the noniterative and iterative permutation confidence intervals for ab. A Monte Carlo simulation study was used to compare these four tests with the four best available tests for mediation found in previous research: the joint significance test, the distribution of the product test, and the percentile and bias-corrected bootstrap tests. We compared the different methods on Type I error, power, and confidence interval coverage. The noniterative permutation confidence interval for ab was the best performer among the new methods. It successfully controlled Type I error, had power nearly as good as the most powerful existing methods, and had better coverage than any existing method. The iterative permutation confidence interval for ab had lower power than do some existing methods, but it performed better than any other method in terms of coverage. The permutation confidence interval methods are recommended when estimating a confidence interval is a primary concern. SPSS and SAS macros that estimate these confidence intervals are provided.
Hughes, Charmayne M L; Baber, Chris; Bienkiewicz, Marta; Worthington, Andrew; Hazell, Alexa; Hermsdörfer, Joachim
2015-01-01
Approximately 33% of stroke patients have difficulty performing activities of daily living, often committing errors during the planning and execution of such activities. The objective of this study was to evaluate the ability of the human error identification (HEI) technique SHERPA (Systematic Human Error Reduction and Prediction Approach) to predict errors during the performance of daily activities in stroke patients with left and right hemisphere lesions. Using SHERPA we successfully predicted 36 of the 38 observed errors, with analysis indicating that the proportion of predicted and observed errors was similar for all sub-tasks and severity levels. HEI results were used to develop compensatory cognitive strategies that clinicians could employ to reduce or prevent errors from occurring. This study provides evidence for the reliability and validity of SHERPA in the design of cognitive rehabilitation strategies in stroke populations.
Understanding seasonal variability of uncertainty in hydrological prediction
NASA Astrophysics Data System (ADS)
Li, M.; Wang, Q. J.
2012-04-01
Understanding uncertainty in hydrological prediction can be highly valuable for improving the reliability of streamflow prediction. In this study, a monthly water balance model, WAPABA, in a Bayesian joint probability with error models are presented to investigate the seasonal dependency of prediction error structure. A seasonal invariant error model, analogous to traditional time series analysis, uses constant parameters for model error and account for no seasonal variations. In contrast, a seasonal variant error model uses a different set of parameters for bias, variance and autocorrelation for each individual calendar month. Potential connection amongst model parameters from similar months is not considered within the seasonal variant model and could result in over-fitting and over-parameterization. A hierarchical error model further applies some distributional restrictions on model parameters within a Bayesian hierarchical framework. An iterative algorithm is implemented to expedite the maximum a posterior (MAP) estimation of a hierarchical error model. Three error models are applied to forecasting streamflow at a catchment in southeast Australia in a cross-validation analysis. This study also presents a number of statistical measures and graphical tools to compare the predictive skills of different error models. From probability integral transform histograms and other diagnostic graphs, the hierarchical error model conforms better to reliability when compared to the seasonal invariant error model. The hierarchical error model also generally provides the most accurate mean prediction in terms of the Nash-Sutcliffe model efficiency coefficient and the best probabilistic prediction in terms of the continuous ranked probability score (CRPS). The model parameters of the seasonal variant error model are very sensitive to each cross validation, while the hierarchical error model produces much more robust and reliable model parameters. Furthermore, the result of the hierarchical error model shows that most of model parameters are not seasonal variant except for error bias. The seasonal variant error model is likely to use more parameters than necessary to maximize the posterior likelihood. The model flexibility and robustness indicates that the hierarchical error model has great potential for future streamflow predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, Don S.; Anderson, Kevin K.; White, Amanda M.
Background: A microarray of enzyme-linked immunosorbent assays, or ELISA microarray, predicts simultaneously the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Making sound biological inferences as well as improving the ELISA microarray process require require both concentration predictions and creditable estimates of their errors. Methods: We present a statistical method based on monotonic spline statistical models, penalized constrained least squares fitting (PCLS) and Monte Carlo simulation (MC) to predict concentrations and estimate prediction errors in ELISA microarray. PCLS restrains the flexible spline to a fit of assay intensitymore » that is a monotone function of protein concentration. With MC, both modeling and measurement errors are combined to estimate prediction error. The spline/PCLS/MC method is compared to a common method using simulated and real ELISA microarray data sets. Results: In contrast to the rigid logistic model, the flexible spline model gave credible fits in almost all test cases including troublesome cases with left and/or right censoring, or other asymmetries. For the real data sets, 61% of the spline predictions were more accurate than their comparable logistic predictions; especially the spline predictions at the extremes of the prediction curve. The relative errors of 50% of comparable spline and logistic predictions differed by less than 20%. Monte Carlo simulation rendered acceptable asymmetric prediction intervals for both spline and logistic models while propagation of error produced symmetric intervals that diverged unrealistically as the standard curves approached horizontal asymptotes. Conclusions: The spline/PCLS/MC method is a flexible, robust alternative to a logistic/NLS/propagation-of-error method to reliably predict protein concentrations and estimate their errors. The spline method simplifies model selection and fitting, and reliably estimates believable prediction errors. For the 50% of the real data sets fit well by both methods, spline and logistic predictions are practically indistinguishable, varying in accuracy by less than 15%. The spline method may be useful when automated prediction across simultaneous assays of numerous proteins must be applied routinely with minimal user intervention.« less
Savonitto, Stefano; Morici, Nuccia; Nozza, Anna; Cosentino, Francesco; Perrone Filardi, Pasquale; Murena, Ernesto; Morocutti, Giorgio; Ferri, Marco; Cavallini, Claudio; Eijkemans, Marinus Jc; Stähli, Barbara E; Schrieks, Ilse C; Toyama, Tadashi; Lambers Heerspink, H J; Malmberg, Klas; Schwartz, Gregory G; Lincoff, A Michael; Ryden, Lars; Tardif, Jean Claude; Grobbee, Diederick E
2018-01-01
To define the predictors of long-term mortality in patients with type 2 diabetes mellitus and recent acute coronary syndrome. A total of 7226 patients from a randomized trial, testing the effect on cardiovascular outcomes of the dual peroxisome proliferator-activated receptor agonist aleglitazar in patients with type 2 diabetes mellitus and recent acute coronary syndrome (AleCardio trial), were analysed. Median follow-up was 2 years. The independent mortality predictors were defined using Cox regression analysis. The predictive information provided by each variable was calculated as percent of total chi-square of the model. All-cause mortality was 4.0%, with cardiovascular death contributing for 73% of mortality. The mortality prediction model included N-terminal proB-type natriuretic peptide (adjusted hazard ratio = 1.68; 95% confidence interval = 1.51-1.88; 27% of prediction), lack of coronary revascularization (hazard ratio = 2.28; 95% confidence interval = 1.77-2.93; 18% of prediction), age (hazard ratio = 1.04; 95% confidence interval = 1.02-1.05; 15% of prediction), heart rate (hazard ratio = 1.02; 95% confidence interval = 1.01-1.03; 10% of prediction), glycated haemoglobin (hazard ratio = 1.11; 95% confidence interval = 1.03-1.19; 8% of prediction), haemoglobin (hazard ratio = 1.01; 95% confidence interval = 1.00-1.02; 8% of prediction), prior coronary artery bypass (hazard ratio = 1.61; 95% confidence interval = 1.11-2.32; 7% of prediction) and prior myocardial infarction (hazard ratio = 1.40; 95% confidence interval = 1.05-1.87; 6% of prediction). In patients with type 2 diabetes mellitus and recent acute coronary syndrome, mortality prediction is largely dominated by markers of cardiac, rather than metabolic, dysfunction.
One- and two-stage Arrhenius models for pharmaceutical shelf life prediction.
Fan, Zhewen; Zhang, Lanju
2015-01-01
One of the most challenging aspects of the pharmaceutical development is the demonstration and estimation of chemical stability. It is imperative that pharmaceutical products be stable for two or more years. Long-term stability studies are required to support such shelf life claim at registration. However, during drug development to facilitate formulation and dosage form selection, an accelerated stability study with stressed storage condition is preferred to quickly obtain a good prediction of shelf life under ambient storage conditions. Such a prediction typically uses Arrhenius equation that describes relationship between degradation rate and temperature (and humidity). Existing methods usually rely on the assumption of normality of the errors. In addition, shelf life projection is usually based on confidence band of a regression line. However, the coverage probability of a method is often overlooked or under-reported. In this paper, we introduce two nonparametric bootstrap procedures for shelf life estimation based on accelerated stability testing, and compare them with a one-stage nonlinear Arrhenius prediction model. Our simulation results demonstrate that one-stage nonlinear Arrhenius method has significant lower coverage than nominal levels. Our bootstrap method gave better coverage and led to a shelf life prediction closer to that based on long-term stability data.
Cole, Sindy; McNally, Gavan P
2007-10-01
Three experiments studied temporal-difference (TD) prediction errors during Pavlovian fear conditioning. In Stage I, rats received conditioned stimulus A (CSA) paired with shock. In Stage II, they received pairings of CSA and CSB with shock that blocked learning to CSB. In Stage III, a serial overlapping compound, CSB --> CSA, was followed by shock. The change in intratrial durations supported fear learning to CSB but reduced fear of CSA, revealing the operation of TD prediction errors. N-methyl- D-aspartate (NMDA) receptor antagonism prior to Stage III prevented learning, whereas opioid receptor antagonism selectively affected predictive learning. These findings support a role for TD prediction errors in fear conditioning. They suggest that NMDA receptors contribute to fear learning by acting on the product of predictive error, whereas opioid receptors contribute to predictive error. (PsycINFO Database Record (c) 2007 APA, all rights reserved).
Dopamine neurons share common response function for reward prediction error
Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige
2016-01-01
Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803
Takahashi, Yuji K.; Langdon, Angela J.; Niv, Yael; Schoenbaum, Geoffrey
2016-01-01
Summary Dopamine neurons signal reward prediction errors. This requires accurate reward predictions. It has been suggested that the ventral striatum provides these predictions. Here we tested this hypothesis by recording from putative dopamine neurons in the VTA of rats performing a task in which prediction errors were induced by shifting reward timing or number. In controls, the neurons exhibited error signals in response to both manipulations. However, dopamine neurons in rats with ipsilateral ventral striatal lesions exhibited errors only to changes in number and failed to respond to changes in timing of reward. These results, supported by computational modeling, indicate that predictions about the temporal specificity and the number of expected rewards are dissociable, and that dopaminergic prediction-error signals rely on the ventral striatum for the former but not the latter. PMID:27292535
Earthquake Hazard Assessment: an Independent Review
NASA Astrophysics Data System (ADS)
Kossobokov, Vladimir
2016-04-01
Seismic hazard assessment (SHA), from term-less (probabilistic PSHA or deterministic DSHA) to time-dependent (t-DASH) including short-term earthquake forecast/prediction (StEF), is not an easy task that implies a delicate application of statistics to data of limited size and different accuracy. Regretfully, in many cases of SHA, t-DASH, and StEF, the claims of a high potential and efficiency of the methodology are based on a flawed application of statistics and hardly suitable for communication to decision makers. The necessity and possibility of applying the modified tools of Earthquake Prediction Strategies, in particular, the Error Diagram, introduced by G.M. Molchan in early 1990ies for evaluation of SHA, and the Seismic Roulette null-hypothesis as a measure of the alerted space, is evident, and such a testing must be done in advance claiming hazardous areas and/or times. The set of errors, i.e. the rates of failure and of the alerted space-time volume, compared to those obtained in the same number of random guess trials permits evaluating the SHA method effectiveness and determining the optimal choice of the parameters in regard to specified cost-benefit functions. These and other information obtained in such a testing may supply us with a realistic estimate of confidence in SHA results and related recommendations on the level of risks for decision making in regard to engineering design, insurance, and emergency management. These basics of SHA evaluation are exemplified with a few cases of misleading "seismic hazard maps", "precursors", and "forecast/prediction methods".
Visuomotor adaptation needs a validation of prediction error by feedback error
Gaveau, Valérie; Prablanc, Claude; Laurent, Damien; Rossetti, Yves; Priot, Anne-Emmanuelle
2014-01-01
The processes underlying short-term plasticity induced by visuomotor adaptation to a shifted visual field are still debated. Two main sources of error can induce motor adaptation: reaching feedback errors, which correspond to visually perceived discrepancies between hand and target positions, and errors between predicted and actual visual reafferences of the moving hand. These two sources of error are closely intertwined and difficult to disentangle, as both the target and the reaching limb are simultaneously visible. Accordingly, the goal of the present study was to clarify the relative contributions of these two types of errors during a pointing task under prism-displaced vision. In “terminal feedback error” condition, viewing of their hand by subjects was allowed only at movement end, simultaneously with viewing of the target. In “movement prediction error” condition, viewing of the hand was limited to movement duration, in the absence of any visual target, and error signals arose solely from comparisons between predicted and actual reafferences of the hand. In order to prevent intentional corrections of errors, a subthreshold, progressive stepwise increase in prism deviation was used, so that subjects remained unaware of the visual deviation applied in both conditions. An adaptive aftereffect was observed in the “terminal feedback error” condition only. As far as subjects remained unaware of the optical deviation and self-assigned pointing errors, prediction error alone was insufficient to induce adaptation. These results indicate a critical role of hand-to-target feedback error signals in visuomotor adaptation; consistent with recent neurophysiological findings, they suggest that a combination of feedback and prediction error signals is necessary for eliciting aftereffects. They also suggest that feedback error updates the prediction of reafferences when a visual perturbation is introduced gradually and cognitive factors are eliminated or strongly attenuated. PMID:25408644
Haidar, Ziad A; Papanna, Ramesha; Sibai, Baha M; Tatevian, Nina; Viteri, Oscar A; Vowels, Patricia C; Blackwell, Sean C; Moise, Kenneth J
2017-08-01
Traditionally, 2-dimensional ultrasound parameters have been used for the diagnosis of a suspected morbidly adherent placenta previa. More objective techniques have not been well studied yet. The objective of the study was to determine the ability of prenatal 3-dimensional power Doppler analysis of flow and vascular indices to predict the morbidly adherent placenta objectively. A prospective cohort study was performed in women between 28 and 32 gestational weeks with known placenta previa. Patients underwent a two-dimensional gray-scale ultrasound that determined management decisions. 3-Dimensional power Doppler volumes were obtained during the same examination and vascular, flow, and vascular flow indices were calculated after manual tracing of the viewed placenta in the sweep; data were blinded to obstetricians. Morbidly adherent placenta was confirmed by histology. Severe morbidly adherent placenta was defined as increta/percreta on histology, blood loss >2000 mL, and >2 units of PRBC transfused. Sensitivities, specificities, predictive values, and likelihood ratios were calculated. Student t and χ 2 tests, logistic regression, receiver-operating characteristic curves, and intra- and interrater agreements using Kappa statistics were performed. The following results were found: (1) 50 women were studied: 23 had morbidly adherent placenta, of which 12 (52.2%) were severe morbidly adherent placenta; (2) 2-dimensional parameters diagnosed morbidly adherent placenta with a sensitivity of 82.6% (95% confidence interval, 60.4-94.2), a specificity of 88.9% (95% confidence interval, 69.7-97.1), a positive predictive value of 86.3% (95% confidence interval, 64.0-96.4), a negative predictive value of 85.7% (95% confidence interval, 66.4-95.3), a positive likelihood ratio of 7.4 (95% confidence interval, 2.5-21.9), and a negative likelihood ratio of 0.2 (95% confidence interval, 0.08-0.48); (3) mean values of the vascular index (32.8 ± 7.4) and the vascular flow index (14.2 ± 3.8) were higher in morbidly adherent placenta (P < .001); (4) area under the receiver-operating characteristic curve for the vascular and vascular flow indices were 0.99 and 0.97, respectively; (5) the vascular index ≥21 predicted morbidly adherent placenta with a sensitivity and a specificity of 95% (95% confidence interval, 88.2-96.9) and 91%, respectively (95% confidence interval, 87.5-92.4), 92% positive predictive value (95% confidence interval, 85.5-94.3), 90% negative predictive value (95% confidence interval, 79.9-95.3), positive likelihood ratio of 10.55 (95% confidence interval, 7.06-12.75), and negative likelihood ratio of 0.05 (95% confidence interval, 0.03-0.13); and (6) for the severe morbidly adherent placenta, 2-dimensional ultrasound had a sensitivity of 33.3% (95% confidence interval, 11.3-64.6), a specificity of 81.8% (95% confidence interval, 47.8-96.8), a positive predictive value of 66.7% (95% confidence interval, 24.1-94.1), a negative predictive value of 52.9% (95% confidence interval, 28.5-76.1), a positive likelihood ratio of 1.83 (95% confidence interval, 0.41-8.11), and a negative likelihood ratio of 0.81 (95% confidence interval, 0.52-1.26). A vascular index ≥31 predicted the diagnosis of a severe morbidly adherent placenta with a 100% sensitivity (95% confidence interval, 72-100), a 90% specificity (95% confidence interval, 81.7-93.8), an 88% positive predictive value (95% confidence interval, 55.0-91.3), a 100% negative predictive value (95% confidence interval, 90.9-100), a positive likelihood ratio of 10.0 (95% confidence interval, 3.93-16.13), and a negative likelihood ratio of 0 (95% confidence interval, 0-0.34). Intrarater and interrater agreements were 94% (P < .001) and 93% (P < .001), respectively. The vascular index accurately predicts the morbidly adherent placenta in patients with placenta previa. In addition, 3-dimensional power Doppler vascular and vascular flow indices were more predictive of severe cases of morbidly adherent placenta compared with 2-dimensional ultrasound. This objective technique may limit the variations in diagnosing morbidly adherent placenta because of the subjectivity of 2-dimensional ultrasound interpretations. Copyright © 2017 Elsevier Inc. All rights reserved.
Individual differences in conflict detection during reasoning.
Frey, Darren; Johnson, Eric D; De Neys, Wim
2018-05-01
Decades of reasoning and decision-making research have established that human judgment is often biased by intuitive heuristics. Recent "error" or bias detection studies have focused on reasoners' abilities to detect whether their heuristic answer conflicts with logical or probabilistic principles. A key open question is whether there are individual differences in this bias detection efficiency. Here we present three studies in which co-registration of different error detection measures (confidence, response time and confidence response time) allowed us to assess bias detection sensitivity at the individual participant level in a range of reasoning tasks. The results indicate that although most individuals show robust bias detection, as indexed by increased latencies and decreased confidence, there is a subgroup of reasoners who consistently fail to do so. We discuss theoretical and practical implications for the field.
NASA Astrophysics Data System (ADS)
Kumar, V.; Nayagum, D.; Thornton, S.; Banwart, S.; Schuhmacher2, M.; Lerner, D.
2006-12-01
Characterization of uncertainty associated with groundwater quality models is often of critical importance, as for example in cases where environmental models are employed in risk assessment. Insufficient data, inherent variability and estimation errors of environmental model parameters introduce uncertainty into model predictions. However, uncertainty analysis using conventional methods such as standard Monte Carlo sampling (MCS) may not be efficient, or even suitable, for complex, computationally demanding models and involving different nature of parametric variability and uncertainty. General MCS or variant of MCS such as Latin Hypercube Sampling (LHS) assumes variability and uncertainty as a single random entity and the generated samples are treated as crisp assuming vagueness as randomness. Also when the models are used as purely predictive tools, uncertainty and variability lead to the need for assessment of the plausible range of model outputs. An improved systematic variability and uncertainty analysis can provide insight into the level of confidence in model estimates, and can aid in assessing how various possible model estimates should be weighed. The present study aims to introduce, Fuzzy Latin Hypercube Sampling (FLHS), a hybrid approach of incorporating cognitive and noncognitive uncertainties. The noncognitive uncertainty such as physical randomness, statistical uncertainty due to limited information, etc can be described by its own probability density function (PDF); whereas the cognitive uncertainty such estimation error etc can be described by the membership function for its fuzziness and confidence interval by ?-cuts. An important property of this theory is its ability to merge inexact generated data of LHS approach to increase the quality of information. The FLHS technique ensures that the entire range of each variable is sampled with proper incorporation of uncertainty and variability. A fuzzified statistical summary of the model results will produce indices of sensitivity and uncertainty that relate the effects of heterogeneity and uncertainty of input variables to model predictions. The feasibility of the method is validated to assess uncertainty propagation of parameter values for estimation of the contamination level of a drinking water supply well due to transport of dissolved phenolics from a contaminated site in the UK.
Simulation techniques for estimating error in the classification of normal patterns
NASA Technical Reports Server (NTRS)
Whitsitt, S. J.; Landgrebe, D. A.
1974-01-01
Methods of efficiently generating and classifying samples with specified multivariate normal distributions were discussed. Conservative confidence tables for sample sizes are given for selective sampling. Simulation results are compared with classified training data. Techniques for comparing error and separability measure for two normal patterns are investigated and used to display the relationship between the error and the Chernoff bound.
Market Confidence Predicts Stock Price: Beyond Supply and Demand
Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Zhang, Yuqing
2016-01-01
Stock price prediction is an important and challenging problem in stock market analysis. Existing prediction methods either exploit autocorrelation of stock price and its correlation with the supply and demand of stock, or explore predictive indictors exogenous to stock market. In this paper, using transaction record of stocks with identifier of traders, we introduce an index to characterize market confidence, i.e., the ratio of the number of traders who is active in two successive trading days to the number of active traders in a certain trading day. Strong Granger causality is found between the index of market confidence and stock price. We further predict stock price by incorporating the index of market confidence into a neural network based on time series of stock price. Experimental results on 50 stocks in two Chinese Stock Exchanges demonstrate that the accuracy of stock price prediction is significantly improved by the inclusion of the market confidence index. This study sheds light on using cross-day trading behavior to characterize market confidence and to predict stock price. PMID:27391816
Earthquake Prediction in a Big Data World
NASA Astrophysics Data System (ADS)
Kossobokov, V. G.
2016-12-01
The digital revolution started just about 15 years ago has already surpassed the global information storage capacity of more than 5000 Exabytes (in optimally compressed bytes) per year. Open data in a Big Data World provides unprecedented opportunities for enhancing studies of the Earth System. However, it also opens wide avenues for deceptive associations in inter- and transdisciplinary data and for inflicted misleading predictions based on so-called "precursors". Earthquake prediction is not an easy task that implies a delicate application of statistics. So far, none of the proposed short-term precursory signals showed sufficient evidence to be used as a reliable precursor of catastrophic earthquakes. Regretfully, in many cases of seismic hazard assessment (SHA), from term-less to time-dependent (probabilistic PSHA or deterministic DSHA), and short-term earthquake forecasting (StEF), the claims of a high potential of the method are based on a flawed application of statistics and, therefore, are hardly suitable for communication to decision makers. Self-testing must be done in advance claiming prediction of hazardous areas and/or times. The necessity and possibility of applying simple tools of Earthquake Prediction Strategies, in particular, Error Diagram, introduced by G.M. Molchan in early 1990ies, and Seismic Roulette null-hypothesis as a metric of the alerted space, is evident. The set of errors, i.e. the rates of failure and of the alerted space-time volume, can be easily compared to random guessing, which comparison permits evaluating the SHA method effectiveness and determining the optimal choice of parameters in regard to a given cost-benefit function. These and other information obtained in such a simple testing may supply us with a realistic estimates of confidence and accuracy of SHA predictions and, if reliable but not necessarily perfect, with related recommendations on the level of risks for decision making in regard to engineering design, insurance, and emergency management. The examples of independent expertize of "seismic hazard maps", "precursors", and "forecast/prediction methods" are provided.
Interactions of timing and prediction error learning.
Kirkpatrick, Kimberly
2014-01-01
Timing and prediction error learning have historically been treated as independent processes, but growing evidence has indicated that they are not orthogonal. Timing emerges at the earliest time point when conditioned responses are observed, and temporal variables modulate prediction error learning in both simple conditioning and cue competition paradigms. In addition, prediction errors, through changes in reward magnitude or value alter timing of behavior. Thus, there appears to be a bi-directional interaction between timing and prediction error learning. Modern theories have attempted to integrate the two processes with mixed success. A neurocomputational approach to theory development is espoused, which draws on neurobiological evidence to guide and constrain computational model development. Heuristics for future model development are presented with the goal of sparking new approaches to theory development in the timing and prediction error fields. Copyright © 2013 Elsevier B.V. All rights reserved.
Diuk, Carlos; Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew; Niv, Yael
2013-03-27
Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously.
NASA Astrophysics Data System (ADS)
Aschwanden, Andy; Bueler, Ed; Khroulev, Constantine
2010-05-01
To predict Greenland's contribution to global sea level rise in the next few centuries with some confidence, an accurate representation of its current state is crucial. Simulations of the present state of Greenland using the "Parallel Ice Sheet Model" (PISM) capture the essential flow features but overestimate the current volume by about 30%. Possible sources of error include (1) limited understanding of physical processes involved, (2) the choice of approximations made by the numerical model, (3) values of tunable parameters, and (4) uncertainties in boundary conditions. The response of an ice sheet model to given forcing contains the above mentioned error sources, with unknown weights. In this work we focus on a small subset, namely errors arising from uncertainties in bed elevation and whether or not membrane stresses are included in the stress balance. CReSIS provides recently updated bedrock maps for Greenland include high-resolution data for Jacobshavn Isbræ and Petermann Glacier. We present a four-way comparison between the original BEDMAP, the new CReSIS bedrock data, a non-sliding shallow ice model, and hybrid model which includes the shallow shelf approximation as a sliding law. Large gradients possibly found in high-resolution bedrock elevation are expected to make a hybrid model the more appropriate choice. To elucidate this question, runs are performed on a unprecedented high spatial resolution of 2km for the whole ice sheet. Finally, model predictions are evaluated against observed quantities such as surface velocities, ice thickness, and temperature profiles in bore holes using different metrics.
NASA Technical Reports Server (NTRS)
Murphy, Patrick Charles
1985-01-01
An algorithm for maximum likelihood (ML) estimation is developed with an efficient method for approximating the sensitivities. The algorithm was developed for airplane parameter estimation problems but is well suited for most nonlinear, multivariable, dynamic systems. The ML algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). MNRES determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. The fitted surface allows sensitivity information to be updated at each iteration with a significant reduction in computational effort. MNRES determines the sensitivities with less computational effort than using either a finite-difference method or integrating the analytically determined sensitivity equations. MNRES eliminates the need to derive sensitivity equations for each new model, thus eliminating algorithm reformulation with each new model and providing flexibility to use model equations in any format that is convenient. A random search technique for determining the confidence limits of ML parameter estimates is applied to nonlinear estimation problems for airplanes. The confidence intervals obtained by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. It is observed that the degree of nonlinearity in the estimation problem is an important factor in the relationship between CR bounds and the error bounds determined by the search technique. The CR bounds were found to be close to the bounds determined by the search when the degree of nonlinearity was small. Beale's measure of nonlinearity is developed in this study for airplane identification problems; it is used to empirically correct confidence levels for the parameter confidence limits. The primary utility of the measure, however, was found to be in predicting the degree of agreement between Cramer-Rao bounds and search estimates.
Wei, Wenjuan; Xiong, Jianyin; Zhang, Yinping
2013-01-01
Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0), the diffusion coefficient (D), and the partition coefficient (K), can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C. PMID:24312497
Unit of Measurement Used and Parent Medication Dosing Errors
Dreyer, Benard P.; Ugboaja, Donna C.; Sanchez, Dayana C.; Paul, Ian M.; Moreira, Hannah A.; Rodriguez, Luis; Mendelsohn, Alan L.
2014-01-01
BACKGROUND AND OBJECTIVES: Adopting the milliliter as the preferred unit of measurement has been suggested as a strategy to improve the clarity of medication instructions; teaspoon and tablespoon units may inadvertently endorse nonstandard kitchen spoon use. We examined the association between unit used and parent medication errors and whether nonstandard instruments mediate this relationship. METHODS: Cross-sectional analysis of baseline data from a larger study of provider communication and medication errors. English- or Spanish-speaking parents (n = 287) whose children were prescribed liquid medications in 2 emergency departments were enrolled. Medication error defined as: error in knowledge of prescribed dose, error in observed dose measurement (compared to intended or prescribed dose); >20% deviation threshold for error. Multiple logistic regression performed adjusting for parent age, language, country, race/ethnicity, socioeconomic status, education, health literacy (Short Test of Functional Health Literacy in Adults); child age, chronic disease; site. RESULTS: Medication errors were common: 39.4% of parents made an error in measurement of the intended dose, 41.1% made an error in the prescribed dose. Furthermore, 16.7% used a nonstandard instrument. Compared with parents who used milliliter-only, parents who used teaspoon or tablespoon units had twice the odds of making an error with the intended (42.5% vs 27.6%, P = .02; adjusted odds ratio=2.3; 95% confidence interval, 1.2–4.4) and prescribed (45.1% vs 31.4%, P = .04; adjusted odds ratio=1.9; 95% confidence interval, 1.03–3.5) dose; associations greater for parents with low health literacy and non–English speakers. Nonstandard instrument use partially mediated teaspoon and tablespoon–associated measurement errors. CONCLUSIONS: Findings support a milliliter-only standard to reduce medication errors. PMID:25022742
Unit of measurement used and parent medication dosing errors.
Yin, H Shonna; Dreyer, Benard P; Ugboaja, Donna C; Sanchez, Dayana C; Paul, Ian M; Moreira, Hannah A; Rodriguez, Luis; Mendelsohn, Alan L
2014-08-01
Adopting the milliliter as the preferred unit of measurement has been suggested as a strategy to improve the clarity of medication instructions; teaspoon and tablespoon units may inadvertently endorse nonstandard kitchen spoon use. We examined the association between unit used and parent medication errors and whether nonstandard instruments mediate this relationship. Cross-sectional analysis of baseline data from a larger study of provider communication and medication errors. English- or Spanish-speaking parents (n = 287) whose children were prescribed liquid medications in 2 emergency departments were enrolled. Medication error defined as: error in knowledge of prescribed dose, error in observed dose measurement (compared to intended or prescribed dose); >20% deviation threshold for error. Multiple logistic regression performed adjusting for parent age, language, country, race/ethnicity, socioeconomic status, education, health literacy (Short Test of Functional Health Literacy in Adults); child age, chronic disease; site. Medication errors were common: 39.4% of parents made an error in measurement of the intended dose, 41.1% made an error in the prescribed dose. Furthermore, 16.7% used a nonstandard instrument. Compared with parents who used milliliter-only, parents who used teaspoon or tablespoon units had twice the odds of making an error with the intended (42.5% vs 27.6%, P = .02; adjusted odds ratio=2.3; 95% confidence interval, 1.2-4.4) and prescribed (45.1% vs 31.4%, P = .04; adjusted odds ratio=1.9; 95% confidence interval, 1.03-3.5) dose; associations greater for parents with low health literacy and non-English speakers. Nonstandard instrument use partially mediated teaspoon and tablespoon-associated measurement errors. Findings support a milliliter-only standard to reduce medication errors. Copyright © 2014 by the American Academy of Pediatrics.
NASA Technical Reports Server (NTRS)
Miller, J. M.
1980-01-01
ATMOS is a Fourier transform spectrometer to measure atmospheric trace molecules over a spectral range of 2-16 microns. Assessment of the system performance of ATMOS includes evaluations of optical system errors induced by thermal and structural effects. In order to assess the optical system errors induced from thermal and structural effects, error budgets are assembled during system engineering tasks and line of sight and wavefront deformations predictions (using operational thermal and vibration environments and computer models) are subsequently compared to the error budgets. This paper discusses the thermal/structural error budgets, modelling and analysis methods used to predict thermal/structural induced errors and the comparisons that show that predictions are within the error budgets.
Unsworth, Nash; Brewer, Gene A; Spillers, Gregory J
2011-09-01
In three experiments search termination decisions were examined as a function of response type (correct vs. incorrect) and confidence. It was found that the time between the last retrieved item and the decision to terminate search (exit latency) was related to the type of response and confidence in the last item retrieved. Participants were willing to search longer when the last retrieved item was a correct item vs. an incorrect item and when the confidence was high in the last retrieved item. It was also found that the number of errors retrieved during the recall period was related to search termination decisions such that the more errors retrieved, the more likely participants were to terminate the search. Finally, it was found that knowledge of overall search set size influenced the time needed to search for items, but did not influence search termination decisions. Copyright © 2011 Elsevier B.V. All rights reserved.
Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions
Corlett, P. R.; Murray, G. K.; Honey, G. D.; Aitken, M. R. F.; Shanks, D. R.; Robbins, T.W.; Bullmore, E.T.; Dickinson, A.; Fletcher, P. C.
2012-01-01
Delusions are maladaptive beliefs about the world. Based upon experimental evidence that prediction error—a mismatch between expectancy and outcome—drives belief formation, this study examined the possibility that delusions form because of disrupted prediction-error processing. We used fMRI to determine prediction-error-related brain responses in 12 healthy subjects and 12 individuals (7 males) with delusional beliefs. Frontal cortex responses in the patient group were suggestive of disrupted prediction-error processing. Furthermore, across subjects, the extent of disruption was significantly related to an individual’s propensity to delusion formation. Our results support a neurobiological theory of delusion formation that implicates aberrant prediction-error signalling, disrupted attentional allocation and associative learning in the formation of delusional beliefs. PMID:17690132
NASA Astrophysics Data System (ADS)
Lausch, Anthony; Chen, Jeff; Ward, Aaron D.; Gaede, Stewart; Lee, Ting-Yim; Wong, Eugene
2014-11-01
Parametric response map (PRM) analysis is a voxel-wise technique for predicting overall treatment outcome, which shows promise as a tool for guiding personalized locally adaptive radiotherapy (RT). However, image registration error (IRE) introduces uncertainty into this analysis which may limit its use for guiding RT. Here we extend the PRM method to include an IRE-related PRM analysis confidence interval and also incorporate multiple graded classification thresholds to facilitate visualization. A Gaussian IRE model was used to compute an expected value and confidence interval for PRM analysis. The augmented PRM (A-PRM) was evaluated using CT-perfusion functional image data from patients treated with RT for glioma and hepatocellular carcinoma. Known rigid IREs were simulated by applying one thousand different rigid transformations to each image set. PRM and A-PRM analyses of the transformed images were then compared to analyses of the original images (ground truth) in order to investigate the two methods in the presence of controlled IRE. The A-PRM was shown to help visualize and quantify IRE-related analysis uncertainty. The use of multiple graded classification thresholds also provided additional contextual information which could be useful for visually identifying adaptive RT targets (e.g. sub-volume boosts). The A-PRM should facilitate reliable PRM guided adaptive RT by allowing the user to identify if a patient’s unique IRE-related PRM analysis uncertainty has the potential to influence target delineation.
Surprising feedback improves later memory.
Fazio, Lisa K; Marsh, Elizabeth J
2009-02-01
The hypercorrection effect is the finding that high-confidence errors are more likely to be corrected after feedback than are low-confidence errors (Butterfield & Metcalfe, 2001). In two experiments, we explored the idea that the hypercorrection effect results from increased attention to surprising feedback. In Experiment 1, participants were more likely to remember the appearance of the presented feedback when the feedback did not match expectations. In Experiment 2, we replicated this effect using more distinctive sources and also demonstrated the hypercorrection effect in this modified paradigm. Overall, participants better remembered both the surface features and the content of surprising feedback.
Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew
2013-01-01
Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously. PMID:23536092
New dimension analyses with error analysis for quaking aspen and black spruce
NASA Technical Reports Server (NTRS)
Woods, K. D.; Botkin, D. B.; Feiveson, A. H.
1987-01-01
Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.
The Mathematics of Computer Error.
ERIC Educational Resources Information Center
Wood, Eric
1988-01-01
Why a computer error occurred is considered by analyzing the binary system and decimal fractions. How the computer stores numbers is then described. Knowledge of the mathematics behind computer operation is important if one wishes to understand and have confidence in the results of computer calculations. (MNS)
Frontal Theta Links Prediction Errors to Behavioral Adaptation in Reinforcement Learning
Cavanagh, James F.; Frank, Michael J.; Klein, Theresa J.; Allen, John J.B.
2009-01-01
Investigations into action monitoring have consistently detailed a fronto-central voltage deflection in the Event-Related Potential (ERP) following the presentation of negatively valenced feedback, sometimes termed the Feedback Related Negativity (FRN). The FRN has been proposed to reflect a neural response to prediction errors during reinforcement learning, yet the single trial relationship between neural activity and the quanta of expectation violation remains untested. Although ERP methods are not well suited to single trial analyses, the FRN has been associated with theta band oscillatory perturbations in the medial prefrontal cortex. Medio-frontal theta oscillations have been previously associated with expectation violation and behavioral adaptation and are well suited to single trial analysis. Here, we recorded EEG activity during a probabilistic reinforcement learning task and fit the performance data to an abstract computational model (Q-learning) for calculation of single-trial reward prediction errors. Single-trial theta oscillatory activities following feedback were investigated within the context of expectation (prediction error) and adaptation (subsequent reaction time change). Results indicate that interactive medial and lateral frontal theta activities reflect the degree of negative and positive reward prediction error in the service of behavioral adaptation. These different brain areas use prediction error calculations for different behavioral adaptations: with medial frontal theta reflecting the utilization of prediction errors for reaction time slowing (specifically following errors), but lateral frontal theta reflecting prediction errors leading to working memory-related reaction time speeding for the correct choice. PMID:19969093
Association between split selection instability and predictive error in survival trees.
Radespiel-Tröger, M; Gefeller, O; Rabenstein, T; Hothorn, T
2006-01-01
To evaluate split selection instability in six survival tree algorithms and its relationship with predictive error by means of a bootstrap study. We study the following algorithms: logrank statistic with multivariate p-value adjustment without pruning (LR), Kaplan-Meier distance of survival curves (KM), martingale residuals (MR), Poisson regression for censored data (PR), within-node impurity (WI), and exponential log-likelihood loss (XL). With the exception of LR, initial trees are pruned by using split-complexity, and final trees are selected by means of cross-validation. We employ a real dataset from a clinical study of patients with gallbladder stones. The predictive error is evaluated using the integrated Brier score for censored data. The relationship between split selection instability and predictive error is evaluated by means of box-percentile plots, covariate and cutpoint selection entropy, and cutpoint selection coefficients of variation, respectively, in the root node. We found a positive association between covariate selection instability and predictive error in the root node. LR yields the lowest predictive error, while KM and MR yield the highest predictive error. The predictive error of survival trees is related to split selection instability. Based on the low predictive error of LR, we recommend the use of this algorithm for the construction of survival trees. Unpruned survival trees with multivariate p-value adjustment can perform equally well compared to pruned trees. The analysis of split selection instability can be used to communicate the results of tree-based analyses to clinicians and to support the application of survival trees.
Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design
NASA Astrophysics Data System (ADS)
Leube, P. C.; Geiges, A.; Nowak, W.
2012-02-01
Incorporating hydro(geo)logical data, such as head and tracer data, into stochastic models of (subsurface) flow and transport helps to reduce prediction uncertainty. Because of financial limitations for investigation campaigns, information needs toward modeling or prediction goals should be satisfied efficiently and rationally. Optimal design techniques find the best one among a set of investigation strategies. They optimize the expected impact of data on prediction confidence or related objectives prior to data collection. We introduce a new optimal design method, called PreDIA(gnosis) (Preposterior Data Impact Assessor). PreDIA derives the relevant probability distributions and measures of data utility within a fully Bayesian, generalized, flexible, and accurate framework. It extends the bootstrap filter (BF) and related frameworks to optimal design by marginalizing utility measures over the yet unknown data values. PreDIA is a strictly formal information-processing scheme free of linearizations. It works with arbitrary simulation tools, provides full flexibility concerning measurement types (linear, nonlinear, direct, indirect), allows for any desired task-driven formulations, and can account for various sources of uncertainty (e.g., heterogeneity, geostatistical assumptions, boundary conditions, measurement values, model structure uncertainty, a large class of model errors) via Bayesian geostatistics and model averaging. Existing methods fail to simultaneously provide these crucial advantages, which our method buys at relatively higher-computational costs. We demonstrate the applicability and advantages of PreDIA over conventional linearized methods in a synthetic example of subsurface transport. In the example, we show that informative data is often invisible for linearized methods that confuse zero correlation with statistical independence. Hence, PreDIA will often lead to substantially better sampling designs. Finally, we extend our example to specifically highlight the consideration of conceptual model uncertainty.
