Cold chemistry with ionic partners: quantum features of HeH+(1Σ) with H(1S) at ultralow energies.
Bovino, S; Tacconi, M; Gianturco, F A
2011-07-28
Quantum reactive calculations are presented for an ion-atom reaction involving the HeH(+)cation and its destruction via a barrierless interaction with H atoms. The range of collision energies considered is that of a cold trap regime (around and below millikelvin) where the ionic partner could be spatially confined. Specific resonant features caused by the interplay of the strong ionic interaction with the very slow partners' dynamics are found and analyzed. Indications are also given on the consequences of the abstraction mechanism that acts for this reaction at low energies. © 2011 American Chemical Society
Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes
NASA Astrophysics Data System (ADS)
Berrod, Q.; Ferdeghini, F.; Judeinstein, P.; Genevaz, N.; Ramos, R.; Fournier, A.; Dijon, J.; Ollivier, J.; Rols, S.; Yu, D.; Mole, R. A.; Zanotti, J.-M.
2016-04-01
Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators.Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01445c
Ionic structure in liquids confined by dielectric interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W.; Olvera de la Cruz, Monica
2015-11-01
The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces.
Structure and dynamics of mica-confined films of [C10C1Pyrr][NTf2] ionic liquid
NASA Astrophysics Data System (ADS)
Freitas, Adilson Alves de; Shimizu, Karina; Smith, Alexander M.; Perkin, Susan; Canongia Lopes, José Nuno
2018-05-01
The structure of the ionic liquid 1-decyl-1-methylpyrrolidinium bis[(trifluoromethane)sulfonyl]imide, [C10C1Pyrr][NTf2], has been probed using Molecular Dynamics (MD) simulations. The simulations endeavour to model the behaviour of the ionic liquid in bulk isotropic conditions and also at interfaces and in confinement. The MD results have been confronted and validated with scattering and surface force experiments reported in the literature. The calculated structure factors, distribution functions, and density profiles were able to provide molecular and mechanistic insights into the properties of these long chain ionic liquids under different conditions, in particular those that lead to the formation of multi-layered ionic liquid films in confinement. Other properties inaccessible to experiment such as in-plane structures and relaxation rates within the films have also been analysed. Overall the work contributes structural and dynamic information relevant to many applications of ionic liquids with long alkyl chains, ranging from nanoparticle synthesis to lubrication.
Liang, Yanyan; Liu, Zhengping
2016-12-20
Ionic current rectification of nanofluidic diode membranes has been studied widely in recent years because it is analogous to the functionality of biological ion channels in principle. We report a new method to fabricate ionic current rectification membranes based on mesoporous silica confined in anodic aluminum oxide (AAO) membranes. Two types of mesostructured silica nanocomposites, hexagonal structure and nanoparticle stacked structure, were used to asymmetrically fill nanochannels of AAO membranes by a vapor-phase synthesis (VPS) method with aspiration approach and were further modified via sequence vapor infiltration (SVI) treatment. The ionic current measurements indicated that SVI treatment can modulate the asymmetric ionic transport in prepared membranes, which exhibited clear ionic current rectification phenomenon under optimal conditions. The ionic current rectifying behavior is derived from the asymmetry of surface conformations, silica species components, and hydrophobic wettability, which are created by the asymmetrical filling type, silica depositions on the heterogeneous membranes, and the condensation of silanol groups. This article provides a considerable strategy to fabricate composite membranes with obvious ionic current rectification performance via the cooperation of the VPS method and SVI treatment and opens up the potential of mesoporous silica confined in AAO membranes to mimic fluid transport in biological processes.
Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores
Futamura, Ryusuke; Iiyama, Taku; Takasaki, Yuma; Gogotsi, Yury; Biggs, Mark J.; Salanne, Mathieu; Ségalini, Julie; Simon, Patrice; Kaneko, Katsumi
2017-01-01
Ionic liquids are composed of equal quantities of positive and negative ions. In the bulk, electrical neutrality occurs in these liquids due to Coulombic ordering, in which ion shells of alternating charge form around a central ion. Their structure under confinement is far less well understood. This hinders the widespread application of ionic liquids in technological applications. Here we use scattering experiments to resolve the structure of the widely used ionic liquid (EMI-TFSI) when it is confined inside nanoporous carbons. We show that Coulombic ordering reduces when the pores can only accommodate a single layer of ions. Instead, equally-charged ion pairs are formed due to the induction of an electric potential of opposite sign in the carbon pore walls. This non-Coulombic ordering is further enhanced in the presence of an applied external electric potential. This finding opens the door for the design of better materials for electrochemical applications. PMID:28920938
Bi, Wentao; Tian, Minglei; Row, Kyung Ho
2012-01-01
This study highlighted the application of a two-stepped extraction method for extraction and separation of oxymatrine from Sophora flavescens Ait. extract by utilizing silica-confined ionic liquids as sorbent. The optimized silica-confined ionic liquid was firstly mixed with plant extract to adsorb oxymatrine. Simultaneously, some interference, such as matrine, was removed. The obtained suspension was then added to a cartridge for solid phase extraction. Through these two steps, target compound was adequately separated from interferences with 93.4% recovery. In comparison with traditional solid phase extraction, this method accelerates loading and reduces the use of organic solvents during washing. Moreover, the optimization of loading volume was simplified as optimization of solid/liquid ratio. Copyright © 2011 Elsevier B.V. All rights reserved.
Ion distributions in electrolyte confined by multiple dielectric interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei; Zwanikken, Jos W.; Jadhao, Vikram; de La Cruz, Monica
2014-03-01
The distribution of ions at dielectric interfaces between liquids characterized by different dielectric permittivities is crucial to nanoscale assembly processes in many biological and synthetic materials such as cell membranes, colloids and oil-water emulsions. The knowledge of ionic structure of these systems is also exploited in energy storage devices such as double-layer super-capacitors. The presence of multiple dielectric interfaces often complicates computing the desired ionic distributions via simulations or theory. Here, we use coarse-grained models to compute the ionic distributions in a system of electrolyte confined by two planar dielectric interfaces using Car-Parrinello molecular dynamics simulations and liquid state theory. We compute the density profiles for various electrolyte concentrations, stoichiometric ratios and dielectric contrasts. The explanations for the trends in these profiles and discuss their effects on the behavior of the confined charged fluid are also presented.
NASA Astrophysics Data System (ADS)
Patsahan, O. V.; Patsahan, T. M.; Holovko, M. F.
2018-02-01
We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature Tc* and the critical density ρi,c * become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of Tc* and ρi,c * and even to a disappearance of the phase transition, especially for the case of small matrix particles.
García, Gregorio; Atilhan, Mert; Aparicio, Santiago
2015-09-17
The N-ethyl-N-(furan-2-ylmethyl)ethanaminium dihydrogen phosphate ionic liquid was studied as a model of ionic liquids which can be produced from totally renewable sources. A computational study using both molecular dynamics and density functional theory methods was carried out. The properties, structuring, and intermolecular interactions (hydrogen bonding) of this fluid in the pure state were studied as a function of pressure and temperature. Likewise, the adsorption on graphene and the confinement between graphene sheets was also studied. The solvation of single walled carbon nanotubes in the selected ionic liquid was analyzed together with the behavior of ions confined inside these nanotubes. The reported results show remarkable properties for this fluid, which show that many of the most relevant properties of ionic liquids and their ability to interact with carbon nanosystems may be maintained and even improved using new families of renewable compounds instead of classic types of ionic liquids with worse environmental, toxicological, and economical profiles.
Lattice model of ionic liquid confined by metal electrodes
NASA Astrophysics Data System (ADS)
Girotto, Matheus; Malossi, Rodrigo M.; dos Santos, Alexandre P.; Levin, Yan
2018-05-01
We study, using Monte Carlo simulations, the density profiles and differential capacitance of ionic liquids confined by metal electrodes. To compute the electrostatic energy, we use the recently developed approach based on periodic Green's functions. The method also allows us to easily calculate the induced charge on the electrodes permitting an efficient implementation of simulations in a constant electrostatic potential ensemble. To speed up the simulations further, we model the ionic liquid as a lattice Coulomb gas and precalculate the interaction potential between the ions. We show that the lattice model captures the transition between camel-shaped and bell-shaped capacitance curves—the latter characteristic of ionic liquids (strong coupling limit) and the former of electrolytes (weak coupling). We observe the appearance of a second peak in the differential capacitance at ≈0.5 V for 2:1 ionic liquids, as the packing fraction is increased. Finally, we show that ionic size asymmetry decreases substantially the capacitance maximum, when all other parameters are kept fixed.
Dyatkin, Boris; Mamontov, Eugene; Cook, Kevin M.; ...
2015-12-24
Our study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Moreover, quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Aminated pores, unlike hydrogenatedmore » pores, do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.« less
Molecular dynamics study of ionic liquid confined in silicon nanopore
NASA Astrophysics Data System (ADS)
Liu, Y. S.; Sha, M. L.; Cai, K. Y.
2017-05-01
Molecular dynamics simulations was carried to investigate the structure and dynamics of [BMIM][PF6] ionic liquid (IL) confined inside a slit-like silicon nanopore with pore size of 5.5 nm. It is clearly shown that the mass and number densities of the confined ILs are oscillatory, high density layers are also formed in the vicinity of the silicon surface, which indicates the existence of solid-like high density IL layers. The orientational investigation shows that the imidazolium ring of [BMIM] cation lies preferentially flat on the surface of the silicon pore walls. Furthermore, the mean squared displacement (MSD) calculation indicates that the dynamics of confined ILs are significantly slower than those observed in bulk systems. Our results suggest that the interactions between the pore walls and the ILs can strongly affect the structural and dynamical properties of the confined ILs.
Thermoelectricity in Heterogeneous Nanofluidic Channels.
Li, Long; Wang, Qinggong
2018-05-01
Ionic fluids are essential to energy conversion, water desalination, drug delivery, and lab-on-a-chip devices. Ionic transport in nanoscale confinements and complex physical fields still remain elusive. Here, a nanofluidic system is developed using nanochannels of heterogeneous surface properties to investigate transport properties of ions under different temperatures. Steady ionic currents are observed under symmetric temperature gradients, which is equivalent to generating electricity using waste heat (e.g., electronic chips and solar panels). The currents increase linearly with temperature gradient and nonlinearly with channel size. Contributions to ion motion from temperatures and channel properties are evaluated for this phenomenon. The findings provide insights into the study of confined ionic fluids in multiphysical fields, and suggest applications in thermal energy conversion, temperature sensors, and chip-level thermal management. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces.
Grinshpun, S A; Mainelis, G; Trunov, M; Adhikari, A; Reponen, T; Willeke, K
2005-08-01
Numerous techniques have been developed over the years for reducing aerosol exposure in indoor air environments. Among indoor air purifiers of different types, ionic emitters have gained increasing attention and are presently used for removing dust particles, aeroallergens and airborne microorganisms from indoor air. In this study, five ionic air purifiers (two wearable and three stationary) that produce unipolar air ions were evaluated with respect to their ability to reduce aerosol exposure in confined indoor spaces. The concentration decay of respirable particles of different properties was monitored in real time inside the breathing zone of a human manikin, which was placed in a relatively small (2.6 m3) walk-in chamber during the operation of an ionic air purifier in calm air and under mixing air condition. The particle removal efficiency as a function of particle size was determined using the data collected with a size-selective optical particle counter. The removal efficiency of the more powerful of the two wearable ionic purifiers reached about 50% after 15 min and almost 100% after 1.5 h of continuous operation in the chamber under calm air conditions. In the absence of external ventilation, air mixing, especially vigorous one (900 CFM), enhanced the air cleaning effect. Similar results were obtained when the manikin was placed inside a partial enclosure that simulated an aircraft seating configuration. All three stationary ionic air purifiers tested in this study were found capable of reducing the aerosol concentration in a confined indoor space. The most powerful stationary unit demonstrated an extremely high particle removal efficiency that increased sharply to almost 90% within 5-6 min, reaching about 100% within 10-12 min for all particle sizes (0.3-3 microm) tested in the chamber. For the units of the same emission rate, the data suggest that the ion polarity per se (negative vs. positive) does not affect the performance but the ion emission rate does. The effects of particle size (within the tested range) and properties (NaCl, PSL, Pseudomonas fluorescens bacteria) as well as the effects of the manikin's body temperature and its breathing on the ionic purifier performance were either small or insignificant. The data suggest that the unipolar ionic air purifiers are particularly efficient in reducing aerosol exposure in the breathing zone when used inside confined spaces with a relatively high surface-to-volume ratio. Ionic air purifiers have become increasingly popular for removing dust particles, aeroallergens and airborne microorganisms from indoor air in various settings. While the indoor air cleaning effect, resulting from unipolar and bipolar ion emission, has been tested by several investigators, there are still controversial claims (favorable and unfavorable) about the performance of commercially available ionic air purifiers. Among the five tested ionic air purifiers (two wearable and three stationary) producing unipolar air ions, the units with a higher ion emission rate provided higher particle removal efficiency. The ion polarity (negative vs. positive), the particle size (0.3-3 microm) and properties (NaCl, PSL, Pseudomonas fluorescens bacteria), as well as the body temperature and breathing did not considerable affected the ionization-driven particle removal. The data suggest that the unipolar ionic air purifiers are particularly efficient in reducing aerosol exposure in the breathing zone when they are used inside confined spaces with a relatively high surface-to-volume ratio (such as automobile cabins, aircraft seating areas, bathrooms, cellular offices, small residential rooms, and animal confinements). Based on our experiments, we proposed that purifiers with a very high ion emission rate be operated in an intermittent mode if used indoors for extended time periods. As the particles migrate to and deposit on indoor surfaces during the operation of ionic air purifiers, some excessive surface contamination may occur, which introduces the need of periodic cleaning these surfaces.
Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto
2017-02-08
Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.
Ionic Channels as Natural Nanodevices
2006-05-01
introduce the numerical techniques required to simulate charge transport in ion channels. [1] Using Poisson- Nernst -Planck-type (PNP) equations ...Eisenberg. 2003. Ionic diffusion through protein channels: from molecular description to continuum equations . Nanotech 2003, 3: 439-442. 4...Nadler, B., Schuss, Z., Singer, A., and R. S. Eisenberg. 2004. Ionic diffusion through confined geometries: from Langevin equations to partial
Capillary evaporation of the ionic liquid [EMIM][BF4] in nanoscale solvophobic confinement
NASA Astrophysics Data System (ADS)
Shrivastav, Gourav; Remsing, Richard C.; Kashyap, Hemant K.
2018-05-01
Solvent density fluctuations play a crucial role in liquid-vapor transitions in solvophobic confinement and can also be important for understanding solvation of polar and apolar solutes. In the case of ionic liquids (ILs), density fluctuations can be used to understand important processes in the context of nanoscale aggregation and colloidal self-assemblies. In this article, we explore the nature of density fluctuations associated with capillary evaporation of the IL 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) in the confined region of model solvophobic nanoscale sheets by using molecular dynamics simulations combined with non-Boltzmann sampling techniques. We demonstrate that density fluctuations of the confined IL play an important role in capillary evaporation, suggesting analogies to dewetting transitions involving water. Significant changes in the interfacial structure of the IL are also detailed and suggested to underlie a non-classical (non-parabolic) dependence of the free energy barrier to evaporation on the degree of confinement.
Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro
2017-01-01
Room temperature Ionic liquids (RTIL) are new materials with fundamental importance for energy storage and active lubrication. They are unsual liquids, which challenge the classical frameworks of electrolytes, whose behavior at electrified interfaces remains elusive with exotic responses relevant to their electrochemical activity. By means of tuning fork based AFM nanorheological measurements, we explore here the properties of confined RTIL, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This is interpreted in terms of the shift of freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures and suggests applications to tune nanoscale lubrication with phase-changing RTIL, by varying the nature and patterning of the substrate, and application of active polarisation. PMID:28346432
Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro
2017-06-01
Room-temperature ionic liquids (RTILs) are new materials with fundamental importance for energy storage and active lubrication. They are unusual liquids, which challenge the classical frameworks of electrolytes, whose behaviour at electrified interfaces remains elusive, with exotic responses relevant to their electrochemical activity. Using tuning-fork-based atomic force microscope nanorheological measurements, we explore here the properties of confined RTILs, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This behaviour is interpreted in terms of the shift of the freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures, and suggests applications to tune nanoscale lubrication with phase-changing RTILs, by varying the nature and patterning of the substrate, and application of active polarization.
NASA Astrophysics Data System (ADS)
Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro
2017-06-01
Room-temperature ionic liquids (RTILs) are new materials with fundamental importance for energy storage and active lubrication. They are unusual liquids, which challenge the classical frameworks of electrolytes, whose behaviour at electrified interfaces remains elusive, with exotic responses relevant to their electrochemical activity. Using tuning-fork-based atomic force microscope nanorheological measurements, we explore here the properties of confined RTILs, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This behaviour is interpreted in terms of the shift of the freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures, and suggests applications to tune nanoscale lubrication with phase-changing RTILs, by varying the nature and patterning of the substrate, and application of active polarization.
NASA Astrophysics Data System (ADS)
Sweeney, James; Hausen, Florian; Hayes, Robert; Webber, Grant B.; Endres, Frank; Rutland, Mark W.; Bennewitz, Roland; Atkin, Rob
2012-10-01
The lubricating properties of an ionic liquid on gold surfaces can be controlled through application of an electric potential to the sliding contact. A nanotribology approach has been used to study the frictional behavior of 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4]FAP) confined between silica colloid probes or sharp silica tips and a Au(111) substrate using atomic force microscopy. Friction forces vary with potential because the composition of a confined ion layer between the two surfaces changes from cation-enriched (at negative potentials) to anion-enriched (at positive potentials). This offers a new approach to tuning frictional forces reversibly at the molecular level without changing the substrates, employing a self-replenishing boundary lubricant of low vapor pressure.
Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes
NASA Astrophysics Data System (ADS)
Hoarfrost, Megan Lane
Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Ruisheng; Chen, Yao; Wang, Bing
The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobsmore » escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.« less
NASA Astrophysics Data System (ADS)
Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens
2018-05-01
We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiated in close vicinity to the boundaries. We observe higher ion conductivities in these channels for increasing PIL side chain lengths in comparison with bulk values and provide an explanation for this effect. The appearance of these domains points to an improved application of PILs in modern polymer electrolyte batteries.
Ionic Liquid Confined in Mesoporous Polymer Membrane with Improved Stability for CO2/N2 Separation
Tan, Ming; Lu, Jingting; Zhang, Yang; Jiang, Heqing
2017-01-01
Supported ionic liquid membranes (SILMs) have a promising prospect of application in flue gas separation, owing to its high permeability and selectivity of CO2. However, existing SILMs have the disadvantage of poor stability due to the loss of ionic liquid from the large pores of the macroporous support. In this study, a novel SILM with high stability was developed by confining ionic liquid in a mesoporous polymer membrane. First, a mesoporous polymer membrane derived from a soluble, low-molecular-weight phenolic resin precursor was deposited on a porous Al2O3 support, and then 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]) was immobilized inside mesopores of phenolic resin, forming the SILM under vacuum. Effects of trans-membrane pressure difference on the SILM separation performance were investigated by measuring the permeances of CO2 and N2. The SILM exhibits a high ideal CO2/N2 selectivity of 40, and an actual selectivity of approximately 25 in a mixed gas (50% CO2 and 50% N2) at a trans-membrane pressure difference of 2.5 bar. Compared to [emim][BF4] supported by polyethersulfone membrane with a pore size of around 0.45 μm, the [emim][BF4] confined in a mesoporous polymer membrane exhibits an improved stability, and its separation performance remained stable for 40 h under a trans-membrane pressure difference of 1.5 bar in a mixed gas before the measurement was intentionally stopped. PMID:28961187
Feng, Juanjuan; Sun, Min; Xu, Lili; Wang, Shuai; Liu, Xia; Jiang, Shengxiang
2012-12-14
Because of the occurrence of ion exchange between high-ionic-strength solution and anions of polymeric ionic liquids (PILs), PILs based solid-phase microextraction (SPME) fibers were rarely used in direct immersion mode to high-salt-added samples. In this work, a novel double-confined PIL sorbent was prepared by co-polymerization of cation and anion of 1-vinyl-3-octylimidzaolium p-styrenesulfonate (VOIm(+)SS(-)). The poly(VOIm(+)-SS(-)) was chemically bonded onto functionalized stainless steel wire via surface radical chain-transfer reaction. Stability of poly(VOIm(+)-SS(-)) in high-ionic-strength solution was investigated and compared with that of poly(1-vinyl-3-octylimidzaolium benzenesulfonate) (poly(VOIm(+)BS(-))) by elemental analysis of sulfur element, and results turned out that the poly(VOIm(+)-SS(-)) was more stable. Coupled to gas chromatography (GC), the poly(VOIm(+)-SS(-)) fiber was used to extract three sorts of compounds including anilines, phenols and phthalate esters in aqueous solution. The as-established method showed good linearity, low detection limits, and acceptable repeatability. The direct immersion SPME-GC method was applied to determine the model phthalate esters in bottled mineral water. The determination results were satisfactory. Copyright © 2012 Elsevier B.V. All rights reserved.
Dynamic and structural properties of room-temperature ionic liquids near silica and carbon surfaces.
Li, Song; Han, Kee Sung; Feng, Guang; Hagaman, Edward W; Vlcek, Lukas; Cummings, Peter T
2013-08-06
The dynamic and structural properties of a room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium(trifluoromethanesulfonimide) ([C4mim][Tf2N]) confined in silica and carbon mesopores were investigated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) experiments. The complex interfacial microstructures of confined [C4mim][Tf2N] are attributed to the distinctive surface features of the silica mesopore. The temperature-dependent diffusion coefficients of [C4mim][Tf2N] confined in the silica or carbon mesopore exhibit divergent behavior. The loading fraction (f = 1.0, 0.5, and 0.25) has a large effect on the magnitude of the diffusion coefficient in the silica pore and displays weaker temperature dependence as the loading fraction decreases. The diffusion coefficients of mesoporous carbon-confined [C4mim][Tf2N] are relatively insensitive to the loading faction and exhibit a temperature dependence that is similar to the bulk dependence at all loading levels. Such phenomena can be attributed to the unique surface heterogeneity, dissimilar interfacial microstructures, and interaction potential profile of RTILs near silica and carbon walls.
Charge exchange cooling in the tandem mirror plasma confinement apparatus
Logan, B. Grant
1978-01-01
Method and apparatus for cooling a plasma of warm charged species confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell, the cooling due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma.
Choi, Bong Gill; Hong, Jinkee; Park, Young Chul; Jung, Doo Hwan; Hong, Won Hi; Hammond, Paula T; Park, Hoseok
2011-06-28
The chemistry and structure of ion channels within the polymer electrolytes are of prime importance for studying the transport properties of electrolytes as well as for developing high-performance electrochemical devices. Despite intensive efforts on the synthesis of polymer electrolytes, few studies have demonstrated enhanced target ion conduction while suppressing unfavorable ion or mass transport because the undesirable transport occurs through an identical pathway. Herein, we report an innovative, chemical strategy for the synthesis of polymer electrolytes whose ion-conducting channels are physically and chemically modulated by the ionic (not electronic) conductive, functionalized graphenes and for a fundamental understanding of ion and mass transport occurring in nanoscale ionic clusters. The functionalized graphenes controlled the state of water by means of nanoscale manipulation of the physical geometry and chemical functionality of ionic channels. Furthermore, the confinement of bound water within the reorganized nanochannels of composite membranes was confirmed by the enhanced proton conductivity at high temperature and the low activation energy for ionic conduction through a Grotthus-type mechanism. The selectively facilitated transport behavior of composite membranes such as high proton conductivity and low methanol crossover was attributed to the confined bound water, resulting in high-performance fuel cells.
Bimetallic Microswimmers Speed Up in Confining Channels.
Liu, Chang; Zhou, Chao; Wang, Wei; Zhang, H P
2016-11-04
Synthetic microswimmers are envisioned to be useful in numerous applications, many of which occur in tightly confined spaces. It is therefore important to understand how confinement influences swimmer dynamics. Here we study the motility of bimetallic microswimmers in linear and curved channels. Our experiments show swimmer velocities increase, up to 5 times, with the degree of confinement, and the relative velocity increase depends weakly on the fuel concentration and ionic strength in solution. Experimental results are reproduced in a numerical model which attributes the swimmer velocity increase to electrostatic and electrohydrodynamic boundary effects. Our work not only helps to elucidate the confinement effect of phoretic swimmers, but also suggests that spatial confinement may be used as an effective control method for them.
Nanomechanical measurements of ionic effect on nanoconfined water
NASA Astrophysics Data System (ADS)
Kramkowski, Edward; Khan, Shah; Hoffmann, Peter
2015-03-01
The behavior of liquid molecules confined to nanometer-scale spaces is a topic of particular interest to a variety of fields. From lab-on-a-chip medical device manufacturers to petroleum engineers involved in oil recovery, a wide range of researchers could benefit from a better understanding of the mechanics of nanoconfined liquids. Previous research has shown that above a critical strain rate, a confined liquid exhibits a solid-like response that oscillates with a period roughly equal to the molecular diameter of the liquid being observed. This indicates that when a liquid is compressed at a rate faster than the molecules can diffuse in bulk out from between the confining surfaces, it dynamically solidifies into an anisotropic layered liquid. In order to better understand the influence that the confining surfaces have on this behavior, we have been observing how the addition of different classes of ions at varying concentrations to a pure water sample either enhance or suppress the natural tendency of the water to order. The work indicates that an ion's effect on the liquid's structure is commensurate with its classification according to the Hofmeister series, with the amount of deviation from the pure behavior governed by the ionic concentration.
Cheng, H.-W.; Dienemann, J.-N.; Stock, P.; Merola, C.; Chen, Y.-J.; Valtiner, M.
2016-01-01
Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations. PMID:27452615
Cheng, H-W; Dienemann, J-N; Stock, P; Merola, C; Chen, Y-J; Valtiner, M
2016-07-25
Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations.
Ionic charge state measurements during He(+)-rich solar particle events
NASA Technical Reports Server (NTRS)
Hovestadt, D.; Klecker, B.; Scholer, M.; Gloeckler, G.
1984-01-01
Ionic charge state measurements of carbon, oxygen, and iron in He(+)-rich energetic particle events are presented. The data have been obtained with the Max-Planck-Institut/University of Maryland sensor system on the ISEE 3 spacecraft. The ionic charge states cannot be explained in terms of a model in which the coronal temperature determines a charge equilibrium which is subsequently frozen-in nor in terms of charge exchange during transition through coronal matter after acceleration. It is concluded that the acceleration and probably also the injection process is biased against particles with high mass-to-charge ratios. The plasma injected into the acceleration process must consist of material of cold (not greater than 8.5 x 10 to the 4th K) as well as hot (2.5 x 10 to the 6th K) origin. The cold material must be more abundant than the hot material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu
In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less
Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu; ...
2017-12-05
In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less
Jeon, Jonggu; Chun, Myung-Suk
2007-04-21
Understanding the behavior of a polyelectrolyte in confined spaces has direct relevance in design and manipulation of microfluidic devices, as well as transport in living organisms. In this paper, a coarse-grained model of anionic semiflexible polyelectrolyte is applied, and its structure and dynamics are fully examined with Brownian dynamics (BD) simulations both in bulk solution and under confinement between two negatively charged parallel plates. The modeling is based on the nonlinear bead-spring discretization of a continuous chain with additional long-range electrostatic, Lennard-Jones, and hydrodynamic interactions between pairs of beads. The authors also consider the steric and electrostatic interactions between the bead and the confining wall. Relevant model parameters are determined from experimental rheology data on the anionic polysaccharide xanthan reported previously. For comparison, both flexible and semiflexible models are developed accompanying zero and finite intrinsic persistence lengths, respectively. The conformational changes of the polyelectrolyte chain induced by confinements and their dependence on the screening effect of the electrolyte solution are faithfully characterized with BD simulations. Depending on the intrinsic rigidity and the medium ionic strength, the polyelectrolyte can be classified as flexible, semiflexible, or rigid. Confined flexible and semiflexible chains exhibit a nonmonotonic variation in size, as measured by the radius of gyration and end-to-end distance, with changing slit width. For the semiflexible chain, this is coupled to the variations in long-range bond vector correlation. The rigid chain, realized at low ionic strength, does not have minima in size but exhibits a sigmoidal transition. The size of confined semiflexible and rigid polyelectrolytes can be well described by the wormlike chain model once the electrostatic effects are taken into account by the persistence length measured at long length scale.
Changes in the Coherent Dynamics of Nanoconfined Room Temperature Ionic Liquids
NASA Astrophysics Data System (ADS)
Vallejo, Kevin; Cano, Melissa; Li, Song; Rotner, Gernot; Faraone, Antonio; Banuelos, Jose
Confinement and temperature effects on the coherent dynamics of the room temperature ionic liquid (RTIL) [C10MPy+] [Tf2N-] were investigated using neutron spin-echo (NSE) in two silica matrices with different pore size. Several intermolecular forces give rise to the bulk molecular structure between anions and cations. NSE provided dynamics (via the coherent intermediate scattering function) in the time range of 0.004 to 10 ns, and at Q-values corresponding to intermediate range ordering and inter- and intra-molecular length scales of the RTIL. Pore wall effects were delineated by comparing bulk RTIL dynamics with those of the confined fluid in 2.8 nm and 8 nm pores. Analytical models were applied to the experimental data to extract decay times and amplitudes of each component. We find a fast relaxation outside the experiment time window, a primary relaxation, and slow, surface-induced dynamics, which all speed up with increased temperature, however, the temperature dependence differs between bulk and confinement. This study sheds light on the structure and dynamics of RTILs and is relevant to the optimization of RTILs for green technologies and applications.
NASA Astrophysics Data System (ADS)
Romanos, G. E.; Stefanopoulos, K. L.; Vangeli, O. C.; Mergia, K.; Beltsios, K. G.; Kanellopoulos, N. K.; Lairez, D.
2012-02-01
In the present study, [bmim][PF6] ionic liquid (IL) was introduced into the pores of two ordered mesoporous silicas (MCM-41 and SBA-15) having different pore sizes by means of two different processes: a) with physical imbibition from a methanol solution under high vacuum and b) by chemically immobilising the IL with silanisation of the pore surface followed by reaction with butyl-methyl imidazolium chloride and anion exchange with PF6, the process termed as the "grafting to" method. Both the extent of IL entrapment and the structural properties of the IL phase under confinement were investigated by SANS, contrast-matching SANS, XRD and nitrogen adsorption measurements. The results show that the pores of chemically prepared samples are not totally filled by IL and also suggest for ordering of the silylated IL phase. On the other hand, the physically prepared samples are almost or totally filled with IL whereas no evidence for ordering of the confined IL phase was observed.
Shi, Wei; Luebke, David R
2013-05-07
Two-dimensional NPxyT and isostress-osmotic (N2PxyTf1) Monte Carlo simulations were used to compute the density and gas absorption properties of the ionic liquid (IL) 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) confined in silica slit pores (25-45 Å). Self-diffusivity values for both gas and IL were calculated from NVE molecular dynamics simulations using both smooth and atomistic potential models for silica. The simulations showed that the molar volume of [hmim][Tf2N] confined in 25-45-Å silica slit pores is 12-31% larger than that of the bulk IL at 313-573 K and 1 bar. The amounts of CO2, H2, and N2 absorbed in the confined IL are 1.1-3 times larger than those in the bulk IL because of the larger molar volume of the confined IL compared to the bulk IL. The CO2, N2, and H2 molecules are generally absorbed close to the silica wall where the IL density is very low. This arrangement causes the self-diffusivities of these gases in the confined IL to be 2-8 times larger than those in the bulk IL at 298-573 K. The solubilities of water in the confined and bulk ILs are similar, which is likely due to strong water interactions with [hmim][Tf2N] through hydrogen bonding, so that the molar volume of the confined IL plays a less important role in determining the H2O solubility. Water molecules are largely absorbed in the IL-rich region rather than close to the silica wall. The self-diffusivities of water correlate with those of the confined IL. The confined IL exhibits self-diffusivities larger than those of the bulk IL at lower temperatures, but smaller than those of the bulk IL at higher temperatures. The findings from our simulations are consistent with available experimental data for similar confined IL systems.
Ion association at discretely-charged dielectric interfaces: Giant charge inversion
NASA Astrophysics Data System (ADS)
Wang, Zhi-Yong; Wu, Jianzhong
2017-07-01
Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.
Meera, Kamal Mohamed Seeni; Sankar, Rajavelu Murali; Jaisankar, Sellamuthu N; Mandal, Asit Baran
2011-09-01
In this paper, we report the preparation and characterization of mesoporous and biocompatible transparent silica aerogel by the sol-gel polymerization of tetraethyl orthosilicate using ionic liquid. Choline cation based ionic liquid allows the silica framework to form in a non collapsing environment and controls the pore size of the gel. FT-IR spectra reveal the interaction of ionic liquid with surface -OH of the gel. DSC thermogram giving the evidence of confinement of ionic liquid within the silica matrix, which helps to avoid the shrinkage of the gel during the aging process. Nitrogen sorption measurements of gel prepared with ionic liquid exhibit a low surface area of 100.53 m2/g and high average pore size of 3.74 nm. MTT assay proves the biocompatibility and cell viability of the prepared gels. This new nanoporous silica material can be applied to immobilize biological molecules, which may retain their stability over a longer period. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Moon, Gi Jong; Yang, Yu Dong; Oh, Jung Min; Kang, In Seok
2017-11-01
Osmotic pressure plays an important role in the processes of charging and discharging of lithium batteries. In this work, osmotic pressure of the ionic liquids confined inside a nanoslit is calculated by using both MD simulation and continuum approach. In the case of MD simulation, an ionic liquid is modeled as singly charged spheres with a short-ranged repulsive Lennard-Jones potential. The radii of the spheres are 0.5nm, reflecting the symmetry of ion sizes for simplicity. The simulation box size is 11nm×11nm×7.5nm with 1050 ion pairs. The concentration of ionic liquid is about 1.922mol/L, and the total charge on an individual wall varies from +/-60e(7.944 μm/cm2) to +/-600e(79.44 μm/cm2) . In the case of continuum approach, we classify the problems according to the correlation length and steric factor, and considered the four separate cases: 1) zero correlation length and zero steric factor, 2) zero correlation length and non-zero steric factor, 3) non-zero correlation length and zero steric factor, and 4) non-zero correlation and non-zero steric factor. Better understanding of the osmotic pressure of ionic liquids confined inside a nanoslit can be achieved by comparing the results of MD simulation and continuum approach. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP: Ministry of Science, ICT & Future Planning) (No. 2017R1D1A1B05035211).
Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao
2018-03-25
The nanopore can generate an electrochemical confinement for single-molecule sensing that help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this Concept article, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sharma, Anirban; Ghorai, Pradip Kr
2016-11-17
The effects of confinement on the structural and dynamical properties of the ionic liquid (IL) 1,3-dimethylimidazolium bromide ([MMIM][Br]) have been investigated by molecular dynamics simulations. We used zeolite faujasite (NaY) as a hydrophilic confinement and dealuminated faujasite (DAY) as a hydrophobic confinement. The presence of an extra framework cation, [Na + ], in NaY makes the host hydrophilic, whereas DAY, with no extra framework cation, is hydrophobic. Although both NaY and DAY have almost similar structures, the IL showed markedly different structural and dynamical properties in these confinements and in bulk. In the confinements, the cation-cation radial distribution function, which strongly depends on temperature, exhibits a layer-like structure, whereas in bulk, it shows a liquid-like structure that hardly depends on temperature. Although the interaction between [MMIM] + and Br - in DAY is stronger than that in both NaY and bulk, the strength of the interaction between them is almost invariant with temperature. Both [MMIM] + and Br - strongly interact with Na + of the host, and their interaction strongly depends on temperature, whereas the interaction of the IL with Si and O is very weak and invariant with temperature. In bulk, the self-diffusion coefficient, [D], of both [MMIM] + and Br - increases exponentially with temperature, and the D of the cation is slightly higher than that of the anion at all studied temperatures, whereas in the confinements, [MMIM] + moves much faster than Br - . For example, in the hydrophilic confinement, the D of the cation is 20-30 times higher than that of the anion. The D of both the ions decreases significantly in the confinements as compared to that in bulk. During diffusion, [MMIM] + diffuses closer to the inner surface in the hydrophilic confinement than that in the hydrophobic confinement. The diffusion pathway imperceptibly depends on temperature but strongly depends on the nature of the confinement. The self part of the time-dependent van Hoove correlation function of [MMIM] + in the hydrophilic confinement shows a larger deviation from its Gaussian form than that in the hydrophobic confinement at all temperatures, indicating that the long-time dynamics of [MMIM] + in NaY is more heterogeneous than that in DAY. Although the orientational relaxation time scales of [MMIM] + in the confinements significantly slowed as compared to those in bulk, confinement does not affect the librational motion of the collective hydrogen-bond network present in the IL.
