NASA Astrophysics Data System (ADS)
Wibowo, Andreas; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi; Situmorang, Marcelinus Risky Clinton
2018-02-01
The main purpose of this study is to investigate the best configuration between guide vanes and cross flow vertical axis wind turbine with variation of several parameters including guide vanes tilt angle and the number of turbine and guide vane blades. The experimental test were conducted under various wind speed and directions for testing cross flow wind turbine, consisted of 8, 12 and 16 blades. Two types of guide vane were developed in this study, employing 20° and 60° tilt angle. Both of the two types of guide vane had three variations of blade numbers which had same blade numbers variations as the turbines. The result showed that the configurations between 60° guide vane with 16 blade numbers and turbine with 16 blade numbers had the best configurations. The result also showed that for certain configuration, guide vane was able to increase the power generated by the turbine significantly by 271.39% compared to the baseline configuration without using of guide vane.
Contextual cueing: implicit learning and memory of visual context guides spatial attention.
Chun, M M; Jiang, Y
1998-06-01
Global context plays an important, but poorly understood, role in visual tasks. This study demonstrates that a robust memory for visual context exists to guide spatial attention. Global context was operationalized as the spatial layout of objects in visual search displays. Half of the configurations were repeated across blocks throughout the entire session, and targets appeared within consistent locations in these arrays. Targets appearing in learned configurations were detected more quickly. This newly discovered form of search facilitation is termed contextual cueing. Contextual cueing is driven by incidentally learned associations between spatial configurations (context) and target locations. This benefit was obtained despite chance performance for recognizing the configurations, suggesting that the memory for context was implicit. The results show how implicit learning and memory of visual context can guide spatial attention towards task-relevant aspects of a scene.
Threat captures attention but does not affect learning of contextual regularities.
Yamaguchi, Motonori; Harwood, Sarah L
2017-04-01
Some of the stimulus features that guide visual attention are abstract properties of objects such as potential threat to one's survival, whereas others are complex configurations such as visual contexts that are learned through past experiences. The present study investigated the two functions that guide visual attention, threat detection and learning of contextual regularities, in visual search. Search arrays contained images of threat and non-threat objects, and their locations were fixed on some trials but random on other trials. Although they were irrelevant to the visual search task, threat objects facilitated attention capture and impaired attention disengagement. Search time improved for fixed configurations more than for random configurations, reflecting learning of visual contexts. Nevertheless, threat detection had little influence on learning of the contextual regularities. The results suggest that factors guiding visual attention are different from factors that influence learning to guide visual attention.
HORIZONTAL CONFIGURATION OF THE LASAGNA (TM) TREATMENT TECHNOLOGY USER GUIDE
This report is a user's guide that discusses the technology and operations unique to the installation and operation of the horizontal configuration of the Lasagna? integrated soil remediation technology. This technology, called Lasagna? because of the layers of electrodes and tr...
ERIC Educational Resources Information Center
Grueber, David J.
2012-01-01
This study investigated associations between teacher-student interaction and students' persistence to complete written electron configurations in a high school chemistry classroom. Analyses of the interactions were guided with an Expectancy-Value framework to identify the discourse strategies used by the teacher to build engagement in a classroom…
Configuration Analysis Tool (CAT). System Description and users guide (revision 1)
NASA Technical Reports Server (NTRS)
Decker, W.; Taylor, W.; Mcgarry, F. E.; Merwarth, P.
1982-01-01
A system description of, and user's guide for, the Configuration Analysis Tool (CAT) are presented. As a configuration management tool, CAT enhances the control of large software systems by providing a repository for information describing the current status of a project. CAT provides an editing capability to update the information and a reporting capability to present the information. CAT is an interactive program available in versions for the PDP-11/70 and VAX-11/780 computers.
Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.
2017-01-01
Partial-depth impermeable guidance structures (or guide walls) are used as a method to assist in the downstream passage of fish at a hydroelectric facility. However, guide walls can result in a strong downward velocity causing the approaching fish to pass below the wall and into the direction of the turbine intakes. The objective of this study was to describe how the ratio of the vertical velocity to the sweeping velocity magnitude changes along the full length and depth of a guide wall under a wide range of bypass flow percentages within a power canal. This paper focused on two guide wall configurations, each set at an angle of 45 ° to the approaching flow field and at a depth of 10 and 20 ft (3.05 and 6.10 m). The hydraulic conditions upstream of each guide wall configuration were shown to be impacted by a change in the bypass flow percentage, not only near the bypass but also at upstream sections of the guide wall. Furthermore, the effect of changing the bypass flow percentage was similar for both guide wall depths. In both cases, the effect of increasing the bypass flow percentage was magnified closer to the bypass and deeper in the water column along the guide wall.
Configuration study of new low-loss MM (Millimeter) wave guiding structures
NASA Astrophysics Data System (ADS)
Yeh, C.
1985-11-01
The result of the research carried out at EMtec Engineering, Inc., Los Angeles, under Contract DAAG 29-84-C-0025 with the Army Research Office is discussed. The primary objective was to learn whether there exists a dielectric waveguide configuration which offers lower loss figure than a circular dielectric rod. Important evidence was found which showed that it is feasible to optimize a configuration to achieve low-loss guidance of mm waves. Future research areas are also described.
UKIRT fast guide system improvements
NASA Astrophysics Data System (ADS)
Balius, Al; Rees, Nicholas P.
1997-09-01
The United Kingdom Infra-Red Telescope (UKIRT) has recently undergone the first major upgrade program since its construction. One part of the upgrade program was an adaptive tip-tilt secondary mirror closed with a CCD system collectively called the fast guide system. The installation of the new secondary and associated systems was carried out in the first half of 1996. Initial testing of the fast guide system has shown great improvement in guide accuracy. The initial installation included a fixed integration time CCD. In the first part of 1997 an integration time controller based on computed guide star luminosity was implemented in the fast guide system. Also, a Kalman type estimator was installed in the image tracking loop based on a dynamic model and knowledge of the statistical properties of the guide star position error measurement as a function of computed guide star magnitude and CCD integration time. The new configuration was tested in terms of improved guide performance nd graceful degradation when tracking faint guide stars. This paper describes the modified fast guide system configuration and reports the results of performance tests.
ERIC Educational Resources Information Center
Donovan, Loretta; Green, Tim; Hartley, Kendall
2010-01-01
This study explores configurations of laptop use in a one-to-one environment. Guided by methodologies of the Concerns-Based Adoption Model of change, an Innovation Configuration Map (description of the multiple ways an innovation is implemented) of a 1:1 laptop program at a middle school was developed and analyzed. Three distinct configurations…
NASA Technical Reports Server (NTRS)
Weil, J.
1981-01-01
Flight derived longitudinal and lateral-directional stability and control derivatives were compared to wind-tunnel derived values. As a result of these comparisons, boundaries representing the uncertainties that could be expected from wind-tunnel predictions were established. These boundaries provide a useful guide for control system sensitivity studies prior to flight. The primary application for this data was the space shuttle, and as a result the configurations included in the study were those most applicable to the space shuttle. The configurations included conventional delta wing aircraft as well as the X-15 and lifting body vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidane, Getnet S; Desilva, Upul P.; He, Chengli
A gas turbine includes first and second parts having outer surfaces located adjacent to each other to create an interface where wear occurs. A wear probe is provided for monitoring wear of the outer surface of the first part, and includes an optical guide having first and second ends, wherein the first end is configured to be located flush with the outer surface of the first part. A fiber bundle includes first and second ends, the first end being located proximate to the second end of the optical guide. The fiber bundle includes a transmit fiber bundle comprising a firstmore » plurality of optical fibers coupled to a light source, and a receive fiber bundle coupled to a light detector and configured to detect reflected light. A processor is configured to determine a length of the optical guide based on the detected reflected light.« less
Long-distance transmission of light in a scintillator-based radiation detector
Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.
2017-07-11
Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.
NASA Technical Reports Server (NTRS)
Luckring, James M.; Deere, Karen A.; Childs, Robert E.; Stremel, Paul M.; Long, Kurtis R.
2016-01-01
A hybrid transition trip-dot sizing and placement test technique was developed in support of recent experimental research on a hybrid wing-body configuration under study for the NASA Environmentally Responsible Aviation project. The approach combines traditional methods with Computational Fluid Dynamics. The application had three-dimensional boundary layers that were simulated with either fully turbulent or transitional flow models using established Reynolds-Averaged Navier-Stokes methods. Trip strip effectiveness was verified experimentally using infrared thermography during a low-speed wind tunnel test. Although the work was performed on one specific configuration, the process was based on fundamental flow physics and could be applicable to other configurations.
Dual wire welding torch and method
Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.
2009-04-28
A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.
System and method for incremental forming
Beltran, Michael; Cao, Jian; Roth, John T.
2015-12-29
A system includes a frame configured to hold a workpiece and first and second tool positioning assemblies configured to be opposed to each other on opposite sides of the workpiece. The first and second tool positioning assemblies each include a toolholder configured to secure a tool to the tool positioning assembly, a first axis assembly, a second axis assembly, and a third axis assembly. The first, second, and third axis assemblies are each configured to articulate the toolholder along a respective axis. Each axis assembly includes first and second guides extending generally parallel to the corresponding axis and disposed on opposing sides of the toolholder with respect to the corresponding axis. Each axis assembly includes first and second carriages articulable along the first and second guides of the axis assembly, respectively, in the direction of the corresponding axis.
User's Guide: Innovation Configurations for NSDC's Standards for Staff Development
ERIC Educational Resources Information Center
Roy, Patricia
2007-01-01
This 75-page guidebook is a companion to "Moving NSDC's Staff Development Standards into Practice: Innovation Configurations" Volumes I (ED522734) and II (ED522581). Innovation Configurations are a tool that helps educators better understand what the standards look like in practice. Roy, who co-authored the original volumes, introduces a process…
Object-based attention: strength of object representation and attentional guidance.
Shomstein, Sarah; Behrmann, Marlene
2008-01-01
Two or more features belonging to a single object are identified more quickly and more accurately than are features belonging to different objects--a finding attributed to sensory enhancement of all features belonging to an attended or selected object. However, several recent studies have suggested that this "single-object advantage" may be a product of probabilistic and configural strategic prioritizations rather than of object-based perceptual enhancement per se, challenging the underlying mechanism that is thought to give rise to object-based attention. In the present article, we further explore constraints on the mechanisms of object-based selection by examining the contribution of the strength of object representations to the single-object advantage. We manipulated factors such as exposure duration (i.e., preview time) and salience of configuration (i.e., objects). Varying preview time changes the magnitude of the object-based effect, so that if there is ample time to establish an object representation (i.e., preview time of 1,000 msec), then both probability and configuration (i.e., objects) guide attentional selection. If, however, insufficient time is provided to establish a robust object-based representation, then only probabilities guide attentional selection. Interestingly, at a short preview time of 200 msec, when the two objects were sufficiently different from each other (i.e., different colors), both configuration and probability guided attention selection. These results suggest that object-based effects can be explained both in terms of strength of object representations (established at longer exposure durations and by pictorial cues) and probabilistic contingencies in the visual environment.
Transversely bounded DFB lasers. [bounded distributed-feedback lasers
NASA Technical Reports Server (NTRS)
Elachi, C.; Evans, G.; Yeh, C.
1975-01-01
Bounded distributed-feedback (DFB) lasers are studied in detail. Threshold gain and field distribution for a number of configurations are derived and analyzed. More specifically, the thin-film guide, fiber, diffusion guide, and hollow channel with inhomogeneous-cladding DFB lasers are considered. Optimum points exist and must be used in DFB laser design. Different-modes feedback and the effects of the transverse boundaries are included. A number of applications are also discussed.
Aerodynamic Performance of Scale-Model Turbofan Outlet Guide Vanes Designed for Low Noise
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.
2001-01-01
The design of effective new technologies to reduce aircraft propulsion noise is dependent on an understanding of the noise sources and noise generation mechanisms in the modern turbofan engine. In order to more fully understand the physics of noise in a turbofan engine, a comprehensive aeroacoustic wind tunnel test programs was conducted called the 'Source Diagnostic Test.' The text was cooperative effort between NASA and General Electric Aircraft Engines, as part of the NASA Advanced Subsonic Technology Noise Reduction Program. A 1/5-scale model simulator representing the bypass stage of a current technology high bypass ratio turbofan engine was used in the test. The test article consisted of the bypass fan and outlet guide vanes in a flight-type nacelle. The fan used was a medium pressure ratio design with 22 individual, wide chord blades. Three outlet guide vane design configurations were investigated, representing a 54-vane radial Baseline configuration, a 26-vane radial, wide chord Low Count configuration and a 26-vane, wide chord Low Noise configuration with 30 deg of aft sweep. The test was conducted in the NASA Glenn Research Center 9 by 15-Foot Low Speed Wind Tunnel at velocities simulating the takeoff and approach phases of the aircraft flight envelope. The Source Diagnostic Test had several acoustic and aerodynamic technical objectives: (1) establish the performance of a scale model fan selected to represent the current technology turbofan product; (2) assess the performance of the fan stage with each of the three distinct outlet guide vane designs; (3) determine the effect of the outlet guide vane configuration on the fan baseline performance; and (4) conduct detailed flowfield diagnostic surveys, both acoustic and aerodynamic, to characterize and understand the noise generation mechanisms in a turbofan engine. This paper addresses the fan and stage aerodynamic performance results from the Source Diagnostic Test.
3D conformal MRI-guided transurethral ultrasound therapy: results of gel phantom experiments
NASA Astrophysics Data System (ADS)
N'Djin, W. A.; Burtnyk, M.; McCormick, S.; Bronskill, M.; Chopra, R.
2011-09-01
MRI-guided transurethral ultrasound therapy shows promise for minimally invasive treatment of localized prostate cancer. Previous in-vivo studies demonstrated the feasibility of performing conservative treatments using real-time temperature feedback to control accurately the establishment of coagulative lesions within circumscribed prostate regions. This in-vitro study tested device configuration and control options for achieving full prostate treatments. A multi-channel MRI compatible ultrasound therapy system was evaluated in gel phantoms using 3 canine prostate models. Prostate profiles were 5 mm-step-segmented from T2-weighted MR images performed during previous in-vivo experiments. During ultrasound exposures, each ultrasound element was controlled independently by the 3D controller. Decisions on acoustic power, frequency, and device rotation rate were made in real time based on MR thermometry feedback and prostate radii. Low and high power treatment approaches using maximum acoustic powers of 10 or 20 W.cm-2 were tested as well as single and dual-frequency strategies (4.05/13.10 MHz). The dual-frequency strategy used either the fundamental frequency or the 3rd harmonic component, depending on the prostate radius. The 20 W.cm-2 dual frequency approach was the most efficient configuration in achieving full prostate treatments. Treatment times were about half the duration of those performed with 10 W.cm-2 configurations. Full prostate coagulations were performed in 16.3±6.1 min at a rate of 1.8±0.2 cm3.min-1, and resulted in very little undertreated tissue (<3%). Surrounding organs positioned beyond a safety distance of 1.4±1.0 mm from prostate boundaries were not damaged, particularly rectal wall tissues. In this study, a 3D, MR-thermometry-guided transurethral ultrasound therapy was validated in vitro in a tissue-mimicking phantom for performing full prostate treatment. A dual-frequency configuration with 20 W.cm-2 ultrasound intensity exposure showed good results with direct application to full human prostate treatments.
General Mission Analysis Tool (GMAT) User's Guide (Draft)
NASA Technical Reports Server (NTRS)
Hughes, Steven P.
2007-01-01
4The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system. This document is a draft of the users guide for the tool. Included in the guide is information about Configuring Objects/Resources, Object Fields: Quick Look-up Tables, and Commands and Events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities in the operational phase. Portions of this standard are also useful for other DOE processes, activities, and programs. This Part 1 contains foreword, glossary, acronyms, bibliography, and Chapter 1 on operational configuration management program principles. Appendices are included on configuration management program interfaces, and background material and concepts for operational configuration management.
NASA Technical Reports Server (NTRS)
Bruner, Sam; Baber, Scott; Harris,Chris; Caldwell, Nicholas; Keding, Peter; Rahrig, Kyle; Pho, Luck; Wlezian, Richard
2010-01-01
A conceptual commercial passenger transport study was performed to define a single vehicle for entry into service in the 2030 to 2035 timeframe, meeting customer demands as well as NASA goals for improved fuel economy, NOx emissions, noise, and operability into smaller airports. A study of future market and operational scenarios was used to guide the design of an advanced tube-and-wing configuration that utilized advanced material and structural concepts, an advanced three-shaft high-bypass turbofan engine, natural laminar flow technology, and a suite of other advanced technologies. This configuration was found to meet the goals for NOx emissions, noise, and field length. A 64 percent improvement in fuel economy compared to a current state-of-the-art airliner was achieved, which fell slightly short of the desired 70 percent goal. Technology maturation plans for the technologies used in the design were developed to help guide future research and development activities.
A deflectable guiding catheter for real-time MRI-guided interventions.
Bell, Jamie A; Saikus, Christina E; Ratnayaka, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z; Colyer, Jessica H; Lederman, Robert J; Kocaturk, Ozgur
2012-04-01
To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. The catheter shaft incorporated Kevlar braiding. A 180° deflection was attained with a 5-cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057" lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. Copyright © 2011 Wiley Periodicals, Inc.
Chen, Yunjie; Roux, Benoît
2015-08-11
Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water.
2015-01-01
Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water. PMID:26574442
[Effect of object consistency in a spatial contextual cueing paradigm].
Takeda, Yuji
2008-04-01
Previous studies demonstrated that attention can be quickly guided to a target location in a visual search task when the spatial configurations of search items and/or the object identities were repeated in the previous trials. This phenomenon is termed contextual cueing. Recently, it was reported that spatial configuration learning and object identity learning occurred independently, when novel contours were used as search items. The present study examined whether this learning occurred independently even when the search items were meaningful. The results showed that the contextual cueing effect was observed even if the relationships between the spatial locations and object identities were jumbled (Experiment 1). However, it disappeared when the search items were changed into geometric patterns (Experiment 2). These results suggest that the spatial configuration can be learned independent of the object identities; however, the use of the learned configuration is restricted by the learning situations.
DOT National Transportation Integrated Search
2000-05-13
The Federal Highway Administration (FHWA) has laid some groundwork to support roundabouts. The agency's new guide aims to be "the definitive source of information related to planning, operation, design and configuration of modern roundabouts in the U...
NASA Astrophysics Data System (ADS)
Zhang, Dongqing; Zhao, Yiyuan; Noble, Jack H.; Dawant, Benoit M.
2017-03-01
Cochlear implants (CIs) are used to treat patients with severe-to-profound hearing loss. In surgery, an electrode array is implanted in the cochlea. After implantation, the CI processor is programmed by an audiologist. One factor that negatively impacts outcomes and can be addressed by programming is cross-electrode neural stimulation overlap (NSO). In the recent past, we have proposed a system to assist the audiologist in programming the CI that we call Image-Guided CI Programming (IGCIP). IGCIP permits using CT images to detect NSO and recommend which subset of electrodes should be active to avoid NSO. In an ongoing clinical study, we have shown that IGCIP leads to significant improvement in hearing outcomes. Most of the IGCIP steps are robustly automated but electrode configuration selection still sometimes requires expert intervention. With expertise, Distance-Vs-Frequency (DVF) curves, which are a way to visualize the spatial relationship learned from CT between the electrodes and the nerves they stimulate, can be used to select the electrode configuration. In this work, we propose an automated technique for electrode configuration selection. It relies on matching new patients' DVF curves to a library of DVF curves for which electrode configurations are known. We compare this approach to one we have previously proposed. We show that, generally, our new method produces results that are as good as those obtained with our previous one while being generic and requiring fewer parameters.
Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas
2011-09-13
An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.
Aspects of Collisionless Magnetic Reconnection in Asymmetric Systems
NASA Technical Reports Server (NTRS)
Hesse, Michael; Aunai, Nicolas; Zenitani, Seiji; Kuznetsova, Masha; Birn, Joachim
2013-01-01
Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: The direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.
Aspects of Collisionless Magnetic Reconnection in Asymmetric Systems
NASA Technical Reports Server (NTRS)
Hesse, Michael; Aunai, Nicolas; Zeitani, Seiji; Kuznetsova, Masha; Birn, Joachim
2013-01-01
Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with non-vanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.
Aspects of collisionless magnetic reconnection in asymmetric systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha
2013-06-15
Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement formore » particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.« less
An arbitrary grid CFD algorithm for configuration aerodynamics analysis. Volume 2: FEMNAS user guide
NASA Technical Reports Server (NTRS)
Manhardt, Paul D.; Orzechowski, J. A.; Baker, A. J.
1992-01-01
This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.
Fernández-Gutiérrez, Fabiola; Martínez, Santiago; Rube, Martin A; Cox, Benjamin F; Fatahi, Mahsa; Scott-Brown, Kenneth C; Houston, J Graeme; McLeod, Helen; White, Richard D; French, Karen; Gueorguieva, Mariana; Immel, Erwin; Melzer, Andreas
2015-10-01
A methodological framework is introduced to assess and compare a conventional fluoroscopy protocol for peripheral angioplasty with a new magnetic resonant imaging (MRI)-guided protocol. Different scenarios were considered during interventions on a perfused arterial phantom with regard to time-based and cognitive task analysis, user experience and ergonomics. Three clinicians with different expertise performed a total of 43 simulated common iliac angioplasties (9 fluoroscopic, 34 MRI-guided) in two blocks of sessions. Six different configurations for MRI guidance were tested in the first block. Four of them were evaluated in the second block and compared to the fluoroscopy protocol. Relevant stages' durations were collected, and interventions were audio-visually recorded from different perspectives. A cued retrospective protocol analysis (CRPA) was undertaken, including personal interviews. In addition, ergonomic constraints in the MRI suite were evaluated. Significant differences were found when comparing the performance between MRI configurations versus fluoroscopy. Two configurations [with times of 8.56 (0.64) and 9.48 (1.13) min] led to reduce procedure time for MRI guidance, comparable to fluoroscopy [8.49 (0.75) min]. The CRPA pointed out the main influential factors for clinical procedure performance. The ergonomic analysis quantified musculoskeletal risks for interventional radiologists when utilising MRI. Several alternatives were suggested to prevent potential low-back injuries. This work presents a step towards the implementation of efficient operational protocols for MRI-guided procedures based on an integral and multidisciplinary framework, applicable to the assessment of current vascular protocols. The use of first-user perspective raises the possibility of establishing new forms of clinical training and education.
A deflectable guiding catheter for real-time MRI-guided interventions
Bell, Jamie A.; Saikus, Christina E.; Ratnakaya, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z.; Colyer, Jessica H.; Lederman, Robert J.; Kocaturk, Ozgur
2011-01-01
Purpose To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. Materials and Methods The catheter shaft incorporated Kevlar braiding. 180° deflection was attained with a 5 cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively-coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Results Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Conclusion Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057” lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. PMID:22128071
Takeuchi, Hiroshi
2018-05-08
Since searching for the global minimum on the potential energy surface of a cluster is very difficult, many geometry optimization methods have been proposed, in which initial geometries are randomly generated and subsequently improved with different algorithms. In this study, a size-guided multi-seed heuristic method is developed and applied to benzene clusters. It produces initial configurations of the cluster with n molecules from the lowest-energy configurations of the cluster with n - 1 molecules (seeds). The initial geometries are further optimized with the geometrical perturbations previously used for molecular clusters. These steps are repeated until the size n satisfies a predefined one. The method locates putative global minima of benzene clusters with up to 65 molecules. The performance of the method is discussed using the computational cost, rates to locate the global minima, and energies of initial geometries. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Data Link Test and Analysis System/TCAS Monitor User's Guide
DOT National Transportation Integrated Search
1991-02-01
This document is a user's guide for the Data Link Test and Analysis System : (DATAS) Traffic Alert and Collision Avoidance System (TCAS) monitor application. : It provides a brief overall hardware description of DATAS configured as a TCAS : Monitor, ...
1.0 T open-configuration magnetic resonance-guided microwave ablation of pig livers in real time
Dong, Jun; Zhang, Liang; Li, Wang; Mao, Siyue; Wang, Yiqi; Wang, Deling; Shen, Lujun; Dong, Annan; Wu, Peihong
2015-01-01
The current fastest frame rate of each single image slice in MR-guided ablation is 1.3 seconds, which means delayed imaging for human at an average reaction time: 0.33 seconds. The delayed imaging greatly limits the accuracy of puncture and ablation, and results in puncture injury or incomplete ablation. To overcome delayed imaging and obtain real-time imaging, the study was performed using a 1.0-T whole-body open configuration MR scanner in the livers of 10 Wuzhishan pigs. A respiratory-triggered liver matrix array was explored to guide and monitor microwave ablation in real-time. We successfully performed the entire ablation procedure under MR real-time guidance at 0.202 s, the fastest frame rate for each single image slice. The puncture time ranged from 23 min to 3 min. For the pigs, the mean puncture time was shorted to 4.75 minutes and the mean ablation time was 11.25 minutes at power 70 W. The mean length and widths were 4.62 ± 0.24 cm and 2.64 ± 0.13 cm, respectively. No complications or ablation related deaths during or after ablation were observed. In the current study, MR is able to guide microwave ablation like ultrasound in real-time guidance showing great potential for the treatment of liver tumors. PMID:26315365
NASA Astrophysics Data System (ADS)
TenBarge, J. M.; Shay, M. A.; Sharma, P.; Juno, J.; Haggerty, C. C.; Drake, J. F.; Bhattacharjee, A.; Hakim, A.
2017-12-01
Turbulence and magnetic reconnection are the primary mechanisms responsible for the conversion of stored magnetic energy into particle energy in many space and astrophysical plasmas. The magnetospheric multiscale mission (MMS) has given us unprecedented access to high cadence particle and field data of turbulence and magnetic reconnection at earth's magnetopause. The observations include large guide field reconnection events generated within the turbulent magnetopause. Motivated by these observations, we present a study of large guide reconnection using the fully kinetic Eulerian Vlasov-Maxwell component of the Gkeyll simulation framework, and we also employ and compare with gyrokinetics to explore the asymptotically large guide field limit. In addition to studying the configuration space dynamics, we leverage the recently developed field-particle correlations to diagnose the dominant sources of dissipation and compare the results of the field-particle correlation to other energy dissipation measures.
XpressWare Installation User guide
NASA Astrophysics Data System (ADS)
Duffey, K. P.
XpressWare is a set of X terminal software, released by Tektronix Inc, that accommodates the X Window system on a range of host computers. The software comprises boot files (the X server image), configuration files, fonts, and font tools to support the X terminal. The files can be installed on one host or distributed across multiple hosts The purpose of this guide is to present the system or network administrator with a step-by-step account of how to install XpressWare, and how subsequently to configure the X terminals appropriately for the environment in which they operate.
Data link test and analysis system/TCAS monitor user's guide
NASA Astrophysics Data System (ADS)
Vandongen, John; Wapelhorst, Leo
1991-02-01
This document is a user's guide for the Data Link Test and Analysis System (DATAS) Traffic Alert and Collision Avoidance System (TCAS) monitor. It provides a brief overall hardware description of DATAS configured as a TCAS monitor, and the applications software.
CD-ROMs: Volumes of Books on a Single 4 3/4-Inch Disk.
ERIC Educational Resources Information Center
Angle, Melanie
1992-01-01
Summarizes the storage capacity, advantages, disadvantages, hardware configurations, and costs of CD-ROMs. Several available titles are described, including "Books in Print," literature study guides, the works of Shakespeare, a historical almanac of "Time Magazine" articles, a scientific dictionary and encyclopedia, and a…
Innovation Configurations: Analyzing the Adaptations of Innovations.
ERIC Educational Resources Information Center
Hall, Gene E.; Loucks, Susan F.
When implementing an innovation, a multitude of components interact to change not only the users, but the innovation as well. This guide explains the concept of innovation configurations, or adaptations made in innovations during implementation. After presenting and discussing past research on innovation changes, the report outlines a five step…
Configuration Management Plan for K Basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weir, W.R.; Laney, T.
This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93,more » {open_quotes}Guide for Operational Configuration Management Program{close_quotes}.« less
Klinghammer, Mathias; Blohm, Gunnar; Fiehler, Katja
2017-01-01
Previous research has shown that egocentric and allocentric information is used for coding target locations for memory-guided reaching movements. Especially, task-relevance determines the use of objects as allocentric cues. Here, we investigated the influence of scene configuration and object reliability as a function of task-relevance on allocentric coding for memory-guided reaching. For that purpose, we presented participants images of a naturalistic breakfast scene with five objects on a table and six objects in the background. Six of these objects served as potential reach-targets (= task-relevant objects). Participants explored the scene and after a short delay, a test scene appeared with one of the task-relevant objects missing, indicating the location of the reach target. After the test scene vanished, participants performed a memory-guided reaching movement toward the target location. Besides removing one object from the test scene, we also shifted the remaining task-relevant and/or task-irrelevant objects left- or rightwards either coherently in the same direction or incoherently in opposite directions. By varying object coherence, we manipulated the reliability of task-relevant and task-irrelevant objects in the scene. In order to examine the influence of scene configuration (distributed vs. grouped arrangement of task-relevant objects) on allocentric coding, we compared the present data with our previously published data set (Klinghammer et al., 2015). We found that reaching errors systematically deviated in the direction of object shifts, but only when the objects were task-relevant and their reliability was high. However, this effect was substantially reduced when task-relevant objects were distributed across the scene leading to a larger target-cue distance compared to a grouped configuration. No deviations of reach endpoints were observed in conditions with shifts of only task-irrelevant objects or with low object reliability irrespective of task-relevancy. Moreover, when solely task-relevant objects were shifted incoherently, the variability of reaching endpoints increased compared to coherent shifts of task-relevant objects. Our results suggest that the use of allocentric information for coding targets for memory-guided reaching depends on the scene configuration, in particular the average distance of the reach target to task-relevant objects, and the reliability of task-relevant allocentric information. PMID:28450826
Klinghammer, Mathias; Blohm, Gunnar; Fiehler, Katja
2017-01-01
Previous research has shown that egocentric and allocentric information is used for coding target locations for memory-guided reaching movements. Especially, task-relevance determines the use of objects as allocentric cues. Here, we investigated the influence of scene configuration and object reliability as a function of task-relevance on allocentric coding for memory-guided reaching. For that purpose, we presented participants images of a naturalistic breakfast scene with five objects on a table and six objects in the background. Six of these objects served as potential reach-targets (= task-relevant objects). Participants explored the scene and after a short delay, a test scene appeared with one of the task-relevant objects missing, indicating the location of the reach target. After the test scene vanished, participants performed a memory-guided reaching movement toward the target location. Besides removing one object from the test scene, we also shifted the remaining task-relevant and/or task-irrelevant objects left- or rightwards either coherently in the same direction or incoherently in opposite directions. By varying object coherence, we manipulated the reliability of task-relevant and task-irrelevant objects in the scene. In order to examine the influence of scene configuration (distributed vs. grouped arrangement of task-relevant objects) on allocentric coding, we compared the present data with our previously published data set (Klinghammer et al., 2015). We found that reaching errors systematically deviated in the direction of object shifts, but only when the objects were task-relevant and their reliability was high. However, this effect was substantially reduced when task-relevant objects were distributed across the scene leading to a larger target-cue distance compared to a grouped configuration. No deviations of reach endpoints were observed in conditions with shifts of only task-irrelevant objects or with low object reliability irrespective of task-relevancy. Moreover, when solely task-relevant objects were shifted incoherently, the variability of reaching endpoints increased compared to coherent shifts of task-relevant objects. Our results suggest that the use of allocentric information for coding targets for memory-guided reaching depends on the scene configuration, in particular the average distance of the reach target to task-relevant objects, and the reliability of task-relevant allocentric information.
Cong, Ming; Wu, Xinjun; Qian, Chunqiao
2016-05-21
A new electromagnetic acoustic transducer (EMAT) design, employing a special structure of the permanent magnet chain, is proposed to generate and receive longitudinal guided waves for pipe inspection based on the magnetostriction mechanism. Firstly, a quantitative analysis of the excitation forces shows the influence of the radial component can be ignored. Furthermore, as the axial component of the static magnetic field is dominant, a method of solenoid testing coils connected in series is adopted to increase the signal amplitude. Then, two EMAT configurations are developed to generate and receive the L(0,2) guided wave mode. The experimental results show the circumferential notch can be identified and located successfully. Finally, a detailed investigation of the performance of the proposed EMATs is given. Compared to the conventional EMAT configuration, the proposed configurations have the advantages of small volume, light weight, easy installation and portability, which is helpful to improve inspection efficiency.
Computer Science 205. Interim Guide, 1983.
ERIC Educational Resources Information Center
Manitoba Dept. of Education, Winnipeg.
This guide to a 4-unit, required high school computer science course emphasizes problem solving and computer programming and is designed for use with a variety of hardware configurations and programming languages. An overview covers the program rationale, goals and objectives, program design and description, program implementation, time allotment,…
USDA-ARS?s Scientific Manuscript database
Bioassay-guided fractionation of an extract prepared from the culture medium and mycelium of Purpureocillium lilacinum allowed the isolation of two calmodulin (CaM) inhibitors, namely, acremoxanthone C (1) and acremonidin A (2). The absolute configuration of 1 was established as 2R, 3R, 1'S, 11'S, ...
nQuire: Technological Support for Personal Inquiry Learning
ERIC Educational Resources Information Center
Mulholland, P.; Anastopoulou, S.; Collins, T.; Feisst, M.; Gaved, M.; Kerawalla, L.; Paxton, M.; Scanlon, E.; Sharples, M.; Wright, M.
2012-01-01
This paper describes the development of nQuire, a software application to guide personal inquiry learning. nQuire provides teacher support for authoring, orchestrating, and monitoring inquiries as well as student support for carrying out, configuring, and reviewing inquiries. nQuire allows inquiries to be scripted and configured in various ways,…
The Aerodynamic Performance of the Houck Configuration Flow Guides
2007-06-01
Vortices.............................................................................................13 2.5 Winglets ...associated with the Houck configuration. This includes winglets , biplanes, and joined-wing aircraft. After that the chapter will discuss the evolution...efficiency factor (e = 1 for elliptical wing). 2.5 Winglets A winglet is best described by Jean Chattot’s quote: “ Winglets are aerodynamic components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities. This Part 2 includes chapters on implementation guidance for operational configuration management, implementation guidance for design reconstitution, and implementation guidance for material condition and aging management. Appendices are included on design control, examples of design information, conduct of walkdowns, and content of design information summaries.
NASA Technical Reports Server (NTRS)
Benjamin, Theodore G.; Garcia, Roberto; Mcconnaughey, Paul K.; Wang, Ten-See; Vu, Bruce T.; Dakhoul, Youssef
1993-01-01
These analyses were undertaken to aid in the understanding of flow phenomena in the Alternate Turbopump Development (ATD) High-pressure Oxidizer Turbopump (HPOTP) Pump-end ball bearing (PEBB) cavities and their roles in turbopump vibration initiation and bearing distress. This effort was being performed to provide timely support to the program in a decision as to whether or not the program should be continued. In the first case, it was determined that a change in bearing through flow had no significant effect on axial preload. This was a follow-on to a previous study which had resulted in a redesign of the bearing exit cavity which virtually eliminated bearing axial loading. In the second case, a three-dimensional analysis of the inner-race-guided cage configuration was performed so as to determine the pressure distribution on the outer race when the shaft is 0.0002 inches off-center. The results indicate that there is virtually no circumferential pressure difference caused by the offset to contribute to bearing tilt. In the third case, axisymmetric analyses were performed on an outer-race guided cage configuration to determine the magnitude of tangential flow entering the bearing. The removed-shoulder case was analyzed as was the static diverter case. A third analysis where the preload spring was shielded by a sheet of metal for the baseline case was also performed. It was determined that the swirl entering the bearing was acceptable and the project decided to use the outer-race-guided cage configuration. In the fourth case, more bearing configurations were analyzed. These analyses included thermal modeling so as to determine the added benefit of injecting colder fluid directly onto the bearing inner-race contact area. The results of these analyses contributed to a programmatic decision to include coolant injection in the design.
Kang, Jihoon; Choi, Yong
2016-07-01
Light sharing PET detector configuration coupled with thick light guide and Geiger-mode avalanche photodiode (GAPD) with large-area microcells was proposed to overcome the energy non-linearity problem and to obtain high light collection efficiency (LCE). A Monte-Carlo simulation was conducted for the three types of LSO block, 4 × 4 array of 3 × 3 × 20 mm(3) discrete crystals, 6 × 6 array of 2 × 2 × 20 mm(3) discrete crystals, and 12 × 12 array of 1 × 1 × 20 mm(3) discrete crystals, to investigate the scintillation light distribution after conversion of the γ-rays in LSO. The incident photons were read out by three types of 4 × 4 array photosensors, which were PSPMT of 25% quantum efficiency (QE), GAPD1 with 50 × 50 µm(2) microcells of 30% photon detection efficiency (PDE) and GAPD2 with 100 × 100 µm(2) of 45% PDE. The number of counted photons in each photosensor was analytically calculated. The LCE, linearity and flood histogram were examined for each PET detector module having 99 different configurations as a function of light guide thickness ranging from 0 to 10 mm. The performance of PET detector modules based on GAPDs was considerably improved by using the thick light guide. The LCE was increased from 24 to 30% and from 14 to 41%, and the linearity was also improved from 0.97 to 0.99 and from 0.75 to 0.99, for GAPD1 and GAPD2, respectively. As expected, the performance of PSPMT based detector did not change. The flood histogram of 12 × 12 array PET detector modules using 3 mm light guide coupled with GAPDs was obtained by simulation, and all crystals of 1 × 1 × 20 mm(3) size were clearly identified. PET detector module coupled with thick light guide and GAPD array with large-area microcells was proposed to obtain high QE and high spatial resolution, and its feasibility was verified. This study demonstrated that the overall PET performance of the proposed design was considerably improved, and this approach will provide opportunities to develop GAPD based PET detector with a high LCE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Beable-guided quantum theories: Generalizing quantum probability laws
NASA Astrophysics Data System (ADS)
Kent, Adrian
2013-02-01
Beable-guided quantum theories (BGQT) are generalizations of quantum theory, inspired by Bell's concept of beables. They modify the quantum probabilities for some specified set of fundamental events, histories, or other elements of quasiclassical reality by probability laws that depend on the realized configuration of beables. For example, they may define an additional probability weight factor for a beable configuration, independent of the quantum dynamics. Beable-guided quantum theories can be fitted to observational data to provide foils against which to compare explanations based on standard quantum theory. For example, a BGQT could, in principle, characterize the effects attributed to dark energy or dark matter, or any other deviation from the predictions of standard quantum dynamics, without introducing extra fields or a cosmological constant. The complexity of the beable-guided theory would then parametrize how far we are from a standard quantum explanation. Less conservatively, we give reasons for taking suitably simple beable-guided quantum theories as serious phenomenological theories in their own right. Among these are the possibility that cosmological models defined by BGQT might in fact fit the empirical data better than any standard quantum explanation, and the fact that BGQT suggest potentially interesting nonstandard ways of coupling quantum matter to gravity.
Numerical study of core formation of asymmetrically driven cone-guided targets
Sawada, Hiroshi; Sakagami, Hitoshi
2017-09-22
Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less
Numerical study of core formation of asymmetrically driven cone-guided targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, Hiroshi; Sakagami, Hitoshi
Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less
NASA Astrophysics Data System (ADS)
Babcock, E.; Salhi, Z.; Gainov, R.; Woracek, R.; Soltner, H.; Pistel, P.; Beule, F.; Bussmann, K.; Heynen, A.; Kämmerling, H.; Suxdorf, F.; Strobl, M.; Russina, M.; Voigt, J.; Ioffe, A.
2017-06-01
A complete XYZ polarization analysis solution is under development for the new thermal time of flight spectrometer TOPAS [1], to be operated in the coming east neutron guide hall at the MLZ. Polarization Analysis Studies on a Thermal Inelastic Spectrometer, commonly called PASTIS [2], is based on polarized 3He neutron spin filters and an XYZ field configuration for the sample environment and a polarization-preserving neutron guide field. The complete system was designed to provide adiabatic transport of the neutron polarization to the sample position while maintaining the homogeneity of the XYZ field. This system has now been tested on the polarized time-of-flight ESS test beam line V20 at HZB [3]. Down to the minimum wavelength of 1.6 Å on the instrument, the magnetic configuration worked ideally for neutron spin transport while giving full experimental freedom to change between the X, Y or Z field configuration. The 3He cell used was polarized at the 3He lab of the JCNS at the MLZ in Garching and transported to HZB in Berlin via car showing that such a transport is indeed feasible for such experiments. We present results of this test and the next steps forward.
Toward Automating Web Protocol Configuration for a Programmable Logic Controller Emulator
2014-06-19
Security Risks for Industrial Control Systems ,” VDE 2004 Congress, Berlin, Germany, October 2004, pp. 1-7. [Cis12] Cisco, NetFlow Configuration Guide...Date 29 May 2014 Date AFIT-ENG-T-14-J-4 Abstract Industrial Control Systems (ICS) remain vulnerable through attack vectors that exist within programmable...5 2.2 Industrial Control Systems
Biological Motion Preference in Humans at Birth: Role of Dynamic and Configural Properties
ERIC Educational Resources Information Center
Bardi, Lara; Regolin, Lucia; Simion, Francesca
2011-01-01
The present study addresses the hypothesis that detection of biological motion is an intrinsic capacity of the visual system guided by a non-species-specific predisposition for the pattern of vertebrate movement and investigates the role of global vs. local information in biological motion detection. Two-day-old babies exposed to a biological…
GEOS-5 Chemistry Transport Model User's Guide
NASA Technical Reports Server (NTRS)
Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.
2015-01-01
The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.
Users guide: The LaRC human-operator-simulator-based pilot model
NASA Technical Reports Server (NTRS)
Bogart, E. H.; Waller, M. C.
1985-01-01
A Human Operator Simulator (HOS) based pilot model has been developed for use at NASA LaRC for analysis of flight management problems. The model is currently configured to simulate piloted flight of an advanced transport airplane. The generic HOS operator and machine model was originally developed under U.S. Navy sponsorship by Analytics, Inc. and through a contract with LaRC was configured to represent a pilot flying a transport airplane. A version of the HOS program runs in batch mode on LaRC's (60-bit-word) central computer system. This document provides a guide for using the program and describes in some detail the assortment of files used during its operation.
NASA Astrophysics Data System (ADS)
Xuan, Li; He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai
2016-09-01
Multi-conjugation adaptive optics (MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view (FOV). The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors, such as deformable mirrors (DMs) or liquid crystal wavefront correctors (LCWCs), is a very important step in the data processing of an MCAO’s controller. In this paper, a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars (LGSs) and the reasonable conjugation heights of LCWCs. Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO. Several examples are given to demonstrate our LGSs configuration optimization method. Compared with traditional methods, our method has minimum wavefront tomographic error, which will be helpful to get higher imaging resolution at large FOV in MCAO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Zhang, Dongqing; Zhao, Yiyuan; Noble, Jack H; Dawant, Benoit M
2018-04-01
Cochlear implants (CIs) are neural prostheses that restore hearing using an electrode array implanted in the cochlea. After implantation, the CI processor is programmed by an audiologist. One factor that negatively impacts outcomes and can be addressed by programming is cross-electrode neural stimulation overlap (NSO). We have proposed a system to assist the audiologist in programming the CI that we call image-guided CI programming (IGCIP). IGCIP permits using CT images to detect NSO and recommend deactivation of a subset of electrodes to avoid NSO. We have shown that IGCIP significantly improves hearing outcomes. Most of the IGCIP steps are robustly automated but electrode configuration selection still sometimes requires manual intervention. With expertise, distance-versus-frequency curves, which are a way to visualize the spatial relationship learned from CT between the electrodes and the nerves they stimulate, can be used to select the electrode configuration. We propose an automated technique for electrode configuration selection. A comparison between this approach and one we have previously proposed shows that our method produces results that are as good as those obtained with our previous method while being generic and requiring fewer parameters.
System administrator`s guide to CDPS. Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Didier, B.T.; Portwood, M.H.
The System Administrator`s Guide to CDPS is intended for those responsible for setting up and maintaining the hardware and software of a Common Mapping Standard (CMS) Date Production System (CDPS) installation. This guide assists the system administrator in performing typical administrative functions. It is not intended to replace the Ultrix Documentation Set that should be available for a DCPS installation. The Ultrix Documentation Set will be required to provide details on referenced Ultrix commands as well as procedures for performing Ultrix maintenance functions. There are six major sections in this guide. Section 1 introduces the system administrator to CDPS andmore » describes the assumptions that are made by this guide. Section 2 describes the CDPS platform configuration. Section 3 describes the platform preparation that is required to install the CDPS software. Section 4 describes the CPS software and its installation procedures. Section 5 describes the CDS software and its installation procedures. Section 6 describes various operation and maintenance procedures. Four appendices are also provided. Appendix A contains a list of used acronyms. Appendix B provides a terse description of common Ultrix commands that are used in administrative functions. Appendix C provides sample CPS and CDS configuration files. Appendix D provides a required list and a recommended list of Ultrix software subsets for installation on a CDPS platform.« less
Cong, Ming; Wu, Xinjun; Qian, Chunqiao
2016-01-01
A new electromagnetic acoustic transducer (EMAT) design, employing a special structure of the permanent magnet chain, is proposed to generate and receive longitudinal guided waves for pipe inspection based on the magnetostriction mechanism. Firstly, a quantitative analysis of the excitation forces shows the influence of the radial component can be ignored. Furthermore, as the axial component of the static magnetic field is dominant, a method of solenoid testing coils connected in series is adopted to increase the signal amplitude. Then, two EMAT configurations are developed to generate and receive the L(0,2) guided wave mode. The experimental results show the circumferential notch can be identified and located successfully. Finally, a detailed investigation of the performance of the proposed EMATs is given. Compared to the conventional EMAT configuration, the proposed configurations have the advantages of small volume, light weight, easy installation and portability, which is helpful to improve inspection efficiency. PMID:27213400
ERIC Educational Resources Information Center
de Carvalho, Marta Maria Chagas
2005-01-01
This article addresses the issue of school and modernity representations that circulated in Brazil as from the end of the nineteenth century until the middle of the twentieth century and determined the configuration process of the Republican school. First, the article examines the pedagogical models that guided the process of school…
AGARD standard aeroelastic configurations for dynamic response. 1: Wing 445.6
NASA Technical Reports Server (NTRS)
Yates, E. Carson, Jr.
1988-01-01
This report contains experimental flutter data for the AGARD 3-D swept tapered standard configuration Wing 445.6, along with related descriptive data of the model properties required for comparative flutter calculations. As part of a cooperative AGARD-SMP program, guided by the Sub-Committee on Aeroelasticity, this standard configuration may serve as a common basis for comparison of calculated and measured aeroelastic behavior. These comparisons will promote a better understanding of the assumptions, approximations and limitations underlying the various aerodynamic methods applied, thus pointing the way to further improvements.
An installed nacelle design code using a multiblock Euler solver. Volume 2: User guide
NASA Technical Reports Server (NTRS)
Chen, H. C.
1992-01-01
This is a user manual for the general multiblock Euler design (GMBEDS) code. The code is for the design of a nacelle installed on a geometrically complex configuration such as a complete airplane with wing/body/nacelle/pylon. It consists of two major building blocks: a design module developed by LaRC using directive iterative surface curvature (DISC); and a general multiblock Euler (GMBE) flow solver. The flow field surrounding a complex configuration is divided into a number of topologically simple blocks to facilitate surface-fitted grid generation and improve flow solution efficiency. This user guide provides input data formats along with examples of input files and a Unix script for program execution in the UNICOS environment.
Study of guided wave transmission through complex junction in sodium cooled reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elie, Q.; Le Bourdais, F.; Jezzine, K.
2015-07-01
Ultrasonic guided wave techniques are seen as suitable candidates for the inspection of welded structures within sodium cooled fast reactors (SFR), as the long range propagation of guided waves without amplitude attenuation can overcome the accessibility problem due to the liquid sodium. In the context of the development of the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID), the French Atomic Commission (CEA) investigates non-destructive testing techniques based on guided wave propagation. In this work, guided wave NDT methods are applied to control the integrity of welds located in a junction-type structure welded to the main vessel. The method presentedmore » in this paper is based on the analysis of scattering matrices peculiar to each expected defect, and takes advantage of the multi-modal and dispersive characteristics of guided wave generation. In a simulation study, an algorithm developed using the CIVA software is presented. It permits selecting appropriate incident modes to optimize detection and identification of expected flawed configurations. In the second part of this paper, experimental results corresponding to a first validation step of the simulation results are presented. The goal of the experiments is to estimate the effectiveness of the incident mode selection in plates. The results show good agreement between experience and simulation. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-05-13
STONIX is a program for configuring UNIX and Linux computer operating systems. It applies configurations based on the guidance from publicly accessible resources such as: NSA Guides, DISA STIGs, the Center for Internet Security (CIS), USGCB and vendor security documentation. STONIX is written in the Python programming language using the QT4 and PyQT4 libraries to provide a GUI. The code is designed to be easily extensible and customizable.
Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.
2012-12-18
Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.
Broadband Venetian-Blind Polarizer With Dual Vanes
NASA Technical Reports Server (NTRS)
Conroy, Bruce L.; Hoppe, Daniel J.
1995-01-01
Improved venetian-blind polarizer features optimized tandem, two-layer vane configuration reducing undesired reflections and deformation of radiation pattern below those of prior single-layer vane configuration. Consists of number of thin, parallel metal strips placed in path of propagating radio-frequency beam. Offers simple way to convert polarization from linear to circular or from circular to linear. Particularly useful for beam-wave-guide applications.
NASA Astrophysics Data System (ADS)
Ladpli, Purim; Kopsaftopoulos, Fotis; Chang, Fu-Kuo
2018-04-01
This work presents the feasibility of monitoring state of charge (SoC) and state of health (SoH) of lithium-ion pouch batteries with acousto-ultrasonic guided waves. The guided waves are propagated and sensed using low-profile, built-in piezoelectric disc transducers that can be retrofitted onto off-the-shelf batteries. Both experimental and analytical studies are performed to understand the relationship between guided waves generated in a pitch-catch mode and battery SoC/SoH. The preliminary experiments on representative pouch cells show that the changes in time of flight (ToF) and signal amplitude (SA) resulting from shifts in the guided wave signals correlate strongly with the electrochemical charge-discharge cycling and aging. An analytical acoustic model is developed to simulate the variations in electrode moduli and densities during cycling, which correctly validates the absolute values and range of experimental ToF. It is further illustrated via a statistical study that ToF and SA can be used in a prediction model to accurately estimate SoC/SoH. Additionally, by using multiple sensors in a network configuration on the same battery, a significantly more reliable and accurate SoC/SoH prediction is achieved. The indicative results from this study can be extended to develop a unified guided-wave-based framework for SoC/SoH monitoring of many lithium-ion battery applications.
Top-down contextual knowledge guides visual attention in infancy.
Tummeltshammer, Kristen; Amso, Dima
2017-10-26
The visual context in which an object or face resides can provide useful top-down information for guiding attention orienting, object recognition, and visual search. Although infants have demonstrated sensitivity to covariation in spatial arrays, it is presently unclear whether they can use rapidly acquired contextual knowledge to guide attention during visual search. In this eye-tracking experiment, 6- and 10-month-old infants searched for a target face hidden among colorful distracter shapes. Targets appeared in Old or New visual contexts, depending on whether the visual search arrays (defined by the spatial configuration, shape and color of component items in the search display) were repeated or newly generated throughout the experiment. Targets in Old contexts appeared in the same location within the same configuration, such that context covaried with target location. Both 6- and 10-month-olds successfully distinguished between Old and New contexts, exhibiting faster search times, fewer looks at distracters, and more anticipation of targets when contexts repeated. This initial demonstration of contextual cueing effects in infants indicates that they can use top-down information to facilitate orienting during memory-guided visual search. © 2017 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
1985-01-01
Optical and electrical characterization of defects has been started in EFG ribbon grown in a system that will be used to test the stress model. Temperature and stress field modeling aimed at defining low stress growth configuration is also in progress, and results will be used to guide development of the experimental system. The baseline defect configuration for ribbon grown at speeds of approx. 1 cm/min consists of dislocation densities of the order of 10 to the 5th power to 10 to the 6th power/sq cm, as well as saucer type etch pits and line defects. All these defects are inhomogeneously distributed. EBIC measurements indicate that diffusion lengths are in the range 20 to 60 microns, and significant spatial inhomogeneities occur through the ribbon thickness. Growth speed changes in the range 0.7-1.0 cm/min do not produce significant variations in ribbon defect configurations.
Biopsy system guided by positron emission tomography in real-time
NASA Astrophysics Data System (ADS)
Moliner, L.; Álamo, J.; Hellingman, D.; Peris, J. L.; Gomez, J.; Tattersall, P.; Carrilero, V.; Orero, A.; Correcher, C.; Benlloch, J. M.
2016-03-01
In this work we present the MAMMOCARE prototype, a biopsy guided system based on PET. The system is composed by an examination table where the patient is situated in prone position, a PET detector and a biopsy device. The PET detector is composed by two rings. These rings can be separated mechanically in order to allow the needle insertion. The first acquisition is performed with the closed ring configuration in order to obtain a high quality image to locate the lesion. Then, the software calculates the optimum path for the biopsy and moves the biopsy and PET systems to the desired position. At this point, two compression pallets are used to hold the breast. Then, the PET system opens and the biopsy procedure starts. The images are obtained at several steps to ensure the correct location of the needle during the procedure. The performance of the system is evaluated measuring the spatial resolution and sensitivity according the NEMA standard. The uniformity of the reconstructed images is also estimated. The radial resolution is 1.62mm in the center of the FOV and 3.45mm at 50mm off the center in the radial direction using the closed configuration. In the open configuration the resolution reaches 1.85mm at center and 3.65mm at 50mm. The sensitivity using an energy window of 250keV-750keV is 3.6% for the closed configuration and 2.5% for the open configuration. The uniformity measured in the center of the FOV is 14% and 18% for the closed and open configurations respectively.
Mechanical System Analysis/Design Tool (MSAT) Quick Guide
NASA Technical Reports Server (NTRS)
Lee, HauHua; Kolb, Mark; Madelone, Jack
1998-01-01
MSAT is a unique multi-component multi-disciplinary tool that organizes design analysis tasks around object-oriented representations of configuration components, analysis programs and modules, and data transfer links between them. This creative modular architecture enables rapid generation of input stream for trade-off studies of various engine configurations. The data transfer links automatically transport output from one application as relevant input to the next application once the sequence is set up by the user. The computations are managed via constraint propagation - the constraints supplied by the user as part of any optimization module. The software can be used in the preliminary design stage as well as during the detail design of product development process.