SU-D-218-05: Material Quantification in Spectral X-Ray Imaging: Optimization and Validation.
Nik, S J; Thing, R S; Watts, R; Meyer, J
2012-06-01
To develop and validate a multivariate statistical method to optimize scanning parameters for material quantification in spectral x-rayimaging. An optimization metric was constructed by extensively sampling the thickness space for the expected number of counts for m (two or three) materials. This resulted in an m-dimensional confidence region ofmaterial quantities, e.g. thicknesses. Minimization of the ellipsoidal confidence region leads to the optimization of energy bins. For the given spectrum, the minimum counts required for effective material separation can be determined by predicting the signal-to-noise ratio (SNR) of the quantification. A Monte Carlo (MC) simulation framework using BEAM was developed to validate the metric. Projection data of the m-materials was generated and material decomposition was performed for combinations of iodine, calcium and water by minimizing the z-score between the expected spectrum and binned measurements. The mean square error (MSE) and variance were calculated to measure the accuracy and precision of this approach, respectively. The minimum MSE corresponds to the optimal energy bins in the BEAM simulations. In the optimization metric, this is equivalent to the smallest confidence region. The SNR of the simulated images was also compared to the predictions from the metric. TheMSE was dominated by the variance for the given material combinations,which demonstrates accurate material quantifications. The BEAMsimulations revealed that the optimization of energy bins was accurate to within 1keV. The SNRs predicted by the optimization metric yielded satisfactory agreement but were expectedly higher for the BEAM simulations due to the inclusion of scattered radiation. The validation showed that the multivariate statistical method provides accurate material quantification, correct location of optimal energy bins and adequateprediction of image SNR. The BEAM code system is suitable for generating spectral x- ray imaging simulations. © 2012 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette
2009-01-01
Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.
Artificial neural network implementation of a near-ideal error prediction controller
NASA Technical Reports Server (NTRS)
Mcvey, Eugene S.; Taylor, Lynore Denise
1992-01-01
A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error responses be known for a particular input and modeled plant. These responses are used in the error prediction controller. An analysis was done on the general dynamic behavior that results from including a digital error predictor in a control loop and these were compared to those including the near-ideal Neural Network error predictor. This analysis was done for a second and third order system.
Muhlfeld, Clint C.; Taper, Mark L.; Staples, David F.; Shepard, Bradley B.
2006-01-01
Despite the widespread use of redd counts to monitor trends in salmonid populations, few studies have evaluated the uncertainties in observed counts. We assessed the variability in redd counts for migratory bull trout Salvelinus confluentus among experienced observers in Lion and Goat creeks, which are tributaries to the Swan River, Montana. We documented substantially lower observer variability in bull trout redd counts than did previous studies. Observer counts ranged from 78% to 107% of our best estimates of true redd numbers in Lion Creek and from 90% to 130% of our best estimates in Goat Creek. Observers made both errors of omission and errors of false identification, and we modeled this combination by use of a binomial probability of detection and a Poisson count distribution of false identifications. Redd detection probabilities were high (mean = 83%) and exhibited no significant variation among observers (SD = 8%). We applied this error structure to annual redd counts in the Swan River basin (1982–2004) to correct for observer error and thus derived more accurate estimates of redd numbers and associated confidence intervals. Our results indicate that bias in redd counts can be reduced if experienced observers are used to conduct annual redd counts. Future studies should assess both sources of observer error to increase the validity of using redd counts for inferring true redd numbers in different basins. This information will help fisheries biologists to more precisely monitor population trends, identify recovery and extinction thresholds for conservation and recovery programs, ascertain and predict how management actions influence distribution and abundance, and examine effects of recovery and restoration activities.
Convective Weather Forecast Accuracy Analysis at Center and Sector Levels
NASA Technical Reports Server (NTRS)
Wang, Yao; Sridhar, Banavar
2010-01-01
This paper presents a detailed convective forecast accuracy analysis at center and sector levels. The study is aimed to provide more meaningful forecast verification measures to aviation community, as well as to obtain useful information leading to the improvements in the weather translation capacity models. In general, the vast majority of forecast verification efforts over past decades have been on the calculation of traditional standard verification measure scores over forecast and observation data analyses onto grids. These verification measures based on the binary classification have been applied in quality assurance of weather forecast products at the national level for many years. Our research focuses on the forecast at the center and sector levels. We calculate the standard forecast verification measure scores for en-route air traffic centers and sectors first, followed by conducting the forecast validation analysis and related verification measures for weather intensities and locations at centers and sectors levels. An approach to improve the prediction of sector weather coverage by multiple sector forecasts is then developed. The weather severe intensity assessment was carried out by using the correlations between forecast and actual weather observation airspace coverage. The weather forecast accuracy on horizontal location was assessed by examining the forecast errors. The improvement in prediction of weather coverage was determined by the correlation between actual sector weather coverage and prediction. observed and forecasted Convective Weather Avoidance Model (CWAM) data collected from June to September in 2007. CWAM zero-minute forecast data with aircraft avoidance probability of 60% and 80% are used as the actual weather observation. All forecast measurements are based on 30-minute, 60- minute, 90-minute, and 120-minute forecasts with the same avoidance probabilities. The forecast accuracy analysis for times under one-hour showed that the errors in intensity and location for center forecast are relatively low. For example, 1-hour forecast intensity and horizontal location errors for ZDC center were about 0.12 and 0.13. However, the correlation between sector 1-hour forecast and actual weather coverage was weak, for sector ZDC32, about 32% of the total variation of observation weather intensity was unexplained by forecast; the sector horizontal location error was about 0.10. The paper also introduces an approach to estimate the sector three-dimensional actual weather coverage by using multiple sector forecasts, which turned out to produce better predictions. Using Multiple Linear Regression (MLR) model for this approach, the correlations between actual observation and the multiple sector forecast model prediction improved by several percents at 95% confidence level in comparison with single sector forecast.
Whittle, Rebecca; Peat, George; Belcher, John; Collins, Gary S; Riley, Richard D
2018-05-18
Measurement error in predictor variables may threaten the validity of clinical prediction models. We sought to evaluate the possible extent of the problem. A secondary objective was to examine whether predictors are measured at the intended moment of model use. A systematic search of Medline was used to identify a sample of articles reporting the development of a clinical prediction model published in 2015. After screening according to a predefined inclusion criteria, information on predictors, strategies to control for measurement error and intended moment of model use were extracted. Susceptibility to measurement error for each predictor was classified into low and high risk. Thirty-three studies were reviewed, including 151 different predictors in the final prediction models. Fifty-one (33.7%) predictors were categorised as high risk of error, however this was not accounted for in the model development. Only 8 (24.2%) studies explicitly stated the intended moment of model use and when the predictors were measured. Reporting of measurement error and intended moment of model use is poor in prediction model studies. There is a need to identify circumstances where ignoring measurement error in prediction models is consequential and whether accounting for the error will improve the predictions. Copyright © 2018. Published by Elsevier Inc.
Overconfidence across the psychosis continuum: a calibration approach.
Balzan, Ryan P; Woodward, Todd S; Delfabbro, Paul; Moritz, Steffen
2016-11-01
An 'overconfidence in errors' bias has been consistently observed in people with schizophrenia relative to healthy controls, however, the bias is seldom found to be associated with delusional ideation. Using a more precise confidence-accuracy calibration measure of overconfidence, the present study aimed to explore whether the overconfidence bias is greater in people with higher delusional ideation. A sample of 25 participants with schizophrenia and 50 non-clinical controls (25 high- and 25 low-delusion-prone) completed 30 difficult trivia questions (accuracy <75%); 15 'half-scale' items required participants to indicate their level of confidence for accuracy, and the remaining 'confidence-range' items asked participants to provide lower/upper bounds in which they were 80% confident the true answer lay within. There was a trend towards higher overconfidence for half-scale items in the schizophrenia and high-delusion-prone groups, which reached statistical significance for confidence-range items. However, accuracy was particularly low in the two delusional groups and a significant negative correlation between clinical delusional scores and overconfidence was observed for half-scale items within the schizophrenia group. Evidence in support of an association between overconfidence and delusional ideation was therefore mixed. Inflated confidence-accuracy miscalibration for the two delusional groups may be better explained by their greater unawareness of their underperformance, rather than representing genuinely inflated overconfidence in errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopan, O; Kalet, A; Smith, W
2016-06-15
Purpose: A standard tool for ensuring the quality of radiation therapy treatments is the initial physics plan review. However, little is known about its performance in practice. The goal of this study is to measure the effectiveness of physics plan review by introducing simulated errors into “mock” treatment plans and measuring the performance of plan review by physicists. Methods: We generated six mock treatment plans containing multiple errors. These errors were based on incident learning system data both within the department and internationally (SAFRON). These errors were scored for severity and frequency. Those with the highest scores were included inmore » the simulations (13 errors total). Observer bias was minimized using a multiple co-correlated distractor approach. Eight physicists reviewed these plans for errors, with each physicist reviewing, on average, 3/6 plans. The confidence interval for the proportion of errors detected was computed using the Wilson score interval. Results: Simulated errors were detected in 65% of reviews [51–75%] (95% confidence interval [CI] in brackets). The following error scenarios had the highest detection rates: incorrect isocenter in DRRs/CBCT (91% [73–98%]) and a planned dose different from the prescribed dose (100% [61–100%]). Errors with low detection rates involved incorrect field parameters in record and verify system (38%, [18–61%]) and incorrect isocenter localization in planning system (29% [8–64%]). Though pre-treatment QA failure was reliably identified (100%), less than 20% of participants reported the error that caused the failure. Conclusion: This is one of the first quantitative studies of error detection. Although physics plan review is a key safety measure and can identify some errors with high fidelity, others errors are more challenging to detect. This data will guide future work on standardization and automation. Creating new checks or improving existing ones (i.e., via automation) will help in detecting those errors with low detection rates.« less
NASA Astrophysics Data System (ADS)
Richards, Joseph W.; Starr, Dan L.; Brink, Henrik; Miller, Adam A.; Bloom, Joshua S.; Butler, Nathaniel R.; James, J. Berian; Long, James P.; Rice, John
2012-01-01
Despite the great promise of machine-learning algorithms to classify and predict astrophysical parameters for the vast numbers of astrophysical sources and transients observed in large-scale surveys, the peculiarities of the training data often manifest as strongly biased predictions on the data of interest. Typically, training sets are derived from historical surveys of brighter, more nearby objects than those from more extensive, deeper surveys (testing data). This sample selection bias can cause catastrophic errors in predictions on the testing data because (1) standard assumptions for machine-learned model selection procedures break down and (2) dense regions of testing space might be completely devoid of training data. We explore possible remedies to sample selection bias, including importance weighting, co-training, and active learning (AL). We argue that AL—where the data whose inclusion in the training set would most improve predictions on the testing set are queried for manual follow-up—is an effective approach and is appropriate for many astronomical applications. For a variable star classification problem on a well-studied set of stars from Hipparcos and Optical Gravitational Lensing Experiment, AL is the optimal method in terms of error rate on the testing data, beating the off-the-shelf classifier by 3.4% and the other proposed methods by at least 3.0%. To aid with manual labeling of variable stars, we developed a Web interface which allows for easy light curve visualization and querying of external databases. Finally, we apply AL to classify variable stars in the All Sky Automated Survey, finding dramatic improvement in our agreement with the ASAS Catalog of Variable Stars, from 65.5% to 79.5%, and a significant increase in the classifier's average confidence for the testing set, from 14.6% to 42.9%, after a few AL iterations.
Pazó, Jose A.; Granada, Enrique; Saavedra, Ángeles; Eguía, Pablo; Collazo, Joaquín
2010-01-01
The objective of this study was to develop a methodology for the determination of the maximum sampling error and confidence intervals of thermal properties obtained from thermogravimetric analysis (TG), including moisture, volatile matter, fixed carbon and ash content. The sampling procedure of the TG analysis was of particular interest and was conducted with care. The results of the present study were compared to those of a prompt analysis, and a correlation between the mean values and maximum sampling errors of the methods were not observed. In general, low and acceptable levels of uncertainty and error were obtained, demonstrating that the properties evaluated by TG analysis were representative of the overall fuel composition. The accurate determination of the thermal properties of biomass with precise confidence intervals is of particular interest in energetic biomass applications. PMID:20717532
NASA Astrophysics Data System (ADS)
Murillo Feo, C. A.; Martnez Martinez, L. J.; Correa Muñoz, N. A.
2016-06-01
The accuracy of locating attributes on topographic surfaces when, using GPS in mountainous areas, is affected by obstacles to wave propagation. As part of this research on the semi-automatic detection of landslides, we evaluate the accuracy and spatial distribution of the horizontal error in GPS positioning in the tertiary road network of six municipalities located in mountainous areas in the department of Cauca, Colombia, using geo-referencing with GPS mapping equipment and static-fast and pseudo-kinematic methods. We obtained quality parameters for the GPS surveys with differential correction, using a post-processing method. The consolidated database underwent exploratory analyses to determine the statistical distribution, a multivariate analysis to establish relationships and partnerships between the variables, and an analysis of the spatial variability and calculus of accuracy, considering the effect of non-Gaussian distribution errors. The evaluation of the internal validity of the data provide metrics with a confidence level of 95% between 1.24 and 2.45 m in the static-fast mode and between 0.86 and 4.2 m in the pseudo-kinematic mode. The external validity had an absolute error of 4.69 m, indicating that this descriptor is more critical than precision. Based on the ASPRS standard, the scale obtained with the evaluated equipment was in the order of 1:20000, a level of detail expected in the landslide-mapping project. Modelling the spatial variability of the horizontal errors from the empirical semi-variogram analysis showed predictions errors close to the external validity of the devices.
Ye, Min; Nagar, Swati; Korzekwa, Ken
2015-01-01
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057
Commentary on Holmes et al. (2007): resolving the debate on when extinction risk is predictable.
Ellner, Stephen P; Holmes, Elizabeth E
2008-08-01
We reconcile the findings of Holmes et al. (Ecology Letters, 10, 2007, 1182) that 95% confidence intervals for quasi-extinction risk were narrow for many vertebrates of conservation concern, with previous theory predicting wide confidence intervals. We extend previous theory, concerning the precision of quasi-extinction estimates as a function of population dynamic parameters, prediction intervals and quasi-extinction thresholds, and provide an approximation that specifies the prediction interval and threshold combinations where quasi-extinction estimates are precise (vs. imprecise). This allows PVA practitioners to define the prediction interval and threshold regions of safety (low risk with high confidence), danger (high risk with high confidence), and uncertainty.
Model parameter-related optimal perturbations and their contributions to El Niño prediction errors
NASA Astrophysics Data System (ADS)
Tao, Ling-Jiang; Gao, Chuan; Zhang, Rong-Hua
2018-04-01
Errors in initial conditions and model parameters (MPs) are the main sources that limit the accuracy of ENSO predictions. In addition to exploring the initial error-induced prediction errors, model errors are equally important in determining prediction performance. In this paper, the MP-related optimal errors that can cause prominent error growth in ENSO predictions are investigated using an intermediate coupled model (ICM) and a conditional nonlinear optimal perturbation (CNOP) approach. Two MPs related to the Bjerknes feedback are considered in the CNOP analysis: one involves the SST-surface wind coupling ({α _τ } ), and the other involves the thermocline effect on the SST ({α _{Te}} ). The MP-related optimal perturbations (denoted as CNOP-P) are found uniformly positive and restrained in a small region: the {α _τ } component is mainly concentrated in the central equatorial Pacific, and the {α _{Te}} component is mainly located in the eastern cold tongue region. This kind of CNOP-P enhances the strength of the Bjerknes feedback and induces an El Niño- or La Niña-like error evolution, resulting in an El Niño-like systematic bias in this model. The CNOP-P is also found to play a role in the spring predictability barrier (SPB) for ENSO predictions. Evidently, such error growth is primarily attributed to MP errors in small areas based on the localized distribution of CNOP-P. Further sensitivity experiments firmly indicate that ENSO simulations are sensitive to the representation of SST-surface wind coupling in the central Pacific and to the thermocline effect in the eastern Pacific in the ICM. These results provide guidance and theoretical support for the future improvement in numerical models to reduce the systematic bias and SPB phenomenon in ENSO predictions.
NASA Astrophysics Data System (ADS)
Simmons, B. E.
1981-08-01
This report derives equations predicting satellite ephemeris error as a function of measurement errors of space-surveillance sensors. These equations lend themselves to rapid computation with modest computer resources. They are applicable over prediction times such that measurement errors, rather than uncertainties of atmospheric drag and of Earth shape, dominate in producing ephemeris error. This report describes the specialization of these equations underlying the ANSER computer program, SEEM (Satellite Ephemeris Error Model). The intent is that this report be of utility to users of SEEM for interpretive purposes, and to computer programmers who may need a mathematical point of departure for limited generalization of SEEM.
Prediction error induced motor contagions in human behaviors.
Ikegami, Tsuyoshi; Ganesh, Gowrishankar; Takeuchi, Tatsuya; Nakamoto, Hiroki
2018-05-29
Motor contagions refer to implicit effects on one's actions induced by observed actions. Motor contagions are believed to be induced simply by action observation and cause an observer's action to become similar to the action observed. In contrast, here we report a new motor contagion that is induced only when the observation is accompanied by prediction errors - differences between actions one observes and those he/she predicts or expects. In two experiments, one on whole-body baseball pitching and another on simple arm reaching, we show that the observation of the same action induces distinct motor contagions, depending on whether prediction errors are present or not. In the absence of prediction errors, as in previous reports, participants' actions changed to become similar to the observed action, while in the presence of prediction errors, their actions changed to diverge away from it, suggesting distinct effects of action observation and action prediction on human actions. © 2018, Ikegami et al.
Fraction Operations: An Examination of Prospective Teachers' Errors Confidence, and Bias
ERIC Educational Resources Information Center
Young, Elaine; Zientek, Linda
2011-01-01
Fractions are important in young students' understanding of rational numbers and proportional reasoning. The teacher is fundamental in developing student understanding and competency in working with fractions. The present study spanned five years and investigated prospective teachers' competency and confidence with fraction operations as they…
Correcting a Metacognitive Error: Feedback Increases Retention of Low-Confidence Correct Responses
ERIC Educational Resources Information Center
Butler, Andrew C.; Karpicke, Jeffrey D.; Roediger, Henry L., III
2008-01-01
Previous studies investigating posttest feedback have generally conceptualized feedback as a method for correcting erroneous responses, giving virtually no consideration to how feedback might promote learning of correct responses. Here, the authors show that when correct responses are made with low confidence, feedback serves to correct this…
Wang, Yang; Zhang, Hua-nian; Niu, Chang-he; Gao, Ping; Chen, Yu-jun; Peng, Jing; Liu, Mao-chang; Xu, Hua
2014-01-01
Aim: To develop a population pharmacokinetics model of oxcarbazepine in Chinese pediatric patients with epilepsy, and to study the interactions between oxcarbazepine and other antiepileptic drugs (AEDs). Methods: A total of 688 patients with epilepsy aged 2 months to 18 years were divided into model (n=573) and valid (n=115) groups. Serum concentrations of the main active metabolite of oxcarbazepine, 10-hydroxycarbazepine (MHD), were determined 0.5–48 h after the last dosage. A population pharmacokinetics (PPK) model was constructed using NLME software. This model was internally evaluated using Bootstrapping and goodness-of-fit plots inspection. The data of the valid group were used to calculate the mean prediction error (MPE), mean absolute prediction error (MAE), mean squared prediction error (MSE) and the 95% confidence intervals (95% CI) to externally evaluate the model. Results: The population values of pharmacokinetic parameters estimated in the final model were as follows: Ka=0.83 h-1, Vd=0.67 L/kg, and CL=0.035 L·kg−1·h−1. The enzyme-inducing AEDs (carbamazepine, phenytoin, phenobarbital) and newer generation AEDs (levetiracetam, lamotrigine, topiramate) increased the weight-normalized CL value of MHD by 17.4% and 10.5%, respectively, whereas the enzyme-inhibiting AED valproic acid decreased it by 3%. No significant association was found between the CL value of MHD and the other covariates. For the final model, the evaluation results (95% CI) were MPE=0.01 (−0.07–0.10) mg/L, MAE=0.46 (0.40–0.51) mg/L, MSE=0.39 (0.27–0.51) (mg/L)2. Conclusion: A PPK model of OXC in Chinese pediatric patients with epilepsy is established. The enzyme-inducing AEDs and some newer generation AEDs (lamotrigine, topiramate) could slightly increase the metabolism of MHD. PMID:25220641
A Confidant Support and Problem Solving Model of Divorced Fathers’ Parenting
DeGarmo, David S.; Forgatch, Marion S.
2011-01-01
This study tested a hypothesized social interaction learning (SIL) model of confidant support and paternal parenting. The latent growth curve analysis employed 230 recently divorced fathers, of which 177 enrolled support confidants, to test confidant support as a predictor of problem solving outcomes and problem solving outcomes as predictors of change in fathers’ parenting. Fathers’ parenting was hypothesized to predict growth in child behavior. Observational measures of support behaviors and problem solving outcomes were obtained from structured discussions of personal and parenting issues faced by the fathers. Findings replicated and extended prior cross-sectional studies with divorced mothers and their confidants. Confidant support predicted better problem solving outcomes, problem solving predicted more effective parenting, and parenting in turn predicted growth in children’s reduced total problem behavior T scores over 18 months. Supporting a homophily perspective, fathers’ antisociality was associated with confidant antisociality but only fathers’ antisociality influenced the support process model. Intervention implications are discussed regarding SIL parent training and social support. PMID:21541814
A confidant support and problem solving model of divorced fathers' parenting.
Degarmo, David S; Forgatch, Marion S
2012-03-01
This study tested a hypothesized social interaction learning (SIL) model of confidant support and paternal parenting. The latent growth curve analysis employed 230 recently divorced fathers, of which 177 enrolled support confidants, to test confidant support as a predictor of problem solving outcomes and problem solving outcomes as predictors of change in fathers' parenting. Fathers' parenting was hypothesized to predict growth in child behavior. Observational measures of support behaviors and problem solving outcomes were obtained from structured discussions of personal and parenting issues faced by the fathers. Findings replicated and extended prior cross-sectional studies with divorced mothers and their confidants. Confidant support predicted better problem solving outcomes, problem solving predicted more effective parenting, and parenting in turn predicted growth in children's reduced total problem behavior T scores over 18 months. Supporting a homophily perspective, fathers' antisociality was associated with confidant antisociality but only fathers' antisociality influenced the support process model. Intervention implications are discussed regarding SIL parent training and social support.
An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.
Technological Advancements and Error Rates in Radiation Therapy Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margalit, Danielle N., E-mail: dmargalit@partners.org; Harvard Cancer Consortium and Brigham and Women's Hospital/Dana Farber Cancer Institute, Boston, MA; Chen, Yu-Hui
2011-11-15
Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)-conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system atmore » Brigham and Women's Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher's exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01-0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08-0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique. There was a lower error rate with IMRT compared with 3D/conventional RT, highlighting the need for sustained vigilance against errors common to more traditional treatment techniques.« less
NASA Astrophysics Data System (ADS)
Xia, Zhiye; Xu, Lisheng; Chen, Hongbin; Wang, Yongqian; Liu, Jinbao; Feng, Wenlan
2017-06-01
Extended range forecasting of 10-30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10-30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10-6-10-2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10-1-2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10-2-10-1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect ( m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.
Aboagye-Sarfo, Patrick; Mai, Qun; Sanfilippo, Frank M; Preen, David B; Stewart, Louise M; Fatovich, Daniel M
2015-10-01
To develop multivariate vector-ARMA (VARMA) forecast models for predicting emergency department (ED) demand in Western Australia (WA) and compare them to the benchmark univariate autoregressive moving average (ARMA) and Winters' models. Seven-year monthly WA state-wide public hospital ED presentation data from 2006/07 to 2012/13 were modelled. Graphical and VARMA modelling methods were used for descriptive analysis and model fitting. The VARMA models were compared to the benchmark univariate ARMA and Winters' models to determine their accuracy to predict ED demand. The best models were evaluated by using error correction methods for accuracy. Descriptive analysis of all the dependent variables showed an increasing pattern of ED use with seasonal trends over time. The VARMA models provided a more precise and accurate forecast with smaller confidence intervals and better measures of accuracy in predicting ED demand in WA than the ARMA and Winters' method. VARMA models are a reliable forecasting method to predict ED demand for strategic planning and resource allocation. While the ARMA models are a closely competing alternative, they under-estimated future ED demand. Copyright © 2015 Elsevier Inc. All rights reserved.
Johnson, Reva E; Kording, Konrad P; Hargrove, Levi J; Sensinger, Jonathon W
2017-06-01
In this paper we asked the question: if we artificially raise the variability of torque control signals to match that of EMG, do subjects make similar errors and have similar uncertainty about their movements? We answered this question using two experiments in which subjects used three different control signals: torque, torque+noise, and EMG. First, we measured error on a simple target-hitting task in which subjects received visual feedback only at the end of their movements. We found that even when the signal-to-noise ratio was equal across EMG and torque+noise control signals, EMG resulted in larger errors. Second, we quantified uncertainty by measuring the just-noticeable difference of a visual perturbation. We found that for equal errors, EMG resulted in higher movement uncertainty than both torque and torque+noise. The differences suggest that performance and confidence are influenced by more than just the noisiness of the control signal, and suggest that other factors, such as the user's ability to incorporate feedback and develop accurate internal models, also have significant impacts on the performance and confidence of a person's actions. We theorize that users have difficulty distinguishing between random and systematic errors for EMG control, and future work should examine in more detail the types of errors made with EMG control.
Study of style effects on OCR errors in the MEDLINE database
NASA Astrophysics Data System (ADS)
Garrison, Penny; Davis, Diane L.; Andersen, Tim L.; Barney Smith, Elisa H.
2005-01-01
The National Library of Medicine has developed a system for the automatic extraction of data from scanned journal articles to populate the MEDLINE database. Although the 5-engine OCR system used in this process exhibits good performance overall, it does make errors in character recognition that must be corrected in order for the process to achieve the requisite accuracy. The correction process works by feeding words that have characters with less than 100% confidence (as determined automatically by the OCR engine) to a human operator who then must manually verify the word or correct the error. The majority of these errors are contained in the affiliation information zone where the characters are in italics or small fonts. Therefore only affiliation information data is used in this research. This paper examines the correlation between OCR errors and various character attributes in the MEDLINE database, such as font size, italics, bold, etc. and OCR confidence levels. The motivation for this research is that if a correlation between the character style and types of errors exists it should be possible to use this information to improve operator productivity by increasing the probability that the correct word option is presented to the human editor. We have determined that this correlation exists, in particular for the case of characters with diacritics.
Predictability of CFSv2 in the tropical Indo-Pacific region, at daily and subseasonal time scales
NASA Astrophysics Data System (ADS)
Krishnamurthy, V.
2018-06-01
The predictability of a coupled climate model is evaluated at daily and intraseasonal time scales in the tropical Indo-Pacific region during boreal summer and winter. This study has assessed the daily retrospective forecasts of the Climate Forecast System version 2 from the National Centers of Environmental Prediction for the period 1982-2010. The growth of errors in the forecasts of daily precipitation, monsoon intraseasonal oscillation (MISO) and the Madden-Julian oscillation (MJO) is studied. The seasonal cycle of the daily climatology of precipitation is reasonably well predicted except for the underestimation during the peak of summer. The anomalies follow the typical pattern of error growth in nonlinear systems and show no difference between summer and winter. The initial errors in all the cases are found to be in the nonlinear phase of the error growth. The doubling time of small errors is estimated by applying Lorenz error formula. For summer and winter, the doubling time of the forecast errors is in the range of 4-7 and 5-14 days while the doubling time of the predictability errors is 6-8 and 8-14 days, respectively. The doubling time in MISO during the summer and MJO during the winter is in the range of 12-14 days, indicating higher predictability and providing optimism for long-range prediction. There is no significant difference in the growth of forecasts errors originating from different phases of MISO and MJO, although the prediction of the active phase seems to be slightly better.
NASA Astrophysics Data System (ADS)
Hughes, W. Jay
Questionnaire data (n = 297) examined the relationship between gender attributions of science and academic attributes for undergraduate science, mathematics, and technology majors from the perspective of gender schema theory. Female and male respondents perceived that (a) the role of scientist was sex typed as masculine, (b) their majors were more valuable for members of their gender than for those of the opposite gender, (c) their majors were more valuable for themselves than for members of their gender in general. Androgynous attributions of scientists and the value of one's major for women predicted value for oneself, major confidence, and career confidence, and masculine attributions of scientists predicted class participation for female respondents. Feminine attributions of scientists predicted graduate school intent; value for women predicted major confidence and subjective achievement, and value for men predicted value for oneself, course confidence, and career confidence for male respondents.
Improved Margin of Error Estimates for Proportions in Business: An Educational Example
ERIC Educational Resources Information Center
Arzumanyan, George; Halcoussis, Dennis; Phillips, G. Michael
2015-01-01
This paper presents the Agresti & Coull "Adjusted Wald" method for computing confidence intervals and margins of error for common proportion estimates. The presented method is easily implementable by business students and practitioners and provides more accurate estimates of proportions particularly in extreme samples and small…
Improving the accuracy of Møller-Plesset perturbation theory with neural networks
NASA Astrophysics Data System (ADS)
McGibbon, Robert T.; Taube, Andrew G.; Donchev, Alexander G.; Siva, Karthik; Hernández, Felipe; Hargus, Cory; Law, Ka-Hei; Klepeis, John L.; Shaw, David E.
2017-10-01
Noncovalent interactions are of fundamental importance across the disciplines of chemistry, materials science, and biology. Quantum chemical calculations on noncovalently bound complexes, which allow for the quantification of properties such as binding energies and geometries, play an essential role in advancing our understanding of, and building models for, a vast array of complex processes involving molecular association or self-assembly. Because of its relatively modest computational cost, second-order Møller-Plesset perturbation (MP2) theory is one of the most widely used methods in quantum chemistry for studying noncovalent interactions. MP2 is, however, plagued by serious errors due to its incomplete treatment of electron correlation, especially when modeling van der Waals interactions and π-stacked complexes. Here we present spin-network-scaled MP2 (SNS-MP2), a new semi-empirical MP2-based method for dimer interaction-energy calculations. To correct for errors in MP2, SNS-MP2 uses quantum chemical features of the complex under study in conjunction with a neural network to reweight terms appearing in the total MP2 interaction energy. The method has been trained on a new data set consisting of over 200 000 complete basis set (CBS)-extrapolated coupled-cluster interaction energies, which are considered the gold standard for chemical accuracy. SNS-MP2 predicts gold-standard binding energies of unseen test compounds with a mean absolute error of 0.04 kcal mol-1 (root-mean-square error 0.09 kcal mol-1), a 6- to 7-fold improvement over MP2. To the best of our knowledge, its accuracy exceeds that of all extant density functional theory- and wavefunction-based methods of similar computational cost, and is very close to the intrinsic accuracy of our benchmark coupled-cluster methodology itself. Furthermore, SNS-MP2 provides reliable per-conformation confidence intervals on the predicted interaction energies, a feature not available from any alternative method.
Improving the accuracy of Møller-Plesset perturbation theory with neural networks.
McGibbon, Robert T; Taube, Andrew G; Donchev, Alexander G; Siva, Karthik; Hernández, Felipe; Hargus, Cory; Law, Ka-Hei; Klepeis, John L; Shaw, David E
2017-10-28
Noncovalent interactions are of fundamental importance across the disciplines of chemistry, materials science, and biology. Quantum chemical calculations on noncovalently bound complexes, which allow for the quantification of properties such as binding energies and geometries, play an essential role in advancing our understanding of, and building models for, a vast array of complex processes involving molecular association or self-assembly. Because of its relatively modest computational cost, second-order Møller-Plesset perturbation (MP2) theory is one of the most widely used methods in quantum chemistry for studying noncovalent interactions. MP2 is, however, plagued by serious errors due to its incomplete treatment of electron correlation, especially when modeling van der Waals interactions and π-stacked complexes. Here we present spin-network-scaled MP2 (SNS-MP2), a new semi-empirical MP2-based method for dimer interaction-energy calculations. To correct for errors in MP2, SNS-MP2 uses quantum chemical features of the complex under study in conjunction with a neural network to reweight terms appearing in the total MP2 interaction energy. The method has been trained on a new data set consisting of over 200 000 complete basis set (CBS)-extrapolated coupled-cluster interaction energies, which are considered the gold standard for chemical accuracy. SNS-MP2 predicts gold-standard binding energies of unseen test compounds with a mean absolute error of 0.04 kcal mol -1 (root-mean-square error 0.09 kcal mol -1 ), a 6- to 7-fold improvement over MP2. To the best of our knowledge, its accuracy exceeds that of all extant density functional theory- and wavefunction-based methods of similar computational cost, and is very close to the intrinsic accuracy of our benchmark coupled-cluster methodology itself. Furthermore, SNS-MP2 provides reliable per-conformation confidence intervals on the predicted interaction energies, a feature not available from any alternative method.
When is an error not a prediction error? An electrophysiological investigation.
Holroyd, Clay B; Krigolson, Olave E; Baker, Robert; Lee, Seung; Gibson, Jessica
2009-03-01
A recent theory holds that the anterior cingulate cortex (ACC) uses reinforcement learning signals conveyed by the midbrain dopamine system to facilitate flexible action selection. According to this position, the impact of reward prediction error signals on ACC modulates the amplitude of a component of the event-related brain potential called the error-related negativity (ERN). The theory predicts that ERN amplitude is monotonically related to the expectedness of the event: It is larger for unexpected outcomes than for expected outcomes. However, a recent failure to confirm this prediction has called the theory into question. In the present article, we investigated this discrepancy in three trial-and-error learning experiments. All three experiments provided support for the theory, but the effect sizes were largest when an optimal response strategy could actually be learned. This observation suggests that ACC utilizes dopamine reward prediction error signals for adaptive decision making when the optimal behavior is, in fact, learnable.
Extended Range Prediction of Indian Summer Monsoon: Current status
NASA Astrophysics Data System (ADS)
Sahai, A. K.; Abhilash, S.; Borah, N.; Joseph, S.; Chattopadhyay, R.; S, S.; Rajeevan, M.; Mandal, R.; Dey, A.
2014-12-01
The main focus of this study is to develop forecast consensus in the extended range prediction (ERP) of monsoon Intraseasonal oscillations using a suit of different variants of Climate Forecast system (CFS) model. In this CFS based Grand MME prediction system (CGMME), the ensemble members are generated by perturbing the initial condition and using different configurations of CFSv2. This is to address the role of different physical mechanisms known to have control on the error growth in the ERP in the 15-20 day time scale. The final formulation of CGMME is based on 21 ensembles of the standalone Global Forecast System (GFS) forced with bias corrected forecasted SST from CFS, 11 low resolution CFST126 and 11 high resolution CFST382. Thus, we develop the multi-model consensus forecast for the ERP of Indian summer monsoon (ISM) using a suite of different variants of CFS model. This coordinated international effort lead towards the development of specific tailor made regional forecast products over Indian region. Skill of deterministic and probabilistic categorical rainfall forecast as well the verification of large-scale low frequency monsoon intraseasonal oscillations has been carried out using hindcast from 2001-2012 during the monsoon season in which all models are initialized at every five days starting from 16May to 28 September. The skill of deterministic forecast from CGMME is better than the best participating single model ensemble configuration (SME). The CGMME approach is believed to quantify the uncertainty in both initial conditions and model formulation. Main improvement is attained in probabilistic forecast which is because of an increase in the ensemble spread, thereby reducing the error due to over-confident ensembles in a single model configuration. For probabilistic forecast, three tercile ranges are determined by ranking method based on the percentage of ensemble members from all the participating models falls in those three categories. CGMME further added value to both deterministic and probability forecast compared to raw SME's and this better skill is probably flows from large spread and improved spread-error relationship. CGMME system is currently capable of generating ER prediction in real time and successfully delivering its experimental operational ER forecast of ISM for the last few years.
Dissociable effects of surprising rewards on learning and memory.
Rouhani, Nina; Norman, Kenneth A; Niv, Yael
2018-03-19
Reward-prediction errors track the extent to which rewards deviate from expectations, and aid in learning. How do such errors in prediction interact with memory for the rewarding episode? Existing findings point to both cooperative and competitive interactions between learning and memory mechanisms. Here, we investigated whether learning about rewards in a high-risk context, with frequent, large prediction errors, would give rise to higher fidelity memory traces for rewarding events than learning in a low-risk context. Experiment 1 showed that recognition was better for items associated with larger absolute prediction errors during reward learning. Larger prediction errors also led to higher rates of learning about rewards. Interestingly we did not find a relationship between learning rate for reward and recognition-memory accuracy for items, suggesting that these two effects of prediction errors were caused by separate underlying mechanisms. In Experiment 2, we replicated these results with a longer task that posed stronger memory demands and allowed for more learning. We also showed improved source and sequence memory for items within the high-risk context. In Experiment 3, we controlled for the difficulty of reward learning in the risk environments, again replicating the previous results. Moreover, this control revealed that the high-risk context enhanced item-recognition memory beyond the effect of prediction errors. In summary, our results show that prediction errors boost both episodic item memory and incremental reward learning, but the two effects are likely mediated by distinct underlying systems. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Science and Technology Review July/August 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blobaum, K M
2010-05-27
This issue has the following articles: (1) Deterrence with a Minimum Nuclear Stockpile - Commentary by Bruce T. Goodwin; (2) Enhancing Confidence in the Nation's Nuclear Stockpile - Livermore experts are participating in a national effort aimed at predicting how nuclear weapon materials and systems will likely change over time; (3) Narrowing Uncertainties - For climate modeling and many other fields, understanding uncertainty, or margin of error, is critical; (4) Insight into a Deadly Disease - Laboratory experiments reveal the pathogenesis of tularemia in host cells, bringing scientists closer to developing a vaccine for this debilitating disease. (5) Return tomore » Rongelap - On the Rongelap Atoll, Livermore scientists are working to minimize radiological exposure for natives now living on or wishing to return to the islands.« less
Ye, Min; Nagar, Swati; Korzekwa, Ken
2016-04-01
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Lee, Wonseok; Bae, Hyoung Won; Lee, Si Hyung; Kim, Chan Yun; Seong, Gong Je
2017-03-01
To assess the accuracy of intraocular lens (IOL) power prediction for cataract surgery with open angle glaucoma (OAG) and to identify preoperative angle parameters correlated with postoperative unpredicted refractive errors. This study comprised 45 eyes from 45 OAG subjects and 63 eyes from 63 non-glaucomatous cataract subjects (controls). We investigated differences in preoperative predicted refractive errors and postoperative refractive errors for each group. Preoperative predicted refractive errors were obtained by biometry (IOL-master) and compared to postoperative refractive errors measured by auto-refractometer 2 months postoperatively. Anterior angle parameters were determined using swept source optical coherence tomography. We investigated correlations between preoperative angle parameters [angle open distance (AOD); trabecular iris surface area (TISA); angle recess area (ARA); trabecular iris angle (TIA)] and postoperative unpredicted refractive errors. In patients with OAG, significant differences were noted between preoperative predicted and postoperative real refractive errors, with more myopia than predicted. No significant differences were recorded in controls. Angle parameters (AOD, ARA, TISA, and TIA) at the superior and inferior quadrant were significantly correlated with differences between predicted and postoperative refractive errors in OAG patients (-0.321 to -0.408, p<0.05). Superior quadrant AOD 500 was significantly correlated with postoperative refractive differences in multivariate linear regression analysis (β=-2.925, R²=0.404). Clinically unpredicted refractive errors after cataract surgery were more common in OAG than in controls. Certain preoperative angle parameters, especially AOD 500 at the superior quadrant, were significantly correlated with these unpredicted errors.