Confined Tube Crimp Using Portable Hand Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Joseph James; Pereyra, R. A.; Archuleta, Jeffrey Christopher
2016-04-04
The Lawrence Radiation Laboratory developed handheld tools that crimp a 1/16 inch OD tube, forming a leak tight seal1 (see Figure 1). The leak tight seal forms by confining the 1/16 inch OD tubing inside a die while applying crimp pressure. Under confined pressure, the tube walls weld at the crimp. The purpose of this study was to determine conditions for fabricating a leak tight tube weld. The equipment was used on a trial-and-error basis, changing the conditions after each attempt until successful welds were fabricated. To better confine the tube, the die faces were polished. Polishing removed a fewmore » thousandths of an inch from the die face, resulting in a tighter grip on the tubing wall. Using detergent in an ultrasonic bath, the tubing was cleaned. Also, the time under crimp pressure was increased to 30 seconds. With these modifications, acceptable cold welds were fabricated. After setting the conditions for an acceptable cold weld, the tube was TIG welded across the crimped face.« less
Influence of confinement on polymer-electrolyte relaxational dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanotti, J.-M.; Smith, L. J.; Price, D. L.
2004-01-01
Conception and industrial production of viable high specific energy/power batteries is a central issue for the development of non-polluting vehicles. In terms of stored energy and safety, solid-state devices using polymer electrolytes are highly desirable. One of the most studied systems is PEO (polyethylene oxide) complexed by Li salts. Polymer segmental motions and ionic conductivity are closely related. Bulk PEO is actually a biphasic system where an amorphous and a crystalline state (Tm 335 K) coexist. To improve ionic conduction in those systems requires a significant increase of the amorphous phase fraction where lithium conduction is known to mainly takemore » place. Confinement strongly affects properties of condensed matter and in particular the collective phenomena inducing crystallization. Confinement of the polymer matrix is therefore a possible alternative route to the unpractical use of high temperature. Results of a quasi-elastic incoherent neutron scattering study of the influence of confinement on polyethylene oxide (PEO) and (PEO)8Li+[(CF3SO2)2N]- (or (POE)8LiTFSI) dynamics are presented. The nano-confining media is Vycor, a silica based hydrophilic porous glass (characteristic size of the 3D pore network 50 {angstrom}). As expected, the presence of Li salt slows down the bulk polymer dynamics. The confinement also affects dramatically the apparent mean-square displacement of the polymer. Local relaxational PEO dynamics is described KWW model. We also present an alternate model and show how the detailed polymer dynamics (correlation times and local geometry of the motions) can be described without the use of such stretched exponentials so as to access a rheology-related meaningful physical quantity: the monomeric friction coefficient.« less
Impurity effects on ionic-liquid-based supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong
2017-02-01
Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.
Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler
NASA Astrophysics Data System (ADS)
Lee, J.; Park, D. H.; Mittal, S.; Dagenais, M.; Rolston, S. L.
2013-04-01
An integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a one dimensional optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps.
Keramidas, M E; Kölegård, R; Mekjavic, I B; Eiken, O
2015-10-01
The study examined the effects of a 10-day normobaric hypoxic confinement (FiO2: 0.14), with [hypoxic exercise training (HT); n = 8)] or without [hypoxic ambulatory (HA; n = 6)] exercise, on the hand temperature responses during and after local cold stress. Before and after the confinement, subjects immersed their right hand for 30 min in 8 °C water [cold water immersion (CWI)], followed by a 15-min spontaneous rewarming (RW), while breathing either room air (AIR), or a hypoxic gas mixture (HYPO). The hand temperature responses were monitored with thermocouples and infrared thermography. The confinement did not influence the hand temperature responses of the HA group during the AIR and HYPO CWI and the HYPO RW phases; but it impaired the AIR RW response (-1.3 °C; P = 0.05). After the confinement, the hand temperature responses were unaltered in the HT group throughout the AIR trial. However, the average hand temperature was increased during the HYPO CWI (+0.5 °C; P ≤ 0.05) and RW (+2.4 °C; P ≤ 0.001) phases. Accordingly, present findings suggest that prolonged exposure to normobaric hypoxia per se does not alter the hand temperature responses to local cooling; yet, it impairs the normoxic RW response. Conversely, the combined stimuli of continuous hypoxia and exercise enhance the finger cold-induced vasodilatation and hand RW responses, specifically, under hypoxic conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effect of Structure on the Initiation and Ignition Chemistry of Energetic Ionic Liquids
2010-06-30
Thermolysis In the confined rapid thermolysis (CRT)/FTIR/ToFMS studies, the thermal decomposition is limited to a volume confined between two heated ...Jordan) is equipped with a 1m flight tube and a 44 mm microchannel plate (MCP) detector. Here, the recharging of the MCP detector limits the...conditions achieved by initially heating the sample at rates of approximately 2000 K/s. The products formed by decomposition under the afore
Preparation of translationally cold neutral molecules.
Di Domenicantonio, Giulia; Bertsche, Benjamin; Osterwalder, Andreas
2011-01-01
Efforts at EPFL to obtain translationally cold neutral molecules are described. Active deceleration of polar molecules is performed by confining the molecules in moving three-dimensional electrostatic traps, and by appropriately choosing the velocity of those traps. Alternatively, cold molecules can be obtained by velocity filtering. Here, the velocity of the molecules is not changed, but instead the cold molecules are extracted from a thermal sample by using the competition between the electrostatic force and the centrifugal force inside a bent electrostatic guide for polar molecules.
Thomaz, Joseph E; Bailey, Heather E; Fayer, Michael D
2017-11-21
The structural dynamics of a series of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C n mimNTf 2 , n = 2, 4, 6, 10: ethyl-Emim; butyl-Bmim; hexyl-Hmim; decyl-Dmim) room temperature ionic liquids confined in the pores of polyether sulfone (PES 200) membranes with an average pore size of ∼350 nm and in the bulk liquids were studied. Time correlated single photon counting measurements of the fluorescence of the fluorophore coumarin 153 (C153) were used to observe the time-dependent Stokes shift (solvation dynamics). The solvation dynamics of C153 in the ionic liquids are multiexponential decays. The multiexponential functional form of the decays was confirmed as the slowest decay component of each bulk liquid matches the slowest component of the liquid dynamics measured by optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments, which is single exponential. The fact that the slowest component of the Stokes shift matches the OHD-OKE data in all four liquids identifies this component of the solvation dynamics as arising from the complete structural randomization of the liquids. Although the pores in the PES membranes are large, confinement on the mesoscopic length scale results in substantial slowing of the dynamics, a factor of ∼4, for EmimNTf 2 , with the effect decreasing as the chain length increases. By DmimNTf 2 , the dynamics are virtually indistinguishable from those in the bulk liquid. The rotation relaxation of C153 in the four bulk liquids was also measured and showed strong coupling between the C153 probe and its environment.
NASA Astrophysics Data System (ADS)
Thomaz, Joseph E.; Bailey, Heather E.; Fayer, Michael D.
2017-11-01
The structural dynamics of a series of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (CnmimNTf2, n = 2, 4, 6, 10: ethyl—Emim; butyl—Bmim; hexyl—Hmim; decyl—Dmim) room temperature ionic liquids confined in the pores of polyether sulfone (PES 200) membranes with an average pore size of ˜350 nm and in the bulk liquids were studied. Time correlated single photon counting measurements of the fluorescence of the fluorophore coumarin 153 (C153) were used to observe the time-dependent Stokes shift (solvation dynamics). The solvation dynamics of C153 in the ionic liquids are multiexponential decays. The multiexponential functional form of the decays was confirmed as the slowest decay component of each bulk liquid matches the slowest component of the liquid dynamics measured by optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments, which is single exponential. The fact that the slowest component of the Stokes shift matches the OHD-OKE data in all four liquids identifies this component of the solvation dynamics as arising from the complete structural randomization of the liquids. Although the pores in the PES membranes are large, confinement on the mesoscopic length scale results in substantial slowing of the dynamics, a factor of ˜4, for EmimNTf2, with the effect decreasing as the chain length increases. By DmimNTf2, the dynamics are virtually indistinguishable from those in the bulk liquid. The rotation relaxation of C153 in the four bulk liquids was also measured and showed strong coupling between the C153 probe and its environment.
Polymer Architecture Effects in Confined Geometry: Molecular Dynamics Simulation Study
NASA Astrophysics Data System (ADS)
Wijesinghe, Sidath; Perahia, Dvora; Grest, Gary
Luminescent rigid polymers confined into nanoparticles, or polydots, are emerging as a promising tool for nano medicine. The constrained architecture of a rigid backbone trapped in nano-dimensions results in photophysics that differs from that of spontaneously assembled rigid polymers. Incorporating ionizable functionalities in the polymers, often required for therapeutics, impacts the polymer conformation in solution. Here we report fully atomistic molecular dynamics simulations on the structure of dialkyl p-phenylene ethynylene confined into polydots. We find that the structure and thermal stability of polydots are sensitive to both the molecular weight n and the carboxylation fraction f. At room temperature , polydots remain confined regardless of n and f . However, as temperature is increased, polydots with lower n or f rearrange whereas polydots with higher n or fremain confined, though no direct clustering of the ionic groups was observed. NSF CHE 1308298 is acknowledged.
Impurity effects on ionic-liquid-based supercapacitors
Liu, Kun; Lian, Cheng; Henderson, Douglas; ...
2016-12-27
Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface ofmore » a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.« less
Self-Healable and Cold-Resistant Supercapacitor Based on a Multifunctional Hydrogel Electrolyte.
Tao, Feng; Qin, Liming; Wang, Zhikui; Pan, Qinmin
2017-05-10
Excellent self-healability and cold resistance are attractive properties for a portable/wearable energy-storage device. However, achieving the features is fundamentally dependent on an intrinsically self-healable electrolyte with high ionic conduction at low temperature. Here we report such a hydrogel electrolyte comprising sodium alginate cross-linked by dynamic catechol-borate ester bonding. Since its dynamically cross-linked alginate network can tolerate high-content inorganic salts, the electrolyte possesses excellent healing efficiency/cyclability but also high ionic conduction at both room temperature and low temperature. A supercapacitor with the multifunctional hydrogel electrolyte completely restores its capacitive properties even after breaking/healing for 10 cycles without external stimulus. At a low temperature of -10 °C, the capacitor is even able to maintain at least 80% of its room-temperature capacitance. Our investigations offer a strategy to assemble self-healable and cold-resistant energy storage devices by using a multifunctional hydrogel electrolyte with rationally designed polymeric networks, which has potential application in portable/wearable electronics, intelligent apparel or flexible robot, and so on.
Analysis of Cold Neutron Spectra of Metals.
modes. The damping of lattice vibrations in metals is of the same order of magnitude as in dielectrics with ionic binding, i.e., much higher than the damping in dielectrics with covalent binding. (Author)
Confined compression and torsion experiments on a pHEMA gel in various bath concentrations.
Roos, Reinder W; Petterson, Rob; Huyghe, Jacques M
2013-06-01
The constitutive behaviour of cartilaginous tissue is the result of complex interaction between electrical, chemical and mechanical forces. Electrostatic interactions between fixed charges and mobile ions are usually accounted for by means of Donnan osmotic pressure. Recent experimental data show, however, that the shear modulus of articular cartilage depends on ionic concentration even if the strain is kept constant. Poisson-Boltzmann simulations suggest that this dependence is intrinsic to the double-layer around the proteoglycan chains. In order to verify this premise, this study measures whether--at a given strain--this ionic concentration-dependent shear modulus is present in a polymerized hydroxy-ethyl-methacrylate gel or not. A combined 1D confined compression and torque experiment is performed on a thin cylindrical hydrogel sample, which is brought in equilibrium with, respectively, 1, 0.1 and 0.03 M NaCl. The sample was placed in a chamber that consists of a stainless steel ring placed on a sintered glass filter, and on top a sintered glass piston. Stepwise ionic loading was cascaded by stepwise 1D compression, measuring the total stress after equilibration of the sample. In addition, a torque experiment was interweaved by applying a harmonic angular displacement and measuring the torque, revealing the relation between aggregate shear modulus and salt concentration at a given strain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhi -Yong; Wu, Jianzhong
2017-07-11
Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmedmore » with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Lastly, our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.« less
Method and apparatus for confinement of ions in the presence of a neutral gas
Peurrung, Anthony J.; Barlow, Stephan E.
1999-01-01
The present invention is an apparatus and method for combining ions with a neutral gas and flowing the mixture with a radial flow component through a magnetic field so that the weakly ionized gas is confined by the neutral gas. When the weakly ionized gas is present in sufficient density, a weakly ionized non-neutral plasma is formed that may be trapped in accordance with the present invention. Applications for a weakly ionized non-neutral plasma exploit the trap's ability to store and manipulate ionic species in the presence of neutral gas. The trap may be connected to a mass spectrometer thereby permitting species identification after a fixed period of time. Delicate and/or heavy particles such as clusters may be held and studied in a "gentle" environment. In addition, the trap can provide a relatively intense, low-energy source of a particular ion species for surface implantation or molecular chemistry. Finally, a long trap may permit spectroscopy of unprecedented accuracy to be performed on ionic species.
Cold-start characteristics of polymer electrolyte fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishler, Jeff; Mukundan, Rangachary; Wang, Yun
2010-01-01
In this paper, we investigate the electrochemical reaction kinetics, species transport, and solid water dynamics in a polymer electrolyte fuel cell (PEFC) during cold start. A simplitied analysis is developed to enable the evaluation of the impact of ice volume fraction on cell performance during coldstart. Supporting neutron imaging data are also provided to reveal the real-time water evolution. Temperature-dependent voltage changes due to the reaction kinetics and ohmic loss are also analyzed based on the ionic conductivity of the membrane at subfreezing temperature. The analysis is valuable for the fundamental study of PEFC cold-start.
Ionic Structure at Dielectric Interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei
The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics(MD) simulations and compared it with liquid state theory result. We explore the effects of high electrolyte concentrations, multivalent ions, and dielectric contrasts on the ionic distributions. We observe the presence of non-monotonous ionic density profiles leading to structure deformation in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of effective interaction between two interfaces. We show that, in concentrated electrolytes with confinement, it is imperative to take into account the finite-size of the ions as well as proper description of electrostatic interactions in heterogeneous media, which is not fully fulfilled by Poisson-Boltzmann based approaches. The effect of electric field at interface between two immiscible electrolyte solutions is studied as well. The classical Poisson-Boltzmann theory has been widely used to describe the corresponding ionic distribution, even though it neglects the polarization and ion correlations typical of these charged systems. Using Monte Carlo simulations, we provide an enhanced description of an oil-water interface in the presence of an electric field without needing any adjustable parameter, including realistic ionic sizes, ion correlations, and image charges. Our data agree with experimental measurements of excess surface tension for a wide range of electrolyte concentrations of LiCl and TBATPB (tetrabutylammonium-tetraphenylborate), contrasting with the result of the classical non-linear Poisson-Boltzmann theory. More importantly, we show that the size-asymmetry between small Li+ and large Cl- ions can significantly increase the electric field near the liquid interface, or can even reverse it locally, at high salt concentrations in the aqueous phase. These observations suggest a novel trapping/release mechanism of charged nanoparticles at oil-water interfaces in the vicinity of the point of zero charge. In addition, we study the effects of size asymmetry and charge asymmetry on ion distribution at a dielectric interface using coarse-grained MD based on an energy variational principle. The goal is to explore charge amplification with exact consideration of surface polarization. We find that both size asymmetry and charge asymmetry lead to charge separation at the interfaces. In addition, charge separation is enhanced by interface polarization. We are currently extending the research to charged interfaces that has broad applications such as batteries and supercapacitors for energy storage.
ERIC Educational Resources Information Center
School Science Review, 1972
1972-01-01
Short articles describing the construction of a self-testing device for learning ionic formulae, problems with standard'' experiments in crystallizing sulfur, preparative details for a cold-setting adhesive and vermillion dye, and providing data related to the industrial manufacture of sulphuric acid. (AL)
Ion distribution and selectivity of ionic liquids in microporous electrodes.
Neal, Justin N; Wesolowski, David J; Henderson, Douglas; Wu, Jianzhong
2017-05-07
The energy density of an electric double layer capacitor, also known as supercapacitor, depends on ion distributions in the micropores of its electrodes. Herein we study ion selectivity and partitioning of symmetric, asymmetric, and mixed ionic liquids among different pores using the classical density functional theory. We find that a charged micropore in contact with mixed ions of the same valence is always selective to the smaller ions, and the ion selectivity, which is strongest when the pore size is comparable to the ion diameters, drastically falls as the pore size increases. The partitioning behavior in ionic liquids is fundamentally different from those corresponding to ion distributions in aqueous systems whereby the ion selectivity is dominated by the surface energy and entropic effects insensitive to the degree of confinement.
An unusual slowdown of fast diffusion in a room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chathoth,; Mamontov, Eugene; Fulvio, Pasquale F
2013-01-01
Using quasielastic neutron scattering in the temperature range from 290 to 350 K, we show that the diffusive motions in a room temperature ionic liquid [H2NC(dma)2][BETI] become faster for a fraction of cations when the liquid is confined in a mesoporous carbon. This applies to both the localized and long-range translational diffusive motions of the highly mobile cations, although the former exhibit an unusual trend of slowing-down as the temperature is increased, until the localized diffusivity is reduced to the bulk ionic liquid value at a temperature of 350 K.
Theory of a peristaltic pump for fermionic quantum fluids
NASA Astrophysics Data System (ADS)
Romeo, F.; Citro, R.
2018-05-01
Motivated by the recent developments in fermionic cold atoms and in nanostructured systems, we propose the model of a peristaltic quantum pump. Differently from the Thouless paradigm, a peristaltic pump is a quantum device that generates a particle flux as the effect of a sliding finite-size microlattice. A one-dimensional tight-binding Hamiltonian model of this quantum machine is formulated and analyzed within a lattice Green's function formalism on the Keldysh contour. The pump observables, as, e.g., the pumped particles per cycle, are studied as a function of the pumping frequency, the width of the pumping potential, the particles mean free path, and system temperature. The proposed analysis applies to arbitrary peristaltic potentials acting on fermionic quantum fluids confined to one dimension. These confinement conditions can be realized in nanostructured systems or, in a more controllable way, in cold atoms experiments. In view of the validation of the theoretical results, we describe the outcomes of the model considering a fermionic cold atoms system as a paradigmatic example.
NASA Astrophysics Data System (ADS)
Sorokin, N. I.; Ivanovskaya, N. A.; Sobolev, B. P.
2014-03-01
Cold-pressed ceramics of fluorine-conducting solid electrolytes La1 - y M y F3 - y ( M = Ca, Sr, Ba) and Nd1 - y Ca y F3 - y with y = 0.95 have been synthesized in a melt of RF3 ( R = La, Nd) and MF2 components in a fluorinating atmosphere and ground in a ball mill. The as-prepared ceramics require annealing, during which their porosity decreases and the conductivity is stably increased (by a factor of 250 for the R 1 - y M y F3 - y composition at 293 K). The Nd0.95Ca0.05F2.95 and Nd0.95Ca0.05F2.95 compositions have a maximum ionic conductivity σ(293 K) ˜ 5 × 10-6 Sm/cm. This value is larger (by a factor of about 10) than σ (293 K) for the R 1 - y M y F3 - y ceramics of tysonite phases prepared by mechanochemical synthesis with the cold pressing of reaction products.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... Mexico water temperatures drop to about 68 [deg]F (20 [deg]C), manatees looking for warmer water will... shelter, rest, and feed free from harassment, manatees are at risk when exposed to cold temperatures for... harassment due to the cold temperatures that confine them to Kings Bay. Designating manatee protection areas...
Kirch, Alexsandro; de Almeida, James M; Miranda, Caetano R
2018-05-10
The complexity displayed by nanofluidic-based systems involves electronic and dynamic aspects occurring across different size and time scales. To properly model such kind of system, we introduced a top-down multilevel approach, combining molecular dynamics simulations (MD) with first-principles electronic transport calculations. The potential of this technique was demonstrated by investigating how the water and ionic flow through a (6,6) carbon nanotube (CNT) influences its electronic transport properties. We showed that the confinement on the CNT favors the partially hydrated Na, Cl, and Li ions to exchange charge with the nanotube. This leads to a change in the electronic transmittance, allowing for the distinguishing of cations from anions. Such an ionic trace may handle an indirect measurement of the ionic current that is recorded as a sensing output. With this case study, we are able to show the potential of this top-down multilevel approach, to be applied on the design of novel nanofluidic devices.
Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.
Pino, Verónica; Afonso, Ana M
2012-02-10
Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.
Integral equation model for warm and hot dense mixtures.
Starrett, C E; Saumon, D; Daligault, J; Hamel, S
2014-09-01
In a previous work [C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013)] a model for the calculation of electronic and ionic structures of warm and hot dense matter was described and validated. In that model the electronic structure of one atom in a plasma is determined using a density-functional-theory-based average-atom (AA) model and the ionic structure is determined by coupling the AA model to integral equations governing the fluid structure. That model was for plasmas with one nuclear species only. Here we extend it to treat plasmas with many nuclear species, i.e., mixtures, and apply it to a carbon-hydrogen mixture relevant to inertial confinement fusion experiments. Comparison of the predicted electronic and ionic structures with orbital-free and Kohn-Sham molecular dynamics simulations reveals excellent agreement wherever chemical bonding is not significant.
Cheng, B. L.; Kwan, T. J. T.; Wang, Y. M.; ...
2018-05-18
In the last five years, large amounts of high quality experimental data in inertial confinement fusion (ICF) were produced at the National Ignition Facility (NIF). From the NIF data, we have significantly advanced our scientific understanding of the physics of thermonuclear (TN) ignition in ICF and identified the critical physical issues important to achieve ignition, such as implosion energetics, pusher adiabat, tamping effects in fuel confinement, and confinement time. In this article, we will present recently developed TN ignition theory and implosion scaling laws [1, 2] characterizing the thermodynamic properties of the hot spot and the TN ignition metrics atmore » NIF. We compare our theoretical predictions with NIF data with good agreement between theory and experiments. We will also demonstrate the fundamental effects of the pusher adiabat on the energy partition between the cold shell and the hot deuterium-tritium and on the neutron yields of ICF capsules. Applications [3–5] to NIF experiments and physical explanations of the discrepancies among theory, data and simulations will be presented. In our theory, the actual adiabat of the cold DT fuel can be inferred from neutron image data of a burning capsule. With the experimentally inferred hot spot mix, the CH mix in the cold fuel could be estimated, as well as the preheat. Finally, possible path forwards to reach high yields are discussed.« less
Luminescent tunable polydots: Charge effects in confined geometry
Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...
2017-06-28
Long-lived soft nanoparticles, formed by conjugated polymers, constitute a new class of far-from-equilibrium responsive structures for nano-medicine. Tethering ionizable groups to the polymers enables functionality. However concurrently, the ionic groups perturb the delicate balance of interactions that governs these particles. Using fully atomistic molecular dynamics simulations, this study probed the effects of charged groups tethered to poly para phenylene ethynylene substituted by alkyl groups on the polymer conformation and dynamics in confined geometry. As a result, we find that the ionizable groups affect the entire shape of the polydots and impact the conformation and dynamics of the polymer.
NASA Astrophysics Data System (ADS)
Zhang, Ce; Zhang, Fang; van Kan, Jeroen A.; van der Maarel, Johan R. C.
2008-06-01
Single T4-DNA molecules were confined in rectangular-shaped channels with a depth of 300 nm and a width in the range of 150-300 nm casted in a poly(dimethylsiloxane) nanofluidic chip. The extensions of the DNA molecules were measured with fluorescence microscopy as a function of the ionic strength and composition of the buffer as well as the DNA intercalation level by the YOYO-1 dye. The data were interpreted with the scaling theory for a wormlike polymer in good solvent, including the effects of confinement, charge, and self-avoidance. It was found that the elongation of the DNA molecules with decreasing ionic strength can be interpreted in terms of an increase of the persistence length. Self-avoidance effects on the extension are moderate, due to the small correlation length imposed by the channel cross-sectional diameter. Intercalation of the dye results in an increase of the DNA contour length and a partial neutralization of the DNA charge, but besides effects of electrostatic origin it has no significant effect on the bare bending rigidity. In the presence of divalent cations, the DNA molecules were observed to contract, but they do not collapse into a condensed structure. It is proposed that this contraction results from a divalent counterion mediated attractive force between the segments of the DNA molecule.
Wang, Yanlei; Huo, Feng; He, Hongyan; Zhang, Suojiang
2018-06-20
Ionic liquid (IL) flow in graphene oxide (GO) nanochannels plays a key role in the performance of IL- and GO-based fluidics devices and other chemical separator techniques. Here, we investigate the flow behavior of ILs in GO nanochannels via molecular dynamics simulations. The quantitative relation between slip velocity and shear stress has been identified, showing that the interfacial friction coefficient can be enhanced by almost sixty times, while the slip length is reduced by about three orders of magnitude, with the fraction of hydroxylation in graphene ranging from 0% to 15%. The great change in interfacial properties can be attributed to the structural changes of IL layers near GO, which is proved by the detailed analysis of density distribution, charge distribution and radial distribution function. Besides, the viscosity will increase as a fraction of hydroxylation because of the partial breaking of coulombic ordering of confined ILs. Meanwhile, the hydroxyls have more significant effects on IL flow than water flow in GO nanochannels due to the stronger interaction networks in IL/GO interfaces. In summary, hydroxylation can be a convincing method to regulate the IL flow in nanochannels. The quantitative properties of confined ILs in GO nanochannels and their relation to the fraction of hydroxylation could deepen the understanding of ILs and benefit the applications of ILs and GO in the fields of chemical engineering and various other nanofluidic devices.
Zhang, Doudou; Zhang, Qian; Bai, Ligai; Han, Dandan; Liu, Haiyan; Yan, Hongyuan
2018-05-01
An ionic-liquid-based polymer monolithic column was synthesized by free radical polymerization within the confines of a stainless-steel column (50 mm × 4.6 mm id). In the processes, ionic liquid and stearyl methacrylate were used as dual monomers, ethylene glycol dimethacrylate as the cross-linking agent, and polyethylene glycol 200 and isopropanol as co-porogens. Effects of the prepolymerization solution components on the properties of the resulting monoliths were studied in detail. Scanning electron microscopy, nitrogen adsorption-desorption measurements, and mercury intrusion porosimetry were used to investigate the morphology and pore size distribution of the prepared monoliths, which showed that the homemade ionic-liquid-based monolith column possessed a relatively uniform macropore structure with a total macropore specific surface area of 44.72 m 2 /g. Compared to a non-ionic-liquid-based monolith prepared under the same conditions, the ionic-liquid-based monolith exhibited excellent selectivity and high performance for separating proteins from complex biosamples, such as egg white, snailase, bovine serum albumin digest solution, human plasma, etc., indicating promising applications in the fractionation and analysis of proteins from the complex biosamples in proteomics research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing
2017-09-04
Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultraslow Phase Transitions in an Anion-Anion Hydrogen-Bonded Ionic Liquid.
Faria, Luiz F O; Lima, Thamires A; Ferreira, Fabio F; Ribeiro, Mauro C C
2018-02-15
A Raman spectroscopy study of 1-ethyl-3-methylimidazolium hydrogen sulfate, [C 2 C 1 im][HSO 4 ], as a function of temperature, has been performed to reveal the role played by anion-anion hydrogen bond on the phase transitions of this ionic liquid. Anion-anion hydrogen bonding implies high viscosity, good glass-forming ability, and also moderate fragility of [C 2 C 1 im][HSO 4 ] in comparison with other ionic liquids. Heating [C 2 C 1 im][HSO 4 ] from the glassy phase results in cold crystallization at ∼245 K. A solid-solid transition (crystal I → crystal II) is barely discernible in calorimetric measurements at typical heating rates, but it is clearly revealed by Raman spectroscopy and X-ray diffraction. Raman spectroscopy indicates that crystal I has extended ([HSO 4 ] - ) n chains of hydrogen-bonded anions but crystal II has not. Raman spectra recorded at isothermal condition show the ultraslow dynamics of cold crystallization, solid-solid transition, and continuous melting of [C 2 C 1 im][HSO 4 ]. A brief comparison is also provided between [C 2 C 1 im][HSO 4 ] and [C 4 C 1 im][HSO 4 ], as Raman spectroscopy shows that the latter does not form the crystalline phase with extended anion-anion chains.
Transport processes in magnetically confined plasmas in the nonlinear regime.
Sonnino, Giorgio
2006-06-01
A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schluter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schluter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.
Method and apparatus for confinement of ions in the presence of a neutral gas
Peurrung, A.J.; Barlow, S.E.
1999-08-03
The present invention is an apparatus and method for combining ions with a neutral gas and flowing the mixture with a radial flow component through a magnetic field so that the weakly ionized gas is confined by the neutral gas. When the weakly ionized gas is present in sufficient density, a weakly ionized non-neutral plasma is formed that may be trapped in accordance with the present invention. Applications for a weakly ionized non-neutral plasma exploit the trap`s ability to store and manipulate ionic species in the presence of neutral gas. The trap may be connected to a mass spectrometer thereby permitting species identification after a fixed period of time. Delicate and/or heavy particles such as clusters may be held and studied in a ``gentle`` environment. In addition, the trap can provide a relatively intense, low-energy source of a particular ion species for surface implantation or molecular chemistry. Finally, a long trap may permit spectroscopy of unprecedented accuracy to be performed on ionic species. 4 figs.
Oxygen, water, and sodium chloride transport in soft contact lenses materials.
Gavara, Rafael; Compañ, Vicente
2017-11-01
Oxygen permeability, diffusion coefficient of the sodium ions and water flux and permeability in different conventional hydrogel (Hy) and silicone-hydrogel (Si-Hy) contact lenses have been measured experimentally. The results showed that oxygen permeability and transmissibility requirements of the lens have been addressed through the use of siloxane containing hydrogels. In general, oxygen and sodium chloride permeability values increased with the water content of the lens but there was a percolation phenomenon from a given value of water uptake mainly in the Si-Hy lenses which appeared to be related with the differences between free water and bound water contents. The increase of ion permeability with water content did not follow a unique trend indicating a possible dependence of the chemical structure of the polymer and character ionic and non-ionic of the lens. Indeed, the salt permeability values for silicone hydrogel contact lenses were one order of magnitude below those of conventional hydrogel contact lenses, which can be explained by a diffusion of sodium ions occurring only through the hydrophilic channels. The increase of the ionic permeability in Si-Hy materials may be due to the confinement of ions in nanoscale water channels involving possible decreased degrees of freedom for diffusion of both water and ions. In general, ionic lenses presented values of ionic permeability and diffusivity higher than most non-ionic lenses. The tortuosity of the ionic lenses is lower than the non-ionic Si-Hy lenses. Frequency 55 and PureVision exhibited the highest water permeability and flux values and, these parameters were greater for ionic Si-Hy lenses than for ionic conventional hydrogel lenses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2218-2231, 2017. © 2016 Wiley Periodicals, Inc.
Pang, Long; Yang, Peijie; Pang, Rong; Li, Shunyi
2017-08-01
1-Hexadecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is a solid-phase ionic organic material under ambient temperature and is considered as a kind of "frozen" ionic liquid. Because of their solid-state and ultra-hydrophobicity, "frozen" ionic liquids are able to be confined in the pores of hollow fiber, based on which a simple method was developed for the hollow-fiber solid-phase microextraction of dichlorodiphenyltrichloroethane and its main metabolites. Under optimized conditions, the proposed method results in good linearity (R 2 > 0.9965) over the range of 0.5-50 μg/L, with low limits of detection and quantification in the range of 0.33-0.38 and 1.00-1.25 μg/L, respectively. Intra- and interday precisions evaluated by relative standard deviation were 3-6 and 1-6%, respectively. The spiked recoveries of dichlorodiphenyltrichloroethane and its main metabolites from real water samples were in the range of 64-113 and 79-112%, respectively, at two different concentration levels. The results suggest that "frozen" ionic liquids are promising for use as a class of novel sorbents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Tian; Yang, Xiao-Lu; Zhang, Yu-Shuai; Xiao, BaoLin; Hong, Jun
2014-01-01
Direct electrochemistry of glucose oxidase (GOD) was achieved when an ionic liquid/GOD-Polyhydroxy-C60 functional membrane was confined on a glassy carbon electrode (GCE). The cyclic voltammograms (CVs) of the modified GCE showed a pair of redox peaks with a formal potential (E°') of - 329 ± 2 mV. The heterogeneous electron transfer constant (k(s)) was 1.43 s-1. The modified GCE response to glucose was linear in the range from 0.02 to 2.0 mM. The detection limit was 1 μM. The apparent Michaelis-Menten constant (K(m)(app)) was 1.45 mM.
NASA Astrophysics Data System (ADS)
Caillol, J. M.; Levesque, D.
1992-01-01
The reliability and the efficiency of a new method suitable for the simulations of dielectric fluids and ionic solutions is established by numerical computations. The efficiency depends on the use of a simulation cell which is the surface of a four-dimensional sphere. The reliability originates from a charge-charge potential solution of the Poisson equation in this confining volume. The computation time, for systems of a few hundred molecules, is reduced by a factor of 2 or 3 compared to this of a simulation performed in a cubic volume with periodic boundary conditions and the Ewald charge-charge potential.
Electrical charging effects on the sliding friction of a model nano-confined ionic liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capozza, R.; Vanossi, A.; CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste
2015-10-14
Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number ofmore » IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.« less
Dual levitated coils for antihydrogen production
NASA Astrophysics Data System (ADS)
Wofford, J. D.; Ordonez, C. A.
2013-04-01
Two coaxial superconducting magnetic coils that carry currents in the same direction and that are simultaneously levitated may serve for antihydrogen plasma confinement. The configuration may be suitable for use by a collaboration at the CERN Antiproton Decelerator facility to test fundamental symmetries between the properties of hydrogen and antihydrogen. Nested Penning traps are currently used to confine recombining antihydrogen plasma. Symmetry studies require the production of sufficiently cold antihydrogen. However, plasma drifts within nested Penning traps can increase the kinetic energy of antiprotons that form antihydrogen atoms. Dual levitated coils may serve to confine relatively large, cold, dense non-drifting recombining antihydrogen plasmas. A minimum-B magnetic field that is produced by the coils could provide for atom trapping. A toroidal plasma is confined between the coils. High density plasmas may be possible, by allowing plasma pressure to balance mechanical pressure to keep the coils apart. Progress is reported on theoretical and experimental efforts. The theoretical effort includes the development of a classical trajectory Monte Carlo simulation of confinement. The experimental effort includes levitation of a NdFeB permanent ring magnet, which produces a magnetic field that is qualitatively similar to the field that would be produced by the two coaxial superconducting magnetic coils. Liquid-nitrogen-cooled Bi-2223 high-temperature-superconducting components, with a critical temperature of 108 K, were used to levitate the ring magnet. An issue concerning keeping the plane of the levitated ring horizontal is discussed.
Integrated Optical Dipole Trap for Cold Neutral Atoms with an Optical Waveguide Coupler
NASA Astrophysics Data System (ADS)
Lee, J.; Park, D. H.; Mittal, S.; Meng, Y.; Dagenais, M.; Rolston, S. L.
2013-05-01
Using an optical waveguide, an integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a 1D optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps and present current research progress towards a fiber-coupled silicon nitride optical waveguide integrable with atom chips. Work is supported by the ARO Atomtronics MURI. Work is supported by the ARO Atomtronics MURI.
Mesoscale simulations of confined Nafion thin films.
Vanya, P; Sharman, J; Elliott, J A
2017-12-07
The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.
Mesoscale simulations of confined Nafion thin films
NASA Astrophysics Data System (ADS)
Vanya, P.; Sharman, J.; Elliott, J. A.
2017-12-01
The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.
Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models
NASA Astrophysics Data System (ADS)
Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.; Grierson, B. A.; Staebler, G. M.; Rice, J. E.; Yuan, X.; Cao, N. M.; Creely, A. J.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Sciortino, F.
2018-02-01
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.