Furberg, Robert D; Ortiz, Alexa M; Zulkiewicz, Brittany A; Hudson, Jordan P; Taylor, Olivia M; Lewis, Megan A
2016-06-27
Tablet-based health care interventions have the potential to encourage patient care in a timelier manner, allow physicians convenient access to patient records, and provide an improved method for patient education. However, along with the continued adoption of tablet technologies, there is a concomitant need to develop protocols focusing on the configuration, management, and maintenance of these devices within the health care setting to support the conduct of clinical research. Develop three protocols to support tablet configuration, tablet management, and tablet maintenance. The Configurator software, Tile technology, and current infection control recommendations were employed to develop three distinct protocols for tablet-based digital health interventions. Configurator is a mobile device management software specifically for iPhone operating system (iOS) devices. The capabilities and current applications of Configurator were reviewed and used to develop the protocol to support device configuration. Tile is a tracking tag associated with a free mobile app available for iOS and Android devices. The features associated with Tile were evaluated and used to develop the Tile protocol to support tablet management. Furthermore, current recommendations on preventing health care-related infections were reviewed to develop the infection control protocol to support tablet maintenance. This article provides three protocols: the Configurator protocol, the Tile protocol, and the infection control protocol. These protocols can help to ensure consistent implementation of tablet-based interventions, enhance fidelity when employing tablets for research purposes, and serve as a guide for tablet deployments within clinical settings.
An Air Force Guide to the System Specification.
1981-01-01
basis for sound management plans and decisions to initiate system full-scale development. Related topics include: current problems and questions...such current documents as AFR 800-2 and AFR 57-1. Key elements of coverage include the following: a. Levels of system engineering studies are...equipment and computer program elements of a system are acquired most directly acainst lower-level (configuration item) specifications. b. Current
Midcourse Guidance Study for Tactical Guided Weapons. Volume I. Survey and Analysis
1976-08-01
relatively moderate when compared to air intercept guidance requirements.) The alignment phase involved the comparison of gyrocom- passing (using... phase of flight for discrete updates. The AFBGW aero and guidance configuration is derived from current Air Force glide weapon concepts. The AFBGW... comparable midcourse flight phase . Harpoon and Standard Arm represent performance levels similar to the AFBGW requirements, but differences in
Optical sensor in planar configuration based on multimode interference
NASA Astrophysics Data System (ADS)
Blahut, Marek
2017-08-01
In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.
System, Apparatus, and Method for Active Debris Removal
NASA Technical Reports Server (NTRS)
Hickey, Christopher J. (Inventor); Spehar, Peter T. (Inventor); Griffith, Sr., Anthony D. (Inventor); Kohli, Rajiv (Inventor); Burns, Susan H. (Inventor); Gruber, David J. (Inventor); Lee, David E. (Inventor); Robinson, Travis M. (Inventor); Damico, Stephen J. (Inventor); Smith, Jason T. (Inventor)
2017-01-01
Systems, apparatuses, and methods for removal of orbital debris are provided. In one embodiment, an apparatus includes a spacecraft control unit configured to guide and navigate the apparatus to a target. The apparatus also includes a dynamic object characterization unit configured to characterize movement, and a capture feature, of the target. The apparatus further includes a capture and release unit configured to capture a target and deorbit or release the target. The collection of these apparatuses is then employed as multiple, independent and individually operated vehicles launched from a single launch vehicle for the purpose of disposing of multiple debris objects.
Analytic Patch Configuration (APC) gateway version 1.0 user's guide
NASA Technical Reports Server (NTRS)
Bingel, Bradford D.
1990-01-01
The Analytic Patch Configuration (APC) is an interactive software tool which translates aircraft configuration geometry files from one format into another. This initial release of the APC Gateway accommodates six formats: the four accepted APC formats (89f, 89fd, 89u, and 89ud), the PATRAN 2.x phase 1 neutral file format, and the Integrated Aerodynamic Analysis System (IAAS) General Geometry (GG) format. Written in ANSI FORTRAN 77 and completely self-contained, the APC Gateway is very portable and was already installed on CDC/NOS, VAX/VMS, SUN, SGI/IRIS, CONVEX, and GRAY hosts.
Glass Fiber Reinforced Metal Pressure Vessel Design Guide
NASA Technical Reports Server (NTRS)
Landes, R. E.
1972-01-01
The Engineering Guide presents curves and general equations for safelife design of lightweight glass fiber reinforced (GFR) metal pressure vessels operating under anticipated Space Shuttle service conditions. The high composite vessel weight efficiency is shown to be relatively insensitive to shape, providing increased flexibility to designers establishing spacecraft configurations. Spheres, oblate speroids, and cylinders constructed of GFR Inconel X-750, 2219-T62 aluminum, and cryoformed 301 stainless steel are covered; design parameters and performance efficiencies for each configuration are compared at ambient and cryogenic temperature for an operating pressure range of 690 to 2760 N/sq cm (1000 to 4000 psi). Design variables are presented as a function of metal shell operating to sizing (proof) stress ratios for use with fracture mechanics data generated under a separate task of this program.
The guidance of visual search by shape features and shape configurations.
McCants, Cody W; Berggren, Nick; Eimer, Martin
2018-03-01
Representations of target features (attentional templates) guide attentional object selection during visual search. In many search tasks, targets objects are defined not by a single feature but by the spatial configuration of their component shapes. We used electrophysiological markers of attentional selection processes to determine whether the guidance of shape configuration search is entirely part-based or sensitive to the spatial relationship between shape features. Participants searched for targets defined by the spatial arrangement of two shape components (e.g., hourglass above circle). N2pc components were triggered not only by targets but also by partially matching distractors with one target shape (e.g., hourglass above hexagon) and by distractors that contained both target shapes in the reverse arrangement (e.g., circle above hourglass), in line with part-based attentional control. Target N2pc components were delayed when a reverse distractor was present on the opposite side of the same display, suggesting that early shape-specific attentional guidance processes could not distinguish between targets and reverse distractors. The control of attention then became sensitive to spatial configuration, which resulted in a stronger attentional bias for target objects relative to reverse and partially matching distractors. Results demonstrate that search for target objects defined by the spatial arrangement of their component shapes is initially controlled in a feature-based fashion but can later be guided by templates for spatial configurations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Improving client-centred care and services: the role of front/back-office configurations.
Broekhuis, Manda; de Blok, Carolien; Meijboom, Bert
2009-05-01
This paper is a report of a study conducted to explore the application of designing front- and back-office work resulting in efficient client-centred care in healthcare organizations that supply home care, welfare and domestic services. Front/back-office configurations reflect a neglected domain of design decisions in the development of more client-centred processes and structures without incurring major cost increases. Based on a literature search, a framework of four front/back-office configurations was constructed. To illustrate the usefulness of this framework, a single, longitudinal case study was performed in a large organization, which provides home care, welfare and domestic services for a sustained period (2005-2006). The case study illustrates how front/back-office design decisions are related to the complexity of the clients' demands and the strategic objectives of an organization. The constructed framework guides the practical development of front/back-office designs, and shows how each design contributes differently to such performance objectives as quality, speed and efficiency. The front/back-office configurations presented comprise an important first step in elaborating client-centred care and service provision to the operational level. It helps healthcare organizations to become more responsive and to provide efficient client-centred care and services when approaching demand in a well-tuned manner. In addition to its applicability in home care, we believe that a deliberate front/back-office configuration also has potential in other fields of health care.
1979-10-01
prescribed as well as alternative personnel and equipment configurations. This user’s guide is a companion to ARI Technical Report 413 (Volume IV...Library I Medrchn Chef C E.R.P.A.-Arsenal. TouioneNaval France 2 USA Aviation Test Bd. Ft Rucker. ATTN: STEBO-PO I P.... Scientific Off. Aptil Hfum
DOE Office of Scientific and Technical Information (OSTI.GOV)
ROOT, R.W.
1999-05-18
This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems.
Furberg, Robert D; Zulkiewicz, Brittany A; Hudson, Jordan P; Taylor, Olivia M; Lewis, Megan A
2016-01-01
Background Tablet-based health care interventions have the potential to encourage patient care in a timelier manner, allow physicians convenient access to patient records, and provide an improved method for patient education. However, along with the continued adoption of tablet technologies, there is a concomitant need to develop protocols focusing on the configuration, management, and maintenance of these devices within the health care setting to support the conduct of clinical research. Objective Develop three protocols to support tablet configuration, tablet management, and tablet maintenance. Methods The Configurator software, Tile technology, and current infection control recommendations were employed to develop three distinct protocols for tablet-based digital health interventions. Configurator is a mobile device management software specifically for iPhone operating system (iOS) devices. The capabilities and current applications of Configurator were reviewed and used to develop the protocol to support device configuration. Tile is a tracking tag associated with a free mobile app available for iOS and Android devices. The features associated with Tile were evaluated and used to develop the Tile protocol to support tablet management. Furthermore, current recommendations on preventing health care–related infections were reviewed to develop the infection control protocol to support tablet maintenance. Results This article provides three protocols: the Configurator protocol, the Tile protocol, and the infection control protocol. Conclusions These protocols can help to ensure consistent implementation of tablet-based interventions, enhance fidelity when employing tablets for research purposes, and serve as a guide for tablet deployments within clinical settings. PMID:27350013
Maglev-rail intermodal equipment and suspension study. Final report, July 1991-February 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilcrease, E.E.; Gillam, C.M.
1993-02-01
The physical and operational characteristics of four existing and planned maglev systems were surveyed pertinent to the intermodal interface for each system. The maglev systems investigated were: Grumman New York State' (Configuration 002) Maglev; Transrapid Intercity (Transrapid 07) Maglev; HSST Passive Intermediate Speed (HSST-300) Maglev; and Japan Railways Vertical Magnet (Configuration MLU 002) Maglev. The focus of the study was to investigate the feasibility of using existing railroad right-of-way to access center-city terminals in one of three possible methods: Maglev vehicles traveling over existing railroad tracks with the use of steel guide wheels and some means of exterior propulsion; maglevmore » vehicles transferred onto modified railroad flatcars and transported over existing railroad tracks with locomotive power; or new grade-separated maglev guideways on existing railroad rights-of-way.« less
22 CFR 121.5 - Apparatus and devices under Category IV(c).
Code of Federal Regulations, 2010 CFR
2010-04-01
..., modified or configured for items listed in that category, bomb racks and shackles, bomb shackle release units, bomb ejectors, torpedo tubes, torpedo and guided missile boosters, guidance systems equipment and...
NASA Astrophysics Data System (ADS)
Mitra, Joydeep; Torres, Andres; Ma, Yuansheng; Pan, David Z.
2018-01-01
Directed self-assembly (DSA) has emerged as one of the most compelling next-generation patterning techniques for sub 7 nm via or contact layers. A key issue in enabling DSA as a mainstream patterning technique is the generation of grapho-epitaxy-based guiding pattern (GP) shapes to assemble the contact patterns on target with high fidelity and resolution. Current GP generation is mostly empirical, and limited to a very small number of via configurations. We propose the first model-based GP synthesis algorithm and methodology for on-target and robust DSA, on general via pattern configurations. The final postoptical proximity correction-printed GPs derived from our original synthesized GPs are resilient to process variations and continue to maintain the same DSA fidelity in terms of placement error and target shape.
Federal Emergency Management Information System (FEMIS) system administration guide. Version 1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burford, M.J.; Burnett, R.A.; Curtis, L.M.
The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that is being developed under the direction of the US Army Chemical biological Defense Command. The FEMIS System Administration Guide defines FEMIS hardware and software requirements and gives instructions for installing the FEMIS system package. System administrators, database administrators, and general users can use this guide to install, configure, and maintain the FEMIS client software package. This document provides a description of the FEMIS environment; distribution media; data, communications, and electronic mail servers; user workstations; and system management.
User's guide to the NOZL3D and NOZLIC computer programs
NASA Technical Reports Server (NTRS)
Thomas, P. D.
1980-01-01
Complete FORTRAN listings and running instructions are given for a set of computer programs that perform an implicit numerical solution to the unsteady Navier-Stokes equations to predict the flow characteristics and performance of nonaxisymmetric nozzles. The set includes the NOZL3D program, which performs the flow computations; the NOZLIC program, which sets up the flow field initial conditions for general nozzle configurations, and also generates the computational grid for simple two dimensional and axisymmetric configurations; and the RGRIDD program, which generates the computational grid for complicated three dimensional configurations. The programs are designed specifically for the NASA-Langley CYBER 175 computer, and employ auxiliary disk files for primary data storage. Input instructions and computed results are given for four test cases that include two dimensional, three dimensional, and axisymmetric configurations.
Phang, Isaac; Mada, Marius; Kolias, Angelos G; Newcombe, Virginia F J; Trivedi, Rikin A; Carpenter, Adrian; Hawkes, Rob C; Papadopoulos, Marios C
2016-05-01
Laboratory and human study. To test the Codman Microsensor Transducer (CMT) in a cervical gel phantom. To test the CMT inserted to monitor intraspinal pressure in a patient with spinal cord injury. We recently introduced the technique of intraspinal pressure monitoring using the CMT to guide management of traumatic spinal cord injury [Werndle et al. Crit Care Med 2014;42:646]. This is analogous to intracranial pressure monitoring to guide management of patients with traumatic brain injury. It is unclear whether magnetic resonance imaging (MRI) of patients with spinal cord injury is safe with the intraspinal pressure CMT in situ. We measured the heating produced by the CMT placed in a gel phantom in various configurations. A 3-T MRI system was used with the body transmit coil and the spine array receive coil. A CMT was then inserted subdurally at the injury site in a patient who had traumatic spinal cord injury and MRI was performed at 1.5 T. In the gel phantom, heating of up to 5°C occurred with the transducer wire placed straight through the magnet bore. The heating was abolished when the CMT wire was coiled and passed away from the bore. We then tested the CMT in a patient with an American Spinal Injuries Association grade C cervical cord injury. The CMT wire was placed in the configuration that abolished heating in the gel phantom. Good-quality T1 and T2 images of the cord were obtained without neurological deterioration. The transducer remained functional after the MRI. Our data suggest that the CMT is MR conditional when used in the spinal configuration in humans. Data from a large patient group are required to confirm these findings. N/A.
Berggren, Nick; Eimer, Martin
2016-09-01
Representations of target-defining features (attentional templates) guide the selection of target objects in visual search. We used behavioral and electrophysiological measures to investigate how such search templates control the allocation of attention in search tasks where targets are defined by the combination of 2 colors or by a specific spatial configuration of these colors. Target displays were preceded by spatially uninformative cue displays that contained items in 1 or both target-defining colors. Experiments 1 and 2 demonstrated that, during search for color combinations, attention is initially allocated independently and in parallel to all objects with target-matching colors, but is then rapidly withdrawn from objects that only have 1 of the 2 target colors. In Experiment 3, targets were defined by a particular spatial configuration of 2 colors, and could be accompanied by nontarget objects with a different configuration of the same colors. Attentional guidance processes were unable to distinguish between these 2 types of objects. Both attracted attention equally when they appeared in a cue display, and both received parallel focal-attentional processing and were encoded into working memory when they were presented in the same target display. Results demonstrate that attention can be guided simultaneously by multiple features from the same dimension, but that these guidance processes have no access to the spatial-configural properties of target objects. They suggest that attentional templates do not represent target objects in an integrated pictorial fashion, but contain separate representations of target-defining features. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
A Tasking Construct for Non-Traditional Intelligence, Surveillance, and Reconnaissance
2009-04-01
carrying six GBU-38 JDAM 500 lbs GPS guided munitions, six GBU-12 500 lbs laser guided munitions, and a Litening AT Advanced Targeting pod with video...combination thereof. The strike planners categorize common munitions configurations and list them on the ATO as Standard Conventional Loadouts ( SCL ...The SCL requested for each strike mission is listed on the ATO and sent to the unit to coordinate munitions availability in theater. In the same
Downstream fish passage guide walls: A hydraulic scale model analysis
Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.
2018-01-01
Partial-depth guide walls are used to improve passage efficiency and reduce the delay of out-migrating anadromous fish species by guiding fish to a bypass route (i.e. weir, pipe, sluice gate) that circumvents the turbine intakes, where survival is usually lower. Evaluation and monitoring studies, however, indicate a high propensity for some fish to pass underneath, rather than along, the guide walls, compromising their effectiveness. In the present study we evaluated a range of guide wall structures to identify where/if the flow field shifts from sweeping (i.e. flow direction primarily along the wall and towards the bypass) to downward-dominant. Many migratory fish species, particularly juveniles, are known to drift with the flow and/or exhibit rheotactic behaviour during their migration. When these behaviours are present, fish follow the path of the flow field. Hence, maintaining a strong sweeping velocity in relation to the downward velocity along a guide wall is essential to successful fish guidance. Nine experiments were conducted to measure the three-dimensional velocity components upstream of a scale model guide wall set at a wide range of depths and angles to flow. Results demonstrated how each guide wall configuration affected the three-dimensional velocity components, and hence the downward and sweeping velocity, along the full length of the guide wall. In general, the velocities produced in the scale model were sweeping dominant near the water surface and either downward dominant or close to the transitional depth near the bottom of the guide wall. The primary exception to this shift from sweeping do downward flow was for the minimum guide wall angle tested in this study (15°). At 15° the flow pattern was fully sweeping dominant for every cross-section, indicating that a guide wall with a relatively small angle may be more likely to produce conditions favorable to efficient guidance. A critical next step is to evaluate the behaviour of migratory fish as they approach and swim along a guide wall in a controlled laboratory environment.
Quantum transport in graphene Hall bars: Effects of side gates
NASA Astrophysics Data System (ADS)
Petrović, M. D.; Peeters, F. M.
2017-05-01
Quantum electron transport in side-gated graphene Hall bars is investigated in the presence of quantizing external magnetic fields. The asymmetric potential of four side-gates distorts the otherwise flat bands of the relativistic Landau levels, and creates new propagating states in the Landau spectrum (i.e. snake states). The existence of these new states leads to an interesting modification of the bend and Hall resistances, with new quantizing plateaus appearing in close proximity of the Landau levels. The electron guiding in this system can be understood by studying the current density profiles of the incoming and outgoing modes. From the fact that guided electrons fully transmit without any backscattering (similarly to edge states), we are able to analytically predict the values of the quantized resistances, and they match the resistance data we obtain with our numerical (tight-binding) method. These insights in the electron guiding will be useful in predicting the resistances for other side-gate configurations, and possibly in other system geometries, as long as there is no backscattering of the guided states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laney, T.
The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ``Guide for Operational Configuration Management Program.`` The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management.`` The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOEmore » Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System.« less
Process assessment of small scale low temperature methanol synthesis
NASA Astrophysics Data System (ADS)
Hendriyana, Susanto, Herri; Subagjo
2015-12-01
Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H2 to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H2 for increasing H2/CO ratio. CO2 removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic analysis. The presented study is an attempt to compile most of these efforts in order to guide future work to get cheaper low cost investment. From our study the interesting configuration to the next development is D configuration with methanol yield 112 ton/day and capital cost with 526.4 106 IDR. The configuration of D with non-discounted and discounted rate had the break-even point approximately six and eight years.
Vectorial model for guided-mode resonance gratings
NASA Astrophysics Data System (ADS)
Fehrembach, A.-L.; Gralak, B.; Sentenac, A.
2018-04-01
We propose a self-consistent vectorial method, based on a Green's function technique, to describe the resonances that appear in guided-mode resonance gratings. The model provides intuitive expressions of the reflectivity and transmittivity matrices of the structure, involving coupling integrals between the modes of a planar reference structure and radiative modes. When one mode is excited, the diffracted field for a suitable polarization can be written as the sum of a resonant and a nonresonant term, thus extending the intuitive approach used to explain the Fano shape of the resonance in scalar configurations. When two modes are excited, we derive a physical analysis in a configuration which requires a vectorial approach. We provide numerical validations of our model. From a technical point of view, we show how the Green's tensor of our planar reference structure can be expressed as two scalar Green's functions, and how to deal with the singularity of the Green's tensor.
Design of a Helmet Liner for Improved Low Velocity Impact Protection
2013-05-01
FIGURE 14. MONORAIL DROP TEST WITH DOT-SIZE C HEADFORM AND HEMISPHERICAL ANVIL ........................... 14 FIGURE 15. ACH PAD CONFIGURATION. LEFT...materials. In this project, the monorail drop test device, used for the helmeted headform drop test, was modified for material testing as shown in Figure...a guided free fall drop test using a monorail drop test apparatus as shown in Figure 14. All helmets tested in this study were ACH-Size Large and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoginath, Srikanth B; Perumalla, Kalyan S
2013-01-01
Virtual machine (VM) technologies, especially those offered via Cloud platforms, present new dimensions with respect to performance and cost in executing parallel discrete event simulation (PDES) applications. Due to the introduction of overall cost as a metric, the choice of the highest-end computing configuration is no longer the most economical one. Moreover, runtime dynamics unique to VM platforms introduce new performance characteristics, and the variety of possible VM configurations give rise to a range of choices for hosting a PDES run. Here, an empirical study of these issues is undertaken to guide an understanding of the dynamics, trends and trade-offsmore » in executing PDES on VM/Cloud platforms. Performance results and cost measures are obtained from actual execution of a range of scenarios in two PDES benchmark applications on the Amazon Cloud offerings and on a high-end VM host machine. The data reveals interesting insights into the new VM-PDES dynamics that come into play and also leads to counter-intuitive guidelines with respect to choosing the best and second-best configurations when overall cost of execution is considered. In particular, it is found that choosing the highest-end VM configuration guarantees neither the best runtime nor the least cost. Interestingly, choosing a (suitably scaled) low-end VM configuration provides the least overall cost without adversely affecting the total runtime.« less
Guiding out-migrating juvenile sea lamprey (Petromyzon marinus) with pulsed direct current
Johnson, Nicholas S.; Miehls, Scott M.
2014-01-01
Non-physical stimuli can deter or guide fish without affecting water flow or navigation and therefore have been investigated to improve fish passage at anthropogenic barriers and to control movement of invasive fish. Upstream fish migration can be blocked or guided without physical structure by electrifying the water, but directional downstream fish guidance with electricity has received little attention. We tested two non-uniform pulsed direct current electric systems, each having different electrode orientations (vertical versus horizontal), to determine their ability to guide out-migrating juvenile sea lamprey (Petromyzon marinus) and rainbow trout (Oncorhynchus mykiss). Both systems guided significantly more juvenile sea lamprey to a specific location in our experimental raceway when activated than when deactivated, but guidance efficiency decreased at the highest water velocities tested. At the electric field setting that effectively guided sea lamprey, rainbow trout were guided by the vertical electrode system, but most were blocked by the horizontal electrode system. Additional research should characterize the response of other species to non-uniform fields of pulsed DC and develop electrode configurations that guide fish over a range of water velocity.
Pulley, S; Collins, A L
2018-09-01
The mitigation of diffuse sediment pollution requires reliable provenance information so that measures can be targeted. Sediment source fingerprinting represents one approach for supporting these needs, but recent methodological developments have resulted in an increasing complexity of data processing methods rendering the approach less accessible to non-specialists. A comprehensive new software programme (SIFT; SedIment Fingerprinting Tool) has therefore been developed which guides the user through critical data analysis decisions and automates all calculations. Multiple source group configurations and composite fingerprints are identified and tested using multiple methods of uncertainty analysis. This aims to explore the sediment provenance information provided by the tracers more comprehensively than a single model, and allows for model configurations with high uncertainties to be rejected. This paper provides an overview of its application to an agricultural catchment in the UK to determine if the approach used can provide a reduction in uncertainty and increase in precision. Five source group classifications were used; three formed using a k-means cluster analysis containing 2, 3 and 4 clusters, and two a-priori groups based upon catchment geology. Three different composite fingerprints were used for each classification and bi-plots, range tests, tracer variability ratios and virtual mixtures tested the reliability of each model configuration. Some model configurations performed poorly when apportioning the composition of virtual mixtures, and different model configurations could produce different sediment provenance results despite using composite fingerprints able to discriminate robustly between the source groups. Despite this uncertainty, dominant sediment sources were identified, and those in close proximity to each sediment sampling location were found to be of greatest importance. This new software, by integrating recent methodological developments in tracer data processing, guides users through key steps. Critically, by applying multiple model configurations and uncertainty assessment, it delivers more robust solutions for informing catchment management of the sediment problem than many previously used approaches. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Comparison of DOE and NIRMA approaches to configuration management programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, E.Y.; Kulzick, K.C.
One of the major management programs used for commercial, laboratory, and defense nuclear facilities is configuration management. The safe and efficient operation of a nuclear facility requires constant vigilance in maintaining the facility`s design basis with its as-built condition. Numerous events have occurred that can be attributed to (either directly or indirectly) the extent to which configuration management principles have been applied. The nuclear industry, as a whole, has been addressing this management philosophy with efforts taken on by its constituent professional organizations. The purpose of this paper is to compare and contrast the implementation plans for enhancing a configurationmore » management program as outlined in the U.S. Department of Energy`s (DOE`s) DOE-STD-1073-93, {open_quotes}Guide for Operational Configuration Management Program,{close_quotes} with the following guidelines developed by the Nuclear Information and Records Management Association (NIRMA): 1. PP02-1994, {open_quotes}Position Paper on Configuration Management{close_quotes} 2. PP03-1992, {open_quotes}Position Paper for Implementing a Configuration Management Enhancement Program for a Nuclear Facility{close_quotes} 3. PP04-1994 {open_quotes}Position Paper for Configuration Management Information Systems.{close_quotes}« less
NASA Astrophysics Data System (ADS)
Wicaksono, Yoga Arob; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul
2018-02-01
Vertical axis wind turbine like cross-flow rotor have some advantage there are, high self-starting torque, low noise, and high stability; so, it can be installed in the urban area to produce electricity. But, the urban area has poor wind condition, so the cross-flow rotor needs a guide vane to increase its performance. The aim of this study is to determine experimentally the effect of Omni-Directional Guide Vane (ODGV) on the performance of a cross-flow wind turbine. Wind tunnel experiment has been carried out for various configurations. The ODGV was placed around the cross-flow rotor in order to increase ambient wind environment of the wind turbine. The maximum power coefficient is obtained as Cpmax = 0.125 at 60° wind direction. It was 21.46% higher compared to cross-flow wind turbine without ODGV. This result showed that the ODGV able to increase the performance of the cross-flow wind turbine.
Lunar observations verifier editor programmer's manual, revision 1
NASA Technical Reports Server (NTRS)
Barnett, E. L.
1974-01-01
The prime purpose of the programmer's manual is to aid the programmer in understanding the programming aspects of the program. A description of the input, the printout, the deck setup, and tape configuration may be obtained from the LOVE user's guide.
NASA Astrophysics Data System (ADS)
El Mountassir, M.; Yaacoubi, S.; Dahmene, F.
2015-07-01
Intelligent feature extraction and advanced signal processing techniques are necessary for a better interpretation of ultrasonic guided waves signals either in structural health monitoring (SHM) or in nondestructive testing (NDT). Such signals are characterized by at least multi-modal and dispersive components. In addition, in SHM, these signals are closely vulnerable to environmental and operational conditions (EOCs), and can be severely affected. In this paper we investigate the use of Artificial Neural Network (ANN) to overcome these effects and to provide a reliable damage detection method with a minimal of false indications. An experimental case of study (full scale pipe) is presented. Damages sizes have been increased and their shapes modified in different steps. Various parameters such as the number of inputs and the number of hidden neurons were studied to find the optimal configuration of the neural network.
Design and implementation of fishery rescue data mart system
NASA Astrophysics Data System (ADS)
Pan, Jun; Huang, Haiguang; Liu, Yousong
A novel data mart based system for fishery rescue field was designed and implemented. The system runs ETL process to deal with original data from various databases and data warehouses, and then reorganized the data into the fishery rescue data mart. Next, online analytical processing (OLAP) are carried out and statistical reports are generated automatically. Particularly, quick configuration schemes are designed to configure query dimensions and OLAP data sets. The configuration file will be transformed into statistic interfaces automatically through a wizard-style process. The system provides various forms of reporting files, including crystal reports, flash graphical reports, and two-dimensional data grids. In addition, a wizard style interface was designed to guide users customizing inquiry processes, making it possible for nontechnical staffs to access customized reports. Characterized by quick configuration, safeness and flexibility, the system has been successfully applied in city fishery rescue department.
Unified Pairwise Spatial Relations: An Application to Graphical Symbol Retrieval
NASA Astrophysics Data System (ADS)
Santosh, K. C.; Wendling, Laurent; Lamiroy, Bart
In this paper, we present a novel unifying concept of pairwise spatial relations. We develop two way directional relations with respect to a unique point set, based on topology of the studied objects and thus avoids problems related to erroneous choices of reference objects while preserving symmetry. The method is robust to any type of image configuration since the directional relations are topologically guided. An automatic prototype graphical symbol retrieval is presented in order to establish its expressiveness.
NASA Technical Reports Server (NTRS)
Baker, A. J.; Iannelli, G. S.; Manhardt, Paul D.; Orzechowski, J. A.
1993-01-01
This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.
Quantum model for electro-optical amplitude modulation.
Capmany, José; Fernández-Pousa, Carlos R
2010-11-22
We present a quantum model for electro-optic amplitude modulation, which is built upon quantum models of the main photonic components that constitute the modulator, that is, the guided-wave beamsplitter and the electro-optic phase modulator and accounts for all the different available modulator structures. General models are developed both for single and dual drive configurations and specific results are obtained for the most common configurations currently employed. Finally, the operation with two-photon input for the control of phase-modulated photons and the important topic of multicarrier modulation are also addressed.
Engineering data characterizing the fleet of U.S. railway rolling stock. Volume 1 : user's guide
DOT National Transportation Integrated Search
1981-01-01
This report contains engineering parameter descriptions of major and distinctive freight vehicle configurations covering approximately 96% of the U.S. freight vehicle fleet. This data has been developed primarily for use in analytical simulation mode...
Working memory dependence of spatial contextual cueing for visual search.
Pollmann, Stefan
2018-05-10
When spatial stimulus configurations repeat in visual search, a search facilitation, resulting in shorter search times, can be observed that is due to incidental learning. This contextual cueing effect appears to be rather implicit, uncorrelated with observers' explicit memory of display configurations. Nevertheless, as I review here, this search facilitation due to contextual cueing depends on visuospatial working memory resources, and it disappears when visuospatial working memory is loaded by a concurrent delayed match to sample task. However, the search facilitation immediately recovers for displays learnt under visuospatial working memory load when this load is removed in a subsequent test phase. Thus, latent learning of visuospatial configurations does not depend on visuospatial working memory, but the expression of learning, as memory-guided search in repeated displays, does. This working memory dependence has also consequences for visual search with foveal vision loss, where top-down controlled visual exploration strategies pose high demands on visuospatial working memory, in this way interfering with memory-guided search in repeated displays. Converging evidence for the contribution of working memory to contextual cueing comes from neuroimaging data demonstrating that distinct cortical areas along the intraparietal sulcus as well as more ventral parieto-occipital cortex are jointly activated by visual working memory and contextual cueing. © 2018 The British Psychological Society.
Hubbell, Joel M.; Sisson, James B.
2001-01-01
A deep tensiometer is configured with an outer guide tube having a vented interval along a perforate section at its lower end, which is isolated from atmospheric pressure at or above grade. A transducer having a monitoring port and a reference port is located within a coaxial inner guide tube. The reference port of the transducer is open to the vented interval of the outer guide tube, which has the same gas pressure as in the sediment surrounding the tensiometer. The reference side of the pressure transducer is thus isolated from the effects of atmospheric pressure changes and relative to pressure changes in the material surrounding the tensiometer measurement location and so it is automatically compensated for such pressure changes.
Process assessment of small scale low temperature methanol synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendriyana; Chemical Engineering Department, Faculty of Industrial Technology, InstitutTeknologi Bandung; Susanto, Herri, E-mail: herri@che.itb.ac.id
2015-12-29
Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developedmore » various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H{sub 2} to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H{sub 2} for increasing H{sub 2}/CO ratio. CO{sub 2} removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic analysis. The presented study is an attempt to compile most of these efforts in order to guide future work to get cheaper low cost investment. From our study the interesting configuration to the next development is D configuration with methanol yield 112 ton/day and capital cost with 526.4 10{sup 6} IDR. The configuration of D with non-discounted and discounted rate had the break-even point approximately six and eight years.« less
Biomechanical study of anterior spinal instrumentation configurations
Cloutier, Luc P.; Grimard, Guy
2007-01-01
The biomechanical impact of the surgical instrumentation configuration for spine surgery is hard to evaluate by the surgeons in pre-operative situation. This study was performed to evaluate different configurations of the anterior instrumentation of the spine, with simulated post-operative conditions, to recommend configurations to the surgeons. Four biomechanical parameters of the anterior instrumentation with simulated post-operative conditions have been studied. They were the screw diameter (5.5–7.5 mm) and its angle (0°–22.5°), the bone grip of the screw (mono–bi cortical) and the amount of instrumented levels (5–8). Eight configurations were tested using an experimental plan with instrumented synthetic spinal models. A follower load was applied and the models were loaded in flexion, torsion and lateral bending. At 5 Nm, average final stiffness was greater in flexion (0.92 Nm/°) than in lateral bending (0.56 Nm/°) and than in torsion (0.26 Nm/°). The screw angle was the parameter influencing the most the final stiffness and the coupling behaviors. It has a significant effect (p ≤ 0.05) on increasing the final stiffness for a 22.5° screw angle in flexion and for a coronal screw angle (0°) in lateral bending. The bi-cortical bone grip of the screw significantly increased the initial stiffness in flexion and lateral bending. Mathematical models representing the behavior of an instrumented spinal model have been used to identify optimal instrumentation configurations. A variation of the angle of the screw from 22.5° to 0° gave a global final stiffness diminution of 13% and a global coupling diminution of 40%. The screw angle was the most important parameter affecting the stiffness and the coupling of the instrumented spine with simulated post-operative conditions. Information about the effect of four different biomechanical parameters will be helpful in preoperative situations to guide surgeons in their clinical choices. PMID:17205240
3D MHD Simulations of Laser Plasma Guiding in Curved Magnetic Field
NASA Astrophysics Data System (ADS)
Roupassov, S.; Rankin, R.; Tsui, Y.; Capjack, C.; Fedosejevs, R.
1999-11-01
The guiding and confinement of laser produced plasma in a curved magnetic field has been investigated numerically. These studies were motivated by experiments on pulsed laser deposition of diamond-like films [1] in which a 1kG magnetic field in a curved solenoid geometry was utilized to steer a carbon plasma around a curved trajectory and thus to separate it from unwanted macroparticles produced by the laser ablation. The purpose of the modeling was to characterize the plasma dynamics during the propagation through the magnetic guide field and to investigate the effect of different magnetic field configurations. A 3D curvilinear ADI code developed on the basis of an existing Cartesian code [2] was employed to simulate the underlying resistive one-fluid MHD model. Issues such as large regions of low background density and nonreflective boundary conditions were addressed. Results of the simulations in a curved guide field will be presented and compared to experimental results. [1] Y.Y. Tsui, D. Vick and R. Fedosejevs, Appl. Phys. Lett. 70 (15), pp. 1953-57, 1997. [2] R. Rankin, and I. Voronkov, in "High Performance Computing Systems and Applications", pp. 59-69, Kluwer AP, 1998.
NASA Astrophysics Data System (ADS)
Edmondson, J. K.; Lynch, B. J.
2017-11-01
We analyze a series of three-dimensional magnetohydrodynamic numerical simulations of magnetic reconnection in a model solar corona to study the effect of the guide-field component on quasi-steady-state interchange reconnection in a pseudostreamer arcade configuration. This work extends the analysis of Edmondson et al. by quantifying the mass density enhancement coherency scale in the current sheet associated with magnetic island formation during the nonlinear phase of plasmoid-unstable reconnection. We compare the results of four simulations of a zero, weak, moderate, and a strong guide field, {B}{GF}/{B}0=\\{0.0,0.1,0.5,1.0\\}, to quantify the plasmoid density enhancement’s longitudinal and transverse coherency scales as a function of the guide-field strength. We derive these coherency scales from autocorrelation and wavelet analyses, and demonstrate how these scales may be used to interpret the density enhancement fluctuation’s Fourier power spectra in terms of a structure formation range, an energy continuation range, and an inertial range—each population with a distinct spectral slope. We discuss the simulation results in the context of solar and heliospheric observations of pseudostreamer solar wind outflow and possible signatures of reconnection-generated structure.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
1993-01-01
The Communication Protocol Software was developed at the NASA Lewis Research Center to support the Advanced Communications Technology Satellite High Burst Rate Link Evaluation Terminal (ACTS HBR-LET). The HBR-LET is an experimenters terminal to communicate with the ACTS for various experiments by government, university, and industry agencies. The Communication Protocol Software is one segment of the Control and Performance Monitor (C&PM) Software system of the HBR-LET. The Communication Protocol Software allows users to control and configure the Intermediate Frequency Switch Matrix (IFSM) on board the ACTS to yield a desired path through the spacecraft payload. Besides IFSM control, the C&PM Software System is also responsible for instrument control during HBR-LET experiments, uplink power control of the HBR-LET to demonstrate power augmentation during signal fade events, and data display. The Communication Protocol Software User's Guide, Version 1.0 (NASA CR-189162) outlines the commands and procedures to install and operate the Communication Protocol Software. Configuration files used to control the IFSM, operator commands, and error recovery procedures are discussed. The Communication Protocol Software Maintenance Manual, Version 1.0 (NASA CR-189163, to be published) is a programmer's guide to the Communication Protocol Software. This manual details the current implementation of the software from a technical perspective. Included is an overview of the Communication Protocol Software, computer algorithms, format representations, and computer hardware configuration. The Communication Protocol Software Test Plan (NASA CR-189164, to be published) provides a step-by-step procedure to verify the operation of the software. Included in the Test Plan is command transmission, telemetry reception, error detection, and error recovery procedures.
Tokuda, Junichi; Morikawa, Shigehiro; Dohi, Takeyoshi; Hata, Nobuhiko
2004-01-01
Image registration in magnetic resonance (MR) image-guided liver therapy enhances surgical guidance by fusing preoperative multimodality images with intraoperative images, or by fusing intramodality images to correlate serial intraoperative images to monitor the effect of therapy. The objective of this paper is to describe the application of navigator echo and projection profile matching to fast two-dimensional image registration for MR-guided liver therapy. We obtain navigator echoes along the read-out and phase-encoding directions by using modified gradient echo imaging. This registration is made possible by masking out the liver profile from the image and performing profile matching with cross-correlation or mutual information as similarity measures. The set of experiments include a phantom study with a 2.0-T experimental MR scanner, and a volunteer and a clinical study with a 0.5-T open-configuration MR scanner, and these evaluate the accuracy and effectiveness of this method for liver therapy. Both the phantom and volunteer study indicate that this method can perform registration in 34 ms with root-mean-square error of 1.6 mm when the given misalignment of a liver is 30 mm. The clinical studies demonstrate that the method can track liver motion of up to approximately 40 mm. Matching profiles with cross-correlation information perform better than with mutual information in terms of robustness and speed. The proposed image registration method has potential clinical impact on and advantages for MR-guided liver therapy.
Managing crises through organisational development: a conceptual framework.
Lalonde, Carole
2011-04-01
This paper presents a synthesis of the guiding principles in crisis management in accordance with the four configurational imperatives (strategy, structure, leadership and environment) defined by Miller (1987) and outlines interventions in organisational development (OD) that may contribute to their achievement. The aim is to build a conceptual framework at the intersection of these two fields that could help to strengthen the resilient capabilities of individuals, organisations and communities to face crises. This incursion into the field of OD--to generate more efficient configurations of practices in crisis management--seems particularly fruitful considering the system-wide application of OD, based on open-systems theory (Burke, 2008). Various interventions proposed by OD in terms of human processes, structural designs and human resource management, as well as strategy, may help leaders, members of organisations and civil society apply effectively, and in a more sustainable way, the crisis management guiding principles defined by researchers. © 2011 The Author(s). Disasters © Overseas Development Institute, 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Ronglin; Fang Cheng; Shibata, Kazunari
Magnetic reconnection is a fundamental process in space and astrophysical plasmas in which the oppositely directed magnetic field changes its connectivity and eventually converts its energy into kinetic and thermal energy of the plasma. Recently, ubiquitous jets (for example, chromospheric anemone jets, penumbral microjets, umbral light bridge jets) have been observed by the Solar Optical Telescope on board the satellite Hinode. These tiny and frequently occurring jets are considered to be a possible evidence of small-scale ubiquitous reconnection in the solar atmosphere. However, the details of three-dimensional (3D) magnetic configuration are still not very clear. Here, we propose a newmore » model based on 3D simulations of magnetic reconnection using a typical current sheet magnetic configuration with a strong guide field. The most interesting feature is that the jets produced by the reconnection eventually move along the guide field lines. This model provides a fresh understanding of newly discovered ubiquitous jets and moreover a new observational basis for the theory of astrophysical magnetic reconnection.« less
Optical performance of segmented aperture windows for solar tower receivers
NASA Astrophysics Data System (ADS)
Buck, Reiner
2017-06-01
Segmented quartz windows are a concept to build larger windows for receivers that require a closed aperture. Reflection losses are a significant loss factor for such solar receivers. Without any additional measures, the reflection loss can reach about 12%. One important measure to improve transmission is the application of anti-reflective coatings, which is beneficial in any case. Another option is modifying the window geometry, especially the edge surfaces of the glass segments. A certain fraction of the reflection losses are caused by a light-guide effect in the glass body, for rays entering through the front surface. Changing the cut surfaces in a way reducing the light-guide effect can significantly improve transmission of a segmented window. Several possible configurations are evaluated and discussed. The results of ray-tracing simulations verify the improvement. The final selection of the window configuration depends on the optical properties and on mechanical strength, manufacturing and cost considerations. This has to be evaluated for any specific receiver design.
Electrical Field Guided Electrospray Deposition for Production of Gradient Particle Patterns.
Yan, Wei-Cheng; Xie, Jingwei; Wang, Chi-Hwa
2018-06-06
Our previous work demonstrated the uniform particle pattern formation on the substrates using electrical field guided electrospray deposition. In this work, we reported for the first time the fabrication of gradient particle patterns on glass slides using an additional point, line, or bar electrode based on our previous electrospray deposition configuration. We also demonstrated that the polydimethylsiloxane (PDMS) coating could result in the formation of uniform particle patterns instead of gradient particle patterns on glass slides using the same experimental setup. Meanwhile, we investigated the effect of experimental configurations on the gradient particle pattern formation by computational simulation. The simulation results are in line with experimental observations. The formation of gradient particle patterns was ascribed to the gradient of electric field and the corresponding focusing effect. Cell patterns can be formed on the particle patterns deposited on PDMS-coated glass slides. The formed particle patterns hold great promise for high-throughput screening of biomaterial-cell interactions and sensing.
An evaluation of energy-absorbing guide rail terminals in New Brunswick
NASA Astrophysics Data System (ADS)
Esligar, Ryan W.
2011-12-01
Energy-absorbing guide rail terminals (EAGRTs) are a form of end treatment designed to absorb energy during a collision and prevent intrusion into the impacting vehicle. After several years of use in New Brunswick there is evidence to suggest these systems may not always perform as expected. This study was conducted to evaluate the real-world performance of EAGRT systems in collisions throughout the Province. A retrospective review of data for 103 collisions that occurred prior to the study was supplemented with an in-depth analysis and reconstruction of 18 collisions that occurred during the study. The study revealed that two types of EAGRTs are used in New Brunswick; the ET-Plus and the SKT-350. Between 2007 and 2010 approximately 80% of all EAGRT collisions were PDO, nearly 19% resulted in injuries, while one collision resulted in a fatality. In most cases the EAGRT absorbed a significant amount of energy (an average of 315 KJ per crash); however, there were several problems identified. It was determined that not all EAGRT systems are being installed in accordance with the manufacturer's guidelines. Intrusion into the vehicle was documented in three collisions. It was also discovered that many of the collision configurations were different than the NCHRP Report 350 tests. The major recommendations focused on installation and maintenance issues identified during the study. The study also revealed areas in need of further research. These areas include the feasibility of using the FLEAT system in New Brunswick, the installation of rumble strips on the median shoulder, and whether or not additional crash test configurations should be incorporated into NCHRP Report 350 or Project 22-14(2).
Feldman, Anatol G; Krasovsky, Tal; Baniña, Melanie C; Lamontagne, Anouk; Levin, Mindy F
2011-04-01
Locomotion is presumably guided by feed-forward shifts in the referent body location in the desired direction in the environment. We propose that the difference between the actual and the referent body locations is transmitted to neurons that virtually diminish this difference by appropriately changing the referent body configuration, i.e. the body posture at which muscles reach their recruitment thresholds. Muscles are activated depending on the gap between the actual and the referent body configurations resulting in a step being made to minimize this gap. This hypothesis implies that the actual and the referent leg configurations can match each other at certain phases of the gait cycle, resulting in minimization of leg muscle activity. We found several leg configurations at which EMG minima occurred, both during forward and backward gait. It was also found that the set of limb configurations associated with EMG minima can be changed by modifying the pattern of forward and backward gait. Our hypothesis predicts that, in response to perturbations of gait, the rate of shifts in the referent body location can temporarily be changed to avoid falling. The rate influences the phase of rhythmic limb movements during gait. Therefore, following the change in the rate of the referent body location, the whole gait pattern, for all four limbs, will irreversibly be shifted in time (long-lasting and global phase resetting) with only transient changes in the gait speed, swing and stance timing and cycle duration. Aside from transient changes in the duration of the swing and/or stance phase in response to perturbation, few previous studies have documented long-lasting and global phase resetting of human gait in response to perturbation. Such resetting was a robust finding in our study. By confirming the notion that feed-forward changes in the referent body location and configuration underlie human locomotion, this study solves the classical problem in the relationship between stability of posture and gait and advances the understanding of how human locomotion involves the whole body and is accomplished in a spatial frame of reference associated with the environment.
2010 AUGUST 1-2 SYMPATHETIC ERUPTIONS. I. MAGNETIC TOPOLOGY OF THE SOURCE-SURFACE BACKGROUND FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, V. S.; Mikic, Z.; Toeroek, T.
2012-11-01
A sequence of apparently coupled eruptions was observed on 2010 August 1-2 by Solar Dynamics Observatory and STEREO. The eruptions were closely synchronized with one another, even though some of them occurred at widely separated locations. In an attempt to identify a plausible reason for such synchronization, we study the large-scale structure of the background magnetic configuration. The coronal field was computed from the photospheric magnetic field observed at the appropriate time period by using the potential field source-surface model. We investigate the resulting field structure by analyzing the so-called squashing factor calculated at the photospheric and source-surface boundaries, asmore » well as at different coronal cross-sections. Using this information as a guide, we determine the underlying structural skeleton of the configuration, including separatrix and quasi-separatrix surfaces. Our analysis reveals, in particular, several pseudo-streamers in the regions where the eruptions occurred. Of special interest to us are the magnetic null points and separators associated with the pseudo-streamers. We propose that magnetic reconnection triggered along these separators by the first eruption likely played a key role in establishing the assumed link between the sequential eruptions. The present work substantiates our recent simplified magnetohydrodynamic model of sympathetic eruptions and provides a guide for further deeper study of these phenomena. Several important implications of our results for the S-web model of the slow solar wind are also addressed.« less
SNL Mechanical Computer Aided Design (MCAD) guide 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Brandon; Pollice, Stephanie L.; Martinez, Jack R.
2007-12-01
This document is considered a mechanical design best-practice guide to new and experienced designers alike. The contents consist of topics related to using Computer Aided Design (CAD) software, performing basic analyses, and using configuration management. The details specific to a particular topic have been leveraged against existing Product Realization Standard (PRS) and Technical Business Practice (TBP) requirements while maintaining alignment with sound engineering and design practices. This document is to be considered dynamic in that subsequent updates will be reflected in the main title, and each update will be published on an annual basis.
2015-12-01
Physical Configuration Audit for the GMLRS AW was completed at the system level in March 2015. Director of Operational Test and Evaluation Assessment...Confidence Level Confidence Level of cost estimate for current APB: 50% The confidence level used in establishing the cost estimate for GMLRS/GMLRS AW...PAUC Development Estimate Changes PAUC Production Estimate Econ Qty Sch Eng Est Oth Spt Total 0.039 -0.003 0.001 0.001 0.009 0.037 0.000 0.000 0.045
Guided design of copper oxysulfide superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Chuck-Hou; Birol, Turan; Kotliar, Gabriel
2015-07-01
We describe a framework for designing novel materials, combining modern first-principles electronic-structure tools, materials databases, and evolutionary algorithms capable of exploring large configurational spaces. Guided by the chemical principles introduced by Antipov et al., for the design and synthesis of the Hg-based high-temperature superconductors, we apply our framework to screen 333 proposed compositions to design a new layered copper oxysulfide, Hg(CaS)2CuO2. We evaluate the prospects of superconductivity in this oxysulfide using theories based on charge-transfer energies, orbital distillation and uniaxial strain.
Bloch surface waves confined in one dimension with a single polymeric nanofibre
NASA Astrophysics Data System (ADS)
Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.
2017-02-01
Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor-memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes.
The Langley 14- by 22-Foot Subsonic Tunnel: Description, Flow Characteristics, and Guide for Users
NASA Technical Reports Server (NTRS)
Gentry, Garl L., Jr.; Quinto, P. Frank; Gatlin, Gregory M.; Applin, Zachary T.
1990-01-01
The Langley 14- by 22-foot Subsonic Tunnel is a closed circuit, single-return atmospheric wind tunnel with a test section that can be operated in a variety of configurations (closed, slotted, partially open, and open). The closed test section configuration is 14.5 ft high by 21.75 ft wide and 50 ft long with a maximum speed of about 338 ft/sec. The open test section configuration has a maximum speed of about 270 ft/sec, and is formed by raising the ceiling and walls, to form a floor-only configuration. The tunnel may be configured with a moving-belt ground plane and a floor boundary-layer removal system at the entrance to the test section for ground effect testing. In addition, the tunnel had a two-component laser velocimeter, a frequency modulated (FM) tape system for dynamic data acquisition, flow visualization equipment, and acoustic testing capabilities. Users of the 14- by 22-foot Subsonic Tunnel are provided with information required for planning of experimental investigations including test hardware and model support systems.
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Briggs, Maxwell H.; Hervol, David S.
2011-01-01
A pair of 1-kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12-kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measureable difference in performance from the baseline data collected when the engines were separate, and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.
NASA Astrophysics Data System (ADS)
Geng, S. M.; Briggs, M. H.; Hervol, D. S.
A pair of 1kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12 kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measurable difference in performance from the baseline data collected when the engines were separate and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.
Statistical energy analysis computer program, user's guide
NASA Technical Reports Server (NTRS)
Trudell, R. W.; Yano, L. I.
1981-01-01
A high frequency random vibration analysis, (statistical energy analysis (SEA) method) is examined. The SEA method accomplishes high frequency prediction of arbitrary structural configurations. A general SEA computer program is described. A summary of SEA theory, example problems of SEA program application, and complete program listing are presented.
Multisensory Associative Guided Instruction Components-Spelling
ERIC Educational Resources Information Center
Hamilton, Harley
2016-01-01
This article describes a multisensory presentation and response system for enhancing the spelling ability of dyslexic children. The unique aspect of MAGICSpell is its system of finger-letter associations and simplified keyboard configuration. Sixteen 10- and 11-year-old dyslexic students practiced the finger-letter associations via various typing…
Marcinkowski, R; España, S; Van Holen, R; Vandenberghe, S
2014-12-07
The majority of current whole-body PET scanners are based on pixelated scintillator arrays with a transverse pixel size of 4 mm. However, recent studies have shown that decreasing the pixel size to 2 mm can significantly improve image spatial resolution. In this study, the performance of Digital Photon Counter (DPC) from Philips Digital Photon Counting (PDPC) was evaluated to determine their potential for high-resolution whole-body time of flight (TOF) PET scanners. Two detector configurations were evaluated. First, the DPC3200-44-22 DPC array was coupled to a LYSO block of 15 × 15 2 × 2 × 22 mm(3) pixels through a 1 mm thick light guide. Due to light sharing among the dies neighbour logic of the DPC was used. In a second setup the same DPC was coupled directly to a scalable 4 × 4 LYSO matrix of 1.9 × 1.9 × 22 mm(3) crystals with a dedicated reflector arrangement allowing for controlled light sharing patterns inside the matrix. With the first approach an average energy resolution of 14.5% and an average CRT of 376 ps were achieved. For the second configuration an average energy resolution of 11% and an average CRT of 295 ps were achieved. Our studies show that the DPC is a suitable photosensor for a high-resolution TOF-PET detector. The dedicated reflector arrangement allows one to achieve better performances than the light guide approach. The count loss, caused by dark counts, is overcome by fitting the matrix size to the size of DPC single die.
Whitt, Karen J; Eden, Lacey; Merrill, Katreena Collette; Hughes, Mckenna
2017-01-01
Previous research has linked improper electronic health record configuration and use with adverse patient events. In response to this problem, the US Office of the National Coordinator for Health Information Technology developed the Safety and Assurance Factors for EHR Resilience guides to evaluate electronic health records for optimal use and safety features. During the course of their education, nursing students are exposed to a variety of clinical practice settings and electronic health records. This descriptive study evaluated 108 undergraduate and 51 graduate nursing students' ratings of electronic health record features and safe practices, as well as what they learned from utilizing the computerized provider order entry and clinician communication Safety and Assurance Factors for EHR Resilience guide checklists. More than 80% of the undergraduate and 70% of the graduate students reported that they experienced user problems with electronic health records in the past. More than 50% of the students felt that electronic health records contribute to adverse patient outcomes. Students reported that many of the features assessed were not fully implemented in their electronic health record. These findings highlight areas where electronic health records can be improved to optimize patient safety. The majority of students reported that utilizing the Safety and Assurance Factors for EHR Resilience guides increased their understanding of electronic health record features.
A flavonoid from Brassica rapa flower as the UV-absorbing nectar guide.
Sasaki, Katsunori; Takahashi, Takashi
2002-10-01
The corolla of Brassica rapa has an UV-absorbing zone in its center, known as the nectar guide for attracting pollinating insects. The pigment which plays the role of the nectar guide was isolated from the petals and identified to be isorhamnetin 3,7-O-di-beta-D-glucopyranoside on the basis of MS and NMR spectroscopic data. The D-, L-configurations of the sugar moieties were determined by the fluorometric HPLC method. In plants raised in open field, there was a 13-fold higher content of the compound in the basal parts of the petals compared with the apical parts. This difference in flavonoid content is presumed to contribute to the visual attractiveness of B. rapa flowers to insect pollinators.
Weak affinity chromatography for evaluation of stereoisomers in early drug discovery.
Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Svensson, Susanne; Ohlson, Sten; Isaksson, Roland
2013-07-01
In early drug discovery (e.g., in fragment screening), recognition of stereoisomeric structures is valuable and guides medicinal chemists to focus only on useful configurations. In this work, we concurrently screened mixtures of stereoisomers and estimated their affinities to a protein target (thrombin) using weak affinity chromatography-mass spectrometry (WAC-MS). Affinity determinations by WAC showed that minor changes in stereoisomeric configuration could have a major impact on affinity. The ability of WAC-MS to provide instant information about stereoselectivity and binding affinities directly from analyte mixtures is a great advantage in fragment library screening and drug lead development.
Fujimoto, H; Nakamura, E; Kim, Y P; Okuyama, E; Ishibashi, M; Sassa, T
2001-09-01
Fractionation guided by immunomodulatory activity of the EtOAc extract of the Ascomycete Eupenicillium crustaceum has afforded two new naturally occurring products, 4'-oxomacrophorin D (1) and 4'-oxomacrophorin A (2), as the immunosuppressive components of this fungus [1: 3-hydroxy-3-methylglutaryl (HMG) conjugate of 2]. The structures including the absolute configurations of 1 and 2 have been determined on the basis of chemical correlation of 1 with macrophorin D (3). The absolute configuration of the HMG moiety in 3 has been revised from 3R to 3S.
Garcia, Ernest J; Polosky, Marc A
2013-05-21
An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.
ARGOS wavefront sensing: from detection to correction
NASA Astrophysics Data System (ADS)
Orban de Xivry, Gilles; Bonaglia, M.; Borelli, J.; Busoni, L.; Connot, C.; Esposito, S.; Gaessler, W.; Kulas, M.; Mazzoni, T.; Puglisi, A.; Rabien, S.; Storm, J.; Ziegleder, J.
2014-08-01
Argos is the ground-layer adaptive optics system for the Large Binocular Telescope. In order to perform its wide-field correction, Argos uses three laser guide stars which sample the atmospheric turbulence. To perform the correction, Argos has at disposal three different wavefront sensing measurements : its three laser guide stars, a NGS tip-tilt, and a third wavefront sensor. We present the wavefront sensing architecture and its individual components, in particular: the finalized Argos pnCCD camera detecting the 3 laser guide stars at 1kHz, high quantum efficiency and 4e- noise; the Argos tip-tilt sensor based on a quad-cell avalanche photo-diodes; and the Argos wavefront computer. Being in the middle of the commissioning, we present the first wavefront sensing configurations and operations performed at LBT, and discuss further improvements in the measurements of the 3 laser guide star slopes as detected by the pnCCD.
Guiding District Implementation of Common Core State Standards: Innovation Configuration Maps
ERIC Educational Resources Information Center
Roy, Patricia; Killion, Joellen
2011-01-01
Leadership Networks are regional and content-specific networks focused on the preparation of college- and career-ready students. Each network includes teacher leaders, school administrators, central office staff, regional cooperatives, and institutes of higher education. Network members work collaboratively to focus their efforts on regional needs…
NASA Technical Reports Server (NTRS)
1974-01-01
Monograph reviews and assesses current design practices, and from them establishes firm guidance for achieving greater consistency in design, increased reliability in end product, and greater efficiency in design effort. Five devices are treated separately. Guides to aid in configuration selection are outlined.
Effects of Breeding Configuration on Maternal and Weanling Behavior in Laboratory Mice.
Braden, Gillian C; Rasmussen, Skye; Monette, Sebastien; Tolwani, Ravi J
2017-07-01
Although numerous studies have evaluated the effect of housing density on the wellbeing of laboratory mice, little is known about the effect of breeding configuration on mouse behavior. The 8th edition of the Guide for the Care and Use of Laboratory Animals lists the recommended minimal floor area per animal for a female mouse and her litter as 51 in.2 We sought to determine the effects of pair, trio, and harem breeding configurations on the maternal and weanling behavior of C57BL/6J (B6) and 129S6/SvEvTac (129) mice on the basis of nest scores and performance in pup retrieval tests, open-field test (OFT), elevated plus maze, and tail suspension test; we concurrently evaluated cage microenvironment, reproductive indices, and anatomic and clinical pathology. Harem breeding configurations enhanced B6 maternal behaviors as evidenced by significantly shorter pup retrieval times. Trio- and harem-raised B6 weanlings showed increased exploratory behaviors, as evidenced by greater time spent in the center of the OFT, when compared with pair-raised B6 mice. Conversely, breeding configuration did not alter pup retrieval times for 129 mice, and on the day of weaning trio- and harem-raised 129 mice demonstrated increased anxiety-like behavior, as evidenced by greater time spent in the periphery of the OFT, when compared with pair-raised counterparts. Behavioral differences were not noted on subsequent days for either strain. Trio- and harem-raised B6 and 129 weanling mice had significantly higher weaning weights than weanlings raised in a pair breeding configuration. Trio and harem breeding in a standard 67-in.2 shoebox cage did not detrimentally affect the evaluated welfare parameters in either C57BL/6J or 129S6/SvEvTac mice.
An interactive graphics program for manipulation and display of panel method geometry
NASA Technical Reports Server (NTRS)
Hall, J. F.; Neuhart, D. H.; Walkley, K. B.
1983-01-01
Modern aerodynamic panel methods that handle large, complex geometries have made evident the need to interactively manipulate, modify, and view such configurations. With this purpose in mind, the GEOM program was developed. It is a menu driven, interactive program that uses the Tektronix PLOT 10 graphics software to display geometry configurations which are characterized by an abutting set of networks. These networks are composed of quadrilateral panels which are described by the coordinates of their corners. GEOM is divided into fourteen executive controlled functions. These functions are used to build configurations, scale and rotate networks, transpose networks defining M and N lines, graphically display selected networks, join and split networks, create wake networks, produce symmetric images of networks, repanel and rename networks, display configuration cross sections, and output network geometry in two formats. A data base management system is used to facilitate data transfers in this program. A sample session illustrating various capabilities of the code is included as a guide to program operation.
Investigation of Various Surface Acoustic Wave Design Configurations for Improved Sensitivity
NASA Astrophysics Data System (ADS)
Manohar, Greeshma
Surface acoustic wave sensors have been a focus of active research for many years. Its ability to respond for surface perturbation is a basic principle for its sensing capability. Sensitivity to surface perturbation changes with every inter-digital transducer (IDT) design parameters, substrate selection, metallization choice and technique, delay line length and working environment. In this thesis, surface acoustic wave (SAW) sensors are designed and characterized to improve sensitivity and reduce loss. To quantify the improvements with a specific design configuration, the sensors are employed to measure temperature. Four SAW sensors design configurations, namely bi-directional, split electrode, single phase unidirectional transducer (SPUDT) and metal grating on delay line (shear transvers wave sensors) are designed and then fabricated in Nanotechnology Research and Education Center (NREC) facility using traditional MEMS fabrication processes Additionally, sensors are then coated with guiding layer SU8-2035 of 40µm using spin coating and SiO 2 of 6µm using plasma enhanced chemical vapor deposition (PECVD) process. Sensors are later diced and tested for every 5°C increment using network analyzer for temperature ranging from 30°C±0.5°C to 80°C±0.5°C. Data acquired from network analyzer is analyzed using plot of logarithmic magnitude, phase and frequency shift. Furthermore, to investigate the effect of metallization technique on the sensor performance, sensors are also fabricated on substrates that were metallized at a commercial MEMS foundry. All in-house and outside sputtered sensor configurations are compared to investigate quality of sputtered metal on wafer. One with better quality sputtered metal is chosen for further study. Later sensors coated with SU8 and SiO2 as guiding layer are compared to investigate effect of each waveguide on sensors and determine which waveguide offers better performance. The results showed that company sputtered sensors have higher sensitivity compared to in-house sputtered wafers. Furthermore after comparing SU8 and SiO2 coated sensors in the same instrumental and environmental condition, it was observed that SU8 coated di-directional and single phase unidirectional transducer (SPUDT) sensors showed best response.
NASA Astrophysics Data System (ADS)
Gopal, Arun
In image guided radiation therapy (IGRT), imaging devices serve as guidance systems to aid patient set-up and tumor volume localization. Traditionally, 2-D megavoltage x-ray imagers, referred to as electronic portal imaging devices (EPIDs), have been used for planar target localization, and have recently been extended to perform 3-D volumetric reconstruction via cone-beam computed tomography (CBCT). However, current EPIDs utilize thin and inefficient phosphor screen detectors and are subsequently limited by poor soft tissue visualization, which limits their use for CBCT. Therefore, the use of thick scintillation media as megavoltage x-ray detectors for greater x-ray sensitivity and enhanced image quality has recently been of significant interest. In this research, two candidates for thick scintillators: CsI(Tl) and terbium doped scintillation glass were investigated in separate imaging configurations. In the first configuration, a thick scintillation crystal (TSC) consisting of a thick, monolithic slab of CsI(Tl) was coupled to a mirror-lens-camera system. The second configuration is based on a fiber-optic scintillation glass array (FOSGA), wherein the scintillation glass is drawn into long fiber-optic conduits, inserted into a grid-type housing constructed out of polymer-tungsten alloy, and coupled to an array of photodiodes for digital read-out. The imaging prototypes were characterized using theoretical studies and imaging measurements to obtain fundamental metrics of imaging performance. Spatial resolution was measured based on a modulation transfer function (MTF), noise was evaluated in terms of a noise power spectrum (NPS), and overall contrast was characterized in the form of detective quantum efficiency (DQE). The imaging studies were used to optimize the TSC and FOSGA imagers and propose prototype configurations for order-of-magnitude improvements in overall image quality. In addition, a fast and simple technique was developed to measure the MTF, NPS, and DQE metrics for clinical EPID and CBCT systems based on a novel adaptation of a traditional line-pair resolution bar-pattern. This research provides two significant benefits to radiotherapy: the characterization of a new generation of thick scintillator based megavoltage x-ray imagers for CBCT based IGRT, and the novel adaptation of fundamental imaging metrics from imaging research to routine clinical performance monitoring.
Design and Use of a Guided Weight Impactor to Impart Barely Visible Impact Damage
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Przekop, Adam
2016-01-01
Aircraft structure is required to demonstrate satisfaction of the FAR requirements for Category 1, such as barely visible impact damage (BVID). Typical aircraft structure is impacted using a dropped weight impactor, which can impart BVID to the top surface of the structure. A recent test of a multi-bay box (MBB) composite test article, that represents an 80% scale center section of a hybrid wing body aircraft, required impact to be in a direction other than vertical from above, but still in an direction that is normal to the surface. This requirement eliminated the use of the conventional dropped weight impactor. Therefore, a design study was undertaken to determine the most effective way to efficiently and reliably impact the MBB. The chosen design was a guided weight impactor that is gravity driven. This paper describes the design of the guided weight impactor, and presents the results of its use for imparting BVID to the MBB. The guided weight impactor was seen to be a very reliable method to impart BVID, while at the same time having the capability to be highly configurable for use on other aircraft structure that is impacted at a variety of impact energies and from a variety of directions.
Strauss, G; Winkler, D; Jacobs, S; Trantakis, C; Dietz, A; Bootz, F; Meixensberger, J; Falk, V
2005-07-01
This study examines the advantages and disadvantages of a commercial telemanipulator system (daVinci, Intuitive Surgical, USA) with computer-guided instruments in functional endoscopic sinus surgery (FESS). We performed five different surgical FESS steps on 14 anatomical preparation and compared them with conventional FESS. A total of 140 procedures were examined taking into account the following parameters: degrees of freedom (DOF), duration , learning curve, force feedback, human-machine-interface. Telemanipulatory instruments have more DOF available then conventional instrumentation in FESS. The average time consumed by configuration of the telemanipulator is around 9+/-2 min. Missing force feedback is evaluated mainly as a disadvantage of the telemanipulator. Scaling was evaluated as helpful. The ergonomic concept seems to be better than the conventional solution. Computer guided instruments showed better results for the available DOF of the instruments. The human-machine-interface is more adaptable and variable then in conventional instrumentation. Motion scaling and indexing are characteristics of the telemanipulator concept which are helpful for FESS in our study.
Despins, Laurel A
2017-12-01
This study examines what prompts the intensive care unit (ICU) nurse to go to the patient's bedside to investigate an alarm and the influences on the nurse's determination regarding how quickly this needs to occur. A qualitative descriptive design guided data collection and analysis. Individual semi-structured interviews were conducted. Thematic analysis guided by the Patient Risk Detection Theoretical Framework was applied to the data. Four specialty intensive care units in an academic medical center. ICU nurses go the patient's bedside in response to an alarm to catch patient deterioration and avert harm. Their determination of the immediacy of patient risk and their desire to prioritize their bedside investigations to true alarms influences how quickly they proceed to the bedside. Ready visual access to physiological data and waveform configurations, experience, teamwork, and false alarms are important determinants in the timing of ICU nurses' bedside alarm investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmadivand, Arash; Golmohammadi, Saeed
2014-01-01
With the purpose of guiding and splitting of optical power at C-band spectrum, we studied Y-shape splitters based on various shapes of nanoparticles as a plasmon waveguide. We applied different configurations of Gold (Au) and Silver (Ag) nanoparticles including spheres, rods and rings, to optimize the efficiency and losses of two and four-branch splitters. The best performance in light transportation specifically at telecom wavelength (λ≈1550 nm) is achieved by nanorings, due to an extra degree of freedom in their geometrical components. In addition, comparisons of several values for offset distance (doffset) of examined structures shows that Au nanoring splitters with feasible lower doffset have high quality in guiding and splitting of light through the structure. Finally, we studied four-branch Y-splitters based on Au and Ag nanorings with least possible offset distances to optimize the splitter performance. The power transmission as a key element is calculated for examined structures.
NASA Technical Reports Server (NTRS)
Santiago-Espada, Yamira; Myer, Robert R.; Latorella, Kara A.; Comstock, James R., Jr.
2011-01-01
The Multi-Attribute Task Battery (MAT Battery). is a computer-based task designed to evaluate operator performance and workload, has been redeveloped to operate in Windows XP Service Pack 3, Windows Vista and Windows 7 operating systems.MATB-II includes essentially the same tasks as the original MAT Battery, plus new configuration options including a graphical user interface for controlling modes of operation. MATB-II can be executed either in training or testing mode, as defined by the MATB-II configuration file. The configuration file also allows set up of the default timeouts for the tasks, the flow rates of the pumps and tank levels of the Resource Management (RESMAN) task. MATB-II comes with a default event file that an experimenter can modify and adapt
LSP Composite Susbtrate Manufacturing Processing Guide
NASA Technical Reports Server (NTRS)
Kovach, Daniel J.; Griess, Kenneth H.
2013-01-01
This document is intended to define Carbon Fiber Reinforced Plastic (CFRP) test panel configurations that can be employed for the purposes of evaluating the protection capabilities of Lightning Strike Protection (LSP) materials developed by the Aerospace Industry. The configurations are intended to provide consistent behavior in their response to simulated lightning strikes at pre-defined levels when tested by a capable vendor according to a test procedure written to enable consistent results (ref section 2.1.2). In response to an attachment of a simulated lightning strike on a CFRP panel, one can expect to see various levels of ablation and delamination, both through the thickness of the panel and with respect to the amount of panel surface area that exhibits damage. Panel configurations defined in this document include: An "unprotected" configuration 128694-1 (ref section 4.1), consisting of a cured CFRP laminate stackup of tape and fabric prepregs, coated with a typical aerospace primer and paint finishing scheme, attached to aluminum grounding bars intended to draw electrical current from the lightning attachment point to the panel edges and thus to ground. A "protected" configuration 128694-2 (ref section 4.1), wherein a layer of an LSP material form often used in the Aerospace Industry is included in the laminate stackup prior to cure. The CFRP materials, finishes and grounding arrangement for ths configuration are the same as for the "unprotected" configuration.
Bloch surface waves confined in one dimension with a single polymeric nanofibre
Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.
2017-01-01
Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor–memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes. PMID:28155871
NASA Astrophysics Data System (ADS)
Babcock, Earl; Salhi, Zahir; Gainov, Ramil; Woracek, Robin; Soltner, Helmut; Pistel, Patrick; Beule, Fabian; Bussmann, Klaus; Heynen, Achim; Kämmerling, Hans; Suxdorf, Frank; Strobl, Marcus; Russina, Margarita; Voigt, Jörg; Ioffe, Alexander
2018-05-01
An XYZ polarization analysis solution has been developed for the new thermal time-of-flight spectrometer TOPAS [1], to be operated in the coming east neutron guide hall at the MLZ. This prototype is currently being prepared to use on NEAT at HZB [2]. Polarization Analysis Studies on a Thermal Inelastic Spectrometer, commonly called PASTIS [3], is based on polarized 3He neutron spin filters and an XYZ field configuration for the sample environment and a polarization-preserving neutron guide field. The complete system was designed to provide adiabatic transport of the neutron polarization to the sample position on TOPAS while maintaining the homogeneity of the XYZ field. This complete system has now been tested on the polarized time-of-flight ESS test beam line V20 at HZB [4]. We present results of this test and the next steps forward.
Genetic evolutionary taboo search for optimal marker placement in infrared patient setup
NASA Astrophysics Data System (ADS)
Riboldi, M.; Baroni, G.; Spadea, M. F.; Tagaste, B.; Garibaldi, C.; Cambria, R.; Orecchia, R.; Pedotti, A.
2007-09-01
In infrared patient setup adequate selection of the external fiducial configuration is required for compensating inner target displacements (target registration error, TRE). Genetic algorithms (GA) and taboo search (TS) were applied in a newly designed approach to optimal marker placement: the genetic evolutionary taboo search (GETS) algorithm. In the GETS paradigm, multiple solutions are simultaneously tested in a stochastic evolutionary scheme, where taboo-based decision making and adaptive memory guide the optimization process. The GETS algorithm was tested on a group of ten prostate patients, to be compared to standard optimization and to randomly selected configurations. The changes in the optimal marker configuration, when TRE is minimized for OARs, were specifically examined. Optimal GETS configurations ensured a 26.5% mean decrease in the TRE value, versus 19.4% for conventional quasi-Newton optimization. Common features in GETS marker configurations were highlighted in the dataset of ten patients, even when multiple runs of the stochastic algorithm were performed. Including OARs in TRE minimization did not considerably affect the spatial distribution of GETS marker configurations. In conclusion, the GETS algorithm proved to be highly effective in solving the optimal marker placement problem. Further work is needed to embed site-specific deformation models in the optimization process.
Resonance-enhanced optical forces between coupled photonic crystal slabs.
Liu, Victor; Povinelli, Michelle; Fan, Shanhui
2009-11-23
The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.
Microslab - Waveguide medium for the future
NASA Astrophysics Data System (ADS)
Sequeira, H. B.
1986-09-01
'Microslab' technology, which has the transmission properties of both microstrip and dielectric slab waveguides, and which is aimed for use in MIMIC devices, is described. The Microslab configuration consists of a guiding layer bonded to a metallized dielectric substrate (slab) and a metallized dielectric rod, with the dielectric material and thicknesses chosen for minimal loss and dispersion and for optimum control of the propagating energy. The propagating energy is confined mainly to the guiding layer. The new technology has been used to couple a GaAs Gunn oscillator directly to a GaAs Microslab network to produce 0.25 mW at 141 GHz.
MC ray-tracing optimization of lobster-eye focusing devices with RESTRAX
NASA Astrophysics Data System (ADS)
Šaroun, Jan; Kulda, Jiří
2006-11-01
The enhanced functionalities of the latest version of the RESTRAX software, providing a high-speed Monte Carlo (MC) ray-tracing code to represent a virtual three-axis neutron spectrometer, include representation of parabolic and elliptic guide profiles and facilities for numerical optimization of parameter values, characterizing the instrument components. As examples, we present simulations of a doubly focusing monochromator in combination with cold neutron guides and lobster-eye supermirror devices, concentrating a monochromatic beam to small sample volumes. A Levenberg-Marquardt minimization algorithm is used to optimize simultaneously several parameters of the monochromator and lobster-eye guides. We compare the performance of optimized configurations in terms of monochromatic neutron flux and energy spread and demonstrate the effect of lobster-eye optics on beam transformations in real and momentum subspaces.
Software-Based Scoring and Sound Design: An Introductory Guide for Music Technology Instruction
ERIC Educational Resources Information Center
Walzer, Daniel A.
2016-01-01
This article explores the creative function of virtual instruments, sequencers, loops, and software-based synthesizers to introduce basic scoring and sound design concepts for visual media in an introductory music technology course. Using digital audio workstations with user-focused and configurable options, novice composers can hone a broad range…
An Instructional Paradigm for the Teaching of Computer-Mediated Communication
ERIC Educational Resources Information Center
Howard, Craig D.
2012-01-01
This article outlines an instructional paradigm that guides the design of interventions that build skills in computer-mediated communication (CMC). It is applicable to learning at multiple levels of communicative proficiency and aims to heighten awareness, the understanding of the impact of media configurations, the role of cultures and social…
An Investigation into Social Learning Activities by Practitioners in Open Educational Practices
ERIC Educational Resources Information Center
Schreurs, Bieke; Van den Beemt, Antoine; Prinsen, Fleur; Witthaus, Gabi; Conole, Gráinne; De Laat, Maarten
2014-01-01
By investigating how educational practitioners participate in activities around open educational practices (OEP), this paper aims at contributing to an understanding of open practices and how these practitioners learn to use OEP. Our research is guided by the following hypothesis: Different social configurations support a variety of social…
Guide for Oxygen Component Qualification Tests
NASA Technical Reports Server (NTRS)
Bamford, Larry J.; Rucker, Michelle A.; Dobbin, Douglas
1996-01-01
Although oxygen is a chemically stable element, it is not shock sensitive, will not decompose, and is not flammable. Oxygen use therefore carries a risk that should never be overlooked, because oxygen is a strong oxidizer that vigorously supports combustion. Safety is of primary concern in oxygen service. To promote safety in oxygen systems, the flammability of materials used in them should be analyzed. At the NASA White Sands Test Facility (WSTF), we have performed configurational tests of components specifically engineered for oxygen service. These tests follow a detailed WSTF oxygen hazards analysis. The stated objective of the tests was to provide performance test data for customer use as part of a qualification plan for a particular component in a particular configuration, and under worst-case conditions. In this document - the 'Guide for Oxygen Component Qualification Tests' - we outline recommended test systems, and cleaning, handling, and test procedures that address worst-case conditions. It should be noted that test results apply specifically to: manual valves, remotely operated valves, check valves, relief valves, filters, regulators, flexible hoses, and intensifiers. Component systems are not covered.
NASA Astrophysics Data System (ADS)
Qiao, Huimin; He, Chao; Yuan, Feifei; Wang, Zujian; Li, Xiuzhi; Liu, Ying; Guo, Haiyan; Long, Xifa
2018-04-01
The acceptor doped relaxor-based ferroelectric materials are useful for high power applications such as probes in ultrasound-guided high intensity focused ultrasound therapy. In addition, a high Curie temperature is desired because of wider temperature usage and improved temperature stability. Previous investigations have focused on Pb(Mg1/3Nb2/3)O3-PbTiO3 and Pb(Zn1/3Nb2/3)O3-PbTiO3 systems, which have a ultrahigh piezoelectric coefficient and dielectric constant, but a relatively low Curie temperature. It is desirable to study the binary relaxor-based system with a high Curie temperature. Therefore, Pb(In1/2Nb1/2)O3-PbTiO3 (PINT) single crystals were chosen to study the Mn-doped influence on their electrical properties and domain configuration. The evolution of ferroelectric hysteresis loops for doped and virgin samples exhibit the pinning effect in Mn-doped PINT crystals. The relaxation behaviors of doped and virgin samples are studied by fit of the modified Curie-Weiss law and Volgel-Fucher relation. In addition, a short-range correlation length was fitted to study the behavior of polar nanoregions based on the domain configuration obtained by piezoresponse force microscopy. Complex domain structures and smaller short-range correlation lengths (100-150 nm for Mn-doped PINT and >400 nm for pure PINT) were obtained in the Mn-doped PINT single crystals.
Resonant optical transducers for in-situ gas detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Tiziana C.; Cole, Garrett; Goddard, Lynford
Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.
Maertens, Gaëtan; Canesi, Sylvain
2016-05-17
The first enantioselective synthesis of (-)-strychnopivotine from a known and inexpensive phenol has been achieved in 15 steps. The strategy is based on a new diastereoselective aza-Michael-enol-ether cascade desymmetrization of a dienone, guided by a removable lactic acid-derived chiral auxiliary. Synthesis involves a phenol dearomatization, a conjugated silicon addition, a stereoselective double reductive amination, and two Heck-type carbopalladations as key steps. The absolute configuration of the natural compound, which, to date, has been uncertain, was confirmed by using circular dichroism (CD) spectroscopy and X-ray analyses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The aerodynamics of some guided projectiles
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1984-01-01
Some characteristic projectile shapes are considered with various added components intended to provide lift, stability, and control. The intent of the additions is to provide some means for altering the normal ballistic flight path of a projectile for various purposes such as: achieving greater accuracy at the impact point, selecting alternate impact points, extending range, improved evasion, and so on. The configurations presented illustrate the effects of a flare, wings, and tails for providing stability and lift, and the effects of aft-tails, a close-coupled flap, and all-moving forward wings for control. The relative merits of the various configurations, all of which provided for flight path alterations are discussed.
The aerodynamics of some guided projectiles
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1984-01-01
Some characteristic projectile shapes are considered with various added components intended to provide lift, stability, and control. The intent of the additions is to provide some means for altering the normal ballistic flight path of a projectile for various purposes such as: achieving greater accuracy at the impact point, selecting alternate impact points, extending range, improved evasion, and so on. The configurations presented illustrate the effects of a flare, wings, and tails for providing stability and lift, and the effects of aft-tails, a close-coupled flap, and all-moving forward wings for control. The relative merits of the various configurations, all of which provided for flight path alterations, are discussed.
Resonant optical transducers for in-situ gas detection
Bond, Tiziana C; Cole, Garrett; Goddard, Lynford
2016-06-28
Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.
Kobayashi, M; Okamoto, T; Hayashi, K; Yokoyama, N; Sasaki, T; Kitagawa, I
1994-02-01
Cytotoxic sesterterpenes, manoalide 25-acetals (1a, 1b), seco-manoalide (2), (E)-neomanoalide (3), (Z)-neomanoalide (4), and heteronemin (6), were isolated from the marine sponge Hyrtios erecta (collected at Amami Island, Kagoshima Prefecture, Japan) by bioassay-guided separation and the absolute configurations of these manoalide family members have been determined. Manoalide 25-acetals (1a, 1b) were shown to exhibit in vivo antitumor activity and to inhibit the DNA-relaxing activity of mouse DNA topoisomerase I and the DNA-unknotting activity of calf thymus DNA topoisomerase II.
Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy
NASA Astrophysics Data System (ADS)
Bian, Junguo; Sharp, Gregory C.; Park, Yang-Kyun; Ouyang, Jinsong; Bortfeld, Thomas; El Fakhri, Georges
2016-05-01
It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications.
Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy.
Bian, Junguo; Sharp, Gregory C; Park, Yang-Kyun; Ouyang, Jinsong; Bortfeld, Thomas; El Fakhri, Georges
2016-05-07
It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications.
Site-Specific Pre-Swelling-Directed Morphing Structures of Patterned Hydrogels.
Wang, Zhi Jian; Hong, Wei; Wu, Zi Liang; Zheng, Qiang
2017-12-11
Morphing materials have promising applications in various fields, yet how to program the self-shaping process for specific configurations remains a challenge. Herein we show a versatile approach to control the buckling of individual domains and thus the outcome configurations of planar-patterned hydrogels. By photolithography, high-swelling disc gels were positioned in a non-swelling gel sheet; the swelling mismatch resulted in out-of-plain buckling of the disc gels. To locally control the buckling direction, masks with holes were used to guide site-specific swelling of the high-swelling gel under the holes, which built a transient through-thickness gradient and thus directed the buckling during the subsequent unmasked swelling process. Therefore, various configurations of an identical patterned hydrogel can be programmed by the pre-swelling step with different masks to encode the buckling directions of separate domains. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ball Screw Actuator Including a Stop with an Integral Guide
NASA Technical Reports Server (NTRS)
Wingett, Paul T. (Inventor); Perek, John (Inventor); Geck, Kellan (Inventor)
2015-01-01
An actuator includes a housing assembly, a ball nut, a ball screw, and a ball screw stop. The ball nut is rotationally mounted in the housing assembly, is adapted to receive an input torque, and is configured, upon receipt thereof, to rotate and supply a drive force. The ball screw is mounted within the housing assembly and extends through the ball nut. The ball screw has a first end and a second end, and is coupled to receive the drive force from the ball nut. The ball screw is configured, upon receipt of the drive force, to selectively translate between a stow position and a deploy position. The ball screw stop is mounted on the ball screw to translate therewith and is configured to at selectively engage the housing assembly while the ball screw is translating, and engage the ball nut when the ball screw is in the deploy position.
Jing, Xia; Cimino, James J; Del Fiol, Guilherme
2015-11-30
The Librarian Infobutton Tailoring Environment (LITE) is a Web-based knowledge capture, management, and configuration tool with which users can build profiles used by OpenInfobutton, an open source infobutton manager, to provide electronic health record users with context-relevant links to online knowledge resources. We conducted a multipart evaluation study to explore users' attitudes and acceptance of LITE and to guide future development. The evaluation consisted of an initial online survey to all LITE users, followed by an observational study of a subset of users in which evaluators' sessions were recorded while they conducted assigned tasks. The observational study was followed by administration of a modified System Usability Scale (SUS) survey. Fourteen users responded to the survey and indicated good acceptance of LITE with feedback that was mostly positive. Six users participated in the observational study, demonstrating average task completion time of less than 6 minutes and an average SUS score of 72, which is considered good compared with other SUS scores. LITE can be used to fulfill its designated tasks quickly and successfully. Evaluators proposed suggestions for improvements in LITE functionality and user interface.
Proposed shade guide for human facial skin and lip: a pilot study.
Wee, Alvin G; Beatty, Mark W; Gozalo-Diaz, David J; Kim-Pusateri, Seungyee; Marx, David B
2013-08-01
Currently, no commercially available facial shade guide exists in the United States for the fabrication of facial prostheses. The purpose of this study was to measure facial skin and lip color in a human population sample stratified by age, gender, and race. Clustering analysis was used to determine optimal color coordinates for a proposed facial shade guide. Participants (n=119) were recruited from 4 racial/ethnic groups, 5 age groups, and both genders. Reflectance measurements of participants' noses and lower lips were made by using a spectroradiometer and xenon arc lamp with a 45/0 optical configuration. Repeated measures ANOVA (α=.05), to identify skin and lip color differences, resulting from race, age, gender, and location, and a hierarchical clustering analysis, to identify clusters of skin colors) were used. Significant contributors to L*a*b* facial color were race and facial location (P<.01). b* affected all factors (P<.05). Age affected only b* (P<.001), while gender affected only L* (P<.05) and b* (P<.05). Analyses identified 5 clusters of skin color. The study showed that skin color caused by age and gender primarily occurred within the yellow-blue axis. A significant lightness difference between gender groups was also found. Clustering analysis identified 5 distinct skin shade tabs. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Using the NASA GRC Sectored-One-Dimensional Combustor Simulation
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Mehta, Vishal R.
2014-01-01
The document is a user manual for the NASA GRC Sectored-One-Dimensional (S-1-D) Combustor Simulation. It consists of three sections. The first is a very brief outline of the mathematical and numerical background of the code along with a description of the non-dimensional variables on which it operates. The second section describes how to run the code and includes an explanation of the input file. The input file contains the parameters necessary to establish an operating point as well as the associated boundary conditions (i.e. how it is fed and terminated) of a geometrically configured combustor. It also describes the code output. The third section describes the configuration process and utilizes a specific example combustor to do so. Configuration consists of geometrically describing the combustor (section lengths, axial locations, and cross sectional areas) and locating the fuel injection point and flame region. Configuration requires modifying the source code and recompiling. As such, an executable utility is included with the code which will guide the requisite modifications and insure that they are done correctly.
Scientific Digital Libraries, Interoperability, and Ontologies
NASA Technical Reports Server (NTRS)
Hughes, J. Steven; Crichton, Daniel J.; Mattmann, Chris A.
2009-01-01
Scientific digital libraries serve complex and evolving research communities. Justifications for the development of scientific digital libraries include the desire to preserve science data and the promises of information interconnectedness, correlative science, and system interoperability. Shared ontologies are fundamental to fulfilling these promises. We present a tool framework, some informal principles, and several case studies where shared ontologies are used to guide the implementation of scientific digital libraries. The tool framework, based on an ontology modeling tool, was configured to develop, manage, and keep shared ontologies relevant within changing domains and to promote the interoperability, interconnectedness, and correlation desired by scientists.
Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm
Terzić, Balša; Hofler, Alicia S.; Reeves, Cody J.; ...
2014-10-15
In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab's Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.
Optimizing Spacecraft Placement for Liaison Constellations
NASA Technical Reports Server (NTRS)
Chow, C. Channing; Villac, Benjamin F.; Lo, Martin W.
2011-01-01
A navigation and communications network is proposed to support an anticipated need for infrastructure in the Earth-Moon system. Periodic orbits will host the constellations while a novel, autonomous navigation strategy will guide the spacecraft along their path strictly based on satellite-to-satellite telemetry. In particular, this paper investigates the second stage of a larger constellation optimization scheme for multi-spacecraft systems. That is, following an initial orbit down-selection process, this analysis provides insights into the ancillary problem of spacecraft placement. Two case studies are presented that consider configurations of up to four spacecraft for a halo orbit and a cycler trajectory.
Guidelines for Computing Longitudinal Dynamic Stability Characteristics of a Subsonic Transport
NASA Technical Reports Server (NTRS)
Thompson, Joseph R.; Frank, Neal T.; Murphy, Patrick C.
2010-01-01
A systematic study is presented to guide the selection of a numerical solution strategy for URANS computation of a subsonic transport configuration undergoing simulated forced oscillation about its pitch axis. Forced oscillation is central to the prevalent wind tunnel methodology for quantifying aircraft dynamic stability derivatives from force and moment coefficients, which is the ultimate goal for the computational simulations. Extensive computations are performed that lead in key insights of the critical numerical parameters affecting solution convergence. A preliminary linear harmonic analysis is included to demonstrate the potential of extracting dynamic stability derivatives from computational solutions.
NASA Astrophysics Data System (ADS)
Villarroel, J.; Carrascosa, M.; García-Cabañes, A.; Caballero-Calero, O.; Crespillo, M.; Olivares, J.
2009-06-01
The photorefractive behaviour of a novel type of optical waveguides fabricated in LiNbO3 by swift heavy ion irradiation is investigated. First, the electro-optic coefficient r 33 of these guides that is crucial in the photorefractive effect is measured. Second, two complementary aspects of the photorefractive response are studied: (i) recording and light-induced and dark erasure of holographic gratings; (ii) optical beam degradation in single-beam configuration. The main photorefractive parameters, recording and erasing time constants, maximum refractive-index change and optical damage thresholds are determined.
NASA Astrophysics Data System (ADS)
Paulides, M. M.; Mestrom, R. M. C.; Salim, G.; Adela, B. B.; Numan, W. C. M.; Drizdal, T.; Yeo, D. T. B.; Smolders, A. B.
2017-03-01
Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The only clinically proven method for the 3D non-invasive temperature monitoring required is by magnetic resonance (MR) temperature imaging, but the currently available set of MR compatible hyperthermia applicators lack the degree of heat control required. In this work, we present the design and validation of a high-frequency (433 MHz ISM band) printed circuit board antenna with a very low MR-footprint. This design is ideally suited for use in a range of hyperthermia applicator configurations. Experiments emulating the clinical situation show excellent matching properties of the antenna over a 7.2% bandwidth (S 11 < -15 dB). Its strongly directional radiation properties minimize inter-element coupling for typical array configurations (S 21 < -23 dB). MR imaging distortion by the antenna was found negligible and MR temperature imaging in a homogeneous muscle phantom was highly correlated with gold-standard probe measurements (root mean square error: RMSE = 0.51 °C and R 2 = 0.99). This work paves the way for tailored MR imaging guided hyperthermia devices ranging from single antenna or incoherent antenna-arrays, to real-time adaptive hyperthermia with phased-arrays.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... comments received on or before this date. Although a time limit is given, comments and suggestions in... guides are encouraged at any time. ADDRESSES: You may access information and comment submissions related... Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; telephone: 301-251-7494 or email...
Using a PC and External Media to Quantitatively Investigate Electromagnetic Induction
ERIC Educational Resources Information Center
Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.
2011-01-01
In this article we describe an experimental learning path about electromagnetic induction which uses an Atwood machine where one of the two hanging bodies is a cylindrical magnet falling through a plexiglass guide, surrounded either by a coil or by a copper pipe. The first configuration (magnet falling across a coil) allows students to…
NASA Astrophysics Data System (ADS)
Brischetto, Salvatore; Ciano, Alessandro; Ferro, Carlo Giovanni
2016-07-01
The present paper shows an innovative multirotor Unmanned Aerial Vehicle (UAV) which is able to easily and quickly change its configuration. In order to satisfy this feature, the principal structure is made of an universal plate, combined with a circular ring, to create a rail guide able to host the arms, in a variable number from 3 to 8, and the legs. The arms are adjustable and contain all the avionic and motor drivers to connect the main structure with each electric motor. The unique arm design, defined as all-in-one, allows classical single rotor configurations, double rotor configurations and amphibious configurations including inflatable elements positioned at the bottom of the arms. The proposed multi-rotor system is inexpensive because of the few universal pieces needed to compose the platform which allows the creation of a kit. This modular kit allows to have a modular drone with different configurations. Such configurations are distinguished among them for the number of arms, number of legs, number of rotors and motors, and landing capability. Another innovation feature is the introduction of the 3D printing technology to produce all the structural elements. In this manner, all the pieces are designed to be produced via the Fused Deposition Modelling (FDM) technology using desktop 3D printers. Therefore, an universal, dynamic and economic multi-rotor UAV has been developed.
Cai, Ailong; Wang, Linyuan; Zhang, Hanming; Yan, Bin; Li, Lei; Xi, Xiaoqi; Li, Jianxin
2014-01-01
Linear scan computed tomography (CT) is a promising imaging configuration with high scanning efficiency while the data set is under-sampled and angularly limited for which high quality image reconstruction is challenging. In this work, an edge guided total variation minimization reconstruction (EGTVM) algorithm is developed in dealing with this problem. The proposed method is modeled on the combination of total variation (TV) regularization and iterative edge detection strategy. In the proposed method, the edge weights of intermediate reconstructions are incorporated into the TV objective function. The optimization is efficiently solved by applying alternating direction method of multipliers. A prudential and conservative edge detection strategy proposed in this paper can obtain the true edges while restricting the errors within an acceptable degree. Based on the comparison on both simulation studies and real CT data set reconstructions, EGTVM provides comparable or even better quality compared to the non-edge guided reconstruction and adaptive steepest descent-projection onto convex sets method. With the utilization of weighted alternating direction TV minimization and edge detection, EGTVM achieves fast and robust convergence and reconstructs high quality image when applied in linear scan CT with under-sampled data set.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The pylon loading at the drop test vehicle and wing interface attack points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the forward hook guide and the fore and aft stiffness of each drag pin to be equal. The net effect of this assumption is that the forward hook guide reacts approximately 96% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.
Development of an Active Flow Control Technique for an Airplane High-Lift Configuration
NASA Technical Reports Server (NTRS)
Shmilovich, Arvin; Yadlin, Yoram; Dickey, Eric D.; Hartwich, Peter M.; Khodadoust, Abdi
2017-01-01
This study focuses on Active Flow Control methods used in conjunction with airplane high-lift systems. The project is motivated by the simplified high-lift system, which offers enhanced airplane performance compared to conventional high-lift systems. Computational simulations are used to guide the implementation of preferred flow control methods, which require a fluidic supply. It is first demonstrated that flow control applied to a high-lift configuration that consists of simple hinge flaps is capable of attaining the performance of the conventional high-lift counterpart. A set of flow control techniques has been subsequently considered to identify promising candidates, where the central requirement is that the mass flow for actuation has to be within available resources onboard. The flow control methods are based on constant blowing, fluidic oscillators, and traverse actuation. The simulations indicate that the traverse actuation offers a substantial reduction in required mass flow, and it is especially effective when the frequency of actuation is consistent with the characteristic time scale of the flow.
Nanoscale Plasmonic V-Groove Waveguides for the Interrogation of Single Fluorescent Bacterial Cells.
Lotan, Oren; Bar-David, Jonathan; Smith, Cameron L C; Yagur-Kroll, Sharon; Belkin, Shimshon; Kristensen, Anders; Levy, Uriel
2017-09-13
We experimentally demonstrate the interrogation of an individual Escherichia coli cell using a nanoscale plasmonic V-groove waveguide. Several different configurations were studied. The first involved the excitation of the cell in a liquid environment because it flows on top of the waveguide nanocoupler, while the obtained fluorescence is coupled into the waveguide and collected at the other nanocoupler. The other two configurations involved the positioning of the bacterium within the nanoscale waveguide and its excitation in a dry environment either directly from the top or through waveguide modes. This is achieved by taking advantage of the waveguide properties not only for light guiding but also as a mechanical tool for trapping the bacteria within the V-grooves. The obtained results are supported by a set of numerical simulations, shedding more light on the mechanism of excitation. This demonstration paves the way for the construction of an efficient bioplasmonic chip for diverse cell-based sensing applications.
Study for prediction of rotor/wake/fuselage interference. Part 2: Program users guide
NASA Technical Reports Server (NTRS)
Clark, D. R.; Maskew, B.
1985-01-01
A method was developed which permits the fully coupled calculation of fuselage and rotor airloads for typical helicopter configurations in forward flight. To do this, an iterative solution is carried out based on a conventional panel representation of the fuselage and a blade element representation of the rotor where fuselage and rotor singularity strengths are determined simultaneously at each step and the rotor wake is allowed to relax (deform) in response to changes in rotor wake loading and fuselage presence. On completion of the iteration, rotor loading and inflow, fuselage singularity strength (and, hence, pressure and velocity distributions) and rotor wake are all consistent. The results of a fully coupled calculation of the flow around representative helicopter configurations are presented. The effect of fuselage components on the rotor flow field and the overall wake structure is discussed as well as the aerodynamic interference between the different parts of the aircraft. Details of the computer program are given.
Ng, Wai-Yin; Chau, Chi-Kwan
2014-01-15
This study evaluated the effectiveness of different configurations for two building design elements, namely building permeability and setback, proposed for mitigating air pollutant exposure problems in isolated deep canyons by using an indirect exposure approach. The indirect approach predicted the exposures of three different population subgroups (i.e. pedestrians, shop vendors and residents) by multiplying the pollutant concentrations with the duration of exposure within a specific micro-environment. In this study, the pollutant concentrations for different configurations were predicted using a computational fluid dynamics model. The model was constructed based on the Reynolds-Averaged Navier-Stokes (RANS) equations with the standard k-ε turbulence model. Fifty-one canyon configurations with aspect ratios of 2, 4, 6 and different building permeability values (ratio of building spacing to the building façade length) or different types of building setback (recess of a high building from the road) were examined. The findings indicated that personal exposures of shop vendors were extremely high if they were present inside a canyon without any setback or separation between buildings and when the prevailing wind was perpendicular to the canyon axis. Building separation and building setbacks were effective in reducing personal air exposures in canyons with perpendicular wind, although their effectiveness varied with different configurations. Increasing the permeability value from 0 to 10% significantly lowered the personal exposures on the different population subgroups. Likewise, the personal exposures could also be reduced by the introduction of building setbacks despite their effects being strongly influenced by the aspect ratio of a canyon. Equivalent findings were observed if the reduction in the total development floor area (the total floor area permitted to be developed within a particular site area) was also considered. These findings were employed to formulate a hierarchy decision making model to guide the planning of deep canyons in high density urban cities. © 2013 Elsevier B.V. All rights reserved.
Huang, Meng; Barber, Sean Michael; Steele, William James; Boghani, Zain; Desai, Viren Rajendrakumar; Britz, Gavin Wayne; West, George Alexander; Trask, Todd Wilson; Holman, Paul Joseph
2018-06-01
Image-guided approaches to spinal instrumentation and interbody fusion have been widely popularized in the last decade [1-5]. Navigated pedicle screws are significantly less likely to breach [2, 3, 5, 6]. Navigation otherwise remains a point reference tool because the projection is off-axis to the surgeon's inline loupe or microscope view. The Synaptive robotic brightmatter drive videoexoscope monitor system represents a new paradigm for off-axis high-definition (HD) surgical visualization. It has many advantages over the traditional microscope and loupes, which have already been demonstrated in a cadaveric study [7]. An auxiliary, but powerful capability of this system is projection of a second, modifiable image in a split-screen configuration. We hypothesized that integration of both Medtronic and Synaptive platforms could permit the visualization of reconstructed navigation and surgical field images simultaneously. By utilizing navigated instruments, this configuration has the ability to support live image-guided surgery or real-time navigation (RTN). Medtronic O-arm/Stealth S7 navigation, MetRx, NavLock, and SureTrak spinal systems were implemented on a prone cadaveric specimen with a stream output to the Synaptive Display. Surgical visualization was provided using a Storz Image S1 platform and camera mounted to the Synaptive robotic brightmatter drive. We were able to successfully technically co-adapt both platforms. A minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) and an open pedicle subtraction osteotomy (PSO) were performed using a navigated high-speed drill under RTN. Disc Shaver and Trials under RTN were implemented on the MIS TLIF. The synergy of Synaptive HD videoexoscope robotic drive and Medtronic Stealth platforms allow for live image-guided surgery or real-time navigation (RTN). Off-axis projection also allows upright neutral cervical spine operative ergonomics for the surgeons and improved surgical team visualization and education compared to traditional means. This technique has the potential to augment existing minimally invasive and open approaches, but will require long-term outcome measurements for efficacy.
Aerodynamic Interference Due to MSL Reaction Control System
NASA Technical Reports Server (NTRS)
Dyakonov, Artem A.; Schoenenberger, Mark; Scallion, William I.; VanNorman, John W.; Novak, Luke A.; Tang, Chun Y.
2009-01-01
An investigation of effectiveness of the reaction control system (RCS) of Mars Science Laboratory (MSL) entry capsule during atmospheric flight has been conducted. The reason for the investigation is that MSL is designed to fly a lifting actively guided entry with hypersonic bank maneuvers, therefore an understanding of RCS effectiveness is required. In the course of the study several jet configurations were evaluated using Langley Aerothermal Upwind Relaxation Algorithm (LAURA) code, Data Parallel Line Relaxation (DPLR) code, Fully Unstructured 3D (FUN3D) code and an Overset Grid Flowsolver (OVERFLOW) code. Computations indicated that some of the proposed configurations might induce aero-RCS interactions, sufficient to impede and even overwhelm the intended control torques. It was found that the maximum potential for aero-RCS interference exists around peak dynamic pressure along the trajectory. Present analysis largely relies on computational methods. Ground testing, flight data and computational analyses are required to fully understand the problem. At the time of this writing some experimental work spanning range of Mach number 2.5 through 4.5 has been completed and used to establish preliminary levels of confidence for computations. As a result of the present work a final RCS configuration has been designed such as to minimize aero-interference effects and it is a design baseline for MSL entry capsule.
Lebarbé, Matthieu; Baudrit, Pascal; Potier, Pascal; Petit, Philippe; Trosseille, Xavier; Compigne, Sabine; Masuda, Mitsutoshi; Fujii, Takumi; Douard, Richard
2016-11-01
The aim of this study was to investigate the sacroiliac joint injury mechanism. Two test configurations were selected from full scale car crashes conducted with the WorldSID 50 th dummy resulting in high sacroiliac joint loads and low pubic symphysis force, i.e. severe conditions for the sacroiliac joint. The two test conditions were reproduced in laboratory using a 150-155 kg guided probe propelled respectively at 8 m/s and 7.5 m/s and with different shapes and orientations for the plate impacting the pelvis. Nine Post Mortem Human Subject (PMHS) were tested in each of the two configurations (eighteen PMHS in total). In order to get information on the time of fracture, eleven strain gauges were glued on the pelvic bone of each PMHS. Results - In the first configuration, five PMHS out of nine sustained AIS2+ pelvic injuries. All five presented sacroiliac joint injuries associated with pubic area injuries. In the second configuration, four specimens out of nine sustained AIS2+ pelvic injuries. Two of them presented sacroiliac joint fractures associated with pubic area injuries. The other two presented injuries at the pubic area and acetabulum only. The strain gauges signals suggested that the pubic fractures occurred before the sacroiliac joint fractures in the great majority of the cases (five cases out of seven). Conclusions - Even in the oblique impact conditions of the present study, the pubic symphysis area was observed to be the weakest zone of the pelvis and its failure the predominant cause of sacroiliac joint injuries. It was hypothesized that the failure of the pubic rami allowed the hemi-pelvis to rotate inward, and that this closing-book motion induced the failure of the sacroiliac joint.
Wei, Jiao; Herrler, Tanja; Han, Dong; Liu, Kai; Huang, Rulin; Guba, Markus; Dai, Chuanchang; Li, Qingfeng
2016-11-28
Joint defects are complex and difficult to reconstruct. By exploiting the body's own regenerative capacity, we aimed to individually generate anatomically precise neo-tissue constructs for autologous joint reconstruction without using any exogenous additives. In a goat model, CT scans of the mandibular condyle including articular surface and a large portion of the ascending ramus were processed using computer-aided design and manufacturing. A corresponding hydroxylapatite negative mold was printed in 3D and temporarily embedded into the transition zone of costal periosteum and perichondrium. A demineralized bone matrix scaffold implanted on the contralateral side served as control. Neo-tissue constructs obtained by guided self-generation exhibited accurate configuration, robust vascularization, biomechanical stability, and function. After autologous replacement surgery, the constructs showed stable results with similar anatomical, histological, and functional findings compared to native controls. Further studies are required to assess long-term outcome and possible extensions to other further applications. The absence of exogenous cells, growth factors, and scaffolds may facilitate clinical translation of this approach.
Wei, Jiao; Herrler, Tanja; Han, Dong; Liu, Kai; Huang, Rulin; Guba, Markus; Dai, Chuanchang; Li, Qingfeng
2016-01-01
Joint defects are complex and difficult to reconstruct. By exploiting the body’s own regenerative capacity, we aimed to individually generate anatomically precise neo-tissue constructs for autologous joint reconstruction without using any exogenous additives. In a goat model, CT scans of the mandibular condyle including articular surface and a large portion of the ascending ramus were processed using computer-aided design and manufacturing. A corresponding hydroxylapatite negative mold was printed in 3D and temporarily embedded into the transition zone of costal periosteum and perichondrium. A demineralized bone matrix scaffold implanted on the contralateral side served as control. Neo-tissue constructs obtained by guided self-generation exhibited accurate configuration, robust vascularization, biomechanical stability, and function. After autologous replacement surgery, the constructs showed stable results with similar anatomical, histological, and functional findings compared to native controls. Further studies are required to assess long-term outcome and possible extensions to other further applications. The absence of exogenous cells, growth factors, and scaffolds may facilitate clinical translation of this approach. PMID:27892493
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougherty, Thomas J
A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.
Navy Program Manager’s Guide, 1985 Edition
1985-01-01
1-7 Relationship of Development Cost in System Life -Cycle Cost (LCC) ......................... 1-7 Realistic Costing and Budgeting...Review (PROR)..... 4-53 x MI *) First-Article Configuration Inspection (FACI) ...... 4-54 Cost Management- Life -Cycle Costing (LCC) ..................... 4...innovation and minimize costs. 4. Consideration of life -cycle cost (LCC) such that affordability is put on an equal basis with system performance, schedule
Image-guided laser projection for port placement in minimally invasive surgery.
Marmurek, Jonathan; Wedlake, Chris; Pardasani, Utsav; Eagleson, Roy; Peters, Terry
2006-01-01
We present an application of an augmented reality laser projection system in which procedure-specific optimal incision sites, computed from pre-operative image acquisition, are superimposed on a patient to guide port placement in minimally invasive surgery. Tests were conducted to evaluate the fidelity of computed and measured port configurations, and to validate the accuracy with which a surgical tool-tip can be placed at an identified virtual target. A high resolution volumetric image of a thorax phantom was acquired using helical computed tomography imaging. Oriented within the thorax, a phantom organ with marked targets was visualized in a virtual environment. A graphical interface enabled marking the locations of target anatomy, and calculation of a grid of potential port locations along the intercostal rib lines. Optimal configurations of port positions and tool orientations were determined by an objective measure reflecting image-based indices of surgical dexterity, hand-eye alignment, and collision detection. Intra-operative registration of the computed virtual model and the phantom anatomy was performed using an optical tracking system. Initial trials demonstrated that computed and projected port placement provided direct access to target anatomy with an accuracy of 2 mm.
Sillay, Karl A; Rusy, Deborah; Buyan-Dent, Laura; Ninman, Nancy L; Vigen, Karl K
2014-12-01
We report results of the initial experience with magnetic resonance image (MRI)-guided implantation of subthalamic nucleus (STN) deep brain stimulating (DBS) electrodes at the University of Wisconsin after having employed frame-based stereotaxy with previously available MR imaging techniques and microelectrode recording for STN DBS surgeries. Ten patients underwent MRI-guided DBS implantation of 20 electrodes between April 2011 and March 2013. The procedure was performed in a purpose-built intraoperative MRI suite configured specifically to allow MRI-guided DBS, using a wide-bore (70 cm) MRI system. Trajectory guidance was accomplished with commercially available system consisting of an MR-visible skull-mounted aiming device and a software guidance system processing intraoperatively acquired iterative MRI scans. A total of 10 patients (5 male, 5 female)-representative of the Parkinson Disease (PD) population-were operated on with standard technique and underwent 20 electrode placements under MRI-guided bilateral STN-targeted DBS placement. All patients completed the procedure with electrodes successfully placed in the STN. Procedure time improved with experience. Our initial experience confirms the safety of MRI-guided DBS, setting the stage for future investigations combining physiology and MRI guidance. Further follow-up is required to compare the efficacy of the MRI-guided surgery cohort to that of traditional frame-based stereotaxy. Copyright © 2014 Elsevier B.V. All rights reserved.
Design, durability and low cost processing technology for composite fan exit guide vanes
NASA Technical Reports Server (NTRS)
Blecherman, S. S.
1979-01-01
A lightweight composite fan exit guide vane for high bypass ratio gas turbine engine application was investigated. Eight candidate material/design combinations were evaluated by NASTRAN finite element analyses. A total of four combinations were selected for further analytical evaluation, part fabrication by two ventors, and fatigue test in dry and wet condition. A core and shell vane design was chosen in which the unidirectional graphite core fiber was the same for all candidates. The shell material, fiber orientation, and ply configuration were varied. Material tests were performed on raw material and composite specimens to establish specification requirements. Pre-test and post-test microstructural examination and nondestructive analyses were conducted to determine the effect of material variations on fatigue durability and failure mode. Relevant data were acquired with respect to design analysis, materials properties, inspection standards, improved durability, weight benefits, and part price of the composite fan exit guide vane.