Lee, Wonseok; Bae, Hyoung Won; Lee, Si Hyung; Kim, Chan Yun
2017-01-01
Purpose To assess the accuracy of intraocular lens (IOL) power prediction for cataract surgery with open angle glaucoma (OAG) and to identify preoperative angle parameters correlated with postoperative unpredicted refractive errors. Materials and Methods This study comprised 45 eyes from 45 OAG subjects and 63 eyes from 63 non-glaucomatous cataract subjects (controls). We investigated differences in preoperative predicted refractive errors and postoperative refractive errors for each group. Preoperative predicted refractive errors were obtained by biometry (IOL-master) and compared to postoperative refractive errors measured by auto-refractometer 2 months postoperatively. Anterior angle parameters were determined using swept source optical coherence tomography. We investigated correlations between preoperative angle parameters [angle open distance (AOD); trabecular iris surface area (TISA); angle recess area (ARA); trabecular iris angle (TIA)] and postoperative unpredicted refractive errors. Results In patients with OAG, significant differences were noted between preoperative predicted and postoperative real refractive errors, with more myopia than predicted. No significant differences were recorded in controls. Angle parameters (AOD, ARA, TISA, and TIA) at the superior and inferior quadrant were significantly correlated with differences between predicted and postoperative refractive errors in OAG patients (-0.321 to -0.408, p<0.05). Superior quadrant AOD 500 was significantly correlated with postoperative refractive differences in multivariate linear regression analysis (β=-2.925, R2=0.404). Conclusion Clinically unpredicted refractive errors after cataract surgery were more common in OAG than in controls. Certain preoperative angle parameters, especially AOD 500 at the superior quadrant, were significantly correlated with these unpredicted errors. PMID:28120576
Long-term orbit prediction for China's Tiangong-1 spacecraft based on mean atmosphere model
NASA Astrophysics Data System (ADS)
Tang, Jingshi; Liu, Lin; Miao, Manqian
Tiangong-1 is China's test module for future space station. It has gone through three successful rendezvous and dockings with Shenzhou spacecrafts from 2011 to 2013. For the long-term management and maintenance, the orbit sometimes needs to be predicted for a long period of time. As Tiangong-1 works in a low-Earth orbit with an altitude of about 300-400 km, the error in the a priori atmosphere model contributes significantly to the rapid increase of the predicted orbit error. When the orbit is predicted for 10-20 days, the error in the a priori atmosphere model, if not properly corrected, could induce the semi-major axis error and the overall position error up to a few kilometers and several thousand kilometers respectively. In this work, we use a mean atmosphere model averaged from NRLMSIS00. The a priori reference mean density can be corrected during precise orbit determination (POD). For applications in the long-term orbit prediction, the observations are first accumulated. With sufficiently long period of observations, we are able to obtain a series of the diurnal mean densities. This series bears the recent variation of the atmosphere density and can be analyzed for various periods. After being properly fitted, the mean density can be predicted and then applied in the orbit prediction. We show that the densities predicted with this approach can serve to increase the accuracy of the predicted orbit. In several 20-day prediction tests, most predicted orbits show semi-major axis errors better than 700m and overall position errors better than 600km.
Wang, Dan; Silkie, Sarah S; Nelson, Kara L; Wuertz, Stefan
2010-09-01
Cultivation- and library-independent, quantitative PCR-based methods have become the method of choice in microbial source tracking. However, these qPCR assays are not 100% specific and sensitive for the target sequence in their respective hosts' genome. The factors that can lead to false positive and false negative information in qPCR results are well defined. It is highly desirable to have a way of removing such false information to estimate the true concentration of host-specific genetic markers and help guide the interpretation of environmental monitoring studies. Here we propose a statistical model based on the Law of Total Probability to predict the true concentration of these markers. The distributions of the probabilities of obtaining false information are estimated from representative fecal samples of known origin. Measurement error is derived from the sample precision error of replicated qPCR reactions. Then, the Monte Carlo method is applied to sample from these distributions of probabilities and measurement error. The set of equations given by the Law of Total Probability allows one to calculate the distribution of true concentrations, from which their expected value, confidence interval and other statistical characteristics can be easily evaluated. The output distributions of predicted true concentrations can then be used as input to watershed-wide total maximum daily load determinations, quantitative microbial risk assessment and other environmental models. This model was validated by both statistical simulations and real world samples. It was able to correct the intrinsic false information associated with qPCR assays and output the distribution of true concentrations of Bacteroidales for each animal host group. Model performance was strongly affected by the precision error. It could perform reliably and precisely when the standard deviation of the precision error was small (≤ 0.1). Further improvement on the precision of sample processing and qPCR reaction would greatly improve the performance of the model. This methodology, built upon Bacteroidales assays, is readily transferable to any other microbial source indicator where a universal assay for fecal sources of that indicator exists. Copyright © 2010 Elsevier Ltd. All rights reserved.
A comparative experimental evaluation of uncertainty estimation methods for two-component PIV
NASA Astrophysics Data System (ADS)
Boomsma, Aaron; Bhattacharya, Sayantan; Troolin, Dan; Pothos, Stamatios; Vlachos, Pavlos
2016-09-01
Uncertainty quantification in planar particle image velocimetry (PIV) measurement is critical for proper assessment of the quality and significance of reported results. New uncertainty estimation methods have been recently introduced generating interest about their applicability and utility. The present study compares and contrasts current methods, across two separate experiments and three software packages in order to provide a diversified assessment of the methods. We evaluated the performance of four uncertainty estimation methods, primary peak ratio (PPR), mutual information (MI), image matching (IM) and correlation statistics (CS). The PPR method was implemented and tested in two processing codes, using in-house open source PIV processing software (PRANA, Purdue University) and Insight4G (TSI, Inc.). The MI method was evaluated in PRANA, as was the IM method. The CS method was evaluated using DaVis (LaVision, GmbH). Utilizing two PIV systems for high and low-resolution measurements and a laser doppler velocimetry (LDV) system, data were acquired in a total of three cases: a jet flow and a cylinder in cross flow at two Reynolds numbers. LDV measurements were used to establish a point validation against which the high-resolution PIV measurements were validated. Subsequently, the high-resolution PIV measurements were used as a reference against which the low-resolution PIV data were assessed for error and uncertainty. We compared error and uncertainty distributions, spatially varying RMS error and RMS uncertainty, and standard uncertainty coverages. We observed that qualitatively, each method responded to spatially varying error (i.e. higher error regions resulted in higher uncertainty predictions in that region). However, the PPR and MI methods demonstrated reduced uncertainty dynamic range response. In contrast, the IM and CS methods showed better response, but under-predicted the uncertainty ranges. The standard coverages (68% confidence interval) ranged from approximately 65%-77% for PPR and MI methods, 40%-50% for IM and near 50% for CS. These observations illustrate some of the strengths and weaknesses of the methods considered herein and identify future directions for development and improvement.
Probabilistic confidence for decisions based on uncertain reliability estimates
NASA Astrophysics Data System (ADS)
Reid, Stuart G.
2013-05-01
Reliability assessments are commonly carried out to provide a rational basis for risk-informed decisions concerning the design or maintenance of engineering systems and structures. However, calculated reliabilities and associated probabilities of failure often have significant uncertainties associated with the possible estimation errors relative to the 'true' failure probabilities. For uncertain probabilities of failure, a measure of 'probabilistic confidence' has been proposed to reflect the concern that uncertainty about the true probability of failure could result in a system or structure that is unsafe and could subsequently fail. The paper describes how the concept of probabilistic confidence can be applied to evaluate and appropriately limit the probabilities of failure attributable to particular uncertainties such as design errors that may critically affect the dependability of risk-acceptance decisions. This approach is illustrated with regard to the dependability of structural design processes based on prototype testing with uncertainties attributable to sampling variability.
Prediction of discretization error using the error transport equation
NASA Astrophysics Data System (ADS)
Celik, Ismail B.; Parsons, Don Roscoe
2017-06-01
This study focuses on an approach to quantify the discretization error associated with numerical solutions of partial differential equations by solving an error transport equation (ETE). The goal is to develop a method that can be used to adequately predict the discretization error using the numerical solution on only one grid/mesh. The primary problem associated with solving the ETE is the formulation of the error source term which is required for accurately predicting the transport of the error. In this study, a novel approach is considered which involves fitting the numerical solution with a series of locally smooth curves and then blending them together with a weighted spline approach. The result is a continuously differentiable analytic expression that can be used to determine the error source term. Once the source term has been developed, the ETE can easily be solved using the same solver that is used to obtain the original numerical solution. The new methodology is applied to the two-dimensional Navier-Stokes equations in the laminar flow regime. A simple unsteady flow case is also considered. The discretization error predictions based on the methodology presented in this study are in good agreement with the 'true error'. While in most cases the error predictions are not quite as accurate as those from Richardson extrapolation, the results are reasonable and only require one numerical grid. The current results indicate that there is much promise going forward with the newly developed error source term evaluation technique and the ETE.
Tamhankar, Ashok J; Karnik, Shreyasee S; Stålsby Lundborg, Cecilia
2018-04-23
Antibiotic resistance, a consequence of antibiotic use, is a threat to health, with severe consequences for resource constrained settings. If determinants for human antibiotic use in India, a lower middle income country, with one of the highest antibiotic consumption in the world could be understood, interventions could be developed, having implications for similar settings. Year wise data for India, for potential determinants and antibiotic consumption, was sourced from publicly available databases for the years 2000-2010. Data was analyzed using Partial Least Squares regression and correlation between determinants and antibiotic consumption was evaluated, formulating 'Predictors' and 'Prediction models'. The 'prediction model' with the statistically most significant predictors (root mean square errors of prediction for train set-377.0 and test set-297.0) formulated from a combination of Health infrastructure + Surface transport infrastructure (HISTI), predicted antibiotic consumption within 95% confidence interval and estimated an antibiotic consumption of 11.6 standard units/person (14.37 billion standard units totally; standard units = number of doses sold in the country; a dose being a pill, capsule, or ampoule) for India for 2014. The HISTI model may become useful in predicting antibiotic consumption for countries/regions having circumstances and data similar to India, but without resources to measure actual data of antibiotic consumption.
Prediction of flow duration curves for ungauged basins
NASA Astrophysics Data System (ADS)
Atieh, Maya; Taylor, Graham; M. A. Sattar, Ahmed; Gharabaghi, Bahram
2017-02-01
This study presents novel models for prediction of flow Duration Curves (FDCs) at ungauged basins using artificial neural networks (ANN) and Gene Expression Programming (GEP) trained and tested using historical flow records from 171 unregulated and 89 regulated basins across North America. For the 89 regulated basins, FDCs were generated for both before and after flow regulation. Topographic, climatic, and land use characteristics are used to develop relationships between these basin characteristics and FDC statistical distribution parameters: mean (m) and variance (ν). The two main hypotheses that flow regulation has negligible effect on the mean (m) while it the variance (ν) were confirmed. The novel GEP model that predicts the mean (GEP-m) performed very well with high R2 (0.9) and D (0.95) values and low RAE value of 0.25. The simple regression model that predicts the variance (REG-v) was developed as a function of the mean (m) and a flow regulation index (R). The measured performance and uncertainty analysis indicated that the ANN-m was the best performing model with R2 (0.97), RAE (0.21), D (0.93) and the lowest 95% confidence prediction error interval (+0.22 to +3.49). Both GEP and ANN models were most sensitive to drainage area followed by mean annual precipitation, apportionment entropy disorder index, and shape factor.
Model-free and model-based reward prediction errors in EEG.
Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy
2018-05-24
Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.
Hennig, Cheryl; Cooper, David
2011-08-01
Histomorphometric aging methods report varying degrees of precision, measured through Standard Error of the Estimate (SEE). These techniques have been developed from variable samples sizes (n) and the impact of n on reported aging precision has not been rigorously examined in the anthropological literature. This brief communication explores the relation between n and SEE through a review of the literature (abstracts, articles, book chapters, theses, and dissertations), predictions based upon sampling theory and a simulation. Published SEE values for age prediction, derived from 40 studies, range from 1.51 to 16.48 years (mean 8.63; sd: 3.81 years). In general, these values are widely distributed for smaller samples and the distribution narrows as n increases--a pattern expected from sampling theory. For the two studies that have samples in excess of 200 individuals, the SEE values are very similar (10.08 and 11.10 years) with a mean of 10.59 years. Assuming this mean value is a 'true' characterization of the error at the population level, the 95% confidence intervals for SEE values from samples of 10, 50, and 150 individuals are on the order of ± 4.2, 1.7, and 1.0 years, respectively. While numerous sources of variation potentially affect the precision of different methods, the impact of sample size cannot be overlooked. The uncertainty associated with SEE values derived from smaller samples complicates the comparison of approaches based upon different methodology and/or skeletal elements. Meaningful comparisons require larger samples than have frequently been used and should ideally be based upon standardized samples. Copyright © 2011 Wiley-Liss, Inc.
Designing image segmentation studies: Statistical power, sample size and reference standard quality.
Gibson, Eli; Hu, Yipeng; Huisman, Henkjan J; Barratt, Dean C
2017-12-01
Segmentation algorithms are typically evaluated by comparison to an accepted reference standard. The cost of generating accurate reference standards for medical image segmentation can be substantial. Since the study cost and the likelihood of detecting a clinically meaningful difference in accuracy both depend on the size and on the quality of the study reference standard, balancing these trade-offs supports the efficient use of research resources. In this work, we derive a statistical power calculation that enables researchers to estimate the appropriate sample size to detect clinically meaningful differences in segmentation accuracy (i.e. the proportion of voxels matching the reference standard) between two algorithms. Furthermore, we derive a formula to relate reference standard errors to their effect on the sample sizes of studies using lower-quality (but potentially more affordable and practically available) reference standards. The accuracy of the derived sample size formula was estimated through Monte Carlo simulation, demonstrating, with 95% confidence, a predicted statistical power within 4% of simulated values across a range of model parameters. This corresponds to sample size errors of less than 4 subjects and errors in the detectable accuracy difference less than 0.6%. The applicability of the formula to real-world data was assessed using bootstrap resampling simulations for pairs of algorithms from the PROMISE12 prostate MR segmentation challenge data set. The model predicted the simulated power for the majority of algorithm pairs within 4% for simulated experiments using a high-quality reference standard and within 6% for simulated experiments using a low-quality reference standard. A case study, also based on the PROMISE12 data, illustrates using the formulae to evaluate whether to use a lower-quality reference standard in a prostate segmentation study. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
The Role of Multimodel Combination in Improving Streamflow Prediction
NASA Astrophysics Data System (ADS)
Arumugam, S.; Li, W.
2008-12-01
Model errors are the inevitable part in any prediction exercise. One approach that is currently gaining attention to reduce model errors is by optimally combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictability. In this study, we present a new approach to combine multiple hydrological models by evaluating their predictability contingent on the predictor state. We combine two hydrological models, 'abcd' model and Variable Infiltration Capacity (VIC) model, with each model's parameter being estimated by two different objective functions to develop multimodel streamflow predictions. The performance of multimodel predictions is compared with individual model predictions using correlation, root mean square error and Nash-Sutcliffe coefficient. To quantify precisely under what conditions the multimodel predictions result in improved predictions, we evaluate the proposed algorithm by testing it against streamflow generated from a known model ('abcd' model or VIC model) with errors being homoscedastic or heteroscedastic. Results from the study show that streamflow simulated from individual models performed better than multimodels under almost no model error. Under increased model error, the multimodel consistently performed better than the single model prediction in terms of all performance measures. The study also evaluates the proposed algorithm for streamflow predictions in two humid river basins from NC as well as in two arid basins from Arizona. Through detailed validation in these four sites, the study shows that multimodel approach better predicts the observed streamflow in comparison to the single model predictions.
Application of Exactly Linearized Error Transport Equations to AIAA CFD Prediction Workshops
NASA Technical Reports Server (NTRS)
Derlaga, Joseph M.; Park, Michael A.; Rallabhandi, Sriram
2017-01-01
The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities in which to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., cruise drag, high-lift, and sonic boom pre diction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization error, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of errors. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods. The equivalency of adjoint and linearized ETE functional error correction is demonstrated. Uniformly refined grids from a series of AIAA prediction workshops demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.
Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do.
Zhao, Linlin; Wang, Wenyi; Sedykh, Alexander; Zhu, Hao
2017-06-30
Numerous chemical data sets have become available for quantitative structure-activity relationship (QSAR) modeling studies. However, the quality of different data sources may be different based on the nature of experimental protocols. Therefore, potential experimental errors in the modeling sets may lead to the development of poor QSAR models and further affect the predictions of new compounds. In this study, we explored the relationship between the ratio of questionable data in the modeling sets, which was obtained by simulating experimental errors, and the QSAR modeling performance. To this end, we used eight data sets (four continuous endpoints and four categorical endpoints) that have been extensively curated both in-house and by our collaborators to create over 1800 various QSAR models. Each data set was duplicated to create several new modeling sets with different ratios of simulated experimental errors (i.e., randomizing the activities of part of the compounds) in the modeling process. A fivefold cross-validation process was used to evaluate the modeling performance, which deteriorates when the ratio of experimental errors increases. All of the resulting models were also used to predict external sets of new compounds, which were excluded at the beginning of the modeling process. The modeling results showed that the compounds with relatively large prediction errors in cross-validation processes are likely to be those with simulated experimental errors. However, after removing a certain number of compounds with large prediction errors in the cross-validation process, the external predictions of new compounds did not show improvement. Our conclusion is that the QSAR predictions, especially consensus predictions, can identify compounds with potential experimental errors. But removing those compounds by the cross-validation procedure is not a reasonable means to improve model predictivity due to overfitting.
Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do
2017-01-01
Numerous chemical data sets have become available for quantitative structure–activity relationship (QSAR) modeling studies. However, the quality of different data sources may be different based on the nature of experimental protocols. Therefore, potential experimental errors in the modeling sets may lead to the development of poor QSAR models and further affect the predictions of new compounds. In this study, we explored the relationship between the ratio of questionable data in the modeling sets, which was obtained by simulating experimental errors, and the QSAR modeling performance. To this end, we used eight data sets (four continuous endpoints and four categorical endpoints) that have been extensively curated both in-house and by our collaborators to create over 1800 various QSAR models. Each data set was duplicated to create several new modeling sets with different ratios of simulated experimental errors (i.e., randomizing the activities of part of the compounds) in the modeling process. A fivefold cross-validation process was used to evaluate the modeling performance, which deteriorates when the ratio of experimental errors increases. All of the resulting models were also used to predict external sets of new compounds, which were excluded at the beginning of the modeling process. The modeling results showed that the compounds with relatively large prediction errors in cross-validation processes are likely to be those with simulated experimental errors. However, after removing a certain number of compounds with large prediction errors in the cross-validation process, the external predictions of new compounds did not show improvement. Our conclusion is that the QSAR predictions, especially consensus predictions, can identify compounds with potential experimental errors. But removing those compounds by the cross-validation procedure is not a reasonable means to improve model predictivity due to overfitting. PMID:28691113
Two States Mapping Based Time Series Neural Network Model for Compensation Prediction Residual Error
NASA Astrophysics Data System (ADS)
Jung, Insung; Koo, Lockjo; Wang, Gi-Nam
2008-11-01
The objective of this paper was to design a model of human bio signal data prediction system for decreasing of prediction error using two states mapping based time series neural network BP (back-propagation) model. Normally, a lot of the industry has been applied neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has got a residual error between real value and prediction result. Therefore, we designed two states of neural network model for compensation residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We determined that most of the simulation cases were satisfied by the two states mapping based time series prediction model. In particular, small sample size of times series were more accurate than the standard MLP model.
On the equivalence of Gaussian elimination and Gauss-Jordan reduction in solving linear equations
NASA Technical Reports Server (NTRS)
Tsao, Nai-Kuan
1989-01-01
A novel general approach to round-off error analysis using the error complexity concepts is described. This is applied to the analysis of the Gaussian Elimination and Gauss-Jordan scheme for solving linear equations. The results show that the two algorithms are equivalent in terms of our error complexity measures. Thus the inherently parallel Gauss-Jordan scheme can be implemented with confidence if parallel computers are available.
NASA Astrophysics Data System (ADS)
Judt, Falko
2017-04-01
A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex problem. The comparatively slower error growth in the tropics and in the stratosphere indicates that certain weather phenomena could potentially have longer predictability than currently thought.
Preston, Jonathan L; Hull, Margaret; Edwards, Mary Louise
2013-05-01
To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost 4 years later. Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 (years;months) and were followed up at age 8;3. The frequency of occurrence of preschool distortion errors, typical substitution and syllable structure errors, and atypical substitution and syllable structure errors was used to predict later speech sound production, PA, and literacy outcomes. Group averages revealed below-average school-age articulation scores and low-average PA but age-appropriate reading and spelling. Preschool speech error patterns were related to school-age outcomes. Children for whom >10% of their speech sound errors were atypical had lower PA and literacy scores at school age than children who produced <10% atypical errors. Preschoolers who produced more distortion errors were likely to have lower school-age articulation scores than preschoolers who produced fewer distortion errors. Different preschool speech error patterns predict different school-age clinical outcomes. Many atypical speech sound errors in preschoolers may be indicative of weak phonological representations, leading to long-term PA weaknesses. Preschoolers' distortions may be resistant to change over time, leading to persisting speech sound production problems.
Very-short-term wind power prediction by a hybrid model with single- and multi-step approaches
NASA Astrophysics Data System (ADS)
Mohammed, E.; Wang, S.; Yu, J.
2017-05-01
Very-short-term wind power prediction (VSTWPP) has played an essential role for the operation of electric power systems. This paper aims at improving and applying a hybrid method of VSTWPP based on historical data. The hybrid method is combined by multiple linear regressions and least square (MLR&LS), which is intended for reducing prediction errors. The predicted values are obtained through two sub-processes:1) transform the time-series data of actual wind power into the power ratio, and then predict the power ratio;2) use the predicted power ratio to predict the wind power. Besides, the proposed method can include two prediction approaches: single-step prediction (SSP) and multi-step prediction (MSP). WPP is tested comparatively by auto-regressive moving average (ARMA) model from the predicted values and errors. The validity of the proposed hybrid method is confirmed in terms of error analysis by using probability density function (PDF), mean absolute percent error (MAPE) and means square error (MSE). Meanwhile, comparison of the correlation coefficients between the actual values and the predicted values for different prediction times and window has confirmed that MSP approach by using the hybrid model is the most accurate while comparing to SSP approach and ARMA. The MLR&LS is accurate and promising for solving problems in WPP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedam, S.; Docef, A.; Fix, M.
2005-06-15
The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effectsmore » of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.« less
Empirical State Error Covariance Matrix for Batch Estimation
NASA Technical Reports Server (NTRS)
Frisbee, Joe
2015-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.
Kimoto, Emi; Bi, Yi-An; Kosa, Rachel E; Tremaine, Larry M; Varma, Manthena V S
2017-09-01
Hepatobiliary elimination can be a major clearance pathway dictating the pharmacokinetics of drugs. Here, we first compared the dose eliminated in bile in preclinical species (monkey, dog, and rat) with that in human and further evaluated single-species scaling (SSS) to predict human hepatobiliary clearance. Six compounds dosed in bile duct-cannulated (BDC) monkeys showed biliary excretion comparable to human; and the SSS of hepatobiliary clearance with plasma fraction unbound correction yielded reasonable predictions (within 3-fold). Although dog SSS also showed reasonable predictions, rat overpredicted hepatobiliary clearance for 13 of 24 compounds. Second, we evaluated the translatability of in vitro sandwich-cultured human hepatocytes (SCHHs) to predict human hepatobiliary clearance for 17 drugs. For drugs with no significant active uptake in SCHH studies (i.e., with or without rifamycin SV), measured intrinsic biliary clearance was directly scalable with good predictability (absolute average fold error [AAFE] = 1.6). Drugs showing significant active uptake in SCHH, however, showed improved predictability when scaled based on extended clearance term (AAFE = 2.0), which incorporated sinusoidal uptake along with a global scaling factor for active uptake and the canalicular efflux clearance. In conclusion, SCHH is a useful tool to predict human hepatobiliary clearance, whereas BDC monkey model may provide further confidence in the prospective predictions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Christopher Lynn
By determining the production cross sections for heavy flavor hadrons, we test the theoretical predictions from perturhative quantum chroma-dynamics (QCD). In the case of pion induced beauty production, the few published results do not resolve the issue of the applicability of perturbative QCD. This analysis is undertaken in order to help resolve this situation. We determine the total beauty and charm production cross sections using an analysis of single electron decay products. We extract the cross sections per nucleon from the two-dimensional distribution of electron p versus impact parameter ( d) to the primary vertex. We place an upper limit on the beauty production cross section of σ bmore » $$\\bar{b}$$ < 105 nb at the 90% confidence level, where the limit includes both statistical and systematic errors. The charm production cross section is determined to be σ cc = 13.9$$+2.4/atop{-2.3}$$ (stat) ± 1.8 (syst) μ.b, which is in good agreement with next-to-leading order QCD predictions and other measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Christopher Lynn
By determining the production cross sections for heavy flavor hadrons, we test the theoretical predictions from perturhative quantum chroma-dynamics (QCD). In the case of pion induced beauty production, the few published results do not resolve the issue of the applicability of perturbative QCD. This analysis is undertaken in order to help resolve this situation. We determine the total beauty and charm production cross sections using an analysis of single electron decay products. We extract the cross sections per nucleon from the two-dimensional distribution of electronmore » $$p^2_{\\tau}$$ versus impact parameter (d) to the primary vertex. We place an upper limit on the beauty production cross section of $$\\sigma_{b\\overline{b}}$$ < 105 nb at the 90% confidence level, where the limit includes both statistical and systematic errors. The charm production cross section is determined to be $$\\sigma_{c\\overline{c}} = 13.9 ^{+2.4}_{-2.3}$$(stat)±l.8(syst) $$\\mu b$$, which is in good agreement with next-to-leading order QCD predictions and other measurements.« less
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.
2014-09-12
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressivemore » Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.« less
The 2006-2008 oil bubble: Evidence of speculation, and prediction
NASA Astrophysics Data System (ADS)
Sornette, Didier; Woodard, Ryan; Zhou, Wei-Xing
2009-04-01
We present an analysis of oil prices in USD and in other major currencies that diagnoses unsustainable faster-than-exponential behavior. This supports the hypothesis that the recent oil price run-up was amplified by speculative behavior of the type found during a bubble-like expansion. We also attempt to unravel the information hidden in the oil supply-demand data reported by two leading agencies, the US Energy Information Administration (EIA) and the International Energy Agency (IEA). We suggest that the found increasing discrepancy between the EIA and IEA figures provides a measure of the estimation errors. Rather than a clear transition to a supply restricted regime, we interpret the discrepancy between the IEA and EIA as a signature of uncertainty, and there is no better fuel than uncertainty to promote speculation! Our post-crash analysis confirms that the oil peak in July 2008 occurred within the expected 80% confidence interval predicted with data available in our pre-crash analysis.
NASA Technical Reports Server (NTRS)
Lind, Richard C. (Inventor); Brenner, Martin J.
2001-01-01
A structured singular value (mu) analysis method of computing flutter margins has robust stability of a linear aeroelastic model with uncertainty operators (Delta). Flight data is used to update the uncertainty operators to accurately account for errors in the computed model and the observed range of aircraft dynamics of the aircraft under test caused by time-varying aircraft parameters, nonlinearities, and flight anomalies, such as test nonrepeatability. This mu-based approach computes predict flutter margins that are worst case with respect to the modeling uncertainty for use in determining when the aircraft is approaching a flutter condition and defining an expanded safe flight envelope for the aircraft that is accepted with more confidence than traditional methods that do not update the analysis algorithm with flight data by introducing mu as a flutter margin parameter that presents several advantages over tracking damping trends as a measure of a tendency to instability from available flight data.
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
NASA Astrophysics Data System (ADS)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan
2014-09-01
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.
Reward-based training of recurrent neural networks for cognitive and value-based tasks
Song, H Francis; Yang, Guangyu R; Wang, Xiao-Jing
2017-01-01
Trained neural network models, which exhibit features of neural activity recorded from behaving animals, may provide insights into the circuit mechanisms of cognitive functions through systematic analysis of network activity and connectivity. However, in contrast to the graded error signals commonly used to train networks through supervised learning, animals learn from reward feedback on definite actions through reinforcement learning. Reward maximization is particularly relevant when optimal behavior depends on an animal’s internal judgment of confidence or subjective preferences. Here, we implement reward-based training of recurrent neural networks in which a value network guides learning by using the activity of the decision network to predict future reward. We show that such models capture behavioral and electrophysiological findings from well-known experimental paradigms. Our work provides a unified framework for investigating diverse cognitive and value-based computations, and predicts a role for value representation that is essential for learning, but not executing, a task. DOI: http://dx.doi.org/10.7554/eLife.21492.001 PMID:28084991
A System For Load Isolation And Precision Pointing
NASA Astrophysics Data System (ADS)
Keckler, Claude R.; Hamilton, Brian J.
1983-11-01
A system capable of satisfying the accuracy and stability requirements dictated by Shuttle-borne payloads utilizing large optics has been under joint NASA/Sperry development. This device, denoted the Annular Suspension and Pointing System, employs a unique combination of conventional gimbals and magnetic bearing actuators, thereby providing for the "complete" isolation of the payload from its external environment, as well as for extremely accurate and stable pointing (≍0.01 arcseconds). This effort has been pursued through the fabrication and laboratory evaluation of engineering model hardware. Results from these tests have been instrumental in generating high fidelity computer simulations of this load isolation and precision pointing system, and in permitting confident predictions of the system's on-orbit performance. Applicability of this system to the Solar Optical Telescope mission has been examined using the computer simulation. The worst case pointing error predicted for this payload while subjected to vernier reaction control system thruster firings and crew motions aboard Shuttle was approximately 0.006 arcseconds.
ERIC Educational Resources Information Center
Onwuegbuzie, Anthony J.; Daniel, Larry G.
The purposes of this paper are to identify common errors made by researchers when dealing with reliability coefficients and to outline best practices for reporting and interpreting reliability coefficients. Common errors that researchers make are: (1) stating that the instruments are reliable; (2) incorrectly interpreting correlation coefficients;…
Goo, Yeung-Ja James; Chi, Der-Jang; Shen, Zong-De
2016-01-01
The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural network (NN), classification and regression tree (CART), and support vector machine (SVM). The samples of this study include 48 GCD listed companies and 124 NGCD (non-GCD) listed companies from 2002 to 2013 in the TEJ database. We conduct fivefold cross validation in order to identify the prediction accuracy. According to the empirical results, the prediction accuracy of the LASSO-NN model is 88.96 % (Type I error rate is 12.22 %; Type II error rate is 7.50 %), the prediction accuracy of the LASSO-CART model is 88.75 % (Type I error rate is 13.61 %; Type II error rate is 14.17 %), and the prediction accuracy of the LASSO-SVM model is 89.79 % (Type I error rate is 10.00 %; Type II error rate is 15.83 %).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew
Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount ofmore » uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST for a 1.5 MW turbine. The impact of lidar turbulence error on the predicted power from these different models is examined to determine the degree of turbulence measurement accuracy needed for accurate power prediction.« less
Cole, Stephen R.; Jacobson, Lisa P.; Tien, Phyllis C.; Kingsley, Lawrence; Chmiel, Joan S.; Anastos, Kathryn
2010-01-01
To estimate the net effect of imperfectly measured highly active antiretroviral therapy on incident acquired immunodeficiency syndrome or death, the authors combined inverse probability-of-treatment-and-censoring weighted estimation of a marginal structural Cox model with regression-calibration methods. Between 1995 and 2007, 950 human immunodeficiency virus–positive men and women were followed in 2 US cohort studies. During 4,054 person-years, 374 initiated highly active antiretroviral therapy, 211 developed acquired immunodeficiency syndrome or died, and 173 dropped out. Accounting for measured confounders and determinants of dropout, the weighted hazard ratio for acquired immunodeficiency syndrome or death comparing use of highly active antiretroviral therapy in the prior 2 years with no therapy was 0.36 (95% confidence limits: 0.21, 0.61). This association was relatively constant over follow-up (P = 0.19) and stronger than crude or adjusted hazard ratios of 0.75 and 0.95, respectively. Accounting for measurement error in reported exposure using external validation data on 331 men and women provided a hazard ratio of 0.17, with bias shifted from the hazard ratio to the estimate of precision as seen by the 2.5-fold wider confidence limits (95% confidence limits: 0.06, 0.43). Marginal structural measurement-error models can simultaneously account for 3 major sources of bias in epidemiologic research: validated exposure measurement error, measured selection bias, and measured time-fixed and time-varying confounding. PMID:19934191
Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.
Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less
A computer program for uncertainty analysis integrating regression and Bayesian methods
Lu, Dan; Ye, Ming; Hill, Mary C.; Poeter, Eileen P.; Curtis, Gary
2014-01-01
This work develops a new functionality in UCODE_2014 to evaluate Bayesian credible intervals using the Markov Chain Monte Carlo (MCMC) method. The MCMC capability in UCODE_2014 is based on the FORTRAN version of the differential evolution adaptive Metropolis (DREAM) algorithm of Vrugt et al. (2009), which estimates the posterior probability density function of model parameters in high-dimensional and multimodal sampling problems. The UCODE MCMC capability provides eleven prior probability distributions and three ways to initialize the sampling process. It evaluates parametric and predictive uncertainties and it has parallel computing capability based on multiple chains to accelerate the sampling process. This paper tests and demonstrates the MCMC capability using a 10-dimensional multimodal mathematical function, a 100-dimensional Gaussian function, and a groundwater reactive transport model. The use of the MCMC capability is made straightforward and flexible by adopting the JUPITER API protocol. With the new MCMC capability, UCODE_2014 can be used to calculate three types of uncertainty intervals, which all can account for prior information: (1) linear confidence intervals which require linearity and Gaussian error assumptions and typically 10s–100s of highly parallelizable model runs after optimization, (2) nonlinear confidence intervals which require a smooth objective function surface and Gaussian observation error assumptions and typically 100s–1,000s of partially parallelizable model runs after optimization, and (3) MCMC Bayesian credible intervals which require few assumptions and commonly 10,000s–100,000s or more partially parallelizable model runs. Ready access allows users to select methods best suited to their work, and to compare methods in many circumstances.
Trial Sequential Analysis in systematic reviews with meta-analysis.
Wetterslev, Jørn; Jakobsen, Janus Christian; Gluud, Christian
2017-03-06
Most meta-analyses in systematic reviews, including Cochrane ones, do not have sufficient statistical power to detect or refute even large intervention effects. This is why a meta-analysis ought to be regarded as an interim analysis on its way towards a required information size. The results of the meta-analyses should relate the total number of randomised participants to the estimated required meta-analytic information size accounting for statistical diversity. When the number of participants and the corresponding number of trials in a meta-analysis are insufficient, the use of the traditional 95% confidence interval or the 5% statistical significance threshold will lead to too many false positive conclusions (type I errors) and too many false negative conclusions (type II errors). We developed a methodology for interpreting meta-analysis results, using generally accepted, valid evidence on how to adjust thresholds for significance in randomised clinical trials when the required sample size has not been reached. The Lan-DeMets trial sequential monitoring boundaries in Trial Sequential Analysis offer adjusted confidence intervals and restricted thresholds for statistical significance when the diversity-adjusted required information size and the corresponding number of required trials for the meta-analysis have not been reached. Trial Sequential Analysis provides a frequentistic approach to control both type I and type II errors. We define the required information size and the corresponding number of required trials in a meta-analysis and the diversity (D 2 ) measure of heterogeneity. We explain the reasons for using Trial Sequential Analysis of meta-analysis when the actual information size fails to reach the required information size. We present examples drawn from traditional meta-analyses using unadjusted naïve 95% confidence intervals and 5% thresholds for statistical significance. Spurious conclusions in systematic reviews with traditional meta-analyses can be reduced using Trial Sequential Analysis. Several empirical studies have demonstrated that the Trial Sequential Analysis provides better control of type I errors and of type II errors than the traditional naïve meta-analysis. Trial Sequential Analysis represents analysis of meta-analytic data, with transparent assumptions, and better control of type I and type II errors than the traditional meta-analysis using naïve unadjusted confidence intervals.
Error disclosure: a new domain for safety culture assessment.
Etchegaray, Jason M; Gallagher, Thomas H; Bell, Sigall K; Dunlap, Ben; Thomas, Eric J
2012-07-01
To (1) develop and test survey items that measure error disclosure culture, (2) examine relationships among error disclosure culture, teamwork culture and safety culture and (3) establish predictive validity for survey items measuring error disclosure culture. All clinical faculty from six health institutions (four medical schools, one cancer centre and one health science centre) in The University of Texas System were invited to anonymously complete an electronic survey containing questions about safety culture and error disclosure. The authors found two factors to measure error disclosure culture: one factor is focused on the general culture of error disclosure and the second factor is focused on trust. Both error disclosure culture factors were unique from safety culture and teamwork culture (correlations were less than r=0.85). Also, error disclosure general culture and error disclosure trust culture predicted intent to disclose a hypothetical error to a patient (r=0.25, p<0.001 and r=0.16, p<0.001, respectively) while teamwork and safety culture did not predict such an intent (r=0.09, p=NS and r=0.12, p=NS). Those who received prior error disclosure training reported significantly higher levels of error disclosure general culture (t=3.7, p<0.05) and error disclosure trust culture (t=2.9, p<0.05). The authors created and validated a new measure of error disclosure culture that predicts intent to disclose an error better than other measures of healthcare culture. This measure fills an existing gap in organisational assessments by assessing transparent communication after medical error, an important aspect of culture.
Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative?
NASA Technical Reports Server (NTRS)
Tian, Yudong; Huffman, George J.; Adler, Robert F.; Tang, Ling; Sapiano, Matthew; Maggioni, Viviana; Wu, Huan
2013-01-01
The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application.In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as non constant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.
Statistical analysis of modeling error in structural dynamic systems
NASA Technical Reports Server (NTRS)
Hasselman, T. K.; Chrostowski, J. D.
1990-01-01
The paper presents a generic statistical model of the (total) modeling error for conventional space structures in their launch configuration. Modeling error is defined as the difference between analytical prediction and experimental measurement. It is represented by the differences between predicted and measured real eigenvalues and eigenvectors. Comparisons are made between pre-test and post-test models. Total modeling error is then subdivided into measurement error, experimental error and 'pure' modeling error, and comparisons made between measurement error and total modeling error. The generic statistical model presented in this paper is based on the first four global (primary structure) modes of four different structures belonging to the generic category of Conventional Space Structures (specifically excluding large truss-type space structures). As such, it may be used to evaluate the uncertainty of predicted mode shapes and frequencies, sinusoidal response, or the transient response of other structures belonging to the same generic category.
Preston, Jonathan L.; Hull, Margaret; Edwards, Mary Louise
2012-01-01
Purpose To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost four years later. Method Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 and followed up at 8;3. The frequency of occurrence of preschool distortion errors, typical substitution and syllable structure errors, and atypical substitution and syllable structure errors were used to predict later speech sound production, PA, and literacy outcomes. Results Group averages revealed below-average school-age articulation scores and low-average PA, but age-appropriate reading and spelling. Preschool speech error patterns were related to school-age outcomes. Children for whom more than 10% of their speech sound errors were atypical had lower PA and literacy scores at school-age than children who produced fewer than 10% atypical errors. Preschoolers who produced more distortion errors were likely to have lower school-age articulation scores. Conclusions Different preschool speech error patterns predict different school-age clinical outcomes. Many atypical speech sound errors in preschool may be indicative of weak phonological representations, leading to long-term PA weaknesses. Preschool distortions may be resistant to change over time, leading to persisting speech sound production problems. PMID:23184137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, David C.; Trofimov, Alexei V.; Winey, Brian A.
Purpose: To predict the organ at risk (OAR) dose levels achievable with proton beam therapy (PBT), solely based on the geometric arrangement of the target volume in relation to the OARs. A comparison with an alternative therapy yields a prediction of the patient-specific benefits offered by PBT. This could enable physicians at hospitals without proton capabilities to make a better-informed referral decision or aid patient selection in model-based clinical trials. Methods and Materials: Skull-base tumors were chosen to test the method, owing to their geometric complexity and multitude of nearby OARs. By exploiting the correlations between the dose and distance-to-targetmore » in existing PBT plans, the models were independently trained for 6 types of OARs: brainstem, cochlea, optic chiasm, optic nerve, parotid gland, and spinal cord. Once trained, the models could estimate the feasible dose–volume histogram and generalized equivalent uniform dose (gEUD) for OAR structures of new patients. The models were trained using 20 patients and validated using an additional 21 patients. Validation was achieved by comparing the predicted gEUD to that of the actual PBT plan. Results: The predicted and planned gEUD were in good agreement. Considering all OARs, the prediction error was +1.4 ± 5.1 Gy (mean ± standard deviation), and Pearson's correlation coefficient was 93%. By comparing with an intensity modulated photon treatment plan, the model could classify whether an OAR structure would experience a gain, with a sensitivity of 93% (95% confidence interval: 87%-97%) and specificity of 63% (95% confidence interval: 38%-84%). Conclusions: We trained and validated models that could quickly and accurately predict the patient-specific benefits of PBT for skull-base tumors. Similar models could be developed for other tumor sites. Such models will be useful when an estimation of the feasible benefits of PBT is desired but the experience and/or resources required for treatment planning are unavailable.« less
NASA Astrophysics Data System (ADS)
Bukhari, W.; Hong, S.-M.