Dynamics of water in sulfonated poly(phenylene) membranes
NASA Astrophysics Data System (ADS)
Osti, Naresh; Etampawala, Thusitha; Shrestha, Umesh; Perahia, Dvora; Cornelius, Christopher
2011-03-01
The dynamics of water in networks formed by highly rigid ionic polymers, sulfonated poly(phenylene) as observed by quasi elastic neutron scattering (QENS) is presented. These rigid ionic polymers have potential as effective ion exchange membranes with impact on a large number of applications from water purification to clean energy, where its rigidity distinguishes it from other ionic polymers. Its transport characteristics are affected by its rigidness as well as by direct interactions with the solvent. Our QENS studies as a function of sulfonation levels, temperature and solvent content have shown that on the time scale of the measurement, the polymers are rigid. While macroscopically all samples swell, and transport water, the water molecules appear locally rather confined. Water however remind non-frozen to subzero temperatures. The results will be discussed in view of theoretical models including continues diffusion and hopping of solvent molecules.
Force microscopy of layering and friction in an ionic liquid
NASA Astrophysics Data System (ADS)
Hoth, Judith; Hausen, Florian; Müser, Martin H.; Bennewitz, Roland
2014-07-01
The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip-sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface.
The Production of Cold Gas Within Galaxy Outflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scannapieco, Evan
2017-03-01
I present a suite of three-dimensional simulations of the evolution of initially hot material ejected by starburst-driven galaxy outflows. The simulations are conducted in a comoving frame that moves with the material, tracking atomic/ionic cooling, Compton cooling, and dust cooling and destruction. Compton cooling is the most efficient of these processes, while the main role of atomic/ionic cooling is to enhance density inhomogeneities. Dust, on the other hand, has little effect on the outflow evolution, and is rapidly destroyed in all the simulations except for the case with the smallest mass flux. I use the results to construct a simplemore » steady-state model of the observed UV/optical emission from each outflow. The velocity profiles in this case are dominated by geometric effects, and the overall luminosities are extremely strong functions of the properties of the host system, as observed in ultra-luminous infrared galaxies (ULIRGs). Furthermore the luminosities and maximum velocities in several models are consistent with emission-line observations of ULIRGs, although the velocities are significantly greater than observed in absorption-line studies. It may be that absorption line observations of galaxy outflows probe entrained cold material at small radii, while emission-line observations probe cold material condensing from the initially hot medium at larger distances.« less
A controllable molecular sieve for Na+ and K+ ions.
Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui
2010-02-17
The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems. Molecular sieves for ions can be achieved by steric and electrical effects. However, the radii of Na(+) and K(+) are quite similar; they both carry a positive charge, making them difficult to separate. Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K(+) or Na(+) across the cell membrane. However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e.g., KcsA). Our molecular dynamics simulations show that the remarkable selectivity is attributed to the hydration structure of Na(+) or K(+) confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms. The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water.
Dark optical lattice of ring traps for cold atoms
NASA Astrophysics Data System (ADS)
Courtade, Emmanuel; Houde, Olivier; Clément, Jean-François; Verkerk, Philippe; Hennequin, Daniel
2006-09-01
We propose an optical lattice for cold atoms made of a one-dimensional stack of dark ring traps. It is obtained through the interference pattern of a standard Gaussian beam with a counterpropagating hollow beam obtained using a setup with two conical lenses. The traps of the resulting lattice are characterized by a high confinement and a filling rate much larger than unity, even if loaded with cold atoms from a magneto-optical trap. We have implemented this system experimentally, and demonstrated its feasibility. Applications in statistical physics, quantum computing, and Bose-Einstein condensate dynamics are conceivable.
NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors
2015-01-01
Ionic liquids are emerging as promising new electrolytes for supercapacitors. While their higher operating voltages allow the storage of more energy than organic electrolytes, they cannot currently compete in terms of power performance. More fundamental studies of the mechanism and dynamics of charge storage are required to facilitate the development and application of these materials. Here we demonstrate the application of nuclear magnetic resonance spectroscopy to study the structure and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes place by adsorption of counterions and desorption of co-ions from the pores. We find that adsorption and desorption of anions surprisingly plays a more dominant role than that of the cations. Having elucidated the charging mechanism, we go on to study the factors that affect the rate of ionic diffusion in the carbon micropores in an effort to understand supercapacitor charging dynamics. We show that the line shape of the resonance arising from adsorbed ions is a sensitive probe of their effective diffusion rate, which is found to depend on the ionic liquid studied, as well as the presence of any solvent additives. Taken as whole, our NMR measurements allow us to rationalize the power performances of different electrolytes in supercapacitors. PMID:25973552
ROLE OF HUMIC SUBSTANCES ON THE PHOTOCHEMICAL REDUCTION OF MERCURY
Solutions containing mercury and fulvic acids (isolated from the Florida Everglades) were exposed to simulated sunlight from a 1000-W Xenon lamp. In the ensuing reaction, ionic mercury was reduced to elemental mercury, which was collected on a gold trap and measured on a cold va...
Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models
Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.; ...
2018-02-16
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. Here, this Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and timemore » scales of cold-pulse experiments in tokamak plasmas.« less
Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. Here, this Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and timemore » scales of cold-pulse experiments in tokamak plasmas.« less
A demonstration of the antimicrobial effectiveness of various copper surfaces
2013-01-01
Background Bacterial contamination on touch surfaces results in increased risk of infection. In the last few decades, work has been done on the antimicrobial properties of copper and its alloys against a range of micro-organisms threatening public health in food processing, healthcare and air conditioning applications; however, an optimum copper method of surface deposition and mass structure has not been identified. Results A proof-of-concept study of the disinfection effectiveness of three copper surfaces was performed. The surfaces were produced by the deposition of copper using three methods of thermal spray, namely, plasma spray, wire arc spray and cold spray The surfaces were then inoculated with meticillin-resistant Staphylococcus aureus (MRSA). After a two hour exposure to the surfaces, the surviving MRSA were assayed and the results compared. The differences in the copper depositions produced by the three thermal spray methods were examined in order to explain the mechanism that causes the observed differences in MRSA killing efficiencies. The cold spray deposition method was significantly more effective than the other methods. It was determined that work hardening caused by the high velocity particle impacts created by the cold spray technique results in a copper microstructure that enhances ionic diffusion, and copper ions are principally responsible for antimicrobial activity. Conclusions This test showed significant microbiologic differences between coatings produced by different spray techniques and demonstrates the importance of the copper application technique. The cold spray technique shows superior anti-microbial effectiveness caused by the high impact velocity imparted to the sprayed particles which results in high dislocation density and high ionic diffusivity. PMID:23537176
Ion-ion correlations across and between electrified graphene layers
NASA Astrophysics Data System (ADS)
Mendez-Morales, Trinidad; Burbano, Mario; Haefele, Matthieu; Rotenberg, Benjamin; Salanne, Mathieu
2018-05-01
When an ionic liquid adsorbs onto a porous electrode, its ionic arrangement is deeply modified due to a screening of the Coulombic interactions by the metallic surface and by the confinement imposed upon it by the electrode's morphology. In particular, ions of the same charge can approach at close contact, leading to the formation of a superionic state. The impact of an electrified surface placed between two liquid phases is much less understood. Here we simulate a full supercapacitor made of the 1-butyl-3-methylimidazolium hexafluorophosphate and nanoporous graphene electrodes, with varying distances between the graphene sheets. The electrodes are held at constant potential by allowing the carbon charges to fluctuate. Under strong confinement conditions, we show that ions of the same charge tend to adsorb in front of each other across the graphene plane. These correlations are allowed by the formation of a highly localized image charge on the carbon atoms between the ions. They are suppressed in larger pores, when the liquid adopts a bilayer structure between the graphene sheets. These effects are qualitatively similar to the recent templating effects which have been reported during the growth of nanocrystals on a graphene substrate.
A characteristic scale for cold gas
NASA Astrophysics Data System (ADS)
McCourt, Michael; Oh, S. Peng; O'Leary, Ryan; Madigan, Ann-Marie
2018-02-01
We find that clouds of optically thin, pressure-confined gas are prone to fragmentation as they cool below ∼106 K. This fragmentation follows the lengthscale ∼cstcool, ultimately reaching very small scales (∼0.1 pc/n), as they reach the temperature ∼104 K at which hydrogen recombines. While this lengthscale depends on the ambient pressure confining the clouds, we find that the column density through an individual fragment Ncloudlet ∼ 1017 cm-2 is essentially independent of environment; this column density represents a characteristic scale for atomic gas at 104 K. We therefore suggest that 'clouds' of cold, atomic gas may, in fact, have the structure of a mist or a fog, composed of tiny fragments dispersed throughout the ambient medium. We show that this scale emerges in hydrodynamic simulations, and that the corresponding increase in the surface area may imply rapid entrainment of cold gas. We also apply it to a number of observational puzzles, including the large covering fraction of diffuse gas in galaxy haloes, the broad-line widths seen in quasar and AGN spectra and the entrainment of cold gas in galactic winds. While our simulations make a number of assumptions and thus have associated uncertainties, we show that this characteristic scale is consistent with a number of observations, across a wide range of astrophysical environments. We discuss future steps for testing, improving and extending our model.
Ion distribution in the hot spot of an inertial confinement fusion plasma
NASA Astrophysics Data System (ADS)
Tang, Xianzhu; Guo, Zehua; Berk, Herb
2012-10-01
Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.
Extreme Adiabatic Expansion in Micro-gravity: Modeling for the Cold Atomic Laboratory
NASA Astrophysics Data System (ADS)
Sackett, C. A.; Lam, T. C.; Stickney, J. C.; Burke, J. H.
2017-12-01
The upcoming Cold Atom Laboratory mission for the International Space Station will allow the investigation of ultracold gases in a microgravity environment. Cold atomic samples will be produced using evaporative cooling in a magnetic chip trap. We investigate here the possibility to release atoms from the trap via adiabatic expansion. We discuss both general considerations and a detailed model of the planned apparatus. We find that it should be possible to reduce the mean trap confinement frequency to about 0.2 Hz, which will correspond to a three-dimensional sample temperature of about 150 pK and a mean atom velocity of 0.1 mm/s.
Extreme Adiabatic Expansion in Micro-gravity: Modeling for the Cold Atomic Laboratory
NASA Astrophysics Data System (ADS)
Sackett, C. A.; Lam, T. C.; Stickney, J. C.; Burke, J. H.
2018-05-01
The upcoming Cold Atom Laboratory mission for the International Space Station will allow the investigation of ultracold gases in a microgravity environment. Cold atomic samples will be produced using evaporative cooling in a magnetic chip trap. We investigate here the possibility to release atoms from the trap via adiabatic expansion. We discuss both general considerations and a detailed model of the planned apparatus. We find that it should be possible to reduce the mean trap confinement frequency to about 0.2 Hz, which will correspond to a three-dimensional sample temperature of about 150 pK and a mean atom velocity of 0.1 mm/s.
The Role of an Electric Field in the Formation of a Detached Regime in Tokamak Plasma
NASA Astrophysics Data System (ADS)
Senichenkov, I.; Kaveeva, E.; Rozhansky, V.; Sytova, E.; Veselova, I.; Voskoboynikov, S.; Coster, D.
2018-03-01
Modeling of the transition to the detachment of ASDEX Upgrade tokamak plasma with increasing density is performed using the SOLPS-ITER numerical code with a self-consistent account of drifts and currents. Their role in plasma redistribution both in the confinement region and in the scrape-off layer (SOL) is investigated. The mechanism of high field side high-density formation in the SOL in the course of detachment is suggested. In the full detachment regime, when the cold plasma region expands above the X-point and reaches closed magnetic-flux surfaces, plasma perturbation in a confined region may lead to a change in the confinement regime.
A pulsed supersonic entrainment reactor for the rational preparation of cold ionic complexes
NASA Astrophysics Data System (ADS)
Robertson, W. H.; Kelley, J. A.; Johnson, M. A.
2000-12-01
We describe an ion source for the efficient preparation of cold ion-molecule complexes, X-ṡM. The method relies on condensation of solvent molecules, M, onto argon-solvated ions, X-ṡArm, where the X-ṡArm species are formed in a primary expansion and the molecular partner, M, is interfaced to this flow in the hydrodynamic region by supersonic entrainment. This hybrid "supersonic afterglow" reactor provides a clean synthetic approach for both bare and argon-solvated complexes, where the latter are particularly useful since their structures can be characterized by "nanomatrix" infrared predissociation spectroscopy.
Thermoelectric Generators Based on Ionic Liquids
NASA Astrophysics Data System (ADS)
Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert
2018-03-01
Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.
Thermoelectric Generators Based on Ionic Liquids
NASA Astrophysics Data System (ADS)
Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert
2018-06-01
Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.
Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos
2016-06-14
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.
Nanoscale lubrication of ionic surfaces controlled via a strong electric field
Strelcov, Evgheni; Bocharova, Vera; Sumpter, Bobby G.; ...
2015-01-27
Frictional forces arise whenever objects around us are set in motion. Controlling them in a rational manner means gaining leverage over mechanical energy losses and wear. This paper presents a way of manipulating nanoscale friction by means of in situ lubrication and interfacial electrochemistry. Water lubricant is directionally condensed from the vapor phase at a moving metal-ionic crystal interface by a strong confined electric field, thereby allowing friction to be tuned up or down via an applied bias. The electric potential polarity and ionic solid solubility are shown to strongly influence friction between the atomic force microscope (AFM) tip andmore » salt surface. An increase in friction is associated with the AFM tip digging into the surface, whereas reducing friction does not influence its topography. No current flows during friction variation, which excludes Joule heating and associated electrical energy losses. Lastly, the demonstrated novel effect can be of significant technological importance for controlling friction in nano- and micro-electromechanical systems.« less
Influence of humidity on performance and microscopic dynamics of an ionic liquid in supercapacitor
NASA Astrophysics Data System (ADS)
Osti, Naresh C.; Dyatkin, Boris; Thompson, Matthew W.; Tiet, Felix; Zhang, Pengfei; Dai, Sheng; Tyagi, Madhusudan; Cummings, Peter T.; Gogotsi, Yury; Wesolowski, David J.; Mamontov, Eugene
2017-08-01
We investigated the influence of water molecules on the diffusion, dynamics, and electrosorption of a room temperature ionic liquid (RTIL), [BMI m+] [T f2N-] , confined in carbide-derived carbon with a bimodal nanoporosity. Water molecules in pores improved power densities and rate handling abilities of these materials in supercapacitor electrode configurations. We measured the water-dependent microscopic dynamics of the RTIL cations using quasielastic neutron scatting (QENS). The ionic liquid demonstrated greater mobility with increasing water uptake, facilitated by the nanoporous carbon environment, up to a well-defined saturation point. We concluded that water molecules displaced RTIL ions attached to the pore surfaces and improved the diffusivity of the displaced cations. This effect consequently increased capacitance and rate handling of the electrolyte in water-containing pores. Our findings suggest the possible effect of immiscible co-solvents on energy and power densities of energy storage devices, as well as the operating viability of nonaqueous supercapacitor electrolytes in humid environments.
Surface confined ionic liquid as a stationary phase for HPLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; Baker, Gary A; Baker, Sheila N
Trimethoxysilane ionosilane derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 {micro}m diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and {sup 13}C and {sup 29}Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 {micro}mol m{sup -2} for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of themore » ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.« less
Extension of nanoconfined DNA: Quantitative comparison between experiment and theory
NASA Astrophysics Data System (ADS)
Iarko, V.; Werner, E.; Nyberg, L. K.; Müller, V.; Fritzsche, J.; Ambjörnsson, T.; Beech, J. P.; Tegenfeldt, J. O.; Mehlig, K.; Westerlund, F.; Mehlig, B.
2015-12-01
The extension of DNA confined to nanochannels has been studied intensively and in detail. However, quantitative comparisons between experiments and model calculations are difficult because most theoretical predictions involve undetermined prefactors, and because the model parameters (contour length, Kuhn length, effective width) are difficult to compute reliably, leading to substantial uncertainties. Here we use a recent asymptotically exact theory for the DNA extension in the "extended de Gennes regime" that allows us to compare experimental results with theory. For this purpose, we performed experiments measuring the mean DNA extension and its standard deviation while varying the channel geometry, dye intercalation ratio, and ionic strength of the buffer. The experimental results agree very well with theory at high ionic strengths, indicating that the model parameters are reliable. At low ionic strengths, the agreement is less good. We discuss possible reasons. In principle, our approach allows us to measure the Kuhn length and the effective width of a single DNA molecule and more generally of semiflexible polymers in solution.
Growth of High Purity Oxygen-Free Silicon by Cold Crucible Techniques.
1982-06-01
Liquid Metals (A Review). High Temp.-High Pressures 2(6), 583-586, 1970. 1971 Knights, C.F. and Perkins, R. Levitation Melting of Uranium Mono- Carbide . J...content - typically I PPM or less. c) The crystals grown exhibited a high level of carbon contamination (2-30 PPM ) which we believe, is caused by the...grown from melts confined in the cold crucible exhibit an unusually low oxygen content - typically 1 PPM or less. c.) The crystals grown exhibited a
Fabrications of insulator-protected nanometer-sized electrode gaps
NASA Astrophysics Data System (ADS)
Arima, Akihide; Tsutsui, Makusu; Morikawa, Takanori; Yokota, Kazumichi; Taniguchi, Masateru
2014-03-01
We developed SiO2-coated mechanically controllable break junctions for accurate tunneling current measurements in an ionic solution. By breaking the junction, we created dielectric-protected Au nanoprobes with nanometer separation. We demonstrated that the insulator protection was capable to suppress the ionic contribution to the charge transport through the electrode gap, thereby enabled reliable characterizations of liquid-mediated exponential decay of the tunneling conductance in an electrolyte solution. From this, we found distinct roles of charge points such as molecular dipoles and ion species on the tunneling decay constant, which was attributed to local structures of molecules and ions in the confined space between the sensing electrodes. The device described here would provide improved biomolecular sensing capability of tunneling current sensors.
Cold denaturation as a tool to measure protein stability
Sanfelice, Domenico; Temussi, Piero Andrea
2016-01-01
Protein stability is an important issue for the interpretation of a wide variety of biological problems but its assessment is at times difficult. The most common parameter employed to describe protein stability is the temperature of melting, at which the populations of folded and unfolded species are identical. This parameter may yield ambiguous results. It would always be preferable to measure the whole stability curve. The calculation of this curve is greatly facilitated whenever it is possible to observe cold denaturation. Using Yfh1, one of the few proteins whose cold denaturation occurs at neutral pH and low ionic strength, we could measure the variation of its full stability curve under several environmental conditions. Here we show the advantages of gauging stability as a function of external variables using stability curves. PMID:26026885
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Abhishek Kumar; Verma, Yogendra Lal; Singh, Manish Pratap
In the present study, ionogels have been synthesized by immobilizing IL (1-ethyl-3-methylimidazolium tetrafluoroborate) in silica gel matrices using non-aqueous route. In this process, tetraethyl orho-silane (TEOS) as a precursor to silicon dioxide and formic acid as a solvolytic gelating reagent in reduced molar ratio 1:4 were used. We find that reduced molar concentration of formic acid results the formation of ionogels having less number of closed pores (totally isolated from their neighbours), larger density and stable monolithic form. TEM and SEM measurements are used to visualize the morphology of sample and closed pores present in the sample. N{sub 2}-sorption measurementmore » is used to measure the pore parameters of the silica matrices which shows the mesoporous structure. DSC and TGA results show the change in phase transition temperature and thermal stability of IL upon confinement in silica matrices. Moreover, ionic conductivity of bulk and confined IL is measured using impedance spectroscopy and it has been found that it increases with increasing the temperature as well as concentration of IL in ionogels. Apart from these characterization techniques, ionogels have been characterized using FTIR and fluorescence spectroscopy which exhibit the change in vibrational frequencies and fluorescence behaviour of confined IL. - Highlights: • Synthesis of stable ionogel using non-hydrolytic route with reduced precursor and solvolytic reagent molar ratio. • Ionogels are free from entrapped residual reaction product. • The ionogels synthesized with higher amount of ionic liquids show bulk liquid like electrical behaviour.« less
Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betti, R.; Chang, P. Y.; Anderson, K. S.
2010-05-15
The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA[T. R. Boehlymore » et al., Opt. Commun. 133, 495 (1997)] have achieved Ptauapprox1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptauapprox1 atm s. Since OMEGA implosions are relatively cold (Tapprox2 keV), their overall ignition parameter chiapprox0.02-0.03 is approx5x lower than in JET (chiapprox0.13), where the average temperature is about 10 keV.« less
Dipole configuration for confinement of positrons and electron-positron plasma
NASA Astrophysics Data System (ADS)
Stenson, E. V.; Saitoh, H.; Horn-Stanja, J.; Hergenhahn, U.; Paschkowski, N.; Sunn Pedersen, T.; Stoneking, M. R.; Dickmann, M.; Singer, M.; Vohburger, S.; Hugenschmidt, C.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.
2016-10-01
Laboratory creation and confinement of electron-positron plasmas, which are expected to exhibit atypical plasma physics characteristics, would enable tests of many theory and simulation predictions (e.g., the stabilization of anomalous transport mechanisms). This is the goal of APEX/PAX (A Positron-Electron eXperiment/Positron Accumulation eXperiment). Following demonstration of efficient (38%) E ×B injection and subsequent confinement (τ = 3-5 ms) of cold positrons in a dipole magnetic field, the system is undergoing upgrades from a supported permanent magnet to a supported HTSC (high-temperature superconductor) coil, then to a levitated HTSC coil suitable for the simultaneous confinement of electrons and positrons. This contribution will report on the design and testing of the new systems and subsystems (e.g., for cooling, excitation, and levitation) and, if available, on results of upcoming experiments using a ``rotating wall'' to generate inward particle flux deeper into the confinement region. on behalf of the APEX/PAX team and collaborators.
Kaiser, V.; Comtet, J.; Niguès, A.; Siria, A.; Coasne, B.; Bocquet, L.
2017-01-01
The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon the approach by [Kornyshev et al. Zh. Eksp. Teor. Fiz., 78(3):1008–1019, 1980] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allow for an estimate of interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. A counterintuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length ℓTF, profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement. PMID:28436506
NASA Astrophysics Data System (ADS)
Swanger, K. M.; Schaefer, J. M.; Winckler, G.; Lamp, J. L.; Marchant, D. R.
2016-12-01
Based on surface exposure dating of moraines and drifts, East Antarctic outlet glaciers in the McMurdo Dry Valleys (MDV) advanced during the mid-Pliocene and/or early-Pleistocene. However, scatter in exposure ages is common for these deposits (and other glacial drifts throughout Antarctica), making it difficult to tie glacial advances to specific climate intervals. In order to constrain the sources of scatter, we mapped and dated 15 cold-based drifts in Taylor Valley and the Olympus Range in the MDV. A secondary goal was to build a regional climate record, for comparison with fluctuations of the local outlet glaciers. Our alpine drift record is confined to the late-Pleistocene, with glacial advances during interglacial periods. Based on 54 3He exposure dates on alpine drifts, age scatter is common in the MDV on both recent and ancient deposits. Where it occurs, age scatter is likely caused by inheritance of cosmogenic nuclides previous to glacial entrainment and stacking of multiple cold-based drifts. Nuclide inheritance of >1 Myr is possible, but this is relatively rare and confined to regions where englacial debris is sourced from stable, high-elevation plateaus. On the other hand, drifts associated with glaciers bound by steep cirque headwalls and arêtes exhibit significantly less age scatter. Given the cold-based nature of MDV alpine and outlet glaciers, deposition of multiple stacked drift sheets also contributes to age scatter, with the implication that it might be possible to date multiple advances of cold-based ice. These results serve to inform better sampling strategies on cold-based drifts throughout Antarctica.
Huber, Patrick
2015-03-18
Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.
NASA Astrophysics Data System (ADS)
Huber, Patrick
2015-03-01
Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.
NASA Astrophysics Data System (ADS)
Hayward, Stephen L.; Francis, David M.; Sis, Matthew J.; Kidambi, Srivatsan
2015-10-01
The ability to control the spatial distribution and temporal release of a therapeutic remains a central challenge for biomedical research. Here, we report the development and optimization of a novel substrate mediated therapeutic delivery system comprising of hyaluronic acid covalently functionalized liposomes (HALNPs) embedded into polyelectrolyte multilayer (PEM) platform via ionic stabilization. The PEM platform was constructed from sequential deposition of Poly-L-Lysine (PLL) and Poly(Sodium styrene sulfonate) (SPS) “(PLL/SPS)4.5” followed by adsorption of anionic HALNPs. An adsorption affinity assay and saturation curve illustrated the preferential HALNP deposition density for precise therapeutic loading. (PLL/SPS)2.5 capping layer on top of the deposited HALNP monolayer further facilitated complete nanoparticle immobilization, cell adhesion, and provided nanoparticle confinement for controlled linear release profiles of the nanocarrier and encapsulated cargo. To our knowledge, this is the first study to demonstrate the successful embedment of a translatable lipid based nanocarrier into a substrate that allows for temporal and spatial release of both hydrophobic and hydrophilic drugs. Specifically, we have utilized our platform to deliver chemotherapeutic drug Doxorubicin from PEM confined HALNPs. Overall, we believe the development of our HALNP embedded PEM system is significant and will catalyze the usage of substrate mediated delivery platforms in biomedical applications.
Cold Multiphoton Matrix Assisted Laser Desorption/Ionization (MALDI)
NASA Astrophysics Data System (ADS)
Harris, Peter; Cooke, William; Tracy, Eugene
2008-05-01
We present evidence of a cold multiphoton MALDI process occurring at a Room Temperature Ionic Liquid (RTIL)/metal interface. Our RTIL, 1-Butyl-3-methylimidazolium hexafluorophosphate, remains a stable liquid at room temperatures, even at pressures lower than 10-9 torr. We focus the 2^nd harmonic of a pulsed (2ns pulse length) Nd:YAG laser onto a gold grid coated with RTIL to generate a cold (narrow velocity spread) ion source with temporal resolution comparable to current MALDI ion sources. Unlike conventional MALDI, we believe multiphoton MALDI does not rely on collisional ionization within the ejection plume, and thus produces large signals at laser intensities just above threshold. Removing the collisional ionization process allow us to eject material from smaller regions of a sample, enhancing the suitability of multiphoton MALDI as an ion imaging technique.
NASA Astrophysics Data System (ADS)
McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.
2014-10-01
A series of reduced models are used to study the fast ion tail in the vicinity of a transition layer between plasmas at disparate temperatures and densities, which is typical of the gas-pusher interface in inertial confinement fusion targets. Emphasis is placed on utilizing progressively more comprehensive models in order to identify the essential physics for computing the fast ion tail at energies comparable to the Gamow peak. The resulting fast ion tail distribution is subsequently used to compute the fusion reactivity as a function of collisionality and temperature. It is found that while the fast ion distribution can be significantly depleted in the hot spot, leading to a reduction of the fusion reactivity in this region, a surplus of fast ions is present in the neighboring cold region. The presence of this fast ion surplus in the neighboring cold region is shown to lead to a partial recovery of the fusion yield lost in the hot spot.
NASA Astrophysics Data System (ADS)
Fan, Qiu-Bo; Wang, Yi-Ru; Chen, Jin; Pan, Yue-Wu; Han, Bai-Ping; Fu, Chang-Bao; Sun, Yan
2017-06-01
The steady-state properties of a hybrid system are investigated in this paper. Many cold atoms in the four-level tripod configuration are confined in an optical cavity with a movable end mirror. The confined cold atoms are driven with two external classical fields and an internal cavity field. The internal cavity field is excited by an external driving field and shows a radiation pressure upon the movable end mirror. The coupling of atom-light and opto-mechanical interactions is enhanced by embedding a four-level atomic system in a typical opto-mechanical cavity. And an enhanced nonlinear feedback mechanism is offered by the enhanced coupling, which permits the observation of five and three steady-state solutions for relevant variables near two-photon resonance. The enhanced nonlinear feedback mechanism also allows us to observe the obvious difference in the double-EIT phenomenon between the atom-assisted opto-mechanical system and usual atom-field system.
Dynamic self-organization of confined autophoretic particles
NASA Astrophysics Data System (ADS)
Medrano, Anthony; Michelin, Sébastien; Kanso, Eva
2016-11-01
We study the behavior of chemically-active Janus particles in microfluidic Hele-Shaw-type confinement. These micron-scale chemical motors, when immersed in a fuel-laden fluid, produce an ionic chemical field which leads to motility and consequently a local fluid flow. In unconfined settings, experimental and computational studies have shown these particles to spontaneously self-organize into crystal structures, and form into asters of two or more particles. Here, we show that geometric confinement alters both the chemical and hydrodynamic signature of the particles in such a way that their far-field effects can be modeled as source dipoles. Each particle moves according to its own self-propelled motion and in response to the chemical and hydrodynamic field created by other particles. Two interaction modes are observed: self-assembly into quasi-static crystals and into dynamically-evolving chains. We discuss the conditions that lead to these modes of interactions and the phase transitions between them for various Janus particle concentrations. The National GEM Consortium.
Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G
2009-08-15
A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).
Meng, Zhenyu; Kubar, Tomas; Mu, Yuguang; Shao, Fangwei
2018-05-08
Charge transport (CT) through biomolecules is of high significance in the research fields of biology, nanotechnology, and molecular devices. Inspired by our previous work that showed the binding of ionic liquid (IL) facilitated charge transport in duplex DNA, in silico simulation is a useful means to understand the microscopic mechanism of the facilitation phenomenon. Here molecular dynamics simulations (MD) of duplex DNA in water and hydrated ionic liquids were employed to explore the helical parameters. Principal component analysis was further applied to capture the subtle conformational changes of helical DNA upon different environmental impacts. Sequentially, CT rates were calculated by a QM/MM simulation of the flickering resonance model based upon MD trajectories. Herein, MD simulation illustrated that the binding of ionic liquids can restrain dynamic conformation and lower the on-site energy of the DNA base. Confined movement among the adjacent base pairs was highly related to the increase of electronic coupling among base pairs, which may lead DNA to a CT facilitated state. Sequentially combining MD and QM/MM analysis, the rational correlations among the binding modes, the conformational changes, and CT rates illustrated the facilitation effects from hydrated IL on DNA CT and supported a conformational-gating mechanism.
Water Dynamics in Gyroid Phases of Self-Assembled Gemini Surfactants
Roy, Santanu; Skoff, David; Perroni, Dominic V.; ...
2016-02-14
Water-mediated ion transport through functional nanoporous materials depends on the dynamics of water confined within a given nanostructured morphology. In this study, we investigate hydrogen-bonding dynamics of interfacial water within a ‘normal’ (Type I) lyotropic gyroid phase formed by a gemini dicarboxylate surfactant self-assembly using a combina- tion of 2DIR spectroscopy and molecular dynamics simulations. Experiments and simulations demonstrate that water dynamics in the normal gyroid phase is one order of magnitude slower than that in bulk water, due to specific interactions between water, the ionic surfactant headgroups, and counterions. However, the dynamics of water in the normal gyroid phasemore » are faster than those of water confined in a reverse spherical micelle of a sulfonate surfactant, given that the water pool in the reverse micelle and the water pore in the gyroid phase have roughly the same diameters. This difference in confined water dynamics likely arises from the significantly reduced curvature- induced frustration at the convex interfaces of the normal gyroid, as compared to the concave interfaces of a reverse spherical micelle. These detailed insights into confined water dynamics may guide the future design of artificial membranes that rapidly transport protons and other ions.« less
Tgermonuclear Ignition in Inertial Confinement Fusion and Comparison with Magnetic Confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betti, R.; Chang, P.Y.; Spears, B.K.
2010-04-23
The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptau ~ 1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptau ~ 1 atm s. Since OMEGA implosions are relatively cold (T ~ 2 keV), their overall ignition parameter chi ~ 0.02–0.03 is ~5X lower than in JET (chi ~ 0.13), where the average temperature is about 10 keV.« less
Genetic Modification in Dedicated Bioenergy Crops and Strategies for Gene Confinement
USDA-ARS?s Scientific Manuscript database
Genetic modification of dedicated bioenergy crops is in its infancy; however, there are numerous advantages to the use of these tools to improve crops used for biofuels. Potential improved traits through genetic engineering (GE) include herbicide resistance, pest, drought, cold and salt tolerance, l...
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N{sub 1444}][NTf{sub 2}] experiences glass transition at low temperature, whereas [N{sub 1114}][NTf{sub 2}] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picturemore » of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.« less
Kaiser, V; Comtet, J; Niguès, A; Siria, A; Coasne, B; Bocquet, L
2017-07-01
The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon a previous approach [M. A. Vorotyntsev and A. A. Kornyshev, Zh. Eksp. Teor. Fiz., 1980, 78(3), 1008-1019] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allows for an estimation of the interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. The counter-intuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length l TF , profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement.
Ionic Solid Hydrogen Fuel: Experimental Investigation of Cluster-Impact Fusion
1991-01-24
LOX/H2 (1.6 x 106 J/kg). For missions with IT less than 100,000 s, the CIF rocket performance will be essentially identical to that of antimatter Under...Another concept utilizing antimatter was proposed, but it is limited by the technological difficulties in producing, bunching, and storing antimatter ...of high Isp and thrust comparable with that of antimatter . Conventional fusion devices with magnetic or inertial confinement schemes, however, seem
NASA Astrophysics Data System (ADS)
Kim, Sang-Youn; Yeo, Myoung; Shin, Eun-Jae; Park, Won-Hyeong; Jang, Jong-Seok; Nam, Byeong-Uk; Bae, Jin Woo
2015-11-01
In this paper, we propose a variable focus microlens module based on a transparent, electroactive, and non-ionic PVC/DBA gel. A non-ionic PVC/DBA (nPVC) gel on an ITO glass was confined beneath a rigid annular electrode, and applied pressure squeezed a bulge of the nPVC gel into the annular electrode, resulting in a hemispherical plano-convex nPVC gel microlens. The proposed nPVC gel microlens was analyzed and optimized. When voltage is applied to the circular perimeter (the annular electrode) of this fabricated microlens, electrically induced creep deformation of the nPVC gel occurs, changing its optical focal length. The focal length remarkably increases from 3.8 mm up to 14.3 mm with increasing applied voltages from 300 V to 800 V. Due to its compact, transparent, and electroactive characteristics, the proposed nPVC gel microlens can be easily inserted into small consumer electronic devices, such as digital cameras, camcorders, cell phones, and other portable optical devices.
Sarkar, Souravi; Pramanik, Rajib; Ghatak, Chiranjib; Rao, Vishal Govind; Sarkar, Nilmoni
2011-02-21
In this study we have characterized a ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl- sulfonyl)imide containing ternary nonaqueous microemulsion ([Emim][Tf(2)N]∕∕TX-100∕cyclo- hexane). The phase behavior and dynamic light scattering study show that the [Emim][Tf(2)N]∕TX-100∕cyclohexane three component system can form microemulsion with [Emim][Tf(2)N] as polar core at suitable condition. We have investigated photoinduced electron transfer (PET) using dimethyl aniline as electron donor and several Coumarin dyes as electron acceptor molecules at two different R values (R = [ionic liquid]∕[surfactant]) to observe how the dynamics of the PET rate is affected in this type of confined microenvironment compared to that of the PET dynamics in neat ionic liquid and other pure solvent media. The plot of observed k(q) values with the free energy change (ΔG(0)) for electron transfer reaction shows an apparent inversion in the observed rate as predicted by the Marcus theory.
Jacquemin, Johan; Feder-Kubis, Joanna; Zorębski, Michał; Grzybowska, Katarzyna; Chorążewski, Mirosław; Hensel-Bielówka, Stella; Zorębski, Edward; Paluch, Marian; Dzida, Marzena
2014-02-28
During this research, we present a study on the thermal properties, such as the melting, cold crystallization, and glass transition temperatures as well as heat capacities from 293.15 K to 323.15 K of nine in-house synthesized protic ionic liquids based on the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate ([H-Im-C1OC(n)][Sal]) with n = 3-11. The 3D structures, surface charge distributions and COSMO volumes of all investigated ions are obtained by combining DFT calculations and the COSMO-RS methodology. The heat capacity data sets as a function of temperature of the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate are then predicted using the methodology originally proposed in the case of ionic liquids by Ge et al. 3-(Alkoxymethyl)-1H-imidazol-3-ium salicylate based ionic liquids present specific heat capacities higher in many cases than other ionic liquids that make them suitable as heat storage media and in heat transfer processes. It was found experimentally that the heat capacity increases linearly with increasing alkyl chain length of the alkoxymethyl group of 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate as was expected and predicted using the Ge et al. method with an overall relative absolute deviation close to 3.2% for temperatures up to 323.15 K.