Objects and mappings: incompatible principles of display design - a critique of Marino and Mahan.
Bennett, Kevin B
2005-01-01
Representation aiding (and similar approaches that share the general orientation) has a great deal of utility, predictive ability, and explanatory power. Marino and Mahan (2005) discuss principles that are critical to the RA approach (configurality, emergent features, and mappings) in a reasonable fashion. However, the application of these principles is far from reasonable. The authors explicitly realize the potential for interactions between nutrients: "The nutritional quality of a food product is a multidimensional concept, and higher order interactions between nutrients may exist" (p. 126). However, they made no effort to discover the nature of these interactions: "No attempt was made to identify contingent interactions between nutrients" (p. 126). Despite not knowing the nature of the interactions between nutrients, they purposely chose a highly configural display that produced numerous emergent features dependent upon these interactions: "A radial spoke display was selected because of the strong configural properties of such display formats (Bennett & Flach, 1992)" (p. 124). Finally, the authors show apparent disdain for the specific mappings among domain, agent, and display that are fundamental to the RA approach: "[O]ther configural display formats could have been used" (p. 124). It is impossible to reconcile these statements and the RA approach to display design. However, these statements make perfect sense if a perceptual object is a guiding principle in one's approach to display design. Marino and Mahan (2005) draw heavily upon the principle of a perceptual object in their design justifications, experimental predictions, and interpretations of results. As we have indicated here and elsewhere (Bennett & Flach, 1992), we believe that these two sets of organizing principles for display design (i.e., objects and mappings) are incompatible. Display design will never be an exact science; there will always be elements of art and creativity. However, the guiding principles have moved well beyond the simple strategy of throwing variables into a geometric object format and relying upon the human agent's powerful perceptual systems to carry the design.
Jackson, Alexis; Jani, Saumya; Davies-Sala, Carol; Soler-Bistué, Alfonso J. C.; Zorreguieta, Angeles; Tolmasky, Marcelo E.
2016-01-01
External guide sequences (EGSs) are short antisense oligoribonucleotides that elicit RNase P-mediated cleavage of a target mRNA, which results in inhibition of gene expression. EGS technology is used to inhibit expression of a wide variety of genes, a strategy that may lead to development of novel treatments of numerous diseases, including multidrug-resistant bacterial and viral infections. Successful development of EGS technology depends on finding nucleotide analogs that resist degradation by nucleases present in biological fluids and the environment but still elicit RNase P-mediated degradation when forming a duplex with a target mRNA. Previous results suggested that locked nucleic acids (LNA)/DNA chimeric oligomers have these properties. LNA are now considered the first generation of compounds collectively known as bridged nucleic acids (BNAs) – modified ribonucleotides that contain a bridge at the 2ʹ,4ʹ-position of the ribose. LNA and the second-generation BNA, known as BNANC, differ in the chemical nature of the bridge. Chimeric oligomers containing LNA or BNANC and deoxynucleotide monomers in different configurations are nuclease resistant and could be excellent EGS compounds. However, not all configurations may be equally active as EGSs. RNase P cleavage assays comparing LNA/DNA and BNANC/DNA chimeric oligonucleotides that share identical nucleotide sequence but with different configurations were carried out using as target the amikacin resistance aac(6ʹ)-Ib mRNA. LNA/DNA gapmers with 5 and 3/4 LNA residues at the 5ʹ- and 3ʹ-ends, respectively, were the most efficient EGSs while all BNANC/DNA gapmers showed very poor activity. When the most efficient LNA/DNA gapmer was covalently bound to a cell-penetrating peptide, the hybrid compound conserved the EGS activity as determined by RNase P cleavage assays and reduced the levels of resistance to amikacin when added to Acinetobacter baumannii cells in culture, an indication of cellular uptake and biological activity. PMID:27857983
New classification methods on singularity of mechanism
NASA Astrophysics Data System (ADS)
Luo, Jianguo; Han, Jianyou
2010-07-01
Based on the analysis of base and methods of singularity of mechanism, four methods obtained according to the factors of moving states of mechanism and cause of singularity and property of linear complex of singularity and methods in studying singularity, these bases and methods can't reflect the direct property and systematic property and controllable property of the structure of mechanism in macro, thus can't play an excellent role in guiding to evade the configuration before the appearance of singularity. In view of the shortcomings of forementioned four bases and methods, six new methods combined with the structure and exterior phenomena and motion control of mechanism directly and closely, classfication carried out based on the factors of moving base and joint component and executor and branch and acutating source and input parameters, these factors display the systemic property in macro, excellent guiding performance can be expected in singularity evasion and machine design and machine control based on these new bases and methods.
Aguiar, Rodrigo O; Viegas, Flavio C; Fernandez, Rodrigo Y; Trudell, Debra; Haghighi, Parviz; Resnick, Donald
2007-04-01
The purpose of this study was to use MRI and anatomic correlation in cadavers to show the macroscopic anatomic configuration of the prepatellar bursa. MRI of the prepatellar bursa of nine cadaveric knees was performed after sonographically guided bursography. The images were compared with those seen on anatomic sectioning. Histologic analysis was obtained in two specimens. Mean dimensions of the prepatellar bursa in the craniocaudal, lateromedial, and anteroposterior planes were 39.7, 40.5, and 3.2 mm, respectively. A trilaminar aspect of the bursa was shown in seven of the nine knees (78%) and a bilaminar appearance in two of the nine knees (22%). Lateral extension of the bursa over the patella was observed in three knees (33%) and medial extension in one knee (11%). On histopathologic analysis, three potential bursal spaces were found. The prepatellar bursa is most commonly a trilaminar structure, and variation in its relation to the patella can occur.
Sittig, Dean F; Salimi, Mandana; Aiyagari, Ranjit; Banas, Colin; Clay, Brian; Gibson, Kathryn A; Goel, Ashutosh; Hines, Robert; Longhurst, Christopher A; Mishra, Vimal; Sirajuddin, Anwar M; Satterly, Tyler; Singh, Hardeep
2018-04-26
The Safety Assurance Factors for EHR Resilience (SAFER) guides were released in 2014 to help health systems conduct proactive risk assessment of electronic health record (EHR)- safety related policies, processes, procedures, and configurations. The extent to which SAFER recommendations are followed is unknown. We conducted risk assessments of 8 organizations of varying size, complexity, EHR, and EHR adoption maturity. Each organization self-assessed adherence to all 140 unique SAFER recommendations contained within 9 guides (range 10-29 recommendations per guide). In each guide, recommendations were organized into 3 broad domains: "safe health IT" (total 45 recommendations); "using health IT safely" (total 80 recommendations); and "monitoring health IT" (total 15 recommendations). The 8 sites fully implemented 25 of 140 (18%) SAFER recommendations. Mean number of "fully implemented" recommendations per guide ranged from 94% (System Interfaces-18 recommendations) to 63% (Clinical Communication-12 recommendations). Adherence was higher for "safe health IT" domain (82.1%) vs "using health IT safely" (72.5%) and "monitoring health IT" (67.3%). Despite availability of recommendations on how to improve use of EHRs, most recommendations were not fully implemented. New national policy initiatives are needed to stimulate implementation of these best practices.
Sensor Characteristics Reference Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cree, Johnathan V.; Dansu, A.; Fuhr, P.
The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: • Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. • Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. • Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systemsmore » through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information« less
Evidence for negative feature guidance in visual search is explained by spatial recoding.
Beck, Valerie M; Hollingworth, Andrew
2015-10-01
Theories of attention and visual search explain how attention is guided toward objects with known target features. But can attention be directed away from objects with a feature known to be associated only with distractors? Most studies have found that the demand to maintain the to-be-avoided feature in visual working memory biases attention toward matching objects rather than away from them. In contrast, Arita, Carlisle, and Woodman (2012) claimed that attention can be configured to selectively avoid objects that match a cued distractor color, and they reported evidence that this type of negative cue generates search benefits. However, the colors of the search array items in Arita et al. (2012) were segregated by hemifield (e.g., blue items on the left, red on the right), which allowed for a strategy of translating the feature-cue information into a simple spatial template (e.g., avoid right, or attend left). In the present study, we replicated the negative cue benefit using the Arita et al. (2012), method (albeit within a subset of participants who reliably used the color cues to guide attention). Then, we eliminated the benefit by using search arrays that could not be grouped by hemifield. Our results suggest that feature-guided avoidance is implemented only indirectly, in this case by translating feature-cue information into a spatial template. (c) 2015 APA, all rights reserved).
Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings.
Grande, M; Vincenti, M A; Stomeo, T; Bianco, G V; de Ceglia, D; Aközbek, N; Petruzzelli, V; Bruno, G; De Vittorio, M; Scalora, M; D'Orazio, A
2014-12-15
A one-dimensional dielectric grating, based on a simple geometry, is proposed and investigated to enhance light absorption in a monolayer graphene exploiting guided mode resonances. Numerical findings reveal that the optimized configuration is able to absorb up to 60% of the impinging light at normal incidence for both TE and TM polarizations resulting in a theoretical enhancement factor of about 26 with respect to the monolayer graphene absorption (≈2.3%). Experimental results confirm this behavior showing CVD graphene absorbance peaks up to about 40% over narrow bands of a few nanometers. The simple and flexible design points to a way to realize innovative, scalable and easy-to-fabricate graphene-based optical absorbers.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The pylon loading at the drop test vehicle and wing interface attach points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the foreward hook guide to be one-fourth of the fore and aft stiffness of each drag pin. The net effect of this assumption is that the forward hook guide reacts approximately 85% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.
Expedient range enhanced 3-D robot colour vision
NASA Astrophysics Data System (ADS)
Jarvis, R. A.
1983-01-01
Computer vision has been chosen, in many cases, as offering the richest form of sensory information which can be utilized for guiding robotic manipulation. The present investigation is concerned with the problem of three-dimensional (3D) visual interpretation of colored objects in support of robotic manipulation of those objects with a minimum of semantic guidance. The scene 'interpretations' are aimed at providing basic parameters to guide robotic manipulation rather than to provide humans with a detailed description of what the scene 'means'. Attention is given to overall system configuration, hue transforms, a connectivity analysis, plan/elevation segmentations, range scanners, elevation/range segmentation, higher level structure, eye in hand research, and aspects of array and video stream processing.
Balatti, Galo E; Ambroggio, Ernesto E; Fidelio, Gerardo D; Martini, M Florencia; Pickholz, Mónica
2017-10-20
In this work; we investigated the differential interaction of amphiphilic antimicrobial peptides with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid structures by means of extensive molecular dynamics simulations. By using a coarse-grained (CG) model within the MARTINI force field; we simulated the peptide-lipid system from three different initial configurations: (a) peptides in water in the presence of a pre-equilibrated lipid bilayer; (b) peptides inside the hydrophobic core of the membrane; and (c) random configurations that allow self-assembled molecular structures. This last approach allowed us to sample the structural space of the systems and consider cooperative effects. The peptides used in our simulations are aurein 1.2 and maculatin 1.1; two well-known antimicrobial peptides from the Australian tree frogs; and molecules that present different membrane-perturbing behaviors. Our results showed differential behaviors for each type of peptide seen in a different organization that could guide a molecular interpretation of the experimental data. While both peptides are capable of forming membrane aggregates; the aurein 1.2 ones have a pore-like structure and exhibit a higher level of organization than those conformed by maculatin 1.1. Furthermore; maculatin 1.1 has a strong tendency to form clusters and induce curvature at low peptide-lipid ratios. The exploration of the possible lipid-peptide structures; as the one carried out here; could be a good tool for recognizing specific configurations that should be further studied with more sophisticated methodologies.
Conventional and modified Schwarzschild objective for EUV lithography: design relations
NASA Astrophysics Data System (ADS)
Bollanti, S.; di Lazzaro, P.; Flora, F.; Mezi, L.; Murra, D.; Torre, A.
2006-12-01
The design criteria of a Schwarzschild-type optical system are reviewed in relation to its use as an imaging system in an extreme ultraviolet lithography setup. Both the conventional and the modified reductor imaging configurations are considered, and the respective performances, as far as the geometrical resolution in the image plane is concerned, are compared. In this connection, a formal relation defining the modified configuration is elaborated, refining a rather naïve definition presented in an earlier work. The dependence of the geometrical resolution on the image-space numerical aperture for a given magnification is investigated in detail for both configurations. So, the advantages of the modified configuration with respect to the conventional one are clearly evidenced. The results of a semi-analytical procedure are compared with those obtained from a numerical simulation performed by an optical design program. The Schwarzschild objective based system under implementation at the ENEA Frascati Center within the context of the Italian FIRB project for EUV lithography has been used as a model. Best-fit functions accounting for the behaviour of the system parameters vs. the numerical aperture are reported; they can be a useful guide for the design of Schwarzschild objective type optical systems.
Here Today, Gone Tomorrow – Adaptation to Change in Memory-Guided Visual Search
Zellin, Martina; Conci, Markus; von Mühlenen, Adrian; Müller, Hermann J.
2013-01-01
Visual search for a target object can be facilitated by the repeated presentation of an invariant configuration of nontargets (‘contextual cueing’). Here, we tested adaptation of learned contextual associations after a sudden, but permanent, relocation of the target. After an initial learning phase targets were relocated within their invariant contexts and repeatedly presented at new locations, before they returned to the initial locations. Contextual cueing for relocated targets was neither observed after numerous presentations nor after insertion of an overnight break. Further experiments investigated whether learning of additional, previously unseen context-target configurations is comparable to adaptation of existing contextual associations to change. In contrast to the lack of adaptation to changed target locations, contextual cueing developed for additional invariant configurations under identical training conditions. Moreover, across all experiments, presenting relocated targets or additional contexts did not interfere with contextual cueing of initially learned invariant configurations. Overall, the adaptation of contextual memory to changed target locations was severely constrained and unsuccessful in comparison to learning of an additional set of contexts, which suggests that contextual cueing facilitates search for only one repeated target location. PMID:23555038
Rapid exploration of configuration space with diffusion-map-directed molecular dynamics.
Zheng, Wenwei; Rohrdanz, Mary A; Clementi, Cecilia
2013-10-24
The gap between the time scale of interesting behavior in macromolecular systems and that which our computational resources can afford often limits molecular dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named diffusion-map-directed MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses a diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here, we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems, we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300 K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD.
Rapid Exploration of Configuration Space with Diffusion Map-directed-Molecular Dynamics
Zheng, Wenwei; Rohrdanz, Mary A.; Clementi, Cecilia
2013-01-01
The gap between the timescale of interesting behavior in macromolecular systems and that which our computational resources can afford oftentimes limits Molecular Dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named Diffusion Map-directed-MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD. PMID:23865517
APPARATUS FOR TRAPPING ENERGETIC CHARGED PARTICLES AND CONFINING THE RESULTING PLASMA
Gibson, G.; Jordan, W.C.; Lauer, E.J.
1963-04-01
The present invention relates to a plasma-confining device and a particle injector therefor, the device utilizing a generally toroidal configuration with magnetic fields specifically tailored to the associated injector. The device minimizes the effects of particle end losses and particle drift to the walls with a relatively simple configuration. More particularly, the magnetic field configuration is created by a continuous array of circular, mirror field coils, disposed side-by- side, in particularly spaced relation, to form an endless, toroidal loop. The resulting magnetic field created therein has the appearance of a bumpy'' torus, from which is derived the name Bumpy Torus.'' One of the aforementioned coils is split transverse to its axis, and injection of particles is accomplished along a plane between the halves of such modified coil. The guiding center of the particles follows a constant magnetic field in the plane for a particular distance within the torus, to move therefrom onto a precessional surface which does not intersect the point of injection. (AEC)
Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo
2014-01-01
Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and anti-nodes of standing wave produced by the small aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number. PMID:22049360
Operating Characteristics in DIII-D ELM-Suppressed RMP H-modes with ITER Similar Shapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, T E; Fenstermacher, M E; Jakubowski, M
2008-10-13
Fast energy transients, incident on the DIII-D divertors due to Type-I edge localized modes (ELMs), are eliminated using small dc currents in a simple set of non-axisymmetric coils that produce edge resonant magnetic perturbations (RMP). In ITER similar shaped (ISS) plasmas, with electron pedestal collisionalities matched to those expected in ITER a sharp resonant window in the safety factor at the 95 percent normalized poloidal flux surface is observed for ELM suppression at q{sub 95}=3.57 with a minimum width {delta}q{sub 95} of {+-}0.05. The size of this resonant window has been increased by a factor of 4 in ISS plasmasmore » by increasing the magnitude of the current in an n=3 coil set along with the current in a separate n=1 coil set. The resonant ELM-suppression window is highly reproducible for a given plasma shape, coil configuration and coil current but can vary with other operating conditions such as {beta}{sub N}. Isolated resonant windows have also been found at other q95 values when using different RMP coil configurations. For example, when the I-coil is operated in an n=3 up-down asymmetric configuration rather than an up-down symmetric configuration a resonant window is found near q{sub 95}=7.4. A Fourier analysis of the applied vacuum magnetic field demonstrates a statistical correlation between the Chirikov island overlap parameter and ELM suppression. These results have been used as a guide for RMP coil design studies in various ITER operating scenarios.« less
Energy Landscape of All-Atom Protein-Protein Interactions Revealed by Multiscale Enhanced Sampling
Moritsugu, Kei; Terada, Tohru; Kidera, Akinori
2014-01-01
Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES) simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape. PMID:25340714
NASA Technical Reports Server (NTRS)
Schuller, F. T.
1973-01-01
This publication is the result of over 260 fractional-frequency-whirl stability tests on a variety of fixed-geometry journal bearings. It is intended principally as a guide in the selection and design of antiwhirl bearings that must operate at high speeds and low loads in low-viscosity fluids such as water or liquid metals. However, the various fixed-geometry configurations can be employed as well in applications where other lubricants, such as oil, are used and fractional-frequency whirl is a problem. The important parameters that effect stability are discussed for each bearing type, and design curves to facilitate the design of optimum-geometry bearings are included. A comparison of the stability of the different bearing configurations tested is also given.
A consideration of the use of optical fibers to remotely couple photometers to telescopes
NASA Technical Reports Server (NTRS)
Heacox, William D.
1988-01-01
The possible use of optical fibers to remotely couple photometers to telescopes is considered. Such an application offers the apparent prospect of enhancing photometric stability as a consequence of the benefits of remote operation and decreased sensitivity to image details. A properly designed fiber optic coupler will probably show no significant changes in optical transmisssion due to normal variations in the fiber configuration. It may be more difficult to eliminate configuration-dependent effects on the pupil of the transmitted beam, and thus achieve photometric stability to guiding and seeing errors. In addition, there is some evidence for significant changes in the optical throughputs of fibers over the temperature range normally encountered in astronomical observatories.
A Markov Chain Approach to Probabilistic Swarm Guidance
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Bayard, David S.
2012-01-01
This paper introduces a probabilistic guidance approach for the coordination of swarms of autonomous agents. The main idea is to drive the swarm to a prescribed density distribution in a prescribed region of the configuration space. In its simplest form, the probabilistic approach is completely decentralized and does not require communication or collabo- ration between agents. Agents make statistically independent probabilistic decisions based solely on their own state, that ultimately guides the swarm to the desired density distribution in the configuration space. In addition to being completely decentralized, the probabilistic guidance approach has a novel autonomous self-repair property: Once the desired swarm density distribution is attained, the agents automatically repair any damage to the distribution without collaborating and without any knowledge about the damage.
Swirling midframe flow for gas turbine engine having advanced transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Matthew D.; Charron, Richard C.; Rodriguez, Jose L.
A gas turbine engine can-annular combustion arrangement (10), including: an axial compressor (82) operable to rotate in a rotation direction (60); a diffuser (100, 110) configured to receive compressed air (16) from the axial compressor; a plenum (22) configured to receive the compressed air from the diffuser; a plurality of combustor cans (12) each having a combustor inlet (38) in fluid communication with the plenum, wherein each combustor can is tangentially oriented so that a respective combustor inlet is circumferentially offset from a respective combustor outlet in a direction opposite the rotation direction; and an airflow guiding arrangement (80) configuredmore » to impart circumferential motion to the compressed air in the plenum in the direction opposite the rotation direction.« less
Cross-guide Moreno directional coupler in empty substrate integrated waveguide
NASA Astrophysics Data System (ADS)
Miralles, E.; Belenguer, A.; Esteban, H.; Boria, V.
2017-05-01
Substrate integrated waveguides (SIWs) combine the advantages of rectangular waveguides (low losses) and planar circuits (low cost and low profile). Empty substrate integrated waveguide (ESIW) has been proposed as a novel configuration in SIWs recently. This technology significantly reduces the losses of conventional SIW by removing its inner dielectric. The cross-guide directional coupler is a well-known low-profile design for having a broadband waveguide coupler. In this paper a cross-guide coupler with ESIW technique is proposed. In such a manner, the device can be integrated with microwave circuits and other printed circuit board components. It is the first time that a cross-guide coupler is implemented in ESIW technology. The designed, fabricated, and measured device presents good results as a matter of insertion loss of 1 dB (including transitions), reflection under 20 dB, coupling between 19.5 and 21.5 dB, and directivity higher than 15 dB over targeted frequency range from 12.4 GHz to 18 GHz. The coupler implemented in ESIW improves the directivity when compared to similar solutions in other empty substrate integrated waveguide solutions.
Advanced Concepts Theory Annual Report 1983.
1984-05-18
variety of theoretical models, tools, and computational strategies to understand, guide, and predict the behavior of high brightness, laboratory x-ray... theoretical models must treat hard and soft x-ray emission from different electron configurations with K, L, and M shells, and they must include... theoretical effort has basis for comprehending the trends which appear in the been devoted to elucidating the effects of opacity on the numerical results
NASA Astrophysics Data System (ADS)
Ahmad, Raja; Nicholson, Jeffrey W.; Abedin, Kazi S.; Westbrook, Paul S.; Headley, Clifford; Wisk, Patrick W.; Monberg, Eric M.; Yan, Man F.; DiGiovanni, David J.
2018-02-01
Scaling the power-level of fiber sources has many practical advantages, while also enabling fundamental studies on the light-matter interaction in amorphous guiding media. In order to scale the power-level of fiber-sources without encountering nonlinear impairments, a strategy is to increase the effective-area of the guided optical-mode. Increasing the effective-area of the fundamental mode in a fiber, however, presents the challenges of increased susceptibility to mode-distortion and effective-area-reduction under the influence of bends. Therefore, higher-order-mode (HOM) fibers, which guide light in large effective-area (Aeff) Bessel-like modes, are a good candidate for scaling the power-level of robust fiber-sources. Many applications of high-power fiber-sources also demand a deterministic control on the polarization-state of light. Furthermore, a polarization-maintaining (PM)-type HOM fiber can afford the added possibility of coherent-beam combination and polarization multiplexing of high-power fiber-lasers. Previously, we reported polarization-maintaining operation in a 1.3 m length of PM-HOM fiber that was held straight. The PM-HOM fiber guided Bessel-like modes with Aeff ranging from 1200-2800 μm2. In this work, we report, for the first time, that the polarization-extinction-ratio (PER) of the HOM exceeds 10 dB in an 8 m long fiber that is coiled down to a diameter of 40 cm. This opens a path towards compact and polarization-controlled high-power fiber-systems.
NASA Astrophysics Data System (ADS)
Larson, Bjorg; Abeytunge, Sanjeewa; Glazowski, Chris; Rajadhyaksha, Milind
2012-02-01
Confocal point-scanning microscopy has been showing promise in the detection, diagnosing and mapping of skin lesions in clinical settings. The noninvasive technique allows provides optical sectioning and cellular resolution for in vivo diagnosis of melanoma and basal cell carcinoma and pre-operative and intra-operative mapping of margins. The imaging has also enabled more accurate "guided" biopsies while minimizing the otherwise large number of "blind" biopsies. Despite these translational advances, however, point-scanning technology remains relatively complex and expensive. Line-scanning technology may offer an alternative approach to accelerate translation to the clinic. Line-scanning, using fewer optical components, inexpensive linear-array detectors and custom electronics, may enable smaller, simpler and lower-cost confocal microscopes. A line is formed using a cylindrical lens and scanned through the back focal plane of the objective with a galvanometric scanner. A linear CCD is used for detection. Two pupil configurations were compared for performance in imaging human tissue. In the full-pupil configuration, illumination and detection is made through the full objective pupil. In the divided pupil approach, half the pupil is illuminated and the other half is used for detection. The divided pupil configuration loses spatial and axial resolution due to a diminished NA, but the sectioning capability and rejection of background is improved. Imaging in skin and oral mucosa illustrate the performance of the two configurations.
Optimizing luminescent solar concentrator design
Hernandez-Noyola, Hermilo; Potterveld, David H.; Holt, Roy J.; ...
2011-12-21
Luminescent Solar Concentrators (LSCs) use fluorescent materials and light guides to convert direct and diffuse sunlight into concentrated wavelength-shifted light that produces electrical power in small photovoltaic (PV) cells with the goal of significantly reducing the cost of solar energy utilization. In this paper we present an optimization analysis based on the implementation of a genetic algorithm (GA) subroutine to a numerical ray-tracing Monte Carlo model of an LSC, SIMSOLAR-P. The initial use of the GA implementation in SIMSOLAR-P is to find the optimal parameters of a hypothetical ‘‘perfect luminescent material’’ that obeys the Kennard Stepanov (K-S) thermodynamic relationship betweenmore » emission and absorption. The optimization balances the efficiency losses in the wavelength shift and PV conversion with the efficiency losses due to re-scattering of light out of the collector. The theoretical limits of efficiency are provided for one, two and three layer configurations; the results show that a single layer configuration is far from optimal and adding a second layer in the LSC with wavelength shifted material in the near infrared region significantly increases the power output, while the gain in power by adding a third layer is relatively small. Here, the results of this study provide a theoretical upper limit to the performance of an LSC and give guidance for the properties required for luminescent materials, such as quantum nanocrystals, to operate efficiently in planar LSC configurations« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedretti, Kevin
This report summarizes the work performed as part of a FY17 CSSE L2 milestone to in- vestigate the power usage behavior of ASC workloads running on the ATS-1 Trinity plat- form. Techniques were developed to instrument application code regions of interest using the Power API together with the Kokkos profiling interface and Caliper annotation library. Experiments were performed to understand the power usage behavior of mini-applications and the SNL/ATDM SPARC application running on ATS-1 Trinity Haswell and Knights Landing compute nodes. A taxonomy of power measurement approaches was identified and presented, providing a guide for application developers to follow. Controlledmore » scaling study experiments were performed on up to 2048 nodes of Trinity along with smaller scale ex- periments on Trinity testbed systems. Additionally, power and energy system monitoring information from Trinity was collected and archived for post analysis of "in-the-wild" work- loads. Results were analyzed to assess the sensitivity of the workloads to ATS-1 compute node type (Haswell vs. Knights Landing), CPU frequency control, node-level power capping control, OpenMP configuration, Knights Landing on-package memory configuration, and algorithm/solver configuration. Overall, this milestone lays groundwork for addressing the long-term goal of determining how to best use and operate future ASC platforms to achieve the greatest benefit subject to a constrained power budget.« less
Sato, M; Figueiredo, ML; Burton, JB; Johnson, M; Chen, M; Powell, R; Gambhir, SS; Carey, M; Wu, L
2009-01-01
Effective treatment for recurrent, disseminated prostate cancer is notably limited. We have developed adenoviral vectors with a prostate-specific two-step transcriptional amplification (TSTA) system that would express therapeutic genes at a robust level to target metastatic disease. The TSTA system employs the prostate-specific antigen (PSA) promoter/enhancer to drive a potent synthetic activator, which in turn activates the expression of the therapeutic gene. In this study, we explored different configurations of this bipartite system and discovered that physical separation of the two TSTA components into E1 and E3 regions of adenovirus was able to enhance androgen regulation and cell-discriminatory expression. The TSTA vectors that express imaging reporter genes were assessed by noninvasive imaging technologies in animal models. The improved selectivity of the E1E3 configured vector was reflected in silenced ectopic expression in the lung. Significantly, the enhanced specificity of the E1E3 vector enabled the detection of lung metastasis of prostate cancer. An E1E3 TSTA vector that expresses the herpes simplex virus thymidine kinase gene can effectively direct positron emission tomography (PET) imaging of the tumor. The prostate-targeted gene delivery vectors with robust and cell-specific expression capability will advance the development of safe and effective imaging guided therapy for recurrent metastatic stages of prostate cancer. PMID:18305574
Colloidal crystal grain boundary formation and motion
Edwards, Tara D.; Yang, Yuguang; Beltran-Villegas, Daniel J.; Bevan, Michael A.
2014-01-01
The ability to assemble nano- and micro- sized colloidal components into highly ordered configurations is often cited as the basis for developing advanced materials. However, the dynamics of stochastic grain boundary formation and motion have not been quantified, which limits the ability to control and anneal polycrystallinity in colloidal based materials. Here we use optical microscopy, Brownian Dynamic simulations, and a new dynamic analysis to study grain boundary motion in quasi-2D colloidal bicrystals formed within inhomogeneous AC electric fields. We introduce “low-dimensional” models using reaction coordinates for condensation and global order that capture first passage times between critical configurations at each applied voltage. The resulting models reveal that equal sized domains at a maximum misorientation angle show relaxation dominated by friction limited grain boundary diffusion; and in contrast, asymmetrically sized domains with less misorientation display much faster grain boundary migration due to significant thermodynamic driving forces. By quantifying such dynamics vs. compression (voltage), kinetic bottlenecks associated with slow grain boundary relaxation are understood, which can be used to guide the temporal assembly of defect-free single domain colloidal crystals. PMID:25139760
Wavepacket dynamics and the multi-configurational time-dependent Hartree approach
NASA Astrophysics Data System (ADS)
Manthe, Uwe
2017-06-01
Multi-configurational time-dependent Hartree (MCTDH) based approaches are efficient, accurate, and versatile methods for high-dimensional quantum dynamics simulations. Applications range from detailed investigations of polyatomic reaction processes in the gas phase to high-dimensional simulations studying the dynamics of condensed phase systems described by typical solid state physics model Hamiltonians. The present article presents an overview of the different areas of application and provides a comprehensive review of the underlying theory. The concepts and guiding ideas underlying the MCTDH approach and its multi-mode and multi-layer extensions are discussed in detail. The general structure of the equations of motion is highlighted. The representation of the Hamiltonian and the correlated discrete variable representation (CDVR), which provides an efficient multi-dimensional quadrature in MCTDH calculations, are discussed. Methods which facilitate the calculation of eigenstates, the evaluation of correlation functions, and the efficient representation of thermal ensembles in MCTDH calculations are described. Different schemes for the treatment of indistinguishable particles in MCTDH calculations and recent developments towards a unified multi-layer MCTDH theory for systems including bosons and fermions are discussed.
Assessment Environment for Complex Systems Software Guide
NASA Technical Reports Server (NTRS)
2013-01-01
This Software Guide (SG) describes the software developed to test the Assessment Environment for Complex Systems (AECS) by the West Virginia High Technology Consortium (WVHTC) Foundation's Mission Systems Group (MSG) for the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD). This software is referred to as the AECS Test Project throughout the remainder of this document. AECS provides a framework for developing, simulating, testing, and analyzing modern avionics systems within an Integrated Modular Avionics (IMA) architecture. The purpose of the AECS Test Project is twofold. First, it provides a means to test the AECS hardware and system developed by MSG. Second, it provides an example project upon which future AECS research may be based. This Software Guide fully describes building, installing, and executing the AECS Test Project as well as its architecture and design. The design of the AECS hardware is described in the AECS Hardware Guide. Instructions on how to configure, build and use the AECS are described in the User's Guide. Sample AECS software, developed by the WVHTC Foundation, is presented in the AECS Software Guide. The AECS Hardware Guide, AECS User's Guide, and AECS Software Guide are authored by MSG. The requirements set forth for AECS are presented in the Statement of Work for the Assessment Environment for Complex Systems authored by NASA Dryden Flight Research Center (DFRC). The intended audience for this document includes software engineers, hardware engineers, project managers, and quality assurance personnel from WVHTC Foundation (the suppliers of the software), NASA (the customer), and future researchers (users of the software). Readers are assumed to have general knowledge in the field of real-time, embedded computer software development.
Adaptive Mental Testing: The State of the Art
1979-11-01
typically vary in their psychometric properties --particularly in their difficulty--the test designer must decide what configuration of these item...psychometric properties best suits the test’s purpose. There are two extreme ration- ales to guide that decision. One rationale is to choose items that are...development of item response theory (Rasch, 1960; Lord, 1952, 1970, 1974a; Birnbaum, 1968) that provided the needed invariance properties for item
Remote console for virtual telerehabilitation.
Lewis, Jeffrey A; Boian, Rares F; Burdea, Grigore; Deutsch, Judith E
2005-01-01
The Remote Console (ReCon) telerehabilitation system provides a platform for therapists to guide rehabilitation sessions from a remote location. The ReCon system integrates real-time graphics, audio/video communication, private therapist chat, post-test data graphs, extendable patient and exercise performance monitoring, exercise pre-configuration and modification under a single application. These tools give therapists the ability to conduct training, monitoring/assessment, and therapeutic intervention remotely and in real-time.
2009-02-01
extension) that contain the airframe geometry specific to a single configuration. Results from a MissileLab run will be stored in a directory...re)created and contain all APE results and associated input files. C. Background In the early stages of missile system design, it is necessary to...Copying the AeroEngine Files After installation, the subdirectories in the “AeroEngine” directory contain contact information on how to obtain valid
Method and apparatus for affecting a recirculation zone in a cross flow
Bathina, Mahesh [Andhra Pradesh, IN; Singh, Ramanand [Uttar Pradesh, IN
2012-07-17
Disclosed is a cross flow apparatus including a surface and at least one outlet located at the surface. The cross flow apparatus further includes at least one guide at the surface configured to direct an intersecting flow flowing across the surface and increase a velocity of a cross flow being expelled from the at least one outlet downstream from the at least one outlet.
An Air Force Guide to Computer Program Configuration Management
1977-08-01
Various other constraints may’also prevent full completion of the Part I specification for a complex missi-on CPCI in all of its typically massive detail...specifications for developmental CPCIs. Relations of documentation to actual computer program modules is often such as to prevent -ready identification and...names and organizational alignments of the contractor activities ;,.ay vary, but the functions should be represented. The prgram office CCB is the
Breakthroughs in Low-Profile Leaky-Wave HPM Antennas
2016-09-21
information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and... traveling , fast-wave, leaky-wave class. 1.1. Overview of Previous Activities (1st thru 11th Quarter) During the first quarter, we prepared and...theory to guide the design of high-gain configurations (again, limited to 2D, H-plane representations) for linear, forward traveling -wave, leaky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, M; Maenhout, M; Lagendijk, J J W
Purpose: This study assesses the potential of Fiber Bragg Grating (FBG)-based sensing for real-time needle (including catheter or tube) tracking during MR-guided HDR brachytherapy. Methods: The proposed FBG-based sensing tracking approach involves a MR-compatible stylet composed of three optic fibers with nine sets of embedded FBG sensors each. When the stylet is inserted inside the lumen of the needle, the FBG sensing system can measure the needle’s deflection. For localization of the needle in physical space, the position and orientation of the stylet base are mandatory. For this purpose, we propose to fix the stylet base and determine its positionmore » and orientation using a MR-based calibration as follows. First, the deflection of a needle inserted in a phantom in two different configurations is measured during simultaneous MR-imaging. Then, after segmentation of the needle shapes on the MR-images, the position and orientation of the stylet base is determined using a rigid registration of the needle shapes on both MR and FBG-based measurements. The calibration method was assessed by measuring the deflection of a needle in a prostate phantom in five different configurations using FBG-based sensing during simultaneous MR-imaging. Any two needle shapes were employed for the calibration step and the proposed FGB-tracking approach was subsequently evaluated on the other three needles configurations. The tracking accuracy was evaluated by computing the Euclidian distance between the 3D FBG vs. MR-based measurements. Results: Over all needle shapes tested, the average(standard deviation) Euclidian distance between the FBG and MR-based measurements was 0.79mm(0.37mm). The update rate and latency of the FBG-based measurements were 100ms and 300ms respectively. Conclusion: The proposed FBG-based protocol can measure the needle position with an accuracy, precision, update rate and latency eligible for accurate needle steering during MR-guided HDR brachytherapy. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are fulltime employees of Philips Medical Systems Nederland B.V.« less
A kind of fast shutter for Z pinch diagnosis device.
Wang, Liangping; Zhang, Xinjun; Sun, Tieping; Mao, Wentin
2016-09-01
A kind of fast shutter for protecting the diagnosis devices in Z pinch experiments is introduced in this paper. The shutter is composed of a pulling rod, a magnetic core, and a solenoid. Different from the traditional coils which were used at the voltage of 220 V, the solenoid we used must endure the high voltage of 5-10 kV and the deformation which maybe caused by the 5-10 T intense magnetic field. A creative configuration for the solenoid is developed including the winding guide, insulating sleeve, and stainless-steel sleeve. The experimental results show that the configuration of the solenoid is effective. The velocity of the valve is nearly 19 m/s and the time jitter of the shutdown is within 75 μs.
A kind of fast shutter for Z pinch diagnosis device
NASA Astrophysics Data System (ADS)
Wang, Liangping; Zhang, Xinjun; Sun, Tieping; Mao, Wentin
2016-09-01
A kind of fast shutter for protecting the diagnosis devices in Z pinch experiments is introduced in this paper. The shutter is composed of a pulling rod, a magnetic core, and a solenoid. Different from the traditional coils which were used at the voltage of 220 V, the solenoid we used must endure the high voltage of 5-10 kV and the deformation which maybe caused by the 5-10 T intense magnetic field. A creative configuration for the solenoid is developed including the winding guide, insulating sleeve, and stainless-steel sleeve. The experimental results show that the configuration of the solenoid is effective. The velocity of the valve is nearly 19 m/s and the time jitter of the shutdown is within 75 μs.
Lobos Peña, Karla; Díaz Mújica, Alejandro; Bustos Navarrete, Claudio; Pérez Villalobos, María Victoria
2015-01-01
Both construction and psychometric characteristics of a self-concept scale associated with observable behaviors by students and teacher, useful to guide a pedagogic intervention in the classroom are presented. A total of 1,385 primary school students, aged between 8 and 12 years, from 24 high-social vulnerability schools of the Province of Concepción, Chile, participated in the study. The scale was constructed, including a theoretical review of the construct, pilot application with students and interjudge reliability. For the study of psychometric characteristics, exploratory factorial analysis (EFA), confirmatory factorial analysis (CFA), factorial invariance and recurrent validity were performed. A self-report instrument with 22 items shows a three-factor structure, with an explained variance of 44.71% and a high level of fi t for the model. CFA in two different samples showed fi t indicators for configural invariance. It also has concurrent validity. The scale has good psychometric properties to assess the academic self-concept in the dimensions of Capacity, Work Procedure, and Participation in class. This can be useful to guide an educational intervention in the context of the teacher-student interaction in the classroom, in primary schools with high socio-economic vulnerability.
AES Water Architecture Study Interim Results
NASA Technical Reports Server (NTRS)
Sarguisingh, Miriam J.
2012-01-01
The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems in order to enable NASA human exploration missions beyond low earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near term missions beyond LEO. The secondary objective is to continue to advance mid-readiness level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near and long term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit environmental control and life support systems (ECLSS) definition. This study is being performed in three phases. Phase I of this study established the scope of the study through definition of the mission requirements and constraints, as well as indentifying all possible WRS configurations that meet the mission requirements. Phase II of this study focused on the near term space exploration objectives by establishing an ISS-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.
Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
Liu, Lili; Niu, Zhiqiang; Chen, Jun
2016-07-25
As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors.
Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching
NASA Astrophysics Data System (ADS)
Chun, Dong Won; Kim, Tae Kyoung; Choi, Duyoung; Caldwell, Elizabeth; Kim, Young Jin; Paik, Jae Cheol; Jin, Sungho; Chen, Renkun
2016-11-01
In this work, vertically aligned Si nanowire arrays were fabricated by magnetically guided metal-assisted directional chemical etching. Using an anodized aluminum oxide template as a shadow mask, nanoscale Ni dot arrays were fabricated on an Si wafer to serve as a mask to protect the Si during the etching. For the magnetically guided chemical etching, we deposited a tri-layer metal catalyst (Au/Fe/Au) in a Swiss-cheese configuration and etched the sample under the magnetic field to improve the directionality of the Si nanowire etching and increase the etching rate along the vertical direction. After the etching, the nanowires were dried with minimal surface-tension-induced aggregation by utilizing a supercritical CO2 drying procedure. High-resolution transmission electron microscopy (HR-TEM) analysis confirmed the formation of single-crystal Si nanowires. The method developed here for producing vertically aligned Si nanowire arrays could find a wide range of applications in electrochemical and electronic devices.
Application of composite materials to turbofan engine fan exit guide vanes
NASA Technical Reports Server (NTRS)
Smith, G. T.
1980-01-01
A program was conducted by NASA with the JT9D engine manufacturer to develop a lightweight, cost effective, composite material fan exit guide vane design having satisfactory structural durability for commerical engine use. Based on the results of a previous company supported program, eight graphite/epoxy and graphite-glass/epoxy guide vane designs were evaluated and four were selected for fabrication and testing. Two commercial fabricators each fabricated 13 vanes. Fatigue tests were used to qualify the selected design configurations under nominally dry, 38 C (100 F) and fully wet and 60 C (140 F) environmental conditions. Cost estimates for a production rate of 1000 vanes per month ranged from 1.7 to 2.6 times the cost of an all aluminum vane. This cost is 50 to 80 percent less than the initial program target cost ratio which was 3 times the cost of an aluminum vane. Application to the JT9D commercial engine is projected to provide a weight savings of 236 N (53 lb) per engine.
Beyond scene gist: Objects guide search more than scene background.
Koehler, Kathryn; Eckstein, Miguel P
2017-06-01
Although the facilitation of visual search by contextual information is well established, there is little understanding of the independent contributions of different types of contextual cues in scenes. Here we manipulated 3 types of contextual information: object co-occurrence, multiple object configurations, and background category. We isolated the benefits of each contextual cue to target detectability, its impact on decision bias, confidence, and the guidance of eye movements. We find that object-based information guides eye movements and facilitates perceptual judgments more than scene background. The degree of guidance and facilitation of each contextual cue can be related to its inherent informativeness about the target spatial location as measured by human explicit judgments about likely target locations. Our results improve the understanding of the contributions of distinct contextual scene components to search and suggest that the brain's utilization of cues to guide eye movements is linked to the cue's informativeness about the target's location. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
1988-01-01
This Preliminary Project Implementation Plan (PPIP) was used to examine the feasibility of replacing the current Solid Rocket Boosters on the Space Shuttle with Liquid Rocket Boosters (LRBs). The need has determined the implications of integrating the LRB with the Space Transportation System as the earliest practical date. The purpose was to identify and define all elements required in a full scale development program for the LRB. This will be a reference guide for management of the LRB program, addressing such requirement as design and development, configuration management, performance measurement, manufacturing, product assurance and verification, launch operations, and mission operations support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, A. M.; Boria, V. E.; Gimeno, B.
2014-08-15
Circular waveguides, either employed as resonant cavities or as irises connecting adjacent guides, are widely present in many passive components used in different applications (i.e., particle accelerators and satellite subsystems). In this paper, we present the study of the multipactor effect in circular waveguides considering the coexistence of the two polarizations of the fundamental TE{sub 11} circular waveguide mode. For a better understanding of the problem, only low multipactor orders have been explored as a function of the polarization ellipse eccentricity. Special attention has been paid to the linear and circular polarizations, but other more general configurations have also beenmore » explored.« less
Microfabrication of curcumin-loaded microparticles using coaxial electrohydrodynamic atomization
NASA Astrophysics Data System (ADS)
Yuan, Shuai; Si, Ting; Liu, Zhongfa; Xu, Ronald X.
2014-03-01
Encapsulation of curcumin in PLGA microparticles is performed by a coaxial electrohydrodynamic atomization device. To optimize the process, the effects of different control parameters on morphology and size distribution of resultant microparticles are studied systemically. Four main flow modes are identified as the applied electric field intensity increases. The stable cone-jet configuration is found to be available for fabricating monodisperse microparticles with core-shell structures. The results are compared with those observed in traditional emulsion. The drug-loading efficiency is also checked. The present system is advantageous for the enhancement of particle size distribution and drug-loading efficiency in various applications such as drug delivery, biomedicine and image-guided therapy.
NASA Astrophysics Data System (ADS)
Freund, H. P.; van der Slot, P. J. M.; Grimminck, D. L. A. G.; Setija, I. D.; Falgari, P.
2017-02-01
Free-electron lasers (FELs) have been built ranging in wavelength from long-wavelength oscillators using partial wave guiding through ultraviolet through hard x-ray that are either seeded or start from noise. In addition, FELs that produce different polarizations of the output radiation ranging from linear through elliptic to circular polarization are currently under study. In this paper, we develop a three-dimensional, time-dependent formulation that is capable of modeling this large variety of FEL configurations including different polarizations. We employ a modal expansion for the optical field, i.e., a Gaussian expansion with variable polarization for free-space propagation. This formulation uses the full Newton-Lorentz force equations to track the particles through the optical and magnetostatic fields. As a result, arbitrary three-dimensional representations for different undulator configurations are implemented, including planar, helical, and elliptical undulators. In particular, we present an analytic model of an APPLE-II undulator to treat arbitrary elliptical polarizations, which is used to treat general elliptical polarizations. To model oscillator configurations, and allow propagation of the optical field outside the undulator and interact with optical elements, we link the FEL simulation with the optical propagation code OPC. We present simulations using the APPLE-II undulator model to produce elliptically polarized output radiation, and present a detailed comparison with recent experiments using a tapered undulator configuration at the Linac Coherent Light Source. Validation of the nonlinear formation is also shown by comparison with experimental results obtained in the Sorgente Pulsata Auto-amplificata di Radiazione Coerente SASE FEL experiment at ENEA Frascati, a seeded tapered amplifier experiment at Brookhaven National Laboratory, and the 10 kW upgrade oscillator experiment at the Thomas Jefferson National Accelerator Facility.
Particle acceleration in solar active regions being in the state of self-organized criticality.
NASA Astrophysics Data System (ADS)
Vlahos, Loukas
We review the recent observational results on flare initiation and particle acceleration in solar active regions. Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons and protons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field’s strength and configuration with test particle simulations. We work on data-driven 3D magnetic field extrapolations, based on a self-organized criticality models (SOC). A relativistic test-particle simulation traces each particle’s guiding center within these configurations. Using the simulated particle-energy distributions we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission and compare our results with the current observations.
Guthier, Christian V; Damato, Antonio L; Hesser, Juergen W; Viswanathan, Akila N; Cormack, Robert A
2017-12-01
Interstitial high-dose rate (HDR) brachytherapy is an important therapeutic strategy for the treatment of locally advanced gynecologic (GYN) cancers. The outcome of this therapy is determined by the quality of dose distribution achieved. This paper focuses on a novel yet simple heuristic for catheter selection for GYN HDR brachytherapy and their comparison against state of the art optimization strategies. The proposed technique is intended to act as a decision-supporting tool to select a favorable needle configuration. The presented heuristic for catheter optimization is based on a shrinkage-type algorithm (SACO). It is compared against state of the art planning in a retrospective study of 20 patients who previously received image-guided interstitial HDR brachytherapy using a Syed Neblett template. From those plans, template orientation and position are estimated via a rigid registration of the template with the actual catheter trajectories. All potential straight trajectories intersecting the contoured clinical target volume (CTV) are considered for catheter optimization. Retrospectively generated plans and clinical plans are compared with respect to dosimetric performance and optimization time. All plans were generated with one single run of the optimizer lasting 0.6-97.4 s. Compared to manual optimization, SACO yields a statistically significant (P ≤ 0.05) improved target coverage while at the same time fulfilling all dosimetric constraints for organs at risk (OARs). Comparing inverse planning strategies, dosimetric evaluation for SACO and "hybrid inverse planning and optimization" (HIPO), as gold standard, shows no statistically significant difference (P > 0.05). However, SACO provides the potential to reduce the number of used catheters without compromising plan quality. The proposed heuristic for needle selection provides fast catheter selection with optimization times suited for intraoperative treatment planning. Compared to manual optimization, the proposed methodology results in fewer catheters without a clinically significant loss in plan quality. The proposed approach can be used as a decision support tool that guides the user to find the ideal number and configuration of catheters. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Pollard, Thomas B
Recent advances in microbiology, computational capabilities, and microelectromechanical-system fabrication techniques permit modeling, design, and fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and lab-on-a-chip systems. Such devices are expected to replace expensive, time-consuming, and bulky laboratory-based testing equipment. Potential applications for devices include: fluid characterization for material science and industry; chemical analysis in medicine and pharmacology; study of biological processes; food analysis; chemical kinetics analysis; and environmental monitoring. When combined with liquid-phase packaging, sensors based on surface-acoustic-wave (SAW) technology are considered strong candidates. For this reason such devices are focused on in this work; emphasis placed on device modeling and packaging for liquid-phase operation. Regarding modeling, topics considered include mode excitation efficiency of transducers; mode sensitivity based on guiding structure materials/geometries; and use of new piezoelectric materials. On packaging, topics considered include package interfacing with SAW devices, and minimization of packaging effects on device performance. In this work novel numerical models are theoretically developed and implemented to study propagation and transduction characteristics of sensor designs using wave/constitutive equations, Green's functions, and boundary/finite element methods. Using developed simulation tools that consider finite-thickness of all device electrodes, transduction efficiency for SAW transducers with neighboring uniform or periodic guiding electrodes is reported for the first time. Results indicate finite electrode thickness strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% and 100% for uniform and periodic electrode guiding, respectively; yielding improved sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity using uniform-electrode and shear-horizontal mode configurations on potassium-niobate, langasite, and quartz substrates. Optimum configurations are determined yielding maximum sensitivity. Results show mode propagation-loss and sensitivity to viscosity are correlated by a factor independent of substrate material. The analysis is useful for designing devices meeting sensitivity and signal level requirements. A novel, rapid and precise microfluidic chamber alignment/bonding method was developed for SAW platforms. The package is shown to have little effect on device performance and permits simple macrofluidic interfacing. Lastly, prototypes were designed, fabricated, and tested for viscosity and biosensor applications; results show ability to detect as low as 1% glycerol in water and surface-bound DNA crosslinking.
Nuclear Containment Inspection Using AN Array of Guided Wave Sensors for Damage Localization
NASA Astrophysics Data System (ADS)
Cobb, A. C.; Fisher, J. L.
2010-02-01
Nuclear power plant containments are typically both the last line of defense against the release of radioactivity to the environment and the first line of defense to protect against intrusion from external objects. As such, it is important to be able to locate any damage that would limit the integrity of the containment itself. Typically, a portion of the containment consists of a metallic pressure boundary that encloses the reactor primary circuit. It is made of thick steel plates welded together, lined with concrete and partially buried, limiting areas that can be visually inspected for corrosion damage. This study presents a strategy using low frequency (<50 kHz) guided waves to find corrosion-like damage several meters from the probe in a mock-up of the containment vessel. A magnetostrictive sensor (MsS) is scanned across the width of the vessel, acquiring waveforms at a fixed interval. A beam forming strategy is used to localize the defects. Experimental results are presented for a variety of damage configurations, demonstrating the efficacy of this technique for detecting damage smaller than the ultrasonic wavelength.
Orthogonal Operation of Constitutional Dynamic Networks Consisting of DNA-Tweezer Machines.
Yue, Liang; Wang, Shan; Cecconello, Alessandro; Lehn, Jean-Marie; Willner, Itamar
2017-12-26
Overexpression or down-regulation of cellular processes are often controlled by dynamic chemical networks. Bioinspired by nature, we introduce constitutional dynamic networks (CDNs) as systems that emulate the principle of the nature processes. The CDNs comprise dynamically interconvertible equilibrated constituents that respond to external triggers by adapting the composition of the dynamic mixture to the energetic stabilization of the constituents. We introduce a nucleic acid-based CDN that includes four interconvertible and mechanically triggered tweezers, AA', BB', AB' and BA', existing in closed, closed, open, and open configurations, respectively. By subjecting the CDN to auxiliary triggers, the guided stabilization of one of the network constituents dictates the dynamic reconfiguration of the structures of the tweezers constituents. The orthogonal and reversible operations of the CDN DNA tweezers are demonstrated, using T-A·T triplex or K + -stabilized G-quadruplex as structural motifs that control the stabilities of the constituents. The implications of the study rest on the possible applications of input-guided CDN assemblies for sensing, logic gate operations, and programmed activation of molecular machines.
Ultrasound guided electrical impedance tomography for 2D free-interface reconstruction
NASA Astrophysics Data System (ADS)
Liang, Guanghui; Ren, Shangjie; Dong, Feng
2017-07-01
The free-interface detection problem is normally seen in industrial or biological processes. Electrical impedance tomography (EIT) is a non-invasive technique with advantages of high-speed and low cost, and is a promising solution for free-interface detection problems. However, due to the ill-posed and nonlinear characteristics, the spatial resolution of EIT is low. To deal with the issue, an ultrasound guided EIT is proposed to directly reconstruct the geometric configuration of the target free-interface. In the method, the position of the central point of the target interface is measured by a pair of ultrasound transducers mounted at the opposite side of the objective domain, and then the position measurement is used as the prior information for guiding the EIT-based free-interface reconstruction. During the process, a constrained least squares framework is used to fuse the information from different measurement modalities, and the Lagrange multiplier-based Levenberg-Marquardt method is adopted to provide the iterative solution of the constraint optimization problem. The numerical results show that the proposed ultrasound guided EIT method for the free-interface reconstruction is more accurate than the single modality method, especially when the number of valid electrodes is limited.
Distributed temperature sensors development using an stepped-helical ultrasonic waveguide
NASA Astrophysics Data System (ADS)
Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2018-04-01
This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.
NASA Astrophysics Data System (ADS)
Reaungamornrat, S.; Otake, Y.; Uneri, A.; Schafer, S.; Mirota, D. J.; Nithiananthan, S.; Stayman, J. W.; Khanna, A. J.; Reh, D. D.; Gallia, G. L.; Taylor, R. H.; Siewerdsen, J. H.