2016-03-01
The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN+ , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN+ prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN+ implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN+ . The experimental results show that the EKF-GPRN+ algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN+ algorithm can further reduce the prediction error by employing the gating function, albeit at the cost of reduced duty cycle. The error reduction allows the clinical target volume to planning target volume (CTV-PTV) margin to be reduced, leading to decreased normal-tissue toxicity and possible dose escalation. The CTV-PTV margin is also evaluated to quantify clinical benefits of EKF-GPRN+ prediction.
The Influence of Training Phase on Error of Measurement in Jump Performance.
Taylor, Kristie-Lee; Hopkins, Will G; Chapman, Dale W; Cronin, John B
2016-03-01
The purpose of this study was to calculate the coefficients of variation in jump performance for individual participants in multiple trials over time to determine the extent to which there are real differences in the error of measurement between participants. The effect of training phase on measurement error was also investigated. Six subjects participated in a resistance-training intervention for 12 wk with mean power from a countermovement jump measured 6 d/wk. Using a mixed-model meta-analysis, differences between subjects, within-subject changes between training phases, and the mean error values during different phases of training were examined. Small, substantial factor differences of 1.11 were observed between subjects; however, the finding was unclear based on the width of the confidence limits. The mean error was clearly higher during overload training than baseline training, by a factor of ×/÷ 1.3 (confidence limits 1.0-1.6). The random factor representing the interaction between subjects and training phases revealed further substantial differences of ×/÷ 1.2 (1.1-1.3), indicating that on average, the error of measurement in some subjects changes more than in others when overload training is introduced. The results from this study provide the first indication that within-subject variability in performance is substantially different between training phases and, possibly, different between individuals. The implications of these findings for monitoring individuals and estimating sample size are discussed.
TOPEX/POSEIDON orbit maintenance maneuver design
NASA Technical Reports Server (NTRS)
Bhat, R. S.; Frauenholz, R. B.; Cannell, Patrick E.
1990-01-01
The Ocean Topography Experiment (TOPEX/POSEIDON) mission orbit requirements are outlined, as well as its control and maneuver spacing requirements including longitude and time targeting. A ground-track prediction model dealing with geopotential, luni-solar gravity, and atmospheric-drag perturbations is considered. Targeting with all modeled perturbations is discussed, and such ground-track prediction errors as initial semimajor axis, orbit-determination, maneuver-execution, and atmospheric-density modeling errors are assessed. A longitude targeting strategy for two extreme situations is investigated employing all modeled perturbations and prediction errors. It is concluded that atmospheric-drag modeling errors are the prevailing ground-track prediction error source early in the mission during high solar flux, and that low solar-flux levels expected late in the experiment stipulate smaller maneuver magnitudes.
NASA Technical Reports Server (NTRS)
Tuttle, M. E.; Brinson, H. F.
1986-01-01
The impact of flight error in measured viscoelastic parameters on subsequent long-term viscoelastic predictions is numerically evaluated using the Schapery nonlinear viscoelastic model. Of the seven Schapery parameters, the results indicated that long-term predictions were most sensitive to errors in the power law parameter n. Although errors in the other parameters were significant as well, errors in n dominated all other factors at long times. The process of selecting an appropriate short-term test cycle so as to insure an accurate long-term prediction was considered, and a short-term test cycle was selected using material properties typical for T300/5208 graphite-epoxy at 149 C. The process of selection is described, and its individual steps are itemized.
Kumar, K Vasanth; Porkodi, K; Rocha, F
2008-01-15
A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of basic red 9 sorption by activated carbon. The r(2) was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions namely coefficient of determination (r(2)), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), the average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. Non-linear regression was found to be a better way to obtain the parameters involved in the isotherms and also the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r(2) was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K(2) was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm.
Dopamine prediction error responses integrate subjective value from different reward dimensions
Lak, Armin; Stauffer, William R.; Schultz, Wolfram
2014-01-01
Prediction error signals enable us to learn through experience. These experiences include economic choices between different rewards that vary along multiple dimensions. Therefore, an ideal way to reinforce economic choice is to encode a prediction error that reflects the subjective value integrated across these reward dimensions. Previous studies demonstrated that dopamine prediction error responses reflect the value of singular reward attributes that include magnitude, probability, and delay. Obviously, preferences between rewards that vary along one dimension are completely determined by the manipulated variable. However, it is unknown whether dopamine prediction error responses reflect the subjective value integrated from different reward dimensions. Here, we measured the preferences between rewards that varied along multiple dimensions, and as such could not be ranked according to objective metrics. Monkeys chose between rewards that differed in amount, risk, and type. Because their choices were complete and transitive, the monkeys chose “as if” they integrated different rewards and attributes into a common scale of value. The prediction error responses of single dopamine neurons reflected the integrated subjective value inferred from the choices, rather than the singular reward attributes. Specifically, amount, risk, and reward type modulated dopamine responses exactly to the extent that they influenced economic choices, even when rewards were vastly different, such as liquid and food. This prediction error response could provide a direct updating signal for economic values. PMID:24453218
Comparison of Space Shuttle Hot Gas Manifold analysis to air flow data
NASA Technical Reports Server (NTRS)
Mcconnaughey, P. K.
1988-01-01
This paper summarizes several recent analyses of the Space Shuttle Main Engine Hot Gas Manifold and compares predicted flow environments to air flow data. Codes used in these analyses include INS3D, PAGE, PHOENICS, and VAST. Both laminar (Re = 250, M = 0.30) and turbulent (Re = 1.9 million, M = 0.30) results are discussed, with the latter being compared to data for system losses, outer wall static pressures, and manifold exit Mach number profiles. Comparison of predicted results for the turbulent case to air flow data shows that the analysis using INS3D predicted system losses within 1 percent error, while the PHOENICS, PAGE, and VAST codes erred by 31, 35, and 47 percent, respectively. The INS3D, PHOENICS, and PAGE codes did a reasonable job of predicting outer wall static pressure, while the PHOENICS code predicted exit Mach number profiles with acceptable accuracy. INS3D was approximately an order of magnitude more efficient than the other codes in terms of code speed and memory requirements. In general, it is seen that complex internal flows in manifold-like geometries can be predicted with a limited degree of confidence, and further development is necessary to improve both efficiency and accuracy of codes if they are to be used as design tools for complex three-dimensional geometries.
Testing 40 Predictions from the Transtheoretical Model Again, with Confidence
ERIC Educational Resources Information Center
Velicer, Wayne F.; Brick, Leslie Ann D.; Fava, Joseph L.; Prochaska, James O.
2013-01-01
Testing Theory-based Quantitative Predictions (TTQP) represents an alternative to traditional Null Hypothesis Significance Testing (NHST) procedures and is more appropriate for theory testing. The theory generates explicit effect size predictions and these effect size estimates, with related confidence intervals, are used to test the predictions.…
Laurent, Alexandra; Aubert, Laurence; Chahraoui, Khadija; Bioy, Antoine; Mariage, André; Quenot, Jean-Pierre; Capellier, Gilles
2014-11-01
To identify the psychological repercussions of an error on professionals in intensive care and to understand their evolution. To identify the psychological defense mechanisms used by professionals to cope with error. Qualitative study with clinical interviews. We transcribed recordings and analysed the data using an interpretative phenomenological analysis. Two ICUs in the teaching hospitals of Besançon and Dijon (France). Fourteen professionals in intensive care (20 physicians and 20 nurses). None. We conducted 40 individual semistructured interviews. The participants were invited to speak about the experience of error in ICU. The interviews were transcribed and analyzed thematically by three experts. In the month following the error, the professionals described feelings of guilt (53.8%) and shame (42.5%). These feelings were associated with anxiety states with rumination (37.5%) and fear for the patient (23%); a loss of confidence (32.5%); an inability to verbalize one's error (22.5%); questioning oneself at a professional level (20%); and anger toward the team (15%). In the long term, the error remains fixed in memory for many of the subjects (80%); on one hand, for 72.5%, it was associated with an increase in vigilance and verifications in their professional practice, and on the other hand, for three professionals, it was associated with a loss of confidence. Finally, three professionals felt guilt which still persisted at the time of the interview. We also observed different defense mechanisms implemented by the professional to fight against the emotional load inherent in the error: verbalization (70%), developing skills and knowledge (43%), rejecting responsibility (32.5%), and avoidance (23%). We also observed a minimization (60%) of the error during the interviews. It is important to take into account the psychological experience of error and the defense mechanisms developed following an error because they appear to determine the professional's capacity to acknowledge and disclose his/her error and to learn from it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Jason P.; Carlson, Deborah K.; Ortiz, Anne
Accurate location of seismic events is crucial for nuclear explosion monitoring. There are several sources of error in seismic location that must be taken into account to obtain high confidence results. Most location techniques account for uncertainties in the phase arrival times (measurement error) and the bias of the velocity model (model error), but they do not account for the uncertainty of the velocity model bias. By determining and incorporating this uncertainty in the location algorithm we seek to improve the accuracy of the calculated locations and uncertainty ellipses. In order to correct for deficiencies in the velocity model, itmore » is necessary to apply station specific corrections to the predicted arrival times. Both master event and multiple event location techniques assume that the station corrections are known perfectly, when in reality there is an uncertainty associated with these corrections. For multiple event location algorithms that calculate station corrections as part of the inversion, it is possible to determine the variance of the corrections. The variance can then be used to weight the arrivals associated with each station, thereby giving more influence to stations with consistent corrections. We have modified an existing multiple event location program (based on PMEL, Pavlis and Booker, 1983). We are exploring weighting arrivals with the inverse of the station correction standard deviation as well using the conditional probability of the calculated station corrections. This is in addition to the weighting already given to the measurement and modeling error terms. We re-locate a group of mining explosions that occurred at Black Thunder, Wyoming, and compare the results to those generated without accounting for station correction uncertainty.« less
Krigolson, Olav E; Hassall, Cameron D; Handy, Todd C
2014-03-01
Our ability to make decisions is predicated upon our knowledge of the outcomes of the actions available to us. Reinforcement learning theory posits that actions followed by a reward or punishment acquire value through the computation of prediction errors-discrepancies between the predicted and the actual reward. A multitude of neuroimaging studies have demonstrated that rewards and punishments evoke neural responses that appear to reflect reinforcement learning prediction errors [e.g., Krigolson, O. E., Pierce, L. J., Holroyd, C. B., & Tanaka, J. W. Learning to become an expert: Reinforcement learning and the acquisition of perceptual expertise. Journal of Cognitive Neuroscience, 21, 1833-1840, 2009; Bayer, H. M., & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129-141, 2005; O'Doherty, J. P. Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769-776, 2004; Holroyd, C. B., & Coles, M. G. H. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679-709, 2002]. Here, we used the brain ERP technique to demonstrate that not only do rewards elicit a neural response akin to a prediction error but also that this signal rapidly diminished and propagated to the time of choice presentation with learning. Specifically, in a simple, learnable gambling task, we show that novel rewards elicited a feedback error-related negativity that rapidly decreased in amplitude with learning. Furthermore, we demonstrate the existence of a reward positivity at choice presentation, a previously unreported ERP component that has a similar timing and topography as the feedback error-related negativity that increased in amplitude with learning. The pattern of results we observed mirrored the output of a computational model that we implemented to compute reward prediction errors and the changes in amplitude of these prediction errors at the time of choice presentation and reward delivery. Our results provide further support that the computations that underlie human learning and decision-making follow reinforcement learning principles.
Consistent Tolerance Bounds for Statistical Distributions
NASA Technical Reports Server (NTRS)
Mezzacappa, M. A.
1983-01-01
Assumption that sample comes from population with particular distribution is made with confidence C if data lie between certain bounds. These "confidence bounds" depend on C and assumption about distribution of sampling errors around regression line. Graphical test criteria using tolerance bounds are applied in industry where statistical analysis influences product development and use. Applied to evaluate equipment life.
Earthquake prediction analysis based on empirical seismic rate: the M8 algorithm
NASA Astrophysics Data System (ADS)
Molchan, G.; Romashkova, L.
2010-12-01
The quality of space-time earthquake prediction is usually characterized by a 2-D error diagram (n, τ), where n is the fraction of failures-to-predict and τ is the local rate of alarm averaged in space. The most reasonable averaging measure for analysis of a prediction strategy is the normalized rate of target events λ(dg) in a subarea dg. In that case the quantity H = 1 - (n + τ) determines the prediction capability of the strategy. The uncertainty of λ(dg) causes difficulties in estimating H and the statistical significance, α, of prediction results. We investigate this problem theoretically and show how the uncertainty of the measure can be taken into account in two situations, viz., the estimation of α and the construction of a confidence zone for the (n, τ)-parameters of the random strategies. We use our approach to analyse the results from prediction of M >= 8.0 events by the M8 method for the period 1985-2009 (the M8.0+ test). The model of λ(dg) based on the events Mw >= 5.5, 1977-2004, and the magnitude range of target events 8.0 <= M < 8.5 are considered as basic to this M8 analysis. We find the point and upper estimates of α and show that they are still unstable because the number of target events in the experiment is small. However, our results argue in favour of non-triviality of the M8 prediction algorithm.
McGregor, Heather R.; Pun, Henry C. H.; Buckingham, Gavin; Gribble, Paul L.
2016-01-01
The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often, however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when one is dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? In this study we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution. We found, using a small range of weight uncertainty, that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, and load force) were consistent with a feedforward strategy that minimizes the square of prediction errors. These findings match research in the visuomotor system, suggesting parallels in underlying processes. We interpret our findings within a Bayesian framework and discuss the potential benefits of using a minimal squared error strategy. NEW & NOTEWORTHY Using a novel experimental model of object lifting, we tested whether the sensorimotor system models the weight of objects by minimizing lifting errors or by selecting the statistically most likely weight. We found that the sensorimotor system minimizes the square of prediction errors for object lifting. This parallels the results of studies that investigated visually guided reaching, suggesting an overlap in the underlying mechanisms between tasks that involve different sensory systems. PMID:27760821
Holmes, John B; Dodds, Ken G; Lee, Michael A
2017-03-02
An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.
Reinhart, Robert M G; Zhu, Julia; Park, Sohee; Woodman, Geoffrey F
2015-09-02
Posterror learning, associated with medial-frontal cortical recruitment in healthy subjects, is compromised in neuropsychiatric disorders. Here we report novel evidence for the mechanisms underlying learning dysfunctions in schizophrenia. We show that, by noninvasively passing direct current through human medial-frontal cortex, we could enhance the event-related potential related to learning from mistakes (i.e., the error-related negativity), a putative index of prediction error signaling in the brain. Following this causal manipulation of brain activity, the patients learned a new task at a rate that was indistinguishable from healthy individuals. Moreover, the severity of delusions interacted with the efficacy of the stimulation to improve learning. Our results demonstrate a causal link between disrupted prediction error signaling and inefficient learning in schizophrenia. These findings also demonstrate the feasibility of nonpharmacological interventions to address cognitive deficits in neuropsychiatric disorders. When there is a difference between what we expect to happen and what we actually experience, our brains generate a prediction error signal, so that we can map stimuli to responses and predict outcomes accurately. Theories of schizophrenia implicate abnormal prediction error signaling in the cognitive deficits of the disorder. Here, we combine noninvasive brain stimulation with large-scale electrophysiological recordings to establish a causal link between faulty prediction error signaling and learning deficits in schizophrenia. We show that it is possible to improve learning rate, as well as the neural signature of prediction error signaling, in patients to a level quantitatively indistinguishable from that of healthy subjects. The results provide mechanistic insight into schizophrenia pathophysiology and suggest a future therapy for this condition. Copyright © 2015 the authors 0270-6474/15/3512232-09$15.00/0.
DeGuzman, Marisa; Shott, Megan E; Yang, Tony T; Riederer, Justin; Frank, Guido K W
2017-06-01
Anorexia nervosa is a psychiatric disorder of unknown etiology. Understanding associations between behavior and neurobiology is important in treatment development. Using a novel monetary reward task during functional magnetic resonance brain imaging, the authors tested how brain reward learning in adolescent anorexia nervosa changes with weight restoration. Female adolescents with anorexia nervosa (N=21; mean age, 16.4 years [SD=1.9]) underwent functional MRI (fMRI) before and after treatment; similarly, healthy female control adolescents (N=21; mean age, 15.2 years [SD=2.4]) underwent fMRI on two occasions. Brain function was tested using the reward prediction error construct, a computational model for reward receipt and omission related to motivation and neural dopamine responsiveness. Compared with the control group, the anorexia nervosa group exhibited greater brain response 1) for prediction error regression within the caudate, ventral caudate/nucleus accumbens, and anterior and posterior insula, 2) to unexpected reward receipt in the anterior and posterior insula, and 3) to unexpected reward omission in the caudate body. Prediction error and unexpected reward omission response tended to normalize with treatment, while unexpected reward receipt response remained significantly elevated. Greater caudate prediction error response when underweight was associated with lower weight gain during treatment. Punishment sensitivity correlated positively with ventral caudate prediction error response. Reward system responsiveness is elevated in adolescent anorexia nervosa when underweight and after weight restoration. Heightened prediction error activity in brain reward regions may represent a phenotype of adolescent anorexia nervosa that does not respond well to treatment. Prediction error response could be a neurobiological marker of illness severity that can indicate individual treatment needs.
DeGuzman, Marisa; Shott, Megan E.; Yang, Tony T.; Riederer, Justin; Frank, Guido K.W.
2017-01-01
Objective Anorexia nervosa is a psychiatric disorder of unknown etiology. Understanding associations between behavior and neurobiology is important in treatment development. Using a novel monetary reward task during functional magnetic resonance brain imaging, the authors tested how brain reward learning in adolescent anorexia nervosa changes with weight restoration. Method Female adolescents with anorexia nervosa (N=21; mean age, 15.2 years [SD=2.4]) underwent functional MRI (fMRI) before and after treatment; similarly, healthy female control adolescents (N=21; mean age, 16.4 years [SD=1.9]) underwent fMRI on two occasions. Brain function was tested using the reward prediction error construct, a computational model for reward receipt and omission related to motivation and neural dopamine responsiveness. Results Compared with the control group, the anorexia nervosa group exhibited greater brain response 1) for prediction error regression within the caudate, ventral caudate/nucleus accumbens, and anterior and posterior insula, 2) to unexpected reward receipt in the anterior and posterior insula, and 3) to unexpected reward omission in the caudate body. Prediction error and unexpected reward omission response tended to normalize with treatment, while unexpected reward receipt response remained significantly elevated. Greater caudate prediction error response when underweight was associated with lower weight gain during treatment. Punishment sensitivity correlated positively with ventral caudate prediction error response. Conclusions Reward system responsiveness is elevated in adolescent anorexia nervosa when underweight and after weight restoration. Heightened prediction error activity in brain reward regions may represent a phenotype of adolescent anorexia nervosa that does not respond well to treatment. Prediction error response could be a neurobiological marker of illness severity that can indicate individual treatment needs. PMID:28231717
Response Surface Modeling Using Multivariate Orthogonal Functions
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; DeLoach, Richard
2001-01-01
A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.
García-García, Isabel; Zeighami, Yashar; Dagher, Alain
2017-06-01
Surprises are important sources of learning. Cognitive scientists often refer to surprises as "reward prediction errors," a parameter that captures discrepancies between expectations and actual outcomes. Here, we integrate neurophysiological and functional magnetic resonance imaging (fMRI) results addressing the processing of reward prediction errors and how they might be altered in drug addiction and Parkinson's disease. By increasing phasic dopamine responses, drugs might accentuate prediction error signals, causing increases in fMRI activity in mesolimbic areas in response to drugs. Chronic substance dependence, by contrast, has been linked with compromised dopaminergic function, which might be associated with blunted fMRI responses to pleasant non-drug stimuli in mesocorticolimbic areas. In Parkinson's disease, dopamine replacement therapies seem to induce impairments in learning from negative outcomes. The present review provides a holistic overview of reward prediction errors across different pathologies and might inform future clinical strategies targeting impulsive/compulsive disorders.
Hester, Robert; Murphy, Kevin; Brown, Felicity L; Skilleter, Ashley J
2010-11-17
Punishing an error to shape subsequent performance is a major tenet of individual and societal level behavioral interventions. Recent work examining error-related neural activity has identified that the magnitude of activity in the posterior medial frontal cortex (pMFC) is predictive of learning from an error, whereby greater activity in this region predicts adaptive changes in future cognitive performance. It remains unclear how punishment influences error-related neural mechanisms to effect behavior change, particularly in key regions such as pMFC, which previous work has demonstrated to be insensitive to punishment. Using an associative learning task that provided monetary reward and punishment for recall performance, we observed that when recall errors were categorized by subsequent performance--whether the failure to accurately recall a number-location association was corrected at the next presentation of the same trial--the magnitude of error-related pMFC activity predicted future correction. However, the pMFC region was insensitive to the magnitude of punishment an error received and it was the left insula cortex that predicted learning from the most aversive outcomes. These findings add further evidence to the hypothesis that error-related pMFC activity may reflect more than a prediction error in representing the value of an outcome. The novel role identified here for the insular cortex in learning from punishment appears particularly compelling for our understanding of psychiatric and neurologic conditions that feature both insular cortex dysfunction and a diminished capacity for learning from negative feedback or punishment.
An Empirical State Error Covariance Matrix for Batch State Estimation
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty. Also, in its most straight forward form, the technique only requires supplemental calculations to be added to existing batch algorithms. The generation of this direct, empirical form of the state error covariance matrix is independent of the dimensionality of the observations. Mixed degrees of freedom for an observation set are allowed. As is the case with any simple, empirical sample variance problems, the presented approach offers an opportunity (at least in the case of weighted least squares) to investigate confidence interval estimates for the error covariance matrix elements. The diagonal or variance terms of the error covariance matrix have a particularly simple form to associate with either a multiple degree of freedom chi-square distribution (more approximate) or with a gamma distribution (less approximate). The off diagonal or covariance terms of the matrix are less clear in their statistical behavior. However, the off diagonal covariance matrix elements still lend themselves to standard confidence interval error analysis. The distributional forms associated with the off diagonal terms are more varied and, perhaps, more approximate than those associated with the diagonal terms. Using a simple weighted least squares sample problem, results obtained through use of the proposed technique are presented. The example consists of a simple, two observer, triangulation problem with range only measurements. Variations of this problem reflect an ideal case (perfect knowledge of the range errors) and a mismodeled case (incorrect knowledge of the range errors).
Correlation Attenuation Due to Measurement Error: A New Approach Using the Bootstrap Procedure
ERIC Educational Resources Information Center
Padilla, Miguel A.; Veprinsky, Anna
2012-01-01
Issues with correlation attenuation due to measurement error are well documented. More than a century ago, Spearman proposed a correction for attenuation. However, this correction has seen very little use since it can potentially inflate the true correlation beyond one. In addition, very little confidence interval (CI) research has been done for…
Random Error in Judgment: The Contribution of Encoding and Retrieval Processes
ERIC Educational Resources Information Center
Pleskac, Timothy J.; Dougherty, Michael R.; Rivadeneira, A. Walkyria; Wallsten, Thomas S.
2009-01-01
Theories of confidence judgments have embraced the role random error plays in influencing responses. An important next step is to identify the source(s) of these random effects. To do so, we used the stochastic judgment model (SJM) to distinguish the contribution of encoding and retrieval processes. In particular, we investigated whether dividing…
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool
NASA Astrophysics Data System (ADS)
Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo
2017-05-01
Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
A predictability study of Lorenz's 28-variable model as a dynamical system
NASA Technical Reports Server (NTRS)
Krishnamurthy, V.
1993-01-01
The dynamics of error growth in a two-layer nonlinear quasi-geostrophic model has been studied to gain an understanding of the mathematical theory of atmospheric predictability. The growth of random errors of varying initial magnitudes has been studied, and the relation between this classical approach and the concepts of the nonlinear dynamical systems theory has been explored. The local and global growths of random errors have been expressed partly in terms of the properties of an error ellipsoid and the Liapunov exponents determined by linear error dynamics. The local growth of small errors is initially governed by several modes of the evolving error ellipsoid but soon becomes dominated by the longest axis. The average global growth of small errors is exponential with a growth rate consistent with the largest Liapunov exponent. The duration of the exponential growth phase depends on the initial magnitude of the errors. The subsequent large errors undergo a nonlinear growth with a steadily decreasing growth rate and attain saturation that defines the limit of predictability. The degree of chaos and the largest Liapunov exponent show considerable variation with change in the forcing, which implies that the time variation in the external forcing can introduce variable character to the predictability.
Poster error probability in the Mu-11 Sequential Ranging System
NASA Technical Reports Server (NTRS)
Coyle, C. W.
1981-01-01
An expression is derived for the posterior error probability in the Mu-2 Sequential Ranging System. An algorithm is developed which closely bounds the exact answer and can be implemented in the machine software. A computer simulation is provided to illustrate the improved level of confidence in a ranging acquisition using this figure of merit as compared to that using only the prior probabilities. In a simulation of 20,000 acquisitions with an experimentally determined threshold setting, the algorithm detected 90% of the actual errors and made false indication of errors on 0.2% of the acquisitions.
NASA Astrophysics Data System (ADS)
Qian, Xiaoshan
2018-01-01
The traditional model of evaporation process parameters have continuity and cumulative characteristics of the prediction error larger issues, based on the basis of the process proposed an adaptive particle swarm neural network forecasting method parameters established on the autoregressive moving average (ARMA) error correction procedure compensated prediction model to predict the results of the neural network to improve prediction accuracy. Taking a alumina plant evaporation process to analyze production data validation, and compared with the traditional model, the new model prediction accuracy greatly improved, can be used to predict the dynamic process of evaporation of sodium aluminate solution components.
Prediction-error variance in Bayesian model updating: a comparative study
NASA Astrophysics Data System (ADS)
Asadollahi, Parisa; Li, Jian; Huang, Yong
2017-04-01
In Bayesian model updating, the likelihood function is commonly formulated by stochastic embedding in which the maximum information entropy probability model of prediction error variances plays an important role and it is Gaussian distribution subject to the first two moments as constraints. The selection of prediction error variances can be formulated as a model class selection problem, which automatically involves a trade-off between the average data-fit of the model class and the information it extracts from the data. Therefore, it is critical for the robustness in the updating of the structural model especially in the presence of modeling errors. To date, three ways of considering prediction error variances have been seem in the literature: 1) setting constant values empirically, 2) estimating them based on the goodness-of-fit of the measured data, and 3) updating them as uncertain parameters by applying Bayes' Theorem at the model class level. In this paper, the effect of different strategies to deal with the prediction error variances on the model updating performance is investigated explicitly. A six-story shear building model with six uncertain stiffness parameters is employed as an illustrative example. Transitional Markov Chain Monte Carlo is used to draw samples of the posterior probability density function of the structure model parameters as well as the uncertain prediction variances. The different levels of modeling uncertainty and complexity are modeled through three FE models, including a true model, a model with more complexity, and a model with modeling error. Bayesian updating is performed for the three FE models considering the three aforementioned treatments of the prediction error variances. The effect of number of measurements on the model updating performance is also examined in the study. The results are compared based on model class assessment and indicate that updating the prediction error variances as uncertain parameters at the model class level produces more robust results especially when the number of measurement is small.
Seasonal to interannual Arctic sea ice predictability in current global climate models
NASA Astrophysics Data System (ADS)
Tietsche, S.; Day, J. J.; Guemas, V.; Hurlin, W. J.; Keeley, S. P. E.; Matei, D.; Msadek, R.; Collins, M.; Hawkins, E.
2014-02-01
We establish the first intermodel comparison of seasonal to interannual predictability of present-day Arctic climate by performing coordinated sets of idealized ensemble predictions with four state-of-the-art global climate models. For Arctic sea ice extent and volume, there is potential predictive skill for lead times of up to 3 years, and potential prediction errors have similar growth rates and magnitudes across the models. Spatial patterns of potential prediction errors differ substantially between the models, but some features are robust. Sea ice concentration errors are largest in the marginal ice zone, and in winter they are almost zero away from the ice edge. Sea ice thickness errors are amplified along the coasts of the Arctic Ocean, an effect that is dominated by sea ice advection. These results give an upper bound on the ability of current global climate models to predict important aspects of Arctic climate.
Attention in the predictive mind.
Ransom, Madeleine; Fazelpour, Sina; Mole, Christopher
2017-01-01
It has recently become popular to suggest that cognition can be explained as a process of Bayesian prediction error minimization. Some advocates of this view propose that attention should be understood as the optimization of expected precisions in the prediction-error signal (Clark, 2013, 2016; Feldman & Friston, 2010; Hohwy, 2012, 2013). This proposal successfully accounts for several attention-related phenomena. We claim that it cannot account for all of them, since there are certain forms of voluntary attention that it cannot accommodate. We therefore suggest that, although the theory of Bayesian prediction error minimization introduces some powerful tools for the explanation of mental phenomena, its advocates have been wrong to claim that Bayesian prediction error minimization is 'all the brain ever does'. Copyright © 2016 Elsevier Inc. All rights reserved.
Evaluation and Applications of the Prediction of Intensity Model Error (PRIME) Model
NASA Astrophysics Data System (ADS)
Bhatia, K. T.; Nolan, D. S.; Demaria, M.; Schumacher, A.
2015-12-01
Forecasters and end users of tropical cyclone (TC) intensity forecasts would greatly benefit from a reliable expectation of model error to counteract the lack of consistency in TC intensity forecast performance. As a first step towards producing error predictions to accompany each TC intensity forecast, Bhatia and Nolan (2013) studied the relationship between synoptic parameters, TC attributes, and forecast errors. In this study, we build on previous results of Bhatia and Nolan (2013) by testing the ability of the Prediction of Intensity Model Error (PRIME) model to forecast the absolute error and bias of four leading intensity models available for guidance in the Atlantic basin. PRIME forecasts are independently evaluated at each 12-hour interval from 12 to 120 hours during the 2007-2014 Atlantic hurricane seasons. The absolute error and bias predictions of PRIME are compared to their respective climatologies to determine their skill. In addition to these results, we will present the performance of the operational version of PRIME run during the 2015 hurricane season. PRIME verification results show that it can reliably anticipate situations where particular models excel, and therefore could lead to a more informed protocol for hurricane evacuations and storm preparations. These positive conclusions suggest that PRIME forecasts also have the potential to lower the error in the original intensity forecasts of each model. As a result, two techniques are proposed to develop a post-processing procedure for a multimodel ensemble based on PRIME. The first approach is to inverse-weight models using PRIME absolute error predictions (higher predicted absolute error corresponds to lower weights). The second multimodel ensemble applies PRIME bias predictions to each model's intensity forecast and the mean of the corrected models is evaluated. The forecasts of both of these experimental ensembles are compared to those of the equal-weight ICON ensemble, which currently provides the most reliable forecasts in the Atlantic basin.
Quasi-Static Probabilistic Structural Analyses Process and Criteria
NASA Technical Reports Server (NTRS)
Goldberg, B.; Verderaime, V.
1999-01-01
Current deterministic structural methods are easily applied to substructures and components, and analysts have built great design insights and confidence in them over the years. However, deterministic methods cannot support systems risk analyses, and it was recently reported that deterministic treatment of statistical data is inconsistent with error propagation laws that can result in unevenly conservative structural predictions. Assuming non-nal distributions and using statistical data formats throughout prevailing stress deterministic processes lead to a safety factor in statistical format, which integrated into the safety index, provides a safety factor and first order reliability relationship. The embedded safety factor in the safety index expression allows a historically based risk to be determined and verified over a variety of quasi-static metallic substructures consistent with the traditional safety factor methods and NASA Std. 5001 criteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacaze, Guilhem; Oefelein, Joseph
Large-eddy-simulation (LES) is quickly becoming a method of choice for studying complex thermo-physics in a wide range of propulsion and power systems. It provides a means to study coupled turbulent combustion and flow processes in parameter spaces that are unattainable using direct-numerical-simulation (DNS), with a degree of fidelity that can be far more accurate than conventional engineering methods such as the Reynolds-averaged Navier-Stokes (RANS) approx- imation. However, development of predictive LES is complicated by the complex interdependence of different type of errors coming from numerical methods, algorithms, models and boundary con- ditions. On the other hand, control of accuracy hasmore » become a critical aspect in the development of predictive LES for design. The objective of this project is to create a framework of metrics aimed at quantifying the quality and accuracy of state-of-the-art LES in a manner that addresses the myriad of competing interdependencies. In a typical simulation cycle, only 20% of the computational time is actually usable. The rest is spent in case preparation, assessment, and validation, because of the lack of guidelines. This work increases confidence in the accuracy of a given solution while min- imizing the time obtaining the solution. The approach facilitates control of the tradeoffs between cost, accuracy, and uncertainties as a function of fidelity and methods employed. The analysis is coupled with advanced Uncertainty Quantification techniques employed to estimate confidence in model predictions and calibrate model's parameters. This work has provided positive conse- quences on the accuracy of the results delivered by LES and will soon have a broad impact on research supported both by the DOE and elsewhere.« less
Popa, Laurentiu S.; Hewitt, Angela L.; Ebner, Timothy J.
2012-01-01
The cerebellum has been implicated in processing motor errors required for online control of movement and motor learning. The dominant view is that Purkinje cell complex spike discharge signals motor errors. This study investigated whether errors are encoded in the simple spike discharge of Purkinje cells in monkeys trained to manually track a pseudo-randomly moving target. Four task error signals were evaluated based on cursor movement relative to target movement. Linear regression analyses based on firing residuals ensured that the modulation with a specific error parameter was independent of the other error parameters and kinematics. The results demonstrate that simple spike firing in lobules IV–VI is significantly correlated with position, distance and directional errors. Independent of the error signals, the same Purkinje cells encode kinematics. The strongest error modulation occurs at feedback timing. However, in 72% of cells at least one of the R2 temporal profiles resulting from regressing firing with individual errors exhibit two peak R2 values. For these bimodal profiles, the first peak is at a negative τ (lead) and a second peak at a positive τ (lag), implying that Purkinje cells encode both prediction and feedback about an error. For the majority of the bimodal profiles, the signs of the regression coefficients or preferred directions reverse at the times of the peaks. The sign reversal results in opposing simple spike modulation for the predictive and feedback components. Dual error representations may provide the signals needed to generate sensory prediction errors used to update a forward internal model. PMID:23115173
The Dopamine Prediction Error: Contributions to Associative Models of Reward Learning
Nasser, Helen M.; Calu, Donna J.; Schoenbaum, Geoffrey; Sharpe, Melissa J.
2017-01-01
Phasic activity of midbrain dopamine neurons is currently thought to encapsulate the prediction-error signal described in Sutton and Barto’s (1981) model-free reinforcement learning algorithm. This phasic signal is thought to contain information about the quantitative value of reward, which transfers to the reward-predictive cue after learning. This is argued to endow the reward-predictive cue with the value inherent in the reward, motivating behavior toward cues signaling the presence of reward. Yet theoretical and empirical research has implicated prediction-error signaling in learning that extends far beyond a transfer of quantitative value to a reward-predictive cue. Here, we review the research which demonstrates the complexity of how dopaminergic prediction errors facilitate learning. After briefly discussing the literature demonstrating that phasic dopaminergic signals can act in the manner described by Sutton and Barto (1981), we consider how these signals may also influence attentional processing across multiple attentional systems in distinct brain circuits. Then, we discuss how prediction errors encode and promote the development of context-specific associations between cues and rewards. Finally, we consider recent evidence that shows dopaminergic activity contains information about causal relationships between cues and rewards that reflect information garnered from rich associative models of the world that can be adapted in the absence of direct experience. In discussing this research we hope to support the expansion of how dopaminergic prediction errors are thought to contribute to the learning process beyond the traditional concept of transferring quantitative value. PMID:28275359
An MEG signature corresponding to an axiomatic model of reward prediction error.
Talmi, Deborah; Fuentemilla, Lluis; Litvak, Vladimir; Duzel, Emrah; Dolan, Raymond J
2012-01-02
Optimal decision-making is guided by evaluating the outcomes of previous decisions. Prediction errors are theoretical teaching signals which integrate two features of an outcome: its inherent value and prior expectation of its occurrence. To uncover the magnetic signature of prediction errors in the human brain we acquired magnetoencephalographic (MEG) data while participants performed a gambling task. Our primary objective was to use formal criteria, based upon an axiomatic model (Caplin and Dean, 2008a), to determine the presence and timing profile of MEG signals that express prediction errors. We report analyses at the sensor level, implemented in SPM8, time locked to outcome onset. We identified, for the first time, a MEG signature of prediction error, which emerged approximately 320 ms after an outcome and expressed as an interaction between outcome valence and probability. This signal followed earlier, separate signals for outcome valence and probability, which emerged approximately 200 ms after an outcome. Strikingly, the time course of the prediction error signal, as well as the early valence signal, resembled the Feedback-Related Negativity (FRN). In simultaneously acquired EEG data we obtained a robust FRN, but the win and loss signals that comprised this difference wave did not comply with the axiomatic model. Our findings motivate an explicit examination of the critical issue of timing embodied in computational models of prediction errors as seen in human electrophysiological data. Copyright © 2011 Elsevier Inc. All rights reserved.
Dell, Gary S.; Martin, Nadine; Schwartz, Myrna F.
2010-01-01
Lexical access in language production, and particularly pathologies of lexical access, are often investigated by examining errors in picture naming and word repetition. In this article, we test a computational approach to lexical access, the two-step interactive model, by examining whether the model can quantitatively predict the repetition-error patterns of 65 aphasic subjects from their naming errors. The model’s characterizations of the subjects’ naming errors were taken from the companion paper to this one (Schwartz, Dell, N. Martin, Gahl & Sobel, 2006), and their repetition was predicted from the model on the assumption that naming involves two error prone steps, word and phonological retrieval, whereas repetition only creates errors in the second of these steps. A version of the model in which lexical-semantic and lexical-phonological connections could be independently lesioned was generally successful in predicting repetition for the aphasics. An analysis of the few cases in which model predictions were inaccurate revealed the role of input phonology in the repetition task. PMID:21085621
Thin-slice vision: inference of confidence measure from perceptual video quality
NASA Astrophysics Data System (ADS)
Hameed, Abdul; Balas, Benjamin; Dai, Rui
2016-11-01
There has been considerable research on thin-slice judgments, but no study has demonstrated the predictive validity of confidence measures when assessors watch videos acquired from communication systems, in which the perceptual quality of videos could be degraded by limited bandwidth and unreliable network conditions. This paper studies the relationship between high-level thin-slice judgments of human behavior and factors that contribute to perceptual video quality. Based on a large number of subjective test results, it has been found that the confidence of a single individual present in all the videos, called speaker's confidence (SC), could be predicted by a list of features that contribute to perceptual video quality. Two prediction models, one based on artificial neural network and the other based on a decision tree, were built to predict SC. Experimental results have shown that both prediction models can result in high correlation measures.
ERIC Educational Resources Information Center
Grandjean, Burke D.; Taylor, Patricia A.; Weiner, Jay
2002-01-01
During the women's all-around gymnastics final at the 2000 Olympics, the vault was inadvertently set 5 cm too low for a random half of the gymnasts. The error was widely viewed as undermining their confidence and subsequent performance. However, data from pretest and posttest scores on the vault, bars, beam, and floor indicated that the vault…
Confidence Limits for the Indirect Effect: Distribution of the Product and Resampling Methods
ERIC Educational Resources Information Center
MacKinnon, David P.; Lockwood, Chondra M.; Williams, Jason
2004-01-01
The most commonly used method to test an indirect effect is to divide the estimate of the indirect effect by its standard error and compare the resulting z statistic with a critical value from the standard normal distribution. Confidence limits for the indirect effect are also typically based on critical values from the standard normal…
The Dark and Bloody Mystery: Building Basic Writers' Confidence.