Effects of an external magnetic field in pulsed laser deposition
NASA Astrophysics Data System (ADS)
García, T.; de Posada, E.; Villagrán, M.; Ll, J. L. Sánchez; Bartolo-Pérez, P.; Peña, J. L.
2008-12-01
Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe 12O 19 target with and without the presence of a nonhomogeneous magnetic field of μ0H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.
Enzymatic reactivity of glucose oxidase confined in nanochannels.
Yu, Jiachao; Zhang, Yuanjian; Liu, Songqin
2014-05-15
The construction of nanodevices coupled with an integrated real-time detection system for evaluation of the function of biomolecules in biological processes, and enzymatic reaction kinetics occurring at the confined space or interface is a significant challenge. In this work, a nanochannel-enzyme system in which the enzymatic reaction could be investigated with an electrochemical method was constructed. The model system was established by covalently linking glucose oxidase (GOD) onto the inner wall of the nanochannels of the porous anodic alumina (PAA) membrane. An Au disc was attached at the end of the nanochannels of the PAA membrane as the working electrode for detection of H2O2 product of enzymatic reaction. The effects of ionic strength, amount of immobilized enzyme and pore diameter of the nanochannels on the enzymatic reaction kinetics were illustrated. The GOD confined in nanochannels showed high stability and reactivity. Upon addition of glucose to the nanochannel-enzyme system, the current response had a calibration range span from 0.005 to 2 mM of glucose concentration. The apparent Michaelis-Menten constant (K(m)(app)) of GOD confined in nanochannel was 0.4 mM. The presented work provided a platform for real-time monitoring of the enzyme reaction kinetics confined in nanospaces. Such a nanochannel-enzyme system could also help design future biosensors and enzyme reactors with high sensitivity and efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
Riise, Ellen Kristin; Lorentzen, Marit Sjo; Helland, Ronny; Smalås, Arne O; Leiros, Hanna-Kirsti S; Willassen, Nils Peder
2007-02-01
The cold-adapted catalase from the fish-pathogenic bacterium Vibrio salmonicida (VSC) has recently been characterized and shown to be two times more catalytically efficient compared with catalase from the mesophilic human pathogen Proteus mirabilis [PMC; Lorentzen et al. (2006), Extremophiles, 10, 427-440]. VSC is also less temperature-stable, with a half-life of 5 min at 333 K compared with 50 min for PMC. This was the background for solving the crystal structure of the cold-adapted VSC to 1.96 A and performing an extensive structural comparison of VSC and PMC. The comparison revealed that the entrance (the major channel) leading to the catalytically essential haem group, is locally more flexible and slightly wider in VSC. This might explain the enhanced catalytic efficiency of the nearly diffusion-controlled degradation of hydrogen peroxide into water and molecular oxygen in VSC. The reduced thermal stability of the cold-adapted VSC may be explained by a reduced number of ion-pair networks. The four C-terminal alpha-helices are displaced in the structures, probably owing to missing ionic interactions in VSC compared with PMC, and this is postulated as an initiation site for unfolding the cold-adapted enzyme. VSC is the first crystal structure reported of a cold-adapted monofunctional haem-containing catalase.
NASA Astrophysics Data System (ADS)
Chatterjee, Soumi; Saha, Shyamal Kumar; Chakravorty, Dipankar
2018-04-01
Nanodimensional sodium silicate glasses of composition 30Na2O.70SiO2 has been prepared within the pores of 5.5 nm of mesoporous silica as a template using the surfactant P123. The nanocomposite was characterized by X-ray diffraction, transmission electron microscope, and X-ray photoelectron spectroscopy. Electrical conductivity of the sample was studied by ac impedance spectroscopy. The activation energy for ionic conduction was found to be 0.13 eV with dc conductivity at room temperature of 10-6 S-cm-1. This is attributed to the creation of oxygen ion vacancies at the interface of mesoporous silica and nanoglass arising out of the presence of Si2+ species in the system. These nanocomposites are expected to be useful for applications in sodiumion battery for storage of renewable energy.
Plastic Faulting in Ice: Shear Localization under Elevated Pressure
NASA Astrophysics Data System (ADS)
Golding, N.; Durham, W. B.
2013-12-01
Ice exhibits, at least, two distinct kinds of shear faults when loaded triaxially under compression. Under moderate levels of confinement, brittle failure follows crack growth, crack coalescence and the development of a fault oriented about 30 degrees from the direction of maximum compression. The mechanism governing this mode of failure, termed frictional or Coulombic faulting, has previously been discussed for ice and rocks in connection with the comb-crack model. Under higher levels of confinement, where frictional sliding is suppressed by confining pressure, failure is characterized by sudden brittle-like loss in load bearing capacity and the development of a narrow shear band, comprised of recrystallized grains, oriented about 45 degrees from the direction of maximum compression, i.e. along the direction of maximum shear. This mode of failure, referred to here as plastic faulting, has previously been discussed for warm ice, T = 233 - 263 K, in connection with adiabatic shear heating and has been discussed for cold ice, T = 77 - 163 K, in connection with phase transformation. Here, new results are presented that examine the mechanical behavior and microstructural properties of plastic faulting in polycrystalline ice loaded at temperatures from T = 175 - 210 K and confining pressures up to P = 200 MPa. The results are reviewed in context of previous work and possible mechanisms to account for shear localization in ice under high pressure, including 1) adiabatic shear heating, 2) grain refinement and 3) phase transformation, are discussed. The present observations highlight the similarities in the behavior of plastic faulting under both warm and cold conditions and suggest adiabatic shear heating as a possible mechanism to account for shear instability and plastic faulting at temperatures ranging from T = 77 - 263 K.
2007-01-01
C6H6, Aldrich Co., liquid , high performance liquid chromatography (HPLC) grade with a purity of 99.9%) and octafluorocyclobutane (C4F8, OFCB...attributed to the lack of molecular mobility (confined by the crosslinking) and low ionic polarization of the molecular structures [6]. The frequency...in dielectric constant at low frequencies can be traced to orientational polarizations of trapped free radicals, unpaired electron sites, oligomeric
2014-08-03
the corona discharge was optimal for flame stabilization when it was located where fuel/air mixtures were within flammability limits locally...field [56]. This ionic wind is also known as the “ corona wind” [57] due to the corona discharge that develops at the sharp edge of the charged... Corona Discharge ,” Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, vol. 80, no. 2, pp. 143-150
Subianto, Surya; Mistry, Mayur K; Choudhury, Namita Roy; Dutta, Naba K; Knott, Robert
2009-06-01
A new type of supported liquid membrane was made by combining an ionic liquid (IL) with a Nafion membrane reinforced with multifunctional polyhedral oligomeric silsesquioxanes (POSSs) using a layer-by-layer strategy for anhydrous proton-exchange membrane (PEM) application. The POSS was functionalized by direct sulfonation, and the sulfonated POSS (S-POSS) was incorporated into Nafion 117 membranes by the infiltration method. The resultant hybrid membrane shows strong ionic interaction between the Nafion matrix and the multifunctional POSS, resulting in increased glass transition temperature and thermal stability at very low loadings of S-POSS (1%). The presence of S-POSS has also improved the proton conductivity especially at low humidities, where it shows a marked increase due to its confinement in the ionic domains and promotes water uptake by capillary condensation. In order to achieve anhydrous conductivity, the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI-BTSI) was incorporated into these membranes to provide proton conduction in the absence of water. Although the incorporation of an IL shows a plasticizing effect on the Nafion membrane, the S-POSS composite membrane with an IL shows a higher modulus at high temperatures compared to Nafion 117 and a Nafion-IL membrane, with significantly higher proton conductivity (5 mS/cm at 150 degrees C with 20% IL). This shows the ability of the multifunctional POSS and IL to work symbiotically to achieve the desirable proton conductivity and mechanical properties of such membranes by enhancing the ionic interaction within the material.
NASA Astrophysics Data System (ADS)
Rahmanseresht, Sheema; Milas, Peker; Ramos, Kieran P.; Gamari, Ben D.; Goldner, Lori S.
2015-05-01
Fluorescence resonance energy transfer (FRET) from individual, dye-labeled RNA molecules confined in freely-diffusing attoliter-volume aqueous droplets is carefully compared to FRET from unconfined RNA in solution. The use of freely-diffusing droplets is a remarkably simple and high-throughput technique that facilitates a substantial increase in signal-to-noise for single-molecular-pair FRET measurements. We show that there can be dramatic differences between FRET in solution and in droplets, which we attribute primarily to an altered pH in the confining environment. We also demonstrate that a sufficient concentration of a non-ionic surfactant mitigates this effect and restores FRET to its neutral-pH solution value. At low surfactant levels, even accounting for pH, we observe differences between the distribution of FRET values in solution and in droplets which remain unexplained. Our results will facilitate the use of nanoemulsion droplets as attoliter volume reactors for use in biophysical and biochemical assays, and also in applications such as protein crystallization or nanoparticle synthesis, where careful attention to the pH of the confined phase is required.
DNA confinement in nanochannels: physics and biological applications.
Reisner, Walter; Pedersen, Jonas N; Austin, Robert H
2012-10-01
DNA is the central storage molecule of genetic information in the cell, and reading that information is a central problem in biology. While sequencing technology has made enormous advances over the past decade, there is growing interest in platforms that can readout genetic information directly from long single DNA molecules, with the ultimate goal of single-cell, single-genome analysis. Such a capability would obviate the need for ensemble averaging over heterogeneous cellular populations and eliminate uncertainties introduced by cloning and molecular amplification steps (thus enabling direct assessment of the genome in its native state). In this review, we will discuss how the information contained in genomic-length single DNA molecules can be accessed via physical confinement in nanochannels. Due to self-avoidance interactions, DNA molecules will stretch out when confined in nanochannels, creating a linear unscrolling of the genome along the channel for analysis. We will first review the fundamental physics of DNA nanochannel confinement--including the effect of varying ionic strength--and then discuss recent applications of these systems to genomic mapping. Apart from the intense biological interest in extracting linear sequence information from elongated DNA molecules, from a physics view these systems are fascinating as they enable probing of single-molecule conformation in environments with dimensions that intersect key physical length-scales in the 1 nm to 100 µm range.
Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments
Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; ...
2015-11-12
For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (T ion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent T ion and DSR.
Reactions between NO/+/ and metal atoms using magnetically confined afterglows
NASA Technical Reports Server (NTRS)
Lo, H. H.; Clendenning, L. M.; Fite, W. L.
1977-01-01
A new method of studying thermal energy ion-neutral collision processes involving nongaseous neutral atoms is described. A long magnetic field produced by a solenoid in a vacuum chamber confines a thermal-energy plasma generated by photoionization of gas at very low pressure. As the plasma moves toward the end of the field, it is crossed by a metal atom beam. Ionic products of ion-atom reactions are trapped by the field and both the reactant and product ions move to the end of the magnetic field where they are detected by a quadrupole mass filter. The cross sections for charge transfer between NO(+) and Na, Mg, Ca, and Sr and that for rearrangement between NO(+) and Ca have been obtained. The charge-transfer reaction is found strongly dominant over the rearrangement reaction that forms metallic oxide ions.
2014-02-14
properties of VO2 films and membranes and compare the results with annealing VO2 films and membranes in hydrogen to provide insight into the doping...2-dimensional free standing membrane with correlated oxides may also lead to new insights into mesoscopic electronic phenomena. Vanadium oxide ( VO2 ...well as for potential applications in switching devices. While studies have been conducted on thin films, hybrid layers of VO2 supported on other
Write-Read 3D Patterning with a Dual-Channel Nanopipette.
Momotenko, Dmitry; Page, Ashley; Adobes-Vidal, Maria; Unwin, Patrick R
2016-09-27
Nanopipettes are becoming extremely versatile and powerful tools in nanoscience for a wide variety of applications from imaging to nanoscale sensing. Herein, the capabilities of nanopipettes to build complex free-standing three-dimensional (3D) nanostructures are demonstrated using a simple double-barrel nanopipette device. Electrochemical control of ionic fluxes enables highly localized delivery of precursor species from one channel and simultaneous (dynamic and responsive) ion conductance probe-to-substrate distance feedback with the other for reliable high-quality patterning. Nanopipettes with 30-50 nm tip opening dimensions of each channel allowed confinement of ionic fluxes for the fabrication of high aspect ratio copper pillar, zigzag, and Γ-like structures, as well as permitted the subsequent topographical mapping of the patterned features with the same nanopipette probe as used for nanostructure engineering. This approach offers versatility and robustness for high-resolution 3D "printing" (writing) and read-out at the nanoscale.
A COMPUTATIONAL MODEL OF MOTOR NEURON DEGENERATION
Le Masson, Gwendal; Przedborski, Serge; Abbott, L.F.
2014-01-01
SUMMARY To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations. PMID:25088365
A computational model of motor neuron degeneration.
Le Masson, Gwendal; Przedborski, Serge; Abbott, L F
2014-08-20
To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations. Copyright © 2014 Elsevier Inc. All rights reserved.
Phase Behavior and Conductivity of Phosphonated Block Copolymers Containing Ionic Liquids
NASA Astrophysics Data System (ADS)
Jung, Ha Young; Kim, Sung Yeon; Park, Moon Jeong
2015-03-01
As the focus on proton exchange fuel cells continues to escalate in the era of alternative energy systems, the rational design of sulfonated polymers has emerged as a key technique for enhancing device efficiency. While the sulfonic acid group guarantees high proton conductivity of membranes under humidified conditions, the growing need for high temperature operation has discouraged their practical uses in fuel cells. In this respect, phosphonated polymers have drawn intensive attention in recent years owing to their self-dissociation ability. In this study, we have synthesized a set of phosphonated block copolymers, poly(styrenephosphonate-methylbutylene) (PSP- b - PMB), by varying phosphonation level (PL). A wide variety of self-assembled morphologies, i.e., disordered, lamellar, hexagonally perforated lamellae and hexagonally packed cylindrical phases, were observed with PL. Remarkably, upon comparing the morphology of PSP- b-PMB and that of sulfonated analog, we found distinctly dissimilar domain sizes at the same molecular weight and composition. A range of ionic liquids (ILs) were incorporated into the PSP- b-PMB block copolymers and their ion transport properties were examined. It has been revealed that the degree of confinement of ionic phases (domain size) impacts the ion mobility and proton dissociation efficiency of IL-containing polymers.
Nuclear quantum dynamics in dense hydrogen
Kang, Dongdong; Sun, Huayang; Dai, Jiayu; Chen, Wenbo; Zhao, Zengxiu; Hou, Yong; Zeng, Jiaolong; Yuan, Jianmin
2014-01-01
Nuclear dynamics in dense hydrogen, which is determined by the key physics of large-angle scattering or many-body collisions between particles, is crucial for the dynamics of planet's evolution and hydrodynamical processes in inertial confinement confusion. Here, using improved ab initio path-integral molecular dynamics simulations, we investigated the nuclear quantum dynamics regarding transport behaviors of dense hydrogen up to the temperatures of 1 eV. With the inclusion of nuclear quantum effects (NQEs), the ionic diffusions are largely higher than the classical treatment by the magnitude from 20% to 146% as the temperature is decreased from 1 eV to 0.3 eV at 10 g/cm3, meanwhile, electrical and thermal conductivities are significantly lowered. In particular, the ionic diffusion is found much larger than that without NQEs even when both the ionic distributions are the same at 1 eV. The significant quantum delocalization of ions introduces remarkably different scattering cross section between protons compared with classical particle treatments, which explains the large difference of transport properties induced by NQEs. The Stokes-Einstein relation, Wiedemann-Franz law, and isotope effects are re-examined, showing different behaviors in nuclear quantum dynamics. PMID:24968754
NASA Astrophysics Data System (ADS)
Chen, Huizhong; Wu, Dui; Yu, Jianzhen
2016-04-01
Using the data on aerosol observed hourly by Marga ADI 2080 and Grimm 180, we compared the characteristics of aerosol during rainy weather and cold air-dust weather in Guangzhou in late March 2012. The mass concentration of aerosol appeared distinct between the two weather processes. During rainy weather, the mass concentration of PM and total water-soluble components decreased obviously. During cold air-dust weather, the cleaning effect of cold air occurred much more suddenly and about a half day earlier than the dust effect. As a result, the mass concentration of PM and total water-soluble components first dropped dramatically to a below-normal level and then rose gradually to an above-normal level. The ratio of PM2.5/PM10 and PM1/PM10 decreased, suggesting that dust-storm weather mainly brought in coarse particles. The proportion of Ca2+ in the total water-soluble components significantly increased to as high as 50 % because of the effect of dust weather. We further analysed the ionic equilibrium during rainy and cold air-dust weather, and compared it with that during hazy weather during the same period. The aerosol during rainy weather was slightly acidic, whereas that during hazy weather and cold air-dust weather was obviously alkaline, with that during cold air-dust weather being significantly more alkaline. Most of the anions, including SO4 2- and NO3 -, were neutralised by NH4 + during rainy and hazy weather, and by Ca2+ during cold air-dust weather.
Fuel handling system for a nuclear reactor
Saiveau, James G.; Kann, William J.; Burelbach, James P.
1986-01-01
A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.
Fuel handling system for a nuclear reactor
Saiveau, James G.; Kann, William J.; Burelbach, James P.
1986-12-02
A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.
Ionic mechanisms of spinal neuronal cold hypersensitivity in ciguatera.
Patel, Ryan; Brice, Nicola L; Lewis, Richard J; Dickenson, Anthony H
2015-12-01
Cold hypersensitivity is evident in a range of neuropathies and can evoke sensations of paradoxical burning cold pain. Ciguatoxin poisoning is known to induce a pain syndrome caused by consumption of contaminated tropical fish that can persist for months and include pruritus and cold allodynia; at present no suitable treatment is available. This study examined, for the first time, the neural substrates and molecular components of Pacific ciguatoxin-2-induced cold hypersensitivity. Electrophysiological recordings of dorsal horn lamina V/VI wide dynamic range neurones were made in non-sentient rats. Subcutaneous injection of 10 nm ciguatoxin-2 into the receptive field increased neuronal responses to innocuous and noxious cooling. In addition, neuronal responses to low-threshold but not noxious punctate mechanical stimuli were also elevated. The resultant cold hypersensitivity was not reversed by 6-({2-[2-fluoro-6-(trifluoromethyl)phenoxy]-2-methylpropyl}carbamoyl)pyridine-3-carboxylic acid, an antagonist of transient receptor potential melastatin 8 (TRPM8). Both mechanical and cold hypersensitivity were completely prevented by co-injection with the Nav 1.8 antagonist A803467, whereas the transient receptor potential ankyrin 1 (TRPA1) antagonist A967079 only prevented hypersensitivity to innocuous cooling and partially prevented hypersensitivity to noxious cooling. In naive rats, neither innocuous nor noxious cold-evoked neuronal responses were inhibited by antagonists of Nav 1.8, TRPA1 or TRPM8 alone. Ciguatoxins may confer cold sensitivity to a subpopulation of cold-insensitive Nav 1.8/TRPA1-positive primary afferents, which could underlie the cold allodynia reported in ciguatera. These data expand the understanding of central spinal cold sensitivity under normal conditions and the role of these ion channels in this translational rat model of ciguatoxin-induced hypersensitivity. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Smith, Chip J.; Gehrke, Sascha; Hollóczki, Oldamur; Wagle, Durgesh V.; Heitz, Mark P.; Baker, Gary A.
2018-05-01
Bacterial cellulose ionogels (BCIGs) represent a new class of material comprising a significant content of entrapped ionic liquid (IL) within a porous network formed from crystalline cellulose microfibrils. BCIGs suggest unique opportunities in separations, optically active materials, solid electrolytes, and drug delivery due to the fact that they can contain as much as 99% of an IL phase by weight, coupled with an inherent flexibility, high optical transparency, and the ability to control ionogel cross-sectional shape and size. To allow for the tailoring of BCIGs for a multitude of applications, it is necessary to better understand the underlying principles of the mesoscopic confinement within these ionogels. Toward this, we present a study of the structural, relaxation, and diffusional properties of the ILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([bmpy][Tf2N]), using 1H and 19F NMR T1 relaxation times, rotational correlation times, and diffusion ordered spectroscopy (DOSY) diffusion coefficients, accompanied by molecular dynamics (MD) simulations. We observed that the cation methyl groups in both ILs were primary points of interaction with the cellulose chains and, while the pore size in cellulose is rather large, [emim]+ diffusion was slowed by ˜2-fold, whereas [Tf2N]- diffusion was unencumbered by incorporation in the ionogel. While MD simulations of [bmpy][Tf2N] confinement at the interface showed a diffusion coefficient decrease roughly 3-fold compared to the bulk liquid, DOSY measurements did not reveal any significant changes in diffusion. This suggests that the [bmpy][Tf2N] alkyl chains dominate diffusion through formation of apolar domains. This is in contrast to [emim][Tf2N] where delocalized charge appears to preclude apolar domain formation, allowing interfacial effects to be manifested at a longer range in [emim][Tf2N].
X-Ray diffraction and resonance shear measurement of nano-confined ionic liquids.
Tomita, Kazuhito; Mizukami, Masashi; Nakano, Shinya; Ohta, Noboru; Yagi, Naoto; Kurihara, Kazue
2018-05-23
X-ray diffraction measurement at the SPring-8 synchrotron was employed to investigate the structures of two types of imidazolium-based ionic liquids (ILs), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTF2]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]), confined between silica surfaces by varying the surface separation distances of ca. 500 nm (bulk liquid), ca. 10 nm, and ca. 2 nm (hard wall thickness). The obtained diffraction profiles and intensities were discussed by considering the structures and properties of the nano-confined ILs between the silica surfaces investigated by resonance shear measurement (RSM) and molecular dynamics simulation (MD) in our previous reports. [C4mim][NTf2] showed two diffraction peaks at q = 8.8 nm-1 (spacing d = 0.71 nm) and at q = 14.0 nm-1 (spacing d = 0.45 nm) at the greatest distance (D = ca. 500 nm), which were assigned to the interval between the same ions (anion-anion or cation-cation) within the polar network of [C4mim][NTf2] and the interval between the neighboring anion-cation, respectively. The positions of these two peaks remained the same at D = ca. 10 nm and at the hard wall (D = ca. 2 nm) and their intensity factor increased, indicating that both the cation and anion existed in the same layer. This result was consistent with the checkerboard structure of [C4mim][NTf2] on the silica surface computer simulated in our previous studies. On the other hand, [C4mim][BF4] showed a peak at q = 15.4 nm-1 (spacing d = 0.41 nm) corresponding to the anion-cation interval at the greatest distance (D = ca. 500 nm). This peak became broader and weaker at D = ca. 12 nm and at D = ca. 2 nm.
Dyatkin, Boris; Zhang, Yu; Mamontov, Eugene; ...
2016-04-07
Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces andmore » enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.« less
More Frequent Weak Stratospheric Polar Vortex States Linked to Cold Extremes
NASA Astrophysics Data System (ADS)
Kretschmer, M.; Coumou, D.; Agel, L. A.; Barlow, M. A.; Tziperman, E.; Cohen, J. L.
2016-12-01
The extra-tropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, referred to as the stratospheric polar vortex (SPV) which confines cold temperatures at high latitudes. Previous studies showed that a weak SPV can lead to cold-air outbreaks in the mid-latitudes but the exact relationships and mechanisms are still unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in Central and eastern Asia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid to late winter (January and February) has increased significantly accompanied by subsequent cold surface temperatures in the mid-latitudes. Furthermore, we show that stratospheric and El Niño/Southern Oscillation (ENSO) variability can explain most of the observed spatially heterogenic winter temperature trends in the era of Arctic amplification but the contribution of ENSO is less important. We show that the weakening of the SPV was related to a strengthening Siberian high and poleward heat flux. These findings support the hypothesis that a warming Arctic has weakened the SPV and thereby increased the frequency of cold-air outbreaks.
Ion-specific effects under confinement: the role of interfacial water.
Argyris, Dimitrios; Cole, David R; Striolo, Alberto
2010-04-27
All-atom molecular dynamics simulations were employed for the study of the structure and dynamics of aqueous electrolyte solutions within slit-shaped silica nanopores with a width of 10.67 A at ambient temperature. All simulations were conducted for 250 ns to capture the dynamics of ion adsorption and to obtain the equilibrium distribution of multiple ionic species (Na+, Cs+, and Cl(-)) within the pores. The results clearly support the existence of ion-specific effects under confinement, which can be explained by the properties of interfacial water. Cl(-) strongly adsorbs onto the silica surface. Although neither Na+ nor Cs+ is in contact with the solid surface, they show ion-specific behavior. The differences between the density distributions of cations within the pore are primarily due to size effects through their interaction with confined water molecules. The majority of Na+ ions appear within one water layer in close proximity to the silica surface, whereas Cs+ is excluded from well-defined water layers. As a consequence of this preferential distribution, we observe enhanced in-plane mobility for Cs+ ions, found near the center of the pore, compared to that for Na+ ions, closer to the solid substrate. These observations illustrate the key role of interfacial water in determining ion-specific effects under confinement and have practical importance in several fields, from geology to biology.
Implications for metal and volatile cycles from the pH of subduction zone fluids
NASA Astrophysics Data System (ADS)
Galvez, Matthieu E.; Connolly, James A. D.; Manning, Craig E.
2016-11-01
The chemistry of aqueous fluids controls the transport and exchange—the cycles—of metals and volatile elements on Earth. Subduction zones, where oceanic plates sink into the Earth’s interior, are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has long been a major challenge in Earth science. Here we report thermodynamic predictions of fluid-rock equilibria that tie together models of the thermal structure, mineralogy and fluid speciation of subduction zones. We find that the pH of fluids in subducted crustal lithologies is confined to a mildly alkaline range, modulated by rock volatile and chlorine contents. Cold subduction typical of the Phanerozoic eon favours the preservation of oxidized carbon in subducting slabs. In contrast, the pH of mantle wedge fluids is very sensitive to minor variations in rock composition. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to soluble elements in low abundance in the host rocks, such as carbon, alkali metals and halogens, illustrates a feedback between the chemistry of the Earth’s atmosphere-ocean system and the speciation of subduction zone fluids via the composition of the seawater-altered oceanic lithosphere. Our findings provide a perspective on the controlling reactions that have coupled metal and volatile cycles in subduction zones for more than 3 billion years7.
Is the boundary layer of an ionic liquid equally lubricating at higher temperature?
Hjalmarsson, Nicklas; Atkin, Rob; Rutland, Mark W
2016-04-07
Atomic force microscopy has been used to study the effect of temperature on normal forces and friction for the room temperature ionic liquid (IL) ethylammonium nitrate (EAN), confined between mica and a silica colloid probe at 25 °C, 50 °C, and 80 °C. Force curves revealed a strong fluid dynamic influence at room temperature, which was greatly reduced at elevated temperatures due to the reduced liquid viscosity. A fluid dynamic analysis reveals that bulk viscosity is manifested at large separation but that EAN displays a nonzero slip, indicating a region of different viscosity near the surface. At high temperatures, the reduction in fluid dynamic force reveals step-like force curves, similar to those found at room temperature using much lower scan rates. The ionic liquid boundary layer remains adsorbed to the solid surface even at high temperature, which provides a mechanism for lubrication when fluid dynamic lubrication is strongly reduced. The friction data reveals a decrease in absolute friction force with increasing temperature, which is associated with increased thermal motion and reduced viscosity of the near surface layers but, consistent with the normal force data, boundary layer lubrication was unaffected. The implications for ILs as lubricants are discussed in terms of the behaviour of this well characterised system.
Ma, Ke; Forsman, Jan; Woodward, Clifford E
2015-05-07
We explore the influence of ion pairing in room temperature ionic liquids confined by planar electrode surfaces. Using a coarse-grained model for the aromatic ionic liquid [C4MIM(+)][BF4 (-)], we account for an ion pairing component as an equilibrium associating species within a classical density functional theory. We investigated the resulting structure of the electrical double layer as well as the ensuing surface forces and differential capacitance, as a function of the degree of ion association. We found that the short-range structure adjacent to surfaces was remarkably unaffected by the degree of ion pairing, up to several molecular diameters. This was even the case for 100% of ions being paired. The physical implications of ion pairing only become apparent in equilibrium properties that depend upon the long-range screening of charges, such as the asymptotic behaviour of surface forces and the differential capacitance, especially at low surface potential. The effect of ion pairing on capacitance is consistent with their invocation as a source of the anomalous temperature dependence of the latter. This work shows that ion pairing effects on equilibrium properties are subtle and may be difficult to extract directly from simulations.
Classical and quantum simulations of warm dense carbon
NASA Astrophysics Data System (ADS)
Whitley, Heather; Sanchez, David; Hamel, Sebastien; Correa, Alfredo; Benedict, Lorin
We have applied classical and DFT-based molecular dynamics (MD) simulations to study the equation of state of carbon in the warm dense matter regime (ρ = 3.7 g/cc, 0.86 eV
NASA Astrophysics Data System (ADS)
Kizewski, Jamie Peter; Mudri, Nurul H.; Varcoe, John R.
2013-08-01
The application of alkaline anion-exchange membranes (AAEM) in solid alkaline fuel cells is growing in prominence mainly due to enhanced tolerance to carbon dioxide, compared to alkaline fuel cells containing aqueous electrolytes, and the potential for using non precious metal catalysts. Radiation grafting is a common methodology for the production of functional polymers and membranes. This statistical study examines the synthesis of radiation grafted AAEMs that are formed from electron beam irradiated poly(ethylene-co-tetrafluoroethylene), EB-ETFE. It is shown that EB-ETFE can be cold stored for at least 16 months and still be used to produce ionically conductive AAEMs. The limitations of routine measurements of properties, such as dimensional increases, ion-exchange capacity, water uptakes and ionic conductivities, are also highlighted.
NASA Astrophysics Data System (ADS)
Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; Yi, S. A.; Batha, S. H.; Wysocki, F.
2018-07-01
In the last five years, large amounts of high quality data on inertial confinement fusion (ICF) experiments were produced at the National Ignition Facility (NIF). From this data we have significantly advanced our scientific understanding of the physics of thermonuclear (TN) ignition and identified critical issues that must be addressed to achieve a burning hotspot, such as implosion energetics, pusher adiabat, tamping effects, and confinement time. In this paper we present a review of recently developed TN ignition and implosion scaling theory (Cheng et al 2013 Phys. Rev. E 88 041101; Cheng et al 2014 Phys. Plasmas 21 10270) that characterizes the thermodynamic properties of the hotspot and the ignition criteria for ICF. We compare our theoretical predictions with NIF data and find good agreement between theory and experiments. We demonstrate the fundamental effects of the pusher adiabat on the energy partition between the cold shell and the hot deuterium–tritium (DT) gas, and thus on the integrated performance of ICF capsules. Theoretical analysis of NIF experiments (Cheng et al 2015 Phys. Plasmas 22 082704; Melvin et al 2015 Phys. Plasmas 22 022708; Cheng et al 2016 Phys. Plasmas 23 120702) and physical explanations of the discrepancies between theory, data, and simulations are presented. It is shown that the true experimental adiabat of the cold DT fuel can be inferred from neutron image data of a capsule implosion. We show that the ablator mix and preheat in the cold fuel can be estimated from the experimentally inferred hotspot mix. Finally, possible paths forward to reach higher yields at NIF implied by the theory are discussed.
Experiments on planetary ices at UCL
NASA Astrophysics Data System (ADS)
Grindrod, P. M.; Fortes, A. D.; Wood, I. G.; Dobson, D.; Sammonds, P. R.; Stone-Drake, L.; Vocadlo, L.
2007-08-01
Using a suite of techniques and equipment, we conduct several different types of experiments on planetary ices at UCL. Samples are prepared in the Ice Physics Laboratory, which consists of a 5 chamber complex of inter-connected cold rooms, controllable from +30 to -30 deg C. Within this laboratory we have a functioning triaxial deformation cell operating at low temperature (down to -90 deg C) and high pressures (300 MPa), an Automatic Ice Fabric Analyser (AIFA) and a low-temperature microscope with CCD output. Polycrystalline samples, 40mm diameter by 100mm long, are compressed in the triaxial rig with a confining pressure; single crystal specimens are compressed in a separate uniaxial creep rig which operates at zero confining pressure for surface studies. A cold stage is also available for study of ice microstructural studies on our new Jeol JSM-6480LV SEM, which also allows tensile, compression and/or bending tests, with load ranges from less than 2N to 5000N. Finally, we also use a cold stage on a new PANalytical, X'pert PRO MPD, high resolution powder diffractometer to study the structure and phase behaviour of icy materials. Recent highlights of our work include: (1) derivation of a manufacturing process for methane clathrate at low temperatures, analysed in the X-Ray Diffraction Laboratory, for future rheological experiments, (2) analysed the growth behaviour of MS11, (3) refurbished and commenced calibration tests on the triaxial deformation cell using ice Ih, and (4) performed creep tests on gypsum and epsomite using the single crystal deformation cell. Further experiments will build on these preliminary results.
System of extraction of volatiles from soil using microwave processes
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C. (Inventor); Kaukler, William F. (Inventor)
2013-01-01
A device for the extraction and collection of volatiles from soil or planetary regolith. The device utilizes core drilled holes to gain access to underlying volatiles below the surface. Microwave energy beamed into the holes penetrates through the soil or regolith to heat it, and thereby produces vapor by sublimation. The device confines and transports volatiles to a cold trap for collection.
Increased rate of response of the pituitary-adrenal system in rats adapted to chronic stress
NASA Technical Reports Server (NTRS)
Sakellaris, P. C.; Vernikos-Danellis, J.
1975-01-01
The response and adaptation of the pituitary-adrenal system to chronic stresses was investigated. These included individual caging, confinement, and exposure to cold for varying periods of time. Studies were carried out demonstrating that during the period of adaptation when plasma corticosterone concentrations returned toward their prestress level despite continued exposure to the stressor, the animals responded to additional stimuli of ether for 1 min, a saline injection, or release from confinement with a faster increase (within 2.5 min) in plasma corticosterone than controls (10 min). It is concluded that during adaptation to a chronic stress the pituitary-adrenal system is not inhibited by the circulating steroid level but is actually hypersensitive to additional stimuli.
Böni, Lukas; Rühs, Patrick A.; Windhab, Erich J.; Fischer, Peter; Kuster, Simon
2016-01-01
Hagfish slime is an ultra dilute, elastic and cohesive hydrogel that deploys within milliseconds in cold seawater from a glandularly secreted exudate. The slime is made of long keratin-like fibers and mucin-like glycoproteins that span a network which entraps water and acts as a defense mechanism against predators. Unlike other hydrogels, the slime only confines water physically and is very susceptible to mechanical stress, which makes it unsuitable for many processing operations and potential applications. Despite its huge potential, little work has been done to improve and functionalize the properties of this hydrogel. To address this shortcoming, hagfish exudate was mixed with a soy protein isolate suspension (4% w/v) and with a soy emulsion (commercial soy milk) to form a more stable structure and combine the functionalities of a suspension and emulsion with those of the hydrogel. Hagfish exudate interacted strongly with the soy systems, showing a markedly increased viscoelasticity and water retention. Hagfish mucin was found to induce a depletion and bridging mechanism, which caused the emulsion and suspension to flocculate, making “soy slime”, a cohesive and cold-set emulsion- and particle gel. The flocculation network increases viscoelasticity and substantially contributes to liquid retention by entrapping liquid in the additional confinements between aggregated particles and protein fibers. Because the mucin-induced flocculation resembles the salt- or acid-induced flocculation in tofu curd production, the soy slime was cooked for comparison. The cooked soy slime was similar to conventional cooked tofu, but possessed a long-range cohesiveness from the fibers. The fibrous, cold-set, and curd-like structure of the soy slime represents a novel way for a cold coagulation and fiber incorporation into a suspension or emulsion. This mechanism could be used to efficiently gel functionalized emulsions or produce novel tofu-like structured food products. PMID:26808048
Böni, Lukas; Rühs, Patrick A; Windhab, Erich J; Fischer, Peter; Kuster, Simon
2016-01-01
Hagfish slime is an ultra dilute, elastic and cohesive hydrogel that deploys within milliseconds in cold seawater from a glandularly secreted exudate. The slime is made of long keratin-like fibers and mucin-like glycoproteins that span a network which entraps water and acts as a defense mechanism against predators. Unlike other hydrogels, the slime only confines water physically and is very susceptible to mechanical stress, which makes it unsuitable for many processing operations and potential applications. Despite its huge potential, little work has been done to improve and functionalize the properties of this hydrogel. To address this shortcoming, hagfish exudate was mixed with a soy protein isolate suspension (4% w/v) and with a soy emulsion (commercial soy milk) to form a more stable structure and combine the functionalities of a suspension and emulsion with those of the hydrogel. Hagfish exudate interacted strongly with the soy systems, showing a markedly increased viscoelasticity and water retention. Hagfish mucin was found to induce a depletion and bridging mechanism, which caused the emulsion and suspension to flocculate, making "soy slime", a cohesive and cold-set emulsion- and particle gel. The flocculation network increases viscoelasticity and substantially contributes to liquid retention by entrapping liquid in the additional confinements between aggregated particles and protein fibers. Because the mucin-induced flocculation resembles the salt- or acid-induced flocculation in tofu curd production, the soy slime was cooked for comparison. The cooked soy slime was similar to conventional cooked tofu, but possessed a long-range cohesiveness from the fibers. The fibrous, cold-set, and curd-like structure of the soy slime represents a novel way for a cold coagulation and fiber incorporation into a suspension or emulsion. This mechanism could be used to efficiently gel functionalized emulsions or produce novel tofu-like structured food products.