2012-02-01
Conventional surgical tracking configurations carry a variety of limitations in line-of-sight, geometric accuracy, and mismatch with the surgeon's perspective (for video augmentation). With increasing utilization of mobile C-arms, particularly those allowing cone-beam CT (CBCT), there is opportunity to better integrate surgical trackers at bedside to address such limitations. This paper describes a tracker configuration in which the tracker is mounted directly on the Carm. To maintain registration within a dynamic coordinate system, a reference marker visible across the full C-arm rotation is implemented, and the "Tracker-on-C" configuration is shown to provide improved target registration error (TRE) over a conventional in-room setup - (0.9+/-0.4) mm vs (1.9+/-0.7) mm, respectively. The system also can generate digitally reconstructed radiographs (DRRs) from the perspective of a tracked tool ("x-ray flashlight"), the tracker, or the C-arm ("virtual fluoroscopy"), with geometric accuracy in virtual fluoroscopy of (0.4+/-0.2) mm. Using a video-based tracker, planning data and DRRs can be superimposed on the video scene from a natural perspective over the surgical field, with geometric accuracy (0.8+/-0.3) pixels for planning data overlay and (0.6+/-0.4) pixels for DRR overlay across all C-arm angles. The field-of-view of fluoroscopy or CBCT can also be overlaid on real-time video ("Virtual Field Light") to assist C-arm positioning. The fixed transformation between the x-ray image and tracker facilitated quick, accurate intraoperative registration. The workflow and precision associated with a variety of realistic surgical tasks were significantly improved using the Tracker-on-C - for example, nearly a factor of 2 reduction in time required for C-arm positioning, reduction or elimination of dose in "hunting" for a specific fluoroscopic view, and confident placement of the x-ray FOV on the surgical target. The proposed configuration streamlines the integration of C-arm CBCT with realtime tracking and demonstrated utility in a spectrum of image-guided interventions (e.g., spine surgery) benefiting from improved accuracy, enhanced visualization, and reduced radiation exposure.
NASA Astrophysics Data System (ADS)
You, Xu; Zhi-jian, Zong; Qun, Gao
2018-07-01
This paper describes a methodology for the position uncertainty distribution of an articulated arm coordinate measuring machine (AACMM). First, a model of the structural parameter uncertainties was established by statistical method. Second, the position uncertainty space volume of the AACMM in a certain configuration was expressed using a simplified definite integration method based on the structural parameter uncertainties; it was then used to evaluate the position accuracy of the AACMM in a certain configuration. Third, the configurations of a certain working point were calculated by an inverse solution, and the position uncertainty distribution of a certain working point was determined; working point uncertainty can be evaluated by the weighting method. Lastly, the position uncertainty distribution in the workspace of the ACCMM was described by a map. A single-point contrast test of a 6-joint AACMM was carried out to verify the effectiveness of the proposed method, and it was shown that the method can describe the position uncertainty of the AACMM and it was used to guide the calibration of the AACMM and the choice of AACMM’s accuracy area.
Pauchot, Julien; Di Tommaso, Laetitia; Lounis, Ahmed; Benassarou, Mourad; Mathieu, Pierre; Bernot, Dominique; Aubry, Sébastien
2015-12-01
Nowadays, routine cross-sectional imaging viewing during a surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). Such contact risks exposure to aseptic conditions and causes loss of time. Devices such as the recently introduced Leap Motion (Leap Motion Society, San Francisco, CA), which enables interaction with the computer without any physical contact, are of wide interest in the field of surgery, but configuration and ergonomics are key challenges for the practitioner, imaging software, and surgical environment. This article aims to suggest an easy configuration of Leap Motion on a PC for optimized use with Carestream Vue PACS v11.3.4 (Carestream Health, Inc, Rochester, NY) using a plug-in (to download at https://drive.google.com/open?id=0B_F4eBeBQc3yNENvTXlnY09qS00&authuser=0) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk). Videos of surgical procedure and discussion about innovative gesture control technology and its various configurations are provided in this article. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Hasan, T.; Kang, Y.-S.; Kim, Y.-J.; Park, S.-J.; Jang, S.-Y.; Hu, K.-Y.; Koop, E. J.; Hinnen, P. C.; Voncken, M. M. A. J.
2016-03-01
Advancement of the next generation technology nodes and emerging memory devices demand tighter lithographic focus control. Although the leveling performance of the latest-generation scanners is state of the art, challenges remain at the wafer edge due to large process variations. There are several customer configurable leveling control options available in ASML scanners, some of which are application specific in their scope of leveling improvement. In this paper, we assess the usability of leveling non-correctable error models to identify yield limiting edge dies. We introduce a novel dies-inspec based holistic methodology for leveling optimization to guide tool users in selecting an optimal configuration of leveling options. Significant focus gain, and consequently yield gain, can be achieved with this integrated approach. The Samsung site in Hwaseong observed an improved edge focus performance in a production of a mid-end memory product layer running on an ASML NXT 1960 system. 50% improvement in focus and a 1.5%p gain in edge yield were measured with the optimized configurations.
Traffic Generator (TrafficGen) Version 1.4.2: Users Guide
2016-06-01
events, the user has to enter them manually . We will research and implement a way to better define and organize the multicast addresses so they can be...the network with Transmission Control Protocol and User Datagram Protocol Internet Protocol traffic. Each node generating network traffic in an...TrafficGen Graphical User Interface (GUI) 3 3.1 Anatomy of the User Interface 3 3.2 Scenario Configuration and MGEN Files 4 4. Working with
Terrain Analysis Procedural Guide for Surface Configuration.
1984-03-01
34’’~ ,w j 0 V~l s A., ; 54 . ’ sC 01.,)f ttt’t 1.f’ &~~ w tS*’tCSA ’a Ats4 tArot A"- t Do’ .’ a’’ SQ t#"N4 psCn9’A’ rhr ta4sto"%t ac’c- 40 " jpV*’ Ae
NASA Technical Reports Server (NTRS)
Tinoco, E. N.; Lu, P.; Johnson, F. T.
1980-01-01
A computer program developed for solving the subsonic, three dimensional flow over wing-body configurations with leading edge vortex separation is presented. Instructions are given for the proper set up and input of a problem into the computer code. Program input formats and output are described, as well as the overlay structure of the program. The program is written in FORTRAN.
NASA Technical Reports Server (NTRS)
Lamar, J. E.; Herbert, H. E.
1982-01-01
The latest production version, MARK IV, of the NASA-Langley vortex lattice computer program is summarized. All viable subcritical aerodynamic features of previous versions were retained. This version extends the previously documented program capabilities to four planforms, 400 panels, and enables the user to obtain vortex-flow aerodynamics on cambered planforms, flowfield properties off the configuration in attached flow, and planform longitudinal load distributions.
Human Factors Engineering. A Self-Paced Text, Lessons 36-40,
1981-08-01
proposed contract does not involve ’significant human interface for operation/ maintenance /control,’ the selection guide should not be used. Turn to Page 98... work space configuration, packaging, and labeling. These are all aspects of maintenance which need to be incorporated into the original design plans... work done. An ROC is a ’Required Operational Capability’ statement that is required by the Army during the system acquisition process . Return to Page
2017-10-01
with both conventional wireless systems as well as other types of cognitive RF systems (e.g., cognitive radar). The radio hardware for this...WBX daughtercard. This technical report begins with a system -level overview in Section 1. Then, the remaining sections explain the configuration and...Approved for public release; distribution is unlimited. 1 1. Introduction and Theory of Operation The system model has 2 kinds of cognitive radio
Self-adaptive tensor network states with multi-site correlators
NASA Astrophysics Data System (ADS)
Kovyrshin, Arseny; Reiher, Markus
2017-12-01
We introduce the concept of self-adaptive tensor network states (SATNSs) based on multi-site correlators. The SATNS ansatz gradually extends its variational space incorporating the most important next-order correlators into the ansatz for the wave function. The selection of these correlators is guided by entanglement-entropy measures from quantum information theory. By sequentially introducing variational parameters and adjusting them to the system under study, the SATNS ansatz achieves keeping their number significantly smaller than the total number of full-configuration interaction parameters. The SATNS ansatz is studied for manganocene in its lowest-energy sextet and doublet states; the latter of which is known to be difficult to describe. It is shown that the SATNS parametrization solves the convergence issues found for previous correlator-based tensor network states.
Spin wave filtering and guiding in Permalloy/iron nanowires
NASA Astrophysics Data System (ADS)
Silvani, R.; Kostylev, M.; Adeyeye, A. O.; Gubbiotti, G.
2018-03-01
We have investigated the spin wave filtering and guiding properties of periodic array of single (Permalloy and Fe) and bi-layer (Py/Fe) nanowires (NWs) by means of Brillouin light scattering measurements and micromagnetic simulations. For all the nanowire arrays, the thickness of the layers is 10 nm while all NWs have the same width of 340 nm and edge-to-edge separation of 100 nm. Spin wave dispersion has been measured in the Damon-Eshbach configuration for wave vector either parallel or perpendicular to the nanowire length. This study reveals the filtering property of the spin waves when the wave vector is perpendicular to the NW length, with frequency ranges where the spin wave propagation is permitted separated by frequency band gaps, and the guiding property of NW when the wave vector is oriented parallel to the NW, with spin wave modes propagating in parallel channels in the central and edge regions of the NW. The measured dispersions were well reproduced by micromagnetic simulations, which also deliver the spatial profiles for the modes at zero wave vector. To reproduce the dispersion of the modes localized close to the NW edges, uniaxial anisotropy has been introduced. In the case of Permalloy/iron NWs, the obtained results have been compared with those for a 20 nm thick effective NW having average magnetic properties of the two materials.
Field-free junctions for surface electrode ion traps
NASA Astrophysics Data System (ADS)
Jordens, Robert; Schmied, R.; Blain, M. G.; Leibfried, D.; Wineland, D.
2015-05-01
Intersections between transport guides in a network of RF ion traps are a key ingredient to many implementations of scalable quantum information processing with trapped ions. Several junction architectures demonstrated so far are limited by varying radial secular frequencies, a reduced trap depth, or a non-vanishing RF field along the transport channel. We report on the design and progress in implementing a configurable microfabricated surface electrode Y-junction that employs switchable RF electrodes. An essentially RF-field-free pseudopotential guide between any two legs of the junction can be established by applying RF potential to a suitable pair of electrodes. The transport channel's height above the electrodes, its depth and radial curvature are constant to within 15%. Supported by IARPA, Sandia, NSA, ONR, and the NIST Quantum Information Program.
Lithium niobate guided-wave beam former for steering phased-array antennas.
Armenise, M N; Passaro, V M; Noviello, G
1994-09-10
We present the theoretical investigation, design, and simulation of a novel guided-wave optical processor for L-band-transmission beam forming in a linear array of phased active antennas. The proposed configuration includes two contradirectional surface acoustic-wave transducers, and it is based on a Y-cut, X-propagating Ti:LiNbO(3) planar waveguide supporting the lowest-order modes of both polarizations (TE(0) and TM(0)) at the free-space wavelength λ = 0.85 µm. A detailed comparison between the processor we propose and other optical and electronic architectures reported in the literature is carried out, exhibiting a number of significant advantages in terms of weight, total chip size, and power consumption, when the number of antenna elements is greater than 50.
Chicotka, Scott; Burkhoff, Daniel; Dickstein, Marc L; Bacchetta, Matthew
Interstitial lung disease (ILD) represents a collection of lung disorders with a lethal trajectory with few therapeutic options with the exception of lung transplantation. Various extracorporeal membrane oxygenation (ECMO) configurations have been used for bridge to transplant (BTT), yet no optimal configuration has been clearly demonstrated. Using a cardiopulmonary simulation, we assessed different ECMO configurations for patients with end-stage ILD to assess the physiologic deficits and help guide the development of new long-term pulmonary support devices. A cardiopulmonary ECMO simulation was created, and changes in hemodynamics and blood gases were compared for different inflow and outflow anatomic locations and for different sweep gas and blood pump flow rates. The system simulated the physiologic response of patients with severe ILD at rest and during exercise with central ECMO, peripheral ECMO, and with no ECMO. The output parameters were total cardiac output (CO), mixed venous oxygen (O2) saturation, arterial pH, and O2 delivery (DO2)/O2 utilization (VO2) at different levels of exercise. The model described the physiologic state of progressive ILD and showed the relative effects of using various ECMO configurations to support them. It elucidated the optimal device configurations and required physiologic pump performance and provided insight into the physiologic demands of exercise in ILD patients. The simulation program was able to model the pathophysiologic state of progressive ILD with PH and demonstrate how mechanical support devices can be implemented to improve cardiopulmonary function at rest and during exercise. The information generated from simulation can be used to optimize ECMO configuration selection for BTT patients and provide design guidance for new devices to better meet the physiologic demands of exercise associated with normal activities of daily living.
Consciousness as a global property of brain dynamic activity
NASA Astrophysics Data System (ADS)
Mateos, D. M.; Wennberg, R.; Guevara, R.; Perez Velazquez, J. L.
2017-12-01
We seek general principles of the structure of the cellular collective activity associated with conscious awareness. Can we obtain evidence for features of the optimal brain organization that allows for adequate processing of stimuli and that may guide the emergence of cognition and consciousness? Analyzing brain recordings in conscious and unconscious states, we followed initially the classic approach in physics when it comes to understanding collective behaviours of systems composed of a myriad of units: the assessment of the number of possible configurations (microstates) that the system can adopt, for which we use a global entropic measure associated with the number of connected brain regions. Having found maximal entropy in conscious states, we then inspected the microscopic nature of the configurations of connections using an adequate complexity measure and found higher complexity in states characterized not only by conscious awareness but also by subconscious cognitive processing, such as sleep stages. Our observations indicate that conscious awareness is associated with maximal global (macroscopic) entropy and with the short time scale (microscopic) complexity of the configurations of connected brain networks in pathological unconscious states (seizures and coma), but the microscopic view captures the high complexity in physiological unconscious states (sleep) where there is information processing. As such, our results support the global nature of conscious awareness, as advocated by several theories of cognition. We thus hope that our studies represent preliminary steps to reveal aspects of the structure of cognition that leads to conscious awareness.
Understanding the haling power depletion (HPD) method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, S.; Blyth, T.; Ivanov, K.
2012-07-01
The Pennsylvania State Univ. (PSU) is using the university version of the Studsvik Scandpower Code System (CMS) for research and education purposes. Preparations have been made to incorporate the CMS into the PSU Nuclear Engineering graduate class 'Nuclear Fuel Management' course. The information presented in this paper was developed during the preparation of the material for the course. The Haling Power Depletion (HPD) was presented in the course for the first time. The HPD method has been criticized as not valid by many in the field even though it has been successfully applied at PSU for the past 20 years.more » It was noticed that the radial power distribution (RPD) for low leakage cores during depletion remained similar to that of the HPD during most of the cycle. Thus, the Haling Power Depletion (HPD) may be used conveniently mainly for low leakage cores. Studies were then made to better understand the HPD and the results are presented in this paper. Many different core configurations can be computed quickly with the HPD without using Burnable Poisons (BP) to produce several excellent low leakage core configurations that are viable for power production. Once the HPD core configuration is chosen for further analysis, techniques are available for establishing the BP design to prevent violating any of the safety constraints in such HPD calculated cores. In summary, in this paper it has been shown that the HPD method can be used for guiding the design for the low leakage core. (authors)« less
Gravitational decoupled anisotropies in compact stars
NASA Astrophysics Data System (ADS)
Gabbanelli, Luciano; Rincón, Ángel; Rubio, Carlos
2018-05-01
Simple generic extensions of isotropic Durgapal-Fuloria stars to the anisotropic domain are presented. These anisotropic solutions are obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors by means of the minimal geometric deformation approach are satisfied. Hence the anisotropic field equations are isolated resulting a more treatable set. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, observational effects of such anisotropies when measuring the surface redshift are discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations is shown. In this manner, different anisotropic sectors can be isolated of each other and modeled in a simple and systematic way.
Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics
NASA Astrophysics Data System (ADS)
Edrei, Eitan; Scarcelli, Giuliano
2018-04-01
Brillouin spectroscopy is a powerful optical technique for non-contact viscoelastic characterizations which has recently found applications in three-dimensional mapping of biological samples. Brillouin spectroscopy performances are rapidly degraded by optical aberrations and have therefore been limited to homogenous transparent samples. In this work, we developed an adaptive optics (AO) configuration designed for Brillouin scattering spectroscopy to engineer the incident wavefront and correct for aberrations. Our configuration does not require direct wavefront sensing and the injection of a "guide-star"; hence, it can be implemented without the need for sample pre-treatment. We used our AO-Brillouin spectrometer in aberrated phantoms and biological samples and obtained improved precision and resolution of Brillouin spectral analysis; we demonstrated 2.5-fold enhancement in Brillouin signal strength and 1.4-fold improvement in axial resolution because of the correction of optical aberrations.
Distributed temperature sensing using a SPIRAL configuration ultrasonic waveguide
NASA Astrophysics Data System (ADS)
Periyannan, Suresh; Balasubramaniam, Krishnan
2017-02-01
Distributed temperature sensing has important applications in the long term monitoring of critical enclosures such as containment vessels, flue gas stacks, furnaces, underground storage tanks and buildings for fire risk. This paper presents novel techniques for such measurements, using wire in a spiral configuration and having special embodiments such a notch for obtaining wave reflections from desired locations. Transduction is performed using commercially available Piezo-electric crystal that is bonded to one end of the waveguide. Lower order axisymmetric guided ultrasonic modes were employed. Time of fight (TOF) differences between predefined reflectors located on the waveguides are used to infer temperature profile in a chamber with different temperatures. The L(0,1) wave mode (pulse echo approach) was generated/received in a spiral waveguide at different temperatures for this work. The ultrasonic measurements were compared with commercially available thermocouples.
Characterization of an active metasurface using terahertz ellipsometry
Karl, Nicholas; Heimbeck, Martin S.; Everitt, Henry O.; ...
2017-11-06
Switchable metasurfaces fabricated on a doped epi-layer have become an important platform for developing techniques to control terahertz (THz) radiation, as a DC bias can modulate the transmission characteristics of the metasurface. To model and understand this performance in new device configurations accurately, a quantitative understanding of the bias-dependent surface characteristics is required. In this work, we perform THz variable angle spectroscopic ellipsometry on a switchable metasurface as a function of DC bias. By comparing these data with numerical simulations, we extract a model for the response of the metasurface at any bias value. Using this model, we predict amore » giant bias-induced phase modulation in a guided wave configuration. Lastly, these predictions are in qualitative agreement with our measurements, offering a route to efficient modulation of THz signals.« less
Experimental clean combustor program; noise measurement addendum, Phase 2
NASA Technical Reports Server (NTRS)
Emmerling, J. J.; Bekofske, K. L.
1976-01-01
Combustor noise measurements were performed using wave guide probes. Test results from two full scale annular combustor configurations in a combustor test rig are presented. A CF6-50 combustor represented a current design, and a double annular combustor represented the advanced clean combustor configuration. The overall acoustic power levels were found to correlate with the steady state heat release rate and inlet temperature. A theoretical analysis for the attenuation of combustor noise propagating through a turbine was extended from a subsonic relative flow condition to include the case of supersonic flow at the discharge side. The predicted attenuation from this analysis was compared to both engine data and extrapolated component combustor data. The attenuation of combustor noise through the CF6-50 turbine was found to be greater than 14 dB by both the analysis and the data.
NASA Technical Reports Server (NTRS)
Kaufman, L. G., II; Johnson, C. B.
1984-01-01
Aerodynamic surface heating rate distributions in three dimensional shock wave boundary layer interaction flow regions are presented for a generic set of model configurations representative of the aft portion of hypersonic aircraft. Heat transfer data were obtained using the phase change coating technique (paint) and, at particular spanwise and streamwise stations for sample cases, by the thin wall transient temperature technique (thermocouples). Surface oil flow patterns are also shown. The good accuracy of the detailed heat transfer data, as attested in part by their repeatability, is attributable partially to the comparatively high temperature potential of the NASA-Langley Mach 8 Variable Density Tunnel. The data are well suited to help guide heating analyses of Mach 8 aircraft, and should be considered in formulating improvements to empiric analytic methods for calculating heat transfer rate coefficient distributions.
Analytical model for fast reconnection in large guide field plasma configurations
NASA Astrophysics Data System (ADS)
Simakov, A. N.; Chacón, L.; Grasso, D.; Borgogno, D.; Zocco, A.
2009-11-01
Significant progress in understanding magnetic reconnection without a guide field was made recently by deriving quantitatively accurate analytical models for reconnection in electron [1] and Hall [2] MHD. However, no such analytical model is available for reconnection with a guide field. Here, we derive such an analytical model for the large-guide-field, low-β, cold-ion fluid model [3] with electron inertia, ion viscosity μ, and resistivity η. We find that the reconnection is Sweet-Parker-like when the Sweet-Parker layer thickness δSP> (ρs^4 + de^4)^1/4, with ρs and de the sound Larmor radius and electron inertial length. However, reconnection changes character otherwise, resulting in reconnection rates Ez/Bx^2 √2 η/μ (ρs^2 + de^2)/(ρsw) with Bx the upstream magnetic field and w the diffusion region length. Unlike the zero-guide-field case, μ plays crucial role in manifesting fast reconnection rates. If it represents the perpendicular viscosity [3], √η/μ ˜&-1circ;√(me/mi)(Ti/Te) and Ez becomes dissipation independent and therefore potentially fast.[0pt] [1] L. Chac'on, A. N. Simakov, and A. Zocco, PRL 99, 235001 (2007).[0pt] [2] A. N. Simakov and L. Chac'on, PRL 101, 105003 (2008).[0pt] [3] D. Biskamp, Magnetic reconnection in plasmas, Cambridge University Press, 2000.
NASA Technical Reports Server (NTRS)
Jumper, Judith K.
1994-01-01
The Laser Velocimeter Data Acquisition System (LVDAS) in the Langley 14- by 22-Foot Tunnel is controlled by a comprehensive software package. The software package was designed to control the data acquisition process during wind tunnel tests which employ a laser velocimeter measurement system. This report provides detailed explanations on how to configure and operate the LVDAS system to acquire laser velocimeter and static wind tunnel data.
Manned orbital facility: A user's guide
NASA Technical Reports Server (NTRS)
1975-01-01
The salient conceptual features and expected evolution of the facility are discussed; the baseline design is offered as a model against which the reader can compare his needs. The overall program is discussed, supporting services and resources are described, and examples of typical payload applications are given. The general design features and configurations representing the baseline MOF developed and derived with due consideration given to applicable designs and subsystems such as those available in the Skylab, orbiter, and space lab vehicles.
SNS programming environment user's guide
NASA Technical Reports Server (NTRS)
Tennille, Geoffrey M.; Howser, Lona M.; Humes, D. Creig; Cronin, Catherine K.; Bowen, John T.; Drozdowski, Joseph M.; Utley, Judith A.; Flynn, Theresa M.; Austin, Brenda A.
1992-01-01
The computing environment is briefly described for the Supercomputing Network Subsystem (SNS) of the Central Scientific Computing Complex of NASA Langley. The major SNS computers are a CRAY-2, a CRAY Y-MP, a CONVEX C-210, and a CONVEX C-220. The software is described that is common to all of these computers, including: the UNIX operating system, computer graphics, networking utilities, mass storage, and mathematical libraries. Also described is file management, validation, SNS configuration, documentation, and customer services.
A Program Office Guide to Technology Transfer
1988-11-01
Requirements 2-4 2.4.1 Equipment Complexity 2-5 2.4.2 Industrial Capabilities 2-5 2.4.3 Logistics Requirements/Configuration Control 2-5 2.4.4 Schedule...accomplishment of these milestones re- with the leverage of the FSD and production pro- sults in second source full production capability , grams. For more...MANUFACTURING PROCESSES BUILD UP COMPETITIVE PRODUCTION RATE CAPABILITY DURING LOT III Table 1.2-1 AMRAAM Technology Transfer The leader-follower approach is
Imparting Barely Visible Impact Damage to a Stitched Composite Large-Scale Pressure Box
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Przekop, Adam
2016-01-01
The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration, which has been a focus of the NASA Environmentally Responsible Aviation Project. The NASA-Boeing structural development for the HWB aircraft culminated in testing of the multi-bay box, which is an 80%-scale representation of the pressurized center-body section. This structure was tested in the NASA Langley Research Center Combined Loads Test System facility. As part of this testing, barely visible impact damage was imparted to the interior and exterior of the test article to demonstrate compliance with a condition representative of the requirements for Category 1 damaged composite structure as defined by the Federal Aviation Regulations. Interior impacts were imparted using an existing spring-loaded impactor, while the exterior impacts were imparted using a newly designed, gravity-driven impactor. This paper describes the impacts to the test article, and the design of the gravitydriven guided-weight impactor. The guided-weight impactor proved to be a very reliable method to impart barely visible impact damage in locations which are not easily accessible for a traditional drop-weight impactor, while at the same time having the capability to be highly configurable for use on other aircraft structures.
Adeyanju, Oyinlolu O.; Al-Angari, Haitham M.; Sahakian, Alan V.
2012-01-01
Background Irreversible electroporation (IRE) is a novel ablation tool that uses brief high-voltage pulses to treat cancer. The efficacy of the therapy depends upon the distribution of the electric field, which in turn depends upon the configuration of electrodes used. Methods We sought to optimize the electrode configuration in terms of the distance between electrodes, the depth of electrode insertion, and the number of electrodes. We employed a 3D Finite Element Model and systematically varied the distance between the electrodes and the depth of electrode insertion, monitoring the lowest voltage sufficient to ablate the tumor, VIRE. We also measured the amount of normal (non-cancerous) tissue ablated. Measurements were performed for two electrodes, three electrodes, and four electrodes. The optimal electrode configuration was determined to be the one with the lowest VIRE, as that minimized damage to normal tissue. Results The optimal electrode configuration to ablate a 2.5 cm spheroidal tumor used two electrodes with a distance of 2 cm between the electrodes and a depth of insertion of 1 cm below the halfway point in the spherical tumor, as measured from the bottom of the electrode. This produced a VIRE of 3700 V. We found that it was generally best to have a small distance between the electrodes and for the center of the electrodes to be inserted at a depth equal to or deeper than the center of the tumor. We also found the distance between electrodes was far more important in influencing the outcome measures when compared with the depth of electrode insertion. Conclusions Overall, the distribution of electric field is highly dependent upon the electrode configuration, but the optimal configuration can be determined using numerical modeling. Our findings can help guide the clinical application of IRE as well as the selection of the best optimization algorithm to use in finding the optimal electrode configuration. PMID:23077449
Advanced Exploration Systems Water Architecture Study Interim Results
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2013-01-01
The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.
Perceptuo-motor compatibility governs multisensory integration in bimanual coordination dynamics.
Zelic, Gregory; Mottet, Denis; Lagarde, Julien
2016-02-01
The brain has the remarkable ability to bind together inputs from different sensory origin into a coherent percept. Behavioral benefits can result from such ability, e.g., a person typically responds faster and more accurately to cross-modal stimuli than to unimodal stimuli. To date, it is, however, largely unknown whether such multisensory benefits, shown for discrete reactive behaviors, generalize to the continuous coordination of movements. The present study addressed multisensory integration from the perspective of bimanual coordination dynamics, where the perceptual activity no longer triggers a single response but continuously guides the motor action. The task consisted in coordinating anti-symmetrically the continuous flexion-extension of the index fingers, while synchronizing with an external pacer. Three different configurations of metronome were tested, for which we examined whether a cross-modal pacing (audio-tactile beats) improved the stability of the coordination in comparison with unimodal pacing condition (auditory or tactile beats). We found a more stable bimanual coordination for cross-modal pacing, but only when the metronome configuration directly matched the anti-symmetric coordination pattern. We conclude that multisensory integration can benefit the continuous coordination of movements; however, this is constrained by whether the perceptual and motor activities match in space and time.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J.
2003-01-01
The present investigation details the development of model systems for growing two- and three-dimensional human neural progenitor cells within a culture medium facilitated by a time-varying electromagnetic field (TVEMF). The cells and culture medium are contained within a two- or three-dimensional culture vessel, and the electromagnetic field is emitted from an electrode or coil. These studies further provide methods to promote neural tissue regeneration by means of culturing the neural cells in either configuration. Grown in two dimensions, neuronal cells extended longitudinally, forming tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time-varying electrical current was conducted. In the three-dimensional aspect, exposure to TVEMF resulted in the development of three-dimensional aggregates, which emulated organized neural tissues. In both experimental configurations, the proliferation rate of the TVEMF cells was 2.5 to 4.0 times the rate of the non-waveform cells. Each of the experimental embodiments resulted in similar molecular genetic changes regarding the growth potential of the tissues as measured by gene chip analyses, which measured more than 10,000 human genes simultaneously.
A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments.
Dona, Anthony C; Kyriakides, Michael; Scott, Flora; Shephard, Elizabeth A; Varshavi, Dorsa; Veselkov, Kirill; Everett, Jeremy R
2016-01-01
Metabonomics/metabolomics is an important science for the understanding of biological systems and the prediction of their behaviour, through the profiling of metabolites. Two technologies are routinely used in order to analyse metabolite profiles in biological fluids: nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), the latter typically with hyphenation to a chromatography system such as liquid chromatography (LC), in a configuration known as LC-MS. With both NMR and MS-based detection technologies, the identification of the metabolites in the biological sample remains a significant obstacle and bottleneck. This article provides guidance on methods for metabolite identification in biological fluids using NMR spectroscopy, and is illustrated with examples from recent studies on mice.
Low-energy ion beam-based deposition of gallium nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasquez, M. R., E-mail: mrvasquez@coe.upd.edu.ph; Wada, M.
2016-02-15
An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substratemore » was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.« less
[Lean thinking and brain-dead patient assistance in the organ donation process].
Pestana, Aline Lima; dos Santos, José Luís Guedes; Erdmann, Rolf Hermann; da Silva, Elza Lima; Erdmann, Alacoque Lorenzini
2013-02-01
Organ donation is a complex process that challenges health system professionals and managers. This study aimed to introduce a theoretical model to organize brain-dead patient assistance and the organ donation process guided by the main lean thinking ideas, which enable production improvement through planning cycles and the development of a proper environment for successful implementation. Lean thinking may make the process of organ donation more effective and efficient and may contribute to improvements in information systematization and professional qualifications for excellence of assistance. The model is configured as a reference that is available for validation and implementation by health and nursing professionals and managers in the management of potential organ donors after brain death assistance and subsequent transplantation demands.
Particle Acceleration in a Statistically Modeled Solar Active-Region Corona
NASA Astrophysics Data System (ADS)
Toutounzi, A.; Vlahos, L.; Isliker, H.; Dimitropoulou, M.; Anastasiadis, A.; Georgoulis, M.
2013-09-01
Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field's strength and configuration with test particle simulations. Our objective is to complement previous work done on the subject. As in previous efforts, a set of three probability distribution functions describes our ad-hoc electromagnetic field configurations. In addition, we work on data-driven 3D magnetic field extrapolations. A collisional relativistic test-particle simulation traces each particle's guiding center within these configurations. We also find that an interplay between different electron populations (thermal/non-thermal, ambient/injected) in our simulations may also address, via a re-acceleration mechanism, the so called `number problem'. Using the simulated particle-energy distributions at different heights of the cylinder we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.
Simulation tools for guided wave based structural health monitoring
NASA Astrophysics Data System (ADS)
Mesnil, Olivier; Imperiale, Alexandre; Demaldent, Edouard; Baronian, Vahan; Chapuis, Bastien
2018-04-01
Structural Health Monitoring (SHM) is a thematic derived from Non Destructive Evaluation (NDE) based on the integration of sensors onto or into a structure in order to monitor its health without disturbing its regular operating cycle. Guided wave based SHM relies on the propagation of guided waves in plate-like or extruded structures. Using piezoelectric transducers to generate and receive guided waves is one of the most widely accepted paradigms due to the low cost and low weight of those sensors. A wide range of techniques for flaw detection based on the aforementioned setup is available in the literature but very few of these techniques have found industrial applications yet. A major difficulty comes from the sensitivity of guided waves to a substantial number of parameters such as the temperature or geometrical singularities, making guided wave measurement difficult to analyze. In order to apply guided wave based SHM techniques to a wider spectrum of applications and to transfer those techniques to the industry, the CEA LIST develops novel numerical methods. These methods facilitate the evaluation of the robustness of SHM techniques for multiple applicative cases and ease the analysis of the influence of various parameters, such as sensors positioning or environmental conditions. The first numerical tool is the guided wave module integrated to the commercial software CIVA, relying on a hybrid modal-finite element formulation to compute the guided wave response of perturbations (cavities, flaws…) in extruded structures of arbitrary cross section such as rails or pipes. The second numerical tool is based on the spectral element method [2] and simulates guided waves in both isotropic (metals) and orthotropic (composites) plate like-structures. This tool is designed to match the widely accepted sparse piezoelectric transducer array SHM configuration in which each embedded sensor acts as both emitter and receiver of guided waves. This tool is under development and will be adapted to simulate complex real-life structures such as curved composite panels with stiffeners. This communication will present these numerical tools and their main functionalities.
NASA Astrophysics Data System (ADS)
Kim, Duk-hyun; Lee, Hyoung-Jin
2018-04-01
A study of efficient aerodynamic database modeling method was conducted. A creation of database using periodicity and symmetry characteristic of missile aerodynamic coefficient was investigated to minimize the number of wind tunnel test cases. In addition, studies of how to generate the aerodynamic database when the periodicity changes due to installation of protuberance and how to conduct a zero calibration were carried out. Depending on missile configurations, the required number of test cases changes and there exist tests that can be omitted. A database of aerodynamic on deflection angle of control surface can be constituted using phase shift. A validity of modeling method was demonstrated by confirming that the result which the aerodynamic coefficient calculated by using the modeling method was in agreement with wind tunnel test results.
Magnetospheric filter effect for Pc 3 Alfven mode waves
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.
1995-01-01
We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observation at high altitudes.
Magnetospheric filter effect for Pc 3 Alfven mode waves
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.
1994-01-01
We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of a magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observations at high latitudes.
1D profiling using highly dispersive guided waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volker, Arno; Zon, Tim van; Enthoven, Daniel
2015-03-31
Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collectedmore » in a pit-catch configuration at the 12 o'clock position using highly dispersive guided waves. The phase spectrum is used to invert for a wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. An EMAT sensor design has been made to measure at the 12 o'clock position of a pipe. The concept is evaluated on measured data, showing good sizing capabilities on a variety simple defect profiles.« less
A User''s Guide to the Zwikker-Kosten Transmission Line Code (ZKTL)
NASA Technical Reports Server (NTRS)
Kelly, J. J.; Abu-Khajeel, H.
1997-01-01
This user's guide documents updates to the Zwikker-Kosten Transmission Line Code (ZKTL). This code was developed for analyzing new liner concepts developed to provide increased sound absorption. Contiguous arrays of multi-degree-of-freedom (MDOF) liner elements serve as the model for these liner configurations, and Zwikker and Kosten's theory of sound propagation in channels is used to predict the surface impedance. Transmission matrices for the various liner elements incorporate both analytical and semi-empirical methods. This allows standard matrix techniques to be employed in the code to systematically calculate the composite impedance due to the individual liner elements. The ZKTL code consists of four independent subroutines: 1. Single channel impedance calculation - linear version (SCIC) 2. Single channel impedance calculation - nonlinear version (SCICNL) 3. Multi-channel, multi-segment, multi-layer impedance calculation - linear version (MCMSML) 4. Multi-channel, multi-segment, multi-layer impedance calculation - nonlinear version (MCMSMLNL) Detailed examples, comments, and explanations for each liner impedance computation module are included. Also contained in the guide are depictions of the interactive execution, input files and output files.
Performance characteristics of the MAMMOCARE PET system based on NEMA standard
NASA Astrophysics Data System (ADS)
Moliner, L.; Correcher, C.; Hellingman, D.; Alamo, J.; Carrilero, V.; Orero, A.; González, A. J.; Benlloch, J. M.
2017-01-01
In this work, we present the performance characteristics of the MAMMOCARE PET prototype based on an adaptation of the NU 4-2008 NEMA standard. MAMMOCARE is a project under the European Commission's 7th Framework programme to develop a breast biopsy system guided by a dedicated breast PET (dbPET) images. The PET system is formed by two rings with twelve detector modules each. The transaxial FOV is 170 mm and the axial FOV is 94 mm. The system can separate the detectors up to 60 mm in transaxial plane to allow the biopsy needle entrance. The acquisitions are reconstructed using the LMOS algorithm with tube-of-response (TOR) backprojector, 1 iteration and 16 subsets. The voxel and pixel sizes are (1 × 1 × 1) mm3 and (1.6 × 1.6) mm2 respectively. The radial resolution measured is 1.62 mm in the center of the FOV and 3.45 mm at 50 mm off the center in the radial direction using the closed configuration. In the open configuration the resolution reaches 1.85 mm and 3.65 mm at center and at 50 mm off-center. The adapted recovery coefficients (ARC) are measured for six hot rods inside a cylindrical phantom with a warm background. The ratio between hot and background regions is 10. The ARC values for the closed configuration are 0.32, 0.77 and 0.96 for the inserts with a diameter of 4.5 mm, 8.3 mm and 25 mm, respectively. These values decrease to 0.16, 0.52 and 0.77 for the open configuration. The sensitivity measured using an energy window of 250 keV-750 keV is 3.6% and 2.5% for the closed and open configurations respectively. The NEC peak is 141 kcps@68 MBq and 147 kcps@78 MBq for closed and open configurations. The performance characteristics measured with the open ring configuration decreases with respect the closed configuration, however the values remain comparable to other dbPETs.
Mechanical properties of commercially available nylon sutures in the United States.
Callahan, Travis L; Lear, William; Kruzic, Jamie J; Maughan, Cory B
2017-05-01
Surgeons can choose from a wide selection of commercially available suture brands, which come at a range of prices. There is currently limited evidence in the literature to guide this selection process. This investigation examined the breaking force, stress, and elongation of a variety of commercially available nylon sutures compared to their relative prices. Seven 5-0, nonabsorbable, nylon suture brands were tensile tested in straight, knotted and knot-security configurations according to the procedures outlined by the United States Pharmacopeia for the tensile testing of sutures. Covidien, the cheapest brand tested, had the highest failure load of straight and knot-security tests. Dafilon was found to have the highest breaking force and percent elongation of knot-pull tests. J&J Ethicon and Supramid had the highest percent elongation to failure for straight-pull and knot-security tests, respectively. This study was limited to specific in vitro tensile properties of nylon suture. Other factors affecting suture quality and price, such as needle properties, were not investigated. The data presented in the study provide information for guiding the selection and purchase of sutures according to tensile properties. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 815-819, 2017. © 2016 Wiley Periodicals, Inc.
Guided ion beam and theoretical studies of the bond energy of SmS+
NASA Astrophysics Data System (ADS)
Armentrout, P. B.; Demireva, Maria; Peterson, Kirk A.
2017-12-01
Previous work has shown that atomic samarium cations react with carbonyl sulfide to form SmS+ + CO in an exothermic and barrierless process. To characterize this reaction further, the bond energy of SmS+ is determined in the present study using guided ion beam tandem mass spectrometry. Reactions of SmS+ with Xe, CO, and O2 are examined. Results for collision-induced dissociation processes with all three molecules along with the endothermicity of the SmS+ + CO → Sm+ + COS exchange reaction are combined to yield D0(Sm+-S) = 3.37 ± 0.20 eV. The CO and O2 reactions also yield a SmSO+ product, with measured endothermicities that indicate D0(SSm+-O) = 3.73 ± 0.16 eV and D0(OSm+-S) = 1.38 ± 0.27 eV. The SmS+ bond energy is compared with theoretical values characterized at several levels of theory, including CCSD(T) complete basis set extrapolations using all-electron basis sets. Multireference configuration interaction calculations with explicit spin-orbit calculations along with composite thermochemistry using the Feller-Peterson-Dixon method and all-electron basis sets were also explored for SmS+, and for comparison, SmO, SmO+, and EuO.
Guided ion beam and theoretical studies of the bond energy of SmS.
Armentrout, P B; Demireva, Maria; Peterson, Kirk A
2017-12-07
Previous work has shown that atomic samarium cations react with carbonyl sulfide to form SmS + + CO in an exothermic and barrierless process. To characterize this reaction further, the bond energy of SmS + is determined in the present study using guided ion beam tandem mass spectrometry. Reactions of SmS + with Xe, CO, and O 2 are examined. Results for collision-induced dissociation processes with all three molecules along with the endothermicity of the SmS + + CO → Sm + + COS exchange reaction are combined to yield D 0 (Sm + -S) = 3.37 ± 0.20 eV. The CO and O 2 reactions also yield a SmSO + product, with measured endothermicities that indicate D 0 (SSm + -O) = 3.73 ± 0.16 eV and D 0 (OSm + -S) = 1.38 ± 0.27 eV. The SmS + bond energy is compared with theoretical values characterized at several levels of theory, including CCSD(T) complete basis set extrapolations using all-electron basis sets. Multireference configuration interaction calculations with explicit spin-orbit calculations along with composite thermochemistry using the Feller-Peterson-Dixon method and all-electron basis sets were also explored for SmS + , and for comparison, SmO, SmO + , and EuO.
Small caliber guided projectile
Jones, James F [Albuquerque, NM; Kast, Brian A [Albuquerque, NM; Kniskern, Marc W [Albuquerque, NM; Rose, Scott E [Albuquerque, NM; Rohrer, Brandon R [Albuquerque, NM; Woods, James W [Albuquerque, NM; Greene, Ronald W [Albuquerque, NM
2010-08-24
A non-spinning projectile that is self-guided to a laser designated target and is configured to be fired from a small caliber smooth bore gun barrel has an optical sensor mounted in the nose of the projectile, a counterbalancing mass portion near the fore end of the projectile and a hollow tapered body mounted aft of the counterbalancing mass. Stabilizing strakes are mounted to and extend outward from the tapered body with control fins located at the aft end of the strakes. Guidance and control electronics and electromagnetic actuators for operating the control fins are located within the tapered body section. Output from the optical sensor is processed by the guidance and control electronics to produce command signals for the electromagnetic actuators. A guidance control algorithm incorporating non-proportional, "bang-bang" control is used to steer the projectile to the target.
Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling
Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J
2015-01-06
A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.
SEE Design Guide and Requirements for Electrical Deadfacing
NASA Technical Reports Server (NTRS)
Berki, Joe M.; Sargent, Noel; Kauffman, W. (Technical Monitor)
2002-01-01
The purpose of this design guide is to present information for understanding and mitigating the potential hazards associated with de-mating and mating powered electrical connectors on space flight vehicles. The process of staging is a necessary function in the launching of space vehicles and in the deployment of satellites, and now in manned assembly of systems in space. During this electrical interconnection process, various environments may be encountered that warrant the restriction of the voltage and current present across the pins of an electrical connector prior to separation, mating, or in a static open non-mated configuration. This process is called deadfacing. These potentially hazardous environments encompass the obvious explosive fuel vapors and human shock hazard, to multiple Electro-Magnetic Interference (EMI) phenomena related to the rapid rate of change in current as well as exposure to Radio Frequency (RF) fields.
Integrated simulation of magnetic-field-assist fast ignition laser fusion
NASA Astrophysics Data System (ADS)
Johzaki, T.; Nagatomo, H.; Sunahara, A.; Sentoku, Y.; Sakagami, H.; Hata, M.; Taguchi, T.; Mima, K.; Kai, Y.; Ajimi, D.; Isoda, T.; Endo, T.; Yogo, A.; Arikawa, Y.; Fujioka, S.; Shiraga, H.; Azechi, H.
2017-01-01
To enhance the core heating efficiency in fast ignition laser fusion, the concept of relativistic electron beam guiding by external magnetic fields was evaluated by integrated simulations for FIREX class targets. For the cone-attached shell target case, the core heating performance deteriorates by applying magnetic fields since the core is considerably deformed and most of the fast electrons are reflected due to the magnetic mirror formed through the implosion. On the other hand, in the case of a cone-attached solid ball target, the implosion is more stable under the kilo-tesla-class magnetic field. In addition, feasible magnetic field configuration is formed through the implosion. As a result, the core heating efficiency doubles by magnetic guiding. The dependence of core heating properties on the heating pulse shot timing was also investigated for the solid ball target.
Rotary engine performance computer program (RCEMAP and RCEMAPPC): User's guide
NASA Technical Reports Server (NTRS)
Bartrand, Timothy A.; Willis, Edward A.
1993-01-01
This report is a user's guide for a computer code that simulates the performance of several rotary combustion engine configurations. It is intended to assist prospective users in getting started with RCEMAP and/or RCEMAPPC. RCEMAP (Rotary Combustion Engine performance MAP generating code) is the mainframe version, while RCEMAPPC is a simplified subset designed for the personal computer, or PC, environment. Both versions are based on an open, zero-dimensional combustion system model for the prediction of instantaneous pressures, temperature, chemical composition and other in-chamber thermodynamic properties. Both versions predict overall engine performance and thermal characteristics, including bmep, bsfc, exhaust gas temperature, average material temperatures, and turbocharger operating conditions. Required inputs include engine geometry, materials, constants for use in the combustion heat release model, and turbomachinery maps. Illustrative examples and sample input files for both versions are included.
Coherent perfect absorption mediated enhancement of transverse spin in a gap plasmon guide
NASA Astrophysics Data System (ADS)
Mukherjee, Samyobrata; Dutta Gupta, Subhasish
2017-01-01
We consider a symmetric gap plasmon guide (a folded Kretschmann configuration) supporting both symmetric and antisymmetric coupled surface plasmons. We calculate the transverse spin under illumination from both the sides like in coherent perfect absorption (CPA), whereby all the incident light can be absorbed to excite one of the modes of the structure. Significant enhancement in the transverse spin is shown to be possible when the CPA dip and the mode excitation are at the same frequency. The enhancement results from CPA-mediated total transfer of the incident light to either of the coupled modes and the associated large local fields. The effect is shown to be robust against small deviations from the symmetric structure. The transverse spin is localized in the structure since in the ambient dielectric there are only incident plane waves lacking any structure.
Experiences in Delta mission planning
NASA Technical Reports Server (NTRS)
Kork, J.
1981-01-01
The Delta launch vehicle has experienced 153 successful launches since 1960 and 40 more are scheduled. Relying on up-to-date technology and proven flight hardware, the Delta vehicle has been used for low to high circular and geosynchronous transfer orbits, high elliptic probes, and lunar and planetary missions. A history of Delta launches and configuration modifications is presented, noting a 92-95% success rate and its cost effective role in reimbursable missions. Elements of mission planning such as feasibility studies (1-3 yrs), spacecraft restraints manuals, reference trajectories, preliminary mission analysis, detailed test objectives, range/safety studies, guided nominal trajectory, and mission specific studies are discussed. Trajectory shaping determines vehicle and spacecraft restraints, optimizes the trajectory, and maximizes the payload capabilities. Improvements in the Delta vehicle have boosted payloads from 100 to 2890 lbs., improving the price per pound ratio, as costs have risen, only by a factor of three. Current launch schedules extend well into 1985.
The Role of Search Speed in the Contextual Cueing of Children's Attention.
Darby, Kevin; Burling, Joseph; Yoshida, Hanako
2014-01-01
The contextual cueing effect is a robust phenomenon in which repeated exposure to the same arrangement of random elements guides attention to relevant information by constraining search. The effect is measured using an object search task in which a target (e.g., the letter T) is located within repeated or nonrepeated visual contexts (e.g., configurations of the letter L). Decreasing response times for the repeated configurations indicates that contextual information has facilitated search. Although the effect is robust among adult participants, recent attempts to document the effect in children have yielded mixed results. We examined the effect of search speed on contextual cueing with school-aged children, comparing three types of stimuli that promote different search times in order to observe how speed modulates this effect. Reliable effects of search time were found, suggesting that visual search speed uniquely constrains the role of attention toward contextually cued information.
Terminal configured vehicle program: Test facilities guide
NASA Technical Reports Server (NTRS)
1980-01-01
The terminal configured vehicle (TCV) program was established to conduct research and to develop and evaluate aircraft and flight management system technology concepts that will benefit conventional take off and landing operations in the terminal area. Emphasis is placed on the development of operating methods for the highly automated environment anticipated in the future. The program involves analyses, simulation, and flight experiments. Flight experiments are conducted using a modified Boeing 737 airplane equipped with highly flexible display and control equipment and an aft flight deck for research purposes. The experimental systems of the Boeing 737 are described including the flight control computer systems, the navigation/guidance system, the control and command panel, and the electronic display system. The ground based facilities used in the program are described including the visual motion simulator, the fixed base simulator, the verification and validation laboratory, and the radio frequency anechoic facility.
FY 95 engineering work plan for the design reconstitution implementation action plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigbee, J.D.
Design reconstitution work is to be performed as part of an overall effort to upgrade Configuration Management (CM) at TWRS. WHC policy is to implement a program that is compliant with DOE-STD-1073-93, Guide for Operational Configuration Management Program. DOE-STD-1073 requires an adjunct program for reconstituting design information. WHC-SD-WM-CM-009, Design Reconstitution Program Plan for Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System, is the TWRS plan for meeting DOE-STD-1073 design reconstitution requirements. The design reconstitution plan is complex requiring significant time and effort for implementation. In order to control costs, and integrate the work into other TWRS activities,more » a Design Reconstitution Implementation Action Plan (DR IAP) will be developed, and approved by those organizations having ownership or functional interest in this activity.« less
Nacelle Integration to Reduce the Sonic Boom of Aircraft Designed to Cruise at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Mack, Robert J.
1999-01-01
An empirical method for integrating the engine nacelles on a wing-fuselage-fin(s) configuration has been described. This method is based on Whitham theory and Seebass and George sonic-boom minimization theory, With it, both reduced sonic-boom as well as high aerodynamic efficiency methods can be applied to the conceptual design of a supersonic-cruise aircraft. Two high-speed civil transport concepts were used as examples to illustrate the application of this engine-nacelle integration methodology: (1) a concept with engine nacelles mounted on the aft-fuselage, the HSCT-1OB; and (2) a concept with engine nacelles mounted under an extended-wing center section, the HSCT-11E. In both cases, the key to a significant reduction in the sonic-boom contribution from the engine nacelles was to use the F-function shape of the concept as a guide to move the nacelles further aft on the configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redi, M.H.; Mynick, H.E.; Suewattana, M.
Hamiltonian coordinate, guiding-center code calculations of the confinement of suprathermal ions in quasi-axisymmetric stellarator (QAS) designs have been carried out to evaluate the attractiveness of compact configurations which are optimized for ballooning stability. A new stellarator particle-following code is used to predict ion loss rates and particle confinement for thermal and neutral beam ions in a small experiment with R = 145 cm, B = 1-2 T and for alpha particles in a reactor-size device. In contrast to tokamaks, it is found that high edge poloidal flux has limited value in improving ion confinement in QAS, since collisional pitch-angle scatteringmore » drives ions into ripple wells and stochastic field regions, where they are quickly lost. The necessity for reduced stellarator ripple fields is emphasized. The high neutral beam ion loss predicted for these configurations suggests that more interesting physics could be explored with an experiment of less constrained size and magnetic field geometry.« less
Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan; Eom, Tae Bong
2011-11-01
We present an angle generator with high resolution and accuracy, which uses multiple ultrasonic motors and a self-calibratable encoder. A cylindrical air bearing guides a rotational motion, and the ultrasonic motors achieve high resolution over the full circle range with a simple configuration. The self-calibratable encoder can compensate the scale error of a divided circle (signal period: 20") effectively by applying the equal-division-averaged method. The angle generator configures a position feedback control loop using the readout of the encoder. By combining the ac and dc operation mode, the angle generator produced stepwise angular motion with 0.005" resolution. We also evaluated the performance of the angle generator using a precision angle encoder and an autocollimator. The expanded uncertainty (k = 2) in the angle generation was estimated less than 0.03", which included the calibrated scale error and the nonlinearity error. © 2011 American Institute of Physics
Overcoming the brittleness of glass through bio-inspiration and micro-architecture.
Mirkhalaf, M; Dastjerdi, A Khayer; Barthelat, F
2014-01-01
Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of 'stamp holes'. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.
3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation
NASA Astrophysics Data System (ADS)
Dekoulis, George
2016-07-01
This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jia; Harrison, Rane A.; Li, Lianbo
KRAS G12C, the most common RAS mutation found in non-small-cell lung cancer, has been the subject of multiple recent covalent small-molecule inhibitor campaigns including efforts directed at the guanine nucleotide pocket and separate work focused on an inducible pocket adjacent to the switch motifs. Multiple conformations of switch II have been observed, suggesting that switch II pocket (SIIP) binders may be capable of engaging a range of KRAS conformations. Here we report the use of hydrogen/deuterium-exchange mass spectrometry (HDX MS) to discriminate between conformations of switch II induced by two chemical classes of SIIP binders. We investigated the structural basismore » for differences in HDX MS using X-ray crystallography and discovered a new SIIP configuration in response to binding of a quinazoline chemotype. These results have implications for structure-guided drug design targeting the RAS SIIP.« less
A topology of mineralization and its meaning for prospecting
Neuerburg, G.J.
1982-01-01
Epigenetic mineral deposits are universal members of an orderly spatial and temporal arrangement of igneous rocks, endomorphic rocks, and hydrothermally altered rocks. The association and sequence of these rocks is invariant whereas the metric relations and configurations of the properties of these rocks are unlimited in variety. This characterization satisfies the doctrines of topology. Metric relations are statistical, and their modes are among the better guides to optimal areas for exploration. Metric configurations are graphically irregular and unpredictable mathematical surfaces like mountain topography. Each mineral edifice must be mapped to locate its mineral deposits. All measurements and observations are only positive or neutral for the occurrence of a mineral deposit. Effective prospecting is based on an increasing density of positive data with proximity to the mineral deposit. This means sampling for maximal numbers of positive data, pragmatically the highest ore-element assays at each site, by selecting rock showing maximal development of lode attributes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorum, O.H.; Hoover, A.; Jones, J.P.
This paper addresses some issues in the development of sensor-based systems for mobile robot navigation which use range imaging sensors as the primary source for geometric information about the environment. In particular, we describe a model of scanning laser range cameras which takes into account the properties of the mechanical system responsible for image formation and a calibration procedure which yields improved accuracy over previous models. In addition, we describe an algorithm which takes the limitations of these sensors into account in path planning and path execution. In particular, range imaging sensors are characterized by a limited field of viewmore » and a standoff distance -- a minimum distance nearer than which surfaces cannot be sensed. These limitations can be addressed by enriching the concept of configuration space to include information about what can be sensed from a given configuration, and using this information to guide path planning and path following.« less
The Role of Search Speed in the Contextual Cueing of Children’s Attention
Darby, Kevin; Burling, Joseph; Yoshida, Hanako
2013-01-01
The contextual cueing effect is a robust phenomenon in which repeated exposure to the same arrangement of random elements guides attention to relevant information by constraining search. The effect is measured using an object search task in which a target (e.g., the letter T) is located within repeated or nonrepeated visual contexts (e.g., configurations of the letter L). Decreasing response times for the repeated configurations indicates that contextual information has facilitated search. Although the effect is robust among adult participants, recent attempts to document the effect in children have yielded mixed results. We examined the effect of search speed on contextual cueing with school-aged children, comparing three types of stimuli that promote different search times in order to observe how speed modulates this effect. Reliable effects of search time were found, suggesting that visual search speed uniquely constrains the role of attention toward contextually cued information. PMID:24505167
Nonlinear machine learning and design of reconfigurable digital colloids.