ERIC Educational Resources Information Center
Sledd, Robert
While the roots of students' fear of writing go deep, students fear most the surface of writing. They fear that a person's language indicates the state not only of the mind but of the soul--thus their writing can make them look stupid and morally depraved. This fear of error and lack of confidence prevent students from developing a command of the…
Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyang; Zhang, Qingyuan
2016-04-01
Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data have been extensively applied for crop yield prediction because of their daily temporal resolution and a global coverage. This study investigated global crop yield using daily two band Enhanced Vegetation Index (EVI2) derived from AVHRR (1981-1999) and MODIS (2000-2013) observations at a spatial resolution of 0.05° (∼5 km). Specifically, EVI2 temporal trajectory of crop growth was simulated using a hybrid piecewise logistic model (HPLM) for individual pixels, which was used to detect crop phenological metrics. The derived crop phenology was then applied to calculate crop greenness defined as EVI2 amplitude and EVI2 integration during annual crop growing seasons, which was further aggregated for croplands in each country, respectively. The interannual variations in EVI2 amplitude and EVI2 integration were combined to correlate to the variation in cereal yield from 1982-2012 for individual countries using a stepwise regression model, respectively. The results show that the confidence level of the established regression models was higher than 90% (P value < 0.1) in most countries in the northern hemisphere although it was relatively poor in the southern hemisphere (mainly in Africa). The error in the yield predication was relatively smaller in America, Europe and East Asia than that in Africa. In the 10 countries with largest cereal production across the world, the prediction error was less than 9% during past three decades. This suggests that crop phenology-controlled greenness from coarse resolution satellite data has the capability of predicting national crop yield across the world, which could provide timely and reliable crop information for global agricultural trade and policymakers.
Interleukin-6 predicts recurrence and survival among head and neck cancer patients.
Duffy, Sonia A; Taylor, Jeremy M G; Terrell, Jeffrey E; Islam, Mozaffarul; Li, Yun; Fowler, Karen E; Wolf, Gregory T; Teknos, Theodoros N
2008-08-15
Increased pretreatment serum interleukin (IL)-6 levels among patients with head and neck squamous cell carcinoma (HNSCC) have been shown to correlate with poor prognosis, but sample sizes in prior studies have been small and thus unable to control for other known prognostic variables. A longitudinal, prospective cohort study determined the correlation between pretreatment serum IL-6 levels, and tumor recurrence and all-cause survival in a large population (N = 444) of previously untreated HNSCC patients. Control variables included age, sex, smoking, cancer site and stage, and comorbidities. Kaplan-Meier plots and univariate and multivariate Cox proportional hazards models were used to study the association between IL-6 levels, control variables, and time to recurrence and survival. The median serum IL-6 level was 13 pg/mL (range, 0-453). The 2-year recurrence rate was 35.2% (standard error, 2.67%). The 2-year death rate was 26.5% (standard error, 2.26%). Multivariate analyses showed that serum IL-6 levels independently predicted recurrence at significant levels [hazard ratio (HR) = 1.32; 95% confidence interval (CI), 1.11 to 1.58; P = .002] as did cancer site (oral/sinus). Serum IL-6 level was also a significant independent predictor of poor survival (HR = 1.22; 95% CI, 1.02 to 1.46; P = .03), as were older age, smoking, cancer site (oral/sinus), higher cancer stage, and comorbidities. Pretreatment serum IL-6 could be a valuable biomarker for predicting recurrence and overall survival among HNSCC patients. Using IL-6 as a biomarker for recurrence and survival may allow for earlier identification and treatment of disease relapse. 2008 American Cancer Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Anthony P; Hanson, Paul J; DeKauwe, Martin G
2014-01-01
Free Air CO2 Enrichment (FACE) experiments provide a remarkable wealth of data to test the sensitivities of terrestrial ecosystem models (TEMs). In this study, a broad set of 11 TEMs were compared to 22 years of data from two contrasting FACE experiments in temperate forests of the south eastern US the evergreen Duke Forest and the deciduous Oak Ridge forest. We evaluated the models' ability to reproduce observed net primary productivity (NPP), transpiration and Leaf Area index (LAI) in ambient CO2 treatments. Encouragingly, many models simulated annual NPP and transpiration within observed uncertainty. Daily transpiration model errors were often relatedmore » to errors in leaf area phenology and peak LAI. Our analysis demonstrates that the simulation of LAI often drives the simulation of transpiration and hence there is a need to adopt the most appropriate of hypothesis driven methods to simulate and predict LAI. Of the three competing hypotheses determining peak LAI (1) optimisation to maximise carbon export, (2) increasing SLA with canopy depth and (3) the pipe model the pipe model produced LAI closest to the observations. Modelled phenology was either prescribed or based on broader empirical calibrations to climate. In some cases, simulation accuracy was achieved through compensating biases in component variables. For example, NPP accuracy was sometimes achieved with counter-balancing biases in nitrogen use efficiency and nitrogen uptake. Combined analysis of parallel measurements aides the identification of offsetting biases; without which over-confidence in model abilities to predict ecosystem function may emerge, potentially leading to erroneous predictions of change under future climates.« less
How Many Alternatives Can Be Ranked? A Comparison of the Paired Comparison and Ranking Methods.
Ock, Minsu; Yi, Nari; Ahn, Jeonghoon; Jo, Min-Woo
2016-01-01
To determine the feasibility of converting ranking data into paired comparison (PC) data and suggest the number of alternatives that can be ranked by comparing a PC and a ranking method. Using a total of 222 health states, a household survey was conducted in a sample of 300 individuals from the general population. Each respondent performed a PC 15 times and a ranking method 6 times (two attempts of ranking three, four, and five health states, respectively). The health states of the PC and the ranking method were constructed to overlap each other. We converted the ranked data into PC data and examined the consistency of the response rate. Applying probit regression, we obtained the predicted probability of each method. Pearson correlation coefficients were determined between the predicted probabilities of those methods. The mean absolute error was also assessed between the observed and the predicted values. The overall consistency of the response rate was 82.8%. The Pearson correlation coefficients were 0.789, 0.852, and 0.893 for ranking three, four, and five health states, respectively. The lowest mean absolute error was 0.082 (95% confidence interval [CI] 0.074-0.090) in ranking five health states, followed by 0.123 (95% CI 0.111-0.135) in ranking four health states and 0.126 (95% CI 0.113-0.138) in ranking three health states. After empirically examining the consistency of the response rate between a PC and a ranking method, we suggest that using five alternatives in the ranking method may be superior to using three or four alternatives. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Vlasceanu, Madalina; Drach, Rae; Coman, Alin
2018-05-03
The mind is a prediction machine. In most situations, it has expectations as to what might happen. But when predictions are invalidated by experience (i.e., prediction errors), the memories that generate these predictions are suppressed. Here, we explore the effect of prediction error on listeners' memories following social interaction. We find that listening to a speaker recounting experiences similar to one's own triggers prediction errors on the part of the listener that lead to the suppression of her memories. This effect, we show, is sensitive to a perspective-taking manipulation, such that individuals who are instructed to take the perspective of the speaker experience memory suppression, whereas individuals who undergo a low-perspective-taking manipulation fail to show a mnemonic suppression effect. We discuss the relevance of these findings for our understanding of the bidirectional influences between cognition and social contexts, as well as for the real-world situations that involve memory-based predictions.
A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.
2014-01-01
A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.
Goicoechea, H C; Olivieri, A C
2001-07-01
A newly developed multivariate method involving net analyte preprocessing (NAP) was tested using central composite calibration designs of progressively decreasing size regarding the multivariate simultaneous spectrophotometric determination of three active components (phenylephrine, diphenhydramine and naphazoline) and one excipient (methylparaben) in nasal solutions. Its performance was evaluated and compared with that of partial least-squares (PLS-1). Minimisation of the calibration predicted error sum of squares (PRESS) as a function of a moving spectral window helped to select appropriate working spectral ranges for both methods. The comparison of NAP and PLS results was carried out using two tests: (1) the elliptical joint confidence region for the slope and intercept of a predicted versus actual concentrations plot for a large validation set of samples and (2) the D-optimality criterion concerning the information content of the calibration data matrix. Extensive simulations and experimental validation showed that, unlike PLS, the NAP method is able to furnish highly satisfactory results when the calibration set is reduced from a full four-component central composite to a fractional central composite, as expected from the modelling requirements of net analyte based methods.
Ruiz, María Herrojo; Strübing, Felix; Jabusch, Hans-Christian; Altenmüller, Eckart
2011-04-15
Skilled performance requires the ability to monitor ongoing behavior, detect errors in advance and modify the performance accordingly. The acquisition of fast predictive mechanisms might be possible due to the extensive training characterizing expertise performance. Recent EEG studies on piano performance reported a negative event-related potential (ERP) triggered in the ACC 70 ms before performance errors (pitch errors due to incorrect keypress). This ERP component, termed pre-error related negativity (pre-ERN), was assumed to reflect processes of error detection in advance. However, some questions remained to be addressed: (i) Does the electrophysiological marker prior to errors reflect an error signal itself or is it related instead to the implementation of control mechanisms? (ii) Does the posterior frontomedial cortex (pFMC, including ACC) interact with other brain regions to implement control adjustments following motor prediction of an upcoming error? (iii) Can we gain insight into the electrophysiological correlates of error prediction and control by assessing the local neuronal synchronization and phase interaction among neuronal populations? (iv) Finally, are error detection and control mechanisms defective in pianists with musician's dystonia (MD), a focal task-specific dystonia resulting from dysfunction of the basal ganglia-thalamic-frontal circuits? Consequently, we investigated the EEG oscillatory and phase synchronization correlates of error detection and control during piano performances in healthy pianists and in a group of pianists with MD. In healthy pianists, the main outcomes were increased pre-error theta and beta band oscillations over the pFMC and 13-15 Hz phase synchronization, between the pFMC and the right lateral prefrontal cortex, which predicted corrective mechanisms. In MD patients, the pattern of phase synchronization appeared in a different frequency band (6-8 Hz) and correlated with the severity of the disorder. The present findings shed new light on the neural mechanisms, which might implement motor prediction by means of forward control processes, as they function in healthy pianists and in their altered form in patients with MD. Copyright © 2010 Elsevier Inc. All rights reserved.
Svensson, Fredrik; Aniceto, Natalia; Norinder, Ulf; Cortes-Ciriano, Isidro; Spjuth, Ola; Carlsson, Lars; Bender, Andreas
2018-05-29
Making predictions with an associated confidence is highly desirable as it facilitates decision making and resource prioritization. Conformal regression is a machine learning framework that allows the user to define the required confidence and delivers predictions that are guaranteed to be correct to the selected extent. In this study, we apply conformal regression to model molecular properties and bioactivity values and investigate different ways to scale the resultant prediction intervals to create as efficient (i.e., narrow) regressors as possible. Different algorithms to estimate the prediction uncertainty were used to normalize the prediction ranges, and the different approaches were evaluated on 29 publicly available data sets. Our results show that the most efficient conformal regressors are obtained when using the natural exponential of the ensemble standard deviation from the underlying random forest to scale the prediction intervals, but other approaches were almost as efficient. This approach afforded an average prediction range of 1.65 pIC50 units at the 80% confidence level when applied to bioactivity modeling. The choice of nonconformity function has a pronounced impact on the average prediction range with a difference of close to one log unit in bioactivity between the tightest and widest prediction range. Overall, conformal regression is a robust approach to generate bioactivity predictions with associated confidence.
NASA Astrophysics Data System (ADS)
Fernandez, Alvaro; Müller, Inigo A.; Rodríguez-Sanz, Laura; van Dijk, Joep; Looser, Nathan; Bernasconi, Stefano M.
2017-12-01
Carbonate clumped isotopes offer a potentially transformational tool to interpret Earth's history, but the proxy is still limited by poor interlaboratory reproducibility. Here, we focus on the uncertainties that result from the analysis of only a few replicate measurements to understand the extent to which unconstrained errors affect calibration relationships and paleoclimate reconstructions. We find that highly precise data can be routinely obtained with multiple replicate analyses, but this is not always done in many laboratories. For instance, using published estimates of external reproducibilities we find that typical clumped isotope measurements (three replicate analyses) have margins of error at the 95% confidence level (CL) that are too large for many applications. These errors, however, can be systematically reduced with more replicate measurements. Second, using a Monte Carlo-type simulation we demonstrate that the degree of disagreement on published calibration slopes is about what we should expect considering the precision of Δ47 data, the number of samples and replicate analyses, and the temperature range covered in published calibrations. Finally, we show that the way errors are typically reported in clumped isotope data can be problematic and lead to the impression that data are more precise than warranted. We recommend that uncertainties in Δ47 data should no longer be reported as the standard error of a few replicate measurements. Instead, uncertainties should be reported as margins of error at a specified confidence level (e.g., 68% or 95% CL). These error bars are a more realistic indication of the reliability of a measurement.
Simultaneous Inference For The Mean Function Based on Dense Functional Data
Cao, Guanqun; Yang, Lijian; Todem, David
2012-01-01
A polynomial spline estimator is proposed for the mean function of dense functional data together with a simultaneous confidence band which is asymptotically correct. In addition, the spline estimator and its accompanying confidence band enjoy oracle efficiency in the sense that they are asymptotically the same as if all random trajectories are observed entirely and without errors. The confidence band is also extended to the difference of mean functions of two populations of functional data. Simulation experiments provide strong evidence that corroborates the asymptotic theory while computing is efficient. The confidence band procedure is illustrated by analyzing the near infrared spectroscopy data. PMID:22665964
A Poisson process approximation for generalized K-5 confidence regions
NASA Technical Reports Server (NTRS)
Arsham, H.; Miller, D. R.
1982-01-01
One-sided confidence regions for continuous cumulative distribution functions are constructed using empirical cumulative distribution functions and the generalized Kolmogorov-Smirnov distance. The band width of such regions becomes narrower in the right or left tail of the distribution. To avoid tedious computation of confidence levels and critical values, an approximation based on the Poisson process is introduced. This aproximation provides a conservative confidence region; moreover, the approximation error decreases monotonically to 0 as sample size increases. Critical values necessary for implementation are given. Applications are made to the areas of risk analysis, investment modeling, reliability assessment, and analysis of fault tolerant systems.
Fisher, Moria E; Huang, Felix C; Wright, Zachary A; Patton, James L
2014-01-01
Manipulation of error feedback has been of great interest to recent studies in motor control and rehabilitation. Typically, motor adaptation is shown as a change in performance with a single scalar metric for each trial, yet such an approach might overlook details about how error evolves through the movement. We believe that statistical distributions of movement error through the extent of the trajectory can reveal unique patterns of adaption and possibly reveal clues to how the motor system processes information about error. This paper describes different possible ordinate domains, focusing on representations in time and state-space, used to quantify reaching errors. We hypothesized that the domain with the lowest amount of variability would lead to a predictive model of reaching error with the highest accuracy. Here we showed that errors represented in a time domain demonstrate the least variance and allow for the highest predictive model of reaching errors. These predictive models will give rise to more specialized methods of robotic feedback and improve previous techniques of error augmentation.
Poster - 49: Assessment of Synchrony respiratory compensation error for CyberKnife liver treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ming; Cygler,
The goal of this work is to quantify respiratory motion compensation errors for liver tumor patients treated by the CyberKnife system with Synchrony tracking, to identify patients with the smallest tracking errors and to eventually help coach patient’s breathing patterns to minimize dose delivery errors. The accuracy of CyberKnife Synchrony respiratory motion compensation was assessed for 37 patients treated for liver lesions by analyzing data from system logfiles. A predictive model is used to modulate the direction of individual beams during dose delivery based on the positions of internally implanted fiducials determined using an orthogonal x-ray imaging system and themore » current location of LED external markers. For each x-ray pair acquired, system logfiles report the prediction error, the difference between the measured and predicted fiducial positions, and the delivery error, which is an estimate of the statistical error in the model overcoming the latency between x-ray acquisition and robotic repositioning. The total error was calculated at the time of each x-ray pair, for the number of treatment fractions and the number of patients, giving the average respiratory motion compensation error in three dimensions. The 99{sup th} percentile for the total radial error is 3.85 mm, with the highest contribution of 2.79 mm in superior/inferior (S/I) direction. The absolute mean compensation error is 1.78 mm radially with a 1.27 mm contribution in the S/I direction. Regions of high total error may provide insight into features predicting groups of patients with larger or smaller total errors.« less
Ability of matrix models to explain the past and predict the future of plant populations.
McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.
2013-01-01
Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.
Ability of matrix models to explain the past and predict the future of plant populations.
Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S
2013-10-01
Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. © 2013 Society for Conservation Biology.
POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models
Johnson, Jacqueline L.; Muller, Keith E.; Slaughter, James C.; Gurka, Matthew J.; Gribbin, Matthew J.; Simpson, Sean L.
2014-01-01
The POWERLIB SAS/IML software provides convenient power calculations for a wide range of multivariate linear models with Gaussian errors. The software includes the Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the “univariate” approach to repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests in “multivariate” approach (MULTIREP), as well as a limited but useful range of mixed models. The familiar univariate linear model with Gaussian errors is an important special case. For estimated covariance, the software provides confidence limits for the resulting estimated power. All power and confidence limits values can be output to a SAS dataset, which can be used to easily produce plots and tables for manuscripts. PMID:25400516
NASA Astrophysics Data System (ADS)
Wimmer, G.
2008-01-01
In this paper we introduce two confidence and two prediction regions for statistical characterization of concentration measurements of product ions in order to discriminate various groups of persons for prospective better detection of primary lung cancer. Two MATLAB algorithms have been created for more adequate description of concentration measurements of volatile organic compounds in human breath gas for potential detection of primary lung cancer and for evaluation of the appropriate confidence and prediction regions.
Haggerty, Christopher M.; de Zélicourt, Diane A.; Restrepo, Maria; Rossignac, Jarek; Spray, Thomas L.; Kanter, Kirk R.; Fogel, Mark A.; Yoganathan, Ajit P.
2012-01-01
Background Virtual modeling of cardiothoracic surgery is a new paradigm that allows for systematic exploration of various operative strategies and uses engineering principles to predict the optimal patient-specific plan. This study investigates the predictive accuracy of such methods for the surgical palliation of single ventricle heart defects. Methods Computational fluid dynamics (CFD)-based surgical planning was used to model the Fontan procedure for four patients prior to surgery. The objective for each was to identify the operative strategy that best distributed hepatic blood flow to the pulmonary arteries. Post-operative magnetic resonance data were acquired to compare (via CFD) the post-operative hemodynamics with predictions. Results Despite variations in physiologic boundary conditions (e.g., cardiac output, venous flows) and the exact geometry of the surgical baffle, sufficient agreement was observed with respect to hepatic flow distribution (90% confidence interval-14 ± 4.3% difference). There was also good agreement of flow-normalized energetic efficiency predictions (19 ± 4.8% error). Conclusions The hemodynamic outcomes of prospective patient-specific surgical planning of the Fontan procedure are described for the first time with good quantitative comparisons between preoperatively predicted and postoperative simulations. These results demonstrate that surgical planning can be a useful tool for single ventricle cardiothoracic surgery with the ability to deliver significant clinical impact. PMID:22777126
Accommodative Performance of Children With Unilateral Amblyopia
Manh, Vivian; Chen, Angela M.; Tarczy-Hornoch, Kristina; Cotter, Susan A.; Candy, T. Rowan
2015-01-01
Purpose. The purpose of this study was to compare the accommodative performance of the amblyopic eye of children with unilateral amblyopia to that of their nonamblyopic eye, and also to that of children without amblyopia, during both monocular and binocular viewing. Methods. Modified Nott retinoscopy was used to measure accommodative performance of 38 subjects with unilateral amblyopia and 25 subjects with typical vision from 3 to 13 years of age during monocular and binocular viewing at target distances of 50, 33, and 25 cm. The relationship between accommodative demand and interocular difference (IOD) in accommodative error was assessed in each group. Results. The mean IOD in monocular accommodative error for amblyopic subjects across all three viewing distances was 0.49 diopters (D) (95% confidence interval [CI], ±1.12 D) in the 180° meridian and 0.54 D (95% CI, ±1.27 D) in the 90° meridian, with the amblyopic eye exhibiting greater accommodative errors on average. Interocular difference in monocular accommodative error increased significantly with increasing accommodative demand; 5%, 47%, and 58% of amblyopic subjects had monocular errors in the amblyopic eye that fell outside the upper 95% confidence limit for the better eye of control subjects at viewing distances of 50, 33, and 25 cm, respectively. Conclusions. When viewing monocularly, children with unilateral amblyopia had greater mean accommodative errors in their amblyopic eyes than in their nonamblyopic eyes, and when compared with control subjects. This could lead to unintended retinal image defocus during patching therapy for amblyopia. PMID:25626970
Caregiver Confidence: Does It Predict Changes in Disability among Elderly Home Care Recipients?
ERIC Educational Resources Information Center
Li, Lydia W.; McLaughlin, Sara J.
2012-01-01
Purpose of the study: The primary aim of this investigation was to determine whether caregiver confidence in their care recipients' functional capabilities predicts changes in the performance of activities of daily living (ADL) among elderly home care recipients. A secondary aim was to explore how caregiver confidence and care recipient functional…
Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?
NASA Technical Reports Server (NTRS)
Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander
2016-01-01
Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
Joshi, Shuchi N; Srinivas, Nuggehally R; Parmar, Deven V
2018-03-01
Our aim was to develop and validate the extrapolative performance of a regression model using a limited sampling strategy for accurate estimation of the area under the plasma concentration versus time curve for saroglitazar. Healthy subject pharmacokinetic data from a well-powered food-effect study (fasted vs fed treatments; n = 50) was used in this work. The first 25 subjects' serial plasma concentration data up to 72 hours and corresponding AUC 0-t (ie, 72 hours) from the fasting group comprised a training dataset to develop the limited sampling model. The internal datasets for prediction included the remaining 25 subjects from the fasting group and all 50 subjects from the fed condition of the same study. The external datasets included pharmacokinetic data for saroglitazar from previous single-dose clinical studies. Limited sampling models were composed of 1-, 2-, and 3-concentration-time points' correlation with AUC 0-t of saroglitazar. Only models with regression coefficients (R 2 ) >0.90 were screened for further evaluation. The best R 2 model was validated for its utility based on mean prediction error, mean absolute prediction error, and root mean square error. Both correlations between predicted and observed AUC 0-t of saroglitazar and verification of precision and bias using Bland-Altman plot were carried out. None of the evaluated 1- and 2-concentration-time points models achieved R 2 > 0.90. Among the various 3-concentration-time points models, only 4 equations passed the predefined criterion of R 2 > 0.90. Limited sampling models with time points 0.5, 2, and 8 hours (R 2 = 0.9323) and 0.75, 2, and 8 hours (R 2 = 0.9375) were validated. Mean prediction error, mean absolute prediction error, and root mean square error were <30% (predefined criterion) and correlation (r) was at least 0.7950 for the consolidated internal and external datasets of 102 healthy subjects for the AUC 0-t prediction of saroglitazar. The same models, when applied to the AUC 0-t prediction of saroglitazar sulfoxide, showed mean prediction error, mean absolute prediction error, and root mean square error <30% and correlation (r) was at least 0.9339 in the same pool of healthy subjects. A 3-concentration-time points limited sampling model predicts the exposure of saroglitazar (ie, AUC 0-t ) within predefined acceptable bias and imprecision limit. Same model was also used to predict AUC 0-∞ . The same limited sampling model was found to predict the exposure of saroglitazar sulfoxide within predefined criteria. This model can find utility during late-phase clinical development of saroglitazar in the patient population. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.
Complementary roles for amygdala and periaqueductal gray in temporal-difference fear learning.
Cole, Sindy; McNally, Gavan P
2009-01-01
Pavlovian fear conditioning is not a unitary process. At the neurobiological level multiple brain regions and neurotransmitters contribute to fear learning. At the behavioral level many variables contribute to fear learning including the physical salience of the events being learned about, the direction and magnitude of predictive error, and the rate at which these are learned about. These experiments used a serial compound conditioning design to determine the roles of basolateral amygdala (BLA) NMDA receptors and ventrolateral midbrain periaqueductal gray (vlPAG) mu-opioid receptors (MOR) in predictive fear learning. Rats received a three-stage design, which arranged for both positive and negative prediction errors producing bidirectional changes in fear learning within the same subjects during the test stage. Intra-BLA infusion of the NR2B receptor antagonist Ifenprodil prevented all learning. In contrast, intra-vlPAG infusion of the MOR antagonist CTAP enhanced learning in response to positive predictive error but impaired learning in response to negative predictive error--a pattern similar to Hebbian learning and an indication that fear learning had been divorced from predictive error. These findings identify complementary but dissociable roles for amygdala NMDA receptors and vlPAG MOR in temporal-difference predictive fear learning.
Green, Christopher T.; Zhang, Yong; Jurgens, Bryant C.; Starn, J. Jeffrey; Landon, Matthew K.
2014-01-01
Analytical models of the travel time distribution (TTD) from a source area to a sample location are often used to estimate groundwater ages and solute concentration trends. The accuracies of these models are not well known for geologically complex aquifers. In this study, synthetic datasets were used to quantify the accuracy of four analytical TTD models as affected by TTD complexity, observation errors, model selection, and tracer selection. Synthetic TTDs and tracer data were generated from existing numerical models with complex hydrofacies distributions for one public-supply well and 14 monitoring wells in the Central Valley, California. Analytical TTD models were calibrated to synthetic tracer data, and prediction errors were determined for estimates of TTDs and conservative tracer (NO3−) concentrations. Analytical models included a new, scale-dependent dispersivity model (SDM) for two-dimensional transport from the watertable to a well, and three other established analytical models. The relative influence of the error sources (TTD complexity, observation error, model selection, and tracer selection) depended on the type of prediction. Geological complexity gave rise to complex TTDs in monitoring wells that strongly affected errors of the estimated TTDs. However, prediction errors for NO3− and median age depended more on tracer concentration errors. The SDM tended to give the most accurate estimates of the vertical velocity and other predictions, although TTD model selection had minor effects overall. Adding tracers improved predictions if the new tracers had different input histories. Studies using TTD models should focus on the factors that most strongly affect the desired predictions.
Wong, Aaron L; Shelhamer, Mark
2014-05-01
Adaptive processes are crucial in maintaining the accuracy of body movements and rely on error storage and processing mechanisms. Although classically studied with adaptation paradigms, evidence of these ongoing error-correction mechanisms should also be detectable in other movements. Despite this connection, current adaptation models are challenged when forecasting adaptation ability with measures of baseline behavior. On the other hand, we have previously identified an error-correction process present in a particular form of baseline behavior, the generation of predictive saccades. This process exhibits long-term intertrial correlations that decay gradually (as a power law) and are best characterized with the tools of fractal time series analysis. Since this baseline task and adaptation both involve error storage and processing, we sought to find a link between the intertrial correlations of the error-correction process in predictive saccades and the ability of subjects to alter their saccade amplitudes during an adaptation task. Here we find just such a relationship: the stronger the intertrial correlations during prediction, the more rapid the acquisition of adaptation. This reinforces the links found previously between prediction and adaptation in motor control and suggests that current adaptation models are inadequate to capture the complete dynamics of these error-correction processes. A better understanding of the similarities in error processing between prediction and adaptation might provide the means to forecast adaptation ability with a baseline task. This would have many potential uses in physical therapy and the general design of paradigms of motor adaptation. Copyright © 2014 the American Physiological Society.
Disambiguating ventral striatum fMRI-related bold signal during reward prediction in schizophrenia
Morris, R W; Vercammen, A; Lenroot, R; Moore, L; Langton, J M; Short, B; Kulkarni, J; Curtis, J; O'Donnell, M; Weickert, C S; Weickert, T W
2012-01-01
Reward detection, surprise detection and prediction-error signaling have all been proposed as roles for the ventral striatum (vStr). Previous neuroimaging studies of striatal function in schizophrenia have found attenuated neural responses to reward-related prediction errors; however, as prediction errors represent a discrepancy in mesolimbic neural activity between expected and actual events, it is critical to examine responses to both expected and unexpected rewards (URs) in conjunction with expected and UR omissions in order to clarify the nature of ventral striatal dysfunction in schizophrenia. In the present study, healthy adults and people with schizophrenia were tested with a reward-related prediction-error task during functional magnetic resonance imaging to determine whether schizophrenia is associated with altered neural responses in the vStr to rewards, surprise prediction errors or all three factors. In healthy adults, we found neural responses in the vStr were correlated more specifically with prediction errors than to surprising events or reward stimuli alone. People with schizophrenia did not display the normal differential activation between expected and URs, which was partially due to exaggerated ventral striatal responses to expected rewards (right vStr) but also included blunted responses to unexpected outcomes (left vStr). This finding shows that neural responses, which typically are elicited by surprise, can also occur to well-predicted events in schizophrenia and identifies aberrant activity in the vStr as a key node of dysfunction in the neural circuitry used to differentiate expected and unexpected feedback in schizophrenia. PMID:21709684
Ishwaran, Hemant; Lu, Min
2018-06-04
Random forests are a popular nonparametric tree ensemble procedure with broad applications to data analysis. While its widespread popularity stems from its prediction performance, an equally important feature is that it provides a fully nonparametric measure of variable importance (VIMP). A current limitation of VIMP, however, is that no systematic method exists for estimating its variance. As a solution, we propose a subsampling approach that can be used to estimate the variance of VIMP and for constructing confidence intervals. The method is general enough that it can be applied to many useful settings, including regression, classification, and survival problems. Using extensive simulations, we demonstrate the effectiveness of the subsampling estimator and in particular find that the delete-d jackknife variance estimator, a close cousin, is especially effective under low subsampling rates due to its bias correction properties. These 2 estimators are highly competitive when compared with the .164 bootstrap estimator, a modified bootstrap procedure designed to deal with ties in out-of-sample data. Most importantly, subsampling is computationally fast, thus making it especially attractive for big data settings. Copyright © 2018 John Wiley & Sons, Ltd.
Bohil, Corey J; Higgins, Nicholas A; Keebler, Joseph R
2014-01-01
We compared methods for predicting and understanding the source of confusion errors during military vehicle identification training. Participants completed training to identify main battle tanks. They also completed card-sorting and similarity-rating tasks to express their mental representation of resemblance across the set of training items. We expected participants to selectively attend to a subset of vehicle features during these tasks, and we hypothesised that we could predict identification confusion errors based on the outcomes of the card-sort and similarity-rating tasks. Based on card-sorting results, we were able to predict about 45% of observed identification confusions. Based on multidimensional scaling of the similarity-rating data, we could predict more than 80% of identification confusions. These methods also enabled us to infer the dimensions receiving significant attention from each participant. This understanding of mental representation may be crucial in creating personalised training that directs attention to features that are critical for accurate identification. Participants completed military vehicle identification training and testing, along with card-sorting and similarity-rating tasks. The data enabled us to predict up to 84% of identification confusion errors and to understand the mental representation underlying these errors. These methods have potential to improve training and reduce identification errors leading to fratricide.
Impact of SST Anomaly Events over the Kuroshio-Oyashio Extension on the "Summer Prediction Barrier"
NASA Astrophysics Data System (ADS)
Wu, Yujie; Duan, Wansuo
2018-04-01
The "summer prediction barrier" (SPB) of SST anomalies (SSTA) over the Kuroshio-Oyashio Extension (KOE) refers to the phenomenon that prediction errors of KOE-SSTA tend to increase rapidly during boreal summer, resulting in large prediction uncertainties. The fast error growth associated with the SPB occurs in the mature-to-decaying transition phase, which is usually during the August-September-October (ASO) season, of the KOE-SSTA events to be predicted. Thus, the role of KOE-SSTA evolutionary characteristics in the transition phase in inducing the SPB is explored by performing perfect model predictability experiments in a coupled model, indicating that the SSTA events with larger mature-to-decaying transition rates (Category-1) favor a greater possibility of yielding a more significant SPB than those events with smaller transition rates (Category-2). The KOE-SSTA events in Category-1 tend to have more significant anomalous Ekman pumping in their transition phase, resulting in larger prediction errors of vertical oceanic temperature advection associated with the SSTA events. Consequently, Category-1 events possess faster error growth and larger prediction errors. In addition, the anomalous Ekman upwelling (downwelling) in the ASO season also causes SSTA cooling (warming), accelerating the transition rates of warm (cold) KOE-SSTA events. Therefore, the SSTA transition rate and error growth rate are both related with the anomalous Ekman pumping of the SSTA events to be predicted in their transition phase. This may explain why the SSTA events transferring more rapidly from the mature to decaying phase tend to have a greater possibility of yielding a more significant SPB.
Suppression of Striatal Prediction Errors by the Prefrontal Cortex in Placebo Hypoalgesia.
Schenk, Lieven A; Sprenger, Christian; Onat, Selim; Colloca, Luana; Büchel, Christian
2017-10-04
Classical learning theories predict extinction after the discontinuation of reinforcement through prediction errors. However, placebo hypoalgesia, although mediated by associative learning, has been shown to be resistant to extinction. We tested the hypothesis that this is mediated by the suppression of prediction error processing through the prefrontal cortex (PFC). We compared pain modulation through treatment cues (placebo hypoalgesia, treatment context) with pain modulation through stimulus intensity cues (stimulus context) during functional magnetic resonance imaging in 48 male and female healthy volunteers. During acquisition, our data show that expectations are correctly learned and that this is associated with prediction error signals in the ventral striatum (VS) in both contexts. However, in the nonreinforced test phase, pain modulation and expectations of pain relief persisted to a larger degree in the treatment context, indicating that the expectations were not correctly updated in the treatment context. Consistently, we observed significantly stronger neural prediction error signals in the VS in the stimulus context compared with the treatment context. A connectivity analysis revealed negative coupling between the anterior PFC and the VS in the treatment context, suggesting that the PFC can suppress the expression of prediction errors in the VS. Consistent with this, a participant's conceptual views and beliefs about treatments influenced the pain modulation only in the treatment context. Our results indicate that in placebo hypoalgesia contextual treatment information engages prefrontal conceptual processes, which can suppress prediction error processing in the VS and lead to reduced updating of treatment expectancies, resulting in less extinction of placebo hypoalgesia. SIGNIFICANCE STATEMENT In aversive and appetitive reinforcement learning, learned effects show extinction when reinforcement is discontinued. This is thought to be mediated by prediction errors (i.e., the difference between expectations and outcome). Although reinforcement learning has been central in explaining placebo hypoalgesia, placebo hypoalgesic effects show little extinction and persist after the discontinuation of reinforcement. Our results support the idea that conceptual treatment beliefs bias the neural processing of expectations in a treatment context compared with a more stimulus-driven processing of expectations with stimulus intensity cues. We provide evidence that this is associated with the suppression of prediction error processing in the ventral striatum by the prefrontal cortex. This provides a neural basis for persisting effects in reinforcement learning and placebo hypoalgesia. Copyright © 2017 the authors 0270-6474/17/379715-09$15.00/0.
Latin hypercube approach to estimate uncertainty in ground water vulnerability
Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.
2007-01-01
A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.
De Oliveira, Gildasio S; Rahmani, Rod; Fitzgerald, Paul C; Chang, Ray; McCarthy, Robert J
2013-04-01
Poor supervision of physician trainees can be detrimental not only to resident education but also to patient care and safety. Inadequate supervision has been associated with more frequent deaths of patients under the care of junior residents. We hypothesized that residents reporting more medical errors would also report lower quality of supervision scores than the ones with lower reported medical errors. The primary objective of this study was to evaluate the association between the frequency of medical errors reported by residents and their perceived quality of faculty supervision. A cross-sectional nationwide survey was sent to 1000 residents randomly selected from anesthesiology training departments across the United States. Residents from 122 residency programs were invited to participate, the median (interquartile range) per institution was 7 (4-11). Participants were asked to complete a survey assessing demography, perceived quality of faculty supervision, and perceived causes of inadequate perceived supervision. Responses to the statements "I perform procedures for which I am not properly trained," "I make mistakes that have negative consequences for the patient," and "I have made a medication error (drug or incorrect dose) in the last year" were used to assess error rates. Average supervision scores were determined using the De Oliveira Filho et al. scale and compared among the frequency of self-reported error categories using the Kruskal-Wallis test. Six hundred four residents responded to the survey (60.4%). Forty-five (7.5%) of the respondents reported performing procedures for which they were not properly trained, 24 (4%) reported having made mistakes with negative consequences to patients, and 16 (3%) reported medication errors in the last year having occurred multiple times or often. Supervision scores were inversely correlated with the frequency of reported errors for all 3 questions evaluating errors. At a cutoff value of 3, supervision scores demonstrated an overall accuracy (area under the curve) (99% confidence interval) of 0.81 (0.73-0.86), 0.89 (0.77-0.95), and 0.93 (0.77-0.98) for predicting a response of multiple times or often to the question of performing procedures for which they were not properly trained, reported mistakes with negative consequences to patients, and reported medication errors in the last year, respectively. Anesthesiology trainees who reported a greater incidence of medical errors with negative consequences to patients and drug errors also reported lower scores for supervision by faculty. Our findings suggest that further studies of the association between supervision and patient safety are warranted. (Anesth Analg 2013;116:892-7).
Evaluation of Acoustic Doppler Current Profiler measurements of river discharge
Morlock, S.E.
1996-01-01
The standard deviations of the ADCP measurements ranged from approximately 1 to 6 percent and were generally higher than the measurement errors predicted by error-propagation analysis of ADCP instrument performance. These error-prediction methods assume that the largest component of ADCP discharge measurement error is instrument related. The larger standard deviations indicate that substantial portions of measurement error may be attributable to sources unrelated to ADCP electronics or signal processing and are functions of the field environment.
NASA Astrophysics Data System (ADS)
Sisay, Z. G.; Besha, T.; Gessesse, B.
2017-05-01
This study used in-situ GPS data to validate the accuracy of horizontal coordinates and orientation of linear features of orthophoto and line map for Bahir Dar city. GPS data is processed using GAMIT/GLOBK and Lieca GeoOfice (LGO) in a least square sense with a tie to local and regional GPS reference stations to predict horizontal coordinates at five checkpoints. Real-Time-Kinematic GPS measurement technique is used to collect the coordinates of road centerline to test the accuracy associated with the orientation of the photogrammetric line map. The accuracy of orthophoto was evaluated by comparing with in-situ GPS coordinates and it is in a good agreement with a root mean square error (RMSE) of 12.45 cm in x- and 13.97 cm in y-coordinates, on the other hand, 6.06 cm with 95 % confidence level - GPS coordinates from GAMIT/GLOBK. Whereas, the horizontal coordinates of the orthophoto are in agreement with in-situ GPS coordinates at an accuracy of 16.71 cm and 18.98 cm in x and y-directions respectively and 11.07 cm with 95 % confidence level - GPS data is processed by LGO and a tie to local GPS network. Similarly, the accuracy of linear feature is in a good fit with in-situ GPS measurement. The GPS coordinates of the road centerline deviates from the corresponding coordinates of line map by a mean value of 9.18 cm in x- direction and -14.96 cm in y-direction. Therefore, it can be concluded that, the accuracy of the orthophoto and line map is within the national standard of error budget ( 25 cm).
Confidence set inference with a prior quadratic bound
NASA Technical Reports Server (NTRS)
Backus, George E.
1988-01-01
In the uniqueness part of a geophysical inverse problem, the observer wants to predict all likely values of P unknown numerical properties z = (z sub 1,...,z sub p) of the earth from measurement of D other numerical properties y(0)=(y sub 1(0),...,y sub D(0)) knowledge of the statistical distribution of the random errors in y(0). The data space Y containing y(0) is D-dimensional, so when the model space X is infinite-dimensional the linear uniqueness problem usually is insoluble without prior information about the correct earth model x. If that information is a quadratic bound on x (e.g., energy or dissipation rate), Bayesian inference (BI) and stochastic inversion (SI) inject spurious structure into x, implied by neither the data nor the quadratic bound. Confidence set inference (CSI) provides an alternative inversion technique free of this objection. CSI is illustrated in the problem of estimating the geomagnetic field B at the core-mantle boundary (CMB) from components of B measured on or above the earth's surface. Neither the heat flow nor the energy bound is strong enough to permit estimation of B(r) at single points on the CMB, but the heat flow bound permits estimation of uniform averages of B(r) over discs on the CMB, and both bounds permit weighted disc-averages with continous weighting kernels. Both bounds also permit estimation of low-degree Gauss coefficients at the CMB. The heat flow bound resolves them up to degree 8 if the crustal field at satellite altitudes must be treated as a systematic error, but can resolve to degree 11 under the most favorable statistical treatment of the crust. These two limits produce circles of confusion on the CMB with diameters of 25 deg and 19 deg respectively.