Imaging carbon nanotube interactions, diffusion, and stability in nanopores.
Eichmann, Shannon L; Smith, Billy; Meric, Gulsum; Fairbrother, D Howard; Bevan, Michael A
2011-07-26
We report optical microscopy measurements of three-dimensional trajectories of individual multiwalled carbon nanotubes (MWCNTs) in nanoscale silica slit pores. Trajectories are analyzed to nonintrusively measure MWCNT interactions, diffusion, and stability as a function of pH and ionic strength. Evanescent wave scattering is used to track MWCNT positions normal to pore walls with nanometer-scale resolution, and video microscopy is used to track lateral positions with spatial resolution comparable to the diffraction limit. Analysis of MWCNT excursions normal to pore walls yields particle-wall potentials that agree with theoretical electrostatic and van der Waals potentials assuming a rotationally averaged potential of mean force. MWCNT lateral mean square displacements are used to quantify translational diffusivities, which are comparable to predictions based on the best available theories. Finally, measured MWCNT pH and ionic strength dependent stabilities are in excellent agreement with predictions. Our findings demonstrate novel measurement and modeling tools to understand the behavior of confined MWCNTs relevant to a broad range of applications.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Tan, Rui; Yang, Jie; Wang, Kai; Gao, Rongtan; Liu, Dong; Liu, Yidong; Yang, Jinlong; Pan, Feng
2017-02-01
We report a novel 3D-hybrid cathode material with three-dimensional (3D) N-GO/CNT framework to load sulfur (77.6 wt %), and sulfonated polyaniline (SPANI) of coating layer. Used as a cathode material, it possesses a high capacity (1196 mAh g-1@0.3 A g-1@1.6 mg cm-2), excellent charging-discharging rate (680 mAh g-1@7.5 A g-1) and long-life performance (maintaining 71.1% capacity over 450 cycles), which is mainly attributed to the benefits of excellent electronic/Li-ionic dual-conductivity and confinement effect of the 3D-hybrid N-GO/CNT framework coated by self-doping conducting polymer SPANI. Thus, a 3D sulfur cathode modified with electronic/Li-ionic dual-conduction network can significantly enhance the electrochemical performance and stability, and this novel type of material is very promising for commercial applications that require high energy and power density, long life, and excellent abuse tolerance.
NASA Astrophysics Data System (ADS)
Sangoro, Joshua; Heres, Maximilian; Cosby, Tyler
Continuous progress in energy storage and conversion technologies necessitates novel experimental approaches that can provide fundamental insights regarding the impact of reduced dimensions on the functional properties of materials. In this talk, a nondestructive experimental approach to probe nanoscale ion dynamics in ultrathin films of polymerized ionic liquids over a broad frequency range spanning over six orders of magnitude by broadband dielectric spectroscopy will be presented. The approach involves using an electrode configuration with lithographically patterned silica nanostructures, which allow for an air gap between the confined ion conductor and one of the electrodes. It is observed that the characteristic ion dynamics rates significantly slow down with decreasing film thicknesses above the calorimetric glass transition of the bulk polymer. However, the mean rates remain bulk-like at lower temperatures. These results highlight the increasing influence of the polymer/substrate interactions with decreasing film thickness on ion dynamics. The authors gratefully acknowledge the National Science Foundation for financial support through the Polymers Program award DMR-1508394.
Drainage and Stratification Kinetics of Foam Films
NASA Astrophysics Data System (ADS)
Zhang, Yiran; Sharma, Vivek
2014-03-01
Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.
Cold Osmotic Shock in Saccharomyces cerevisiae
Patching, J. W.; Rose, A. H.
1971-01-01
Saccharomyces cerevisiae NCYC 366 is susceptible to cold osmotic shock. Exponentially growing cells from batch cultures grown in defined medium at 30 C, after being suspended in 0.8 m mannitol containing 10 mm ethylenedia-minetetraacetic acid and then resuspended in ice-cold 0.5 mm MgCl2, accumulated the nonmetabolizable solutes d-glucosamine-hydrochloride and 2-aminoisobutyrate at slower rates than unshocked cells; shocked cells retained their viability. Storage of unshocked batch-grown cells in buffer at 10 C led to an increase in ability to accumulate glucosamine, and further experiments were confined to cells grown in a chemostat under conditions of glucose limitation, thereby obviating the need for storing cells before use. A study was made of the effect of the different stages in the cold osmotic shock procedure, including the osmotic stress, the chelating agent, and the cold Mg2+-containing diluent, on viability and solute-accumulating ability. Growth of shocked cells in defined medium resembled that of unshocked cells; however, in malt extract-yeast extract-glucose-peptone medium, the shocked cells had a longer lag phase of growth and initially grew at a slower rate. Cold osmotic shock caused the release of low-molecular-weight compounds and about 6 to 8% of the cell protein. Neither the cell envelope enzymes, invertase, acid phosphatase and l-leucine-β-naphthylamidase, nor the cytoplasmic enzyme, alkaline phosphatase, were released when yeast cells were subjected to cold osmotic shock. PMID:5001201
Soret motion in non-ionic binary molecular mixtures
NASA Astrophysics Data System (ADS)
Leroyer, Yves; Würger, Alois
2011-08-01
We study the Soret coefficient of binary molecular mixtures with dispersion forces. Relying on standard transport theory for liquids, we derive explicit expressions for the thermophoretic mobility and the Soret coefficient. Their sign depends on composition, the size ratio of the two species, and the ratio of Hamaker constants. Our results account for several features observed in experiment, such as a linear variation with the composition; they confirm the general rule that small molecules migrate to the warm, and large ones to the cold.
Nanoconfined ionic liquids: Disentangling electrostatic and viscous forces
NASA Astrophysics Data System (ADS)
Lhermerout, Romain; Perkin, Susan
2018-01-01
Recent reports of surface forces across nanoconfined ionic liquids have revealed the existence of an anomalously long-ranged interaction apparently of electrostatic origin. Ionic liquids are viscous, and therefore it is important to inspect rigorously whether the observed repulsive forces are indeed equilibrium forces or, rather, arise from the viscous force during drainage of the fluid between two confining surfaces. In this paper we present our direct measurements of surface forces between mica sheets approaching in the ionic liquid [C2C1Im ] [NTf2] , exploring three orders of magnitude in approach velocity. Trajectories are systematically fitted by solving the equation of motion, allowing us to disentangle the viscous and equilibrium contributions. First, we find that the drainage obeys classical hydrodynamics with a negative slip boundary condition in the range of the structural force, implying that a nanometer -thick portion of the liquid in the vicinity of the solid surface is composed of ordered molecules that do not contribute to the flow. Second, we show that a long-range static force must indeed be invoked, in addition to the viscous force, in order to describe the data quantitatively. This equilibrium interaction decays exponentially and with decay length in agreement with the screening length reported for the same system in previous studies. In those studies the decay was simply checked to be independent of velocity and measured at a low approach rate, rather than explicitly taking account of viscous effects: we explain why this gives indistinguishable outcomes for the screening length by noting that the viscous force is linear to very good approximation over a wide range of distances.
Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.
Ma, Ting; Pan, Zeng; Miao, Licheng; Chen, Chengcheng; Han, Mo; Shang, Zhenfeng; Chen, Jun
2018-03-12
Electrochemical energy storage with redox-flow batteries (RFBs) under subzero temperature is of great significance for the use of renewable energy in cold regions. However, RFBs are generally used above 10 °C. Herein we present non-aqueous organic RFBs based on 5,10,15,20-tetraphenylporphyrin (H 2 TPP) as a bipolar redox-active material (anode: [H 2 TPP] 2- /H 2 TPP, cathode: H 2 TPP/[H 2 TPP] 2+ ) and a Y-zeolite-poly(vinylidene fluoride) (Y-PVDF) ion-selective membrane with high ionic conductivity as a separator. The constructed RFBs exhibit a high volumetric capacity of 8.72 Ah L -1 with a high voltage of 2.83 V and excellent cycling stability (capacity retention exceeding 99.98 % per cycle) in the temperature range between 20 and -40 °C. Our study highlights principles for the design of RFBs that operate at low temperatures, thus offering a promising approach to electrochemical energy storage under cold-climate conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Protection of Pyruvate,Pi Dikinase from Maize against Cold Lability by Compatible Solutes 1
Krall, John P.; Edwards, Gerald E.; Andreo, Carlos S.
1989-01-01
Most C4 species are chilling sensitive and certain enzymes like pyruvate,Pi dikinase of the C4 pathway are also cold labile. The ability of cations and compatible solutes to protect maize (Zea mays) dikinase against cold lability was examined. The enzyme in desalted extracts at pH 8 from preilluminated leaves could be protected against cold lability (at 0°C) by the divalent cations Mn2+, Mg2+, and Ca2+. There was substantial protection by sulfate based salts but little protection by chloride based salts of potassium or ammonium (concentration 250 millimolar). The degree of protection against cold lability under limiting MgCl2 (5 millimolar) was pH sensitive (maximum protection at pH 8), but independent of ionic strength (up to 250 millimolar by addition of KCl). In catalysis Mg2+ is required and Mn2+ could not substitute as a cofactor. Several compatible solutes reduced or prevented the cold inactivation of dikinase (in desalted extracts and the partially purified enzyme), including glycerol, proline, glycinebetaine and trimethylamine-N-oxide (TMAO). TMAO and Mg2+ had an additive effect in protecting dikinase against cold inactivation. TMAO could largely substitute for the divalent cation and addition of TMAO during cold treatment prevented further inactivation. Cold inactivation was partially reversed by incubation at room temperature; with addition of TMAO reversal was complete. The temperature dependence of inactivation at pH 8 and 3 millimolar MgCl2 was evaluated by incubation at 2 to 17°C for 45 minutes, followed by assay at room temperature. At preincubation temperatures below 11°C there was a progressive inactivation which could be prevented by TMAO (450 millimolar). The results are discussed relative to possible effects of the solutes on the quaternary structure of this enzyme, which is known to dissociate at low temperatures. PMID:16666527
NASA Astrophysics Data System (ADS)
Kuri, Subrata Kumar; Rakibuzzaman, S. M.; Sabah, Arefiny; Ahmed, Jannat; Hasan, Mohammad Nasim
2017-12-01
Molecular dynamics simulation has been carried out to go through the evaporation and condensation characteristics of thin liquid argon film in nanoscale confinement having nanostructured boundary. Nanoscale confinement under consideration consists of hot and cold parallel platinum plates at the bottom and top end of a model cuboid inside which the fluid domain comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the confinement. Three different confinement configurations have been considered here: (i) Both platinum plates are flat, (ii) Upper plate consisting of transverse slots and (iii) Both plates consisting of transverse slots. The height of the slots is 1.5 nm. Considering hydrophilic nature of top and bottom plates, two different high temperatures of the hot wall was set and an observation was made. For all the structures, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall is set to two different temperatures like 110 K and 250 K for all three models to perform non-equilibrium molecular dynamics (NEMD). Various system characteristics such as atomic distribution, wall heat flux, evaporative mass flux etc. have been obtained and discussed to have a clear understanding of the effect of nanotextured surface on phase change phenomena.
Khalili Ghadikolaei, Kamran; Gharechahi, Javad; Haghbeen, Kamahldin; Akbari Noghabi, Kambiz; Hosseini Salekdeh, Ghasem; Shahbani Zahiri, Hossein
2018-03-01
Endoglucanases are important enzymes in plant biomass degradation. They have current and potential applications in various industrial sectors including human and animal food processing, textile, paper, and renewable biofuel production. It is assumed that the cold-active endoglucanases, with high catalytic rates in moderate and cold temperatures, can improve the cost-effectiveness of industrial processes by lowering the need for heating and, thus, energy consumption. In this study, the endoglucanase CelCM3 was procured from a camel rumen metagenome via gene cloning and expression in Escherichia coli BL21 (DE3). The maximum activity of the enzyme on carboxymethyl cellulose (CMC) was obtained at pH 5 and 30 °C with a V max and K m of 339 U/mg and 2.57 mg/ml, respectively. The enzyme with an estimated low melting temperature of 45 °C and about 50% activity at 4 °C was identified to be cold-adapted. A thermodynamic analysis corroborated that CelCM3 with an activation energy (E a ), enthalpy of activation (ΔH), and Gibb's free energy (ΔG) of, respectively, 18.47 kJ mol -1 , 16.12 kJ mol -1 , and 56.09 kJ mol -1 is a cold-active endoglucanase. In addition, CelCM3 was tolerant of metal ions, non-ionic detergents, urea, and organic solvents. Given these interesting characteristics, CelCM3 shows promise to meet the requirements of industrial applications.
Horizon in random matrix theory, the Hawking radiation, and flow of cold atoms.
Franchini, Fabio; Kravtsov, Vladimir E
2009-10-16
We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connection between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.
Van Anholt, R D; Spanings, F A T; Nixon, O; Wendelaar Bonga, S E; Koven, W M
2012-06-01
In previous studies in freshwater tilapia (Oreochromis mossambicus), dietary supplementation with arachidonic acid (ArA; 20:4n - 6) had considerable, opposing effects on the main ion-transporting enzyme Na(+)/K(+)-ATPase in gills and kidneys and changed the release of osmoregulatory hormones, such as cortisol. The present study was performed to assess the influence of dietary ArA on (1) the osmoregulatory capacity of tilapia acclimated to seawater (SW) (34‰) and (2) the osmoregulatory imbalance associated with acute stress. The increased ambient salinity was associated with significant alterations in the tissue fatty acid composition, particularly the n - 6 polyunsaturated fatty acids (PUFAs). Tissue levels of ArA were further increased as a result of dietary supplementation, whereas docosahexaenoic acid (DHA, 22:6n - 3) and eicosapentaenoic acid (EPA, 20:5n - 3) decreased in gills and kidneys. Basal plasma cortisol as well as lactate levels were elevated in the ArA-supplemented SW-acclimated tilapia compared with the control group. The 5 min of confinement (transient stress) increased plasma cortisol, glucose, and lactate levels with significantly higher levels in ArA-supplemented tilapia. Confinement was also associated with significantly elevated plasma osmolality, sodium, chloride, and potassium levels. ArA-supplemented tilapia showed markedly lower ionic disturbances after confinement, suggesting that dietary ArA can attenuate the hydromineral imbalance associated with acute stress. These results emphasize the involvement of ArA and/or its metabolites in the endocrine and osmoregulatory processes and the response to confinement stress.
Enhancing Human Resource Capability in the Tanzania Peoples Defense Force (TPDF)
2006-06-01
Tanzania’s elephants , thus making the Selous a big attraction to tourists (Pan- African News Agency, 1999). The problem of poaching is not only confined...the Cold War and the collapse of the Soviet Union changed the strategic environment. Refugees from conflict torn areas, poaching , small arms...changed the strategic environment. Refugees from conflict torn areas, poaching , small arms proliferation, political and religious fundamentalism, drug
Majorana edge States in atomic wires coupled by pair hopping.
Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P
2013-10-25
We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.
Quantum Simulation of the Hubbard Model Using Ultra-Cold Atoms
2008-11-01
explore phases that do not yet have analogous behavior in QCD . ..,.. Ultracold fennions in optical lattices . The evolution from BCS to BEC...trimer states. The three-component Fermi gas we have created will, when confined in an optical lattice , be an experimental realization of the SU(3...chromodynamics ( QCD ): the color superconducting phase and the formation of baryons. Our initial investigations have focused on understanding three-body
PREFACE: Water at interfaces Water at interfaces
NASA Astrophysics Data System (ADS)
Gallo, P.; Rovere, M.
2010-07-01
This special issue is devoted to illustrating important aspects and significant results in the field of modeling and simulation of water at interfaces with solutes or with confining substrates, focusing on a range of temperatures from ambient to supercooled. Understanding the behavior of water, in contact with different substrates and/or in solutions, is of pivotal importance for a wide range of applications in physics, chemistry and biochemistry. Simulations of confined and/or interfacial water are also relevant for testing how different its behavior is with respect to bulk water. Simulations and modeling in this field are of particular importance when studying supercooled regions where water shows anomalous properties. These considerations motivated the organization of a workshop at CECAM in the summer of 2009 which aimed to bring together scientists working with computer simulations on the properties of water in various environments with different methodologies. In this special issue, we collected a variety of interesting contributions from some of the speakers of the workshop. We have roughly classified the contributions into four groups. The papers of the first group address the properties of interfacial and confined water upon supercooling in an effort to understand the relation with anomalous behavior of supercooled bulk water. The second group deals with the specific problem of solvation. The next group deals with water in different environments by considering problems of great importance in technological and biological applications. Finally, the last group deals with quantum mechanical calculations related to the role of water in chemical processes. The first group of papers is introduced by the general paper of Stanley et al. The authors discuss recent progress in understanding the anomalies of water in bulk, nanoconfined, and biological environments. They present evidence that liquid water may display 'polymorphism', a property that can be present in other liquids also. Recent evidence of a close relation between thermodynamical properties and dynamical behaviour of water are also discussed. Gallo et al present the results of a computer simulation of water confined in a cylindrical pore of MCM-41 silica material. The mobile portion of the confined water shows a fragile to strong dynamic transition similar to the bulk. In the bound water, an anomalous diffusion connected to the residence time distribution is found. Franzese et al report calculations on lattice models adapted to describe general properties of water in contact with protein surfaces. The results of Monte Carlo and mean field calculations show the presence of two-dynamical crossovers. Corradini et al investigate the supercooled region of ionic aqueous solutions in order to study the effect of ions on the limit of mechanical stability, the lines of maximum density and the liquid-liquid critical point for different ionic concentrations. The paper by Vallauri et al deals with the dynamical behavior of water close to the liquid-liquid transition by considering the velocity correlation functions calculated in three supercooled states. Suffritti et al study water adsorbed in zeolites with a new empirical potential, structural and dynamical properties are studied in the supercooled region. The second group starts with a paper on the problem of solvation by Lynden-Bell. The author shows how the properties of water and, in particular, solvation properties are modified by changes in the site-site interaction potential of water. Henchman et al derive equations for different thermodynamical quantities like partial enthalpy and partial entropy for dilute solutions of noble gases. The third group starts with Buldyrev et al who study the swelling of bead-on-a-string polymers in Jagla water-like particles, finding similarities with respect to cold denaturation of protein in water. Pellenq et al consider water confined in pores of different materials with different size scales. Silicalite and tobermorite, a layered calcio-silicate model of cement and Vycor are analyzed. Gordillo and Martí consider structural and dynamical properties of water confined or close to carbon nanotubes or inside a slit pore of a single graphene sheet. Jedlovszky et al introduce a new method to determine the molecules located right at the boundary of two phases in a computer simulation. The new method is applied to the analysis of the interface of water with different apolar phases. Melchionna et al consider phenomena related to water in contact with thermophilic protein interfaces. In particular, they discuss the role of water in stabilizing these proteins. Rotenberg et al report results on the structure and dynamics of water at a clay surface. They analyze, in particular, the influence on the H-bond network of the surface oxygens and ions and investigate the surface H-bond formation and dissociation dynamics. Smirnov and Bougeard present examples of the spatial organization of molecules and of the short- and long-time dynamical behaviour of water confined in the pores of crystalline aluminosilicates, such as zeolites and clays, and in nanostructured materials. The last group opens with Sulpizi and Sprik who present density functional calculations of the dissociation constant of liquid water, implemented with a proton insertion/removal method. Jung and Marcus consider, more specifically, the properties of water in organic catalysis and discuss theoretical models and results obtained with quantum mechanical calculations. As organizers of the CECAM workshop 'Modeling and Simulation of Water at Interfaces from Ambient to Supercooled Conditions' we would like to thank CECAM, ESF-Simbioma, Wanda Andreoni, Emilie Bernard and Jordi Brusa. As guest editors of this special issue we would like to thank Gerhard Kahl and Philip Semple.
Cryosurgery with pulsed electric fields.
Daniels, Charlotte S; Rubinsky, Boris
2011-01-01
This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to ablate cells in the high subzero freezing region of a cryosurgical lesion.
Attri, Pankaj; Kim, Minsup; Choi, Eun Ha; Cho, Art E; Koga, Kazunori; Shiratani, Masaharu
2017-09-27
Cold atmospheric plasma and gamma rays are known to have anticancer properties, even though their specific mechanisms and roles as co-solvents during their action are still not clearly understood. Despite the use of gamma rays in cancer therapy, they have oncogenic potential, whereas this has not been observed for plasma treatment (to date). To gain a better understanding, we studied the action of dielectric barrier discharge (DBD) plasma and gamma rays on the myoglobin protein. We analyzed the secondary structure and thermodynamic properties of myoglobin after both treatments. In addition, in the last few years, ammonium ionic liquids (ILs) have revealed their important role in protein folding as co-solvents. In this work, we treated the protein with ammonium ILs such as triethylammonium methanesulfonate (TEMS) and tetrabutylammonium methanesulfonate (TBMS) and later treated this IL-protein solution with DBD plasma and gamma rays. In this study, we show the chemical and thermal denaturation of the protein after plasma and gamma treatments in the presence and absence of ILs using circular dichroism (CD) and UV-vis spectroscopy. Furthermore, we also show the influence of plasma and gamma rays on the secondary structure of myoglobin in the absence and presence of ILs or ILs + urea using CD. Finally, molecular dynamic simulations were conducted to gain deeper insight into how the ILs behave to protect the protein against the hydrogen peroxide generated by the DBD plasma and gamma rays.
Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms
NASA Astrophysics Data System (ADS)
Sayrin, Clément; Junge, Christian; Mitsch, Rudolf; Albrecht, Bernhard; O'Shea, Danny; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno
2015-10-01
The realization of nanophotonic optical isolators with high optical isolation even at ultralow light levels and low optical losses is an open problem. Here, we employ the link between the local polarization of strongly confined light and its direction of propagation to realize low-loss nonreciprocal transmission through a silica nanofiber at the single-photon level. The direction of the resulting optical isolator is controlled by the spin state of cold atoms. We perform our experiment in two qualitatively different regimes, i.e., with an ensemble of cold atoms where each atom is weakly coupled to the waveguide and with a single atom strongly coupled to the waveguide mode. In both cases, we observe simultaneously high isolation and high forward transmission. The isolator concept constitutes a nanoscale quantum optical analog of microwave ferrite resonance isolators, can be implemented with all kinds of optical waveguides and emitters, and might enable novel integrated optical devices for fiber-based classical and quantum networks.
Ionic conductivity of β-cyclodextrin-polyethylene-oxide/alkali-metal-salt complex.
Yang, Ling-Yun; Fu, Xiao-Bin; Chen, Tai-Qiang; Pan, Li-Kun; Ji, Peng; Yao, Ye-Feng; Chen, Qun
2015-04-20
Highly conductive, crystalline, polymer electrolytes, β-cyclodextrin (β-CD)-polyethylene oxide (PEO)/LiAsF6 and β-CD-PEO/NaAsF6 , were prepared through supramolecular self-assembly of PEO, β-CD, and LiAsF6 /NaAsF6 . The assembled β-CDs form nanochannels in which the PEO/X(+) (X=Li, Na) complexes are confined. The nanochannels provide a pathway for directional motion of the alkali metal ions and, at the same time, separate the cations and the anions by size exclusion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DNA confinement in nanochannels: physics and biological applications
NASA Astrophysics Data System (ADS)
Reisner, Walter; Pedersen, Jonas N.; Austin, Robert H.
2012-10-01
DNA is the central storage molecule of genetic information in the cell, and reading that information is a central problem in biology. While sequencing technology has made enormous advances over the past decade, there is growing interest in platforms that can readout genetic information directly from long single DNA molecules, with the ultimate goal of single-cell, single-genome analysis. Such a capability would obviate the need for ensemble averaging over heterogeneous cellular populations and eliminate uncertainties introduced by cloning and molecular amplification steps (thus enabling direct assessment of the genome in its native state). In this review, we will discuss how the information contained in genomic-length single DNA molecules can be accessed via physical confinement in nanochannels. Due to self-avoidance interactions, DNA molecules will stretch out when confined in nanochannels, creating a linear unscrolling of the genome along the channel for analysis. We will first review the fundamental physics of DNA nanochannel confinement—including the effect of varying ionic strength—and then discuss recent applications of these systems to genomic mapping. Apart from the intense biological interest in extracting linear sequence information from elongated DNA molecules, from a physics view these systems are fascinating as they enable probing of single-molecule conformation in environments with dimensions that intersect key physical length-scales in the 1 nm to 100 µm range.
Schulz, Volker; Guenther, Margarita; Gerlach, Gerald; Magda, Jules J.; Tathireddy, Prashant; Rieth, Loren; Solzbacher, Florian
2010-01-01
Environmental responsive or smart hydrogels show a volume phase transition due to changes of external stimuli such as pH or ionic strength of an ambient solution. Thus, they are able to convert reversibly chemical energy into mechanical energy and therefore they are suitable as sensitive material for integration in biochemical microsensors and MEMS devices. In this work, micro-fabricated silicon pressure sensor chips with integrated piezoresistors were used as transducers for the conversion of mechanical work into an appropriate electrical output signal due to the deflection of a thin silicon bending plate. Within this work two different sensor designs have been studied. The biocompatible poly(hydroxypropyl methacrylate-N,N-dimethylaminoethyl methacrylate-tetra-ethyleneglycol dimethacrylate) (HPMA-DMA-TEGDMA) was used as an environmental sensitive element in piezoresistive biochemical sensors. This polyelectrolytic hydrogel shows a very sharp volume phase transition at pH values below about 7.4 which is in the range of the physiological pH. The sensor's characteristic response was measured in-vitro for changes in pH of PBS buffer solution at fixed ionic strength. The experimental data was applied to the Hill equation and the sensor sensitivity as a function of pH was calculated out of it. The time-dependent sensor response was measured for small changes in pH, whereas different time constants have been observed. The same sensor principal was used for sensing of ionic strength. The time-dependent electrical sensor signal of both sensors was measured for variations in ionic strength at fixed pH value using PBS buffer solution. Both sensor types showed an asymmetric swelling behavior between the swelling and the deswelling cycle as well as different time constants, which was attributed to the different nature of mechanical hydrogel-confinement inside the sensor. PMID:21152365
Inversion Build-Up and Cold-Air Outflow in a Small Alpine Sinkhole
NASA Astrophysics Data System (ADS)
Lehner, Manuela; Whiteman, C. David; Dorninger, Manfred
2017-06-01
Semi-idealized model simulations are made of the nocturnal cold-air pool development in the approximately 1-km wide and 100-200-m deep Grünloch basin, Austria. The simulations show qualitatively good agreement with vertical temperature and wind profiles and surface measurements collected during a meteorological field expedition. A two-layer stable atmosphere forms in the basin, with a very strong inversion in the lowest part, below the approximate height of the lowest gap in the surrounding orography. The upper part of the stable layer is less strongly stratified and extends to the approximate height of the second-lowest gap. The basin atmosphere cools most strongly during the first few hours of the night, after which temperatures decrease only slowly. An outflow of air forms through the lowest gap in the surrounding orography. The outflow connects with a weak inflow of air through a gap on the opposite sidewall, forming a vertically and horizontally confined jet over the basin. Basin cooling shows strong sensitivity to surface-layer characteristics, highlighting the large impact of variations in vegetation and soil cover on cold-air pool development, as well as the importance of surface-layer parametrization in numerical simulations of cold-air-pool development.
Interactions between gravity waves and cold air outflows in a stably stratified uniform flow
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.
1993-01-01
Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.
NASA Astrophysics Data System (ADS)
Song, Jun; Liu, Juanfang; Chen, Qinghua
For lithium-ion batteries, the composite silicon-based electrodes can prevent from losing electrical contact and hence retain the capacity over many cycles. To uncover the adhesion mechanism on the interface formed by the copper foil and the thin silicon coatings during the cold gas dynamic spraying (CGDS) at the microscopic level, the first-principle calculations are performed to investigate the interface properties between them. The ideal work of adhesion, fracture toughness and the interface electronic properties are analyzed. It is found that all the atoms on the interface have vertical displacements, and covalent and ionic bonds are formed between the interfacial Cu and Si atoms which increases the bonding strength. However, the ideal work of adhesion on the interface is lower than one of the Cu bulk and Si bulk, so that fracture would be easier to take place on the interface.
Bell, C.F.
1996-01-01
In October 1993, the U.S. Geological Survey began a study to characterize the hydrogeology of the shallow aquifer system at the Explosive Experimental Area, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia, which is located on the Potomac River in the Coastal Plain Physiographic Province. The study provides a description of the hydrogeologic units, directions of ground-water flow, and back-ground water quality in the study area to a depth of about 100 feet. Lithologic, geophysical, and hydrologic data were collected from 28 wells drilled for this study, from 3 existing wells, and from outcrops. The shallow aquifer system at the Explosive Experimental Area consists of two fining-upward sequences of Pleistocene fluvial-estuarine deposits that overlie Paleocene-Eocene marine deposits of the Nanjemoy-Marlboro confining unit. The surficial hydrogeologic unit is the Columbia aquifer. Horizontal linear flow of water in this aquifer generally responds to the surface topography, discharging to tidal creeks, marshes, and the Potomac River, and rates of flow in this aquifer range from 0.003 to 0.70 foot per day. The Columbia aquifer unconformably overlies the upper confining unit 12-an organic-rich clay that is 0 to 55 feet thick. The upper confining unit conformably overlies the upper confined aquifer, a 0- to 35-feet thick unit that consists of interbedded fine-grained to medium-grained sands and clay. The upper confined aquifer probably receives most of its recharge from the adjacent and underlying Nanjemoy-Marlboro confining unit. Water in the upper confined aquifer generally flows eastward, northward, and northeastward at about 0.03 foot per day toward the Potomac River and Machodoc Creek. The Nanjemoy-Marlboro confining unit consists of glauconitic, fossiliferous silty fine-grained sands of the Nanjemoy Formation. Where the upper confined system is absent, the Nanjemoy-Marlboro confining unit is directly overlain by the Columbia aquifer. In some parts of the Explosive Experimental Area, horizontal hydraulic conductivities of the Nanjemoy-Marlboro confining unit and the Columbia aquifer are similar (from 10-4 to 10-2 foot per day), and these units effectively combine to form a thick (greater than 50 feet) aquifer. The background water quality of the shallow aquifer system is characteristic of ground waters in the Virginia Coastal Plain Physiographic Province. Water in the Columbia aquifer is a mixed ionic type, has a median pH of 5.9, and a median total dissolved solids of 106 milligrams per liter. Water in the upper confined aquifer and Nanjemoy-Marlboro confining unit is a sodium- calcium-bicarbonate type, and generally has higher pH, dissolved solids, and alkalinity than water in the Columbia aquifer. Water in the upper confined aquifer and some parts of the Columbia aquifer is anoxic, and it has high concentrations of dissolved iron, manganese, and sulfide.
Horizon in Random Matrix Theory, the Hawking Radiation, and Flow of Cold Atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franchini, Fabio; Kravtsov, Vladimir E.
2009-10-16
We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connectionmore » between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.« less
Li, Huishu; Son, Ji-Hee; Carlson, Kenneth H
2016-01-01
The potential impact of rapid development of unconventional oil and natural gas resources using hydraulic fracturing and horizontal drilling on regional groundwater quality has received significant attention. Major concerns are methane or oil/gas related hydrocarbon (such as TPHs, BTEX including benzene, toluene, ethybenzene and xylene) leaks into the aquifer due to the failure of casing and/or stray gas migration. Previously, we investigated the relationship between oil and gas activity and dissolved methane concentration in a drinking water aquifer with the major finding being the presence of thermogenic methane contamination, but did not find detectable concentrations of TPHs or BTEX. To understand if aqueous and gas phases from the producing formation were transported concurrently to drinking water aquifers without the presence of oil/gas related hydrocarbons, the ionic composition of three water groups was studied: (1) uncontaminated deep confined aquifer, (2) suspected contaminated groundwater - deep confined aquifer containing thermogenic methane, and (3) produced water from nearby oil and gas wells that would represent aqueous phase contaminants. On the basis of quantitative and spatial analysis, we identified that the "thermogenic methane contaminated" groundwater did not have similarities to produced water in terms of ionic character (e.g. Cl/TDS ratio), but rather to the "uncontaminated" groundwater. The analysis indicates that aquifer wells with demonstrated gas phase contamination have not been contacted by an aqueous phase from oil and gas operations according to the methodology we use in this study and the current groundwater quality data from COGCC. However, the research does not prove conclusively that this the case. The results may provide insight on contamination mechanisms since improperly sealed well casing may result in stray gas but not aqueous phase transport. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electrolytes in a nanometer slab-confinement: Ion-specific structure and solvation forces
NASA Astrophysics Data System (ADS)
Kalcher, Immanuel; Schulz, Julius C. F.; Dzubiella, Joachim
2010-10-01
We study the liquid structure and solvation forces of dense monovalent electrolytes (LiCl, NaCl, CsCl, and NaI) in a nanometer slab-confinement by explicit-water molecular dynamics (MD) simulations, implicit-water Monte Carlo (MC) simulations, and modified Poisson-Boltzmann (PB) theories. In order to consistently coarse-grain and to account for specific hydration effects in the implicit methods, realistic ion-ion and ion-surface pair potentials have been derived from infinite-dilution MD simulations. The electrolyte structure calculated from MC simulations is in good agreement with the corresponding MD simulations, thereby validating the coarse-graining approach. The agreement improves if a realistic, MD-derived dielectric constant is employed, which partially corrects for (water-mediated) many-body effects. Further analysis of the ionic structure and solvation pressure demonstrates that nonlocal extensions to PB (NPB) perform well for a wide parameter range when compared to MC simulations, whereas all local extensions mostly fail. A Barker-Henderson mapping of the ions onto a charged, asymmetric, and nonadditive binary hard-sphere mixture shows that the strength of structural correlations is strongly related to the magnitude and sign of the salt-specific nonadditivity. Furthermore, a grand canonical NPB analysis shows that the Donnan effect is dominated by steric correlations, whereas solvation forces and overcharging effects are mainly governed by ion-surface interactions. However, steric corrections to solvation forces are strongly repulsive for high concentrations and low surface charges, while overcharging can also be triggered by steric interactions in strongly correlated systems. Generally, we find that ion-surface and ion-ion correlations are strongly coupled and that coarse-grained methods should include both, the latter nonlocally and nonadditive (as given by our specific ionic diameters), when studying electrolytes in highly inhomogeneous situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk; Ridley, Trevor, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu; Hoffmann, Søren Vrønning, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu
New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onsetmore » has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2{sup 2}B{sub 1} ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b{sub 1}3s and 6b{sub 2}3s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.« less
NASA Astrophysics Data System (ADS)
Giorgiana Galon-Negru, Alina; Iulian Olariu, Romeo; Arsene, Cecilia
2018-04-01
This study assesses the effects of particle size and season on the content of the major inorganic and organic aerosol ionic components in the Iasi urban area, north-eastern Romania. Continuous measurements were carried out over 2016 using a cascade Dekati low-pressure impactor (DLPI) performing aerosol size classification in 13 specific fractions over the 0.0276-9.94 µm size range. Fine-particulate Cl-, NO3-, NH4+, and K+ exhibited clear minima during the warm season and clear maxima over the cold season, mainly due to trends in emission sources, changes in the mixing layer depth and specific meteorological conditions. Fine-particulate SO42- did not show much variation with respect to seasons. Particulate NH4+ and NO3- ions were identified as critical parameters controlling aerosol chemistry in the area, and their measured concentrations in fine-mode (PM2.5) aerosols were found to be in reasonable good agreement with modelled values for winter but not for summer. The likely reason is that NH4NO3 aerosols are lost due to volatility over the warm season. We found that NH4+ in PM2.5 is primarily associated with SO42- and NO3- but not with Cl-. Actually, indirect ISORROPIA-II estimations showed that the atmosphere in the Iasi area might be ammonia rich during both the cold and warm seasons, enabling enough NH3 to be present to neutralize H2SO4, HNO3, and HCl acidic components and to generate fine-particulate ammonium salts, in the form of (NH4)2SO4, NH4NO3, and NH4Cl. ISORROPIA-II runs allowed us to estimate that over the warm season ˜ 35 % of the total analysed samples had very strongly acidic pH (0-3), a fraction that rose to ˜ 43 % over the cold season. Moreover, while in the cold season the acidity is mainly accounted for by inorganic acids, in the warm ones there is an important contribution by other compounds, possibly organic. Indeed, changes in aerosol acidity would most likely impact the gas-particle partitioning of semi-volatile organic acids. Overall, we estimate that within the aerosol mass concentration the ionic mass brings a contribution as high as 40.6 %, with the rest still being unaccounted for.