Long, Andrew W; Phillips, Carolyn L; Jankowksi, Eric; Ferguson, Andrew L
2016-09-14
Digital colloids, a cluster of freely rotating "halo" particles tethered to the surface of a central particle, were recently proposed as ultra-high density memory elements for information storage. Rational design of these digital colloids for memory storage applications requires a quantitative understanding of the thermodynamic and kinetic stability of the configurational states within which information is stored. We apply nonlinear machine learning to Brownian dynamics simulations of these digital colloids to extract the low-dimensional intrinsic manifold governing digital colloid morphology, thermodynamics, and kinetics. By modulating the relative size ratio between halo particles and central particles, we investigate the size-dependent configurational stability and transition kinetics for the 2-state tetrahedral (N = 4) and 30-state octahedral (N = 6) digital colloids. We demonstrate the use of this framework to guide the rational design of a memory storage element to hold a block of text that trades off the competing design criteria of memory addressability and volatility.
Overcoming the brittleness of glass through bio-inspiration and micro-architecture
NASA Astrophysics Data System (ADS)
Mirkhalaf, M.; Dastjerdi, A. Khayer; Barthelat, F.
2014-01-01
Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of ‘stamp holes’. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.
NASA Technical Reports Server (NTRS)
Moore, Royce D.; Shyne, Rickey J.; Boldman, Donald R.; Gelder, Thomas F.
1987-01-01
Detailed flow surveys downstream of the corner turning vanes and downstream of the fan inlet guide vanes have been obtained in a 0.1-scale model of the NASA Lewis Research Center's proposed Altitude Wind Tunnel. Two turning vane designs were evaluated in both corners 1 and 2 (the corners between the test section and the drive fan). Vane A was a controlled-diffusion airfoil and vane B was a circular-arc airfoil. At given flows the turning vane wakes were surveyed to determine the vane pressure losses. For both corners the vane A turning vane configuration gave lower losses than the vane B configuration in the regions where the flow regime should be representative of two-dimensional flow. For both vane sets the vane loss coefficient increased rapidly near the walls.
Modeling of dielectric elastomer as electromechanical resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bo, E-mail: liboxjtu@mail.xjtu.edu.cn; Liu, Lei; Chen, Hualing
Dielectric elastomers (DEs) feature nonlinear dynamics resulting from an electromechanical coupling. Under alternating voltage, the DE resonates with tunable performances. We present an analysis of the nonlinear dynamics of a DE as electromechanical resonator (DEER) configured as a pure shear actuator. A theoretical model is developed to characterize the complex performance under different boundary conditions. Physical mechanisms are presented and discussed. Chaotic behavior is also predicted, illustrating instabilities in the dynamics. The results provide a guide to the design and application of DEER in haptic devices.
1992-05-31
configuration. 25 We have tested it electronically to 26 GHz and found that the microwave loss is under 10 dB over the entire range. Our initial phase...UNION EFFORT 32 IEEE MICROWAVE AND GUIDED WAVE LETTERS. VOL. I. NO. 2. FEBRUARY 1991 Wide-Band Millimeter Wave Characterization of Sub-0.2 Micrometer...transistors (HEMT’s) ar nra- (over the frequency range of 1-26 GHz) and a network analyzer H ingly replacing GaAs MESFET’s in microwave and rail- als(ove r
New Measure of the Dissipation Region in Collisionless Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha
2012-01-01
A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron s rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.
NASA Technical Reports Server (NTRS)
Barbero, P.; Chin, J.
1973-01-01
The theoretical derivation of the set of equations is discussed which is applicable to modeling the dynamic characteristics of aeroelastically-scaled models flown on the two-cable mount system in a 16 ft transonic dynamics tunnel. The computer program provided for the analysis is also described. The program calculates model trim conditions as well as 3 DOF longitudinal and lateral/directional dynamic conditions for various flying cable and snubber cable configurations. Sample input and output are included.
NASA Technical Reports Server (NTRS)
Craidon, C. B.
1983-01-01
A computer program was developed to extend the geometry input capabilities of previous versions of a supersonic zero lift wave drag computer program. The arbitrary geometry input description is flexible enough to describe almost any complex aircraft concept, so that highly accurate wave drag analysis can now be performed because complex geometries can be represented accurately and do not have to be modified to meet the requirements of a restricted input format.
Plasmonic Sensor Based on Dielectric Nanoprisms
NASA Astrophysics Data System (ADS)
Elshorbagy, Mahmoud H.; Cuadrado, Alexander; Alda, Javier
2017-11-01
A periodic array of extruded nanoprisms is proposed to generate surface plasmon resonances for sensing applications. Nanoprisms guide and funnel light towards the metal-dielectric interface where the dielectric acts as the medium under test. The system works under normal incidence conditions and is spectrally interrogated. The performance is better than the classical Kretschmann configurations, and the values of sensitivity and figure of merit are competitive with other plasmonic sensor technologies. The geometry and the choice of materials have been made taking into account applicable fabrication constraints.
New Measure of the Dissipation Region in Collisionless Magnetic Reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zenitani, Seiji; Hesse, Michael; Klimas, Alex
2011-05-13
A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron's rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.
Dielectric millimeter waveguides. Volume 1
NASA Astrophysics Data System (ADS)
Yeh, Cavour
1988-03-01
This report summarizes the result of the research carried out for the Postdoctoral Task E-6-7108 administered by the University of Dayton under contract F30602-81-C-0206 with RADC. The primary objectives of this research program were to learn whether there exists a dielectric waveguide configuration which offers a lower loss figure than a circular dielectric rod and to establish an experimental technique to measure the guiding characteristics of waves on dielectric structures. These objectives were met. Future research areas are also described in this report.
The Stratway Program for Strategic Conflict Resolution: User's Guide
NASA Technical Reports Server (NTRS)
Hagen, George E.; Butler, Ricky W.; Maddalon, Jeffrey M.
2016-01-01
Stratway is a strategic conflict detection and resolution program. It provides both intent-based conflict detection and conflict resolution for a single ownship in the presence of multiple traffic aircraft and weather cells defined by moving polygons. It relies on a set of heuristic search strategies to solve conflicts. These strategies are user configurable through multiple parameters. The program can be called from other programs through an application program interface (API) and can also be executed from a command line.
1981-06-01
of standard reports are: 1. Activity Locator; 2. Report of Active Duty Obligations and Projected Rotation Date; and 3. Enlisted Personnel Advancement ... advancement in rate, etc.), currently used forms are listed and analyzed to determine how such transactions are processed under the existing system...to suport an SDS functional organization. It is emphasized that configuration design should consider the requirements which will be imposed under all
1976-11-01
Hardware • System functional configuration characteristics • Component aging mechanisms (engineering) • Subsystem/component FMEAs • Subsystem...modified to fit the specific mission(s) under investigation. 60 — .- m. • •. mi . ui ••_!!•»•••’ i • .. ••Mil ’’•^•^••BWW^WlWi^Wi...8217 / t / / / s y / ’ / / * y hO | -;-; • / / 1, r T ", 60 / / / • f tl’Jt, s s 1 / ’ • Mode 7 B=4.0 ^ / 7 / 0 Mode 8
Evaluation of acoustic Doppler velocimetry (ADV) performance under various probe configurations
NASA Astrophysics Data System (ADS)
Liu, Da; Valyrakis, Manousos
2017-04-01
Acoustic Doppler velocimetry (ADV) is widely used as one of the most versatile and robust flow diagnostics tools for both laboratory and field studies across a range of research and applied themes spanning engineering eco-hydraulics and geomorphology. A range of specific ADV probes with varying specifications, are readily available for use by professionals and researchers. However, in practice using certain ADV equipment under certain default configurations can easily result in obtaining flow diagnostics that are non-representative of the real flow conditions. This appears to be true for most probes but even more those with which higher temporal resolution can be achieved - which many times is desired for assessing turbulence levels, amongst others. A preliminary examination revealed that there is a varying level of dependency on a number of the probes' configuration parameters, which even though detailed in the user manual, a definite guide for the user is lacking. Subsequently users of this equipment may end up underutilizing or using it in a manner that returns inaccurate results. There are little, if any, resources in obtaining a better understanding on how to use the probe effectively. To this goal a series of laboratory experiments are conducted, under the same open channel flow conditions, using a profiler (ADCP VectrinoII from Nortek®) aiming to cover the full range of probe configuration combinations that can be used in practice. For each experiment, single or multiple point measurements are taken to reconstruct velocity and turbulence intensity profiles. These are conducted at the same location (mid-channel) under the same flow conditions (referring to steady uniform flow and fully developed turbulence) for all probe configurations. In particular, the effect of tested parameters (including Range length, Range to fist cell, Sampling rate, Ping algorithm, Transmit pulse size and Cell size) on the sensitivity and accuracy of the obtained results is assessed. The signal to noise ratio (SNR) and the correlation of the measurement are used in evaluating the data quality, while a qualitative comparison of the resulting profiles for flow diagnostics is enabled using reference profiles obtained via a VectrinoI ADV (from Nortek®) and MicroADV (from Sontek®) respectively under the exactly same flow condition at the same location. These observations are important to identify its best configuration for a given probe towards improving the data quality and accuracy.
Petit, Philippe; Trosseille, Xavier; Lebarbé, Mathieu; Baudrit, Pascal; Potier, Pascal; Compigne, Sabine; Masuda, Mitsutoshi; Yamaoka, Akira; Yasuki, Tsuyoshi; Douard, Richard
2015-11-01
The WorldSID dummy can be equipped with both a pubic and a sacroiliac joint (S-I joint) loadcell. Although a pubic force criterion and the associated injury risk curve are currently available and used in regulation (ECE95, FMVSS214), as of today injury mechanisms, injury criteria, and injury assessment reference values are not available for the sacroiliac joint itself. The aim of this study was to investigate the sacroiliac joint injury mechanism. Three configurations were identified from full-scale car crashes conducted with the WorldSID 50th percentile male where the force passing through the pubis in all three tests was approximately 1500 N while the sacroiliac Fy/Mx peak values were 4500 N/50 Nm, 2400 N/130 Nm, and 5300 N/150 Nm, respectively. These tests were reproduced using a 150 kg guided probe impacting Post Mortem Human Subjects (PMHS) at 8 m/s, 5.4 m/s and 7.5 m/s. The shape and the orientation of the impacting face of the probe were selected to match the WorldSID pubic Fy and sacroiliac Fy/Mx loads of the three vehicle test configurations. Three PMHS were tested in each of the three configurations (nine PMHS in total). In the first PMHS configuration, one specimen sustained an AIS 3 injury and one sustained an AIS 4 injury (an unstable pelvis with complete disruption of the posterior arch, a sacroiliac joint disruption associated with an iliac fracture, and a pubic symphysis separation). In the second configuration, all specimens sustained a fracture of the superior lateral iliac wing (AIS 2). In the third configuration, one specimen sustained a partial disruption of the anterior arch (AIS 2). Based on the data from strain gauges located on the pubic rami and near the sacroiliac joint, the pubic rami fractures were identified as occurring prior to the sacroiliac fractures. Out of nine impactor tests performed, the PMHS S-I joint injuries were observed to consistently be associated with pelvic anterior arch fractures. In addition, from the injury sequences derived from strain gauges located on the specimen pelvises and on the injury assessments obtained by necropsy, the S-I joint fractures were observed to occur after the anterior arch fractures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez Díez, Ana Luisa, E-mail: a.martinez@itma.es; Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg; Gutmann, Johannes
In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm×20 mm×2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data ofmore » the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.« less
A cylindrical SPECT camera with de-centralized readout scheme
NASA Astrophysics Data System (ADS)
Habte, F.; Stenström, P.; Rillbert, A.; Bousselham, A.; Bohm, C.; Larsson, S. A.
2001-09-01
An optimized brain single photon emission computed tomograph (SPECT) camera is being designed at Stockholm University and Karolinska Hospital. The design goal is to achieve high sensitivity, high-count rate and high spatial resolution. The sensitivity is achieved by using a cylindrical crystal, which gives a closed geometry with large solid angles. A de-centralized readout scheme where only a local environment around the light excitation is readout supports high-count rates. The high resolution is achieved by using an optimized crystal configuration. A 12 mm crystal plus 12 mm light guide combination gave an intrinsic spatial resolution better than 3.5 mm (140 keV) in a prototype system. Simulations show that a modified configuration can improve this value. A cylindrical configuration with a rotating collimator significantly simplifies the mechanical design of the gantry. The data acquisition and control system uses early digitization and subsequent digital signal processing to extract timing and amplitude information, and monitors the position of the collimator. The readout system consists of 12 or more modules each based on programmable logic and a digital signal processor. The modules send data to a PC file server-reconstruction engine via a Firewire (IEEE-1394) network.
NASA Astrophysics Data System (ADS)
Fan, Zhichao; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui
2018-02-01
Mechanically-guided 3D assembly based on controlled, compressive buckling represents a promising, emerging approach for forming complex 3D mesostructures in advanced materials. Due to the versatile applicability to a broad set of material types (including device-grade single-crystal silicon) over length scales from nanometers to centimeters, a wide range of novel applications have been demonstrated in soft electronic systems, interactive bio-interfaces as well as tunable electromagnetic devices. Previously reported 3D designs relied mainly on finite element analyses (FEA) as a guide, but the massive numerical simulations and computational efforts necessary to obtain the assembly parameters for a targeted 3D geometry prevent rapid exploration of engineering options. A systematic understanding of the relationship between a 3D shape and the associated parameters for assembly requires the development of a general theory for the postbuckling process. In this paper, a double perturbation method is established for the postbuckling analyses of planar curved beams, of direct relevance to the assembly of ribbon-shaped 3D mesostructures. By introducing two perturbation parameters related to the initial configuration and the deformation, the highly nonlinear governing equations can be transformed into a series of solvable, linear equations that give analytic solutions to the displacements and curvatures during postbuckling. Systematic analyses of postbuckling in three representative ribbon shapes (sinusoidal, polynomial and arc configurations) illustrate the validity of theoretical method, through comparisons to the results of experiment and FEA. These results shed light on the relationship between the important deformation quantities (e.g., mode ratio and maximum strain) and the assembly parameters (e.g., initial configuration and the applied strain). This double perturbation method provides an attractive route to the inverse design of ribbon-shaped 3D geometries, as demonstrated in a class of helical mesostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, B; Reyes, J; Wong, J
Purpose: To overcome the limitation of CT/CBCT in guiding radiation for soft tissue targets, we developed a bioluminescence tomography(BLT) system for preclinical radiation research. We systematically assessed the system performance in target localization and the ability of resolving two sources in simulations, phantom and in vivo environments. Methods: Multispectral images acquired in single projection were used for the BLT reconstruction. Simulation studies were conducted for single spherical source radius from 0.5 to 3 mm at depth of 3 to 12 mm. The same configuration was also applied for the double sources simulation with source separations varying from 3 to 9more » mm. Experiments were performed in a standalone BLT/CBCT system. Two sources with 3 and 4.7 mm separations placed inside a tissue-mimicking phantom were chosen as the test cases. Live mice implanted with single source at 6 and 9 mm depth, 2 sources with 3 and 5 mm separation at depth of 5 mm or 3 sources in the abdomen were also used to illustrate the in vivo localization capability of the BLT system. Results: Simulation and phantom results illustrate that our BLT can provide 3D source localization with approximately 1 mm accuracy. The in vivo results are encouraging that 1 and 1.7 mm accuracy can be attained for the single source case at 6 and 9 mm depth, respectively. For the 2 sources study, both sources can be distinguished at 3 and 5 mm separations at approximately 1 mm accuracy using 3D BLT but not 2D bioluminescence image. Conclusion: Our BLT/CBCT system can be potentially applied to localize and resolve targets at a wide range of target sizes, depths and separations. The information provided in this study can be instructive to devise margins for BLT-guided irradiation and suggests that the BLT could guide radiation for multiple targets, such as metastasis. Drs. John W. Wong and Iulian I. Iordachita receive royalty payment from a licensing agreement between Xstrahl Ltd and Johns Hopkins University.« less
NASA Technical Reports Server (NTRS)
Paciotti, Gabriel; Humphries, Martin; Rottmeier, Fabrice; Blecha, Luc
2014-01-01
In the frame of ESA's Solar Orbiter scientific mission, Almatech has been selected to design, develop and test the Slit Change Mechanism of the SPICE (SPectral Imaging of the Coronal Environment) instrument. In order to guaranty optical cleanliness level while fulfilling stringent positioning accuracies and repeatability requirements for slit positioning in the optical path of the instrument, a linear guiding system based on a double flexible blade arrangement has been selected. The four different slits to be used for the SPICE instrument resulted in a total stroke of 16.5 mm in this linear slit changer arrangement. The combination of long stroke and high precision positioning requirements has been identified as the main design challenge to be validated through breadboard models testing. This paper presents the development of SPICE's Slit Change Mechanism (SCM) and the two-step validation tests successfully performed on breadboard models of its flexible blade support system. The validation test results have demonstrated the full adequacy of the flexible blade guiding system implemented in SPICE's Slit Change Mechanism in a stand-alone configuration. Further breadboard test results, studying the influence of the compliant connection to the SCM linear actuator on an enhanced flexible guiding system design have shown significant enhancements in the positioning accuracy and repeatability of the selected flexible guiding system. Preliminary evaluation of the linear actuator design, including a detailed tolerance analyses, has shown the suitability of this satellite roller screw based mechanism for the actuation of the tested flexible guiding system and compliant connection. The presented development and preliminary testing of the high-precision long-stroke Slit Change Mechanism for the SPICE Instrument are considered fully successful such that future tests considering the full Slit Change Mechanism can be performed, with the gained confidence, directly on a Qualification Model. The selected linear Slit Change Mechanism design concept, consisting of a flexible guiding system driven by a hermetically sealed linear drive mechanism, is considered validated for the specific application of the SPICE instrument, with great potential for other special applications where contamination and high precision positioning are dominant design drivers.
The Role of Compressibility in Energy Release by Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Birn, J.; Borovosky, J. E.; Hesse, M.
2012-01-01
Using resistive compressible magnetohydrodynamics, we investigate the energy release and transfer by magnetic reconnection in finite (closed or periodic) systems. The emphasis is on the magnitude of energy released and transferred to plasma heating in configurations that range from highly compressible to incompressible, based on the magnitude of the background beta (ratio of plasma pressure over magnetic pressure) and of a guide field in two-dimensional reconnection. As expected, the system becomes more incompressible, and the role of compressional heating diminishes, with increasing beta or increasing guide field. Nevertheless, compressional heating may dominate over Joule heating for values of the guide field of 2 or 3 (in relation to the reconnecting magnetic field component) and beta of 5-10. This result stems from the strong localization of the dissipation near the reconnection site, which is modeled based on particle simulation results. Imposing uniform resistivity, corresponding to a Lundquist number of 10(exp 3) to 10(exp 4), leads to significantly larger Ohmic heating. Increasing incompressibility greatly reduces the magnetic flux transfer and the amount of energy released, from approx. 10% of the energy associated with the reconnecting field component, for zero guide field and low beta, to approx. 0.2%-0.4% for large values of the guide field B(sub y0) > 5 or large beta. The results demonstrate the importance of taking into account plasma compressibility and localization of dissipation in investigations of heating by turbulent reconnection, possibly relevant for solar wind or coronal heating.
Tiwari, Kumar Anubhav; Raisutis, Renaldas; Mazeika, Liudas; Samaitis, Vykintas
2018-03-26
In this paper, a novel 2D analytical model based on the Huygens's principle of wave propagation is proposed in order to predict the directivity patterns of contact type ultrasonic transducers in the generation of guided waves (GWs). The developed model is able to estimate the directivity patterns at any distance, at any excitation frequency and for any configuration and shape of the transducers with prior information of phase dispersive characteristics of the guided wave modes and the behavior of transducer. This, in turn, facilitates to choose the appropriate transducer or arrays of transducers, suitable guided wave modes and excitation frequency for the nondestructive testing (NDT) and structural health monitoring (SHM) applications. The model is demonstrated for P1-type macro-fiber composite (MFC) transducer glued on a 2 mm thick aluminum (Al) alloy plate. The directivity patterns of MFC transducer in the generation of fundamental guided Lamb modes (the S0 and A0) and shear horizontal mode (the SH0) are successfully obtained at 80 kHz, 5-period excitation signal. The results are verified using 3D finite element (FE) modelling and experimental investigation. The results obtained using the proposed model shows the good agreement with those obtained using numerical simulations and experimental analysis. The calculation time using the analytical model was significantly shorter as compared to the time spent in experimental analysis and FE numerical modelling.
Knowledge-Guided Docking of WW Domain Proteins and Flexible Ligands
NASA Astrophysics Data System (ADS)
Lu, Haiyun; Li, Hao; Banu Bte Sm Rashid, Shamima; Leow, Wee Kheng; Liou, Yih-Cherng
Studies of interactions between protein domains and ligands are important in many aspects such as cellular signaling. We present a knowledge-guided approach for docking protein domains and flexible ligands. The approach is applied to the WW domain, a small protein module mediating signaling complexes which have been implicated in diseases such as muscular dystrophy and Liddle’s syndrome. The first stage of the approach employs a substring search for two binding grooves of WW domains and possible binding motifs of peptide ligands based on known features. The second stage aligns the ligand’s peptide backbone to the two binding grooves using a quasi-Newton constrained optimization algorithm. The backbone-aligned ligands produced serve as good starting points to the third stage which uses any flexible docking algorithm to perform the docking. The experimental results demonstrate that the backbone alignment method in the second stage performs better than conventional rigid superposition given two binding constraints. It is also shown that using the backbone-aligned ligands as initial configurations improves the flexible docking in the third stage. The presented approach can also be applied to other protein domains that involve binding of flexible ligand to two or more binding sites.
Kos, Sebastian; Huegli, Rolf; Hofmann, Eugen; Quick, Harald H; Kuehl, Hilmar; Aker, Stephanie; Kaiser, Gernot M; Borm, Paul J; Jacob, Augustinus L; Bilecen, Deniz
2009-04-01
Demonstrate the usability of a new polyetheretherketone (PEEK)-based MR-compatible guidewire for renal artery catheterization, angioplasty, and stenting under MR-guidance using MR-visible markers, in vitro and in vivo. The new 0.035'' guidewire with fiber-reinforced PEEK core, a soft tip, and a hydrophilic coating was used. Paramagnetic markings were coated on the wire and nonbraided catheters for passive visualization. Bending stiffness of the guidewire was compared with available hydrophilic guidewires (Terumo Glidewire Stiff and Standard). A human aortic silicon phantom and 2 pigs were used. The study was animal care and use approved by the committee. Under MR-guidance, renal arteries were catheterized, balloon angioplasty was performed, and balloon expandable renal artery stents were deployed in vivo. Post mortem autopsy was performed. Guidewire visibility, pushability, steerability, and device-support capabilities of the marked guidewire were qualitatively assessed. Procedure times were recorded. Bending stiffness of the new PEEK-based wire was comparable with Standard Glidewire. In vitro and in vivo guidewire guidance, catheter configuration, renal artery catheterization, and balloon angioplasty were successful. In pigs, stent deployments were successful in both renal arteries. Autopsy revealed acceptable stent positioning. Guidewire visibility through applied markers was acceptable. Steerability, pushability, and device support were good in vitro and in vivo. The PEEK-based guide allows percutaneous MR-guided renal artery angioplasty and stenting with sufficient visibility, good steerability, pushability, and device support.
ADASY (Active Daylighting System)
NASA Astrophysics Data System (ADS)
Vázquez-Moliní, Daniel; González-Montes, Mario; Fernández-Balbuena, Antonio Á.; Bernabéu, Eusebio; García-Botella, Ángel; García-Rodríguez, Lucas; Pohl, Wilfried
2009-08-01
The main objective of ADASY (Active Daylighting System) work is to design a façade static daylighting system oriented to office applications, mainly. The goal of the project is to save energy by guiding daylight into a building for lighting purpose. With this approach we can reduce the electrical load for artificial lighting, completing it with sustainable energy. The collector of the system is integrated on a vertical façade and its distribution guide is always horizontal inside of the false ceiling. ADASY is designed with a specific patent pending caption system, a modular light-guide and light extractor luminaire system. Special care has been put on the final cost of the system and its building integration purpose. The current ADASY configuration is able to illuminate 40 m2 area with a 300lx-400lx level in the mid time work hours; furthermore it has a good enough spatial uniformity distribution and a controlled glare. The data presented in this study are the result of simulation models and have been confirmed by a physical scaled prototype. ADASY's main advantages over regular illumination systems are: -Low maintenance; it has not mobile pieces and therefore it lasts for a long time and require little attention once installed. - No energy consumption; solar light continue working even if there has been a power outage. - High quality of light: the colour rendering of light is very high - Psychological benefits: People working with daylight get less stress and more comfort, increasing productivity. - Health benefits
An apparent contradiction: increasing variability to achieve greater precision?
Rosenblatt, Noah J; Hurt, Christopher P; Latash, Mark L; Grabiner, Mark D
2014-02-01
To understand the relationship between variability of foot placement in the frontal plane and stability of gait patterns, we explored how constraining mediolateral foot placement during walking affects the structure of kinematic variance in the lower-limb configuration space during the swing phase of gait. Ten young subjects walked under three conditions: (1) unconstrained (normal walking), (2) constrained (walking overground with visual guides for foot placement to achieve the measured unconstrained step width) and, (3) beam (walking on elevated beams spaced to achieve the measured unconstrained step width). The uncontrolled manifold analysis of the joint configuration variance was used to quantify two variance components, one that did not affect the mediolateral trajectory of the foot in the frontal plane ("good variance") and one that affected this trajectory ("bad variance"). Based on recent studies, we hypothesized that across conditions (1) the index of the synergy stabilizing the mediolateral trajectory of the foot (the normalized difference between the "good variance" and "bad variance") would systematically increase and (2) the changes in the synergy index would be associated with a disproportionate increase in the "good variance." Both hypotheses were confirmed. We conclude that an increase in the "good variance" component of the joint configuration variance may be an effective method of ensuring high stability of gait patterns during conditions requiring increased control of foot placement, particularly if a postural threat is present. Ultimately, designing interventions that encourage a larger amount of "good variance" may be a promising method of improving stability of gait patterns in populations such as older adults and neurological patients.
Sun, Yuqi; Dai, Chunmei; Yin, Meilin; Lu, Jinghua; Hu, Haiyang; Chen, Dawei
2018-01-01
Background There are abundant glycyrrhetinic acid (GA) receptors on the cellular membrane of hepatocytes and hepatocellular carcinoma (HCC) cells. The receptor binding effect might be related to the structure of the guiding molecule. GA exists in two stereoisomers with C3-hydroxyl and C11-carbonyl active groups. Purpose The objective of this study was to investigate the relationship between the HCC-targeted effect and the configurations and groups of GA. Methods and results Different GA derivatives (18β-GA, 18α-GA, 3-acetyl-18β-GA [3-Ace-GA] and 11-deoxy-18β-GA [11-Deo-GA]) were used to investigate the targeting effect of GA’s configurations and groups on HCC cells. The EC50 values of competition to binding sites and the ratio of specific binding in HepG2 cells showed that 18β-GA and 3-Ace-GA demonstrated significant competitive effect with fluorescein isothiocyanate (FITC)-labeled GA. Then, the GA derivatives were distearoyl-phosphatidylethanolamine (DSPE)-PEGylated. 18β-GA-, 18α-GA-, 3-Ace-GA-and 11-Deo-GA-modified liposomes were prepared and characterized by size, zeta potential, encapsulation efficiency, loading capacity, leakage and membrane stability. Evaluation on the cellular location in vitro and tumor targeting in vivo was carried out. Compared to common long-circulation liposome (PEG-Lip), more 18β-GA- and 3-Ace-GA-modified liposomes aggregated around HepG2 cells in vitro in short time and transferred into HCC tumors in vivo for a longer time. Conclusion The β-configuration hydrogen atom on C18 position of GA played the most important role on the targeting effect. C11-carbonyl and C3-hydroxy groups of GA have certain and little influence on targeting action to HCC, respectively. In general, GA might be a promising targeting molecule for the research on liver diseases and hepatoma therapy. PMID:29588589
Sun, Yuqi; Dai, Chunmei; Yin, Meilin; Lu, Jinghua; Hu, Haiyang; Chen, Dawei
2018-01-01
There are abundant glycyrrhetinic acid (GA) receptors on the cellular membrane of hepatocytes and hepatocellular carcinoma (HCC) cells. The receptor binding effect might be related to the structure of the guiding molecule. GA exists in two stereoisomers with C3-hydroxyl and C11-carbonyl active groups. The objective of this study was to investigate the relationship between the HCC-targeted effect and the configurations and groups of GA. Different GA derivatives (18β-GA, 18α-GA, 3-acetyl-18β-GA [3-Ace-GA] and 11-deoxy-18β-GA [11-Deo-GA]) were used to investigate the targeting effect of GA's configurations and groups on HCC cells. The EC 50 values of competition to binding sites and the ratio of specific binding in HepG2 cells showed that 18β-GA and 3-Ace-GA demonstrated significant competitive effect with fluorescein isothiocyanate (FITC)-labeled GA. Then, the GA derivatives were distearoyl-phosphatidylethanolamine (DSPE)-PEGylated. 18β-GA-, 18α-GA-, 3-Ace-GA-and 11-Deo-GA-modified liposomes were prepared and characterized by size, zeta potential, encapsulation efficiency, loading capacity, leakage and membrane stability. Evaluation on the cellular location in vitro and tumor targeting in vivo was carried out. Compared to common long-circulation liposome (PEG-Lip), more 18β-GA- and 3-Ace-GA-modified liposomes aggregated around HepG2 cells in vitro in short time and transferred into HCC tumors in vivo for a longer time. The β-configuration hydrogen atom on C18 position of GA played the most important role on the targeting effect. C11-carbonyl and C3-hydroxy groups of GA have certain and little influence on targeting action to HCC, respectively. In general, GA might be a promising targeting molecule for the research on liver diseases and hepatoma therapy.
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.
2016-01-01
A computational investigation of a pressure-gain combustor system for gas turbine applications is presented. The system consists of a valved pulse combustor and an ejector, housed within a shroud. The study focuses on two enhancements to previous models, related to the valve and ejector components. First, a new poppet inlet valve system is investigated, replacing the previously used reed valve configuration. Secondly, a new computational approach to approximating the effects of choked turbine inlet guide vanes present immediately downstream of the Ejector-Enhanced Resonant Pulse Combustor (EERPC) is investigated. Instead of specifying a back pressure at the EERPC exit boundary (as was done in previous studies) the new model adds a converging-diverging (CD) nozzle at the exit of the EERPC. The throat area of the CD nozzle can be adjusted to obtain the desired back pressure level and total mass flow rate. The results presented indicate that the new poppet valve configuration performs nearly as well as the original reed valve system, and that the addition of the CD nozzle is an effective method to approximate the exit boundary effects of a turbine present downstream of the EERPC. Furthermore, it is shown that the more acoustically reflective boundary imposed by a nozzle as compared to a constant pressure surface does not significantly affect operation or performance.
Li, P; Chai, G H; Zhu, K H; Lan, N; Sui, X H
2015-01-01
Tactile sensory feedback plays a key role in accomplishing the dexterous manipulation of prosthetic hands for the amputees, and the non-invasive transcutaneous electrical nerve stimulation (TENS) of the phantom finger perception (PFP) area would be an effective way to realize sensory feedback clinically. In order to realize the high-spatial-resolution tactile sensory feedback in the PFP region, we investigated the effects of electrode size and spacing on the tactile sensations for potentially optimizing the surface electrode array configuration. Six forearm-amputated subjects were recruited in the psychophysical studies. With the diameter of the circular electrode increasing from 3 mm to 12 mm, the threshold current intensity was enhanced correspondingly under different sensory modalities. The smaller electrode could potentially lead to high sensation spatial resolution. Whereas, the smaller the electrode, the less the number of sensory modalities. For an Φ-3 mm electrode, it is even hard for the subject to perceive any perception modalities under normal stimulating current. In addition, the two-electrode discrimination distance (TEDD) in the phantom thumb perception area decreased with electrode size decreasing in two directions of parallel or perpendicular to the forearm. No significant difference of TEDD existed along the two directions. Studies in this paper would guide the configuration optimization of the TENS electrode array for potential high spatial-resolution sensory feedback.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Dong; Song, Jiakun; Yu, Hailong
2016-03-14
High-index dielectric and semiconductor nanostructures with characteristics of low absorption loss and artificially controlled scattering properties have grasped an increasing attention for improving the performance of thin-film photovoltaic devices. In this work, combined optical and electrical simulations were performed for thin-film InP/In{sub 0.53}Ga{sub 0.47}As/InP hetero-junction photodetector with periodically arranged InP nano-cylinders in the in-coupling configuration. It is found that the carefully designed InP nano-cylinders possess strongly substrate-coupled Mie resonances and can effectively couple incident light into the guided mode, both of which significantly increase optical absorption. Further study from the electrical aspects shows that enhancement of external quantum efficiency ismore » as high as 82% and 83% in the configurations with the optimized nano-cylinders and the optimized period, respectively. Moreover, we demonstrate that the integration of InP nano-cylinders does not degrade the electrical performance, since the surface recombination is effectively suppressed by separating the absorber layer where carriers generate and the air/semiconductor interface. The comprehensive modeling including optical and electrical perspectives provides a more practical description for device performance than the optical-only simulation and is expected to advance the design of thin-film absorber layer based optoelectronic devices for fast response and high efficiency.« less
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Bright, Michelle M.; Prahst, Patricia S.; Strazisar, Anthony J.
2003-01-01
Micro-flow control actuation embedded in a stator vane was used to successfully control separation and improve near stall performance in a multistage compressor rig at NASA Glenn. Using specially designed stator vanes configured with internal actuation to deliver pulsating air through slots along the suction surface, a research study was performed to identify performance benefits using this microflow control approach. Pressure profiles and unsteady pressure measurements along the blade surface and at the shroud provided a dynamic look at the compressor during microflow air injection. These pressure measurements lead to a tracking algorithm to identify the onset of separation. The testing included steady air injection at various slot locations along the vane. The research also examined the benefit of pulsed injection and actively controlled air injection along the stator vane. Two types of actuation schemes were studied, including an embedded actuator for on-blade control. Successful application of an online detection and flow control scheme will be discussed. Testing showed dramatic performance benefit for flow reattachment and subsequent improvement in diffusion through the use of pulsed controlled injection. The paper will discuss the experimental setup, the blade configurations, and preliminary CFD results which guided the slot location along the blade. The paper will also show the pressure profiles and unsteady pressure measurements used to track flow control enhancement, and will conclude with the tracking algorithm for adjusting the control.
Formation and Elimination of Transform Faults on the Reykjanes Ridge
NASA Astrophysics Data System (ADS)
Martinez, Fernando; Hey, Richard
2017-04-01
The Reykjanes Ridge is a type-setting for examining processes that form and eliminate transform faults because it has undergone these events systematically within the Iceland gradient in hot-spot influence. A Paleogene change in plate motion led to the abrupt segmentation of the originally linear axis into a stair-step ridge-transform configuration. Its subsequent evolution diachronously and systematically eliminated the just-formed offsets re-establishing the original linear geometry of the ridge over the mantle, although now spreading obliquely. During segmented stages accreted crust was thinner and during unsegmented stages southward pointing V-shaped crustal ridges formed. Although mantle plume effects have been invoked to explain the changes in segmentation and crustal features, we propose that plate boundary processes can account for these changes [Martinez & Hey, EPSL, 2017]. Fragmentation of the axis was a mechanical effect of an abrupt change in plate opening direction, as observed in other areas, and did not require mantle plume temperature changes. Reassembly of the fragmented axis to its original linear configuration was controlled by a deep damp melting regime that persisted in a linear configuration following the abrupt change in opening direction. Whereas the shallow and stronger mantle of the dry melting regime broke up into a segmented plate boundary, the persistent deep linear damp melting regime guided reassembly of the ridge axis back to its original configuration by inducing asymmetric spreading of individual ridge segments. Effects of segmentation on mantle upwelling explain crustal thickness changes between segmented and unsegmented phases of spreading without mantle temperature changes. Buoyant upwelling instabilities propagate along the long linear deep melting regime driven by regional gradients in mantle properties away from Iceland. Once segmentation is eliminated, these propagating upwelling instabilities lead to crustal thickness variations forming the V-shaped ridges on the Reykjanes Ridge flanks, without requiring actual rapid radial mantle plume flow or temperature variations. Our study indicates that the Reykjanes Ridge can be used to study how plate boundary processes within a regional gradient in mantle properties lead to a range of effects on lithospheric segmentation, melt production and crustal accretion.
Side illuminated optical fiber as a multiplexing element for spectroscopic systems
NASA Astrophysics Data System (ADS)
Egalon, Claudio O.; Matta, Michael P.; Lavezzari, Delbert C.; Insley, Robert Y.; Jaring, Carolyn C.; Quiday, Marie F.
2013-09-01
A new type of colorimeter with multiple channels was demonstrated using a side illuminated optical fiber. When different spots of a properly modified fiber are side illuminated, multiple signals are generated and guided by the waveguide: the essence of multiplexing. This configuration is simple, low cost, does not require a sensitive coating and can analyze several samples along the fiber with a single detector: the most expensive component. Since regular colorimeters use one detector per sample, our new configuration considerably lowers the cost of analyzing multiple samples. This system consists of a fiber mounted over a support, three LEDs, an LED driver, a photo diode and a read-out: to increase the signal, the fiber was tapered. For calibration purposes, six solutions of different concentrations of food dye were prepared, placed inside cuvettes along the fiber length and illuminated by the LEDs. This light passes through the solution, strikes the fiber and is guided to the detector: the darker the solution the lower the signal intensity. Several calibration curves were obtained using different light intensities: it was found that the greater the intensity, the higher the colorimeter sensitivity. This simple capability can be used to easily control the device's sensitivity and its resolution. Although built for three samples only, this device can be modified to accommodate more. With cuvettes measuring 1 cm, it is possible to accommodate one sample per cm of fiber. Also, with minor modifications, this colorimeter can be used for fluorescence, scattering and index of refraction measurements.
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Kopper, F. C.; Knudsen, L. K.; Yustinich, J. B.
1982-01-01
A subsonic cascade test program was conducted to provide technical data for optimizing the blade and vane airfoil designs for the Energy Efficient Engine Low-Pressure Turbine component. The program consisted of three parts. The first involved an evaluation of the low-chamber inlet guide vane. The second, was an evaluation of two candidate aerodynamic loading philosophies for the fourth blade root section. The third part consisted of an evaluation of three candidate airfoil geometries for the fourth blade mean section. The performance of each candidate airfoil was evaluated in a linear cascade configuration. The overall results of this study indicate that the aft-loaded airfoil designs resulted in lower losses which substantiated Pratt & Whitney Aircraft's design philosophy for the Energy Efficient Engine low-pressure turbine component.
Pfeiffer, Florian; Rauhut, Guntram
2011-10-13
Accurate anharmonic frequencies are provided for molecules of current research, i.e., diazirines, diazomethane, the corresponding fluorinated and deuterated compounds, their dioxygen analogs, and others. Vibrational-state energies were obtained from state-specific vibrational multiconfiguration self-consistent field theory (VMCSCF) based on multilevel potential energy surfaces (PES) generated from explicitly correlated coupled cluster, CCSD(T)-F12a, and double-hybrid density functional calculations, B2PLYP. To accelerate the vibrational structure calculations, a configuration selection scheme as well as a polynomial representation of the PES have been exploited. Because experimental data are scarce for these systems, many calculated frequencies of this study are predictions and may guide experiments to come.
Using evaporation to control capillary instabilities in micro-systems.
Ledesma-Aguilar, Rodrigo; Laghezza, Gianluca; Yeomans, Julia M; Vella, Dominic
2017-12-06
The instabilities of fluid interfaces represent both a limitation and an opportunity for the fabrication of small-scale devices. Just as non-uniform capillary pressures can destroy micro-electrical mechanical systems (MEMS), so they can guide the assembly of novel solid and fluid structures. In many such applications the interface appears during an evaporation process and is therefore only present temporarily. It is commonly assumed that this evaporation simply guides the interface through a sequence of equilibrium configurations, and that the rate of evaporation only sets the timescale of this sequence. Here, we use Lattice-Boltzmann simulations and a theoretical analysis to show that, in fact, the rate of evaporation can be a factor in determining the onset and form of dynamical capillary instabilities. Our results shed light on the role of evaporation in previous experiments, and open the possibility of exploiting diffusive mass transfer to directly control capillary flows in MEMS applications.
Crimp sealing of tubes flush with or below a fixed surface
Fischer, J.E.; Walmsley, D.; Wapman, P.D.
1996-08-20
An apparatus for crimp sealing and severing tubes flush or below a fixed surface. Tube crimping below a fixed surface requires an asymmetric die and anvil configuration. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. This asymmetric die and anvil is used when a ductile metal tube and valve assembly are attached to a pressure vessel which has a fixed surface around the base of the tube at the pressure vessel. A flat anvil is placed against the tube. Die guides are placed against the tube on a side opposite the anvil. A pinch-off die is inserted into the die guides against the tube. Adequate clearance for inserting the die and anvil around the tube is needed below the fixed surface. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. 8 figs.
Crimp sealing of tubes flush with or below a fixed surface
Fischer, Jon E.; Walmsley, Don; Wapman, P. Derek
1996-01-01
An apparatus for crimp sealing and severing tubes flush or below a fixed surface. Tube crimping below a fixed surface requires an asymmetric die and anvil configuration. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. This asymmetric die and anvil is used when a ductile metal tube and valve assembly are attached to a pressure vessel which has a fixed surface around the base of the tube at the pressure vessel. A flat anvil is placed against the tube. Die guides are placed against the tube on a side opposite the anvil. A pinch-off die is inserted into the die guides against the tube. Adequate clearance for inserting the die and anvil around the tube is needed below the fixed surface. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes.
Generation and confinement of microwave gas-plasma in photonic dielectric microstructure.
Debord, B; Jamier, R; Gérôme, F; Leroy, O; Boisse-Laporte, C; Leprince, P; Alves, L L; Benabid, F
2013-10-21
We report on a self-guided microwave surface-wave induced generation of ~60 μm diameter and 6 cm-long column of argon-plasma confined in the core of a hollow-core photonic crystal fiber. At gas pressure of 1 mbar, the micro-confined plasma exhibits a stable transverse profile with a maximum gas-temperature as high as 1300 ± 200 K, and a wall-temperature as low as 500 K, and an electron density level of 10¹⁴ cm⁻³. The fiber guided fluorescence emission presents strong Ar⁺ spectral lines in the visible and near UV. Theory shows that the observed combination of relatively low wall-temperature and high ionisation rate in this strongly confined configuration is due to an unprecedentedly wide electrostatic space-charge field and the subsequent ion acceleration dominance in the plasma-to-gas power transfer.
A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code
NASA Technical Reports Server (NTRS)
Chen, H. C.; Su, T. Y.; Kao, T. J.
1991-01-01
This manual explains the procedures for using the general multiblock Euler (GMBE) code developed under NASA contract NAS1-18703. The code was developed for the aerodynamic analysis of geometrically complex configurations in either free air or wind tunnel environments (vol. 1). The complete flow field is divided into a number of topologically simple blocks within each of which surface fitted grids and efficient flow solution algorithms can easily be constructed. The multiblock field grid is generated with the BCON procedure described in volume 2. The GMBE utilizes a finite volume formulation with an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. This user guide provides information on the GMBE code, including input data preparations with sample input files and a sample Unix script for program execution in the UNICOS environment.
NASA Astrophysics Data System (ADS)
Couillard, M.; Yurtsever, A.; Muller, D. A.
2010-05-01
Waveguide electromagnetic modes excited by swift electrons traversing Si slabs at normal and oblique incidence are analyzed using monochromated electron energy-loss spectroscopy and interpreted using a local dielectric theory that includes relativistic effects. At normal incidence, sharp spectral features in the visible/near-infrared optical domain are directly assigned to p -polarized modes. When the specimen is tilted, s -polarized modes, which are completely absent at normal incidence, become visible in the loss spectra. In the tilted configuration, the dispersion of p -polarized modes is also modified. For tilt angles higher than ˜50° , Cherenkov radiation, the phenomenon responsible for the excitation of waveguide modes, is expected to partially escape the silicon slab and the influence of this effect on experimental measurements is discussed. Finally, we find evidence for an interference effect at parallel Si/SiO2 interfaces, as well as a delocalized excitation of guided Cherenkov modes.
Concurrent Image Processing Executive (CIPE). Volume 2: Programmer's guide
NASA Technical Reports Server (NTRS)
Williams, Winifred I.
1990-01-01
This manual is intended as a guide for application programmers using the Concurrent Image Processing Executive (CIPE). CIPE is intended to become the support system software for a prototype high performance science analysis workstation. In its current configuration CIPE utilizes a JPL/Caltech Mark 3fp Hypercube with a Sun-4 host. CIPE's design is capable of incorporating other concurrent architectures as well. CIPE provides a programming environment to applications' programmers to shield them from various user interfaces, file transactions, and architectural complexities. A programmer may choose to write applications to use only the Sun-4 or to use the Sun-4 with the hypercube. A hypercube program will use the hypercube's data processors and optionally the Weitek floating point accelerators. The CIPE programming environment provides a simple set of subroutines to activate user interface functions, specify data distributions, activate hypercube resident applications, and to communicate parameters to and from the hypercube.
NASA Astrophysics Data System (ADS)
McMullen, Kyla A.
Although the concept of virtual spatial audio has existed for almost twenty-five years, only in the past fifteen years has modern computing technology enabled the real-time processing needed to deliver high-precision spatial audio. Furthermore, the concept of virtually walking through an auditory environment did not exist. The applications of such an interface have numerous potential uses. Spatial audio has the potential to be used in various manners ranging from enhancing sounds delivered in virtual gaming worlds to conveying spatial locations in real-time emergency response systems. To incorporate this technology in real-world systems, various concerns should be addressed. First, to widely incorporate spatial audio into real-world systems, head-related transfer functions (HRTFs) must be inexpensively created for each user. The present study further investigated an HRTF subjective selection procedure previously developed within our research group. Users discriminated auditory cues to subjectively select their preferred HRTF from a publicly available database. Next, the issue of training to find virtual sources was addressed. Listeners participated in a localization training experiment using their selected HRTFs. The training procedure was created from the characterization of successful search strategies in prior auditory search experiments. Search accuracy significantly improved after listeners performed the training procedure. Next, in the investigation of auditory spatial memory, listeners completed three search and recall tasks with differing recall methods. Recall accuracy significantly decreased in tasks that required the storage of sound source configurations in memory. To assess the impacts of practical scenarios, the present work assessed the performance effects of: signal uncertainty, visual augmentation, and different attenuation modeling. Fortunately, source uncertainty did not affect listeners' ability to recall or identify sound sources. The present study also found that the presence of visual reference frames significantly increased recall accuracy. Additionally, the incorporation of drastic attenuation significantly improved environment recall accuracy. Through investigating the aforementioned concerns, the present study made initial footsteps guiding the design of virtual auditory environments that support spatial configuration recall.
Experimental quiet engine program
NASA Technical Reports Server (NTRS)
Cornell, W. G.
1975-01-01
Full-scale low-tip-speed fans, a full-scale high-tip-speed fan, scale model versions of fans, and two full-scale high-bypass-ratio turbofan engines, were designed, fabricated, tested, and evaluated. Turbine noise suppression was investigated. Preliminary design studies of flight propulsion system concepts were used in application studies to determine acoustic-economic tradeoffs. Salient results are as follows: tradeoff evaluation of fan tip speed and blade loading; systematic data on source noise characteristics and suppression effectiveness; documentation of high- and low-fan-speed aerodynamic and acoustic technology; aerodynamic and acoustic evaluation of acoustic treatment configurations, casing tip bleed, serrated and variable pitch rotor blades, leaned outlet guide vanes, slotted tip casings, rotor blade shape modifications, and inlet noise suppression; systematic evaluation of aerodynamic and acoustic effects; flyover noise projections of engine test data; turbine noise suppression technology development; and tradeoff evaluation of preliminary design high-fan-speed and low-fan-speed flight engines.
Reference H Piloted Assessment (LaRC.1) Pilot Briefing Guide
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Raney, David L.; Hahne, David E.; Derry, Stephen D.; Glaab, Louis J.
1999-01-01
This document describes the purpose of and method by which an assessment of the Boeing Reference H High-Speed Civil Transport design was evaluated in the NASA Langley Research Center's Visual/Motion Simulator in January 1997. Six pilots were invited to perform approximately 60 different Mission Task Elements that represent most normal and emergency flight operations of concern to the High Speed Research program. The Reference H design represents a candidate configuration for a High-Speed Civil Transport, a second generation supersonic civilian transport aircraft. The High-Speed Civil Transport is intended to be economically sound and environmentally safe while carrying passengers and cargo at supersonic speeds with a trans-Pacific range. This simulation study was designated "LaRC. 1" for the purposes of planning, scheduling and reporting within the Guidance and Flight Controls super-element of the High-Speed Research program. The study was based upon Cycle 3 release of the Reference H simulation model.
Dynamic gonioscopy using optical coherence tomography.
Matonti, Frederic; Chazalon, Elodie; Trichet, Elodie; Khaled, El Samak; Denis, Danièle; Hoffart, Louis
2012-01-01
To describe the use of anterior segment optical coherence tomography (AS-OCT) in studying the dynamic changes of the anterior chamber angle by corneal indentation. In a prospective observational study, the anterior segments of 21 eyes were imaged using AS-OCT. After the initial scan, a second scan was executed on the same areas with a central corneal indentation. An evaluation of the reopening of the angle and its measurement were performed. With AS-OCT, the indirect signs were accurate enough to guide the diagnosis in all plateau iris confirmed by ultrabiomicroscopy. The angle widths were significantly increased after indentation. This method would appear to offer a convenient and rapid method of assessing the configuration of the anterior chamber; it may help during the routine clinical assessment and treatment of patients with narrow or closed angles, particularly when gonioscopy is difficult to interpret. Copyright 2012, SLACK Incorporated.
Proof of concept of a novel SMA cage actuator
NASA Astrophysics Data System (ADS)
Deyer, Christopher W.; Brei, Diann E.
2001-06-01
Numerous industrial applications that currently utilize expensive solenoids or slow wax motors are good candidates for smart material actuation. Many of these applications require millimeter-scale displacement and low cost; thereby, eliminating piezoelectric technologies. Fortunately, there is a subset of these applications that can tolerate the slower response of shape memory alloys. This paper details a proof-of-concept study of a novel SMA cage actuator intended for proportional braking in commercial appliances. The chosen actuator architecture consists of a SMA wire cage enclosing a return spring. To develop an understanding of the influences of key design parameters on the actuator response time and displacement amplitude, a half-factorial 25 Design of Experiment (DOE) study was conducted utilizing eight differently configured prototypes. The DOE results guided the selection of the design parameters for the final proof-of-concept actuator. This actuator was built and experimentally characterized for stroke, proportional control and response time.
Reactions between palladium and gallium arsenide: Bulk versus thin-film studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, J.; Hsieh, K.; Schulz, K.J.
1988-01-01
Reactions between Pd and GaAs have been studied using bulk-diffusion couples of Pd (approx.0.6 mm thick)/GaAs and thin-film Pd (50 and 160 nm)/GaAs samples. The sequence of phase formation at 600 /sup 0/C between bulk Pd and GaAs was established. Initial formation of the solution phase ..mu.. and the ternary phase T does not represent the stable configuration. The stable configuration is GaAs chemically bondepsilonchemically bondlambdachemically bond..gamma..chemically bond..nu..chemically bondPd and is termed the diffusion path between GaAs and Pd. The sequence of phase formation for the bulk-diffusion couples is similar at 500 /sup 0/C. Phase formation for the thin-film Pd/GaAsmore » specimens was studied at 180, 220, 250, 300, 350, 400, 450, 600, and 1000 /sup 0/C for various annealing times. The sequence of phase formation obtained from the thin-film experiments is rationalized readily from the known ternary phase equilibria of Ga--Pd--As and the results from the bulk-diffusion couples of Pd/GaAs. The thin-film results reported in the literature are likewise rationalized. The diffusion path concept provides a useful guide in understanding the phase formation in Pd--GaAs interface or any other M--GaAs interface. This information is important in designing a uniform, stable contact for the metallization of GaAs.« less
Aerodynamic Design Study of Advanced Multistage Axial Compressor
NASA Technical Reports Server (NTRS)
Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.
2002-01-01
As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD-based tools were able to effectively guide the design of a very efficient axial compressor under state-of-the-art aeromechanical constraints.
Efficient solar-pumped Nd:YAG laser by a double-stage light-guide/V-groove cavity
NASA Astrophysics Data System (ADS)
Almeida, Joana; Liang, Dawei
2011-05-01
Since the first reported Nd:YAG solar laser, researchers have been exploiting parabolic mirrors and heliostats for enhancing laser output performance. We are now investigating the production of an efficient solar-pumped laser for the reduction of magnesium from magnesium oxide, which could be an alternative solution to fossil fuel. Therefore both high conversion efficiency and excellent beam quality are imperative. By using a single fused silica light guide of rectangular cross section, highly concentrated solar radiation at the focal spot of a stationary parabolic mirror is efficiently transferred to a water-flooded V-groove pump cavity. It allows for the double-pass absorption of pump light along a 4mm diameter, 30mm length, 1.1at% Nd:YAG rod. Optimum pumping parameters and solar laser output power are found through ZEMAXTM non-sequential ray-tracing and LASCADTM laser cavity analysis. 11.0 W of multimode laser output power with excellent beam profile is numerically calculated, corresponding to 6.1W/m2 collection efficiency. To validate the proposed pumping scheme, an experimental setup of the double-stage light-guide/V-groove cavity was built. 78% of highly concentrated solar radiation was efficiently transmitted by the fused silica light guide. The proposed pumping scheme can be an effective solution for enhancing solar laser performances when compared to other side-pump configurations.