Embedded Model Error Representation and Propagation in Climate Models
NASA Astrophysics Data System (ADS)
Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Thornton, P. E.
2017-12-01
Over the last decade, parametric uncertainty quantification (UQ) methods have reached a level of maturity, while the same can not be said about representation and quantification of structural or model errors. Lack of characterization of model errors, induced by physical assumptions, phenomenological parameterizations or constitutive laws, is a major handicap in predictive science. In particular, e.g. in climate models, significant computational resources are dedicated to model calibration without gaining improvement in predictive skill. Neglecting model errors during calibration/tuning will lead to overconfident and biased model parameters. At the same time, the most advanced methods accounting for model error merely correct output biases, augmenting model outputs with statistical error terms that can potentially violate physical laws, or make the calibrated model ineffective for extrapolative scenarios. This work will overview a principled path for representing and quantifying model errors, as well as propagating them together with the rest of the predictive uncertainty budget, including data noise, parametric uncertainties and surrogate-related errors. Namely, the model error terms will be embedded in select model components rather than as external corrections. Such embedding ensures consistency with physical constraints on model predictions, and renders calibrated model predictions meaningful and robust with respect to model errors. Besides, in the presence of observational data, the approach can effectively differentiate model structural deficiencies from those of data acquisition. The methodology is implemented in UQ Toolkit (www.sandia.gov/uqtoolkit), relying on a host of available forward and inverse UQ tools. We will demonstrate the application of the technique on few application of interest, including ACME Land Model calibration via a wide range of measurements obtained at select sites.
Communicating uncertainties in earth sciences in view of user needs
NASA Astrophysics Data System (ADS)
de Vries, Wim; Kros, Hans; Heuvelink, Gerard
2014-05-01
Uncertainties are inevitable in all results obtained in the earth sciences, regardless whether these are based on field observations, experimental research or predictive modelling. When informing decision and policy makers or stakeholders, it is important that these uncertainties are also communicated. In communicating results, it important to apply a "Progressive Disclosure of Information (PDI)" from non-technical information through more specialised information, according to the user needs. Generalized information is generally directed towards non-scientific audiences and intended for policy advice. Decision makers have to be aware of the implications of the uncertainty associated with results, so that they can account for it in their decisions. Detailed information on the uncertainties is generally intended for scientific audiences to give insight in underlying approaches and results. When communicating uncertainties, it is important to distinguish between scientific results that allow presentation in terms of probabilistic measures of uncertainty and more intrinsic uncertainties and errors that cannot be expressed in mathematical terms. Examples of earth science research that allow probabilistic measures of uncertainty, involving sophisticated statistical methods, are uncertainties in spatial and/or temporal variations in results of: • Observations, such as soil properties measured at sampling locations. In this case, the interpolation uncertainty, caused by a lack of data collected in space, can be quantified by e.g. kriging standard deviation maps or animations of conditional simulations. • Experimental measurements, comparing impacts of treatments at different sites and/or under different conditions. In this case, an indication of the average and range in measured responses to treatments can be obtained from a meta-analysis, summarizing experimental findings between replicates and across studies, sites, ecosystems, etc. • Model predictions due to uncertain model parameters (parametric variability). These uncertainties can be quantified by uncertainty propagation methods such as Monte Carlo simulation methods. Examples of intrinsic uncertainties that generally cannot be expressed in mathematical terms are errors or biases in: • Results of experiments and observations due to inadequate sampling and errors in analyzing data in the laboratory and even in data reporting. • Results of (laboratory) experiments that are limited to a specific domain or performed under circumstances that differ from field circumstances. • Model structure, due to lack of knowledge of the underlying processes. Structural uncertainty, which may cause model inadequacy/ bias, is inherent in model approaches since models are approximations of reality. Intrinsic uncertainties often occur in an emerging field where ongoing new findings, either experiments or field observations of new model findings, challenge earlier work. In this context, climate scientists working within the IPCC have adopted a lexicon to communicate confidence in their findings, ranging from "very high", "high", "medium", "low" and "very low" confidence. In fact, there are also statistical methods to gain insight in uncertainties in model predictions due to model assumptions (i.e. model structural error). Examples are comparing model results with independent observations or a systematic intercomparison of predictions from multiple models. In the latter case, Bayesian model averaging techniques can be used, in which each model considered gets an assigned prior probability of being the 'true' model. This approach works well with statistical (regression) models, but extension to physically-based models is cumbersome. An alternative is the use of state-space models in which structural errors are represent as (additive) noise terms. In this presentation, we focus on approaches that are relevant at the science - policy interface, including multiple scientific disciplines and policy makers with different subject areas. Approaches to communicate uncertainties in results of observations or model predictions are discussed, distinguishing results that include probabilistic measures of uncertainty and more intrinsic uncertainties. Examples concentrate on uncertainties in nitrogen (N) related environmental issues, including: • Spatio-temporal trends in atmospheric N deposition, in view of the policy question whether there is a declining or increasing trend. • Carbon response to N inputs to terrestrial ecosystems, based on meta-analysis of N addition experiments and other approaches, in view of the policy relevance of N emission control. • Calculated spatial variations in the emissions of nitrous-oxide and ammonia, in view of the need of emission policies at different spatial scales. • Calculated N emissions and losses by model intercomparisons, in view of the policy need to apply no-regret decisions with respect to the control of those emissions.
Knowledge acquisition is governed by striatal prediction errors.
Pine, Alex; Sadeh, Noa; Ben-Yakov, Aya; Dudai, Yadin; Mendelsohn, Avi
2018-04-26
Discrepancies between expectations and outcomes, or prediction errors, are central to trial-and-error learning based on reward and punishment, and their neurobiological basis is well characterized. It is not known, however, whether the same principles apply to declarative memory systems, such as those supporting semantic learning. Here, we demonstrate with fMRI that the brain parametrically encodes the degree to which new factual information violates expectations based on prior knowledge and beliefs-most prominently in the ventral striatum, and cortical regions supporting declarative memory encoding. These semantic prediction errors determine the extent to which information is incorporated into long-term memory, such that learning is superior when incoming information counters strong incorrect recollections, thereby eliciting large prediction errors. Paradoxically, by the same account, strong accurate recollections are more amenable to being supplanted by misinformation, engendering false memories. These findings highlight a commonality in brain mechanisms and computational rules that govern declarative and nondeclarative learning, traditionally deemed dissociable.
KAPAO Prime: Design and Simulation
NASA Astrophysics Data System (ADS)
McGonigle, Lorcan
2012-11-01
KAPAO (KAPAO A Pomona Adaptive Optics instrument) is a dual-band natural guide star adaptive optics system designed to measure and remove atmospheric aberration from Pomona College's telescope atop Table Mountain. We present here, the final optical system, referred to as Prime, designed in Zemax Optical Design Software. Prime is characterized by diffraction limited imaging over the full 73'' field of view of our Andor Camera at f/33 as well as for our NIR Xenics camera at f/50. In Zemax, tolerances of 1% on OAP focal length and off-axis distance were shown to contribute an additional 4 nm of wavefront error (98% confidence) over the field of view of the Andor camera; the contribution from surface irregularity was determined analytically to be 40nm for OAPs specified to l/10 surface irregularity. Modeling of the temperature deformation of the breadboard in SolidWorks revealed 70 micron contractions along the edges of the board for a decrease of 75 F; when applied to OAP positions such displacements from the optimal layout are predicted to contribute an additional 20 nanometers of wavefront error. Flexure modeling of the breadboard due to gravity is on-going. We hope to begin alignment and testing of ``Prime'' in Q1 2013.
Flight Evaluation of Center-TRACON Automation System Trajectory Prediction Process
NASA Technical Reports Server (NTRS)
Williams, David H.; Green, Steven M.
1998-01-01
Two flight experiments (Phase 1 in October 1992 and Phase 2 in September 1994) were conducted to evaluate the accuracy of the Center-TRACON Automation System (CTAS) trajectory prediction process. The Transport Systems Research Vehicle (TSRV) Boeing 737 based at Langley Research Center flew 57 arrival trajectories that included cruise and descent segments; at the same time, descent clearance advisories from CTAS were followed. Actual trajectories of the airplane were compared with the trajectories predicted by the CTAS trajectory synthesis algorithms and airplane Flight Management System (FMS). Trajectory prediction accuracy was evaluated over several levels of cockpit automation that ranged from a conventional cockpit to performance-based FMS vertical navigation (VNAV). Error sources and their magnitudes were identified and measured from the flight data. The major source of error during these tests was found to be the predicted winds aloft used by CTAS. The most significant effect related to flight guidance was the cross-track and turn-overshoot errors associated with conventional VOR guidance. FMS lateral navigation (LNAV) guidance significantly reduced both the cross-track and turn-overshoot error. Pilot procedures and VNAV guidance were found to significantly reduce the vertical profile errors associated with atmospheric and airplane performance model errors.
Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T
2016-02-01
The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.
Surprise beyond prediction error
Chumbley, Justin R; Burke, Christopher J; Stephan, Klaas E; Friston, Karl J; Tobler, Philippe N; Fehr, Ernst
2014-01-01
Surprise drives learning. Various neural “prediction error” signals are believed to underpin surprise-based reinforcement learning. Here, we report a surprise signal that reflects reinforcement learning but is neither un/signed reward prediction error (RPE) nor un/signed state prediction error (SPE). To exclude these alternatives, we measured surprise responses in the absence of RPE and accounted for a host of potential SPE confounds. This new surprise signal was evident in ventral striatum, primary sensory cortex, frontal poles, and amygdala. We interpret these findings via a normative model of surprise. PMID:24700400
Homeostatic Regulation of Memory Systems and Adaptive Decisions
Mizumori, Sheri JY; Jo, Yong Sang
2013-01-01
While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The “multiple memory systems of the brain” have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result in rigid and suboptimal decision making and memory as seen in addiction and neurological disease. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:23929788
Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination
NASA Astrophysics Data System (ADS)
Li, Weihua; Sankarasubramanian, A.
2012-12-01
Model errors are inevitable in any prediction exercise. One approach that is currently gaining attention in reducing model errors is by combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictions. A new dynamic approach (MM-1) to combine multiple hydrological models by evaluating their performance/skill contingent on the predictor state is proposed. We combine two hydrological models, "abcd" model and variable infiltration capacity (VIC) model, to develop multimodel streamflow predictions. To quantify precisely under what conditions the multimodel combination results in improved predictions, we compare multimodel scheme MM-1 with optimal model combination scheme (MM-O) by employing them in predicting the streamflow generated from a known hydrologic model (abcd model orVICmodel) with heteroscedastic error variance as well as from a hydrologic model that exhibits different structure than that of the candidate models (i.e., "abcd" model or VIC model). Results from the study show that streamflow estimated from single models performed better than multimodels under almost no measurement error. However, under increased measurement errors and model structural misspecification, both multimodel schemes (MM-1 and MM-O) consistently performed better than the single model prediction. Overall, MM-1 performs better than MM-O in predicting the monthly flow values as well as in predicting extreme monthly flows. Comparison of the weights obtained from each candidate model reveals that as measurement errors increase, MM-1 assigns weights equally for all the models, whereas MM-O assigns higher weights for always the best-performing candidate model under the calibration period. Applying the multimodel algorithms for predicting streamflows over four different sites revealed that MM-1 performs better than all single models and optimal model combination scheme, MM-O, in predicting the monthly flows as well as the flows during wetter months.
Homeostatic regulation of memory systems and adaptive decisions.
Mizumori, Sheri J Y; Jo, Yong Sang
2013-11-01
While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The "multiple memory systems of the brain" have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result in rigid and suboptimal decision making and memory as seen in addiction and neurological disease. Copyright © 2013 Wiley Periodicals, Inc.
Trehan, Sumeet; Carlberg, Kevin T.; Durlofsky, Louis J.
2017-07-14
A machine learning–based framework for modeling the error introduced by surrogate models of parameterized dynamical systems is proposed. The framework entails the use of high-dimensional regression techniques (eg, random forests, and LASSO) to map a large set of inexpensively computed “error indicators” (ie, features) produced by the surrogate model at a given time instance to a prediction of the surrogate-model error in a quantity of interest (QoI). This eliminates the need for the user to hand-select a small number of informative features. The methodology requires a training set of parameter instances at which the time-dependent surrogate-model error is computed bymore » simulating both the high-fidelity and surrogate models. Using these training data, the method first determines regression-model locality (via classification or clustering) and subsequently constructs a “local” regression model to predict the time-instantaneous error within each identified region of feature space. We consider 2 uses for the resulting error model: (1) as a correction to the surrogate-model QoI prediction at each time instance and (2) as a way to statistically model arbitrary functions of the time-dependent surrogate-model error (eg, time-integrated errors). We then apply the proposed framework to model errors in reduced-order models of nonlinear oil-water subsurface flow simulations, with time-varying well-control (bottom-hole pressure) parameters. The reduced-order models used in this work entail application of trajectory piecewise linearization in conjunction with proper orthogonal decomposition. Moreover, when the first use of the method is considered, numerical experiments demonstrate consistent improvement in accuracy in the time-instantaneous QoI prediction relative to the original surrogate model, across a large number of test cases. When the second use is considered, results show that the proposed method provides accurate statistical predictions of the time- and well-averaged errors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trehan, Sumeet; Carlberg, Kevin T.; Durlofsky, Louis J.
A machine learning–based framework for modeling the error introduced by surrogate models of parameterized dynamical systems is proposed. The framework entails the use of high-dimensional regression techniques (eg, random forests, and LASSO) to map a large set of inexpensively computed “error indicators” (ie, features) produced by the surrogate model at a given time instance to a prediction of the surrogate-model error in a quantity of interest (QoI). This eliminates the need for the user to hand-select a small number of informative features. The methodology requires a training set of parameter instances at which the time-dependent surrogate-model error is computed bymore » simulating both the high-fidelity and surrogate models. Using these training data, the method first determines regression-model locality (via classification or clustering) and subsequently constructs a “local” regression model to predict the time-instantaneous error within each identified region of feature space. We consider 2 uses for the resulting error model: (1) as a correction to the surrogate-model QoI prediction at each time instance and (2) as a way to statistically model arbitrary functions of the time-dependent surrogate-model error (eg, time-integrated errors). We then apply the proposed framework to model errors in reduced-order models of nonlinear oil-water subsurface flow simulations, with time-varying well-control (bottom-hole pressure) parameters. The reduced-order models used in this work entail application of trajectory piecewise linearization in conjunction with proper orthogonal decomposition. Moreover, when the first use of the method is considered, numerical experiments demonstrate consistent improvement in accuracy in the time-instantaneous QoI prediction relative to the original surrogate model, across a large number of test cases. When the second use is considered, results show that the proposed method provides accurate statistical predictions of the time- and well-averaged errors.« less
Estimating Flow-Duration and Low-Flow Frequency Statistics for Unregulated Streams in Oregon
Risley, John; Stonewall, Adam J.; Haluska, Tana
2008-01-01
Flow statistical datasets, basin-characteristic datasets, and regression equations were developed to provide decision makers with surface-water information needed for activities such as water-quality regulation, water-rights adjudication, biological habitat assessment, infrastructure design, and water-supply planning and management. The flow statistics, which included annual and monthly period of record flow durations (5th, 10th, 25th, 50th, and 95th percent exceedances) and annual and monthly 7-day, 10-year (7Q10) and 7-day, 2-year (7Q2) low flows, were computed at 466 streamflow-gaging stations at sites with unregulated flow conditions throughout Oregon and adjacent areas of neighboring States. Regression equations, created from the flow statistics and basin characteristics of the stations, can be used to estimate flow statistics at ungaged stream sites in Oregon. The study area was divided into 10 regression modeling regions based on ecological, topographic, geologic, hydrologic, and climatic criteria. In total, 910 annual and monthly regression equations were created to predict the 7 flow statistics in the 10 regions. Equations to predict the five flow-duration exceedance percentages and the two low-flow frequency statistics were created with Ordinary Least Squares and Generalized Least Squares regression, respectively. The standard errors of estimate of the equations created to predict the 5th and 95th percent exceedances had medians of 42.4 and 64.4 percent, respectively. The standard errors of prediction of the equations created to predict the 7Q2 and 7Q10 low-flow statistics had medians of 51.7 and 61.2 percent, respectively. Standard errors for regression equations for sites in western Oregon were smaller than those in eastern Oregon partly because of a greater density of available streamflow-gaging stations in western Oregon than eastern Oregon. High-flow regression equations (such as the 5th and 10th percent exceedances) also generally were more accurate than the low-flow regression equations (such as the 95th percent exceedance and 7Q10 low-flow statistic). The regression equations predict unregulated flow conditions in Oregon. Flow estimates need to be adjusted if they are used at ungaged sites that are regulated by reservoirs or affected by water-supply and agricultural withdrawals if actual flow conditions are of interest. The regression equations are installed in the USGS StreamStats Web-based tool (http://water.usgs.gov/osw/streamstats/index.html, accessed July 16, 2008). StreamStats provides users with a set of annual and monthly flow-duration and low-flow frequency estimates for ungaged sites in Oregon in addition to the basin characteristics for the sites. Prediction intervals at the 90-percent confidence level also are automatically computed.
Competition between learned reward and error outcome predictions in anterior cingulate cortex.
Alexander, William H; Brown, Joshua W
2010-02-15
The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Youlin; Xie, Jiakang
2017-07-01
We address two fundamental issues that pertain to Q tomography using high-frequency regional waves, particularly the Lg wave. The first issue is that Q tomography uses complex 'reduced amplitude data' as input. These data are generated by taking the logarithm of the product of (1) the observed amplitudes and (2) the simplified 1D geometrical spreading correction. They are thereby subject to 'modeling errors' that are dominated by uncompensated 3D structural effects; however, no knowledge of the statistical behaviour of these errors exists to justify the widely used least-squares methods for solving Q tomography. The second issue is that Q tomography has been solved using various iterative methods such as LSQR (Least-Squares QR, where QR refers to a QR factorization of a matrix into the product of an orthogonal matrix Q and an upper triangular matrix R) and SIRT (Simultaneous Iterative Reconstruction Technique) that do not allow for the quantitative estimation of model resolution and error. In this study, we conduct the first rigorous analysis of the statistics of the reduced amplitude data and find that the data error distribution is predominantly normal, but with long-tailed outliers. This distribution is similar to that of teleseismic traveltime residuals. We develop a screening procedure to remove outliers so that data closely follow a normal distribution. Next, we develop an efficient tomographic method based on the PROPACK software package to perform singular value decomposition on a data kernel matrix, which enables us to solve for the inverse, model resolution and covariance matrices along with the optimal Q model. These matrices permit for various quantitative model appraisals, including the evaluation of the formal resolution and error. Further, they allow formal uncertainty estimates of predicted data (Q) along future paths to be made at any specified confidence level. This new capability significantly benefits the practical missions of source identification and source size estimation, for which reliable uncertainty estimates are especially important. We apply the new methodologies to data from southeastern China to obtain a 1 Hz Lg Q model, which exhibits patterns consistent with what is known about the geology and tectonics of the region. We also solve for the site response model.
Gaskin, Cadeyrn J; Happell, Brenda
2014-05-01
To (a) assess the statistical power of nursing research to detect small, medium, and large effect sizes; (b) estimate the experiment-wise Type I error rate in these studies; and (c) assess the extent to which (i) a priori power analyses, (ii) effect sizes (and interpretations thereof), and (iii) confidence intervals were reported. Statistical review. Papers published in the 2011 volumes of the 10 highest ranked nursing journals, based on their 5-year impact factors. Papers were assessed for statistical power, control of experiment-wise Type I error, reporting of a priori power analyses, reporting and interpretation of effect sizes, and reporting of confidence intervals. The analyses were based on 333 papers, from which 10,337 inferential statistics were identified. The median power to detect small, medium, and large effect sizes was .40 (interquartile range [IQR]=.24-.71), .98 (IQR=.85-1.00), and 1.00 (IQR=1.00-1.00), respectively. The median experiment-wise Type I error rate was .54 (IQR=.26-.80). A priori power analyses were reported in 28% of papers. Effect sizes were routinely reported for Spearman's rank correlations (100% of papers in which this test was used), Poisson regressions (100%), odds ratios (100%), Kendall's tau correlations (100%), Pearson's correlations (99%), logistic regressions (98%), structural equation modelling/confirmatory factor analyses/path analyses (97%), and linear regressions (83%), but were reported less often for two-proportion z tests (50%), analyses of variance/analyses of covariance/multivariate analyses of variance (18%), t tests (8%), Wilcoxon's tests (8%), Chi-squared tests (8%), and Fisher's exact tests (7%), and not reported for sign tests, Friedman's tests, McNemar's tests, multi-level models, and Kruskal-Wallis tests. Effect sizes were infrequently interpreted. Confidence intervals were reported in 28% of papers. The use, reporting, and interpretation of inferential statistics in nursing research need substantial improvement. Most importantly, researchers should abandon the misleading practice of interpreting the results from inferential tests based solely on whether they are statistically significant (or not) and, instead, focus on reporting and interpreting effect sizes, confidence intervals, and significance levels. Nursing researchers also need to conduct and report a priori power analyses, and to address the issue of Type I experiment-wise error inflation in their studies. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Opar, David A; Piatkowski, Timothy; Williams, Morgan D; Shield, Anthony J
2013-09-01
Reliability and case-control injury study. To determine if a novel device designed to measure eccentric knee flexor strength via the Nordic hamstring exercise displays acceptable test-retest reliability; to determine normative values for eccentric knee flexor strength derived from the device in individuals without a history of hamstring strain injury (HSI); and to determine if the device can detect weakness in elite athletes with a previous history of unilateral HSI. HSI and reinjury are the most common cause of lost playing time in a number of sports. Eccentric knee flexor weakness is a major modifiable risk factor for future HSI. However, at present, there is a lack of easily accessible equipment to assess eccentric knee flexor strength. Thirty recreationally active males without a history of HSI completed the Nordic hamstring exercise on the device on 2 separate occasions. Intraclass correlation coefficients, typical error, typical error as a coefficient of variation, and minimal detectable change at a 95% confidence level were calculated. Normative strength data were determined using the most reliable measurement. An additional 20 elite athletes with a unilateral history of HSI within the previous 12 months performed the Nordic hamstring exercise on the device to determine if residual eccentric muscle weakness existed in the previously injured limb. The device displayed high to moderate reliability (intraclass correlation coefficient = 0.83-0.90; typical error, 21.7-27.5 N; typical error as a coefficient of variation, 5.8%-8.5%; minimal detectable change at a 95% confidence level, 60.1-76.2 N). Mean ± SD normative eccentric flexor strength in the uninjured group was 344.7 ± 61.1 N for the left and 361.2 ± 65.1 N for the right side. The previously injured limb was 15% weaker than the contralateral uninjured limb (mean difference, 50.3 N; 95% confidence interval: 25.7, 74.9; P<.01), 15% weaker than the normative left limb (mean difference, 50.0 N; 95% confidence interval: 1.4, 98.5; P = .04), and 18% weaker than the normative right limb (mean difference, 66.5 N; 95% confidence interval: 18.0, 115.1; P<.01). The experimental device offers a reliable method to measure eccentric knee flexor strength and strength asymmetry and to detect residual weakness in previously injured elite athletes.
Farwell, Lawrence A; Richardson, Drew C; Richardson, Graham M
2013-08-01
Brain fingerprinting detects concealed information stored in the brain by measuring brainwave responses. We compared P300 and P300-MERMER event-related brain potentials for error rate/accuracy and statistical confidence in four field/real-life studies. 76 tests detected presence or absence of information regarding (1) real-life events including felony crimes; (2) real crimes with substantial consequences (either a judicial outcome, i.e., evidence admitted in court, or a $100,000 reward for beating the test); (3) knowledge unique to FBI agents; and (4) knowledge unique to explosives (EOD/IED) experts. With both P300 and P300-MERMER, error rate was 0 %: determinations were 100 % accurate, no false negatives or false positives; also no indeterminates. Countermeasures had no effect. Median statistical confidence for determinations was 99.9 % with P300-MERMER and 99.6 % with P300. Brain fingerprinting methods and scientific standards for laboratory and field applications are discussed. Major differences in methods that produce different results are identified. Markedly different methods in other studies have produced over 10 times higher error rates and markedly lower statistical confidences than those of these, our previous studies, and independent replications. Data support the hypothesis that accuracy, reliability, and validity depend on following the brain fingerprinting scientific standards outlined herein.
ERIC Educational Resources Information Center
Raykov, Tenko; Penev, Spiridon
2006-01-01
Unlike a substantial part of reliability literature in the past, this article is concerned with weighted combinations of a given set of congeneric measures with uncorrelated errors. The relationship between maximal coefficient alpha and maximal reliability for such composites is initially dealt with, and it is shown that the former is a lower…
49 CFR Appendix D to Part 222 - Determining Risk Levels
Code of Federal Regulations, 2011 CFR
2011-10-01
... prediction formulas can be used to derive the following for each crossing: 1. the predicted collisions (PC) 2... for errors such as data entry errors. The final output is the predicted number of collisions (PC). (e... collisions (PC). (f) For the prediction and severity index formulas, please see the following DOT...
Five-equation and robust three-equation methods for solution verification of large eddy simulation
NASA Astrophysics Data System (ADS)
Dutta, Rabijit; Xing, Tao
2018-02-01
This study evaluates the recently developed general framework for solution verification methods for large eddy simulation (LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids. The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark ( S C ), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes (RANS) based error estimation method is applied, it shows significant error in the prediction of S C on coarse meshes. However, it predicts reasonable S C when the grids resolve at least 80% of the total turbulent kinetic energy.
Lock-in amplifier error prediction and correction in frequency sweep measurements.
Sonnaillon, Maximiliano Osvaldo; Bonetto, Fabian Jose
2007-01-01
This article proposes an analytical algorithm for predicting errors in lock-in amplifiers (LIAs) working with time-varying reference frequency. Furthermore, a simple method for correcting such errors is presented. The reference frequency can be swept in order to measure the frequency response of a system within a given spectrum. The continuous variation of the reference frequency produces a measurement error that depends on three factors: the sweep speed, the LIA low-pass filters, and the frequency response of the measured system. The proposed error prediction algorithm is based on the final value theorem of the Laplace transform. The correction method uses a double-sweep measurement. A mathematical analysis is presented and validated with computational simulations and experimental measurements.
Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik; ...
2017-02-15
Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Finally, we usemore » gate set tomography to completely characterize operations on a trapped-Yb +-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10 -4).« less
Software for Quantifying and Simulating Microsatellite Genotyping Error
Johnson, Paul C.D.; Haydon, Daniel T.
2007-01-01
Microsatellite genetic marker data are exploited in a variety of fields, including forensics, gene mapping, kinship inference and population genetics. In all of these fields, inference can be thwarted by failure to quantify and account for data errors, and kinship inference in particular can benefit from separating errors into two distinct classes: allelic dropout and false alleles. Pedant is MS Windows software for estimating locus-specific maximum likelihood rates of these two classes of error. Estimation is based on comparison of duplicate error-prone genotypes: neither reference genotypes nor pedigree data are required. Other functions include: plotting of error rate estimates and confidence intervals; simulations for performing power analysis and for testing the robustness of error rate estimates to violation of the underlying assumptions; and estimation of expected heterozygosity, which is a required input. The program, documentation and source code are available from http://www.stats.gla.ac.uk/~paulj/pedant.html. PMID:20066126
Creating illusions of knowledge: learning errors that contradict prior knowledge.
Fazio, Lisa K; Barber, Sarah J; Rajaram, Suparna; Ornstein, Peter A; Marsh, Elizabeth J
2013-02-01
Most people know that the Pacific is the largest ocean on Earth and that Edison invented the light bulb. Our question is whether this knowledge is stable, or if people will incorporate errors into their knowledge bases, even if they have the correct knowledge stored in memory. To test this, we asked participants general-knowledge questions 2 weeks before they read stories that contained errors (e.g., "Franklin invented the light bulb"). On a later general-knowledge test, participants reproduced story errors despite previously answering the questions correctly. This misinformation effect was found even for questions that were answered correctly on the initial test with the highest level of confidence. Furthermore, prior knowledge offered no protection against errors entering the knowledge base; the misinformation effect was equivalent for previously known and unknown facts. Errors can enter the knowledge base even when learners have the knowledge necessary to catch the errors. 2013 APA, all rights reserved
Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik; Rudinger, Kenneth; Mizrahi, Jonathan; Fortier, Kevin; Maunz, Peter
2017-01-01
Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Here we use gate set tomography to completely characterize operations on a trapped-Yb+-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10−4). PMID:28198466
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik
Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Finally, we usemore » gate set tomography to completely characterize operations on a trapped-Yb +-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10 -4).« less
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Kundu, Prasun K.; Kummerow, Christian D.; Einaudi, Franco (Technical Monitor)
2000-01-01
Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the satellite estimates. The rainfall estimate for a given map grid box is subject to both remote-sensing error and, in the case of low-orbiting satellites, sampling error due to the limited number of observations of the grid box provided by the satellite. A simple model of rain behavior predicts that Root-mean-square (RMS) random error in grid-box averages should depend in a simple way on the local average rain rate, and the predicted behavior has been seen in simulations using surface rain-gauge and radar data. This relationship was examined using satellite SSM/I data obtained over the western equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I rainfall estimates was found to be larger than predicted from surface data, and to depend less on local rain rate than was predicted. Preliminary examination of TRMM microwave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite rainfall estimates is suggested, based on quantities that can be directly computed from the satellite data.
Prediction of transmission distortion for wireless video communication: analysis.
Chen, Zhifeng; Wu, Dapeng
2012-03-01
Transmitting video over wireless is a challenging problem since video may be seriously distorted due to packet errors caused by wireless channels. The capability of predicting transmission distortion (i.e., video distortion caused by packet errors) can assist in designing video encoding and transmission schemes that achieve maximum video quality or minimum end-to-end video distortion. This paper is aimed at deriving formulas for predicting transmission distortion. The contribution of this paper is twofold. First, we identify the governing law that describes how the transmission distortion process evolves over time and analytically derive the transmission distortion formula as a closed-form function of video frame statistics, channel error statistics, and system parameters. Second, we identify, for the first time, two important properties of transmission distortion. The first property is that the clipping noise, which is produced by nonlinear clipping, causes decay of propagated error. The second property is that the correlation between motion-vector concealment error and propagated error is negative and has dominant impact on transmission distortion, compared with other correlations. Due to these two properties and elegant error/distortion decomposition, our formula provides not only more accurate prediction but also lower complexity than the existing methods.
NASA Astrophysics Data System (ADS)
Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas
2018-07-01
This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.
Pharmacogenetic excitation of dorsomedial prefrontal cortex restores fear prediction error.
Yau, Joanna Oi-Yue; McNally, Gavan P
2015-01-07
Pavlovian conditioning involves encoding the predictive relationship between a conditioned stimulus (CS) and an unconditioned stimulus, so that synaptic plasticity and learning is instructed by prediction error. Here we used pharmacogenetic techniques to show a causal relation between activity of rat dorsomedial prefrontal cortex (dmPFC) neurons and fear prediction error. We expressed the excitatory hM3Dq designer receptor exclusively activated by a designer drug (DREADD) in dmPFC and isolated actions of prediction error by using an associative blocking design. Rats were trained to fear the visual CS (CSA) in stage I via pairings with footshock. Then in stage II, rats received compound presentations of visual CSA and auditory CS (CSB) with footshock. This prior fear conditioning of CSA reduced the prediction error during stage II to block fear learning to CSB. The group of rats that received AAV-hSYN-eYFP vector that was treated with clozapine-N-oxide (CNO; 3 mg/kg, i.p.) before stage II showed blocking when tested in the absence of CNO the next day. In contrast, the groups that received AAV-hSYN-hM3Dq and AAV-CaMKIIα-hM3Dq that were treated with CNO before stage II training did not show blocking; learning toward CSB was restored. This restoration of prediction error and fear learning was specific to the injection of CNO because groups that received AAV-hSYN-hM3Dq and AAV-CaMKIIα-hM3Dq that were injected with vehicle before stage II training did show blocking. These effects were not attributable to the DREADD manipulation enhancing learning or arousal, increasing fear memory strength or asymptotic levels of fear learning, or altering fear memory retrieval. Together, these results identify a causal role for dmPFC in a signature of adaptive behavior: using the past to predict future danger and learning from errors in these predictions. Copyright © 2015 the authors 0270-6474/15/350074-10$15.00/0.
Dimitrov, S; Detroyer, A; Piroird, C; Gomes, C; Eilstein, J; Pauloin, T; Kuseva, C; Ivanova, H; Popova, I; Karakolev, Y; Ringeissen, S; Mekenyan, O
2016-12-01
When searching for alternative methods to animal testing, confidently rescaling an in vitro result to the corresponding in vivo classification is still a challenging problem. Although one of the most important factors affecting good correlation is sample characteristics, they are very rarely integrated into correlation studies. Usually, in these studies, it is implicitly assumed that both compared values are error-free numbers, which they are not. In this work, we propose a general methodology to analyze and integrate data variability and thus confidence estimation when rescaling from one test to another. The methodology is demonstrated through the case study of rescaling the in vitro Direct Peptide Reactivity Assay (DPRA) reactivity to the in vivo Local Lymph Node Assay (LLNA) skin sensitization potency classifications. In a first step, a comprehensive statistical analysis evaluating the reliability and variability of LLNA and DPRA as such was done. These results allowed us to link the concept of gray zones and confidence probability, which in turn represents a new perspective for a more precise knowledge of the classification of chemicals within their in vivo OR in vitro test. Next, the novelty and practical value of our methodology introducing variability into the threshold optimization between the in vitro AND in vivo test resides in the fact that it attributes a confidence probability to the predicted classification. The methodology, classification and screening approach presented in this study are not restricted to skin sensitization only. They could be helpful also for fate, toxicity and health hazard assessment where plenty of in vitro and in chemico assays and/or QSARs models are available. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Discriminative confidence estimation for probabilistic multi-atlas label fusion.
Benkarim, Oualid M; Piella, Gemma; González Ballester, Miguel Angel; Sanroma, Gerard
2017-12-01
Quantitative neuroimaging analyses often rely on the accurate segmentation of anatomical brain structures. In contrast to manual segmentation, automatic methods offer reproducible outputs and provide scalability to study large databases. Among existing approaches, multi-atlas segmentation has recently shown to yield state-of-the-art performance in automatic segmentation of brain images. It consists in propagating the labelmaps from a set of atlases to the anatomy of a target image using image registration, and then fusing these multiple warped labelmaps into a consensus segmentation on the target image. Accurately estimating the contribution of each atlas labelmap to the final segmentation is a critical step for the success of multi-atlas segmentation. Common approaches to label fusion either rely on local patch similarity, probabilistic statistical frameworks or a combination of both. In this work, we propose a probabilistic label fusion framework based on atlas label confidences computed at each voxel of the structure of interest. Maximum likelihood atlas confidences are estimated using a supervised approach, explicitly modeling the relationship between local image appearances and segmentation errors produced by each of the atlases. We evaluate different spatial pooling strategies for modeling local segmentation errors. We also present a novel type of label-dependent appearance features based on atlas labelmaps that are used during confidence estimation to increase the accuracy of our label fusion. Our approach is evaluated on the segmentation of seven subcortical brain structures from the MICCAI 2013 SATA Challenge dataset and the hippocampi from the ADNI dataset. Overall, our results indicate that the proposed label fusion framework achieves superior performance to state-of-the-art approaches in the majority of the evaluated brain structures and shows more robustness to registration errors. Copyright © 2017 Elsevier B.V. All rights reserved.
Kumar, Poornima; Eickhoff, Simon B.; Dombrovski, Alexandre Y.
2015-01-01
Reinforcement learning describes motivated behavior in terms of two abstract signals. The representation of discrepancies between expected and actual rewards/punishments – prediction error – is thought to update the expected value of actions and predictive stimuli. Electrophysiological and lesion studies suggest that mesostriatal prediction error signals control behavior through synaptic modification of cortico-striato-thalamic networks. Signals in the ventromedial prefrontal and orbitofrontal cortex are implicated in representing expected value. To obtain unbiased maps of these representations in the human brain, we performed a meta-analysis of functional magnetic resonance imaging studies that employed algorithmic reinforcement learning models, across a variety of experimental paradigms. We found that the ventral striatum (medial and lateral) and midbrain/thalamus represented reward prediction errors, consistent with animal studies. Prediction error signals were also seen in the frontal operculum/insula, particularly for social rewards. In Pavlovian studies, striatal prediction error signals extended into the amygdala, while instrumental tasks engaged the caudate. Prediction error maps were sensitive to the model-fitting procedure (fixed or individually-estimated) and to the extent of spatial smoothing. A correlate of expected value was found in a posterior region of the ventromedial prefrontal cortex, caudal and medial to the orbitofrontal regions identified in animal studies. These findings highlight a reproducible motif of reinforcement learning in the cortico-striatal loops and identify methodological dimensions that may influence the reproducibility of activation patterns across studies. PMID:25665667
Reward positivity: Reward prediction error or salience prediction error?
Heydari, Sepideh; Holroyd, Clay B
2016-08-01
The reward positivity is a component of the human ERP elicited by feedback stimuli in trial-and-error learning and guessing tasks. A prominent theory holds that the reward positivity reflects a reward prediction error signal that is sensitive to outcome valence, being larger for unexpected positive events relative to unexpected negative events (Holroyd & Coles, 2002). Although the theory has found substantial empirical support, most of these studies have utilized either monetary or performance feedback to test the hypothesis. However, in apparent contradiction to the theory, a recent study found that unexpected physical punishments also elicit the reward positivity (Talmi, Atkinson, & El-Deredy, 2013). The authors of this report argued that the reward positivity reflects a salience prediction error rather than a reward prediction error. To investigate this finding further, in the present study participants navigated a virtual T maze and received feedback on each trial under two conditions. In a reward condition, the feedback indicated that they would either receive a monetary reward or not and in a punishment condition the feedback indicated that they would receive a small shock or not. We found that the feedback stimuli elicited a typical reward positivity in the reward condition and an apparently delayed reward positivity in the punishment condition. Importantly, this signal was more positive to the stimuli that predicted the omission of a possible punishment relative to stimuli that predicted a forthcoming punishment, which is inconsistent with the salience hypothesis. © 2016 Society for Psychophysiological Research.
Accuracy of Robotic Radiosurgical Liver Treatment Throughout the Respiratory Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, Jeff D.; Wong, Raimond; Swaminath, Anand
Purpose: To quantify random uncertainties in robotic radiosurgical treatment of liver lesions with real-time respiratory motion management. Methods and Materials: We conducted a retrospective analysis of 27 liver cancer patients treated with robotic radiosurgery over 118 fractions. The robotic radiosurgical system uses orthogonal x-ray images to determine internal target position and correlates this position with an external surrogate to provide robotic corrections of linear accelerator positioning. Verification and update of this internal–external correlation model was achieved using periodic x-ray images collected throughout treatment. To quantify random uncertainties in targeting, we analyzed logged tracking information and isolated x-ray images collected immediately beforemore » beam delivery. For translational correlation errors, we quantified the difference between correlation model–estimated target position and actual position determined by periodic x-ray imaging. To quantify prediction errors, we computed the mean absolute difference between the predicted coordinates and actual modeled position calculated 115 milliseconds later. We estimated overall random uncertainty by quadratically summing correlation, prediction, and end-to-end targeting errors. We also investigated relationships between tracking errors and motion amplitude using linear regression. Results: The 95th percentile absolute correlation errors in each direction were 2.1 mm left–right, 1.8 mm anterior–posterior, 3.3 mm cranio–caudal, and 3.9 mm 3-dimensional radial, whereas 95th percentile absolute radial prediction errors were 0.5 mm. Overall 95th percentile random uncertainty was 4 mm in the radial direction. Prediction errors were strongly correlated with modeled target amplitude (r=0.53-0.66, P<.001), whereas only weak correlations existed for correlation errors. Conclusions: Study results demonstrate that model correlation errors are the primary random source of uncertainty in Cyberknife liver treatment and, unlike prediction errors, are not strongly correlated with target motion amplitude. Aggregate 3-dimensional radial position errors presented here suggest the target will be within 4 mm of the target volume for 95% of the beam delivery.« less
NASA Astrophysics Data System (ADS)
De Felice, Matteo; Petitta, Marcello; Ruti, Paolo
2014-05-01
Photovoltaic diffusion is steadily growing on Europe, passing from a capacity of almost 14 GWp in 2011 to 21.5 GWp in 2012 [1]. Having accurate forecast is needed for planning and operational purposes, with the possibility to model and predict solar variability at different time-scales. This study examines the predictability of daily surface solar radiation comparing ECMWF operational forecasts with CM-SAF satellite measurements on the Meteosat (MSG) full disk domain. Operational forecasts used are the IFS system up to 10 days and the System4 seasonal forecast up to three months. Forecast are analysed considering average and variance of errors, showing error maps and average on specific domains with respect to prediction lead times. In all the cases, forecasts are compared with predictions obtained using persistence and state-of-art time-series models. We can observe a wide range of errors, with the performance of forecasts dramatically affected by orography and season. Lower errors are on southern Italy and Spain, with errors on some areas consistently under 10% up to ten days during summer (JJA). Finally, we conclude the study with some insight on how to "translate" the error on solar radiation to error on solar power production using available production data from solar power plants. [1] EurObserver, "Baromètre Photovoltaïque, Le journal des énergies renouvables, April 2012."