Röper, K; Corbeil, D; Huttner, W B
2000-09-01
Membrane cholesterol-sphingolipid 'rafts', which are characterized by their insolubility in the non-ionic detergent Triton X-100 in the cold, have been implicated in the sorting of certain membrane proteins, such as placental alkaline phosphatase (PLAP), to the apical plasma membrane domain of epithelial cells. Here we show that prominin, an apically sorted pentaspan membrane protein, becomes associated in the trans-Golgi network with a lipid raft that is soluble in Triton X-100 but insoluble in another non-ionic detergent, Lubrol WX. At the cell surface, prominin remains insoluble in Lubrol WX and is selectively associated with microvilli, being largely segregated from the membrane subdomains containing PLAP. Cholesterol depletion results in the loss of prominin's microvillus-specific localization but does not lead to its complete intermixing with PLAP. We propose the coexistence within a membrane domain, such as the apical plasma membrane, of different cholesterol-based lipid rafts, which underlie the generation and maintenance of membrane subdomains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Tuan A.; Argyris, Dimitrios; Cole, David R.
2011-12-13
All-atom molecular dynamics simulations were conducted to study the dynamics of aqueous electrolyte solutions confined in slit-shaped silica nanopores of various degrees of protonation. Five degrees of protonation were prepared by randomly removing surface hydrogen atoms from fully protonated crystalline silica surfaces. Aqueous electrolyte solutions containing NaCl or CsCl salt were simulated at ambient conditions. In all cases, the ionic concentration was 1 M. The results were quantified in terms of atomic density distributions within the pores, and the self-diffusion coefficient along the direction parallel to the pore surface. We found evidence for ion-specific properties that depend on ion-surface, water-ion,more » and only in some cases ion-ion correlations. The degree of protonation strongly affects the structure, distribution, and the dynamic behavior of confined water and electrolytes. Cl -ions adsorb on the surface at large degrees of protonation, and their behavior does not depend significantly on the cation type (either Na + or Cs + ions are present in the systems considered). The cations show significant ion-specific behavior. Na + ions occupy different positions within the pore as the degree of protonation changes, while Cs + ions mainly remain near the pore center at all conditions considered. For a given degree of protonation, the planar self-diffusion coefficient of Cs + is always greater than that of Na + ions. The results are useful for better understanding transport under confinement, including brine behavior in the subsurface, with important applications such as environmental remediation.« less
Controlled nanopatterning of a polymerized ionic liquid in a strong electric field
Bocharova, Vera; Agapov, Alexander L.; Tselev, Alexander; ...
2014-12-17
Nanolithography has become a driving force in advancements of the modern day's electronics, allowing for miniaturization of devices and a steady increase of the calculation, power, and storage densities. Among various nanofabrication approaches, scanning probe techniques, including atomic force microscopy (AFM), are versatile tools for creating nanoscale patterns utilizing a range of physical stimuli such as force, heat, or electric field confined to the nanoscale. In this study, the potential of using the electric field localized at the apex of an AFM tip to induce and control changes in the mechanical properties of an ion containing polymer—a polymerized ionic liquidmore » (PolyIL)—on a very localized scale is explored. In particular, it is demonstrated that by means of AFM, one can form topographical features on the surface of PolyIL-based thin films with a significantly lower electric potential and power consumption as compared to nonconductive polymer materials. Lastly,, by tuning the applied voltage and ambient air humidity, control over dimensions of the formed structures is reproducibly achieved.« less
Van Meter, David S; Sun, Yaqin; Parker, Kevin M; Stalcup, Apryll M
2008-02-01
A surface-confined ionic liquid (SCIL) and a commercial quaternary amine silica-based stationary phase were characterized employing the linear solvation energy relationship (LSER) method in binary methanol/water mobile phases. The retention properties of the stationary phases were evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phases. The comparison reveals a difference in the hydrophobic and hydrogen bond acceptance interaction properties between the two phases. The anion exchange retention mechanism of the SCIL phase was demonstrated using nucleotides. The utility of the SCIL phase in predicting logk (IL/water) values by chromatographic methods is also discussed.
Bardhan, Soumik; Kundu, Kaushik; Das, Sajal; Poddar, Madhumita; Saha, Swapan K; Paul, Bidyut K
2014-09-15
Modification of the interface by blending of surfactants produces considerable changes in the elastic rigidity of the interface, which in turn affects the physicochemical properties of w/o microemulsions. Hence, it could be possible to tune the thermodynamic properties, microstructures and antimicrobial activity of microemulsions by using ionic/non-ionic mixed surfactants and polar lipophilic oil, which are widely used in biologically relevant systems. The present report was aimed at precise characterization of mixed cetyltrimethylammonium bromide and polyoxyethylene (23) lauryl ether microemulsions stabilized in 1-pentanol (Pn) and isopropyl myristate at different physicochemical conditions by employing phase studies, the dilution method, conductivity, DLS, FTIR (with HOD probing) and (1)H NMR measurements. Further, microbiological activities at different compositions were examined against two bacterial strains Bacillus subtilis and Escherichia coli at 303 K. The formation of mixed surfactant microemulsions was found to be spontaneous at all compositions, whereas it was endothermic at equimolar composition. FTIR and (1)H NMR measurements showed the existence of bulk-like, bound and trapped water molecules in confined environments. Interestingly, composition dependence of both highest and lowest inhibitory effects was observed against the bacterial strains, whereas similar features in spontaneity of microemulsion formation were also evidenced. These results suggested a close relationship between thermodynamic stability and antimicrobial activities. Such studies on polar lipophilic oil derived mixed surfactant microemulsions have not been reported earlier. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Carter, Brandon; Chamel, Nicolas; Haensel, Pawel
Phenomena such as pulsar frequency glitches are believed to be attributable to differential rotation of a current of "free" superfluid neutrons at densities above the "drip" threshold in the ionic crust of a neutron star. Such relative flow is shown to be locally describable by adaption of a canonical two-fluid treatment that emphasizes the role of the momentum covectors constructed by differentiation of action with respect to the currents, with allowance for stratification whereby the ionic number current may be conserved even when the ionic charge number Z is altered by beta processes. It is demonstrated that the gauge freedom to make different choices of the chemical basis determining which neutrons are counted as "free" does not affect their "superfluid" momentum covector, which must locally have the form of a gradient (though it does affect the "normal" momentum covector characterizing the protons and those neutrons that are considered to be "confined" in the nuclei). It is shown how the effect of "entrainment" (whereby the momentum directions deviate from those of the currents) is controlled by the (gauge-independent) mobility coefficient {K}, estimated in recent microscopical quantum mechanical investigations, which suggest that the corresponding (gauge-dependent) "effective mass" m⋆ of the free neutrons can become very large in some layers. The relation between this treatment of the crust layers and related work (using different definitions of "effective mass") intended for the deeper core layers is discussed.
NASA Astrophysics Data System (ADS)
Aidoud, D.; Etiemble, A.; Guy-Bouyssou, D.; Maire, E.; Le Bideau, J.; Guyomard, D.; Lestriez, B.
2016-10-01
We have developed flexible polymer-gel electrolytes based on a polyacrylate cross-linked matrix that confines an ionic liquid doped with a lithium salt. Free-standing solid electrolyte membrane is obtained after UV photo-polymerization of acrylic monomers dissolved inside the ionic liquid/lithium salt mixture. The liquid precursor of the photo-ionogel may also be directly deposited onto porous composite electrode, which results in all-solid state electrode/electrolyte stacking after UV illumination. Minor variations in the polymer component of the electrolyte formulation significantly affect the electrochemical behavior in LiFePO4/lithium and lithium/lithium cells. The rate performance increases with an increase of the ionic conductivity, which decreases with the polymer content and decreases with increasing oxygen content in the polyacrylate matrix. Their fairly low modulus endow them weak and beneficial pressure-sensitive-adhesive character. X-Rays Tomography shows that the solid-state photo-ionogel electrolytes keep their integrity upon cycling and that their surface remains smooth. The coulombic efficiency of LiFePO4/lithium cells increases with an increase of the adhesive strength of the photo-ionogel, suggesting a relationship between the contact intimacy at the lithium/photo-ionogel interface and the efficiency of the lithium striping/plating. In lithium/lithium cells, only the photo-ionogels with the higher adhesion strength are able to allow the reversible striping/plating of lithium.
NASA Technical Reports Server (NTRS)
Leif, Roald N.
1993-01-01
High temperature alteration of sedimentary organic matter associated with marine hydrothermal systems involves complex physical and chemical processes that are not easily measured in most natural systems. Many of these processes can be evaluated indirectly by examining the geochemistry of the hydrothermal system in the laboratory. In this investigation, an experimental organic geochemical approach to studying pyrolysis of sedimentary organic matter is applied to the hydrothermal system in the Guaymas Basin, Gulf of California. A general survey of hydrothermal oils and extractable organic matter (bitumen) in hydrothermally altered sediments identified several homologous series of alkanones associated with a high temperature hydrothermal origin. The alkanones range in carbon number from C11 to C30 with no carbon number preference. Alkan-2-ones are in highest concentrations, with lower amounts of 3-, 4-, 5- (and higher) homologs. The alkanones appear to be pyrolysis products synthesized under extreme hydrothermal conditions. Hydrous pyrolysis and confinement pyrolysis experiments were performed to simulate thermally enhanced diagenetic and catagenetic changes in the immature sedimentary organic matter. The extent of alteration was measured by monitoring the n-alkanes, acyclic isoprenoids, steroid and triterpenoid biomarkers, polycyclic aromatic hydrocarbons and alkanones. The results were compared to bitumen extracts from sediments which have been naturally altered by a sill intrusion and accompanied hydrothermal fluid flow. These pyrolysis experiments duplicated many of the organic matter transformations observed in the natural system. Full hopane and sterane maturation occurred after 48 hr in experiments at 330 deg C with low water/rock mass ratios (0.29). A variety of radical and ionic reactions are responsible for the organic compound conversions which occur under extreme hydrothermal conditions. Short duration pyrolysis experiments revealed that a portion of the hydrocarbons generated from kerogen was observed to go through alkene intermediates, and the rate of alkene isomerization was influenced by the ionic strength and catalytic mineral phases. Confinement of the organic pyrolysate to the bulk sediment accelerated the rates of the biomarker epimerization reactions, suggesting that these reactions are influenced strongly by the association of the inorganic matrix, and that the relative rates of some ionic and radical reactions can be influenced by the water/rock ratio during the pyrolysis experiments.
Resonant interatomic Coulombic decay in HeNe: Electron angular emission distributions
NASA Astrophysics Data System (ADS)
Mhamdi, A.; Trinter, F.; Rauch, C.; Weller, M.; Rist, J.; Waitz, M.; Siebert, J.; Metz, D.; Janke, C.; Kastirke, G.; Wiegandt, F.; Bauer, T.; Tia, M.; Cunha de Miranda, B.; Pitzer, M.; Sann, H.; Schiwietz, G.; Schöffler, M.; Simon, M.; Gokhberg, K.; Dörner, R.; Jahnke, T.; Demekhin, Ph. Â. V.
2018-05-01
We present a joint experimental and theoretical study of resonant interatomic Coulombic decay (RICD) in HeNe employing high resolution cold target recoil ion momentum spectroscopy and ab initio electronic structure and nuclear dynamics calculations. In particular, laboratory- and molecular-frame angular emission distributions of RICD electrons are examined in detail. The exciting-photon energy-dependent anisotropy parameter β (ω ) , measured for decay events that populate bound HeNe+ ions, is in agreement with the calculations performed for the ground ionic state X2Σ1/2 + . A contribution from the a2Π3 /2 final ionic state is found to be negligible. For the He +Ne+ fragmentation channel, the observed laboratory-frame angular distribution of RICD electrons is explained by a slow homogeneous dissociation of bound vibrational levels of the final ionic state A2Π1 /2 into vibrational continua of the lower lying states X2Σ1/2 + and a2Π3 /2 . Our calculations predict that the angular distributions of RICD electrons in the body-fixed dipole plane provide direct access to the electronic character (i.e., symmetry) of intermediate vibronic resonances. However, because of the very slow dissociation of the A2Π1 /2 state, the molecular-frame angular distributions of RICD electrons in the He +Ne+ fragmentation channel are inaccessible to our coincidence experiment.
MetILs 3: A Strategy for High Density Energy Storage Using Redox-Active Ionic Liquids
Small, Leo J.; Pratt, Harry D.; Staiger, Chad L.; ...
2017-07-26
We present a systematic approach for increasing the concentration of redox-active species in electrolytes for nonaqueous redox flow batteries (RFBs). Starting with an ionic liquid consisting of a metal coordination cation (MetIL), ferrocene-containing ligands and iodide anions are substituted incrementally into the structure. While chemical structures can be drawn for molecules with 10 m redox-active electrons (RAE), practical limitations such as melting point and phase stability constrain the structures to 4.2 m RAE, a 2.3× improvement over the original MetIL. Dubbed “MetILs 3,” these ionic liquids possess redox activity in the cation core, ligands, and anions. Throughout all compositions, infraredmore » spectroscopy shows the ethanolamine-based ligands primarily coordinate to the Fe 2+ core via hydroxyl groups. Calorimetry conveys a profound change in thermophysical properties, not only in melting temperature but also in suppression of a cold crystallization only observed in the original MetIL. Square wave voltammetry reveals redox processes characteristic of each molecular location. Testing a laboratory-scale RFB demonstrates Coulombic efficiencies >95% and increased voltage efficiencies due to more facile redox kinetics, effectively increasing capacity 4×. Application of this strategy to other chemistries, optimizing melting point and conductivity, can yield >10 m RAE, making nonaqueous RFB a viable technology for grid scale storage.« less
NASA Astrophysics Data System (ADS)
Mahanti, Subhendra D.; Hoang, Khang
2016-12-01
Thermoelectric materials are of great current interest for a number of energy-related applications such as waste heat recovery, terrestrial cooling, and thermoelectric power generation. There have been several significant recent advances in improving the thermoelectric figure of merit ZT; in some instances, ZT > 2 at high temperatures. Concepts like electron-crystal phonon-glass, dimensional confinement, nanostructuring, energy filtering, and intrinsic lattice anharmonicity have not only acted as guiding principles in synthesizing new materials but also for electronic structure engineering using theoretical calculations. In this review paper, we discuss these concepts and present a few examples of theoretical studies of electronic structure and transport properties illustrating how some of these ideas work. The four types of systems we discuss are quaternary chalcogenides LAST-m, nanoscale mixtures of half-Heusler and Heusler compounds, ternary chalcogenide compounds of type ABX2 where the electronic structure near the band gap depends sensitively on the ordering of A and B atoms, and naturally occurring bulk superlattices formed out of alternating ionic and semiconducting bilayers as in SrFAgTe.
NASA Astrophysics Data System (ADS)
Bhadauria, Ravi; Aluru, N. R.
2017-05-01
We propose an isothermal, one-dimensional, electroosmotic flow model for slit-shaped nanochannels. Nanoscale confinement effects are embedded into the transport model by incorporating the spatially varying solvent and ion concentration profiles that correspond to the electrochemical potential of mean force. The local viscosity is dependent on the solvent local density and is modeled using the local average density method. Excess contributions to the local viscosity are included using the Onsager-Fuoss expression that is dependent on the local ionic strength. A Dirichlet-type boundary condition is provided in the form of the slip velocity that is dependent on the macroscopic interfacial friction. This solvent-surface specific interfacial friction is estimated using a dynamical generalized Langevin equation based framework. The electroosmotic flow of Na+ and Cl- as single counterions and NaCl salt solvated in Extended Simple Point Charge (SPC/E) water confined between graphene and silicon slit-shaped nanochannels are considered as examples. The proposed model yields a good quantitative agreement with the solvent velocity profiles obtained from the non-equilibrium molecular dynamics simulations.
NASA Astrophysics Data System (ADS)
Fang, X.; Liu, X.-W.
2013-03-01
In Paper I, we presented a deep, long-slit spectrum of the bright Saturn nebula NGC 7009. Numerous permitted lines emitted by the C+, N+, O+ and Ne+ ions were detected. Gaussian profile fitting to the spectrum yielded more than 1000 lines, the majority of which are optical recombination lines (ORLs) of heavy-element ions. In the current paper, we present a critical analysis of the rich optical recombination spectrum of NGC 7009, in the context of the bi-abundance nebular model proposed by Liu et al. Transitions from individual multiplets are checked carefully for potential blended lines. The observed relative intensities are compared with the theoretical predictions based on high-quality effective recombination coefficients, now available for the recombination line spectrum of a number of heavy-element ions. The possibility of plasma diagnostics using the ORLs of various heavy-element ions is discussed in detail. The line ratios that can be used to determine electron temperature are presented for each ion, although there is still a lack of adequate atomic data and some of the lines are still not detected in the spectrum of NGC 7009 due to weakness and/or line blending. Plasma diagnostics based on the N II and O II recombination spectra both yield electron temperatures close to 1000 K, which is lower than those derived from the collisionally excited line (CEL) ratios (e.g. the [O III] and [N II] nebular-to-auroral line ratios; see Paper I for details) by nearly one order of magnitude. The very low temperatures yielded by the O II and N II ORLs indicate that they originate from very cold regions. The C2+/H+, N2+/H+, O2+/H+ and Ne2+/H+ ionic abundance ratios derived from ORLs are consistently higher, by about a factor of 5, than the corresponding values derived from CELs. In calculating the ORL ionic abundance ratios, we have used the newly available high-quality effective recombination coefficients, and adopted an electron temperature of ˜1000 K, as given by the ORL diagnostics and as a consequence presumably representing the physical conditions prevailing in the regions where the heavy-element ORLs arise. Measurements of the ultraviolet (UV) and infrared (IR) CELs from the literature are used to calculate CEL ionic abundance ratios when optical data are not available for the ionic species. A comparison of results of plasma diagnostics and abundance determinations for NGC 7009 points to the existence of `cold', metal-rich (i.e. H-deficient) inclusions embedded in the hot, diffuse ionized gas, first postulated by Liu et al. At electron temperatures yielded by the N II and O II ORLs, the predicted relative intensities of ORLs agree well with the observed values, indicating that the current quantum calculations of the recombination spectra of those two ionic species well represent the recombination processes under nebular conditions. Deviations from the LS coupling, noticed in an earlier quantitative spectroscopy by Liu et al. for the same object, are again confirmed, especially for recombination lines of the 4f-3d transition array. For N II, as well as for O II, the ionic abundances derived from different J-resolved transitions within a multiplet, or from the transitions belonging to different multiplets, agree with each other. This is another evidence that the new effective recombination coefficients are reliable. New calculations of the effective recombination coefficients for the Ne II lines at nebular temperatures and densities are needed.
Deriving Equations of State for Specific Lakes and Inland Seas from Laboratory Measurements
NASA Astrophysics Data System (ADS)
Andrulionis, Natalia; Zavialov, Ivan; Zavialov, Peter; Osadchiev, Alexander; Kolokolova, Alexandra; Alukaeva, Alevtina; Izhitskiy, Alexander; Izhitskaya, Elena
2017-04-01
The equation of state is the dependence of water density on temperature, salinity, and pressure. It is important in many respects, in particular, for numerical modeling of marine systems. The widely used UNESCO equation of state, as well as the more recent and general TEOS-10 equation, are intended for the ocean waters. Hence, they are confined to salinities below 40 ‰ and, even more restrictively, valid only for ionic salt composition characteristic for the ocean. Both conditions do not hold for many lakes. Moreover, significant deviations of the ionic composition from the oceanic one have been documented for coastal zones, especially those exposed to river discharges. Therefore, the objective of this study was to find equations of state for areas or water bodies with non-oceanic ionic salt composition. In order to obtain the required equations, we analyzed water samples obtained in expeditions of 2014-2016 from the Black Sea, the Aral Sea, Lake Issyk-Kul and Caspian Sea. The filtered samples were submitted to high accuracy (up to 0.00001 g/cm3) density measurements in laboratory using the Anton Paar DMA 5000M in the temperature range from 1 to 29°C. The absolute salinity values of the initial samples were obtained through the dry residue method. Further, we diluted the samples by purified deionized water to produce different salinities. To control the accuracy of the dilution process, we used a reference sample of standard IAPSO-certified seawater at 35‰. The density versus salinity and temperature data obtained thereby were then approximated by a best fitting 2-order polynomial surface using the least squares method. This procedure yielded the approximate empirical equations of state for the selected marine areas (the Russian Black Sea shelf) and inland water bodies (the Aral Sea, the Lake Issyk-Kul, the Caspian Sea). The newly derived equations - even the one for the Black Sea shelf - are different from the oceanic equation significantly within the confidence intervals. We also analyzed the salt content in all samples using the ionic chromotography method and the potentiometric titration method and discussed the relations between the ionic composition on the one hand and density on the other.
Cryosurgery with Pulsed Electric Fields
Daniels, Charlotte S.; Rubinsky, Boris
2011-01-01
This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to ablate cells in the high subzero freezing region of a cryosurgical lesion. PMID:22087224
"Cold air" and/or "talking" as cough triggers, a sign for the diagnosis of cough variant asthma.
Kanemitsu, Yoshihiro; Matsumoto, Hisako; Osman, Nuriamina; Oguma, Tsuyoshi; Nagasaki, Tadao; Izuhara, Yumi; Ito, Isao; Tajiri, Tomoko; Iwata, Toshiyuki; Niimi, Akio; Mishima, Michiaki
2016-11-01
Fractional exhaled nitric oxide (FeNO) is considered an alternative marker of eosinophilic airway inflammation and is sometimes incorporated in the diagnosis of asthma. However, many patients with cough variant asthma (CVA) demonstrate an FeNO in the normal range. Therefore, additional information is needed to confirm the diagnosis of CVA, particularly in patients with low FeNO levels. We aimed to investigate the feasibility of using cough triggers to help diagnose CVA. We studied 163 patients presenting with prolonged/chronic cough alone (including 104 CVA patients) who underwent FeNO measurements and an airway responsiveness test, and answered a questionnaire listing 18 cough triggers. The sensitivity and specificity of FeNO levels and cough triggers for the diagnosis of CVA were determined. CVA patients showed higher FeNO levels than non-CVA patients. When the cut-off value of FeNO levels for the diagnosis of CVA was set at 22ppb, its sensitivity was 57%. CVA patients more frequently responded to "cold air" and "talking" as cough triggers than non-CVA patients. When the analysis was confined to those with a low FeNO (<22ppb) group, the sensitivity and positive predictive values of "cold air" and "talking" for the diagnosis of CVA were 36% and 70% for "cold air", and 44% and 74% for "talking", respectively. Their specificity was 81%. "Cold air" was associated with airway hyperresponsiveness in all patients with an emphasis on those with low FeNO levels. "Cold air" and/or "talking" as cough triggers could be signs for the diagnosis of CVA, particularly when FeNO levels are low. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
Leroi, F; Joffraud, J J
2000-09-01
Simultaneous effect of salt and smoke on chemical indices of cold-smoked salmon and on its shelf life, estimated by sensory analysis, was investigated during vacuum-packed storage at 5 degrees C. Salting salmon immediately decreased the pH in the flesh, probably due to the increase of the ionic force, then pH remained constant during storage. Total volatile base nitrogen and trimethylamine productions were mainly inhibited by the salt concentration in the flesh, whereas phenol had no effect. A highly synergistic effect between the two factors was observed on the shelf life response. When a high level of salt (5% wt/wt) or phenol (1 mg 100 g(-1)) was added separately, shelf life did not exceed 1 week, whereas it could reach more than 10 weeks when salt and smoke were added simultaneously. Different combinations were examined for shelf life characteristics of the product. For instance, 2 and 3% (wt/wt) of salt with, respectively, 0.80 and 0.45 mg 100 g(-1) of phenol were sufficient for a 4-week shelf life, satisfying most of French cold-smoked salmon producers and consumers. Correlation between microbiological responses measured in a previous study and chemical and sensory data were also established.
NASA Astrophysics Data System (ADS)
Zhan, Zhibin; Di, Lanbo; Zhang, Xiuling; Li, Yanchun
2016-05-01
An atmospheric-pressure dielectric barrier discharge (DBD) gas-liquid cold plasma was employed to synthesize Cu-doped TiO2 nanoparticles in an aqueous solution with the assistance of [C2MIM]BF4 ionic liquid (IL) and using air as the working gas. The influences of the discharge voltage, IL and the amount of copper nitrite were investigated. X-ray diffraction, N2 adsorption-desorption measurements and UV-Vis spectroscopy were adopted to characterize the samples. The results showed that the specific surface area of TiO2 was promoted with Cu-doping (from 57.6 m2·g-1 to 106.2 m2·g-1 with 3% Cu-doping), and the content of anatase was increased. Besides, the band gap energy of TiO2 with Cu-doping decreased according to the UV-Vis spectroscopy test. The 3%Cu-IL-TiO2 samples showed the highest efficiency in degrading methylene blue (MB) dye solutions under simulated sunlight with an apparent rate constant of 0.0223 min-1, which was 1.2 times higher than that of non-doped samples. According to the characterization results, the reasons for the high photocatalytic activity were discussed. supported by National Natural Science Foundation of China (Nos. 21173028, 11505019), the Science and Technology Research Project of Liaoning Provincial Education Department (No. L2013464), the Scientific Research Foundation for the Doctor of Liaoning Province (No. 20131004), the Program for Liaoning Excellent Talents in University (No. LR2012042), and Dalian Jinzhou New District Science and Technology Plan Project (No. KJCX-ZTPY-2014-0001)
Molecular Theory for Electrokinetic Transport in pH-Regulated Nanochannels.
Kong, Xian; Jiang, Jian; Lu, Diannan; Liu, Zheng; Wu, Jianzhong
2014-09-04
Ion transport through nanochannels depends on various external driving forces as well as the structural and hydrodynamic inhomogeneity of the confined fluid inside of the pore. Conventional models of electrokinetic transport neglect the discrete nature of ionic species and electrostatic correlations important at the boundary and often lead to inconsistent predictions of the surface potential and the surface charge density. Here, we demonstrate that the electrokinetic phenomena can be successfully described by the classical density functional theory in conjunction with the Navier-Stokes equation for the fluid flow. The new theoretical procedure predicts ion conductivity in various pH-regulated nanochannels under different driving forces, in excellent agreement with experimental data.
Energy and mass balance in the three-phase interstellar medium
NASA Technical Reports Server (NTRS)
Wang, Zhong; Cowie, Lennox L.
1988-01-01
Details of the energy and mass balances are considered in the context of a three-phase interstellar medium. The rates of mass exchange between the different phases are derived based on the pressure variations created by supernova remnant expansions. It is shown that the pressure-confined warm and cold gases have stable temperatures under a variety of interstellar conditions. The three-phase quasi-static configuration is found to be a natural outcome, and both warm and cold phases generally contribute about half of the total mass density to the diffuse interstellar gas. The model is also likely to be self-regulatory in the sense that variations of the input parameters do not strongly alter the general result, which is consistent with most current observations. The consequences of extreme conditions on this model are considered, and the possible implications for interstellar medium in other galaxies are briefly discussed.
Cesium-Induced Ionic Conduction through a Single Nanofluidic Pore Modified with Calixcrown Moieties.
Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Cervera, Javier; Mafe, Salvador; Niemeyer, Christof M; Ensinger, Wolfgang
2017-09-12
We demonstrate experimentally and theoretically a nanofluidic device for the selective recognition of the cesium ion by exploiting host-guest interactions inside confined geometry. For this purpose, a host molecule, i.e., the amine-terminated p-tert-butylcalix[4]arene-crown (t-BuC[4]C-NH 2 ), is successfully synthesized and functionalized on the surface of a single conical nanopore fabricated in a poly(ethylene terephthalate) (PET) membrane through carbodiimide coupling chemistry. On exposure to the cesium cation, the t-BuC[4]C-Cs + complex is formed through host-guest interaction, leading to the generation of positive fixed charges on the pore surface. The asymmetrical distribution of these groups along the conical nanopore leads to the electrical rectification observed in the current-voltage (I-V) curve. On the contrary, other alkali cations are not able to induce any significant change in the rectification characteristics of the nanopore. The success of the chemical modification is monitored from the changes in the electrical readout of the nanopore. Theoretical results based on the Nernst-Planck and Poisson equations further demonstrate the validity of the experimental approach to the cesium-induced ionic conduction of the nanopore.
Characterizing the surface charge of synthetic nanomembranes by the streaming potential method
Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo
2010-01-01
The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt concentration on the ionic mobilities and the thickness of the deposited layer of PEG. Theoretical interpretation of the streaming potential data collected from silicon membranes having nanoscale pore sizes, with/without pore wall surface modification with PEG, indicates that finite electric double layer (EDL) effects in the pore-confined electrolyte significantly affect the interpretation of the membrane charge and that surface modification with PEG leads to a reduction in the pore wall surface charge density. The theoretical model is also used to study the relative significance of the following uniquely nanoscale factors affecting the interpretation of streaming potential in moderate to strongly charged pores: altered net charge convection by applied pressure differentials, surface-charge effects on ionic conduction, and electroosmotic convection of charges. PMID:20462592
Manzanilla-Granados, Héctor M; Saint-Martín, Humberto; Fuentes-Azcatl, Raúl; Alejandre, José
2015-07-02
The solubility of NaCl, an equilibrium between a saturated solution of ions and a solid with a crystalline structure, was obtained from molecular dynamics simulations using the SPC/E and TIP4P-Ew water models. Four initial setups on supersaturated systems were tested on sodium chloride (NaCl) solutions to determine the equilibrium conditions and computational performance: (1) an ionic solution confined between two crystal plates of periodic NaCl, (2) a solution with all the ions initially distributed randomly, (3) a nanocrystal immersed in pure water, and (4) a nanocrystal immersed in an ionic solution. In some cases, the equilibration of the system can take several microseconds. The results from this work showed that the solubility of NaCl was the same, within simulation error, for the four setups, and in agreement with previously reported values from simulations with the setup (1). The system of a nanocrystal immersed in supersaturated solution was found to equilibrate faster than others. In agreement with laser-Doppler droplet measurements, at equilibrium with the solution the crystals in all the setups had a slight positive charge.
Lan, Tian; Soavi, Francesca; Marcaccio, Massimo; Brunner, Pierre-Louis; Sayago, Jonathan; Santato, Clara
2018-05-24
The n-type organic semiconductor phenyl-C61-butyric acid methyl ester (PCBM), a soluble fullerene derivative well investigated for organic solar cells and transistors, can undergo several successive reversible, diffusion-controlled, one-electron reduction processes. We exploited such processes to shed light on the correlation between electron transfer properties, ionic and electronic transport as well as device performance in ionic liquid (IL)-gated transistors. Two ILs were considered, based on bis(trifluoromethylsulfonyl)imide [TFSI] as the anion and 1-ethyl-3-methylimidazolium [EMIM] or 1-butyl-1-methylpyrrolidinium [PYR14] as the cation. The aromatic structure of [EMIM] and its lower steric hindrance with respect to [PYR14] favor a 3D (bulk) electrochemical doping. As opposed to this, for [PYR14] the doping seems to be 2D (surface-confined). If the n-doping of the PCBM is pursued beyond the first electrochemical process, the transistor current vs. gate-source voltage plots in [PYR14][TFSI] feature a maximum that points to the presence of finite windows of high conductivity in IL-gated PCBM transistors.
Chemical composition and variability of the waters of the Edwards Plateau, central Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groeger, A.W.; Gustafson, J.J.
1994-12-31
The surface waters of the karstic Edwards Plateau, southcentral Texas, are quite similar in many of their chemical characteristics. The ionic composition of the water was dominated by calcium and alkalinity (mostly bicarbonate) acquired through limestone weathering, and the ionic composition (in equivalents) was Ca>Mg>Na>K and alkalinity >Cl and SO{sub 4}. The median specific conductance and total dissolved solids ranged from 394 to 535 {mu}S cm{sup {minus}1} and 220 and 327 mg L{sup {minus}1}, respectively. The streams were always near or at supersaturation with respect to calcium carbonate, and the dynamics of calcium carbonate dissolution and precipitation tended to maintainmore » the dissolved substances at a fairly constant level. This may have been enhanced by the intimate contact of water and bedrock characteristic of karst drainages. Specific conductance, Ca, and alkalinity all decreased at higher summer temperatures. Many of the streams on the plateau maintained a constant level or actually increased concentrations of total dissolved substances at increased flow rates. These waters acquired significant quantities of solute as they flow through the confine Edwards Aquifer, including alkalinity, Ca, Mg, Na, Cl, and NO{sub 3}.« less
Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.
1977-01-01
A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.
Pauli structures arising from confined particles interacting via a statistical potential
NASA Astrophysics Data System (ADS)
Batle, Josep; Ciftja, Orion; Farouk, Ahmed; Alkhambashi, Majid; Abdalla, Soliman
2017-09-01
There have been suggestions that the Pauli exclusion principle alone can lead a non-interacting (free) system of identical fermions to form crystalline structures dubbed Pauli crystals. Single-shot imaging experiments for the case of ultra-cold systems of free spin-polarized fermionic atoms in a two-dimensional harmonic trap appear to show geometric arrangements that cannot be characterized as Wigner crystals. This work explores this idea and considers a well-known approach that enables one to treat a quantum system of free fermions as a system of classical particles interacting with a statistical interaction potential. The model under consideration, though classical in nature, incorporates the quantum statistics by endowing the classical particles with an effective interaction potential. The reasonable expectation is that possible Pauli crystal features seen in experiments may manifest in this model that captures the correct quantum statistics as a first order correction. We use the Monte Carlo simulated annealing method to obtain the most stable configurations of finite two-dimensional systems of confined particles that interact with an appropriate statistical repulsion potential. We consider both an isotropic harmonic and a hard-wall confinement potential. Despite minor differences, the most stable configurations observed in our model correspond to the reported Pauli crystals in single-shot imaging experiments of free spin-polarized fermions in a harmonic trap. The crystalline configurations observed appear to be different from the expected classical Wigner crystal structures that would emerge should the confined classical particles had interacted with a pair-wise Coulomb repulsion.
Interfacial water on crystalline silica: a comparative molecular dynamics simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Tuan A.; Argyris, Dimitrios; Papavassiliou, Dimitrios V.