New knowledge-based genetic algorithm for excavator boom structural optimization
NASA Astrophysics Data System (ADS)
Hua, Haiyan; Lin, Shuwen
2014-03-01
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
Heebner, John E [Livermore, CA
2009-09-08
In one general embodiment, a method for deflecting an optical signal input into a waveguide is provided. In operation, an optical input signal is propagated through a waveguide. Additionally, an optical control signal is applied to a mask positioned relative to the waveguide such that the application of the optical control signal to the mask is used to influence the optical input signal propagating in the waveguide. Furthermore, the deflected optical input signal output from the waveguide is detected in parallel on an array of detectors. In another general embodiment, a beam deflecting structure is provided for deflecting an optical signal input into a waveguide, the structure comprising at least one wave guiding layer for guiding an optical input signal and at least one masking layer including a pattern configured to influence characteristics of a material of the guiding layer when an optical control signal is passed through the masking layer in a direction of the guiding layer. In another general embodiment, a system is provided including a waveguide, an attenuating mask positioned on the waveguide, and an optical control source positioned to propagate pulsed laser light towards the attenuating mask and the waveguide such that a pattern of the attenuating mask is applied to the waveguide and material properties of at least a portion of the waveguide are influenced.
GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases.
Zhu, Lihua Julie; Lawrence, Michael; Gupta, Ankit; Pagès, Hervé; Kucukural, Alper; Garber, Manuel; Wolfe, Scot A
2017-05-15
Genome editing technologies developed around the CRISPR-Cas9 nuclease system have facilitated the investigation of a broad range of biological questions. These nucleases also hold tremendous promise for treating a variety of genetic disorders. In the context of their therapeutic application, it is important to identify the spectrum of genomic sequences that are cleaved by a candidate nuclease when programmed with a particular guide RNA, as well as the cleavage efficiency of these sites. Powerful new experimental approaches, such as GUIDE-seq, facilitate the sensitive, unbiased genome-wide detection of nuclease cleavage sites within the genome. Flexible bioinformatics analysis tools for processing GUIDE-seq data are needed. Here, we describe an open source, open development software suite, GUIDEseq, for GUIDE-seq data analysis and annotation as a Bioconductor package in R. The GUIDEseq package provides a flexible platform with more than 60 adjustable parameters for the analysis of datasets associated with custom nuclease applications. These parameters allow data analysis to be tailored to different nuclease platforms with different length and complexity in their guide and PAM recognition sequences or their DNA cleavage position. They also enable users to customize sequence aggregation criteria, and vary peak calling thresholds that can influence the number of potential off-target sites recovered. GUIDEseq also annotates potential off-target sites that overlap with genes based on genome annotation information, as these may be the most important off-target sites for further characterization. In addition, GUIDEseq enables the comparison and visualization of off-target site overlap between different datasets for a rapid comparison of different nuclease configurations or experimental conditions. For each identified off-target, the GUIDEseq package outputs mapped GUIDE-Seq read count as well as cleavage score from a user specified off-target cleavage score prediction algorithm permitting the identification of genomic sequences with unexpected cleavage activity. The GUIDEseq package enables analysis of GUIDE-data from various nuclease platforms for any species with a defined genomic sequence. This software package has been used successfully to analyze several GUIDE-seq datasets. The software, source code and documentation are freely available at http://www.bioconductor.org/packages/release/bioc/html/GUIDEseq.html .
Evaluation of Novel Liner Concepts for Fan and Airframe Noise Reduction
NASA Technical Reports Server (NTRS)
Jones, M. G.; Howerton, B. M.
2016-01-01
This paper presents a review of four novel liner concepts: soft vanes, over-the-rotor liners, external liners, and flap side-edge liners. A number of similarities in the design and evaluation of these concepts emerged during these investigations. Since these were the first attempts to study these particular liner concepts, there was limited information to guide the design process. In all cases, the target frequencies (or frequency range) were known, but the optimum acoustic impedance and optimum liner placement were typically not known. For these cases, the maximum available surface was used and a c-impedance was targeted based on the assumption the sound field impinges on the surface at normal incidence. This choice proved fruitful for every application. An impedance prediction model was used to design variable-depth liner configurations, and a graphical design code (ILIAD) was developed to aid in this process. The ability to build increasingly complex liner configurations via additive manufacturing was key, such that multiple designs could quickly be tested in a normal incidence impedance tube. The Two-Thickness Method was used to evaluate available bulk materials, such that bulk liners could also be considered for each application. These novel liner concepts provide sufficient noise reduction to warrant further investigations.
Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics
Bian, Yusheng; Guo, Feng; Yang, Shujie; Mao, Zhangming; Bachman, Hunter; Tang, Shi-Yang; Ren, Liqiang; Zhang, Bin; Gong, Jianying; Guo, Xiasheng
2017-01-01
The precise manipulation of acoustic fields in microfluidics is of critical importance for the realization of many biomedical applications. Despite the tremendous efforts devoted to the field of acoustofluidics during recent years, dexterous control, with an arbitrary and complex acoustic wavefront, in a prescribed, microscale region is still out of reach. Here, we introduce the concept of acoustofluidic waveguide, a three-dimensional compact configuration that is capable of locally guiding acoustic waves into a fluidic environment. Through comprehensive numerical simulations, we revealed the possibility of forming complex field patterns with defined pressure nodes within a highly localized, pre-determined region inside the microfluidic chamber. We also demonstrated the tunability of the acoustic field profile through controlling the size and shape of the waveguide geometry, as well as the operational frequency of the acoustic wave. The feasibility of the waveguide concept was experimentally verified via microparticle trapping and patterning. Our acoustofluidic waveguiding structures can be readily integrated with other microfluidic configurations and can be further designed into more complex types of passive acoustofluidic devices. The waveguide platform provides a promising alternative to current acoustic manipulation techniques and is useful in many applications such as single-cell analysis, point-of-care diagnostics, and studies of cell–cell interactions. PMID:29358901
Bae, Won-Gyu; Kim, Jangho; Choung, Yun-Hoon; Chung, Yesol; Suh, Kahp Y; Pang, Changhyun; Chung, Jong Hoon; Jeong, Hoon Eui
2015-11-01
Inspired by the hierarchically organized protein fibers in extracellular matrix (ECM) as well as the physiological importance of multiscale topography, we developed a simple but robust method for the design and manipulation of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with an original wrinkling technique. In this study, based on our proposed fabrication technology, we approached a conceptual platform that can mimic the hierarchically multiscale topographical and orientation cues of the ECM for controlling cell structure and function. We patterned the polyurethane acrylate-based nanotopography with various orientations on the microgrooves, which could provide multiscale topography signals of ECM to control single and multicellular morphology and orientation with precision. Using our platforms, we found that the structures and orientations of fibroblast cells were greatly influenced by the nanotopography, rather than the microtopography. We also proposed a new approach that enables the generation of native ECM having nanofibers in specific three-dimensional (3D) configurations by culturing fibroblast cells on the multiscale substrata. We suggest that our methodology could be used as efficient strategies for the design and manipulation of various functional platforms, including well-defined 3D tissue structures for advanced regenerative medicine applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Permanent magnet system to guide superparamagnetic particles
NASA Astrophysics Data System (ADS)
Baun, Olga; Blümler, Peter
2017-10-01
A new concept of using permanent magnet systems for guiding superparamagnetic nano-particles on arbitrary trajectories over a large volume is proposed. The basic idea is to use one magnet system which provides a strong, homogeneous, dipolar magnetic field to magnetize and orient the particles, and a second constantly graded, quadrupolar field, superimposed on the first, to generate a force on the oriented particles. In this configuration the motion of the particles is driven predominantly by the component of the gradient field which is parallel to the direction of the homogeneous field. As a result, particles are guided with constant force and in a single direction over the entire volume. The direction is simply adjusted by varying the angle between quadrupole and dipole. Since a single gradient is impossible due to Gauß' law, the other gradient component of the quadrupole determines the angular deviation of the force. However, the latter can be neglected if the homogeneous field is stronger than the local contribution of the quadrupole field. A possible realization of this idea is a coaxial arrangement of two Halbach cylinders. A dipole to evenly magnetize and orient the particles, and a quadrupole to generate the force. The local force was calculated analytically for this particular geometry and the directional limits were analyzed and discussed. A simple prototype was constructed to demonstrate the principle in two dimensions on several nano-particles of different size, which were moved along a rough square by manual adjustment of the force angle. The observed velocities of superparamagnetic particles in this prototype were always several orders of magnitude higher than the theoretically expected value. This discrepancy is attributed to the observed formation of long particle chains as a result of their polarization by the homogeneous field. The magnetic moment of such a chain is then the combination of that of its constituents, while its hydrodynamic radius stays low. A complete system will consist of another quadrupole (third cylinder) to additionally enable scaling of the gradient/force strength by another rotation. In this configuration the device could then also be used as a simple MRI machine to image the particles between movement intervals. Finally, a concept is proposed by which superparamagnetic particles can be guided in three-dimensional space.
Schnutenhaus, Sigmar; Edelmann, Cornelia; Rudolph, Heike; Dreyhaupt, Jens; Luthardt, Ralph G
2018-01-22
The aim of this study was to investigate differences between the virtually planned and clinically achieved implant positions in completely template-guided implantations as a function of the type of edentulous space, the residual natural dentition, and the surgical implementation. Fifty-six patient cases with a total of 122 implants were evaluated retrospectively. The implantations were completely template-based. The data of the planned implant positions were overlaid with the actual clinical implant positions, followed by measurements of the 3D deviations in terms of coronal (x c ) and apical distance, height (x h ), and angulation (ang) and statistical analysis. The mean x c was 1.2 mm (SD 0.7 mm); the mean x a was 1.8 mm (SD 0.9 mm), the mean x h was 0.8 mm (SD 0.7 mm); and the mean ang was 4.8° (SD 3.1). The type of edentulous space and the jaw (maxilla/mandible) had no significant effect on the results in terms of implant positions. The presence of an adjacent natural tooth at the time of implantation had a significant influence on x h (p = 0.04) and ang (p = 0.05). No significant differences were found regarding the surgical approach for any of the parameters examined. The results of our study are in the same range as those of other studies. Template-guided implantation offers a high degree of accuracy even in the presence of different configurations of the residual dentition or different surgical approaches. A clinical benefit is therefore present, especially from a prosthetic point of view. The clinically achievable accuracy can be described as sufficient for further prosthetic treatment, given the intrinsic and methodological tolerances, making prosthetic rehabilitation safe and predictable.
PCA Based Stress Monitoring of Cylindrical Specimens Using PZTs and Guided Waves
Mujica, Luis; Ruiz, Magda; Camacho, Johanatan
2017-01-01
Since mechanical stress in structures affects issues such as strength, expected operational life and dimensional stability, a continuous stress monitoring scheme is necessary for a complete integrity assessment. Consequently, this paper proposes a stress monitoring scheme for cylindrical specimens, which are widely used in structures such as pipelines, wind turbines or bridges. The approach consists of tracking guided wave variations due to load changes, by comparing wave statistical patterns via Principal Component Analysis (PCA). Each load scenario is projected to the PCA space by means of a baseline model and represented using the Q-statistical indices. Experimental validation of the proposed methodology is conducted on two specimens: (i) a 12.7 mm (1/2″) diameter, 0.4 m length, AISI 1020 steel rod, and (ii) a 25.4 mm (1″) diameter, 6m length, schedule 40, A-106, hollow cylinder. Specimen 1 was subjected to axial loads, meanwhile specimen 2 to flexion. In both cases, simultaneous longitudinal and flexural guided waves were generated via piezoelectric devices (PZTs) in a pitch-catch configuration. Experimental results show the feasibility of the approach and its potential use as in-situ continuous stress monitoring application. PMID:29194384
NASA Astrophysics Data System (ADS)
Zhang, Hong; Dan, Zheng; Ding, Zhi-Jie; Lao, Yuan-Zhi; Tan, Hong-Sheng; Xu, Hong-Xi
2016-10-01
A UPLC-PDA-QTOFMS-guided isolation strategy was employed to screen and track potentially new compounds from Garcinia oblongifolia. As a result, two new prenylated xanthones, oblongixanthones D and E (1-2), six new prenylated benzoylphloroglucinol derivatives, oblongifolins V-Z (3-7) and oblongifolin AA (8), as well as a known compound oblongifolin L (9), were isolated from the EtOAc-soluble fraction of an acetone extract of the leaves of Garcinia oblongifolia guided by UPLC-PDA-QTOFMS analysis. The structures of the new compounds were elucidated by 1D- and 2D-NMR spectroscopic analysis and mass spectrometry. Experimental and calculated ECD spectra were used to determine the absolute configurations. The results of wound healing and transwell migration assay showed that oblongixanthones D (1), E (2), and oblongifolin L (9) have the ability to inhibit cancer cell migration in lower cytotoxic concentrations. Western blotting results showed that these compounds exhibited an anti-metastasis effect mainly through downregulating RAF protein levels. In addition, 2 and 9 could inhibit phospho-MEK and phospho-ERK at downstream. Moreover, 1, 2, and 9 could inhibit snail protein level, suggesting that they could regulate the EMT pathway.
NASA Astrophysics Data System (ADS)
Cawley, Peter
2014-03-01
There is a gradual shift in emphasis from periodic inspection with detachable transducers (NDT) to permanently installed monitoring systems giving information about the structural integrity at pre-programmed intervals or on demand (SHM). The drivers of this change are discussed, together with the requirements of successful SHM systems. Particular issues are that NDT often involves scanning and this is not possible with typical SHM configurations; it therefore becomes important to cover a significant area of structure from each transducer position. Guided waves provide a possible solution to this problem and permanently installed guided wave pipe inspection systems are now available. The sensitivity obtained with a permanently installed system is significantly better than that in a one-off test as baseline subtraction can be employed. However, this is far from trivial as it is necessary to compensate for benign changes such as temperature. The guided wave technique does not provide accurate remaining thickness information and is best complemented by point measurements at selected locations. Another issue is that the SHM transducers must survive in operational conditions, which is particularly difficult at high temperatures. Recent work at Imperial College and associated spin-out companies on solutions to these problems is discussed.
UV diode-pumped solid state laser for medical applications
NASA Astrophysics Data System (ADS)
Apollonov, Victor V.; Konstantinov, K. V.; Sirotkin, A. A.
1999-07-01
A compact, solid-state, high-efficiency, and safe UV laser medical system with optical fiber output was created for treatment of destructive forms of pulmonary tuberculosis. A frequency-quadruped quasi-CW Nd:YVO4 laser system pumped by laser-diode array is investigated with various resonator configurations. A longitudinal end-pumping scheme was used in a compact acousto-optical Q-switched laser for producing stable pulses of UV radiation at the repetition frequency 10-20 kHz and the duration 7-10 ns with the fiber-guide output power exceeding 10 mW.
Day, Robert A.; Conti, Armond E.
1980-01-01
An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.
High Voltage K sub a -Band Gyrotron Experiment.
1985-11-20
3.8-cm-diam disk-shaped carbon cathode in a foilless diode configuration. Initially, as pointed out by Voronkov et al. (7], the tranverse velocity is...Xmn is the nth zero of dJm(x)/dx, R is the electron orbit guiding center radius, R.w is the cavity wall radius, and kmn=Xmn/Rw is the tranverse wave...possible competing mode. StartingC currents for the TE 6 ,2, TE1 0 ,1 and TE_3 ,3 modes for the experimentally observed e-beam radius of 1.16 cm are
Dechesne, Marieke; Cole, James Channing; Martin, Christopher B.
2016-01-01
Overview of the geologic history of the North Park–Middle Park area and its past and recent drilling activity. Field trip stops highlight basin formation and the consequences of geologic configuration on oil and gas plays and development. The starting point is the west flank of the Denver Basin to compare and contrast the latest Cretaceous through Eocene basin fill on both flanks of the Front Range, before exploring sediments of the same age in the North Park – Middle Park intermontane basin.
Drive reconfiguration mechanism for tracked robotic vehicle
Willis, W. David
2000-01-01
Drive reconfiguration apparatus for changing the configuration of a drive unit with respect to a vehicle body may comprise a guide system associated with the vehicle body and the drive unit which allows the drive unit to rotate about a center of rotation that is located at about a point where the drive unit contacts the surface being traversed. An actuator mounted to the vehicle body and connected to the drive unit rotates the drive unit about the center of rotation between a first position and a second position.
Quasi-Uniform High Speed Foam Crush Testing Using a Guided Drop Mass Impact
NASA Technical Reports Server (NTRS)
Jones, Lisa E. (Technical Monitor); Kellas, Sotiris
2004-01-01
A relatively simple method for measuring the dynamic crush response of foam materials at various loading rates is described. The method utilizes a drop mass impact configuration with mass and impact velocity selected such that the crush speed remains approximately uniform during the entire sample crushing event. Instrumentation, data acquisition, and data processing techniques are presented, and limitations of the test method are discussed. The objective of the test method is to produce input data for dynamic finite element modeling involving crash and energy absorption characteristics of foam materials.
Ah Lee, Seung; Ou, Xiaoze; Lee, J Eugene; Yang, Changhuei
2013-06-01
We demonstrate a silo-filter (SF) complementary metal-oxide semiconductor (CMOS) image sensor for a chip-scale fluorescence microscope. The extruded pixel design with metal walls between neighboring pixels guides fluorescence emission through the thick absorptive filter to the photodiode of a pixel. Our prototype device achieves 13 μm resolution over a wide field of view (4.8 mm × 4.4 mm). We demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Woodard, Brian S.; Diebold, Jeffrey M.; Moens, Frederic
2017-01-01
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing and computational flow simulations were carried out for an 8.9%-scale semispan wing based upon the Common Research Model airplane configuration. The wind-tunnel testing was conducted at the Wichita State University 7 ft x 10 ft Beech wind tunnel from Reynolds numbers of 0.8×10(exp 6) to 2.4×10(exp 6) and corresponding Mach numbers of 0.09 to 0.27. This paper presents the results of initial studies investigating the model mounting configuration, clean-wing aerodynamics and effects of artificial ice roughness. Four different model mounting configurations were considered and a circular splitter plate combined with a streamlined shroud was selected as the baseline geometry for the remainder of the experiments and computational simulations. A detailed study of the clean-wing aerodynamics and stall characteristics was made. In all cases, the flow over the outboard sections of the wing separated as the wing stalled with the inboard sections near the root maintaining attached flow. Computational flow simulations were carried out with the ONERA elsA software that solves the compressible, three-dimensional RANS equations. The computations were carried out in either fully turbulent mode or with natural transition. Better agreement between the experimental and computational results was obtained when considering computations with free transition compared to turbulent solutions. These results indicate that experimental evolution of the clean wing performance coefficients were due to the effect of three-dimensional transition location and that this must be taken into account for future data analysis. This research also confirmed that artificial ice roughness created with rapid-prototype manufacturing methods can generate aerodynamic performance effects comparable to grit roughness of equivalent size when proper care is exercised in design and installation. The conclusions of this combined experimental and computational study contributed directly to the successful implementation of follow-on test campaigns with numerous artificial ice-shape configurations for this 8.9% scale model.
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Woodard, Brian S.; Diebold, Jeffrey M.; Moens, Frederic
2017-01-01
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing and computational flow simulations were carried out for an 8.9 percent-scale semispan wing based upon the Common Research Model airplane configuration. The wind-tunnel testing was conducted at the Wichita State University 7 by 10 ft Beech wind tunnel from Reynolds numbers of 0.8×10(exp 6) to 2.4×10(exp 6) and corresponding Mach numbers of 0.09 to 0.27. This paper presents the results of initial studies investigating the model mounting configuration, clean-wing aerodynamics and effects of artificial ice roughness. Four different model mounting configurations were considered and a circular splitter plate combined with a streamlined shroud was selected as the baseline geometry for the remainder of the experiments and computational simulations. A detailed study of the clean-wing aerodynamics and stall characteristics was made. In all cases, the flow over the outboard sections of the wing separated as the wing stalled with the inboard sections near the root maintaining attached flow. Computational flow simulations were carried out with the ONERA elsA software that solves the compressible, threedimensional RANS equations. The computations were carried out in either fully turbulent mode or with natural transition. Better agreement between the experimental and computational results was obtained when considering computations with free transition compared to turbulent solutions. These results indicate that experimental evolution of the clean wing performance coefficients were due to the effect of three-dimensional transition location and that this must be taken into account for future data analysis. This research also confirmed that artificial ice roughness created with rapid-prototype manufacturing methods can generate aerodynamic performance effects comparable to grit roughness of equivalent size when proper care is exercised in design and installation. The conclusions of this combined experimental and computational study contributed directly to the successful implementation of follow-on test campaigns with numerous artificial ice-shape configurations for this 8.9 percent scale model.
NASA Astrophysics Data System (ADS)
Zou, Chengzhe; Harne, Ryan L.
2017-05-01
Methods of guiding acoustic energy arbitrarily through space have long relied on digital controls to meet performance needs. Yet, more recent attention to adaptive structures with unique spatial configurations has motivated mechanical signal processing (MSP) concepts that may not be subjected to the same functional and performance limitations as digital acoustic beamforming counterparts. The periodicity of repeatable structural reconfiguration enabled by origami-inspired tessellated architectures turns attention to foldable platforms as frameworks for MSP development. This research harnesses principles of MSP to study a tessellated, star-shaped acoustic transducer constituent that provides on-demand control of acoustic energy guiding via folding-induced shape reconfiguration. An analytical framework is established to probe the roles of mechanical and acoustic geometry on the far field directivity and near field focusing of sound energy. Following validation by experiments and verification by simulations, parametric studies are undertaken to uncover relations between constituent topology and acoustic energy delivery to arbitrary points in the free field. The adaptations enabled by folding of the star-shaped transducer reveal capability for restricting sound energy to angular regions in the far field while also introducing means to modulate sound energy by three orders-of-magnitude to locations near to the transducer surface. In addition, the modeling philosophy devised here provides a valuable approach to solve general sound radiation problems for foldable, tessellated acoustic transducer constituents of arbitrary geometry.
Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement in a 1000 °C Environment.
Yu, Fengming; Okabe, Yoji
2017-12-14
Recently, the authors have proposed a remote acoustic emission (AE) measurement configuration using a sensitive fiber-optic Bragg grating (FBG) sensor. In the configuration, the FBG sensor was remotely bonded on a plate, and an optical fiber was used as the waveguide to propagate AE waves from the adhesive point to the sensor. The previous work (Yu et al., Smart Materials and Structures 25 (10), 105,033 (2016)) has clarified the sensing principle behind the special remote measurement system that enables accurate remote sensing of AE signals. Since the silica-glass optical fibers have a high heat-resistance exceeding 1000 °C, this work presents a preliminary high-temperature AE detection method by using the optical fiber-based ultrasonic waveguide to propagate the AE from a high-temperature environment to a room-temperature environment, in which the FBG sensor could function as the receiver of the guided wave. As a result, the novel measurement configuration successfully achieved highly sensitive and stable AE detection in an alumina plate at elevated temperatures in the 100 °C to 1000 °C range. Due to its good performance, this detection method will be potentially useful for the non-destructive testing that can be performed in high-temperature environments to evaluate the microscopic damage in heat-resistant materials.
Excitation of the Uller-Zenneck electromagnetic surface waves in the prism-coupled configuration
NASA Astrophysics Data System (ADS)
Rasheed, Mehran; Faryad, Muhammad
2017-08-01
A configuration to excite the Uller-Zenneck surface electromagnetic waves at the planar interfaces of homogeneous and isotropic dielectric materials is proposed and theoretically analyzed. The Uller-Zenneck waves are surface waves that can exist at the planar interface of two dissimilar dielectric materials of which at least one is a lossy dielectric material. In this paper, a slab of a lossy dielectric material was taken with lossless dielectric materials on both sides. A canonical boundary-value problem was set up and solved to find the possible Uller-Zenneck waves and waveguide modes. The Uller-Zenneck waves guided by the slab of the lossy dielectric material were found to be either symmetric or antisymmetric and transmuted into waveguide modes when the thickness of that slab was increased. A prism-coupled configuration was then successfully devised to excite the Uller-Zenneck waves. The results showed that the Uller-Zenneck waves are excited at the same angle of incidence for any thickness of the slab of the lossy dielectric material, whereas the waveguide modes can be excited when the slab is sufficiently thick. The excitation of Uller-Zenneck waves at the planar interfaces with homogeneous and all-dielectric materials can usher in new avenues for the applications for electromagnetic surface waves.
Computational Fluid Dynamics Analysis for the Orbiter LH2 Feedline Flowliner
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.
2005-01-01
In phase II, additional inducer rotations are simulated in order to understand the root cause of the flowliner crack problem. CFD results confirmed that there is a strong unsteady interaction between the backflow regions caused by the LPFTP inducer and secondary flow regions in the bellows cavity through the flowliner slots. It is observed that the swirl on the duct side of the downstream flowliner is stronger than on the duct side of the upstream flowliner. Due to this swirl, there are more significant unsteady flow interactions through the downstream slots than those observed in the upstream slots. Averaged values of the local velocity at the slots were provided to the NESC-ITA flow physics acoustics team to guide them in designing the acoustics experiment. A parametric study was performed to compare the flow field in the flowliner area when one upstream slot and one corresponding downstream slot were enlarged. No significant differences were observed between the flow field obtained from the enlarged slot configuration when compared with the original configuration. More cases must be analyzed with various enlarged slot configurations to generalize this observation. The flow through the A1 test stand and the flow through the orbiter fuel feedline manifold were simulated without the LPFTP. It was observed that incoming flow to the flowliner and inducer was more uniform in the A1 test stand then in the orbiter manifold. Additionally, each engine LPFTP in the orbiter receives significantly different velocity distributions. Because of the differences observed in the computed results, it is not possible for the A1 test stand to represent the three different engine feedlines simultaneously.
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Benjamin, Theodore G.; Cornelison, J.; Fredmonski, A. J.
1993-01-01
Integration issues involved with installing the alternate turbopump (ATP) High Pressure Oxygen Turbopump (HPOTP) into the SSME have raised questions regarding the flow in the HPOTP turnaround duct (TAD). Steady-state Navier-Stokes CFD analyses have been performed by NASA and Pratt & Whitney (P&W) to address these questions. The analyses have consisted of two-dimensional axisymmetric calculations done at Marshall Space Flight Center and three-dimensional calculations performed at P&W. These analyses have identified flowfield differences between the baseline ATP and the Rocketdyne configurations. The results show that the baseline ATP configuration represents a more severe environment to the inner HX guide vane. This vane has limited life when tested in conjunction with the ATP but infinite life when tested with the current SSME HPOTP. The CFD results have helped interpret test results and have been used to assess proposed redesigns. This paper includes details of the axisymmetric model, its results, and its contribution towards resolving the problem.
Ultrasensitive plasmonic sensing in air using optical fibre spectral combs
Caucheteur, Christophe; Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques
2016-01-01
Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture—a gold-coated highly tilted Bragg grating—that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10−8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas. PMID:27834366
Projective limits of state spaces II. Quantum formalism
NASA Astrophysics Data System (ADS)
Lanéry, Suzanne; Thiemann, Thomas
2017-06-01
In this series of papers, we investigate the projective framework initiated by Kijowski (1977) and Okołów (2009, 2014, 2013), which describes the states of a quantum theory as projective families of density matrices. A short reading guide to the series can be found in Lanéry (2016). After discussing the formalism at the classical level in a first paper (Lanéry, 2017), the present second paper is devoted to the quantum theory. In particular, we inspect in detail how such quantum projective state spaces relate to inductive limit Hilbert spaces and to infinite tensor product constructions (Lanéry, 2016, subsection 3.1) [1]. Regarding the quantization of classical projective structures into quantum ones, we extend the results by Okołów (2013), that were set up in the context of linear configuration spaces, to configuration spaces given by simply-connected Lie groups, and to holomorphic quantization of complex phase spaces (Lanéry, 2016, subsection 2.2) [1].
AlGaAs phased array laser for optical communications
NASA Technical Reports Server (NTRS)
Carlson, N. W.
1989-01-01
Phased locked arrays of multiple AlGaAs diode laser emitters were investigated both in edge emitting and surface emitting configurations. CSP edge emitter structures, coupled by either evanescent waves or Y-guides, could not achieve the required powers (greater than or similar to 500 mW) while maintaining a diffraction limited, single lobed output beam. Indeed, although the diffraction limit was achieved in this type of device, it was at low powers and in the double lobed radiation pattern characteristic of out-of-phase coupling. Grating surface emitting (GSE) arrays were, therefore, investigated with more promising results. The incorporation of second order gratings in distribute Bragg reflector (DBR) structures allows surface emission, and can be configured to allow injection locking and lateral coupling to populate 2-D arrays that should be able to reach power levels commensurate with the needs of high performance, free space optical communications levels. Also, a new amplitude modulation scheme was developed for GSE array operation.
Configuration development study of the X-24C hypersonic research airplane, phase 2
NASA Technical Reports Server (NTRS)
Combs, H. G.
1977-01-01
The X-24C Hypersonic Research Vehicle, configured with a heat-sink structure, a launch mass limit of 31.75 Mg and powered by an LR-105 Rocket Engine plus 12 LR-101 Sustainer Engines, was found to be the more cost effective of the candidate configurations. In addition, the configuration provides the maximum off design growth potential capability and subsequently, was selected as the candidate configuration to be subjected to the design refinement study in the remaining segment of the study. Selection of this configuration was based on the analytical study conducted on the performance growth capabilities of the candidate configurations selected from the Phase 1 Study.
The Electric Honeycomb; an investigation of the Rose window instability
NASA Astrophysics Data System (ADS)
Niazi, Muhammad Shaheer
2017-10-01
The Rose window instability is a little-explored electrohydrodynamic instability that manifests when a layer of low-conducting oil is placed in an electric field generated by corona discharge in a point-to-plane configuration. Above a critical voltage, the instability starts as a single dimple in the oil layer right below the point electrode and subsequently evolves into a characteristic pattern of polygonal cells. In this study, we experimentally explore governing parameters that guide the instability and document geometric attributes of the characteristic cellular pattern. The driving force for the instability has been attributed to the buildup of charged ions which in turn apply an electric pressure on the oil surface. We confirm the charged surface distribution using thermal imaging and demonstrate that the instability can be locally inhibited by preventing charge buildup under an ion shadow.
The Electric Honeycomb; an investigation of the Rose window instability
2017-01-01
The Rose window instability is a little-explored electrohydrodynamic instability that manifests when a layer of low-conducting oil is placed in an electric field generated by corona discharge in a point-to-plane configuration. Above a critical voltage, the instability starts as a single dimple in the oil layer right below the point electrode and subsequently evolves into a characteristic pattern of polygonal cells. In this study, we experimentally explore governing parameters that guide the instability and document geometric attributes of the characteristic cellular pattern. The driving force for the instability has been attributed to the buildup of charged ions which in turn apply an electric pressure on the oil surface. We confirm the charged surface distribution using thermal imaging and demonstrate that the instability can be locally inhibited by preventing charge buildup under an ion shadow. PMID:29134066
Definition of optical systems payloads
NASA Technical Reports Server (NTRS)
Downey, J. A., III
1981-01-01
The various phases in the formulation of a major NASA project include the inception of the project, planning of the concept, and the project definition. A baseline configuration is established during the planning stage, which serves as a basis for engineering trade studies. Basic technological problems should be recognized early, and a technological verification plan prepared before development of a project begins. A progressive series of iterations is required during the definition phase, illustrating the complex interdependence of existing subsystems. A systems error budget should be established to assess the overall systems performance, identify key performance drivers, and guide performance trades and iterations around these drivers, thus decreasing final systems requirements. Unnecessary interfaces should be avoided, and reasonable design and cost margins maintained. Certain aspects of the definition of the Advanced X-ray Astrophysics Facility are used as an example.
Subwavelength InSb-based Slot wavguides for THz transport: concept and practical implementations.
Ma, Youqiao; Zhou, Jun; Pištora, Jaromír; Eldlio, Mohamed; Nguyen-Huu, Nghia; Maeda, Hiroshi; Wu, Qiang; Cada, Michael
2016-12-07
Seeking better surface plasmon polariton (SPP) waveguides is of critical importance to construct the frequency-agile terahertz (THz) front-end circuits. We propose and investigate here a new class of semiconductor-based slot plasmonic waveguides for subwavelength THz transport. Optimizations of the key geometrical parameters demonstrate its better guiding properties for simultaneous realization of long propagation lengths (up to several millimeters) and ultra-tight mode confinement (~λ 2 /530) in the THz spectral range. The feasibility of the waveguide for compact THz components is also studied to lay the foundations for its practical implementations. Importantly, the waveguide is compatible with the current complementary metal-oxide-semiconductor (CMOS) fabrication technique. We believe the proposed waveguide configuration could offer a potential for developing a CMOS plasmonic platform and can be designed into various components for future integrated THz circuits (ITCs).
Zhang, Chen; Naman, C Benjamin; Engene, Niclas; Gerwick, William H
2017-04-14
A bioactivity guided study of a cf. Caldora penicillata species, collected during a 2013 expedition to the Pacific island of Saipan, Northern Mariana Islands (a commonwealth of the USA), led to the isolation of a new thiazoline-containing alkaloid, laucysteinamide A ( 1 ). Laucysteinamide A is a new monomeric analogue of the marine cyanobacterial metabolite, somocystinamide A ( 2 ), a disulfide-bonded dimeric compound that was isolated previously from a Fijian marine cyanobacterium. The structure and absolute configuration of laucysteinamide A ( 1 ) was determined by a detailed analysis of its NMR, MS, and CD spectra. In addition, the highly bioactive lipid, curacin D ( 3 ), was also found to be present in this cyanobacterial extract. The latter compound was responsible for the potent cytotoxicity of this extract to H-460 human non-small cell lung cancer cells in vitro.
Biologically inspired artificial compound eyes.
Jeong, Ki-Hun; Kim, Jaeyoun; Lee, Luke P
2006-04-28
This work presents the fabrication of biologically inspired artificial compound eyes. The artificial ommatidium, like that of an insect's compound eyes, consists of a refractive polymer microlens, a light-guiding polymer cone, and a self-aligned waveguide to collect light with a small angular acceptance. The ommatidia are omnidirectionally arranged along a hemispherical polymer dome such that they provide a wide field of view similar to that of a natural compound eye. The spherical configuration of the microlenses is accomplished by reconfigurable microtemplating, that is, polymer replication using the deformed elastomer membrane with microlens patterns. The formation of polymer waveguides self-aligned with microlenses is also realized by a self-writing process in a photosensitive polymer resin. The angular acceptance is directly measured by three-dimensional optical sectioning with a confocal microscope, and the detailed optical characteristics are studied in comparison with a natural compound eye.
Propagation characteristics of optical fiber structures with arbitrary shape and index variation
NASA Technical Reports Server (NTRS)
Manshadi, F.
1990-01-01
The application of the scalar wave-fast Fourier transform (SW-FFT) technique to the computation of the propagation characteristics of some complex optical fiber structures is presented. The SW-FFT technique is based on the numerical solution of the scalar wave equation by a forward-marching fast Fourier transform method. This solution yields the spatial configuration of the fields as well as its modal characteristics in and around the guiding structure. The following are treated by the SW-FFT method: analysis of coupled optical fibers and computation of their odd and even modes and coupling length; the solution of tapered optical waveguides (transitions) and the study of the effect of the slope of the taper on mode conversion; and the analysis of branching optical fibers and demonstration of their mode-filtering and/or power-dividing properties.
Feleppa, Ernest J; Porter, Christopher R; Ketterling, Jeffrey; Lee, Paul; Dasgupta, Shreedevi; Urban, Stella; Kalisz, Andrew
2004-07-01
Because current methods of imaging prostate cancer are inadequate, biopsies cannot be effectively guided and treatment cannot be effectively planned and targeted. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radiofrequency (rf) echo signals combined with clinical variables such as prostate-specific antigen (PSA). Tissue typing using these parameters is performed by artificial neural networks. We employed and evaluated different approaches to data partitioning into training, validation, and test sets and different neural network configuration options. In this manner, we sought to determine what neural network configuration is optimal for these data and also to assess possible bias that might exist due to correlations among different data entries among the data for a given patient. The classification efficacy of each neural network configuration and data-partitioning method was measured using relative-operating-characteristic (ROC) methods. Neural network classification based on spectral parameters combined with clinical data generally produced ROC-curve areas of 0.80 compared to curve areas of 0.64 for conventional transrectal ultrasound imaging combined with clinical data. We then used the optimal neural network configuration to generate lookup tables that translate local spectral parameter values and global clinical-variable values into pixel values in tissue-type images (TTIs). TTIs continue to show cancerous regions successfully, and may prove to be particularly useful clinically in combination with other ultrasonic and nonultrasonic methods, e.g., magnetic-resonance spectroscopy.
Feleppa, Ernest J.; Porter, Christopher R.; Ketterling, Jeffrey; Lee, Paul; Dasgupta, Shreedevi; Urban, Stella; Kalisz, Andrew
2006-01-01
Because current methods of imaging prostate cancer are inadequate, biopsies cannot be effectively guided and treatment cannot be effectively planned and targeted. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radio frequency (rf) echo signals combined with clinical variables such as prostate-specific antigen (PSA). Tissue typing using these parameters is performed by artificial neural networks. We employedand evaluated different approaches to data partitioning into training, validation, and test sets and different neural network configuration options. In this manner, we sought to determine what neural network configuration is optimal for these data and also to assess possible bias that might exist due to correlations among different data entries among the data for a given patient. The classification efficacy of each neural network configuration and data-partitioning method was measured using relative-operating-characteristic (ROC) methods. Neural network classification based on spectral parameters combined with clinical data generally produced ROC-curve areas of 0.80 compared to curve areas of 0.64 for conventional transrectal ultrasound imaging combined with clinical data. We then used the optimal neural network configuration to generate lookup tables that translate local spectral parameter values and global clinical-variable values into pixel values in tissue-type images (TTIs). TTIs continue to show can cerous regions successfully, and may prove to be particularly useful clinically in combination with other ultrasonic and nonultrasonic methods, e.g., magnetic-resonance spectroscopy. PMID:15754797
Image guided IMRT dosimetry using anatomy specific MOSFET configurations.
Amin, Md Nurul; Norrlinger, Bern; Heaton, Robert; Islam, Mohammad
2008-06-23
We have investigated the feasibility of using a set of multiple MOSFETs in conjunction with the mobile MOSFET wireless dosimetry system, to perform a comprehensive and efficient quality assurance (QA) of IMRT plans. Anatomy specific MOSFET configurations incorporating 5 MOSFETs have been developed for a specially designed IMRT dosimetry phantom. Kilovoltage cone beam computed tomography (kV CBCT) imaging was used to increase the positional precision and accuracy of the detectors and phantom, and so minimize dosimetric uncertainties in high dose gradient regions. The effectiveness of the MOSFET based dose measurements was evaluated by comparing the corresponding doses measured by an ion chamber. For 20 head and neck IMRT plans the agreement between the MOSFET and ionization chamber dose measurements was found to be within -0.26 +/- 0.88% and 0.06 +/- 1.94% (1 sigma) for measurement points in the high dose and low dose respectively. A precision of 1 mm in detector positioning was achieved by using the X-Ray Volume Imaging (XVI) kV CBCT system available with the Elekta Synergy Linear Accelerator. Using the anatomy specific MOSFET configurations, simultaneous measurements were made at five strategically located points covering high dose and low dose regions. The agreement between measurements and calculated doses by the treatment planning system for head and neck and prostate IMRT plans was found to be within 0.47 +/- 2.45%. The results indicate that a cylindrical phantom incorporating multiple MOSFET detectors arranged in an anatomy specific configuration, in conjunction with image guidance, can be utilized to perform a comprehensive and efficient quality assurance of IMRT plans.
Calculation of the overlap factor for scanning LiDAR based on the tridimensional ray-tracing method.
Chen, Ruiqiang; Jiang, Yuesong; Wen, Luhong; Wen, Donghai
2017-06-01
The overlap factor is used to evaluate the LiDAR light collection ability. Ranging LiDAR is mainly determined by the optical configuration. However, scanning LiDAR, equipped with a scanning mechanism to acquire a 3D coordinate points cloud for a specified target, is essential in considering the scanning effect at the same time. Otherwise, scanning LiDAR will reduce the light collection ability and even cannot receive any echo. From this point of view, we propose a scanning LiDAR overlap factor calculation method based on the tridimensional ray-tracing method, which can be applied to scanning LiDAR with any special laser intensity distribution, any type of telescope (reflector, refractor, or mixed), and any shape obstruction (i.e., the reflector of a coaxial optical system). A case study for our LiDAR with a scanning mirror is carried out, and a MATLAB program is written to analyze the laser emission and reception process. Sensitivity analysis is carried out as a function of scanning mirror rotation speed and detector position, and the results guide how to optimize the overlap factor for our LiDAR. The results of this research will have a guiding significance in scanning LiDAR design and assembly.
Virtual-reality-Based 3D navigation training for emergency egress from spacecraft.
Aoki, Hirofumi; Oman, Charles M; Natapoff, Alan
2007-08-01
Astronauts have reported spatial disorientation and navigation problems inside spacecraft whose interior visual vertical direction varies from module to module. If they had relevant preflight practice they might orient better. This experiment examined the influence of relative body orientation and individual spatial skills during VR training on a simulated emergency egress task. During training, 36 subjects were each led on 12 tours through a space station by a virtual tour guide. Subjects wore a head-mounted display and controlled their motion with a game-pad. Each tour traversed multiple modules and involved up to three changes in visual vertical direction. Each subject was assigned to one of three groups that maintained different postures: visually upright relative to the "local" module; constant orientation relative to the "station" irrespective of local visual vertical; and "mixed" (local, followed by station orientation). Groups were balanced on the basis of mental rotation and perspective-taking test scores. Subjects then performed 24 emergency egress testing trials without the tour guide. Smoke reduced visibility during the last 12 trials. Egress time, sense of direction (by pointing to origin and destination) and configuration knowledge were measured. Both individual 3D spatial abilities and orientation during training influence emergency egress performance, pointing, and configuration knowledge. Local training facilitates landmark and route learning, but station training enhances sense of direction relative to station, and, therefore, performance in low visibility. We recommend a sequence of local, followed by station, and then randomized orientation training, preferably customized to a trainee's 3D spatial ability.
Evaluation of transradial body-powered prostheses using a robotic simulator.
Ayub, Rafi; Villarreal, Dario; Gregg, Robert D; Gao, Fan
2017-04-01
Transradial body-powered prostheses are extensively used by upper-limb amputees. This prosthesis requires large muscle forces and great concentration by the patient, often leading to discomfort, muscle fatigue, and skin breakdown, limiting the capacity of the amputee to conduct daily activities. Since body-powered prostheses are commonplace, understanding their optimal operation to mitigate these drawbacks would be clinically meaningful. To find the optimal operation of the prosthesis where the activation force is minimized and the grip force is maximized. Experimental design. A computer-controlled robotic amputee simulator capable of rapidly testing multiple elbow, shoulder, and scapular combinations of the residual human arm was constructed. It was fitted with a transradial prosthesis and used to systematically test multiple configurations. We found that increased shoulder flexion, scapular abduction, elbow extension, and the placement of the ring harness near the vertebra C7 correlate with higher gripper operation efficiency, defined as the ratio of grip force to cable tension. We conclude that force transmission efficiency is closely related to body posture configuration. These results could help guide practitioners in clinical practice as well as motivate future studies in optimizing the operation of a body-powered prosthesis. Clinical relevance The results from this study suggest that clinicians ought to place the ring harness inferior and to the sound side of the vertebra prominens in order to maximize grip efficiency. The results will also help clinicians better instruct patients in body posture during prosthesis operation to minimize strain.
Lightweight Multifunctional Planetary Probe for Extreme Environment Exploration and Locomotion
NASA Technical Reports Server (NTRS)
Bayandor, Javid (Principal Investigator); Schroeder, Kevin; Samareh, Jamshid
2017-01-01
The demand to explore new worlds requires the development of advanced technologies that enable landed science on uncertain terrains or in hard to reach locations. As a result, contemporary Entry, Descent, Landing, (EDL) and additional locomotion (EDLL) profiles are becoming increasingly more complex, with the introduction of lifting/guided entries, hazard avoidance on descent, and a plethora of landing techniques including airbags and the skycrane maneuver. The inclusion of each of these subsystems into a mission profile is associated with a substantial mass penalty. This report explores the new all-in-one entry vehicle concept, TANDEM, a new combined EDLL concept, and compares it to the current state of the art EDL systems. The explored system is lightweight and collapsible and provides the capacity for lifting/guided entry, guided descent, hazard avoidance, omnidirectional impact protection and surface locomotion without the aid of any additional subsystems. This Phase I study explored: 1. The capabilities and feasibility of the TANDEM concept as an EDLL vehicle. 2. Extensive impact analysis to ensure mission success in unfavorable landing conditions, and safe landing in Tessera regions. 3. Development of a detailed design for a conceptual mission to Venus. As a result of our work it was shown that: 1. TANDEM provides additional benefits over the Adaptive, Deployable Entry Placement Technology (ADEPT) including guided descent and surface locomotion, while reducing the mass by 38% compared to the ADEPT-VITaL mission. 2. Demonstrated that the design of tensegrity structures, and TANDEM specifically, grows linearly with an increase in velocity, which was previously unknown. 3. Investigation of surface impact revealed a promising results that suggest a properly configured TANDEM vehicle can safely land and preform science in the Tessera regions, which was previously labeled by the Decadal Survey as, largely inaccessible despite its high scientific interest. This work has already resulted in a NASA TM and will be submitted to the Journal of Spacecraft and Rockets.
Application of Optimization Techniques to Design of Unconventional Rocket Nozzle Configurations
NASA Technical Reports Server (NTRS)
Follett, W.; Ketchum, A.; Darian, A.; Hsu, Y.
1996-01-01
Several current rocket engine concepts such as the bell-annular tri-propellant engine, and the linear aerospike being proposed for the X-33 require unconventional three dimensional rocket nozzles which must conform to rectangular or sector shaped envelopes to meet integration constraints. These types of nozzles exist outside the current experience database, therefore, the application of efficient design methods for these propulsion concepts is critical to the success of launch vehicle programs. The objective of this work is to optimize several different nozzle configurations, including two- and three-dimensional geometries. Methodology includes coupling computational fluid dynamic (CFD) analysis to genetic algorithms and Taguchi methods as well as implementation of a streamline tracing technique. Results of applications are shown for several geometeries including: three dimensional thruster nozzles with round or super elliptic throats and rectangualar exits, two- and three-dimensional thrusters installed within a bell nozzle, and three dimensional thrusters with round throats and sector shaped exits. Due to the novel designs considered for this study, there is little experience which can be used to guide the effort and limit the design space. With a nearly infinite parameter space to explore, simple parametric design studies cannot possibly search the entire design space within the time frame required to impact the design cycle. For this reason, robust and efficient optimization methods are required to explore and exploit the design space to achieve high performance engine designs. Five case studies which examine the application of various techniques in the engineering environment are presented in this paper.
Miniature high-resolution guided-wave spectrometer for atmospheric remote sensing
NASA Astrophysics Data System (ADS)
Sloan, James; Kruzelecky, Roman; Wong, Brian; Zou, Jing; Jamroz, Wes; Haddad, Emile; Poirier, Michel
This paper describes the design and application of an innovative spectrometer in which a guided-wave integrated optical spectrometer (IOSPEC) has been coupled with a Fabry-Perot (FP) interferometer. This miniature spectrometer has a net mass under 3 kg, but is capable of broadband operation at spectral resolutions below 0.03 nm full width half maximum (FWHM). The tuneable FP filter provides very high spectral resolution combined with a large input aper-ture. The solid state guided-wave spectrometer is currently configured for a 512-channel array detector, which provides sub-nm coarse resolution. The ultimate resolution is determined by the FP filter, which is tuned across the desired spectral bands, thereby providing a signal-to-noise ratio (SNR) advantage over scanned spectrometer systems of the square root of the number of detector channels. The guided-wave optics provides robust, long-term optical alignment, while minimising the mechanical complexity. The miniaturisation of the FP-IOSPEC spectrometer allows multiple spectrometers to be accommodated on a single MicroSat. Each of these can be optimised for selected measurement tasks and views, thereby enabling more flexible data acquisition strategies with enhanced information content, while minimizing the mission cost. The application of this innovative technology in the proposed Miniature Earth Observation Satellite (MEOS) mission will also be discussed. The MEOS mission, which is designed for the investigation of the carbon and water cycles, relies on multiple IO-SPEC instruments for the simultaneous measurement of a range of atmospheric and surface properties important to climate change.
Light sources and output couplers for a backlight with switchable emission angles
NASA Astrophysics Data System (ADS)
Fujieda, Ichiro; Imai, Keita; Takagi, Yoshihiko
2007-09-01
For switching viewing angles of a liquid crystal display, we proposed to place a liquid crystal device between an LED and a light-guide of a backlight. The first key component for this configuration is a light source with electronically-controlled emission angles. Here, we construct such a device by stacking an optical film and a polymer-network liquid crystal (PNLC) cell on top of a chip-type LED. The optical film contains opaque parallel plates that limit the LED output in a narrow angular range. The PNLC cell either transmits or scatters the light emerging from the optical film. Experiment using a 15μm-thick PNLC cell shows that the angular distribution becomes 2.3 times wider by turning off the PNLC cell. We place this light source at one end of a light-guide so that the angular distribution of the light propagating inside is controlled. The second key component is some types of micro-strucrures built on the light-guide to out-couple the propagating light. We first attached various optical films on a light-guide surface. Although the angular distribution of the extracted light was switched successfully, light was mostly emitted into an oblique direction, approximately 60° from the plane normal. Next, we used a half-cylinder in place of the optical films. The curved surface of the cylinder was attached to the light-guide with a small amount of matching oil, which constituted an optical window. We measured that the angular distribution of the extracted light decreased to 35° FWHM from 62° FWHM by turning on the PNLC cell.
Fan Noise Source Diagnostic Test Computation of Rotor Wake Turbulence Noise
NASA Technical Reports Server (NTRS)
Nallasamy, M.; Envia, E.; Thorp, S. A.; Shabbir, A.
2002-01-01
An important source mechanism of fan broadband noise is the interaction of rotor wake turbulence with the fan outlet guide vanes. A broadband noise model that utilizes computed rotor flow turbulence from a RANS code is used to predict fan broadband noise spectra. The noise model is employed to examine the broadband noise characteristics of the 22-inch Source Diagnostic Test fan rig for which broadband noise data were obtained in wind tunnel tests at the NASA Glenn Research Center. A 9-case matrix of three outlet guide vane configurations at three representative fan tip speeds are considered. For all cases inlet and exhaust acoustic power spectra are computed and compared with the measured spectra where possible. In general, the acoustic power levels and shape of the predicted spectra are in good agreement with the measured data. The predicted spectra show the experimentally observed trends with fan tip speed, vane count, and vane sweep. The results also demonstrate the validity of using CFD-based turbulence information for fan broadband noise calculations.
Borophene as a prototype for synthetic 2D materials development.
Mannix, Andrew J; Zhang, Zhuhua; Guisinger, Nathan P; Yakobson, Boris I; Hersam, Mark C
2018-06-01
The synthesis of 2D materials with no analogous bulk layered allotropes promises a substantial breadth of physical and chemical properties through the diverse structural options afforded by substrate-dependent epitaxy. However, despite the joint theoretical and experimental efforts to guide materials discovery, successful demonstrations of synthetic 2D materials have been rare. The recent synthesis of 2D boron polymorphs (that is, borophene) provides a notable example of such success. In this Perspective, we discuss recent progress and future opportunities for borophene research. Borophene combines unique mechanical properties with anisotropic metallicity, which complements the canon of conventional 2D materials. The multi-centre characteristics of boron-boron bonding lead to the formation of configurationally varied, vacancy-mediated structural motifs, providing unprecedented diversity in a mono-elemental 2D system with potential for electronic applications, chemical functionalization, materials synthesis and complex heterostructures. With its foundations in computationally guided synthesis, borophene can serve as a prototype for ongoing efforts to discover and exploit synthetic 2D materials.
Aguiar, Rodrigo O C; Gasparetto, Emerson L; Escuissato, Dante L; Marchiori, Edson; Trudell, Debbie J; Haghighi, Parviz; Resnick, Donald
2006-11-01
To demonstrate the anatomy of the radial and ulnar bursae of the wrist using MR and US images. Ultrasonographic-guided tenography of the tendon sheath of flexor pollicis longus (FPL) and the common tendon sheath of the flexor digitorum of the fifth digit (FD5) of ten cadaveric hands was performed, followed by magnetic resonance imaging and gross anatomic correlation. Patterns of communication were observed between these tendon sheaths and the radial and ulnar bursae of the wrist. The tendon sheath of the FPL communicated with the radial bursa in 100% (10/10) of cases, and the tendon sheath of the FD5 communicated with the ulnar bursa in 80% (8/10). Communication of the radial and ulnar bursae was evident in 100% (10/10), and presented an "hourglass" configuration in the longitudinal plane. The ulnar and radial bursae often communicate. The radial bursa communicates with the FPL tendon sheath, and the ulnar bursa may communicate with the FD5 tendon sheath.
Scattering of circumferential waves in a cracked annulus
NASA Astrophysics Data System (ADS)
Valle, Christine; Qu, Jianmin; Jacobs, Laurence J.
2000-05-01
This paper considers guided waves propagating in the circumferential direction of an annulus with a radial crack, with the objective of developing an ultrasonic technique that can detect and characterize these cracks. Specifically, the finite element method is used to simulate the propagation and scattering of guided circumferential waves in a cracked annulus. This method fosters a better understanding of the wave fields, so that a transducer configuration used in the field can be optimized for crack detection/characterization. Both a point source (simulating laser generated ultrasound) and a distributed source (simulating a PZT transducer) are modeled and compared to corresponding experimental results. Animations (snapshots at different instants in time) of the strain energy field in the annulus are given for various combinations of load profiles, incident angles, and incident frequencies. Results of this paper provide the necessary design guidelines for developing nondestructive ultrasonic techniques for the detection/characterization of radial cracks in cylindrical pressure vessels, gas/oil pipes, and shaft/bearing systems.
Borophene as a prototype for synthetic 2D materials development
NASA Astrophysics Data System (ADS)
Mannix, Andrew J.; Zhang, Zhuhua; Guisinger, Nathan P.; Yakobson, Boris I.; Hersam, Mark C.
2018-06-01
The synthesis of 2D materials with no analogous bulk layered allotropes promises a substantial breadth of physical and chemical properties through the diverse structural options afforded by substrate-dependent epitaxy. However, despite the joint theoretical and experimental efforts to guide materials discovery, successful demonstrations of synthetic 2D materials have been rare. The recent synthesis of 2D boron polymorphs (that is, borophene) provides a notable example of such success. In this Perspective, we discuss recent progress and future opportunities for borophene research. Borophene combines unique mechanical properties with anisotropic metallicity, which complements the canon of conventional 2D materials. The multi-centre characteristics of boron-boron bonding lead to the formation of configurationally varied, vacancy-mediated structural motifs, providing unprecedented diversity in a mono-elemental 2D system with potential for electronic applications, chemical functionalization, materials synthesis and complex heterostructures. With its foundations in computationally guided synthesis, borophene can serve as a prototype for ongoing efforts to discover and exploit synthetic 2D materials.
Preventing microbial biofilms on catheter tubes using ultrasonic guided waves.