Cao, Hui; Stetson, Peter; Hripcsak, George
2003-01-01
Many types of medical errors occur in and outside of hospitals, some of which have very serious consequences and increase cost. Identifying errors is a critical step for managing and preventing them. In this study, we assessed the explicit reporting of medical errors in the electronic record. We used five search terms "mistake," "error," "incorrect," "inadvertent," and "iatrogenic" to survey several sets of narrative reports including discharge summaries, sign-out notes, and outpatient notes from 1991 to 2000. We manually reviewed all the positive cases and identified them based on the reporting of physicians. We identified 222 explicitly reported medical errors. The positive predictive value varied with different keywords. In general, the positive predictive value for each keyword was low, ranging from 3.4 to 24.4%. Therapeutic-related errors were the most common reported errors and these reported therapeutic-related errors were mainly medication errors. Keyword searches combined with manual review indicated some medical errors that were reported in medical records. It had a low sensitivity and a moderate positive predictive value, which varied by search term. Physicians were most likely to record errors in the Hospital Course and History of Present Illness sections of discharge summaries. The reported errors in medical records covered a broad range and were related to several types of care providers as well as non-health care professionals.
Debiasing affective forecasting errors with targeted, but not representative, experience narratives.
Shaffer, Victoria A; Focella, Elizabeth S; Scherer, Laura D; Zikmund-Fisher, Brian J
2016-10-01
To determine whether representative experience narratives (describing a range of possible experiences) or targeted experience narratives (targeting the direction of forecasting bias) can reduce affective forecasting errors, or errors in predictions of experiences. In Study 1, participants (N=366) were surveyed about their experiences with 10 common medical events. Those who had never experienced the event provided ratings of predicted discomfort and those who had experienced the event provided ratings of actual discomfort. Participants making predictions were randomly assigned to either the representative experience narrative condition or the control condition in which they made predictions without reading narratives. In Study 2, participants (N=196) were again surveyed about their experiences with these 10 medical events, but participants making predictions were randomly assigned to either the targeted experience narrative condition or the control condition. Affective forecasting errors were observed in both studies. These forecasting errors were reduced with the use of targeted experience narratives (Study 2) but not representative experience narratives (Study 1). Targeted, but not representative, narratives improved the accuracy of predicted discomfort. Public collections of patient experiences should favor stories that target affective forecasting biases over stories representing the range of possible experiences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hoos, Anne B.; Patel, Anant R.
1996-01-01
Model-adjustment procedures were applied to the combined data bases of storm-runoff quality for Chattanooga, Knoxville, and Nashville, Tennessee, to improve predictive accuracy for storm-runoff quality for urban watersheds in these three cities and throughout Middle and East Tennessee. Data for 45 storms at 15 different sites (five sites in each city) constitute the data base. Comparison of observed values of storm-runoff load and event-mean concentration to the predicted values from the regional regression models for 10 constituents shows prediction errors, as large as 806,000 percent. Model-adjustment procedures, which combine the regional model predictions with local data, are applied to improve predictive accuracy. Standard error of estimate after model adjustment ranges from 67 to 322 percent. Calibration results may be biased due to sampling error in the Tennessee data base. The relatively large values of standard error of estimate for some of the constituent models, although representing significant reduction (at least 50 percent) in prediction error compared to estimation with unadjusted regional models, may be unacceptable for some applications. The user may wish to collect additional local data for these constituents and repeat the analysis, or calibrate an independent local regression model.
Predictive accuracy of a ground-water model--Lessons from a postaudit
Konikow, Leonard F.
1986-01-01
Hydrogeologic studies commonly include the development, calibration, and application of a deterministic simulation model. To help assess the value of using such models to make predictions, a postaudit was conducted on a previously studied area in the Salt River and lower Santa Cruz River basins in central Arizona. A deterministic, distributed-parameter model of the ground-water system in these alluvial basins was calibrated by Anderson (1968) using about 40 years of data (1923–64). The calibrated model was then used to predict future water-level changes during the next 10 years (1965–74). Examination of actual water-level changes in 77 wells from 1965–74 indicates a poor correlation between observed and predicted water-level changes. The differences have a mean of 73 ft that is, predicted declines consistently exceeded those observed and a standard deviation of 47 ft. The bias in the predicted water-level change can be accounted for by the large error in the assumed total pumpage during the prediction period. However, the spatial distribution of errors in predicted water-level change does not correlate with the spatial distribution of errors in pumpage. Consequently, the lack of precision probably is not related only to errors in assumed pumpage, but may indicate the presence of other sources of error in the model, such as the two-dimensional representation of a three-dimensional problem or the lack of consideration of land-subsidence processes. This type of postaudit is a valuable method of verifying a model, and an evaluation of predictive errors can provide an increased understanding of the system and aid in assessing the value of undertaking development of a revised model.
Assessing Mediational Models: Testing and Interval Estimation for Indirect Effects.
Biesanz, Jeremy C; Falk, Carl F; Savalei, Victoria
2010-08-06
Theoretical models specifying indirect or mediated effects are common in the social sciences. An indirect effect exists when an independent variable's influence on the dependent variable is mediated through an intervening variable. Classic approaches to assessing such mediational hypotheses ( Baron & Kenny, 1986 ; Sobel, 1982 ) have in recent years been supplemented by computationally intensive methods such as bootstrapping, the distribution of the product methods, and hierarchical Bayesian Markov chain Monte Carlo (MCMC) methods. These different approaches for assessing mediation are illustrated using data from Dunn, Biesanz, Human, and Finn (2007). However, little is known about how these methods perform relative to each other, particularly in more challenging situations, such as with data that are incomplete and/or nonnormal. This article presents an extensive Monte Carlo simulation evaluating a host of approaches for assessing mediation. We examine Type I error rates, power, and coverage. We study normal and nonnormal data as well as complete and incomplete data. In addition, we adapt a method, recently proposed in statistical literature, that does not rely on confidence intervals (CIs) to test the null hypothesis of no indirect effect. The results suggest that the new inferential method-the partial posterior p value-slightly outperforms existing ones in terms of maintaining Type I error rates while maximizing power, especially with incomplete data. Among confidence interval approaches, the bias-corrected accelerated (BC a ) bootstrapping approach often has inflated Type I error rates and inconsistent coverage and is not recommended; In contrast, the bootstrapped percentile confidence interval and the hierarchical Bayesian MCMC method perform best overall, maintaining Type I error rates, exhibiting reasonable power, and producing stable and accurate coverage rates.
Statistical analysis of the calibration procedure for personnel radiation measurement instruments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, W.J.; Bengston, S.J.; Kalbeitzer, F.L.
1980-11-01
Thermoluminescent analyzer (TLA) calibration procedures were used to estimate personnel radiation exposure levels at the Idaho National Engineering Laboratory (INEL). A statistical analysis is presented herein based on data collected over a six month period in 1979 on four TLA's located in the Department of Energy (DOE) Radiological and Environmental Sciences Laboratory at the INEL. The data were collected according to the day-to-day procedure in effect at that time. Both gamma and beta radiation models are developed. Observed TLA readings of thermoluminescent dosimeters are correlated with known radiation levels. This correlation is then used to predict unknown radiation doses frommore » future analyzer readings of personnel thermoluminescent dosimeters. The statistical techniques applied in this analysis include weighted linear regression, estimation of systematic and random error variances, prediction interval estimation using Scheffe's theory of calibration, the estimation of the ratio of the means of two normal bivariate distributed random variables and their corresponding confidence limits according to Kendall and Stuart, tests of normality, experimental design, a comparison between instruments, and quality control.« less
NASA Astrophysics Data System (ADS)
Valizadeh, Maryam; Sohrabi, Mahmoud Reza
2018-03-01
In the present study, artificial neural networks (ANNs) and support vector regression (SVR) as intelligent methods coupled with UV spectroscopy for simultaneous quantitative determination of Dorzolamide (DOR) and Timolol (TIM) in eye drop. Several synthetic mixtures were analyzed for validating the proposed methods. At first, neural network time series, which one type of network from the artificial neural network was employed and its efficiency was evaluated. Afterwards, the radial basis network was applied as another neural network. Results showed that the performance of this method is suitable for predicting. Finally, support vector regression was proposed to construct the Zilomole prediction model. Also, root mean square error (RMSE) and mean recovery (%) were calculated for SVR method. Moreover, the proposed methods were compared to the high-performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them. Also, the effect of interferences was investigated in spike solutions.
Correcting AUC for Measurement Error.
Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang
2015-12-01
Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.
Mulej Bratec, Satja; Xie, Xiyao; Schmid, Gabriele; Doll, Anselm; Schilbach, Leonhard; Zimmer, Claus; Wohlschläger, Afra; Riedl, Valentin; Sorg, Christian
2015-12-01
Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.
Predicting phonetic transcription agreement: Insights from research in infant vocalizations
RAMSDELL, HEATHER L.; OLLER, D. KIMBROUGH; ETHINGTON, CORINNA A.
2010-01-01
The purpose of this study is to provide new perspectives on correlates of phonetic transcription agreement. Our research focuses on phonetic transcription and coding of infant vocalizations. The findings are presumed to be broadly applicable to other difficult cases of transcription, such as found in severe disorders of speech, which similarly result in low reliability for a variety of reasons. We evaluated the predictiveness of two factors not previously documented in the literature as influencing transcription agreement: canonicity and coder confidence. Transcribers coded samples of infant vocalizations, judging both canonicity and confidence. Correlation results showed that canonicity and confidence were strongly related to agreement levels, and regression results showed that canonicity and confidence both contributed significantly to explanation of variance. Specifically, the results suggest that canonicity plays a major role in transcription agreement when utterances involve supraglottal articulation, with coder confidence offering additional power in predicting transcription agreement. PMID:17882695
Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.
Limongi, Roberto; Silva, Angélica M
2016-11-01
The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.
Tropical forecasting - Predictability perspective
NASA Technical Reports Server (NTRS)
Shukla, J.
1989-01-01
Results are presented of classical predictability studies and forecast experiments with observed initial conditions to show the nature of initial error growth and final error equilibration for the tropics and midlatitudes, separately. It is found that the theoretical upper limit of tropical circulation predictability is far less than for midlatitudes. The error growth for a complete general circulation model is compared to a dry version of the same model in which there is no prognostic equation for moisture, and diabatic heat sources are prescribed. It is found that the growth rate of synoptic-scale errors for the dry model is significantly smaller than for the moist model, suggesting that the interactions between dynamics and moist processes are among the important causes of atmospheric flow predictability degradation. Results are then presented of numerical experiments showing that correct specification of the slowly varying boundary condition of SST produces significant improvement in the prediction of time-averaged circulation and rainfall over the tropics.
Generalized Variance Function Applications in Forestry
James Alegria; Charles T. Scott; Charles T. Scott
1991-01-01
Adequately predicting the sampling errors of tabular data can reduce printing costs by eliminating the need to publish separate sampling error tables. Two generalized variance functions (GVFs) found in the literature and three GVFs derived for this study were evaluated for their ability to predict the sampling error of tabular forestry estimates. The recommended GVFs...
Simulating the effect of non-linear mode coupling in cosmological parameter estimation
NASA Astrophysics Data System (ADS)
Kiessling, A.; Taylor, A. N.; Heavens, A. F.
2011-09-01
Fisher Information Matrix methods are commonly used in cosmology to estimate the accuracy that cosmological parameters can be measured with a given experiment and to optimize the design of experiments. However, the standard approach usually assumes both data and parameter estimates are Gaussian-distributed. Further, for survey forecasts and optimization it is usually assumed that the power-spectrum covariance matrix is diagonal in Fourier space. However, in the low-redshift Universe, non-linear mode coupling will tend to correlate small-scale power, moving information from lower to higher order moments of the field. This movement of information will change the predictions of cosmological parameter accuracy. In this paper we quantify this loss of information by comparing naïve Gaussian Fisher matrix forecasts with a maximum likelihood parameter estimation analysis of a suite of mock weak lensing catalogues derived from N-body simulations, based on the SUNGLASS pipeline, for a 2D and tomographic shear analysis of a Euclid-like survey. In both cases, we find that the 68 per cent confidence area of the Ωm-σ8 plane increases by a factor of 5. However, the marginal errors increase by just 20-40 per cent. We propose a new method to model the effects of non-linear shear-power mode coupling in the Fisher matrix by approximating the shear-power distribution as a multivariate Gaussian with a covariance matrix derived from the mock weak lensing survey. We find that this approximation can reproduce the 68 per cent confidence regions of the full maximum likelihood analysis in the Ωm-σ8 plane to high accuracy for both 2D and tomographic weak lensing surveys. Finally, we perform a multiparameter analysis of Ωm, σ8, h, ns, w0 and wa to compare the Gaussian and non-linear mode-coupled Fisher matrix contours. The 6D volume of the 1σ error contours for the non-linear Fisher analysis is a factor of 3 larger than for the Gaussian case, and the shape of the 68 per cent confidence volume is modified. We propose that future Fisher matrix estimates of cosmological parameter accuracies should include mode-coupling effects.
Joch, Michael; Hegele, Mathias; Maurer, Heiko; Müller, Hermann; Maurer, Lisa Katharina
2017-07-01
The error (related) negativity (Ne/ERN) is an event-related potential in the electroencephalogram (EEG) correlating with error processing. Its conditions of appearance before terminal external error information suggest that the Ne/ERN is indicative of predictive processes in the evaluation of errors. The aim of the present study was to specifically examine the Ne/ERN in a complex motor task and to particularly rule out other explaining sources of the Ne/ERN aside from error prediction processes. To this end, we focused on the dependency of the Ne/ERN on visual monitoring about the action outcome after movement termination but before result feedback (action effect monitoring). Participants performed a semi-virtual throwing task by using a manipulandum to throw a virtual ball displayed on a computer screen to hit a target object. Visual feedback about the ball flying to the target was masked to prevent action effect monitoring. Participants received a static feedback about the action outcome (850 ms) after each trial. We found a significant negative deflection in the average EEG curves of the error trials peaking at ~250 ms after ball release, i.e., before error feedback. Furthermore, this Ne/ERN signal did not depend on visual ball-flight monitoring after release. We conclude that the Ne/ERN has the potential to indicate error prediction in motor tasks and that it exists even in the absence of action effect monitoring. NEW & NOTEWORTHY In this study, we are separating different kinds of possible contributors to an electroencephalogram (EEG) error correlate (Ne/ERN) in a throwing task. We tested the influence of action effect monitoring on the Ne/ERN amplitude in the EEG. We used a task that allows us to restrict movement correction and action effect monitoring and to control the onset of result feedback. We ascribe the Ne/ERN to predictive error processing where a conscious feeling of failure is not a prerequisite. Copyright © 2017 the American Physiological Society.
SEC proton prediction model: verification and analysis.
Balch, C C
1999-06-01
This paper describes a model that has been used at the NOAA Space Environment Center since the early 1970s as a guide for the prediction of solar energetic particle events. The algorithms for proton event probability, peak flux, and rise time are described. The predictions are compared with observations. The current model shows some ability to distinguish between proton event associated flares and flares that are not associated with proton events. The comparisons of predicted and observed peak flux show considerable scatter, with an rms error of almost an order of magnitude. Rise time comparisons also show scatter, with an rms error of approximately 28 h. The model algorithms are analyzed using historical data and improvements are suggested. Implementation of the algorithm modifications reduces the rms error in the log10 of the flux prediction by 21%, and the rise time rms error by 31%. Improvements are also realized in the probability prediction by deriving the conditional climatology for proton event occurrence given flare characteristics.
Predictability of the Arctic sea ice edge
NASA Astrophysics Data System (ADS)
Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.
2016-02-01
Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.
The prediction of speech intelligibility in classrooms using computer models
NASA Astrophysics Data System (ADS)
Dance, Stephen; Dentoni, Roger
2005-04-01
Two classrooms were measured and modeled using the industry standard CATT model and the Web model CISM. Sound levels, reverberation times and speech intelligibility were predicted in these rooms using data for 7 octave bands. It was found that overall sound levels could be predicted to within 2 dB by both models. However, overall reverberation time was found to be accurately predicted by CATT 14% prediction error, but not by CISM, 41% prediction error. This compared to a 30% prediction error using classical theory. As for STI: CATT predicted within 11%, CISM to within 3% and Sabine to within 28% of the measured value. It should be noted that CISM took approximately 15 seconds to calculate, while CATT took 15 minutes. CISM is freely available on-line at www.whyverne.co.uk/acoustics/Pages/cism/cism.html
The conscious, the unconscious, and familiarity.
Scott, Ryan B; Dienes, Zoltán
2008-09-01
This article examines the role of subjective familiarity in the implicit and explicit learning of artificial grammars. Experiment 1 found that objective measures of similarity (including fragment frequency and repetition structure) predicted ratings of familiarity, that familiarity ratings predicted grammaticality judgments, and that the extremity of familiarity ratings predicted confidence. Familiarity was further shown to predict judgments in the absence of confidence, hence contributing to above-chance guessing. Experiment 2 found that confidence developed as participants refined their knowledge of the distribution of familiarity and that differences in familiarity could be exploited prior to confidence developing. Experiment 3 found that familiarity was consciously exploited to make grammaticality judgments including those made without confidence and that familiarity could in some instances influence participants' grammaticality judgments apparently without their awareness. All 3 experiments found that knowledge distinct from familiarity was derived only under deliberate learning conditions. The results provide decisive evidence that familiarity is the essential source of knowledge in artificial grammar learning while also supporting a dual-process model of implicit and explicit learning. (c) 2008 APA, all rights reserved.
Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty
NASA Astrophysics Data System (ADS)
Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; Alden, C.; White, J. W. C.
2015-04-01
Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere, although there are certain environmental costs associated with this service, such as the acidification of ocean waters.
Automated body weight prediction of dairy cows using 3-dimensional vision.
Song, X; Bokkers, E A M; van der Tol, P P J; Groot Koerkamp, P W G; van Mourik, S
2018-05-01
The objectives of this study were to quantify the error of body weight prediction using automatically measured morphological traits in a 3-dimensional (3-D) vision system and to assess the influence of various sources of uncertainty on body weight prediction. In this case study, an image acquisition setup was created in a cow selection box equipped with a top-view 3-D camera. Morphological traits of hip height, hip width, and rump length were automatically extracted from the raw 3-D images taken of the rump area of dairy cows (n = 30). These traits combined with days in milk, age, and parity were used in multiple linear regression models to predict body weight. To find the best prediction model, an exhaustive feature selection algorithm was used to build intermediate models (n = 63). Each model was validated by leave-one-out cross-validation, giving the root mean square error and mean absolute percentage error. The model consisting of hip width (measurement variability of 0.006 m), days in milk, and parity was the best model, with the lowest errors of 41.2 kg of root mean square error and 5.2% mean absolute percentage error. Our integrated system, including the image acquisition setup, image analysis, and the best prediction model, predicted the body weights with a performance similar to that achieved using semi-automated or manual methods. Moreover, the variability of our simplified morphological trait measurement showed a negligible contribution to the uncertainty of body weight prediction. We suggest that dairy cow body weight prediction can be improved by incorporating more predictive morphological traits and by improving the prediction model structure. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Flight Test Results: CTAS Cruise/Descent Trajectory Prediction Accuracy for En route ATC Advisories
NASA Technical Reports Server (NTRS)
Green, S.; Grace, M.; Williams, D.
1999-01-01
The Center/TRACON Automation System (CTAS), under development at NASA Ames Research Center, is designed to assist controllers with the management and control of air traffic transitioning to/from congested airspace. This paper focuses on the transition from the en route environment, to high-density terminal airspace, under a time-based arrival-metering constraint. Two flight tests were conducted at the Denver Air Route Traffic Control Center (ARTCC) to study trajectory-prediction accuracy, the key to accurate Decision Support Tool advisories such as conflict detection/resolution and fuel-efficient metering conformance. In collaboration with NASA Langley Research Center, these test were part of an overall effort to research systems and procedures for the integration of CTAS and flight management systems (FMS). The Langley Transport Systems Research Vehicle Boeing 737 airplane flew a combined total of 58 cruise-arrival trajectory runs while following CTAS clearance advisories. Actual trajectories of the airplane were compared to CTAS and FMS predictions to measure trajectory-prediction accuracy and identify the primary sources of error for both. The research airplane was used to evaluate several levels of cockpit automation ranging from conventional avionics to a performance-based vertical navigation (VNAV) FMS. Trajectory prediction accuracy was analyzed with respect to both ARTCC radar tracking and GPS-based aircraft measurements. This paper presents detailed results describing the trajectory accuracy and error sources. Although differences were found in both accuracy and error sources, CTAS accuracy was comparable to the FMS in terms of both meter-fix arrival-time performance (in support of metering) and 4D-trajectory prediction (key to conflict prediction). Overall arrival time errors (mean plus standard deviation) were measured to be approximately 24 seconds during the first flight test (23 runs) and 15 seconds during the second flight test (25 runs). The major source of error during these tests was found to be the predicted winds aloft used by CTAS. Position and velocity estimates of the airplane provided to CTAS by the ATC Host radar tracker were found to be a relatively insignificant error source for the trajectory conditions evaluated. Airplane performance modeling errors within CTAS were found to not significantly affect arrival time errors when the constrained descent procedures were used. The most significant effect related to the flight guidance was observed to be the cross-track and turn-overshoot errors associated with conventional VOR guidance. Lateral navigation (LNAV) guidance significantly reduced both the cross-track and turn-overshoot error. Pilot procedures and VNAV guidance were found to significantly reduce the vertical profile errors associated with atmospheric and aircraft performance model errors.
NASA Astrophysics Data System (ADS)
Wang, Qianxin; Hu, Chao; Xu, Tianhe; Chang, Guobin; Hernández Moraleda, Alberto
2017-12-01
Analysis centers (ACs) for global navigation satellite systems (GNSSs) cannot accurately obtain real-time Earth rotation parameters (ERPs). Thus, the prediction of ultra-rapid orbits in the international terrestrial reference system (ITRS) has to utilize the predicted ERPs issued by the International Earth Rotation and Reference Systems Service (IERS) or the International GNSS Service (IGS). In this study, the accuracy of ERPs predicted by IERS and IGS is analyzed. The error of the ERPs predicted for one day can reach 0.15 mas and 0.053 ms in polar motion and UT1-UTC direction, respectively. Then, the impact of ERP errors on ultra-rapid orbit prediction by GNSS is studied. The methods for orbit integration and frame transformation in orbit prediction with introduced ERP errors dominate the accuracy of the predicted orbit. Experimental results show that the transformation from the geocentric celestial references system (GCRS) to ITRS exerts the strongest effect on the accuracy of the predicted ultra-rapid orbit. To obtain the most accurate predicted ultra-rapid orbit, a corresponding real-time orbit correction method is developed. First, orbits without ERP-related errors are predicted on the basis of ITRS observed part of ultra-rapid orbit for use as reference. Then, the corresponding predicted orbit is transformed from GCRS to ITRS to adjust for the predicted ERPs. Finally, the corrected ERPs with error slopes are re-introduced to correct the predicted orbit in ITRS. To validate the proposed method, three experimental schemes are designed: function extrapolation, simulation experiments, and experiments with predicted ultra-rapid orbits and international GNSS Monitoring and Assessment System (iGMAS) products. Experimental results show that using the proposed correction method with IERS products considerably improved the accuracy of ultra-rapid orbit prediction (except the geosynchronous BeiDou orbits). The accuracy of orbit prediction is enhanced by at least 50% (error related to ERP) when a highly accurate observed orbit is used with the correction method. For iGMAS-predicted orbits, the accuracy improvement ranges from 8.5% for the inclined BeiDou orbits to 17.99% for the GPS orbits. This demonstrates that the correction method proposed by this study can optimize the ultra-rapid orbit prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.
2010-09-01
The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and windmore » forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.« less
Approach to the Pediatric Prescription in a Community Pharmacy
Benavides, Sandra; Huynh, Donna; Morgan, Jill; Briars, Leslie
2011-01-01
Pediatric patients are more susceptible to medication errors for a variety of reasons including physical and social differences and the necessity for patient-specific dosing. As such, community pharmacists may feel uncomfortable in verifying or dispensing a prescription for a pediatric patient. However, the use of a systematic approach to the pediatric prescription can provide confidence to pharmacists and minimize the possibility of a medication error. The objective of this article is to provide the community pharmacist with an overview of the potential areas of medication errors in a prescription for a pediatric patient. Additionally, the article guides the community pharmacist through a pediatric prescription, highlighting common areas of medication errors. PMID:22768015
Error-related negativities elicited by monetary loss and cues that predict loss.
Dunning, Jonathan P; Hajcak, Greg
2007-11-19
Event-related potential studies have reported error-related negativity following both error commission and feedback indicating errors or monetary loss. The present study examined whether error-related negativities could be elicited by a predictive cue presented prior to both the decision and subsequent feedback in a gambling task. Participants were presented with a cue that indicated the probability of reward on the upcoming trial (0, 50, and 100%). Results showed a negative deflection in the event-related potential in response to loss cues compared with win cues; this waveform shared a similar latency and morphology with the traditional feedback error-related negativity.
Basic Confidence Predictors of Career Decision-Making Self-Efficacy
ERIC Educational Resources Information Center
Paulsen, Alisa M.; Betz, Nancy E.
2004-01-01
The extent to which Basic Confidence Scales predicted career decision-making self-efficacy was studied in a sample of 627 undergraduate students. Six confidence variables accounted for 49% of the variance in career decision-making self-efficacy. Leadership confidence was the most important, but confidence in science, mathematics, writing, using…
GUM Analysis for TIMS and SIMS Isotopic Ratios in Graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heasler, Patrick G.; Gerlach, David C.; Cliff, John B.
2007-04-01
This report describes GUM calculations for TIMS and SIMS isotopic ratio measurements of reactor graphite samples. These isotopic ratios are used to estimate reactor burn-up, and currently consist of various ratios of U, Pu, and Boron impurities in the graphite samples. The GUM calculation is a propagation of error methodology that assigns uncertainties (in the form of standard error and confidence bound) to the final estimates.
ERIC Educational Resources Information Center
Christ, Theodore J.
2006-01-01
Curriculum-based measurement of oral reading fluency (CBM-R) is an established procedure used to index the level and trend of student growth. A substantial literature base exists regarding best practices in the administration and interpretation of CBM-R; however, research has yet to adequately address the potential influence of measurement error.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenger, Drake C., E-mail: drake.stenger@ars.usda.
Population structure of Homalodisca coagulata Virus-1 (HoCV-1) among and within field-collected insects sampled from a single point in space and time was examined. Polymorphism in complete consensus sequences among single-insect isolates was dominated by synonymous substitutions. The mutant spectrum of the C2 helicase region within each single-insect isolate was unique and dominated by nonsynonymous singletons. Bootstrapping was used to correct the within-isolate nonsynonymous:synonymous arithmetic ratio (N:S) for RT-PCR error, yielding an N:S value ~one log-unit greater than that of consensus sequences. Probability of all possible single-base substitutions for the C2 region predicted N:S values within 95% confidence limits of themore » corrected within-isolate N:S when the only constraint imposed was viral polymerase error bias for transitions over transversions. These results indicate that bottlenecks coupled with strong negative/purifying selection drive consensus sequences toward neutral sequence space, and that most polymorphism within single-insect isolates is composed of newly-minted mutations sampled prior to selection. -- Highlights: •Sampling protocol minimized differential selection/history among isolates. •Polymorphism among consensus sequences dominated by negative/purifying selection. •Within-isolate N:S ratio corrected for RT-PCR error by bootstrapping. •Within-isolate mutant spectrum dominated by new mutations yet to undergo selection.« less
Anatomy of the Higgs fits: A first guide to statistical treatments of the theoretical uncertainties
NASA Astrophysics Data System (ADS)
Fichet, Sylvain; Moreau, Grégory
2016-04-01
The studies of the Higgs boson couplings based on the recent and upcoming LHC data open up a new window on physics beyond the Standard Model. In this paper, we propose a statistical guide to the consistent treatment of the theoretical uncertainties entering the Higgs rate fits. Both the Bayesian and frequentist approaches are systematically analysed in a unified formalism. We present analytical expressions for the marginal likelihoods, useful to implement simultaneously the experimental and theoretical uncertainties. We review the various origins of the theoretical errors (QCD, EFT, PDF, production mode contamination…). All these individual uncertainties are thoroughly combined with the help of moment-based considerations. The theoretical correlations among Higgs detection channels appear to affect the location and size of the best-fit regions in the space of Higgs couplings. We discuss the recurrent question of the shape of the prior distributions for the individual theoretical errors and find that a nearly Gaussian prior arises from the error combinations. We also develop the bias approach, which is an alternative to marginalisation providing more conservative results. The statistical framework to apply the bias principle is introduced and two realisations of the bias are proposed. Finally, depending on the statistical treatment, the Standard Model prediction for the Higgs signal strengths is found to lie within either the 68% or 95% confidence level region obtained from the latest analyses of the 7 and 8 TeV LHC datasets.
Common mode error in Antarctic GPS coordinate time series on its effect on bedrock-uplift estimates
NASA Astrophysics Data System (ADS)
Liu, Bin; King, Matt; Dai, Wujiao
2018-05-01
Spatially-correlated common mode error always exists in regional, or-larger, GPS networks. We applied independent component analysis (ICA) to GPS vertical coordinate time series in Antarctica from 2010 to 2014 and made a comparison with the principal component analysis (PCA). Using PCA/ICA, the time series can be decomposed into a set of temporal components and their spatial responses. We assume the components with common spatial responses are common mode error (CME). An average reduction of ˜40% about the RMS values was achieved in both PCA and ICA filtering. However, the common mode components obtained from the two approaches have different spatial and temporal features. ICA time series present interesting correlations with modeled atmospheric and non-tidal ocean loading displacements. A white noise (WN) plus power law noise (PL) model was adopted in the GPS velocity estimation using maximum likelihood estimation (MLE) analysis, with ˜55% reduction of the velocity uncertainties after filtering using ICA. Meanwhile, spatiotemporal filtering reduces the amplitude of PL and periodic terms in the GPS time series. Finally, we compare the GPS uplift velocities, after correction for elastic effects, with recent models of glacial isostatic adjustment (GIA). The agreements of the GPS observed velocities and four GIA models are generally improved after the spatiotemporal filtering, with a mean reduction of ˜0.9 mm/yr of the WRMS values, possibly allowing for more confident separation of various GIA model predictions.
1991-07-01
predicted by equation using actual chart response obtained from each calibration gas response. (Concentration of cal. gas,l Calibration error, % span • ppm...Analyzer predicted by cali- Col. gas Chart divisions equation* bration Cylinder conc., error,** Drift,***INo. ppm or % Pretest Posttest Pretest Posttest...2m ~J * Correlation coef. * qgq’jq **Analyzer ca.error, % spn (Cal. gas conc. conc. predicted ) x 1003 cal spanSpan value Acceptable limit x ɚ% of
Dopamine reward prediction-error signalling: a two-component response
Schultz, Wolfram
2017-01-01
Environmental stimuli and objects, including rewards, are often processed sequentially in the brain. Recent work suggests that the phasic dopamine reward prediction-error response follows a similar sequential pattern. An initial brief, unselective and highly sensitive increase in activity unspecifically detects a wide range of environmental stimuli, then quickly evolves into the main response component, which reflects subjective reward value and utility. This temporal evolution allows the dopamine reward prediction-error signal to optimally combine speed and accuracy. PMID:26865020
NASA Technical Reports Server (NTRS)
Holms, A. G.
1974-01-01
Monte Carlo studies using population models intended to represent response surface applications are reported. Simulated experiments were generated by adding pseudo random normally distributed errors to population values to generate observations. Model equations were fitted to the observations and the decision procedure was used to delete terms. Comparison of values predicted by the reduced models with the true population values enabled the identification of deletion strategies that are approximately optimal for minimizing prediction errors.
Agiovlasitis, Stamatis; Motl, Robert W
2016-01-01
An equation for predicting the gross oxygen uptake (gross-VO2) during walking for persons with multiple sclerosis (MS) has been developed. Predictors included walking speed and total score from the 12-Item Multiple Sclerosis Walking Scale (MSWS-12). This study examined the validity of this prediction equation in another sample of persons with MS. Participants were 18 persons with MS with limited mobility problems (42 ± 13 years; 14 women). Participants completed the MSWS-12. Gross-VO2 was measured with open-circuit spirometry during treadmill walking at 2.0, 3.0, and 4.0 mph (0.89, 1.34, and 1.79 m·s(-1)). Absolute percent error was small: 8.3 ± 6.1% , 8.0 ± 5.6% , and 12.2 ± 9.0% at 2.0, 3.0, and 4.0 mph, respectively. Actual gross-VO2 did not differ significantly from predicted gross-VO2 at 2.0 and 3.0 mph, but was significantly higher than predicted gross-VO2 at 4.0 mph (p < 0.001). Bland-Altman plots indicated nearly zero mean difference between actual and predicted gross-VO2 with modest 95% confidence intervals at 2.0 and 3.0 mph, but there was some underestimation at 4.0 mph. Speed and MSWS-12 score provide valid prediction of gross-VO2 during treadmill walking at slow and moderate speeds in ambulatory persons with MS. However, there is a possibility of small underestimation for walking at 4.0 mph.
Error Analysis of Wind Measurements for the University of Illinois Sodium Doppler Temperature System
NASA Technical Reports Server (NTRS)
Pfenninger, W. Matthew; Papen, George C.
1992-01-01
Four-frequency lidar measurements of temperature and wind velocity require accurate frequency tuning to an absolute reference and long term frequency stability. We quantify frequency tuning errors for the Illinois sodium system, to measure absolute frequencies and a reference interferometer to measure relative frequencies. To determine laser tuning errors, we monitor the vapor cell and interferometer during lidar data acquisition and analyze the two signals for variations as functions of time. Both sodium cell and interferometer are the same as those used to frequency tune the laser. By quantifying the frequency variations of the laser during data acquisition, an error analysis of temperature and wind measurements can be calculated. These error bounds determine the confidence in the calculated temperatures and wind velocities.
Cullen, Kathleen E; Brooks, Jessica X
2015-02-01
During self-motion, the vestibular system makes essential contributions to postural stability and self-motion perception. To ensure accurate perception and motor control, it is critical to distinguish between vestibular sensory inputs that are the result of externally applied motion (exafference) and that are the result of our own actions (reafference). Indeed, although the vestibular sensors encode vestibular afference and reafference with equal fidelity, neurons at the first central stage of sensory processing selectively encode vestibular exafference. The mechanism underlying this reafferent suppression compares the brain's motor-based expectation of sensory feedback with the actual sensory consequences of voluntary self-motion, effectively computing the sensory prediction error (i.e., exafference). It is generally thought that sensory prediction errors are computed in the cerebellum, yet it has been challenging to explicitly demonstrate this. We have recently addressed this question and found that deep cerebellar nuclei neurons explicitly encode sensory prediction errors during self-motion. Importantly, in everyday life, sensory prediction errors occur in response to changes in the effector or world (muscle strength, load, etc.), as well as in response to externally applied sensory stimulation. Accordingly, we hypothesize that altering the relationship between motor commands and the actual movement parameters will result in the updating in the cerebellum-based computation of exafference. If our hypothesis is correct, under these conditions, neuronal responses should initially be increased--consistent with a sudden increase in the sensory prediction error. Then, over time, as the internal model is updated, response modulation should decrease in parallel with a reduction in sensory prediction error, until vestibular reafference is again suppressed. The finding that the internal model predicting the sensory consequences of motor commands adapts for new relationships would have important implications for understanding how responses to passive stimulation endure despite the cerebellum's ability to learn new relationships between motor commands and sensory feedback.
Converting international ¼ inch tree volume to Doyle
Aaron Holley; John R. Brooks; Stuart A. Moss
2014-01-01
An equation for converting Mesavage and Girard's International ¼ inch tree volumes to the Doyle log rule is presented as a function of tree diameter. Volume error for trees having less than four logs exhibited volume prediction errors within a range of ±10 board feet. In addition, volume prediction error as a percent of actual Doyle tree volume...
Long Term Mean Local Time of the Ascending Node Prediction
NASA Technical Reports Server (NTRS)
McKinley, David P.
2007-01-01
Significant error has been observed in the long term prediction of the Mean Local Time of the Ascending Node on the Aqua spacecraft. This error of approximately 90 seconds over a two year prediction is a complication in planning and timing of maneuvers for all members of the Earth Observing System Afternoon Constellation, which use Aqua's MLTAN as the reference for their inclination maneuvers. It was determined that the source of the prediction error was the lack of a solid Earth tide model in the operational force models. The Love Model of the solid Earth tide potential was used to derive analytic corrections to the inclination and right ascension of the ascending node of Aqua's Sun-synchronous orbit. Additionally, it was determined that the resonance between the Sun and orbit plane of the Sun-synchronous orbit is the primary driver of this error. The analytic corrections have been added to the operational force models for the Aqua spacecraft reducing the two-year 90-second error to less than 7 seconds.
Pageler, Natalie M; Grazier G'Sell, Max Jacob; Chandler, Warren; Mailes, Emily; Yang, Christine; Longhurst, Christopher A
2016-09-01
The objective of this project was to use statistical techniques to determine the completeness and accuracy of data migrated during electronic health record conversion. Data validation during migration consists of mapped record testing and validation of a sample of the data for completeness and accuracy. We statistically determined a randomized sample size for each data type based on the desired confidence level and error limits. The only error identified in the post go-live period was a failure to migrate some clinical notes, which was unrelated to the validation process. No errors in the migrated data were found during the 12- month post-implementation period. Compared to the typical industry approach, we have demonstrated that a statistical approach to sampling size for data validation can ensure consistent confidence levels while maximizing efficiency of the validation process during a major electronic health record conversion. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Efficient Reduction and Analysis of Model Predictive Error
NASA Astrophysics Data System (ADS)
Doherty, J.
2006-12-01
Most groundwater models are calibrated against historical measurements of head and other system states before being used to make predictions in a real-world context. Through the calibration process, parameter values are estimated or refined such that the model is able to reproduce historical behaviour of the system at pertinent observation points reasonably well. Predictions made by the model are deemed to have greater integrity because of this. Unfortunately, predictive integrity is not as easy to achieve as many groundwater practitioners would like to think. The level of parameterisation detail estimable through the calibration process (especially where estimation takes place on the basis of heads alone) is strictly limited, even where full use is made of modern mathematical regularisation techniques such as those encapsulated in the PEST calibration package. (Use of these mechanisms allows more information to be extracted from a calibration dataset than is possible using simpler regularisation devices such as zones of piecewise constancy.) Where a prediction depends on aspects of parameterisation detail that are simply not inferable through the calibration process (which is often the case for predictions related to contaminant movement, and/or many aspects of groundwater/surface water interaction), then that prediction may be just as much in error as it would have been if the model had not been calibrated at all. Model predictive error arises from two sources. These are (a) the presence of measurement noise within the calibration dataset through which linear combinations of parameters spanning the "calibration solution space" are inferred, and (b) the sensitivity of the prediction to members of the "calibration null space" spanned by linear combinations of parameters which are not inferable through the calibration process. The magnitude of the former contribution depends on the level of measurement noise. The magnitude of the latter contribution (which often dominates the former) depends on the "innate variability" of hydraulic properties within the model domain. Knowledge of both of these is a prerequisite for characterisation of the magnitude of possible model predictive error. Unfortunately, in most cases, such knowledge is incomplete and subjective. Nevertheless, useful analysis of model predictive error can still take place. The present paper briefly discusses the means by which mathematical regularisation can be employed in the model calibration process in order to extract as much information as possible on hydraulic property heterogeneity prevailing within the model domain, thereby reducing predictive error to the lowest that can be achieved on the basis of that dataset. It then demonstrates the means by which predictive error variance can be quantified based on information supplied by the regularised inversion process. Both linear and nonlinear predictive error variance analysis is demonstrated using a number of real-world and synthetic examples.