2011-03-03
All-atom molecular dynamics simulations were conducted to study the dynamics of aqueous electrolyte solutions confined in slit-shaped silica nanopores of various degrees of protonation. Five degrees of protonation were prepared by randomly removing surface hydrogen atoms from fully protonated crystalline silica surfaces. Aqueous electrolyte solutions containing NaCl or CsCl salt were simulated at ambient conditions. In all cases, the ionic concentration was 1 M. The results were quantified in terms of atomic density distributions within the pores, and the self-diffusion coefficient along the direction parallel to the pore surface. We found evidence for ion-specific properties that depend on ion surface,more » water ion, and only in some cases ion ion correlations. The degree of protonation strongly affects the structure, distribution, and the dynamic behavior of confined water and electrolytes. Cl ions adsorb on the surface at large degrees of protonation, and their behavior does not depend significantly on the cation type (either Na+ or Cs+ ions are present in the systems considered). The cations show significant ion-specific behavior. Na+ ions occupy different positions within the pore as the degree of protonation changes, while Cs+ ions mainly remain near the pore center at all conditions considered. For a given degree of protonation, the planar self-diffusion coefficient of Cs+ is always greater than that of Na+ ions. The results are useful for better understanding transport under confinement, including brine behavior in the subsurface, with important applications such as environmental remediation.« less
Burney, Patrick R; Nordwald, Erik M; Hickman, Katie; Kaar, Joel L; Pfaendtner, Jim
2015-04-01
Molecular simulations of the enzymes Candida rugosa lipase and Bos taurus α-chymotrypsin in aqueous ionic liquids 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium ethyl sulfate were used to study the change in enzyme-solvent interactions induced by modification of the enzyme surface charge. The enzymes were altered by randomly mutating lysine surface residues to glutamate, effectively decreasing the net surface charge by two for each mutation. These mutations resemble succinylation of the enzyme by chemical modification, which has been shown to enhance the stability of both enzymes in ILs. After establishing that the enzymes were stable on the simulated time scales, we focused the analysis on the organization of the ionic liquid substituents about the enzyme surface. Calculated solvent charge densities show that for both enzymes and in both solvents that changing positively charged residues to negative charge does indeed increase the charge density of the solvent near the enzyme surface. The radial distribution of IL constituents with respect to the enzyme reveals decreased interactions with the anion are prevalent in the modified systems when compared to the wild type, which is largely accompanied by an increase in cation contact. Additionally, the radial dependence of the charge density and ion distribution indicates that the effect of altering enzyme charge is confined to short range (≤1 nm) ordering of the IL. Ultimately, these results, which are consistent with that from prior experiments, provide molecular insight into the effect of enzyme surface charge on enzyme stability in ILs. © 2015 Wiley Periodicals, Inc.
NEPTUNE'S WILD DAYS: CONSTRAINTS FROM THE ECCENTRICITY DISTRIBUTION OF THE CLASSICAL KUIPER BELT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Rebekah I.; Murray-Clay, Ruth, E-mail: rdawson@cfa.harvard.edu
2012-05-01
Neptune's dynamical history shaped the current orbits of Kuiper Belt objects (KBOs), leaving clues to the planet's orbital evolution. In the 'classical' region, a population of dynamically 'hot' high-inclination KBOs overlies a flat 'cold' population with distinct physical properties. Simulations of qualitatively different histories for Neptune, including smooth migration on a circular orbit or scattering by other planets to a high eccentricity, have not simultaneously produced both populations. We explore a general Kuiper Belt assembly model that forms hot classical KBOs interior to Neptune and delivers them to the classical region, where the cold population forms in situ. First, wemore » present evidence that the cold population is confined to eccentricities well below the limit dictated by long-term survival. Therefore, Neptune must deliver hot KBOs into the long-term survival region without excessively exciting the eccentricities of the cold population. Imposing this constraint, we explore the parameter space of Neptune's eccentricity and eccentricity damping, migration, and apsidal precession. We rule out much of parameter space, except where Neptune is scattered to a moderately eccentric orbit (e > 0.15) and subsequently migrates a distance {Delta}a{sub N} = 1-6 AU. Neptune's moderate eccentricity must either damp quickly or be accompanied by fast apsidal precession. We find that Neptune's high eccentricity alone does not generate a chaotic sea in the classical region. Chaos can result from Neptune's interactions with Uranus, exciting the cold KBOs and placing additional constraints. Finally, we discuss how to interpret our constraints in the context of the full, complex dynamical history of the solar system.« less
THE CANADA-FRANCE ECLIPTIC PLANE SURVEY-L3 DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavelaars, J. J.; Jones, R. L.; Murray, I.
2009-06-15
We report the orbital distribution of the trans-Neptunian comets discovered during the first discovery year of the Canada-France Ecliptic Plane Survey (CFEPS). CFEPS is a Kuiper Belt object survey based on observations acquired by the Very Wide component of the Canada-France-Hawaii Telescope Legacy Survey (LS-VW). The first year's detections consist of 73 Kuiper Belt objects, 55 of which have now been tracked for three years or more, providing precise orbits. Although this sample size is small compared to the world-wide inventory, because we have an absolutely calibrated and extremely well-characterized survey (with known pointing history) we are able to de-biasmore » our observed population and make unbiased statements about the intrinsic orbital distribution of the Kuiper Belt. By applying the (publically available) CFEPS Survey Simulator to models of the true orbital distribution and comparing the resulting simulated detections to the actual detections made by the survey, we are able to rule out several hypothesized Kuiper Belt object orbit distributions. We find that the main classical belt's so-called 'cold' component is confined in semimajor axis (a) and eccentricity (e) compared to the more extended 'hot' component; the cold component is confined to lower e and does not stretch all the way out to the 2:1 resonance but rather depletes quickly beyond a = 45 AU. For the cold main classical belt population we find a robust population estimate of N(H{sub g} < 10) = 50 {+-} 5 x 10{sup 3} and find that the hot component of the main classical belt represents {approx}60% of the total population. The inner classical belt (sunward of the 3:2 mean-motion resonance) has a population of roughly 2000 trans-Neptunian objects with absolute magnitudes H{sub g} < 10, and may not share the inclination distribution of the main classical belt. We also find that the plutino population lacks a cold low-inclination component, and so, the population is somewhat larger than recent estimates; our analysis shows a plutino population of N(H{sub g} < 10){approx} 25{sup +25} {sub -12} x 10{sup 3}compared to our estimate of the size of main classical Kuiper Belt population of N(H{sub g} < 10) {approx} (126{sup +50} {sub -46}) x 10{sup 3}.« less
The Packing and Jamming of Real Polymer Chains
NASA Astrophysics Data System (ADS)
Xue, Gi; Teng, Chao
2010-03-01
Jamming make a hope to unifying theme for granular materials, glasses and threshold behavior in materials. Here we experimentally prepared a real polymer (polystyrene, PS) with various packing density which was described by inter-segment distances (r) detected by NMR. We cold-pressed PS powder at 20 ^oC (with shearing) and then released the pressure. We found that a transparent pellet with high modulus was formed. PS is usually manufactured by a hot-melting process at 180 ^oC. The rigidity and transparency of our cold-pressed pellet and its accuracy of the form are testimony that the PS powder once flowed under cold compression to take the shape of its container. This shear-induced melting is exactly what is expected within the jamming picture. By measuring r and the applied pressure σ under which the polymer chain starts to flow, we drew a schematic jamming phase diagram. The σ-r curve for a real polymer is convex at r < 0.5 nm, while it becomes concave as r is larger than 1 nm. It is the van der Waals attraction that acts as a confining pressure on segments, and makes the σ-r curve convex on the very short scales.
Iterative Methods to Solve Linear RF Fields in Hot Plasma
NASA Astrophysics Data System (ADS)
Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo
2014-10-01
Most magnetic plasma confinement devices use radio frequency (RF) waves for current drive and/or heating. Numerical modeling of RF fields is an important part of performance analysis of such devices and a predictive tool aiding design and development of future devices. Prior attempts at this modeling have mostly used direct solvers to solve the formulated linear equations. Full wave modeling of RF fields in hot plasma with 3D nonuniformities is mostly prohibited, with memory demands of a direct solver placing a significant limitation on spatial resolution. Iterative methods can significantly increase spatial resolution. We explore the feasibility of using iterative methods in 3D full wave modeling. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating along test particle orbits. The wave equation is discretized using a finite difference approach. The initial guess is important in iterative methods, and we examine different initial guesses including the solution to the cold plasma wave equation. Work is supported by the U.S. DOE SBIR program.
Parametric Decay Instability of Near-Acoustic Waves in Fluid and Kinetic Regimes
NASA Astrophysics Data System (ADS)
Affolter, M.; Anderegg, F.; Driscoll, C. F.; Valentini, F.
2016-10-01
We present quantitative measurements of parametric wave-wave coupling rates and decay instabilities in the range 10 meV
NASA Astrophysics Data System (ADS)
Gautam, Siddharth S.; Ok, Salim; Cole, David R.
2017-06-01
Geo-fluids consisting of C-O-H volatiles are the main mode of transport of mass and energy throughout the lithosphere and are commonly found confined in pores, grain boundaries and fractures. The confinement of these fluids by porous media at the length scales of a few nanometers gives rise to numerous physical and chemical properties that deviate from the bulk behavior. Studying the structural and dynamical properties of these confined fluids at the length and time scales of nanometers and picoseconds respectively forms an important component of understanding their behavior. To study confined fluids, non-destructive penetrative probes are needed. Nuclear magnetic resonance (NMR) by virtue of its ability to monitor longitudinal and transverse magnetization relaxations of spins, and chemical shifts brought about by the chemical environment of a nucleus, and measuring diffusion coefficient provides a good opportunity to study dynamics and chemical structure at the molecular length and time scales. Another technique that gives insights into the dynamics and structure at these length and time scales is neutron scattering (NS). This is because the wavelength and energies of cold and thermal neutrons used in scattering experiments are in the same range as the spatial features and energies involved in the dynamical processes occurring at the molecular level. Molecular Dynamics (MD) simulations on the other hand help with the interpretation of the NMR and NS data. Simulations can also supplement the experiments by calculating quantities not easily accessible to experiments. Thus using NMR, NS and MD simulations in conjunction, a complete description of the molecular structure and dynamics of confined geo-fluids can be obtained. In the current review, our aim is to show how a synergistic use of these three techniques has helped shed light on the complex behavior of water, CO2, and low molecular weight hydrocarbons. After summarizing the theoretical backgrounds of the techniques, we will discuss some recent examples of the use of NMR, NS, and MD simulations to the study of confined fluids.
NASA Astrophysics Data System (ADS)
Costa, D.; Pomeroy, J. W.; Wheater, H. S.
2017-12-01
Early ionic pulses in spring snowmelt can cause the temporary acidification of streams and account for a significant portion of the total annual nutrient export, particularly in seasonally snow-covered areas where the frozen ground may limit runoff-soil contact and cause the rapid delivery of these ions to streams. Ionic pulses are a consequence of snow ion exclusion, a process induced by snow metamorphism where ions are segregated from the snow grains losing mass to the surface of the grains gaining mass. While numerous studies have been successful in providing quantitative evidence of this process, few mechanistic mathematical models have been proposed for diagnostic and prediction. A few early modelling attempts have been successful in capturing this process assuming transport through porous media with variable porosity, however their implementation is difficult because they require complex models of snow physics to resolve the evolution of in-snow properties and processes during snowmelt, such as heat conduction, metamorphism, melt and water flow. Furthermore, initial snowpack to snow-surface ion concentration ratios are difficult to measure but are required to initiate these models and ion exclusion processes are not represented in a physically-based transparent fashion. In this research, a standalone numerical model has been developed to capture ionic pulses in snowmelt by emulating solute leaching from snow grains during melt and its subsequent transport by the percolating meltwater. Estimating snow porosity and water content dynamics is shown to be a viable alternative to deployment of complex snow physics models for this purpose. The model was applied to four study sites located in the Arctic and in Sierra Nevada to test for different climatic and hydrological conditions. The model compares very well with observations and could capture both the timing and magnitude of early melt ionic pulses accurately. This study demonstrates how physically based approaches can provide successful simulations of the spatial and temporal fluxes of snowmelt ions, which can be used to improve the prediction of nutrient export in cold regions for the spring freshet.
NASA Astrophysics Data System (ADS)
Clark, M. P.; Nijssen, B.; Lundquist, J. D.; Luce, C. H.; Musselman, K. N.; Wayand, N. E.; Ou, M.; Lapo, K. E.
2016-12-01
Early ionic pulses in spring snowmelt can cause the temporary acidification of streams and account for a significant portion of the total annual nutrient export, particularly in seasonally snow-covered areas where the frozen ground may limit runoff-soil contact and cause the rapid delivery of these ions to streams. Ionic pulses are a consequence of snow ion exclusion, a process induced by snow metamorphism where ions are segregated from the snow grains losing mass to the surface of the grains gaining mass. While numerous studies have been successful in providing quantitative evidence of this process, few mechanistic mathematical models have been proposed for diagnostic and prediction. A few early modelling attempts have been successful in capturing this process assuming transport through porous media with variable porosity, however their implementation is difficult because they require complex models of snow physics to resolve the evolution of in-snow properties and processes during snowmelt, such as heat conduction, metamorphism, melt and water flow. Furthermore, initial snowpack to snow-surface ion concentration ratios are difficult to measure but are required to initiate these models and ion exclusion processes are not represented in a physically-based transparent fashion. In this research, a standalone numerical model has been developed to capture ionic pulses in snowmelt by emulating solute leaching from snow grains during melt and its subsequent transport by the percolating meltwater. Estimating snow porosity and water content dynamics is shown to be a viable alternative to deployment of complex snow physics models for this purpose. The model was applied to four study sites located in the Arctic and in Sierra Nevada to test for different climatic and hydrological conditions. The model compares very well with observations and could capture both the timing and magnitude of early melt ionic pulses accurately. This study demonstrates how physically based approaches can provide successful simulations of the spatial and temporal fluxes of snowmelt ions, which can be used to improve the prediction of nutrient export in cold regions for the spring freshet.
Pak, Alexander J; Hwang, Gyeong S
2016-12-21
Electrochemical double layer capacitors, or supercapacitors, are high-power energy storage devices that consist of large surface area electrodes (filled with electrolyte) to accommodate ion packing in accordance with classical electric double layer (EDL) theory. Nanoporous carbons (NPCs) have recently emerged as a class of electrode materials with the potential to dramatically improve the capacitance of these devices by leveraging ion confinement. However, the molecular mechanisms underlying such enhancements are a clear departure from EDL theory and remain an open question. In this paper, we present the concept of ion reorganization kinetics during charge/discharge cycles, especially within highly confining subnanometer pores, which necessarily dictates the capacitance. Our molecular dynamics voltammetric simulations of ionic liquid immersed in NPC electrodes (of varying pore size distributions) demonstrate that the most efficient ion migration, and thereby largest capacitance, is facilitated by nonuniformity of shape (e.g., from cylindrical to slitlike) along nanopore channels. On the basis of this understanding, we propose that a new structural descriptor, coined as the pore shape factor, can provide a new avenue for materials optimization. These findings also present a framework to understand and evaluate ion migration kinetics within charged nanoporous materials.
Efficient injection of an intense positron beam into a dipole magnetic field
NASA Astrophysics Data System (ADS)
Saitoh, H.; Stanja, J.; Stenson, E. V.; Hergenhahn, U.; Niemann, H.; Pedersen, T. Sunn; Stoneking, M. R.; Piochacz, C.; Hugenschmidt, C.
2015-10-01
We have demonstrated efficient injection and trapping of a cold positron beam in a dipole magnetic field configuration. The intense 5 eV positron beam was provided by the NEutron induced POsitron source MUniCh facility at the Heinz Maier-Leibnitz Zentrum, and transported into the confinement region of the dipole field trap generated by a supported, permanent magnet with 0.6 T strength at the pole faces. We achieved transport into the region of field lines that do not intersect the outer wall using the {E}× {B} drift of the positron beam between a pair of tailored plates that created the electric field. We present evidence that up to 38% of the beam particles are able to reach the intended confinement region and make at least a 180° rotation around the magnet where they annihilate on an insertable target. When the target is removed and the {E}× {B} plate voltages are switched off, confinement of a small population persists for on the order of 1 ms. These results lend optimism to our larger aims to apply a magnetic dipole field configuration for trapping of both positrons and electrons in order to test predictions of the unique properties of a pair plasma.
Chatzakis, Ioannis; Krishna, Athith; Culbertson, James; Sharac, Nicholas; Giles, Alexander J; Spencer, Michael G; Caldwell, Joshua D
2018-05-01
Phonon polaritons (PhPs) are long-lived electromagnetic modes that originate from the coupling of infrared (IR) photons with the bound ionic lattice of a polar crystal. Cubic-boron nitride (cBN) is such a polar, semiconductor material which, due to the light atomic masses, can support high-frequency optical phonons. Here we report on random arrays of cBN nanostructures fabricated via an unpatterned reactive ion etching process. Fourier-transform infrared reflection spectra suggest the presence of localized surface PhPs within the reststrahlen band, with quality factors in excess of 38 observed. These can provide the basis of next-generation IR optical components such as antennas for communication, improved chemical spectroscopies, and enhanced emitters, sources, and detectors.
Computational prediction of the electronic structure and optical properties of graphene-like β-CuN3.
Zhang, Xu; Zhao, Xudong; Jing, Yu; Wu, Dihua; Zhou, Zhen
2015-12-21
Recently, a new polymorph of the highly energetic phase β-CuN3 has been synthesized. By hybrid density functional computations, we investigated the structural, electronic and optical properties of β-CuN3 bulk and layers. Due to the quantum confinement effect, the band gap of the monolayer (2.39 eV) is larger than that of the bulk (2.23 eV). The layer number affects the configuration and the band gap. β-CuN3 shows both ionic and covalent characters, and could be stable in the infrared and visible spectrum and would decompose under ultraviolet light. The results imply that bulk β-CuN3 could be used as an energetic material.
Formation of crystal-like structures and branched networks from nonionic spherical micelles
NASA Astrophysics Data System (ADS)
Cardiel, Joshua J.; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q.
2015-12-01
Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.
METHOD OF PRODUCING ENERGETIC PLASMA FOR NEUTRON PRODUCTION
Bell, P.R.; Simon, A.; Mackin, R.J. Jr.
1961-01-24
A method is given for producing an energetic plasma for neutron production. An energetic plasma is produced in a small magnetically confined subvolume of the device by providing a selected current of energetic molecular ions at least greater than that required for producing a current of atomic ions sufficient to achieve "burnout" of neutral particles in the subvolume. The atomic ions are provided by dissociation of the molecular ions by an energetic arc discharge within the subvolume. After burnout, the arc discharge is terminated, the magnetic fields increased, and cold fuel feed is substituted for the molecular ions. After the subvolume is filled with an energetic plasma, the size of the magnetically confined subvolume is gradually increased until the entire device is filled with an energetic neutron producing plasma. The reactions which take place in the device to produce neutrons will generate a certain amount of heat energy which may be converted by the use of a conventional heat cycle to produce electrical energy.
Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction.
Turpin, A; Polo, J; Loiko, Yu V; Küber, J; Schmaltz, F; Kalkandjiev, T K; Ahufinger, V; Birkl, G; Mompart, J
2015-01-26
We present a novel approach for the optical manipulation of neutral atoms in annular light structures produced by the phenomenon of conical refraction occurring in biaxial optical crystals. For a beam focused to a plane behind the crystal, the focal plane exhibits two concentric bright rings enclosing a ring of null intensity called the Poggendorff ring. We demonstrate both theoretically and experimentally that the Poggendorff dark ring of conical refraction is confined in three dimensions by regions of higher intensity. We derive the positions of the confining intensity maxima and minima and discuss the application of the Poggendorff ring for trapping ultra-cold atoms using the repulsive dipole force of blue-detuned light. We give analytical expressions for the trapping frequencies and potential depths along both the radial and the axial directions. Finally, we present realistic numerical simulations of the dynamics of a 87Rb Bose-Einstein condensate trapped inside the Poggendorff ring which are in good agreement with corresponding experimental results.
Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization
NASA Astrophysics Data System (ADS)
Winterberg, F.
2016-01-01
Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.
Kadhim, Abdulhadi; Salim, Evan T; Fayadh, Saeed M; Al-Amiery, Ahmed A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar
2014-01-01
Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm(2); t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated.
NASA Astrophysics Data System (ADS)
Beklemishev, A. D.; Tajima, T.
1994-02-01
The authors propose a concept of thermonuclear fusion reactor in which the plasma pressure is balanced by direct gas-wall interaction in a high-pressure vessel. The energy confinement is achieved by means of the self-contained toroidal magnetic configuration sustained by an external current drive or charged fusion products. This field structure causes the plasma pressure to decrease toward the inside of the discharge and thus it should be magnetohydrodynamically stable. The maximum size, temperature and density profiles of the reactor are estimated. An important feature of confinement physics is the thin layer of cold gas at the wall and the adjacent transitional region of dense arc-like plasma. The burning condition is determined by the balance between these nonmagnetized layers and the current-carrying plasma. They suggest several questions for future investigation, such as the thermal stability of the transition layer and the possibility of an effective heating and current drive behind the dense edge plasma. The main advantage of this scheme is the absence of strong external magnets and, consequently, potentially cheaper design and lower energy consumption.
Plasma Centrifuge Heat Engine - a Route to Non-thermal p- 11 B Fusion
NASA Astrophysics Data System (ADS)
Barnes, D. C.
2007-06-01
An invention [US Patent and Trademark Office App. Nos. 60/596567 (2005) and 60/766791 (2006)] combines centrifugal and dipole confinement, with recent oscillating plasma theory. The plasma undergoes compression/expansion (C/E), parallel to B by centrifugal force and perpendicular to B by B variation, providing a thermal cycle which recovers most (>95%) of heating as mechanical energy. This gives a "Q-amplifier" for beam-target systems. Centrifugally confined Boron plasma undergoes C/E by slow, cross-B interchange activity. Parallel and perpendicular C/E are matched by the rotation profile which arises naturally. Hot plasma is heated and cold plasma is cooled. Beam-target fusion reactions occur in the hot plasma region and expansion returns most of the heat energy as rotation energy. Rotation energy, in turn, produces waves which drive protons to an energy near the fusion peak cross section. A possible machine, including the arrangement of magnets and HV, is described.
Unconventional Bose—Einstein Condensations from Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Wu, Cong-Jun; Ian, Mondragon-Shem; Zhou, Xiang-Fa
2011-09-01
According to the “no-node" theorem, the many-body ground state wavefunctions of conventional Bose—Einstein condensations (BEC) are positive-definite, thus time-reversal symmetry cannot be spontaneously broken. We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm. We focus on a subtle case of isotropic Rashba spin-orbit coupling and the spin-independent interaction. In the limit of the weak confining potential, the condensate wavefunctions are frustrated at the Hartree—Fock level due to the degeneracy of the Rashba ring. Quantum zero-point energy selects the spin-spiral type condensate through the “order-from-disorder" mechanism. In a strong harmonic confining trap, the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture. In both cases, time-reversal symmetry is spontaneously broken. These phenomena can be realized in both cold atom systems with artificial spin-orbit couplings generated from atom-laser interactions and exciton condensates in semi-conductor systems.
Function and biotechnology of extremophilic enzymes in low water activity
2012-01-01
Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology. PMID:22480329
Chaudhry, Jehanzeb Hameed; Comer, Jeffrey; Aksimentiev, Aleksei; Olson, Luke N.
2013-01-01
The conventional Poisson-Nernst-Planck equations do not account for the finite size of ions explicitly. This leads to solutions featuring unrealistically high ionic concentrations in the regions subject to external potentials, in particular, near highly charged surfaces. A modified form of the Poisson-Nernst-Planck equations accounts for steric effects and results in solutions with finite ion concentrations. Here, we evaluate numerical methods for solving the modified Poisson-Nernst-Planck equations by modeling electric field-driven transport of ions through a nanopore. We describe a novel, robust finite element solver that combines the applications of the Newton's method to the nonlinear Galerkin form of the equations, augmented with stabilization terms to appropriately handle the drift-diffusion processes. To make direct comparison with particle-based simulations possible, our method is specifically designed to produce solutions under periodic boundary conditions and to conserve the number of ions in the solution domain. We test our finite element solver on a set of challenging numerical experiments that include calculations of the ion distribution in a volume confined between two charged plates, calculations of the ionic current though a nanopore subject to an external electric field, and modeling the effect of a DNA molecule on the ion concentration and nanopore current. PMID:24363784
Pena-Pereira, Francisco; Marcinkowski, Lukasz; Kloskowski, Adam; Namieśnik, Jacek
2014-12-02
In this work, hybrid silica-based materials with immobilized ionic liquids (ILs) were prepared by sol-gel technology and evaluated as solid-phase microextraction (SPME) fiber coatings. High loadings of the IL 1-methyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide ([C4MIM][TFSI]) were confined within the hybrid network. Coatings composition and morphology were evaluated using scanning electron microscopy and energy dispersive X-ray spectrometry. The obtained ionogel SPME fibers exhibited high extractability for aromatic volatile compounds, yielding good sensitivity and precision when combined with a gas chromatograph with barrier ionization discharge (GC-BID) detection. A central composite design was used for assessing the effect of experimental parameters on the extraction process. Under optimized conditions, the proposed ionogel SPME fiber coatings enabled the achievement of excellent enrichment factors (up to 7400). The limits of detection (LODs) were found in the range 0.03-1.27 μg L(-1), whereas the repeatability and fiber-to-fiber reproducibility were 5.6% and 12.0% on average, respectively. Water samples were analyzed by the proposed methodology, showing recovery values in the range of 88.7-113.9%. The results obtained in this work suggest that ionogels can be promising coating materials for future applications of SPME and related sample preparation techniques.
NASA Astrophysics Data System (ADS)
Kluijtmans, Sebastiaan G. J. M.; de Hoog, Els H. A.; Philipse, Albert P.
1998-05-01
The influence of charge on diffusion in porous media was studied for fluorescent colloidal silica spheres diffusing in a porous glass medium. The bicontinuous porous silica glasses were optically matched with an organic solvent mixture in which both glass and tracers are negatively charged. Using fluorescence recovery after photobleaching, the long-time self-diffusion coefficient DSL of the confined silica particles was monitored in situ as a function of the ionic strength and particle to pore size ratio. At high salt concentration DSL reaches a relatively high plateau value, which depends on the particle to pore size ratio. This plateau value is unexpectedly higher than the value found for uncharged silica spheres in these porous glasses, but still significantly smaller than the free particle bulk diffusion coefficient of the silica spheres. At low salt concentration DSL reduces markedly, up to the point where colloids are nearly immobilized. This peculiar retardation probably originates from potential traps and barriers at pore intersections due to deviations from cylinder symmetry in the double layer interactions between tracers and pore walls. This indicates that diffusion of charged particles in tortuous porous media may be very different from transport in long capillaries without such intersections.
Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinshui; Bai, Ying; Sun, Xiao-Guang
2015-01-01
The growth and proliferation of lithium (Li) dendrites during cell recharge is unavoidable, which seriously hinders the development and application of rechargeable Li metal batteries. Solid electrolytes with robust mechanical modulus are regarded as a promising approach to overcome the dendrite problems. However, their room-temperature ionic conductivities are usually too low to reach the level required for normal battery operation. Here, a class of novel solid electrolytes with liquid-like room-temperature ionic conductivities (> 1 mS cm-1) has been successfully synthesized by taking advantage of the unique nanoarchitectures of hollow silica (HS) spheres to confine liquid electrolytes in hollow space tomore » afford high conductivities. In a symmetric lithium/lithium cell, such kind of solid-like electrolytes demonstrates a robust performance against Li dendrite problems, well stabilizing the cell system from short circuiting in a long-time operation at current densities ranging from 0.16 to 0.32 mA cm-2. Moreover, the high flexibility and compatibility of HS nanoarchitectures, in principle, enables broad tunability to choose desired liquids for the fabrication of other kinds of solid-like electrolytes, such as those containing Na+, Mg2+ or Al3+ as conductive media, providing a useful alternative strategy for the development of next generation rechargeable batteries.« less
A new look at low-energy nuclear reaction research.
Krivit, Steven B; Marwan, Jan
2009-10-01
This paper presents a new look at low-energy nuclear reaction research, a field that has developed from one of the most controversial subjects in science, "cold fusion." Early in the history of this controversy, beginning in 1989, a strong polarity existed; many scientists fiercely defended the claim of new physical effects as well as a new process in which like-charged atomic nuclei overcome the Coulomb barrier at normal temperatures and pressures. Many other scientists considered the entire collection of physical observations-along with the hypothesis of a "cold fusion"--entirely a mistake. Twenty years later, some people who had dismissed the field in its entirety are considering the validity of at least some of the reported experimental phenomena. As well, some researchers in the field are wondering whether the underlying phenomena may be not a fusion process but a neutron capture/absorption process. In 2002, a related tabletop form of thermonuclear fusion was discovered in the field of acoustic inertial confinement fusion. We briefly review some of this work, as well.
NASA Astrophysics Data System (ADS)
Kalberla, P. M. W.; Kerp, J.; Haud, U.; Haverkorn, M.
2017-10-01
Context. LOFAR detected toward 3C 196 linear polarization structures which were found subsequently to be closely correlated with cold filamentary H I structures. The derived direction-dependent H I power spectra revealed marked anisotropies for narrow ranges in velocity, sharing the orientation of the magnetic field as expected for magneto-hydrodynamical (MHD) turbulence. Aims: Using the Galactic portion of the Effelsberg-Bonn H I Survey (EBHIS) we continue our study of such anisotropies in the H I distribution in direction of two WSRT fields, Horologium and Auriga; both are well known for their prominent radio-polarimetric depolarization canals. At 349 MHz the observed pattern in total intensity is insignificant but polarized intensity and polarization angle show prominent ubiquitous structures with so far unknown origin. Methods: Apodizing the H I survey data by applying a rotational symmetric 50% Tukey window, we derive average and position angle dependent power spectra. We fit power laws and characterize anisotropies in the power distribution. We used a Gaussian analysis to determine relative abundances for the cold and warm neutral medium. Results: For the analyzed radio-polarimetric targets significant anisotropies are detected in the H I power spectra; their position angles are aligned to the prominent depolarization canals, initially detected by WSRT. H I anisotropies are associated with steep power spectra. Steep power spectra, associated with cold gas, are detected also in other fields. Conclusions: Radio-polarimetric depolarization canals are associated with filamentary H I structures that belong to the cold neutral medium (CNM). Anisotropies in the CNM are in this case linked to a steepening of the power-spectrum spectral index, indicating that phase transitions in a turbulent medium occur on all scales. Filamentary H I structures, driven by thermal instabilities, and radio-polarimetric filaments are associated with each other. The magneto-ionic medium that causes the radio-polarimetric filaments is probably wrapped around the H I.
The interaction between freezing tolerance and phenology in temperate deciduous trees
Vitasse, Yann; Lenz, Armando; Körner, Christian
2014-01-01
Temperate climates are defined by distinct temperature seasonality with large and often unpredictable weather during any of the four seasons. To thrive in such climates, trees have to withstand a cold winter and the stochastic occurrence of freeze events during any time of the year. The physiological mechanisms trees adopt to escape, avoid, and tolerate freezing temperatures include a cold acclimation in autumn, a dormancy period during winter (leafless in deciduous trees), and the maintenance of a certain freezing tolerance during dehardening in early spring. The change from one phase to the next is mediated by complex interactions between temperature and photoperiod. This review aims at providing an overview of the interplay between phenology of leaves and species-specific freezing resistance. First, we address the long-term evolutionary responses that enabled temperate trees to tolerate certain low temperature extremes. We provide evidence that short term acclimation of freezing resistance plays a crucial role both in dormant and active buds, including re-acclimation to cold conditions following warm spells. This ability declines to almost zero during leaf emergence. Second, we show that the risk that native temperate trees encounter freeze injuries is low and is confined to spring and underline that this risk might be altered by climate warming depending on species-specific phenological responses to environmental cues. PMID:25346748
Implications of elastic wave velocities for Apollo 17 rock powders
NASA Technical Reports Server (NTRS)
Talwani, P.; Nur, A.; Kovach, R. L.
1974-01-01
Ultrasonic P- and S-wave velocities of lunar rock powders 172701, 172161, 170051, and 175081 were measured at room temperature and to 2.5 kb confining pressure. The results compare well with those of terrestrial volcanic ash and powdered basalt. P-wave velocity values up to pressures corresponding to a lunar depth of 1.4 km preclude cold compaction alone as an explanation for the observed seismic velocity structure at the Apollo 17 site. Application of small amounts of heat with simultaneous application of pressure causes rock powders to achieve equivalence of seismic velocities for competent rocks.
A new quasi-thermal trap model for solar flare hard X-ray bursts - An electrostatic trap model
NASA Technical Reports Server (NTRS)
Spicer, D. S.; Emslie, A. G.
1988-01-01
A new quasi-thermal trap model of solar flare hard X-ray bursts is presented. The new model utilizes the trapping ability of a magnetic mirror and a magnetic field-aligned electrostatic potential produced by differences in anisotropies of the electron and ion distribution function. It is demonstrated that this potential can, together with the magnetic mirror itself, effectively confine electrons in a trap, thereby enhancing their bremsstrahlung yield per electron. This analysis makes even more untenable models involving precipitation of the bremsstrahlung-producing electrons onto a cold target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Hyunsun, E-mail: hyunsun@nfri.re.kr; In, Y.; Jeon, Y. M.
The change of tokamak plasma behavior by supersonic molecular beam injection (SMBI) was investigated by applying a three-dimensional magnetic perturbation that could suppress edge localized modes (ELMs). From the time trace of decreasing electron temperature and with increasing plasma density keeping the total confined energy constant, the SMBI seems to act as a cold pulse on the plasma. However, the ELM behaviors were changed drastically (i.e., the symptom of ELM suppression has disappeared). The plasma collisionality in the edge-pedestal region could play a role in the change of the ELM behaviors.
NASA Astrophysics Data System (ADS)
Vilain, J.
Approaches to major hazard assessment and prediction are reviewed. Source term: (phenomenology/modeling of release, influence on early stages of dispersion); dispersion (atmospheric advection, diffusion and deposition, emphasis on dense/cold gases); combustion (flammable clouds and mists covering flash fires, deflagration, transition to detonation; mostly unconfined/partly confined situations); blast formation, propagation, interaction with structures; catastrophic fires (pool fires, torches and fireballs; highly reactive substances) runaway reactions; features of more general interest; toxic substances, excluding toxicology; and dust explosions (phenomenology and protective measures) are discussed.
Review of Adaptive Programmable Materials and Their Bioapplications.
Fan, Xiaoshan; Chung, Jing Yang; Lim, Yong Xiang; Li, Zibiao; Loh, Xian Jun
2016-12-14
Adaptive programmable materials have attracted increasing attention due to their high functionality, autonomous behavior, encapsulation, and site-specific confinement capabilities in various applications. Compared to conventional materials, adaptive programmable materials possess unique single-material architecture that can maintain, respond, and change their shapes and dimensions when they are subjected to surrounding environment changes, such as alternation in temperature, pH, and ionic strength. In this review, the most-recent advances in the design strategies of adaptive programmable materials are presented with respect to different types of architectural polymers, including stimuli-responsive polymers and shape-memory polymers. The diverse functions of these sophisticated materials and their significance in therapeutic agent delivery systems are also summarized in this review. Finally, the challenges for facile fabrication of these materials and future prospective are also discussed.
On the transport coefficients of hydrogen in the inertial confinement fusion regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Flavien; Recoules, Vanina; Decoster, Alain
2011-05-15
Ab initio molecular dynamics is used to compute the thermal and electrical conductivities of hydrogen from 10 to 160 g cm{sup -3} and temperatures up to 800 eV, i.e., thermodynamical conditions relevant to inertial confinement fusion (ICF). The ionic structure is obtained using molecular dynamics simulations based on an orbital-free treatment for the electrons. The transport properties were computed using ab initio simulations in the DFT/LDA approximation. The thermal and electrical conductivities are evaluated using Kubo-Greenwood formulation. Particular attention is paid to the convergence of electronic transport properties with respect to the number of bands and atoms. These calculations aremore » then used to check various analytical models (Hubbard's, Lee-More's and Ichimaru's) widely used in hydrodynamics simulations of ICF capsule implosions. The Lorenz number, which is the ratio between thermal and electrical conductivities, is also computed and compared to the well-known Wiedemann-Franz law in different regimes ranging from the highly degenerate to the kinetic one. This allows us to deduce electrical conductivity from thermal conductivity for analytical model. We find that the coupling of Hubbard and Spitzer models gives a correct description of the behavior of electrical and thermal conductivities in the whole thermodynamic regime.« less
TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor
Olivares, Erick; Salgado, Simón; Maidana, Jean Paul; Herrera, Gaspar; Campos, Matías; Madrid, Rodolfo; Orio, Patricio
2015-01-01
Cold-sensitive nerve terminals (CSNTs) encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response). During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response). To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics). However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature). Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization. PMID:26426259
Kadhim, Abdulhadi; Salim, Evan T.; Fayadh, Saeed M.; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar
2014-01-01
Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm2; t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated. PMID:24737973
NASA Astrophysics Data System (ADS)
Woo, K. M.; Betti, R.; Shvarts, D.; Bose, A.; Patel, D.; Yan, R.; Chang, P.-Y.; Mannion, O. M.; Epstein, R.; Delettrez, J. A.; Charissis, M.; Anderson, K. S.; Radha, P. B.; Shvydky, A.; Igumenshchev, I. V.; Gopalaswamy, V.; Christopherson, A. R.; Sanz, J.; Aluie, H.