Wang, Huanlei; Teng, Fengmeng; Yang, Xin; Guo, Xiasheng; Tu, Juan; Zhang, Chunbing; Zhang, Dong
2017-04-04
Biofilms on indwelling tubes and medical prosthetic devices are among the leading causes of antibiotic-resistant bacterial infections. In this work, a new anti-biofilm catheter prototype was proposed. By combining an endotracheal tube (ET) with a group of ultrasonic guided wave (UGW) transducers, the general idea was to prevent bacteria aggregation with UGW vibrations. Based on quantitative analysis of UGW propagation, detailed approach was achieved through (a) selection of ultrasonic frequency, wave modes and vibration amplitude; and (b) adoption of wave coupling and 45° wave incidence technique. Performance of the proposed UGW-ET prototype was demonstrated via in vitro experiments, during which it deterred deposition of Pseudomonas aeruginosa (P. aeruginosa) biofilms successfully. With current configuration, UGW amplitudes ranged from 0.05-5 nm could be optimal to achieve biofilm prevention. This work sheds a light in the underlying mechanism of ultrasound-mediated biofilm prevention, and will inspire the development of new catheters of better antibacterial capability.
NASA Astrophysics Data System (ADS)
Chawla, Viveak Kumar; Chanda, Arindam Kumar; Angra, Surjit
2018-03-01
The flexible manufacturing system (FMS) constitute of several programmable production work centers, material handling systems (MHSs), assembly stations and automatic storage and retrieval systems. In FMS, the automatic guided vehicles (AGVs) play a vital role in material handling operations and enhance the performance of the FMS in its overall operations. To achieve low makespan and high throughput yield in the FMS operations, it is highly imperative to integrate the production work centers schedules with the AGVs schedules. The Production schedule for work centers is generated by application of the Giffler and Thompson algorithm under four kind of priority hybrid dispatching rules. Then the clonal selection algorithm (CSA) is applied for the simultaneous scheduling to reduce backtracking as well as distance travel of AGVs within the FMS facility. The proposed procedure is computationally tested on the benchmark FMS configuration from the literature and findings from the investigations clearly indicates that the CSA yields best results in comparison of other applied methods from the literature.
NASA Technical Reports Server (NTRS)
Earl, James A.
1992-01-01
When charged particles spiral along a large constant magnetic field, their trajectories are scattered by any random field components that are superposed on the guiding field. If the random field configuration embodies helicity, the scattering is asymmetrical with respect to a plane perpendicular to the guiding field, for particles moving into the forward hemisphere are scattered at different rates from those moving into the backward hemisphere. This asymmetry gives rise to new terms in the transport equations that describe propagation of charged particles. Helicity has virtually no impact on qualitative features of the diffusive mode of propagation. However, characteristic velocities of the coherent modes that appear after a highly anisotropic injection exhibit an asymmetry related to helicity. Explicit formulas, which embody the effects of helicity, are given for the anisotropies, the coefficient diffusion, and the coherent velocities. Predictions derived from these expressions are in good agreement with Monte Carlo simulations of particle transport, but the simulations reveal certain phenomena whose explanation calls for further analytical work.
Zou, Wenli; Liu, Wenjian
2009-03-01
The low-lying electronic states of TlX (X=F, Cl, Br, I, and At) are investigated using the configuration interaction based complete active space third-order perturbation theory [CASPT3(CI)] with spin-orbit coupling accounted for. The potential energy curves and the corresponding spectroscopic constants are reported. The results are grossly in good agreement with the available experimental data. The absorption spectra are simulated as well to reassign the experimental bands. The present results are also useful for guiding future experimental measurements.
Gaps in nuclear spectra as traces of seniority changes in systems of both neutrons and protons
NASA Astrophysics Data System (ADS)
Zamick, Larry
2016-03-01
There has been a great deal of attention given to the low-lying energy spectrum in a nucleus because of the abundance of experimental data. Likewise, perhaps to a lesser extent but still significant, the high end for a given configuration has been examined. Here, using single j shell calculations as a guide, we examine the middle part of the spectrum resulting from single j shell calculations. Seniority arguments are used to partially explain the midshell behaviors even though in general seniority is not a good quantum number for mixed systems of neutrons and protons.
Antiproliferative compounds of Artabotrys madagascariensis from the Madagascar rainforest†
Murphy, Brian T.; Cao, Shugeng; Brodie, Peggy J.; Miller, James S.; Ratovoson, Fidy; Birkinshaw, Chris; Rakotobe, Etienne; Rasamison, Vincent E.; Tendyke, Karen; Suh, Edward M.; Kingston, David G. I.
2009-01-01
Bioassay-guided fractionation of an ethanol extract of Artabotrys madagascariensis led to the isolation of the new compound artabotrol A (1), two butenolides (2 and 3), and the tetracyclic triterpene polycarpol (4). Structure elucidation was determined on the basis of one and two-dimensional NMR, and absolute configuration of compounds 2–4 was verified by analysis of CD and optical rotation spectra. Two of the isolates, melodorinol (2) and acetylmelodorinol (3), were found to display antiproliferative activity against five different tumor cell lines with IC50 values ranging from 2.4 to 12 µM. PMID:18855218
Confluence and convergence: team effectiveness in complex systems.
Porter-OʼGrady, Tim
2015-01-01
Complex adaptive systems require nursing leadership to rethink organizational work and the viability and effectiveness of teams. Much of emergent thinking about complexity and systems and organizations alter the understanding of the nature and function of teamwork and the configuration and leadership of team effort. Reflecting on basic concepts of complexity and their application to team formation, dynamics, and outcomes lays an important foundation for effectively guiding the strategic activity of systems through the focused tactical action of teams. Basic principles of complexity, their impact on teams, and the fundamental elements of team effectiveness are explored.
Dynamic Task Assignment of Autonomous Distributed AGV in an Intelligent FMS Environment
NASA Astrophysics Data System (ADS)
Fauadi, Muhammad Hafidz Fazli Bin Md; Lin, Hao Wen; Murata, Tomohiro
The need of implementing distributed system is growing significantly as it is proven to be effective for organization to be flexible against a highly demanding market. Nevertheless, there are still large technical gaps need to be addressed to gain significant achievement. We propose a distributed architecture to control Automated Guided Vehicle (AGV) operation based on multi-agent architecture. System architectures and agents' functions have been designed to support distributed control of AGV. Furthermore, enhanced agent communication protocol has been configured to accommodate dynamic attributes of AGV task assignment procedure. Result proved that the technique successfully provides a better solution.
Compact divided-pupil line-scanning confocal microscope for investigation of human tissues
NASA Astrophysics Data System (ADS)
Glazowski, Christopher; Peterson, Gary; Rajadhyaksha, Milind
2013-03-01
Divided-pupil line-scanning confocal microscopy (DPLSCM) can provide a simple and low-cost approach for imaging of human tissues with pathology-like nuclear and cellular detail. Using results from a multidimensional numerical model of DPLSCM, we found optimal pupil configurations for improved axial sectioning, as well as control of speckle noise in the case of reflectance imaging. The modeling results guided the design and construction of a simple (10 component) microscope, packaged within the footprint of an iPhone, and capable of cellular resolution. We present the optical design with experimental video-images of in-vivo human tissues.
Sensor Suitcase Tablet Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Retrocommissioning Sensor Suitcase is targeted for use in small commercial buildings of less than 50,000 square feet of floor space that regularly receive basic services such as maintenance and repair, but don't have in-house energy management staff or buildings experts. The Suitcase is designed to be easy-to-use by building maintenance staff, or other professionals such as telecom and alarm technicians. The software in the hand-held is designed to guide the staff to input the building and system information, deploy the sensors in proper location, configure the sensor hardware, and start the data collection.
NASA Astrophysics Data System (ADS)
Bäumer, C.; Janson, M.; Timmermann, B.; Wulff, J.
2018-04-01
To assess if apertures shall be mounted upstream or downstream of a range shifting block if these field-shaping devices are combined with the pencil-beam scanning delivery technique (PBS). The lateral dose fall-off served as a benchmark parameter. Both options realizing PBS-with-apertures were compared to the uniform scanning mode. We also evaluated the difference regarding the out-of-field dose caused by interactions of protons in beam-shaping devices. The potential benefit of the downstream configuration over the upstream configuration was estimated analytically. Guided by this theoretical evaluation a mechanical adapter was developed which transforms the upstream configuration provided by the proton machine vendor to a downstream configuration. Transversal dose profiles were calculated with the Monte-Carlo based dose engine of the commercial treatment planning system RayStation 6. Two-dimensional dose planes were measured with an ionization chamber array and a scintillation detector at different depths and compared to the calculation. Additionally, a clinical example for the irradiation of the orbit was compared for both PBS options and a uniform scanning treatment plan. Assuming the same air gap the lateral dose fall-off at the field edge at a few centimeter depth is 20% smaller for the aperture-downstream configuration than for the upstream one. For both options of PBS-with-apertures the dose fall-off is larger than in uniform scanning delivery mode if the minimum accelerator energy is 100 MeV. The RayStation treatment planning system calculated the width of the lateral dose fall-off with an accuracy of typically 0.1 mm–0.3 mm. Although experiments and calculations indicate a ranking of the three delivery options regarding lateral dose fall-off, there seems to be a limited impact on a multi-field treatment plan.
Configural face processing impacts race disparities in humanization and trust
Cassidy, Brittany S.; Krendl, Anne C.; Stanko, Kathleen A.; Rydell, Robert J.; Young, Steven G.; Hugenberg, Kurt
2018-01-01
The dehumanization of Black Americans is an ongoing societal problem. Reducing configural face processing, a well-studied aspect of typical face encoding, decreases the activation of human-related concepts to White faces, suggesting that the extent that faces are configurally processed contributes to dehumanization. Because Black individuals are more dehumanized relative to White individuals, the current work examined how configural processing might contribute to their greater dehumanization. Study 1 showed that inverting faces (which reduces configural processing) reduced the activation of human-related concepts toward Black more than White faces. Studies 2a and 2b showed that reducing configural processing affects dehumanization by decreasing trust and increasing homogeneity among Black versus White faces. Studies 3a–d showed that configural processing effects emerge in racial outgroups for whom untrustworthiness may be a more salient group stereotype (i.e., Black, but not Asian, faces). Study 4 provided evidence that these effects are specific to reduced configural processing versus more general perceptual disfluency. Reduced configural processing may thus contribute to the greater dehumanization of Black relative to White individuals. PMID:29910510
Accurate placement of substrate RNA by Gar1 in H/ACA RNA-guided pseudouridylation.
Wang, Peng; Yang, Lijiang; Gao, Yi Qin; Zhao, Xin Sheng
2015-09-03
H/ACA RNA-guided ribonucleoprotein particle (RNP), the most complicated RNA pseudouridylase so far known, uses H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, L7Ae and Gar1) for pseudouridylation. Although it was shown that Gar1 not only facilitates the product release, but also enhances the catalytic activity, the chemical role that Gar1 plays in this complicated machinery is largely unknown. Kinetics measurement on Pyrococcus furiosus RNPs at different temperatures making use of fluorescence anisotropy showed that Gar1 reduces the catalytic barrier through affecting the activation entropy instead of enthalpy. Site-directed mutagenesis combined with molecular dynamics simulations demonstrated that V149 in the thumb loop of Cbf5 is critical in placing the target uridine to the right position toward catalytic D85 of Cbf5. The enzyme elegantly aligns the position of uridine in the catalytic site with the help of Gar1. In addition, conversion of uridine to pseudouridine results in a rigid syn configuration of the target nucleotide in the active site and causes Gar1 to pull out the thumb. Both factors guarantee the efficient release of the product. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.
2005-01-01
A computational investigation of a two-dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. Several design cycles with the structured-grid, computational fluid dynamics code PAB3D and with experiments in the NASA Langley Research Center Jet Exit Test Facility have been completed to guide the nozzle design and analyze performance. This paper presents computational results on potential design improvements for best experimental configuration tested to date. Nozzle design variables included cavity divergence angle, cavity convergence angle and upstream throat height. Pulsed fluidic injection was also investigated for its ability to decrease mass flow requirements. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 2 to 7, with the fluidic injection flow rate equal to 3 percent of the primary flow rate. Computational results indicate that increasing cavity divergence angle beyond 10 is detrimental to thrust vectoring efficiency, while increasing cavity convergence angle from 20 to 30 improves thrust vectoring efficiency at nozzle pressure ratios greater than 2, albeit at the expense of discharge coefficient. Pulsed injection was no more efficient than steady injection for the Dual Throat Nozzle concept.
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization.
Real-time automatic registration in optical surgical navigation
NASA Astrophysics Data System (ADS)
Lin, Qinyong; Yang, Rongqian; Cai, Ken; Si, Xuan; Chen, Xiuwen; Wu, Xiaoming
2016-05-01
An image-guided surgical navigation system requires the improvement of the patient-to-image registration time to enhance the convenience of the registration procedure. A critical step in achieving this aim is performing a fully automatic patient-to-image registration. This study reports on a design of custom fiducial markers and the performance of a real-time automatic patient-to-image registration method using these markers on the basis of an optical tracking system for rigid anatomy. The custom fiducial markers are designed to be automatically localized in both patient and image spaces. An automatic localization method is performed by registering a point cloud sampled from the three dimensional (3D) pedestal model surface of a fiducial marker to each pedestal of fiducial markers searched in image space. A head phantom is constructed to estimate the performance of the real-time automatic registration method under four fiducial configurations. The head phantom experimental results demonstrate that the real-time automatic registration method is more convenient, rapid, and accurate than the manual method. The time required for each registration is approximately 0.1 s. The automatic localization method precisely localizes the fiducial markers in image space. The averaged target registration error for the four configurations is approximately 0.7 mm. The automatic registration performance is independent of the positions relative to the tracking system and the movement of the patient during the operation.
Using a PC and external media to quantitatively investigate electromagnetic induction
NASA Astrophysics Data System (ADS)
Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.
2011-07-01
In this article we describe an experimental learning path about electromagnetic induction which uses an Atwood machine where one of the two hanging bodies is a cylindrical magnet falling through a plexiglass guide, surrounded either by a coil or by a copper pipe. The first configuration (magnet falling across a coil) allows students to quantitatively study the Faraday-Neumann-Lenz law, while the second configuration (falling through a copper pipe) permits learners to investigate the complex phenomena of induction by quantifying the amount of electric power dissipated through the pipe as a result of Foucault eddy currents, when the magnet travels through the pipe. The magnet's fall acceleration can be set by adjusting the counterweight of the Atwood machine so that both the kinematic quantities associated with it and the electromotive force induced within the coil are continuously and quantitatively monitored (respectively, by a common personal computer (PC) equipped with a webcam and by freely available software that makes it possible to use the audio card to convert the PC into an oscilloscope). Measurements carried out when the various experimental parameters are changed provide a useful framework for a thorough understanding and clarification of the conceptual nodes related to electromagnetic induction. The proposed learning path is under evaluation in various high schools participating in the project 'Lauree Scientifiche' promoted by the Italian Department of Education.
Experimental platform for intra-uterine needle placement procedures
NASA Astrophysics Data System (ADS)
Madjidi, Yashar; Haidegger, Tamás.; Ptacek, Wolfgang; Berger, Daniel; Kirisits, Christian; Kronreif, Gernot; Fichtinger, Gabor
2013-03-01
A framework has been investigated to enable a variety of comparative studies in the context of needle-based gynaecological brachytherapy. Our aim was to create an anthropomorphic phantom-based platform. The three main elements of the platform are the organ model, needle guide, and needle drive. These have been studied and designed to replicate the close environment of brachytherapy treatment for cervical cancer. Key features were created with the help of collaborating interventional radio-oncologists and the observations made in the operating room. A phantom box, representing the uterus model, has been developed considering available surgical analogies and operational limitations, such as organs at risk. A modular phantom-based platform has been designed and prototyped with the capability of providing various boundary conditions for the target organ. By mimicking the female pelvic floor, this framework has been used to compare a variety of needle insertion techniques and configurations for cervical and uterine interventions. The results showed that the proposed methodology is useful for the investigation of quantifiable experiments in the intraabdominal and pelvic regions.
Laser Wakefield Acceleration Experiments Using HERCULES Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuoka, T.; McGuffey, C.; Dollar, F.
2009-07-25
Laser wakefield acceleration (LWFA) in a supersonic gas-jet using a self-guided laser pulse was studied by changing laser power and plasma electron density. The recently upgraded HERCULES laser facility equipped with wavefront correction enables a peak intensity of 6.1x10{sup 19} W/cm{sup 2} at laser power of 80 TW to be delivered to the gas-jet using F/10 focusing optics. We found that electron beam charge was increased significantly with an increase of laser power from 30 TW to 80 TW and showed density threshold behavior at a fixed laser power. We also studied the influence of laser focusing conditions by changingmore » the f-number of the optics to F/15 and found an increase in density threshold for electron production compared to the F/10 configuration. The analysis of different phenomena such as betatron motion of electrons, side scattering of the laser pulse for different focusing conditions, the influence of plasma density down ramp on LWFA are shown.« less
Gen 2.0 Mixer/Ejector Nozzle Test at LSAF June 1995 to July 1996
NASA Technical Reports Server (NTRS)
Arney, L. D.; Sandquist, D. L.; Forsyth, D. W.; Lidstone, G. L.; Long-Davis, Mary Jo (Technical Monitor)
2005-01-01
Testing of the HSCT Generation 2.0 nozzle model hardware was conducted at the Boeing Low Speed Aeroacoustic Facility, LSAF. Concurrent measurements of noise and thrust were made at critical takeoff design conditions for a variety of mixer/ejector model hardware. Design variables such as suppressor area ratio, mixer area ratio, liner type and thickness, ejector length, lobe penetration, and mixer chute shape were tested. Parallel testing was conducted at G.E.'s Cell 41 acoustic free jet facility to augment the LSAF test. The results from the Gen 2.0 testing are being used to help shape the current nozzle baseline configuration and guide the efforts in the upcoming Generation 2.5 and 3.0 nozzle tests. The Gen 2.0 results have been included in the total airplane system studies conducted at MDC and Boeing to provide updated noise and thrust performance estimates.
NASA Astrophysics Data System (ADS)
Kordbacheh, A.; Ghahremaninezhad, Roghayeh; Maraghechi, B.
2012-09-01
A three-dimensional analysis of a novel free-electron laser (FEL) based upon a rectangular hybrid wiggler (RHW) is presented. This RHW is designed in a configuration composed of rectangular rings with alternating ferrite and dielectric spacers immersed in a solenoidal magnetic field. An analytic model of RHW is introduced by solution of Laplace's equation for the magnetostatic fields under the appropriate boundary conditions. The single-electron orbits in combined RHW and axial guide magnetic fields are studied when only the first and the third spatial harmonic components of the RHW field are taken into account and the higher order terms are ignored. The results indicate that the third spatial harmonic leads to group III orbits with a strong negative mass regime particularly in large solenoidal magnetic fields. RHW is found to be a promising candidate with favorable characteristics to be used in microwave FEL.
Topological semimetal in honeycomb lattice LnSI
NASA Astrophysics Data System (ADS)
Nie, Simin; Xu, Gang; Prinz, Fritz B.; Zhang, Shou-cheng
2017-10-01
Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs.
Topological semimetal in honeycomb lattice LnSI.
Nie, Simin; Xu, Gang; Prinz, Fritz B; Zhang, Shou-Cheng
2017-10-03
Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs.
Topological semimetal in honeycomb lattice LnSI
Nie, Simin; Xu, Gang; Prinz, Fritz B.; Zhang, Shou-cheng
2017-01-01
Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs. PMID:28928149
NASA Technical Reports Server (NTRS)
Hartmann, Melvin J.; Tysl, Edward R.
1949-01-01
An investigation was conducted to determine the performance characteristics of the rotor and inlet guide vanes used in the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. Outlet stators used in the engine were omitted to facilitate study of the supersonic rotor. The extent of the deviation from design performance indicates that the design-shock configuration was not obtained. A maximum pressure ratio of 2.26 was obtained at an equivalent tip speed of 1614 feet per second and an adiabatic efficiency of 0.61. The maximum efficiency obtained was 0.79 at an equivalent tip speed of 801 feet per second and a pressure ratio of 1.29. The performance obtained was considerably below design performance. The effective aerodynamic forces encountered appeared to be large enough to cause considerable damage to the thin aluminum leading edges of the rotor blades.
Reduced Order Modeling of Combustion Instability in a Gas Turbine Model Combustor
NASA Astrophysics Data System (ADS)
Arnold-Medabalimi, Nicholas; Huang, Cheng; Duraisamy, Karthik
2017-11-01
Hydrocarbon fuel based propulsion systems are expected to remain relevant in aerospace vehicles for the foreseeable future. Design of these devices is complicated by combustion instabilities. The capability to model and predict these effects at reduced computational cost is a requirement for both design and control of these devices. This work focuses on computational studies on a dual swirl model gas turbine combustor in the context of reduced order model development. Full fidelity simulations are performed utilizing URANS and Hybrid RANS-LES with finite rate chemistry. Following this, data decomposition techniques are used to extract a reduced basis representation of the unsteady flow field. These bases are first used to identify sensor locations to guide experimental interrogations and controller feedback. Following this, initial results on developing a control-oriented reduced order model (ROM) will be presented. The capability of the ROM will be further assessed based on different operating conditions and geometric configurations.
Computational Study of Fluidic Thrust Vectoring using Separation Control in a Nozzle
NASA Technical Reports Server (NTRS)
Deere, Karen; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.
2003-01-01
A computational investigation of a two- dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. The structured-grid, computational fluid dynamics code PAB3D was used to guide the design and analyze over 60 configurations. Nozzle design variables included cavity convergence angle, cavity length, fluidic injection angle, upstream minimum height, aft deck angle, and aft deck shape. All simulations were computed with a static freestream Mach number of 0.05. a nozzle pressure ratio of 3.858, and a fluidic injection flow rate equal to 6 percent of the primary flow rate. Results indicate that the recessed cavity enhances the throat shifting method of fluidic thrust vectoring and allows for greater thrust-vector angles without compromising thrust efficiency.
Zhang, Chen; Naman, C. Benjamin; Engene, Niclas; Gerwick, William H.
2017-01-01
A bioactivity guided study of a cf. Caldora penicillata species, collected during a 2013 expedition to the Pacific island of Saipan, Northern Mariana Islands (a commonwealth of the USA), led to the isolation of a new thiazoline-containing alkaloid, laucysteinamide A (1). Laucysteinamide A is a new monomeric analogue of the marine cyanobacterial metabolite, somocystinamide A (2), a disulfide-bonded dimeric compound that was isolated previously from a Fijian marine cyanobacterium. The structure and absolute configuration of laucysteinamide A (1) was determined by a detailed analysis of its NMR, MS, and CD spectra. In addition, the highly bioactive lipid, curacin D (3), was also found to be present in this cyanobacterial extract. The latter compound was responsible for the potent cytotoxicity of this extract to H-460 human non-small cell lung cancer cells in vitro. PMID:28420100
Anti-coalescence of bosons on a lossy beam splitter.
Vest, Benjamin; Dheur, Marie-Christine; Devaux, Éloïse; Baron, Alexandre; Rousseau, Emmanuel; Hugonin, Jean-Paul; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François
2017-06-30
Two-boson interference, a fundamentally quantum effect, has been extensively studied with photons through the Hong-Ou-Mandel effect and observed with guided plasmons. Using two freely propagating surface plasmon polaritons (SPPs) interfering on a lossy beam splitter, we show that the presence of loss enables us to modify the reflection and transmission factors of the beam splitter, thus revealing quantum interference paths that do not exist in a lossless configuration. We investigate the two-plasmon interference on beam splitters with different sets of reflection and transmission factors. Through coincidence-detection measurements, we observe either coalescence or anti-coalescence of SPPs. The results show that losses can be viewed as a degree of freedom to control quantum processes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
A 4-m evolvable space telescope configured for NASA's HabEx Mission: the initial stage of LUVOIR
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; MacEwen, Howard A.; Polidan, Ronald S.; Breckinridge, James B.
2017-09-01
Previous papers have described our concept for a large telescope that would be assembled in space in several stages (in different configurations) over a period of fifteen to 20 years. Spreading the telescope development, launch and operations cost over 20 years would minimize the impact on NASA's annual budget and drastically shorten the time between program start and "first light" for this space observatory. The first Stage of this Evolvable Space Telescope (EST) would consist of an instrument module located at the prime focus of three 4-meter hexagonal mirrors arranged in a semi-circle to form one-half of a 12-m segmented mirror. After several years three additional 4-m mirrors would be added to create a 12-m filled aperture. Later, twelve more 4-m mirrors will be added to this Stage 2 telescope to create a 20-m filled aperture space telescope. At each stage the telescope would have an unparalleled capability for UVOIR observations, and the results of these observations will guide the evolution of the telescope and its instruments. In this paper we describe our design concept for an initial configuration of our Evolvable Space Telescope that can meet the requirements of the 4-m version of the HabEx spacecraft currently under consideration by NASA's Habitable Exoplanet Science and Technology Definition Team. This "Stage Zero" configuration will have only one 4-m mirror segment with the same 30-m focal length and a prime focus coronagraph with normal incidence optics to minimize polarization effects. After assembly and checkout in cis-lunar space, the telescope would transfer to a Sun-Earth L2 halo orbit and obtain high sensitivity, high resolution, high contrast UVOIR observations that address the scientific objectives of the Habitable-Exoplanet Imaging Missions.
Image guided IMRT dosimetry using anatomy specific MOSFET configurations
Norrlinger, Bern; Heaton, Robert; Islam, Mohammad
2008-01-01
We have investigated the feasibility of using a set of multiple MOSFETs in conjunction with the mobileMOSFET wireless dosimetry system, to perform a comprehensive and efficient quality assurance (QA) of IMRT plans. Anatomy specific MOSFET configurations incorporating 5 MOSFETs have been developed for a specially designed IMRT dosimetry phantom. Kilovoltage cone beam computed tomography (kV CBCT) imaging was used to increase the positional precision and accuracy of the detectors and phantom, and so minimize dosimetric uncertainties in high dose gradient regions. The effectiveness of the MOSFET based dose measurements was evaluated by comparing the corresponding doses measured by an ion chamber. For 20 head and neck IMRT plans the agreement between the MOSFET and ionization chamber dose measurements was found to be within −0.26±0.88% and 0.06±1.94% (1σ) for measurement points in the high dose and low dose respectively. A precision of 1 mm in detector positioning was achieved by using the X‐Ray Volume Imaging (XVI) kV CBCT system available with the Elekta Synergy Linear Accelerator. Using the anatomy specific MOSFET configurations, simultaneous measurements were made at five strategically located points covering high dose and low dose regions. The agreement between measurements and calculated doses by the treatment planning system for head and neck and prostate IMRT plans was found to be within 0.47±2.45%. The results indicate that a cylindrical phantom incorporating multiple MOSFET detectors arranged in an anatomy specific configuration, in conjunction with image guidance, can be utilized to perform a comprehensive and efficient quality assurance of IMRT plans. PACS number: 87.55.Qr
Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics
NASA Astrophysics Data System (ADS)
Ellison, Charles Leland
Geometric integrators yield high-fidelity numerical results by retaining conservation laws in the time advance. A particularly powerful class of geometric integrators is symplectic integrators, which are widely used in orbital mechanics and accelerator physics. An important application presently lacking symplectic integrators is the guiding center motion of magnetized particles represented by non-canonical coordinates. Because guiding center trajectories are foundational to many simulations of magnetically confined plasmas, geometric guiding center algorithms have high potential for impact. The motivation is compounded by the need to simulate long-pulse fusion devices, including ITER, and opportunities in high performance computing, including the use of petascale resources and beyond. This dissertation uses a systematic procedure for constructing geometric integrators --- known as variational integration --- to deliver new algorithms for guiding center trajectories and other plasma-relevant dynamical systems. These variational integrators are non-trivial because the Lagrangians of interest are degenerate - the Euler-Lagrange equations are first-order differential equations and the Legendre transform is not invertible. The first contribution of this dissertation is that variational integrators for degenerate Lagrangian systems are typically multistep methods. Multistep methods admit parasitic mode instabilities that can ruin the numerical results. These instabilities motivate the second major contribution: degenerate variational integrators. By replicating the degeneracy of the continuous system, degenerate variational integrators avoid parasitic mode instabilities. The new methods are therefore robust geometric integrators for degenerate Lagrangian systems. These developments in variational integration theory culminate in one-step degenerate variational integrators for non-canonical magnetic field line flow and guiding center dynamics. The guiding center integrator assumes coordinates such that one component of the magnetic field is zero; it is shown how to construct such coordinates for nested magnetic surface configurations. Additionally, collisional drag effects are incorporated in the variational guiding center algorithm for the first time, allowing simulation of energetic particle thermalization. Advantages relative to existing canonical-symplectic and non-geometric algorithms are numerically demonstrated. All algorithms have been implemented as part of a modern, parallel, ODE-solving library, suitable for use in high-performance simulations.
Fractional Factorial Experiment Designs to Minimize Configuration Changes in Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
DeLoach, Richard; Cler, Daniel L.; Graham, Albert B.
2002-01-01
This paper serves as a tutorial to introduce the wind tunnel research community to configuration experiment designs that can satisfy resource constraints in a configuration study involving several variables, without arbitrarily eliminating any of them from the experiment initially. The special case of a configuration study featuring variables at two levels is examined in detail. This is the type of study in which each configuration variable has two natural states - 'on or off', 'deployed or not deployed', 'low or high', and so forth. The basic principles are illustrated by results obtained in configuration studies conducted in the Langley National Transonic Facility and in the ViGYAN Low Speed Tunnel in Hampton, Virginia. The crucial role of interactions among configuration variables is highlighted with an illustration of difficulties that can be encountered when they are not properly taken into account.
Definition study for photovoltaic residential prototype system
NASA Technical Reports Server (NTRS)
Imamura, M. S.; Hulstrom, R. L.; Cookson, C.; Waldman, B. H.; Lane, R. A.
1976-01-01
A parametric sensitivity study and definition of the conceptual design is presented. A computer program containing the solar irradiance, solar array, and energy balance models was developed to determine the sensitivities of solar insolation and the corresponding solar array output at five sites selected for this study as well as the performance of several solar array/battery systems. A baseline electrical configuration was chosen, and three design options were recommended. The study indicates that the most sensitive parameters are the solar insolation and the inverter efficiency. The baseline PST selected is comprised of a 133 sg m solar array, 250 ampere hour battery, one to three inverters, and a full shunt regulator to limit the upper solar array voltage. A minicomputer controlled system is recommended to provide the overall control, display, and data acquisition requirements. Architectural renderings of two photovoltaic residential concepts, one above ground and the other underground, are presented. The institutional problems were defined in the areas of legal liabilities during and after installation of the PST, labor practices, building restrictions and architectural guides, and land use.
NASA Technical Reports Server (NTRS)
Bair, E. K.
1986-01-01
The System Trades Study and Design Methodology Plan is used to conduct trade studies to define the combination of Space Shuttle Main Engine features that will optimize candidate engine configurations. This is accomplished by using vehicle sensitivities and engine parametric data to establish engine chamber pressure and area ratio design points for candidate engine configurations. Engineering analyses are to be conducted to refine and optimize the candidate configurations at their design points. The optimized engine data and characteristics are then evaluated and compared against other candidates being considered. The Evaluation Criteria Plan is then used to compare and rank the optimized engine configurations on the basis of cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van de Wiele, Ben; Fin, Samuele; Pancaldi, Matteo
2016-05-28
Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal setsmore » in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.« less
Immunosensing with Near-Infrared Plasmonic Optical Fiber Gratings.
Caucheteur, Christophe; Ribaut, Clotilde; Malachovska, Viera; Wattiez, Ruddy
2017-01-01
Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. They are usually obtained from a gold-coated fiber segment for which the core-guided light is brought into contact with the surrounding medium, either by etching (or side-polishing) or by using grating coupling. Recently, SPR generation was achieved in gold-coated tilted fiber Bragg gratings (TFBGs). These sensors probe the surrounding medium with near-infrared narrowband resonances, which enhances both the penetration depth of the evanescent field in the external medium and the wavelength resolution of the interrogation. They constitute the unique configuration able to probe all the fiber cladding modes individually, with high Q-factors. We use these unique spectral features in our work to sense proteins and extra-cellular membrane receptors that are both overexpressed in cancerous tissues. Impressive limit of detection (LOD) and sensitivity are reported, which paves the way for the further use of such immunosensors for cancer diagnosis.
Energy release and transfer in guide field reconnection
NASA Astrophysics Data System (ADS)
Birn, J.; Hesse, M.
2010-01-01
Properties of energy release and transfer by magnetic reconnection in the presence of a guide field are investigated on the basis of 2.5-dimensional magnetohydrodynamic (MHD) and particle-in-cell (PIC) simulations. Two initial configurations are considered: a plane current sheet with a uniform guide field of 80% of the reconnecting magnetic field component and a force-free current sheet in which the magnetic field strength is constant but the field direction rotates by 180° through the current sheet. The onset of reconnection is stimulated by localized, temporally limited compression. Both MHD and PIC simulations consistently show that the outgoing energy fluxes are dominated by (redirected) Poynting flux and enthalpy flux, whereas bulk kinetic energy flux and heat flux (in the PIC simulation) are small. The Poynting flux is mainly associated with the magnetic energy of the guide field which is carried from inflow to outflow without much alteration. The conversion of annihilated magnetic energy to enthalpy flux (that is, thermal energy) stems mainly from the fact that the outflow occurs into a closed field region governed by approximate force balance between Lorentz and pressure gradient forces. Therefore, the energy converted from magnetic to kinetic energy by Lorentz force acceleration becomes immediately transferred to thermal energy by the work done by the pressure gradient force. Strong similarities between late stages of MHD and PIC simulations result from the fact that conservation of mass and entropy content and footpoint displacement of magnetic flux tubes, imposed in MHD, are also approximately satisfied in the PIC simulations.
Ramirez, Ursula D; Nikonova, Anna S; Liu, Hanqing; Pecherskaya, Anna; Lawrence, Sarah H; Serebriiskii, Ilya G; Zhou, Yan; Robinson, Matthew K; Einarson, Margret B; Golemis, Erica A; Jaffe, Eileen K
2015-05-28
Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target.
A comparative study of the A* heuristic search algorithm used to solve efficiently a puzzle game
NASA Astrophysics Data System (ADS)
Iordan, A. E.
2018-01-01
The puzzle game presented in this paper consists in polyhedra (prisms, pyramids or pyramidal frustums) which can be moved using the free available spaces. The problem requires to be found the minimum number of movements in order the game reaches to a goal configuration starting from an initial configuration. Because the problem is enough complex, the principal difficulty in solving it is given by dimension of search space, that leads to necessity of a heuristic search. The improving of the search method consists into determination of a strong estimation by the heuristic function which will guide the search process to the most promising side of the search tree. The comparative study is realized among Manhattan heuristic and the Hamming heuristic using A* search algorithm implemented in Java. This paper also presents the necessary stages in object oriented development of a software used to solve efficiently this puzzle game. The modelling of the software is achieved through specific UML diagrams representing the phases of analysis, design and implementation, the system thus being described in a clear and practical manner. With the purpose to confirm the theoretical results which demonstrates that Manhattan heuristic is more efficient was used space complexity criterion. The space complexity was measured by the number of generated nodes from the search tree, by the number of the expanded nodes and by the effective branching factor. From the experimental results obtained by using the Manhattan heuristic, improvements were observed regarding space complexity of A* algorithm versus Hamming heuristic.
The influence of bracket design on frictional losses in the bracket/arch wire system.
Schumacher, H A; Bourauel, C; Drescher, D
1999-01-01
In arch guided tooth movement, the essential role played by bracket configuration with respect to sliding friction has been recognized by the manufacturers, a fact which has had an increasing impact on the design and marketing of new bracket models in recent years. The aim of the present in-vitro study was to investigate the influence of different bracket designs on sliding mechanics. Five differently shaped stainless steel brackets (Discovery: Dentaurum, Damon SL: A-Company, Synergy: Rocky Mountain Orthodontics, Viazis bracket and Omni Arch appliance: GAC) were compared in the 0.022"-slot system. The Orthodontic Measurement and Simulation System (OMSS) was used to quantify the difference between applied force (NiTi coil spring, 1.0 N) and orthodontically effective force and to determine leveling losses occurring during the sliding process in arch guided tooth movement. Simulated canine retraction was performed using continuous arch wires with the dimensions 0.019" x 0.025" (Standard Steel, Unitek) and 0.020" x 0.020" (Ideal Gold, GAC). Comparison of the brackets revealed friction-induced losses ranging from 20 to 70%, with clear-cut advantages resulting from the newly developed bracket types. However, an increased tendency towards leveling losses in terms of distal rotation (maximum 15 degrees) or buccal root torque (maximum 20 degrees) was recorded, especially with those brackets giving the arch wire increased mobility due to their shaping or lack of ligature wire.
Non-contact Pressure-based Sleep/Wake Discrimination
Walsh, Lorcan; McLoone, Seán; Ronda, Joseph; Duffy, Jeanne F.; Czeisler, Charles A.
2016-01-01
Poor sleep is increasingly being recognised as an important prognostic parameter of health. For those with suspected sleep disorders, patients are referred to sleep clinics which guide treatment. However, sleep clinics are not always a viable option due to their high cost, a lack of experienced practitioners, lengthy waiting lists and an unrepresentative sleeping environment. A home-based non-contact sleep/wake monitoring system may be used as a guide for treatment potentially stratifying patients by clinical need or highlighting longitudinal changes in sleep and nocturnal patterns. This paper presents the evaluation of an under-mattress sleep monitoring system for non-contact sleep/wake discrimination. A large dataset of sensor data with concomitant sleep/wake state was collected from both younger and older adults participating in a circadian sleep study. A thorough training/testing/validation procedure was configured and optimised feature extraction and sleep/wake discrimination algorithms evaluated both within and across the two cohorts. An accuracy, sensitivity and specificity of 74.3%, 95.5%, and 53.2% is reported over all subjects using an external validation dataset (71.9%, 87.9% and 56%, and 77.5%, 98% and 57% is reported for younger and older subjects respectively). These results compare favourably with similar research, however this system provides an ambient alternative suitable for long term continuous sleep monitoring, particularly amongst vulnerable populations. PMID:27845651
Garsa, Adam A; Verma, Vivek; Michalski, Jeff M; Gay, Hiram A
2014-01-01
To describe a transperineal ultrasound-guided technique for implantation of electromagnetic transponders into the prostatic fossa. Patients were placed in the dorsal lithotomy position, and local anesthetic was administered. On ultrasound, the bladder, urethra, vesicourethral anastomosis, rectum, and the prostatic fossa were carefully identified. Three transponders were implanted into the prostatic fossa under ultrasound guidance in a triangular configuration and implantation was verified by fluoroscopy. Patients underwent computed tomography (CT) simulation approximately 1 week later. All patients in this study were subsequently treated with intensity modulated radiation therapy (IMRT) to the prostatic fossa. From 2008 to 2012, 180 patients received transperineal implantation of electromagnetic transponders into the prostatic fossa and subsequently received IMRT. There were no cases of severe hematuria or rectal bleeding requiring intervention. There were no grade 3 or 4 toxicities. Three patients (1.7%) had a transponder missing on the subsequent CT simulation. Thirteen patients (7.3%) had transponder migration with a geometric residual that exceeded 2 mm for 3 consecutive days (5.6%) or rotation that exceeded 10 degrees for 5 consecutive days (1.7%). These patients underwent a resimulation CT scan to identify the new transponder coordinates. A transperineal technique for implantation of electromagnetic transponders into the prostatic fossa is safe and well tolerated, with no severe toxicity after implantation. There is a low rate of transponder loss or migration.
Modular transportable superconducting magnetic energy systems
NASA Technical Reports Server (NTRS)
Lieurance, Dennis; Kimball, Foster; Rix, Craig
1995-01-01
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.
Modular transportable superconducting magnetic energy systems
NASA Astrophysics Data System (ADS)
Lieurance, Dennis; Kimball, Foster; Rix, Craig
1995-04-01
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.
Aggarwal, Kanika; Agarwal, Aniruddha; Sharma, Aman; Sharma, Kusum; Gupta, Vishali
2018-04-23
To study optical coherence tomography angiography (OCTA) and multimodal imaging features of Type 1 inflammatory choroidal neovascularization (CNV) in tubercular serpiginous-like choroiditis and response to anti-vascular endothelial growth factor therapy. In this study, multimodal imaging was performed using OCTA, enhanced-depth imaging optical coherence tomography, fluorescein angiography, and indocyanine green angiography. Correlation of OCTA with other imaging modalities in the detection of CNV was performed. The changes in CNV configuration after anti-vascular endothelial growth factor therapy were assessed. In this study, nine eyes (8 patients; 5 females; mean age: 32.5 ± 11.57 years) with diagnosis of tubercular serpiginous-like choroiditis were included. All the eyes had presence of low-lying pigment epithelial detachments on enhanced-depth imaging optical coherence tomography. Using OCTA, it was possible to detect Type 1 CNV in all eyes. Type 1 CNV networks comprised fine anastomotic network of vessels, some of which had a hairpin loop configuration. After anti-vascular endothelial growth factor therapy, there was a decrease in branching and anastomosis. The visual acuity significantly improved from 0.49 ± 0.26 (20/60 Snellen equivalent) at baseline to 0.26 ± 0.17 (20/36 Snellen equivalent) (P = 0.03) in all eyes. Type 1 CNV can occur among patients with tubercular serpiginous-like choroiditis, leading to significant visual loss even in the healed stages of the disease. Optical coherence tomography angiography can help in the detection of Type 1 CNV where conventional multimodal imaging, including fluorescein angiography and OCT, fails to make a definitive diagnosis and thereby guide the initiation of anti-vascular endothelial growth factor therapy.
NASA Technical Reports Server (NTRS)
Wright, Michael R.
1999-01-01
With over two dozen missions since the first in 1986, the Hitchhiker project has a reputation for providing quick-reaction, low-cost flight services for Shuttle Small Payloads Project (SSPP) customers. Despite the successes, several potential improvements in customer payload integration and test (I&T) deserve consideration. This paper presents suggestions to Hitchhiker customers on how to help make the I&T process run smoother. Included are: customer requirements and interface definition, pre-integration test and evaluation, configuration management, I&T overview and planning, problem mitigation, and organizational communication. In this era of limited flight opportunities and new ISO-based requirements, issues such as these have become more important than ever.
Evolution of siderophore pathways in human pathogenic bacteria.
Franke, Jakob; Ishida, Keishi; Hertweck, Christian
2014-04-16
Ornibactin and malleobactin are hydroxamate siderophores employed by human pathogenic bacteria belonging to the genus Burkholderia. Similarities in their structures and corresponding biosynthesis gene clusters strongly suggest an evolutionary relationship. Through gene coexpression and targeted gene manipulations, the malleobactin pathway was successfully morphed into an ornibactin assembly line. Such an evolutionary-guided approach has been unprecedented for nonribosomal peptide synthetases. Furthermore, the timing of amino acid acylation before peptide assembly, the absolute configuration of the ornibactin side chain, and the function of the acyl transferase were elucidated. Beyond providing a proof of principle for the rational design of siderophore pathways, a compelling model for the evolution of virulence traits is presented.
Plasmonic direct writing lithography with a macroscopical contact probe
NASA Astrophysics Data System (ADS)
Huang, Yuerong; Liu, Ling; Wang, Changtao; Chen, Weidong; Liu, Yunyue; Li, Ling
2018-05-01
In this work, we design a plasmonic direct writing lithography system with a macroscopical contact probe to achieve nanometer scale spots. The probe with bowtie-shaped aperture array adopts spring hinge and beam deflection method (BDM) to realize near-field lithography. Lithography results show that a macroscopical plasmonic contact probe can achieve a patterning resolution of around 75 nm at 365 nm wavelength, and demonstrate that the lithography system is promising for practical applications due to beyond the diffraction limit, low cost, and simplification of system configuration. CST calculations provide a guide for the design of recording structure and the arrangement of placing polarizer.
A thermodynamic equation of jamming
NASA Astrophysics Data System (ADS)
Lu, Kevin; Pirouz Kavehpour, H.
2008-03-01
Materials ranging from sand to fire-retardant to toothpaste are considered fragile, able to exhibit both solid and fluid-like properties across the jamming transition. Guided by granular flow experiments, our equation of jammed states is path-dependent, definable at different athermal equilibrium states. The non-equilibrium thermodynamics based on a structural temperature incorporate physical ageing to address the non-exponential, non-Arrhenious relaxation of granular flows. In short, jamming is simply viewed as a thermodynamic transition that occurs to preserve a positive configurational entropy above absolute zero. Without any free parameters, the proposed equation-of-state governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.
Swarmie User Manual: A Rover Used for Multi-agent Swarm Research
NASA Technical Reports Server (NTRS)
Montague, Gilbert
2014-01-01
The ability to create multiple functional yet cost effective robots is crucial for conducting swarming robotics research. The Center Innovation Fund (CIF) swarming robotics project is a collaboration among the KSC Granular Mechanics and Regolith Operations (GMRO) group, the University of New Mexico Biological Computation Lab, and the NASA Ames Intelligent Robotics Group (IRG) that uses rovers, dubbed "Swarmies", as test platforms for genetic search algorithms. This fall, I assisted in the development of the software modules used on the Swarmies and created this guide to provide thorough instructions on how to configure your workspace to operate a Swarmie both in simulation and out in the field.
Performance testing and analyses of the VSC-17 ventilated concrete cask. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.
1992-05-01
This document details performance test which was conducted on a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask configured for pressurized-water reactor (PWR) spent fuel. The performance test consisted of loading the VSC-17 cask with 17 canisters of consolidated PWR spent fuel from Virginia Power`s Surry and Florida Power & Light Turkey Point reactors. Cask surface, concrete, air channel surfaces, and fuel canister guide tube temperatures were measured, as were cask surface gamma and neutron dose rates. Testing was performed with vacuum, nitrogen, and helium backfill environments in a vertical cask orientation. Data on spent fuel integrity were also obtained.
Du, Feng-Yu; Li, Xiao-Ming; Zhang, Peng; Li, Chun-Shun; Wang, Bin-Gui
2014-05-13
Bioassay-guided fractionation of a culture extract of Beauveria felina EN-135, an entomopathogenic fungus isolated from a marine bryozoan, led to the isolation of a new cyclodepsipeptide, iso-isariin D (1); two new O-containing heterocyclic compounds that we have named felinones A and B (2 and 3); and four known cyclodepsipeptides (4-7). The structures were elucidated via spectroscopic analysis, and the absolute configurations of 1 and 2 were determined using single-crystal X-ray diffraction and CD, respectively. All isolated compounds were evaluated for antimicrobial activity and brine-shrimp (Artemia salina) lethality.
Landscape, Climate and Hantavirus Cardiopulmonary Syndrome Outbreaks.
Prist, Paula Ribeiro; D Andrea, Paulo Sérgio; Metzger, Jean Paul
2017-09-01
We performed a literature review in order to improve our understanding of how landscape and climate drivers affect HCPS outbreaks. Anthropogenic landscape changes such as forest loss, fragmentation and agricultural land uses are related with a boost in hantavirus reservoir species abundance and hantavirus prevalence in tropical areas, increasing HCPS risk. Additionally, higher precipitation, especially in arid regions, favors an increase in vegetational biomass, which augments the resources for reservoir rodents, also increasing HCPS risk. Although these relationships were observed, few studies described it so far, and the ones that did it are concentrated in few places. To guide future research on this issue, we build a conceptual model relating landscape and climate variables with HCPS outbreaks and identified research opportunities. We point out the need for studies addressing the effects of landscape configuration, temperature and the interaction between climate and landscape variables. Critical landscape thresholds are also highly relevant, once HCPS risk transmission can increase rapidly above a certain degree of landscape degradation. These studies could be relevant to implement preventive measures, creating landscapes that can mitigate disease spread risk.
Modular transportable superconducting magnetic Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieurance, D.; Kimball, F.; Rix, C.
1994-12-31
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given applicationmore » should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.« less
NASA Technical Reports Server (NTRS)
Pokora, Darlene C.; Springer, Anthony M.
1994-01-01
A shadowgraph study of the National Launch System's (NLS's) 1 1/2 stage and heavy lift launch vehicle (HLLV) configurations is presented. Shadowgraphs are shown for the range of Mach numbers from Mach 0.6 to 5.0 at various angles-of-attack and roll angles. Since the 1 1/2 stage configuration is generally symmetric, no shadowgraphs of any roll angle are shown for this configuration. The major flow field phenomena over the NLS 1 1/2 stage and HLLV configurations are shown in the shadowgraphs. These shadowgraphs are used in the aerothermodynamic analysis of the external flow conditions the launch vehicle would encounter during the ascent stage of flight. The shadowgraphs presented in this study were obtained from configurations tested in the Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel during 1992.
Study of the Application of Separation Control by Unsteady Excitation to Civil Transport Aircraft
NASA Technical Reports Server (NTRS)
McLean, J. D.; Crouch, J. D.; Stoner, R. C.; Sakurai, S.; Seidel, G. E.; Feifel, W. M.; Rush, H. M.
1999-01-01
This study provides a preliminary assessment of the potential benefits of applying unsteady separation control to transport aircraft. Estimates are given for some of the costs associated with a specific application to high-lift systems. High-leverage areas for future research were identified during the course of the study. The study was conducted in three phases. Phase 1 consisted of a coarse screening of potential applications within the aerodynamics discipline. Potential benefits were identified and in some cases quantified in a preliminary way. Phase 2 concentrated on the application to the wing high-lift system, deemed to have the greatest potential benefit for commercial transports. A team of experts, including other disciplines (i.e. hydraulic, mechanical, and electrical systems, structures, configurations, manufacturing, and finance), assessed the feasibility, benefits, and costs to arrive at estimates of net benefits. In both phases of the study, areas of concern and areas for future research were identified. In phase 3 of this study, the high-leverage areas for future research were prioritized as a guide for future efforts aimed at the application of active flow control to commercial transport aircraft.
A Change Impact Analysis to Characterize Evolving Program Behaviors
NASA Technical Reports Server (NTRS)
Rungta, Neha Shyam; Person, Suzette; Branchaud, Joshua
2012-01-01
Change impact analysis techniques estimate the potential effects of changes made to software. Directed Incremental Symbolic Execution (DiSE) is an intraprocedural technique for characterizing the impact of software changes on program behaviors. DiSE first estimates the impact of the changes on the source code using program slicing techniques, and then uses the impact sets to guide symbolic execution to generate path conditions that characterize impacted program behaviors. DiSE, however, cannot reason about the flow of impact between methods and will fail to generate path conditions for certain impacted program behaviors. In this work, we present iDiSE, an extension to DiSE that performs an interprocedural analysis. iDiSE combines static and dynamic calling context information to efficiently generate impacted program behaviors across calling contexts. Information about impacted program behaviors is useful for testing, verification, and debugging of evolving programs. We present a case-study of our implementation of the iDiSE algorithm to demonstrate its efficiency at computing impacted program behaviors. Traditional notions of coverage are insufficient for characterizing the testing efforts used to validate evolving program behaviors because they do not take into account the impact of changes to the code. In this work we present novel definitions of impacted coverage metrics that are useful for evaluating the testing effort required to test evolving programs. We then describe how the notions of impacted coverage can be used to configure techniques such as DiSE and iDiSE in order to support regression testing related tasks. We also discuss how DiSE and iDiSE can be configured for debugging finding the root cause of errors introduced by changes made to the code. In our empirical evaluation we demonstrate that the configurations of DiSE and iDiSE can be used to support various software maintenance tasks
New central configurations of the (n + 1) -body problem
NASA Astrophysics Data System (ADS)
Fernandes, Antonio Carlos; Garcia, Braulio Augusto; Llibre, Jaume; Mello, Luis Fernando
2018-01-01
In this article we study central configurations of the (n + 1) -body problem. For the planar (n + 1) -body problem we study central configurations performed by n ≥ 2 bodies with equal masses at the vertices of a regular n-gon and one body with null mass. We also study spatial central configurations considering n bodies with equal masses at the vertices of a regular polyhedron and one body with null mass.
Lift Optimization Study of a Multi-Element Three-Segment Variable Camber Airfoil
NASA Technical Reports Server (NTRS)
Kaul, Upender K.; Nguyen, Nhan T.
2016-01-01
This paper reports a detailed computational high-lift study of the Variable Camber Continuous Trailing Edge Flap (VCCTEF) system carried out to explore the best VCCTEF designs, in conjunction with a leading edge flap called the Variable Camber Krueger (VCK), for take-off and landing. For this purpose, a three-segment variable camber airfoil employed as a performance adaptive aeroelastic wing shaping control effector for a NASA Generic Transport Model (GTM) in landing and take-off configurations is considered. The objective of the study is to define optimal high-lift VCCTEF settings and VCK settings/configurations. A total of 224 combinations of VCK settings/configurations and VCCTEF settings are considered for the inboard GTM wing, where the VCCTEFs are configured as a Fowler flap that forms a slot between the VCCTEF and the main wing. For the VCK settings of deflection angles of 55deg, 60deg and 65deg, 18, 19 and 19 vck configurations, respectively, were considered for each of the 4 different VCCTEF deflection settings. Different vck configurations were defined by varying the horizontal and vertical distance of the vck from the main wing. A computational investigation using a Reynolds-Averaged Navier-Stokes (RANS) solver was carried out to complement a wind-tunnel experimental study covering three of these configurations with the goal of identifying the most optimal high-lift configurations. Four most optimal high-lift configurations, corresponding to each of the VCK deflection settings, have been identified out of all the different configurations considered in this study yielding the highest lift performance.
Schlagbauer, Bernhard; Müller, Hermann J; Zehetleitner, Michael; Geyer, Thomas
2012-10-25
In visual search, context information can serve as a cue to guide attention to the target location. When observers repeatedly encounter displays with identical target-distractor arrangements, reaction times (RTs) are faster for repeated relative to nonrepeated displays, the latter containing novel configurations. This effect has been termed "contextual cueing." The present study asked whether information about the target location in repeated displays is "explicit" (or "conscious") in nature. To examine this issue, observers performed a test session (after an initial training phase in which RTs to repeated and nonrepeated displays were measured) in which the search stimuli were presented briefly and terminated by visual masks; following this, observers had to make a target localization response (with accuracy as the dependent measure) and indicate their visual experience and confidence associated with the localization response. The data were examined at the level of individual displays, i.e., in terms of whether or not a repeated display actually produced contextual cueing. The results were that (a) contextual cueing was driven by only a very small number of about four actually learned configurations; (b) localization accuracy was increased for learned relative to nonrepeated displays; and (c) both consciousness measures were enhanced for learned compared to nonrepeated displays. It is concluded that contextual cueing is driven by only a few repeated displays and the ability to locate the target in these displays is associated with increased visual experience.