Comparison of Predictive Modeling Methods of Aircraft Landing Speed
NASA Technical Reports Server (NTRS)
Diallo, Ousmane H.
2012-01-01
Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.
NASA Technical Reports Server (NTRS)
Buglia, James J.
1989-01-01
An analysis was made of the error in the minimum altitude of a geometric ray from an orbiting spacecraft to the Sun. The sunrise and sunset errors are highly correlated and are opposite in sign. With the ephemeris generated for the SAGE 1 instrument data reduction, these errors can be as large as 200 to 350 meters (1 sigma) after 7 days of orbit propagation. The bulk of this error results from errors in the position of the orbiting spacecraft rather than errors in computing the position of the Sun. These errors, in turn, result from the discontinuities in the ephemeris tapes resulting from the orbital determination process. Data taken from the end of the definitive ephemeris tape are used to generate the predict data for the time interval covered by the next arc of the orbit determination process. The predicted data are then updated by using the tracking data. The growth of these errors is very nearly linear, with a slight nonlinearity caused by the beta angle. An approximate analytic method is given, which predicts the magnitude of the errors and their growth in time with reasonable fidelity.
Onukwugha, Eberechukwu; Qi, Ran; Jayasekera, Jinani; Zhou, Shujia
2016-02-01
Prognostic classification approaches are commonly used in clinical practice to predict health outcomes. However, there has been limited focus on use of the general approach for predicting costs. We applied a grouping algorithm designed for large-scale data sets and multiple prognostic factors to investigate whether it improves cost prediction among older Medicare beneficiaries diagnosed with prostate cancer. We analysed the linked Surveillance, Epidemiology and End Results (SEER)-Medicare data, which included data from 2000 through 2009 for men diagnosed with incident prostate cancer between 2000 and 2007. We split the survival data into two data sets (D0 and D1) of equal size. We trained the classifier of the Grouping Algorithm for Cancer Data (GACD) on D0 and tested it on D1. The prognostic factors included cancer stage, age, race and performance status proxies. We calculated the average difference between observed D1 costs and predicted D1 costs at 5 years post-diagnosis with and without the GACD. The sample included 110,843 men with prostate cancer. The median age of the sample was 74 years, and 10% were African American. The average difference (mean absolute error [MAE]) per person between the real and predicted total 5-year cost was US$41,525 (MAE US$41,790; 95% confidence interval [CI] US$41,421-42,158) with the GACD and US$43,113 (MAE US$43,639; 95% CI US$43,062-44,217) without the GACD. The 5-year cost prediction without grouping resulted in a sample overestimate of US$79,544,508. The grouping algorithm developed for complex, large-scale data improves the prediction of 5-year costs. The prediction accuracy could be improved by utilization of a richer set of prognostic factors and refinement of categorical specifications.
NASA Astrophysics Data System (ADS)
Olafsdottir, Kristin B.; Mudelsee, Manfred
2013-04-01
Estimation of the Pearson's correlation coefficient between two time series to evaluate the influences of one time depended variable on another is one of the most often used statistical method in climate sciences. Various methods are used to estimate confidence interval to support the correlation point estimate. Many of them make strong mathematical assumptions regarding distributional shape and serial correlation, which are rarely met. More robust statistical methods are needed to increase the accuracy of the confidence intervals. Bootstrap confidence intervals are estimated in the Fortran 90 program PearsonT (Mudelsee, 2003), where the main intention was to get an accurate confidence interval for correlation coefficient between two time series by taking the serial dependence of the process that generated the data into account. However, Monte Carlo experiments show that the coverage accuracy for smaller data sizes can be improved. Here we adapt the PearsonT program into a new version called PearsonT3, by calibrating the confidence interval to increase the coverage accuracy. Calibration is a bootstrap resampling technique, which basically performs a second bootstrap loop or resamples from the bootstrap resamples. It offers, like the non-calibrated bootstrap confidence intervals, robustness against the data distribution. Pairwise moving block bootstrap is used to preserve the serial correlation of both time series. The calibration is applied to standard error based bootstrap Student's t confidence intervals. The performances of the calibrated confidence intervals are examined with Monte Carlo simulations, and compared with the performances of confidence intervals without calibration, that is, PearsonT. The coverage accuracy is evidently better for the calibrated confidence intervals where the coverage error is acceptably small (i.e., within a few percentage points) already for data sizes as small as 20. One form of climate time series is output from numerical models which simulate the climate system. The method is applied to model data from the high resolution ocean model, INALT01 where the relationship between the Agulhas Leakage and the North Brazil Current is evaluated. Preliminary results show significant correlation between the two variables when there is 10 year lag between them, which is more or less the time that takes the Agulhas Leakage water to reach the North Brazil Current. Mudelsee, M., 2003. Estimating Pearson's correlation coefficient with bootstrap confidence interval from serially dependent time series. Mathematical Geology 35, 651-665.
The role of unconscious memory errors in judgments of confidence for sentence recognition.
Sampaio, Cristina; Brewer, William F
2009-03-01
The present experiment tested the hypothesis that unconscious reconstructive memory processing can lead to the breakdown of the relationship between memory confidence and memory accuracy. Participants heard deceptive schema-inference sentences and nondeceptive sentences and were tested with either simple or forced-choice recognition. The nondeceptive items showed a positive relation between confidence and accuracy in both simple and forced-choice recognition. However, the deceptive items showed a strong negative confidence/accuracy relationship in simple recognition and a low positive relationship in forced choice. The mean levels of confidence for erroneous responses for deceptive items were inappropriately high in simple recognition but lower in forced choice. These results suggest that unconscious reconstructive memory processes involved in memory for the deceptive schema-inference items led to inaccurate confidence judgments and that, when participants were made aware of the deceptive nature of the schema-inference items through the use of a forced-choice procedure, they adjusted their confidence accordingly.
Wind power application research on the fusion of the determination and ensemble prediction
NASA Astrophysics Data System (ADS)
Lan, Shi; Lina, Xu; Yuzhu, Hao
2017-07-01
The fused product of wind speed for the wind farm is designed through the use of wind speed products of ensemble prediction from the European Centre for Medium-Range Weather Forecasts (ECMWF) and professional numerical model products on wind power based on Mesoscale Model5 (MM5) and Beijing Rapid Update Cycle (BJ-RUC), which are suitable for short-term wind power forecasting and electric dispatch. The single-valued forecast is formed by calculating the different ensemble statistics of the Bayesian probabilistic forecasting representing the uncertainty of ECMWF ensemble prediction. Using autoregressive integrated moving average (ARIMA) model to improve the time resolution of the single-valued forecast, and based on the Bayesian model averaging (BMA) and the deterministic numerical model prediction, the optimal wind speed forecasting curve and the confidence interval are provided. The result shows that the fusion forecast has made obvious improvement to the accuracy relative to the existing numerical forecasting products. Compared with the 0-24 h existing deterministic forecast in the validation period, the mean absolute error (MAE) is decreased by 24.3 % and the correlation coefficient (R) is increased by 12.5 %. In comparison with the ECMWF ensemble forecast, the MAE is reduced by 11.7 %, and R is increased 14.5 %. Additionally, MAE did not increase with the prolongation of the forecast ahead.
Huh, Yeamin; Smith, David E.; Feng, Meihau Rose
2014-01-01
Human clearance prediction for small- and macro-molecule drugs was evaluated and compared using various scaling methods and statistical analysis.Human clearance is generally well predicted using single or multiple species simple allometry for macro- and small-molecule drugs excreted renally.The prediction error is higher for hepatically eliminated small-molecules using single or multiple species simple allometry scaling, and it appears that the prediction error is mainly associated with drugs with low hepatic extraction ratio (Eh). The error in human clearance prediction for hepatically eliminated small-molecules was reduced using scaling methods with a correction of maximum life span (MLP) or brain weight (BRW).Human clearance of both small- and macro-molecule drugs is well predicted using the monkey liver blood flow method. Predictions using liver blood flow from other species did not work as well, especially for the small-molecule drugs. PMID:21892879
Use of machine learning methods to reduce predictive error of groundwater models.
Xu, Tianfang; Valocchi, Albert J; Choi, Jaesik; Amir, Eyal
2014-01-01
Quantitative analyses of groundwater flow and transport typically rely on a physically-based model, which is inherently subject to error. Errors in model structure, parameter and data lead to both random and systematic error even in the output of a calibrated model. We develop complementary data-driven models (DDMs) to reduce the predictive error of physically-based groundwater models. Two machine learning techniques, the instance-based weighting and support vector regression, are used to build the DDMs. This approach is illustrated using two real-world case studies of the Republican River Compact Administration model and the Spokane Valley-Rathdrum Prairie model. The two groundwater models have different hydrogeologic settings, parameterization, and calibration methods. In the first case study, cluster analysis is introduced for data preprocessing to make the DDMs more robust and computationally efficient. The DDMs reduce the root-mean-square error (RMSE) of the temporal, spatial, and spatiotemporal prediction of piezometric head of the groundwater model by 82%, 60%, and 48%, respectively. In the second case study, the DDMs reduce the RMSE of the temporal prediction of piezometric head of the groundwater model by 77%. It is further demonstrated that the effectiveness of the DDMs depends on the existence and extent of the structure in the error of the physically-based model. © 2013, National GroundWater Association.
Methods for estimating flood frequency in Montana based on data through water year 1998
Parrett, Charles; Johnson, Dave R.
2004-01-01
Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the different methods and the average standard errors of prediction. When all three methods were combined, the average standard errors of prediction ranged from 37.4 percent to 120.2 percent. Weighting of estimates reduced the standard errors of prediction for all T-year flood estimates in four regions, reduced the standard errors of prediction for some T-year flood estimates in two regions, and provided no reduction in average standard error of prediction in two regions. A computer program for solving the regression equations, weighting estimates, and determining reliability of individual estimates was developed and placed on the USGS Montana District World Wide Web page. A new regression method, termed Region of Influence regression, also was tested. Test results indicated that the Region of Influence method was not as reliable as the regional equations based on generalized least squares regression. Two additional methods for estimating flood frequency at ungaged sites located on the same streams as gaged sites also are described. The first method, based on a drainage-area-ratio adjustment, is intended for use on streams where the ungaged site of interest is located near a gaged site. The second method, based on interpolation between gaged sites, is intended for use on streams that have two or more streamflow-gaging stations.
León Blanco, José M; González-R, Pedro L; Arroyo García, Carmen Martina; Cózar-Bernal, María José; Calle Suárez, Marcos; Canca Ortiz, David; Rabasco Álvarez, Antonio María; González Rodríguez, María Luisa
2018-01-01
This work was aimed at determining the feasibility of artificial neural networks (ANN) by implementing backpropagation algorithms with default settings to generate better predictive models than multiple linear regression (MLR) analysis. The study was hypothesized on timolol-loaded liposomes. As tutorial data for ANN, causal factors were used, which were fed into the computer program. The number of training cycles has been identified in order to optimize the performance of the ANN. The optimization was performed by minimizing the error between the predicted and real response values in the training step. The results showed that training was stopped at 10 000 training cycles with 80% of the pattern values, because at this point the ANN generalizes better. Minimum validation error was achieved at 12 hidden neurons in a single layer. MLR has great prediction ability, with errors between predicted and real values lower than 1% in some of the parameters evaluated. Thus, the performance of this model was compared to that of the MLR using a factorial design. Optimal formulations were identified by minimizing the distance among measured and theoretical parameters, by estimating the prediction errors. Results indicate that the ANN shows much better predictive ability than the MLR model. These findings demonstrate the increased efficiency of the combination of ANN and design of experiments, compared to the conventional MLR modeling techniques.
Confident Surgical Decision Making in Temporal Lobe Epilepsy by Heterogeneous Classifier Ensembles
Fakhraei, Shobeir; Soltanian-Zadeh, Hamid; Jafari-Khouzani, Kourosh; Elisevich, Kost; Fotouhi, Farshad
2015-01-01
In medical domains with low tolerance for invalid predictions, classification confidence is highly important and traditional performance measures such as overall accuracy cannot provide adequate insight into classifications reliability. In this paper, a confident-prediction rate (CPR) which measures the upper limit of confident predictions has been proposed based on receiver operating characteristic (ROC) curves. It has been shown that heterogeneous ensemble of classifiers improves this measure. This ensemble approach has been applied to lateralization of focal epileptogenicity in temporal lobe epilepsy (TLE) and prediction of surgical outcomes. A goal of this study is to reduce extraoperative electrocorticography (eECoG) requirement which is the practice of using electrodes placed directly on the exposed surface of the brain. We have shown that such goal is achievable with application of data mining techniques. Furthermore, all TLE surgical operations do not result in complete relief from seizures and it is not always possible for human experts to identify such unsuccessful cases prior to surgery. This study demonstrates the capability of data mining techniques in prediction of undesirable outcome for a portion of such cases. PMID:26609547
NASA Technical Reports Server (NTRS)
Levy, G.; Brown, R. A.
1986-01-01
A simple economical objective analysis scheme is devised and tested on real scatterometer data. It is designed to treat dense data such as those of the Seasat A Satellite Scatterometer (SASS) for individual or multiple passes, and preserves subsynoptic scale features. Errors are evaluated with the aid of sampling ('bootstrap') statistical methods. In addition, sensitivity tests have been performed which establish qualitative confidence in calculated fields of divergence and vorticity. The SASS wind algorithm could be improved; however, the data at this point are limited by instrument errors rather than analysis errors. The analysis error is typically negligible in comparison with the instrument error, but amounts to 30 percent of the instrument error in areas of strong wind shear. The scheme is very economical, and thus suitable for large volumes of dense data such as SASS data.
Single Platform Geolocation of Radio Frequency Emitters
2015-03-26
Error SNR Signal to Noise Ratio SOI Signal of Interest STK Systems Tool Kit UCA Uniform Circular Array WGS World Geodetic System xv SINGLE PLATFORM...Section 2.6 describes a method to visualize the confidence of estimated parameters. 2.1 Coordinate Systems and Reference Frames The following...be used to visualize the confidence surface using the method developed in Section 2.6. The NLO method will be shown to be the minimization of the
Nguyen, Anthony N; Moore, Julie; O'Dwyer, John; Philpot, Shoni
2016-01-01
The paper assesses the utility of Medtex on automating Cancer Registry notifications from narrative histology and cytology reports from the Queensland state-wide pathology information system. A corpus of 45.3 million pathology HL7 messages (including 119,581 histology and cytology reports) from a Queensland pathology repository for the year of 2009 was analysed by Medtex for cancer notification. Reports analysed by Medtex were consolidated at a patient level and compared against patients with notifiable cancers from the Queensland Oncology Repository (QOR). A stratified random sample of 1,000 patients was manually reviewed by a cancer clinical coder to analyse agreements and discrepancies. Sensitivity of 96.5% (95% confidence interval: 94.5-97.8%), specificity of 96.5% (95.3-97.4%) and positive predictive value of 83.7% (79.6-86.8%) were achieved for identifying cancer notifiable patients. Medtex achieved high sensitivity and specificity across the breadth of cancers, report types, pathology laboratories and pathologists throughout the State of Queensland. The high sensitivity also resulted in the identification of cancer patients that were not found in the QOR. High sensitivity was at the expense of positive predictive value; however, these cases may be considered as lower priority to Cancer Registries as they can be quickly reviewed. Error analysis revealed that system errors tended to be tumour stream dependent. Medtex is proving to be a promising medical text analytic system. High value cancer information can be generated through intelligent data classification and extraction on large volumes of unstructured pathology reports. PMID:28269893
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DOmore » method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.; ...
2017-10-03
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. In this paper, we carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to bothmore » methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Finally, included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. In this paper, we carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to bothmore » methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Finally, included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
NASA Astrophysics Data System (ADS)
Schlechtingen, Meik; Ferreira Santos, Ilmar
2011-07-01
This paper presents the research results of a comparison of three different model based approaches for wind turbine fault detection in online SCADA data, by applying developed models to five real measured faults and anomalies. The regression based model as the simplest approach to build a normal behavior model is compared to two artificial neural network based approaches, which are a full signal reconstruction and an autoregressive normal behavior model. Based on a real time series containing two generator bearing damages the capabilities of identifying the incipient fault prior to the actual failure are investigated. The period after the first bearing damage is used to develop the three normal behavior models. The developed or trained models are used to investigate how the second damage manifests in the prediction error. Furthermore the full signal reconstruction and the autoregressive approach are applied to further real time series containing gearbox bearing damages and stator temperature anomalies. The comparison revealed all three models being capable of detecting incipient faults. However, they differ in the effort required for model development and the remaining operational time after first indication of damage. The general nonlinear neural network approaches outperform the regression model. The remaining seasonality in the regression model prediction error makes it difficult to detect abnormality and leads to increased alarm levels and thus a shorter remaining operational period. For the bearing damages and the stator anomalies under investigation the full signal reconstruction neural network gave the best fault visibility and thus led to the highest confidence level.
Allam, Ahmed M; Abbas, Hazem M
2010-12-01
Neural cryptography deals with the problem of "key exchange" between two neural networks using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between the two communicating parties is eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process. Therefore, diminishing the probability of such a threat improves the reliability of exchanging the output bits through a public channel. The synchronization with feedback algorithm is one of the existing algorithms that enhances the security of neural cryptography. This paper proposes three new algorithms to enhance the mutual learning process. They mainly depend on disrupting the attacker confidence in the exchanged outputs and input patterns during training. The first algorithm is called "Do not Trust My Partner" (DTMP), which relies on one party sending erroneous output bits, with the other party being capable of predicting and correcting this error. The second algorithm is called "Synchronization with Common Secret Feedback" (SCSFB), where inputs are kept partially secret and the attacker has to train its network on input patterns that are different from the training sets used by the communicating parties. The third algorithm is a hybrid technique combining the features of the DTMP and SCSFB. The proposed approaches are shown to outperform the synchronization with feedback algorithm in the time needed for the parties to synchronize.
Nguyen, Anthony N; Moore, Julie; O'Dwyer, John; Philpot, Shoni
2016-01-01
The paper assesses the utility of Medtex on automating Cancer Registry notifications from narrative histology and cytology reports from the Queensland state-wide pathology information system. A corpus of 45.3 million pathology HL7 messages (including 119,581 histology and cytology reports) from a Queensland pathology repository for the year of 2009 was analysed by Medtex for cancer notification. Reports analysed by Medtex were consolidated at a patient level and compared against patients with notifiable cancers from the Queensland Oncology Repository (QOR). A stratified random sample of 1,000 patients was manually reviewed by a cancer clinical coder to analyse agreements and discrepancies. Sensitivity of 96.5% (95% confidence interval: 94.5-97.8%), specificity of 96.5% (95.3-97.4%) and positive predictive value of 83.7% (79.6-86.8%) were achieved for identifying cancer notifiable patients. Medtex achieved high sensitivity and specificity across the breadth of cancers, report types, pathology laboratories and pathologists throughout the State of Queensland. The high sensitivity also resulted in the identification of cancer patients that were not found in the QOR. High sensitivity was at the expense of positive predictive value; however, these cases may be considered as lower priority to Cancer Registries as they can be quickly reviewed. Error analysis revealed that system errors tended to be tumour stream dependent. Medtex is proving to be a promising medical text analytic system. High value cancer information can be generated through intelligent data classification and extraction on large volumes of unstructured pathology reports.
NASA Astrophysics Data System (ADS)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.; Dolence, Joshua; Sumiyoshi, Kohsuke; Yamada, Shoichi
2017-10-01
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.
Schroeder, Scott R; Salomon, Meghan M; Galanter, William L; Schiff, Gordon D; Vaida, Allen J; Gaunt, Michael J; Bryson, Michelle L; Rash, Christine; Falck, Suzanne; Lambert, Bruce L
2017-01-01
Background Drug name confusion is a common type of medication error and a persistent threat to patient safety. In the USA, roughly one per thousand prescriptions results in the wrong drug being filled, and most of these errors involve drug names that look or sound alike. Prior to approval, drug names undergo a variety of tests to assess their potential for confusability, but none of these preapproval tests has been shown to predict real-world error rates. Objectives We conducted a study to assess the association between error rates in laboratory-based tests of drug name memory and perception and real-world drug name confusion error rates. Methods Eighty participants, comprising doctors, nurses, pharmacists, technicians and lay people, completed a battery of laboratory tests assessing visual perception, auditory perception and short-term memory of look-alike and sound-alike drug name pairs (eg, hydroxyzine/hydralazine). Results Laboratory test error rates (and other metrics) significantly predicted real-world error rates obtained from a large, outpatient pharmacy chain, with the best-fitting model accounting for 37% of the variance in real-world error rates. Cross-validation analyses confirmed these results, showing that the laboratory tests also predicted errors from a second pharmacy chain, with 45% of the variance being explained by the laboratory test data. Conclusions Across two distinct pharmacy chains, there is a strong and significant association between drug name confusion error rates observed in the real world and those observed in laboratory-based tests of memory and perception. Regulators and drug companies seeking a validated preapproval method for identifying confusing drug names ought to consider using these simple tests. By using a standard battery of memory and perception tests, it should be possible to reduce the number of confusing look-alike and sound-alike drug name pairs that reach the market, which will help protect patients from potentially harmful medication errors. PMID:27193033
Le, Hung M; Dinh, Thach S; Le, Hieu V
2011-10-13
The singlet-triplet transformation and molecular dissociation of ozone (O(3)) gas is investigated by performing quasi-classical molecular dynamics (MD) simulations on an ab initio potential energy surface (PES) with visible and near-infrared excitations. MP4(SDQ) level of theory with the 6-311g(2d,2p) basis set is executed for three different electronic spin states (singlet, triplet, and quintet). In order to simplify the potential energy function, an approximation is adopted by ignoring the spin-orbit coupling and allowing the molecule to switch favorably and instantaneously to the spin state that is more energetically stable (lowest in energy among the three spin states). This assumption has previously been utilized to study the SiO(2) system as reported by Agrawal et al. (J. Chem. Phys. 2006, 124 (13), 134306). The use of such assumption in this study probably makes the upper limits of computed rate coefficients the true rate coefficients. The global PES for ozone is constructed by fitting 5906 ab initio data points using a 60-neuron two-layer feed-forward neural network. The mean-absolute error and root-mean-squared error of this fit are 0.0446 eV (1.03 kcal/mol) and 0.0756 eV (1.74 kcal/mol), respectively, which reveal very good fitting accuracy. The parameter coefficients of the global PES are reported in this paper. In order to identify the spin state with high confidence, we propose the use of a pattern-recognition neural network, which is trained to predict the spin state of a given configuration (with a prediction accuracy being 95.6% on a set of testing data points). To enhance the prediction effectiveness, a buffer series of five points are validated to confirm the spin state during the MD process to gain better confidence. Quasi-classical MD simulations from 1.2 to 2.4 eV of total internal energy (including zero-point energy) result in rate coefficients of singlet-triplet transformation in the range of 0.027 ps(-1) to 1.21 ps(-1). Also, we find very low dissociation probability up to 2.4 eV of internal energy during the investigating period (5 ps), which suggests that dissociation does not occur directly from the singlet ground-state, but it involves the excited triplet-state as an intermediate step and requires more reaction time to occur.
Absolute vs. relative error characterization of electromagnetic tracking accuracy
NASA Astrophysics Data System (ADS)
Matinfar, Mohammad; Narayanasamy, Ganesh; Gutierrez, Luis; Chan, Raymond; Jain, Ameet
2010-02-01
Electromagnetic (EM) tracking systems are often used for real time navigation of medical tools in an Image Guided Therapy (IGT) system. They are specifically advantageous when the medical device requires tracking within the body of a patient where line of sight constraints prevent the use of conventional optical tracking. EM tracking systems are however very sensitive to electromagnetic field distortions. These distortions, arising from changes in the electromagnetic environment due to the presence of conductive ferromagnetic surgical tools or other medical equipment, limit the accuracy of EM tracking, in some cases potentially rendering tracking data unusable. We present a mapping method for the operating region over which EM tracking sensors are used, allowing for characterization of measurement errors, in turn providing physicians with visual feedback about measurement confidence or reliability of localization estimates. In this instance, we employ a calibration phantom to assess distortion within the operating field of the EM tracker and to display in real time the distribution of measurement errors, as well as the location and extent of the field associated with minimal spatial distortion. The accuracy is assessed relative to successive measurements. Error is computed for a reference point and consecutive measurement errors are displayed relative to the reference in order to characterize the accuracy in near-real-time. In an initial set-up phase, the phantom geometry is calibrated by registering the data from a multitude of EM sensors in a non-ferromagnetic ("clean") EM environment. The registration results in the locations of sensors with respect to each other and defines the geometry of the sensors in the phantom. In a measurement phase, the position and orientation data from all sensors are compared with the known geometry of the sensor spacing, and localization errors (displacement and orientation) are computed. Based on error thresholds provided by the operator, the spatial distribution of localization errors are clustered and dynamically displayed as separate confidence zones within the operating region of the EM tracker space.
Schmidt, Wiebke; Evers-King, Hayley L.; Campos, Carlos J. A.; Jones, Darren B.; Miller, Peter I.; Davidson, Keith; Shutler, Jamie D.
2018-01-01
Microbiological contamination or elevated marine biotoxin concentrations within shellfish can result in temporary closure of shellfish aquaculture harvesting, leading to financial loss for the aquaculture business and a potential reduction in consumer confidence in shellfish products. We present a method for predicting short-term variations in shellfish concentrations of Escherichia coli and biotoxin (okadaic acid and its derivates dinophysistoxins and pectenotoxins). The approach was evaluated for 2 contrasting shellfish harvesting areas. Through a meta-data analysis and using environmental data (in situ, satellite observations and meteorological nowcasts and forecasts), key environmental drivers were identified and used to develop models to predict E. coli and biotoxin concentrations within shellfish. Models were trained and evaluated using independent datasets, and the best models were identified based on the model exhibiting the lowest root mean square error. The best biotoxin model was able to provide 1 wk forecasts with an accuracy of 86%, a 0% false positive rate and a 0% false discovery rate (n = 78 observations) when used to predict the closure of shellfish beds due to biotoxin. The best E. coli models were used to predict the European hygiene classification of the shellfish beds to an accuracy of 99% (n = 107 observations) and 98% (n = 63 observations) for a bay (St Austell Bay) and an estuary (Turnaware Bar), respectively. This generic approach enables high accuracy short-term farm-specific forecasts, based on readily accessible environmental data and observations. PMID:29805719
Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster.
Olsen, Thomas
2007-02-01
This study aimed to demonstrate how the level of accuracy in intraocular lens (IOL) power calculation can be improved with optical biometry using partial optical coherence interferometry (PCI) (Zeiss IOLMaster) and current anterior chamber depth (ACD) prediction algorithms. Intraocular lens power in 461 consecutive cataract operations was calculated using both PCI and ultrasound and the accuracy of the results of each technique were compared. To illustrate the importance of ACD prediction per se, predictions were calculated using both a recently published 5-variable method and the Haigis 2-variable method and the results compared. All calculations were optimized in retrospect to account for systematic errors, including IOL constants and other off-set errors. The average absolute IOL prediction error (observed minus expected refraction) was 0.65 dioptres with ultrasound and 0.43 D with PCI using the 5-variable ACD prediction method (p < 0.00001). The number of predictions within +/- 0.5 D, +/- 1.0 D and +/- 2.0 D of the expected outcome was 62.5%, 92.4% and 99.9% with PCI, compared with 45.5%, 77.3% and 98.4% with ultrasound, respectively (p < 0.00001). The 2-variable ACD method resulted in an average error in PCI predictions of 0.46 D, which was significantly higher than the error in the 5-variable method (p < 0.001). The accuracy of IOL power calculation can be significantly improved using calibrated axial length readings obtained with PCI and modern IOL power calculation formulas incorporating the latest generation ACD prediction algorithms.
Gao, Yujuan; Wang, Sheng; Deng, Minghua; Xu, Jinbo
2018-05-08
Protein dihedral angles provide a detailed description of protein local conformation. Predicted dihedral angles can be used to narrow down the conformational space of the whole polypeptide chain significantly, thus aiding protein tertiary structure prediction. However, direct angle prediction from sequence alone is challenging. In this article, we present a novel method (named RaptorX-Angle) to predict real-valued angles by combining clustering and deep learning. Tested on a subset of PDB25 and the targets in the latest two Critical Assessment of protein Structure Prediction (CASP), our method outperforms the existing state-of-art method SPIDER2 in terms of Pearson Correlation Coefficient (PCC) and Mean Absolute Error (MAE). Our result also shows approximately linear relationship between the real prediction errors and our estimated bounds. That is, the real prediction error can be well approximated by our estimated bounds. Our study provides an alternative and more accurate prediction of dihedral angles, which may facilitate protein structure prediction and functional study.
Development of Predictive Energy Management Strategies for Hybrid Electric Vehicles
NASA Astrophysics Data System (ADS)
Baker, David
Studies have shown that obtaining and utilizing information about the future state of vehicles can improve vehicle fuel economy (FE). However, there has been a lack of research into the impact of real-world prediction error on FE improvements, and whether near-term technologies can be utilized to improve FE. This study seeks to research the effect of prediction error on FE. First, a speed prediction method is developed, and trained with real-world driving data gathered only from the subject vehicle (a local data collection method). This speed prediction method informs a predictive powertrain controller to determine the optimal engine operation for various prediction durations. The optimal engine operation is input into a high-fidelity model of the FE of a Toyota Prius. A tradeoff analysis between prediction duration and prediction fidelity was completed to determine what duration of prediction resulted in the largest FE improvement. Results demonstrate that 60-90 second predictions resulted in the highest FE improvement over the baseline, achieving up to a 4.8% FE increase. A second speed prediction method utilizing simulated vehicle-to-vehicle (V2V) communication was developed to understand if incorporating near-term technologies could be utilized to further improve prediction fidelity. This prediction method produced lower variation in speed prediction error, and was able to realize a larger FE improvement over the local prediction method for longer prediction durations, achieving up to 6% FE improvement. This study concludes that speed prediction and prediction-informed optimal vehicle energy management can produce FE improvements with real-world prediction error and drive cycle variability, as up to 85% of the FE benefit of perfect speed prediction was achieved with the proposed prediction methods.
NASA Astrophysics Data System (ADS)
Kung, Wei-Ying; Kim, Chang-Su; Kuo, C.-C. Jay
2004-10-01
A multi-hypothesis motion compensated prediction (MHMCP) scheme, which predicts a block from a weighted superposition of more than one reference blocks in the frame buffer, is proposed and analyzed for error resilient visual communication in this research. By combining these reference blocks effectively, MHMCP can enhance the error resilient capability of compressed video as well as achieve a coding gain. In particular, we investigate the error propagation effect in the MHMCP coder and analyze the rate-distortion performance in terms of the hypothesis number and hypothesis coefficients. It is shown that MHMCP suppresses the short-term effect of error propagation more effectively than the intra refreshing scheme. Simulation results are given to confirm the analysis. Finally, several design principles for the MHMCP coder are derived based on the analytical and experimental results.
TH-AB-202-04: Auto-Adaptive Margin Generation for MLC-Tracked Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glitzner, M; Lagendijk, J; Raaymakers, B
Purpose: To develop an auto-adaptive margin generator for MLC tracking. The generator is able to estimate errors arising in image guided radiotherapy, particularly on an MR-Linac, which depend on the latencies of machine and image processing, as well as on patient motion characteristics. From the estimated error distribution, a segment margin is generated, able to compensate errors up to a user-defined confidence. Method: In every tracking control cycle (TCC, 40ms), the desired aperture D(t) is compared to the actual aperture A(t), a delayed and imperfect representation of D(t). Thus an error e(t)=A(T)-D(T) is measured every TCC. Applying kernel-density-estimation (KDE), themore » cumulative distribution (CDF) of e(t) is estimated. With CDF-confidence limits, upper and lower error limits are extracted for motion axes along and perpendicular leaf-travel direction and applied as margins. To test the dosimetric impact, two representative motion traces were extracted from fast liver-MRI (10Hz). The traces were applied onto a 4D-motion platform and continuously tracked by an Elekta Agility 160 MLC using an artificially imposed tracking delay. Gafchromic film was used to detect dose exposition for static, tracked, and error-compensated tracking cases. The margin generator was parameterized to cover 90% of all tracking errors. Dosimetric impact was rated by calculating the ratio between underexposed points (>5% underdosage) to the total number of points inside FWHM of static exposure. Results: Without imposing adaptive margins, tracking experiments showed a ratio of underexposed points of 17.5% and 14.3% for two motion cases with imaging delays of 200ms and 300ms, respectively. Activating the margin generated yielded total suppression (<1%) of underdosed points. Conclusion: We showed that auto-adaptive error compensation using machine error statistics is possible for MLC tracking. The error compensation margins are calculated on-line, without the need of assuming motion or machine models. Further strategies to reduce consequential overdosages are currently under investigation. This work was funded by the SoRTS consortium, which includes the industry partners Elekta, Philips and Technolution.« less
The statistical properties and possible causes of polar motion prediction errors
NASA Astrophysics Data System (ADS)
Kosek, Wieslaw; Kalarus, Maciej; Wnek, Agnieszka; Zbylut-Gorska, Maria
2015-08-01
The pole coordinate data predictions from different prediction contributors of the Earth Orientation Parameters Combination of Prediction Pilot Project (EOPCPPP) were studied to determine the statistical properties of polar motion forecasts by looking at the time series of differences between them and the future IERS pole coordinates data. The mean absolute errors, standard deviations as well as the skewness and kurtosis of these differences were computed together with their error bars as a function of prediction length. The ensemble predictions show a little smaller mean absolute errors or standard deviations however their skewness and kurtosis values are similar as the for predictions from different contributors. The skewness and kurtosis enable to check whether these prediction differences satisfy normal distribution. The kurtosis values diminish with the prediction length which means that the probability distribution of these prediction differences is becoming more platykurtic than letptokurtic. Non zero skewness values result from oscillating character of these differences for particular prediction lengths which can be due to the irregular change of the annual oscillation phase in the joint fluid (atmospheric + ocean + land hydrology) excitation functions. The variations of the annual oscillation phase computed by the combination of the Fourier transform band pass filter and the Hilbert transform from pole coordinates data as well as from pole coordinates model data obtained from fluid excitations are in a good agreement.
NASA Astrophysics Data System (ADS)
Tao, Ling-Jiang; Gao, Chuan; Zhang, Rong-Hua
2018-07-01
Previous studies indicate that ENSO predictions are particularly sensitive to the initial conditions in some key areas (socalled "sensitive areas"). And yet, few studies have quantified improvements in prediction skill in the context of an optimal observing system. In this study, the impact on prediction skill is explored using an intermediate coupled model in which errors in initial conditions formed to make ENSO predictions are removed in certain areas. Based on ideal observing system simulation experiments, the importance of various observational networks on improvement of El Niño prediction skill is examined. The results indicate that the initial states in the central and eastern equatorial Pacific are important to improve El Ni˜no prediction skill effectively. When removing the initial condition errors in the central equatorial Pacific, ENSO prediction errors can be reduced by 25%. Furthermore, combinations of various subregions are considered to demonstrate the efficiency on ENSO prediction skill. Particularly, seasonally varying observational networks are suggested to improve the prediction skill more effectively. For example, in addition to observing in the central equatorial Pacific and its north throughout the year, increasing observations in the eastern equatorial Pacific during April to October is crucially important, which can improve the prediction accuracy by 62%. These results also demonstrate the effectiveness of the conditional nonlinear optimal perturbation approach on detecting sensitive areas for target observations.
Prediction of human errors by maladaptive changes in event-related brain networks.
Eichele, Tom; Debener, Stefan; Calhoun, Vince D; Specht, Karsten; Engel, Andreas K; Hugdahl, Kenneth; von Cramon, D Yves; Ullsperger, Markus
2008-04-22
Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve approximately 30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations.
Prediction of human errors by maladaptive changes in event-related brain networks
Eichele, Tom; Debener, Stefan; Calhoun, Vince D.; Specht, Karsten; Engel, Andreas K.; Hugdahl, Kenneth; von Cramon, D. Yves; Ullsperger, Markus
2008-01-01
Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve ≈30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations. PMID:18427123
Top-of-Climb Matching Method for Reducing Aircraft Trajectory Prediction Errors.
Thipphavong, David P
2016-09-01
The inaccuracies of the aircraft performance models utilized by trajectory predictors with regard to takeoff weight, thrust, climb profile, and other parameters result in altitude errors during the climb phase that often exceed the vertical separation standard of 1000 feet. This study investigates the potential reduction in altitude trajectory prediction errors that could be achieved for climbing flights if just one additional parameter is made available: top-of-climb (TOC) time. The TOC-matching method developed and evaluated in this paper is straightforward: a set of candidate trajectory predictions is generated using different aircraft weight parameters, and the one that most closely matches TOC in terms of time is selected. This algorithm was tested using more than 1000 climbing flights in Fort Worth Center. Compared to the baseline trajectory predictions of a real-time research prototype (Center/TRACON Automation System), the TOC-matching method reduced the altitude root mean square error (RMSE) for a 5-minute prediction time by 38%. It also decreased the percentage of flights with absolute altitude error greater than the vertical separation standard of 1000 ft for the same look-ahead time from 55% to 30%.
Top-of-Climb Matching Method for Reducing Aircraft Trajectory Prediction Errors
Thipphavong, David P.
2017-01-01
The inaccuracies of the aircraft performance models utilized by trajectory predictors with regard to takeoff weight, thrust, climb profile, and other parameters result in altitude errors during the climb phase that often exceed the vertical separation standard of 1000 feet. This study investigates the potential reduction in altitude trajectory prediction errors that could be achieved for climbing flights if just one additional parameter is made available: top-of-climb (TOC) time. The TOC-matching method developed and evaluated in this paper is straightforward: a set of candidate trajectory predictions is generated using different aircraft weight parameters, and the one that most closely matches TOC in terms of time is selected. This algorithm was tested using more than 1000 climbing flights in Fort Worth Center. Compared to the baseline trajectory predictions of a real-time research prototype (Center/TRACON Automation System), the TOC-matching method reduced the altitude root mean square error (RMSE) for a 5-minute prediction time by 38%. It also decreased the percentage of flights with absolute altitude error greater than the vertical separation standard of 1000 ft for the same look-ahead time from 55% to 30%. PMID:28684883
Top-of-Climb Matching Method for Reducing Aircraft Trajectory Prediction Errors
NASA Technical Reports Server (NTRS)
Thipphavong, David P.
2016-01-01
The inaccuracies of the aircraft performance models utilized by trajectory predictors with regard to takeoff weight, thrust, climb profile, and other parameters result in altitude errors during the climb phase that often exceed the vertical separation standard of 1000 feet. This study investigates the potential reduction in altitude trajectory prediction errors that could be achieved for climbing flights if just one additional parameter is made available: top-of-climb (TOC) time. The TOC-matching method developed and evaluated in this paper is straightforward: a set of candidate trajectory predictions is generated using different aircraft weight parameters, and the one that most closely matches TOC in terms of time is selected. This algorithm was tested using more than 1000 climbing flights in Fort Worth Center. Compared to the baseline trajectory predictions of a real-time research prototype (Center/TRACON Automation System), the TOC-matching method reduced the altitude root mean square error (RMSE) for a 5-minute prediction time by 38%. It also decreased the percentage of flights with absolute altitude error greater than the vertical separation standard of 1000 ft for the same look-ahead time from 55% to 30%.