2018-05-01
The study of Rayleigh-Taylor instability in the deceleration phase of inertial confinement fusion implosions is carried out using the three-dimensional (3-D) radiation-hydrodynamic Eulerian parallel code DEC3D. We show that the yield-over-clean is a strong function of the residual kinetic energy (RKE) for low modes. Our analytical models indicate that the behavior of larger hot-spot volumes observed in low modes and the consequential pressure degradation can be explained in terms of increasing the RKE. These results are derived using a simple adiabatic implosion model of the deceleration phase as well as through an extensive set of 3-D single-mode simulations using the code DEC3D. The effect of the bulk velocity broadening on ion temperature asymmetries is analyzed for different mode numbers ℓ=1 -12. The jet observed in low mode ℓ=1 is shown to cause the largest ion temperature variation in the mode spectrum. The vortices of high modes within the cold bubbles are shown to cause lower ion temperature variations than low modes.
Silicon carbide transparent chips for compact atomic sensors
NASA Astrophysics Data System (ADS)
Huet, L.; Ammar, M.; Morvan, E.; Sarazin, N.; Pocholle, J.-P.; Reichel, J.; Guerlin, C.; Schwartz, S.
2017-11-01
Atom chips [1] are an efficient tool for trapping, cooling and manipulating cold atoms, which could open the way to a new generation of compact atomic sensors addressing space applications. This is in particular due to the fact that they can achieve strong magnetic field gradients near the chip surface, hence strong atomic confinement at moderate electrical power. However, this advantage usually comes at the price of reducing the optical access to the atoms, which are confined very close to the chip surface. We will report at the conference experimental investigations showing how these limits could be pushed farther by using an atom chip made of a gold microcircuit deposited on a single-crystal Silicon Carbide (SiC) substrate [2]. With a band gap energy value of about 3.2 eV at room temperature, the latter material is transparent at 780nm, potentially restoring quasi full optical access to the atoms. Moreover, it combines a very high electrical resistivity with a very high thermal conductivity, making it a good candidate for supporting wires with large currents without the need of any additional electrical insulation layer [3].
Refugia revisited: individualistic responses of species in space and time
Stewart, John R.; Lister, Adrian M.; Barnes, Ian; Dalén, Love
2010-01-01
Climate change in the past has led to significant changes in species' distributions. However, how individual species respond to climate change depends largely on their adaptations and environmental tolerances. In the Quaternary, temperate-adapted taxa are in general confined to refugia during glacials while cold-adapted taxa are in refugia during interglacials. In the Northern Hemisphere, evidence appears to be mounting that in addition to traditional southern refugia for temperate species, cryptic refugia existed in the North during glacials. Equivalent cryptic southern refugia, to the south of the more conventional high-latitude polar refugia, exist in montane areas during periods of warm climate, such as the current interglacial. There is also a continental/oceanic longitudinal gradient, which should be included in a more complete consideration of the interaction between species ranges and climates. Overall, it seems clear that there is large variation in both the size of refugia and the duration during which species are confined to them. This has implications for the role of refugia in the evolution of species and their genetic diversity. PMID:19864280
Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winterberg, F.
Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed inmore » an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.« less
Diffusion of neutral and ionic species in charged membranes: boric acid, arsenite, and water.
Goli, Esmaiel; Hiemstra, Tjisse; Van Riemsdijk, Willem H; Rahnemaie, Rasoul; Malakouti, Mohammad Jafar
2010-10-15
Dynamic ion speciation using DMT (Donnan membrane technique) requires insight into the physicochemical characteristics of diffusion in charged membranes (tortuosity, local diffusion coefficients) as well as ion accumulation. The latter can be precluded by studying the diffusion of neutral species, such as boric acid, B(OH)₃⁰(aq), arsenite, As(OH)₃⁰(aq), or water. In this study, the diffusion rate of B(OH)₃⁰ has been evaluated as a function of the concentration, pH, and ionic strength. The rate is linearly dependent on the concentration of solely the neutral species, without a significant contribution of negatively charged species such as B(OH)₄⁻, present at high pH. A striking finding is the very strong effect (factor of ~10) of the type of cation (K(+), Na(+), Ca(2+), Mg(2+), Al(3+), and H(+)) on the diffusion coefficient of B(OH)₃⁰ and also As(OH)₃⁰. The decrease of the diffusion coefficient can be rationalized as an enhancement of the mean viscosity of the confined solution in the membrane. The diffusion coefficients can be described by a semiempirical relationship, linking the mean viscosity of the confined solute of the membrane to the viscosity of the free solution. In proton-saturated membranes, as used in fuel cells, viscosity is relatively more enhanced; i.e., a stronger water network is formed. Extraordinarily, our B(OH)₃-calibrated model (in HNO₃) correctly predicts the reported diffusion coefficient of water (D(H₂O)), measured with ¹H NMR and quasi-elastic neutron scattering in H(+)-Nafion membranes. Upon drying these membranes, the local hydronium, H(H₂O)(n)(+), concentration and corresponding viscosity increase, resulting in a severe reduction of the diffusion coefficient (D(H₂O) ≈ 5-50 times), in agreement with the model. The present study has a second goal, i.e., development of the methodology for measuring the free concentration of neutral species in solution. Our data suggest that the free concentration can be measured with DMT in natural systems if one accounts for the variation in the cation composition of the membrane and corresponding viscosity/diffusion coefficient.
Dynamics of water in strawberry and red onion as studied by dielectric spectroscopy
NASA Astrophysics Data System (ADS)
Jansson, H.; Huldt, C.; Bergman, R.; Swenson, J.
2005-01-01
We have investigated the microscopic dynamics of strawberry and red onion by means of broadband dielectric spectroscopy. In contrast to most of the previous experiments on carbohydrate-rich biological materials, which have mainly considered the more global dynamics of the “biological matrix,” we are here focusing on the microscopic dynamics of mainly the associated water. The results for both strawberry and red onion show that the imaginary part of the permittivity contains one conductivity term and a clear dielectric loss peak, which was found to be similar to the strongest relaxation process of water in carbohydrate solutions. The temperature dependence of the relaxation process was analyzed for different water content. The relaxation process slows down, and its temperature dependence becomes more non-Arrhenius, with decreasing water content. The reason for this is most likely that, on average, the water molecules interact more strongly with carbohydrates and other biological materials at low water content, and the dynamical properties of this biological matrix changes substantially with increasing temperature (from an almost rigid matrix where the water is basically unable to perform long-range diffusion due to confinement effects, to a dynamic matrix with no static confinement effects), which also changes (i.e., reduces) the activation energy of the relaxation process with increasing temperature (i.e., causes a non-Arrhenius temperature dependence). This further changes the conductivity from mainly polarization effects at low temperatures, due to hindered ionic motions, to long-range diffusivity at T>250K . Thus, around this temperature ions in the carbohydrate solution no longer get stuck in confined cavities, since the motion of the biological matrix “opens up” the cavities and the ions are then able to perform long-range migration.
NASA Technical Reports Server (NTRS)
Power, J. L.
1981-01-01
The subject interface measurements are described for the Ion Auxiliary Propulsion System (IAPS) flight test of two 8-cm thrusters. The diagnostic devices and the effects to be measured include: 1) quartz crystal microbalances to detect nonvolatile deposition due to thruster operation; 2) warm and cold solar cell monitors for nonvolatile and volatile (mercury) deposition; 3) retarding potential ion collectors to characterize the low energy thruster ionic efflux; and 4) a probe to measure the spacecraft potential and thruster generated electron currents to biased spacecraft surfaces. The diagnostics will also assess space environmental interactions of the spacecraft and thrusters. The diagnostic data will characterize mercury thruster interfaces and provide data useful for future applications.
Hjörleifsson, Jens G; Ásgeirsson, Bjarni
2017-09-26
The effect of ionic strength on enzyme activity and stability varies considerably between enzymes. Ionic strength is known to affect the catalytic activity of some alkaline phosphatases (APs), such as Escherichia coli AP, but how ions affect APs is debated. Here, we studied the effect of various ions on a cold-adapted AP from Vibrio splendidus (VAP). Previously, we have found that the active form of VAP is extremely unstable at low ionic strengths. Here we show that NaCl increased the activity and stability of VAP and that the effect was pH-dependent in the range of pH 7-10. The activity profile as a function of pH formed two maxima, indicating a possible conformational change. Bringing the pH from the neutral to the alkaline range was accompanied by a large increase in both the K i for inorganic phosphate (product inhibition) and the K M for p-nitrophenyl phosphate. The activity transitions observed as the pH was varied correlated with structural changes as monitored by tryptophan fluorescence. Thermal and urea-induced inactivation was shown to be accompanied by neither dissociation of the active site metal ions nor dimer dissociation. This would suggest that the inactivation involved subtle changes in active site conformation. Furthermore, the VAP dimer equilibrium was studied for the first time and shown to highly favor dimerization, which was dependent on pH and NaCl concentration. Taken together, the data support a model in which anions bind to some specific acceptor in the active site of VAP, resulting in great stabilization and catalytic rate enhancement, presumably through a different mechanism.
Infrared spectroscopy of hydrated polycyclic aromatic hydrocarbon cations: naphthalene+-water.
Chatterjee, Kuntal; Dopfer, Otto
2017-12-13
Polycyclic aromatic hydrocarbons (PAHs) are suggested to occur in interstellar media and ice grains. It is important to characterize hydrated PAHs and their cations to explore their stability in interstellar and biological media. Herein, the infrared photodissociation (IRPD) spectrum of the naphthalene + -H 2 O radical cation (Np + -H 2 O) recorded in the O-H and C-H stretch range is analysed by dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level to determine its structure and intermolecular bonding. Monohydration of Np + in its 2 A u ground electronic state leads to the formation of a bifurcated CHO ionic hydrogen bond (H-bond), in which the lone pairs of H 2 O bind to two adjacent CH proton donors of the two aromatic rings. The frequency-dependent branching ratios observed for IRPD of cold Np + -H 2 O-Ar clusters allows the estimation of the dissociation energy of Np + -H 2 O as D 0 ∼ 2800 ± 300 cm -1 . The monohydration motif of Np + differs qualitatively from that of the benzene cation in both structure and binding energy, indicating the strong influence of the multiple aromatic rings on the hydration of PAH + cations. This difference is rationalized by natural bond orbital analysis of the ionic H-bond motif. Comparison with neutral Np-H 2 O reveals the large change in structure and bond strength of the hydrated PAHs upon ionization. While neutral Np-H 2 O is stabilized by weak π H-bonds (OHπ, π-stacking), strong cation-dipole forces favour a planar bifurcated CHO ionic H-bond in Np + -H 2 O.
Seasonal trends of atmospheric nitrogen dioxide and sulfur dioxide over North Santa Clara, Cuba.
Alejo, Daniellys; Morales, Mayra C; de la Torre, Jorge B; Grau, Ricardo; Bencs, László; Van Grieken, René; Van Espen, Piet; Sosa, Dismey; Nuñez, Vladimir
2013-07-01
Atmospheric nitrogen dioxide (NO2) and sulfur dioxide (SO2) levels were monitored simultaneously by means of Radiello passive samplers at six sites of Santa Clara city, Cuba, in the cold and the warm seasons in 2010. The dissolved ionic forms of NO2 and SO2 as nitrate and sulfite plus sulfate, respectively, were determined by means of ion chromatography. Analysis of NO2 as nitrite was also performed by UV-Vis spectrophotometry. For NO2, significant t tests show good agreement between the results of IC and UV-Vis methods. The NO2 and SO2 concentrations peaked in the cold season, while their minimum levels were experienced in the warm season. The pollutant levels do not exceed the maximum allowable limit of the Cuban Standard 39:1999, i.e., 40 μg/m(3) and 50 μg/m(3) for NO2 and SO2, respectively. The lowest pollutant concentrations obtained in the warm season can be attributed to an increase in their removal via precipitation (scavenging) while to the decreased traffic density and industrial emission during the summer holidays (e.g., July and August).
NASA Astrophysics Data System (ADS)
Raithel, Georg
2017-04-01
Cold atomic systems have opened new frontiers in atomic and molecular physics, including several types of Rydberg molecules. Three types will be reviewed. Long-range Rydberg-ground molecules, first predicted in and observed in, are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules. A classification into Hund's cases will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction of neutral Rydberg-Rydberg molecules is dipole-dipole, while for ionic Rydberg molecules it is dipole-monopole. Higher-order terms are discussed. FUNDING: NSF (PHY-1506093), NNSF of China (61475123).
Revealing magnetic ordering and spin-phonon coupling in Y1-x Tb x MnO3 (0.1 ⩽ x ⩽ 0.3) compounds
NASA Astrophysics Data System (ADS)
Chakraborty, Keka R.; Paul, Barnita; Shukla, R.; Krishna, P. S. R.; Kumar, Amit; Mukadam, M. D.; Mandal, B. P.; Roy, Anushree; Tyagi, A. K.; Yusuf, S. M.
2017-04-01
The structural and magnetic properties of the Y1-x Tb x MnO3 (0.1 ⩽ x ⩽ 0.3) compounds were investigated. Neutron diffraction patterns for all three samples, recorded at room temperature (RT), were fitted to the nuclear structure confirming the paramagnetic nature of the compounds. At 2.8 K, for the x = 0.1 sample magnetic moments of the Tb3+ ionic as well as Mn3+ ionic were ordered. At 5 K for the x = 0.2 sample only the Mn3+ ionic magnetic moments were ordered. There were six sites for Mn atoms. Three on the z = 0 plane and three on the z = 0.5 plane (where z corresponds to +c axis).The Mn3+ionic moments were confined to the a-b plane with a net magnitude of 2.78(3) µ B, and 2.90(3) µ B for the x = 0.1 and the x = 0.2 samples. The Tb3+ionic moments had a magnitude of 1.36(4) µ B at 2.8 K and were aligned antiferromagnetically along the crystallographic c-axis for the x = 0.1 sample. The low moment in comparison with Mn3+ free ions has been attributed to crystalline electric fields similar to that found in the parent compound YMnO3 and also in another rare earth manganite viz HoMnO3. The x = 0.3 sample was found to be a canonical spin glass. To investigate the role of the above spin ordering in Y1-x Tb x MnO3 in governing the phonon dynamics, temperature dependent Raman measurements were carried out. We observed the deviation of the phonon frequency near 685 cm-1 and its line-width from the expected anharmonic behaviour around magnetic ordering temperature for Tb substituted compounds with x = 0.1 and 0.2. This was attributed to the spin-phonon coupling in these systems. The anomalous behaviour of this phonon mode in the canonical spin glass compound with x = 0.3, indicated that the coupling sustained even in the presence of only local magnetic ordering.
Viscosity of a multichannel one-dimensional Fermi gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeGottardi, Wade; Matveev, K. A.
Many one-dimensional systems of experimental interest possess multiple bands arising from shallow confining potentials. In this paper, we study a gas of weakly interacting fermions and show that the bulk viscosity is dramatically altered by the occupation of more than one band. The reasons for this are twofold: a multichannel system is more easily displaced from equilibrium and the associated relaxation processes lead to more rapid equilibration than in the single channel case. We estimate the bulk viscosity in terms of the underlying microscopic interactions. The experimental relevance of this physics is discussed in the context of quantum wires andmore » trapped cold atomic gases.« less
Advances in antihydrogen physics.
Charlton, Mike; Van der Werf, Dirk Peter
2015-01-01
The creation of cold antihydrogen atoms by the controlled combination of positrons and antiprotons has opened up a new window on fundamental physics. More recently, techniques have been developed that allow some antihydrogen atoms to be created at low enough kinetic energies that they can be held inside magnetic minimum neutral atom traps. With confinement times of many minutes possible, it has become feasible to perform experiments to probe the properties of the antiatom for the first time. We review the experimental progress in this area, outline some of the motivation for studying basic aspects of antimatter physics and provide an outlook of where we might expect this field to go in the coming years.
Magnetic conveyor belt for transporting and merging trapped atom clouds.
Hänsel, W; Reichel, J; Hommelhoff, P; Hänsch, T W
2001-01-22
We demonstrate an integrated magnetic device which transports cold atoms near a surface with very high positioning accuracy. Time-dependent currents in a lithographic conductor pattern create a moving chain of potential wells; atoms are transported in these wells while remaining confined in all three dimensions. We achieve mean fluxes up to 10(6) s(-1) with a negligible heating rate. An extension of this device allows merging of atom clouds by unification of two Ioffe-Pritchard potentials. The unification, which we demonstrate experimentally, can be performed without loss of phase space density. This novel, all-magnetic atom manipulation offers exciting perspectives, such as trapped-atom interferometry.
Cooperatively enhanced ionic hydrogen bonds in Cl-(CH3OH)(1-3)Ar clusters.
Beck, Jordan P; Lisy, James M
2010-09-23
Infrared predissociation (IRPD) spectra of Cl−(CH3OH)1-3Ar and Cl-(CH3OD)1-3Ar were obtained in the OH and CH stretching regions. The use of methanol-d1 was necessary to distinguish between CH stretches and hydrogen-bonded OH features. The spectra of Cl-(CH3OH)2-3Ar show intense features at frequencies lower than the CH stretches, indicating structures with very strong hydrogen bonds. These strong hydrogen bonds arise from structures in which a Cl-···methanol ionic hydrogen bond is cooperatively enhanced by the presence of a second shell and, in the case of Cl-(CH3OH)3Ar, a third shell methanol. The strongest hydrogen bond is observed in the Cl-(CH3OH)3Ar spectrum at 2733 cm-1, shifted a remarkable -948 cm-1 from the neutral, gas-phase methanol value. Harmonic, ab initio frequency calculations are not adequate in describing these strong hydrogen bonds. Therefore, we describe a simple computational approach to better approximate the hydrogen bond frequencies. Overall, the results of this study indicate that high-energy isomers are very efficiently trapped using our experimental method of introducing Cl- into neutral, cold methanol-argon clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Leo J.; Pratt, Harry D.; Staiger, Chad L.
We present a systematic approach for increasing the concentration of redox-active species in electrolytes for nonaqueous redox flow batteries (RFBs). Starting with an ionic liquid consisting of a metal coordination cation (MetIL), ferrocene-containing ligands and iodide anions are substituted incrementally into the structure. While chemical structures can be drawn for molecules with 10 m redox-active electrons (RAE), practical limitations such as melting point and phase stability constrain the structures to 4.2 m RAE, a 2.3× improvement over the original MetIL. Dubbed “MetILs 3,” these ionic liquids possess redox activity in the cation core, ligands, and anions. Throughout all compositions, infraredmore » spectroscopy shows the ethanolamine-based ligands primarily coordinate to the Fe 2+ core via hydroxyl groups. Calorimetry conveys a profound change in thermophysical properties, not only in melting temperature but also in suppression of a cold crystallization only observed in the original MetIL. Square wave voltammetry reveals redox processes characteristic of each molecular location. Testing a laboratory-scale RFB demonstrates Coulombic efficiencies >95% and increased voltage efficiencies due to more facile redox kinetics, effectively increasing capacity 4×. Application of this strategy to other chemistries, optimizing melting point and conductivity, can yield >10 m RAE, making nonaqueous RFB a viable technology for grid scale storage.« less
Cold pulse and rotation reversals with turbulence spreading and residual stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hariri, F.; Naulin, V.; Juul Rasmussen, J.
2016-05-15
Transport modeling based on inclusion of turbulence spreading and residual stresses shows internal rotation reversals and polarity reversal of cold pulses, with a clear indication of nonlocal transport effects due to fast spreading in the turbulence intensity field. The effects of turbulence spreading and residual stress are calculated from the gradient of the turbulence intensity. In the model presented in this paper, the flux is carried by the turbulence intensity field, which in itself is subject to radial transport effects. The pulse polarity inversion and the rotation profile reversal positions are close to the radial location of the stable/unstable transition.more » Both effects have no direct explanation within the framework of classical transport modeling, where the fluxes are related directly to the linear growth rates, the turbulence intensity profile is not considered and the corresponding residual stress is absent. Our simulations are in qualitative agreement with measurements from ohmically heated plasmas. Rotation reversal at a finite radius is found in situations not displaying saturated confinement, which we identify as situations where the plasma is nearly everywhere unstable. As an additional and new effect, the model predicts a perturbation of the velocity profile following a cold pulse from the edge. This allows direct experimental confirmation of both the existence of residual stress caused by turbulence intensity profiles and fundamental ideas of transport modeling presented here.« less
Liu, Yifan; Yobas, Levent
2014-12-10
We demonstrate here for the first time the utility of an integrated nanofluidic diode for detecting and quantifying physiologically relevant macromolecules. Troponin T, a key human cardiac protein biomarker, was selectively and rapidly detected free of labels for concentrations down to 10 fg/mL (∼ 0.3 fM) in buffer as well as 10 pg/mL (∼ 300 fM) in untreated human serum. This ultrasensitive detection arises from monolithic integration of a unique nanofluidic diode structure that is highly robust and amenable to site-specific surface modification. The structure features a planar nanoslit array where each nanoslit is defined at a nominal width of 70 nm over a micrometer-scale silicon trench without the use of high-resolution patterning techniques. Through vapor deposition, a glass layer is placed at a nonuniform thickness, tapering the trench profile upward and contributing to the triangular nanoslit structure. This asymmetric profile is essential for ionic current rectification noted here at various pH values, ionic strengths, and captured target species, which modulate the surface-charge density within the sensitive region of the nanoslit. The nanoslit, unlike nanopores, offers only 1D confinement, which appears to be adequate for reasonable rectification. The measurements are found in quantitative agreement with the diode simulations for the first time based on a pH- and salt-dependent surface-charge model.
Protein sensing by nanofluidic crystal and its signal enhancement
Sang, Jianming; Du, Hongtan; Wang, Wei; Chu, Ming; Wang, Yuedan; Li, Haichao; Alice Zhang, Haixia; Wu, Wengang; Li, Zhihong
2013-01-01
Nanofluidics has a unique property that ionic conductance across a nanometer-sized confined space is strongly affected by the space surface charge density, which can be utilized to construct electrical read-out biosensor. Based on this principle, this work demonstrated a novel protein sensor along with a sandwich signal enhancement approach. Nanoparticles with designed aptamer onside are assembled in a suspended micropore to form a 3-dimensional network of nanometer-sized interstices, named as nanofluidic crystal hereafter, as the basic sensing unit. Proteins captured by aptamers will change the surface charge density of nanoparticles and thereby can be detected by monitoring the ionic conductance across this nanofluidic crystal. Another aptamer can further enlarge the variations of the surface charge density by forming a sandwich structure (capturing aptamer/protein/signal enhancement aptamer) and the read-out conductance as well. The preliminary experimental results indicated that human α-thrombin was successfully detected by the corresponding aptamer modified nanofluidic crystal with the limit of detection of 5 nM (0.18 μg/ml) and the read-out signal was enhanced up to 3 folds by using another thrombin aptamer. Being easy to graft probe, facile and low-cost to prepare the nano-device, and having an electrical read-out, the present nanofluidic crystal scheme is a promising and universal strategy for protein sensing. PMID:24404017
NASA Astrophysics Data System (ADS)
He, Hanna; Zhang, Qi; Wang, Haiyan; Zhang, Hehe; Li, Jiadong; Peng, Zhiguang; Tang, Yougen; Shao, Minhua
2017-06-01
Inferior electronic conductivity and sluggish sodium ion diffusion are still two big challenges for TiO2 anode material for Na ion batteries (SIBs). Herein, we synthesize TiO2/C composites by the pyrolysis of MIL-125(Ti) precursor and successfully introduce defects to TiO2/C composite by a simple magnesium reduction. The as-prepared defect-rich TiO2-δ/C composite shows mooncake-shaped morphology consisting of TiO2-δ nanocrystals with an average particle size of 5 nm well dispersed in the carbon matrix. When used as a SIBs anode, the defect-rich TiO2-δ/C composite exhibits a high reversible capacity of 330.2 mAh g-1 at 50 mA g-1 at the voltage range of 0.001-3.0 V and long-term cycling stability with negligible decay after 5000 cycles. Compared with other four TiO2/C samples, the electrochemical performance of defect-rich TiO2-δ/C is highly improved, which may benefit from the enhanced electronic/ionic conductivities owing to the defect-rich features, high surface area rendering shortened electronic and ionic diffusion path, and the suppress of the TiO2 crystal aggregation during sodiation and desodiation process by the carbon matrix.
Silva-Correia, Joana; Gloria, Antonio; Oliveira, Mariana B; Mano, João F; Oliveira, Joaquim M; Ambrosio, Luigi; Reis, Rui L
2013-12-01
Tissue engineered hydrogels hold great potential as nucleus pulposus substitutes (NP), as they promote intervertebral disc (IVD) regeneration and re-establish its original function. But, the key to their success in future clinical applications greatly depends on its ability to replicate the native 3D micro-environment and circumvent their limitation in terms of mechanical performance. In the present study, we investigated the rheological/mechanical properties of both ionic- (iGG-MA) and photo-crosslinked methacrylated gellan gum (phGG-MA) hydrogels. Steady shear analysis, injectability and confined compression stress-relaxation tests were carried out. The injectability of the reactive solutions employed for the preparation of iGG-MA and phGG-MA hydrogels was first studied, then the zero-strain compressive modulus and permeability of the acellular hydrogels were evaluated. In addition, human intervertebral disc (hIVD) cells encapsulated in both iGG-MA and phGG-MA hydrogels were cultured in vitro, and its mechanical properties also investigated under dynamic mechanical analysis at 37°C and pH 7.4. After 21 days of culturing, hIVD cells were alive (Calcein AM) and the E' of ionic-crosslinked hydrogels and photo-crosslinked was higher than that observed for acellular hydrogels. Our study suggests that methacrylated gellan gum hydrogels present promising mechanical and biological performance as hIVD cells were producing extracellular matrix. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
Small-size biofuel cell on paper.
Zhang, Lingling; Zhou, Ming; Wen, Dan; Bai, Lu; Lou, Baohua; Dong, Shaojun
2012-05-15
In this work, we demonstrated a novel paper-based mediator-less and compartment-less biofuel cell (BFC) with small size (1.5 cm × 1.5 cm). Ionic liquid functionalized carbon nanotubes (CNTs-IL) nanocomposite was used as support for both stably confining the anodic biocatalyst (i.e., NAD(+)-dependent glucose dehydrogenase, GDH) for glucose electrooxidation and for facilitating direct electrochemistry of the cathodic biocatalyst (i.e., bilirubin oxidase, BOD) for O(2) electroreduction. Such BFC provided a simple approach to fabricate low-cost and portable power devices on small-size paper, which can harvest energy from a wide range of commercial beverages containing glucose (e.g., Nescafe instant coffee, Maidong vitamin water, Watermelon fresh juice, and Minute Maid grape juice). These made the low-cost paper-based biodevice potential for broad energy applications. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tavolaro, Palmira; Catalano, Silvia; Martino, Guglielmo; Tavolaro, Adalgisa
2016-09-01
The design, preparation and selection of inorganic materials useful as functional scaffolds for cell adhesion is a complex question based both on the understanding of the chemical behavior of the materials and individual cells, and on their interactions. Pure zeolite membranes formed from synthetic crystals offer chemically-capable being modulated silanolic surfaces that are amenable to adhesion and growth of fibroblasts. We report the facile preparation of reusable, very longlasting, biocompatible, easily sterilized synthetic scaffolds in a zeolite membrane configuration, which are very stable in aqueous media (apart from ionic strength and pH values), able to adsorb pollutant species and to confine undesired toxic ions (present in culture media). This may ultimately lead to the development of cell supports for economic antibiotic-free culture media.
NASA Technical Reports Server (NTRS)
Le Roux, J. A.; Ptuskin, V. S.
1995-01-01
Realistic models of the outer heliosphere should consider that the interstellar cosmic-ray pressure becomes comparable to pressures in the solar wind at distances more than 100 AU from the Sun. The cosmic-ray pressure dynamically affects solar wind flow through deceleration. This effect, which occurs over a scale length of the order of the effective diffusion length at large radial distances, has important implications for cosmic-ray modulation and acceleration. As a first step toward solution of this nonlinear problem, a steady state numerical model was developed for a relatively cold spherical solar wind flow which encounters the confining isotropic pressure of the surrounding Galactic medium. This pressure is assumed to be dominated by energetic particles (Galactic cosmic rays). The system of equations, which are solved self-consistently, includes the relevant hydrodynamical equations for the solar wind flow and the spherical cosmic-ray transport equation. To avoid the closure parameter problem of the two-fluid model, the latter equation is solved for the energy-dependent cosmic-ray distribution function.
Performance modelling of plasma microthruster nozzles in vacuum
NASA Astrophysics Data System (ADS)
Ho, Teck Seng; Charles, Christine; Boswell, Rod
2018-05-01
Computational fluid dynamics and plasma simulations of three geometrical variations of the Pocket Rocket radiofrequency plasma electrothermal microthruster are conducted, comparing pulsed plasma to steady state cold gas operation. While numerical limitations prevent plasma modelling in a vacuum environment, results may be obtained by extrapolating from plasma simulations performed in a pressurised environment, using the performance delta from cold gas simulations performed in both environments. Slip regime boundary layer effects are significant at these operating conditions. The present investigation targets a power budget of ˜10 W for applications on CubeSats. During plasma operation, the thrust force increases by ˜30% with a power efficiency of ˜30 μNW-1. These performance metrics represent instantaneous or pulsed operation and will increase over time as the discharge chamber attains thermal equilibrium with the heated propellant. Additionally, the sculpted nozzle geometry achieves plasma confinement facilitated by the formation of a plasma sheath at the nozzle throat, and fast recombination ensures a neutral exhaust plume that avoids the contamination of solar panels and interference with externally mounted instruments.
Reaction-in-flight neutrons as a test of stopping power in degenerate plasmas
NASA Astrophysics Data System (ADS)
Hayes, A. C.; Jungman, Gerard; Schulz, A. E.; Boswell, M.; Fowler, M. M.; Grim, G.; Klein, A.; Rundberg, R. S.; Wilhelmy, J. B.; Wilson, D.; Cerjan, C.; Schneider, D.; Sepke, S. M.; Tonchev, A.; Yeamans, C.
2015-08-01
We present the first measurements of reaction-in-flight (RIF) neutrons in an inertial confinement fusion system. The experiments were carried out at the National Ignition Facility, using both Low Foot and High Foot drives and cryogenic plastic capsules. In both cases, the high-energy RIF ( En> 15 MeV) component of the neutron spectrum was found to be about 10-4 of the total. The majority of the RIF neutrons were produced in the dense cold fuel surrounding the burning hotspot of the capsule, and the data are consistent with a compressed cold fuel that is moderately to strongly coupled (Γ˜ 0.6) and electron degenerate (θFermi/θe˜ 4). The production of RIF neutrons is controlled by the stopping power in the plasma. Thus, the current RIF measurements provide a unique test of stopping power models in an experimentally unexplored plasma regime. We find that the measured RIF data strongly constrain stopping models in warm dense plasma conditions, and some models are ruled out by our analysis of these experiments.
Reaction-in-flight neutrons as a test of stopping power in degenerate plasmas
Hayes, A. C.; Jungman, Gerard; Schulz, A. E.; ...
2015-08-06
We present the first measurements of reaction-in-flight (RIF) neutrons in an inertial confinement fusion system. The experiments were carried out at the National Ignition Facility, using both Low Foot and High Foot drives and cryogenic plastic capsules. In both cases, the high-energy RIF (E n > 15 MeV) component of the neutron spectrum was found to be about 10 –4 of the total. The majority of the RIF neutrons were produced in the dense cold fuel surrounding the burning hotspot of the capsule, and the data are consistent with a compressed cold fuel that is moderately to strongly coupled (Γ~more » 0.6) and electron degenerate (θ Fermi/θ e~ 4). The production of RIF neutrons is controlled by the stopping power in the plasma. Thus, the current RIF measurements provide a unique test of stopping power models in an experimentally unexplored plasma regime. In conclusion, we find that the measured RIF data strongly constrain stopping models in warm dense plasma conditions, and some models are ruled out by our analysis of these experiments.« less
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Sabah, Arefiny; Ahmed, Jannat; Kuri, Subrata Kumar; Rakibuzzaman, S. M.
2017-06-01
Investigation of Molecular level phase change phenomena are becoming important in heat and mass transfer research at a very high rate, driven both by the need to understand certain fundamental phenomena as well as by a plethora of new and forthcoming applications in the areas of micro- and nanotechnologies. Molecular dynamics simulation has been carried out to go through the evaporation and condensation characteristics of thin liquid argon film in Nano-scale confinement. In the present study, a cuboid system is modeled for understanding the Nano-scale physics of simultaneous evaporation and condensation. The cuboid system consists of hot and cold parallel platinum plates at the bottom and top ends. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Three different simulation domains have been created here: (i) Both platinum plates are considered flat, (ii) Upper plate consisting of transverse slots of low height and (iii) Upper plate consisting of transverse slots of bigger height. Considering hydrophilic nature of top and bottom plates, two different high temperatures of the hot wall was set and an observation was made on normal and explosive vaporizations and their impacts on thermal transport. For all the structures, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall is set to two different temperatures like 110 K and 250 K for all three models to perform non-equilibrium molecular dynamics (NEMD). For vaporization, higher temperature of the hot wall led to faster transport of the liquid argon as a cluster moving from hot wall to cold wall. But excessive temperature causes explosive boiling which seems not good for heat transportation because of less phase change. In case of condensation, an observation was made which indicates that the nanostructured transverse slots facilitate condensation. Two factors affect the rate of condensation when nanostructures are there: (i) increased surface area and (ii) the nanostructure height. The variation of temperature and evaporation number with respect to time was monitored for all cases. An estimation of heat fluxes normal to top and bottom walls also was made to focus the effectiveness of heat transfer in hydrophilic confinement.
NASA Astrophysics Data System (ADS)
Jeong, Yerim; Ham, Yoo-Geun
2016-04-01
The convection activity and variability are active in Tropic-subtropic area because of equatorial warm pool. The variability's impacts on not only subtropic also mid-latitude. The impact effects on through teleconnection between equatorial and mid-latitude like Pacific-Japan(PJ) pattern. In this paper, two groups are divided based on PJ pattern and JJA Korean precipitation for the analysis that Korean precipitation is affected by PJ pattern. 'PJ+NegKorpr' is indicated when PJ pattern occur that JJA(Jun-July_August) Korean precipitation has negative value. In this case, positive precipitation in subtropic is expanded to central Pacific. And the positive precipitation's pattern is increasing toward north. Because, the subtropical south-eastly wind is forming subtropical precipitation's pattern through cold Kelvin wave is expanding eastward. Cold Kelvin wave is because of Indian negative SST. Also, Korea has negative moisture advection and north-eastly is the role that is moving high-latitude's cold and dry air to Korea. So strong high pressure is formed in Korea. The strong high pressure involves that short wave energy is increasing on surface. As a result, The surface temperature is increased on Korea. But the other case, that 'PJ_Only' case, is indicated when PJ pattern occur and JJA Korean precipitation doesn't have negative value over significant level. The subtropic precipitation's pattern in 'PJ_Only' shows precipitation is confined in western Pacific and expended northward to 25°N near 130°E. And tail of precipitation is toward equatorial(south-eastward). Also, Korean a little positive moisture advection and south-westly is the role that is moving low-latitude's warm and wet air to Korea. So weak high pressure is formed in Korea. The weak high pressure influence amount of short wave energy, so Korean surface temperature is lower. In addition, the case of 'PJ_Only' and Pacific Decal Oscillation(PDO) are occur at the same time has negative impact in Korea temperature through subtropical cyclone and positive PDO. The positive PDO is the role that negative temperature in Korea. So, Korean temperature confined lower by subtropical cyclone and positive PDO. In summary, the relation between PJ pattern and JJA Korean temperature and precipitation depends on subtropical precipitation's pattern. And The subtropical precipitation is effected by Indian SST and PDO's teleconnection.
Ionogels, ionic liquid based hybrid materials.
Le Bideau, Jean; Viau, Lydie; Vioux, André
2011-02-01
The current interest in ionic liquids (ILs) is motivated by some unique properties, such as negligible vapour pressure, thermal stability and non-flammability, combined with high ionic conductivity and wide electrochemical stability window. However, for material applications, there is a challenging need for immobilizing ILs in solid devices, while keeping their specific properties. In this critical review, ionogels are presented as a new class of hybrid materials, in which the properties of the IL are hybridized with those of another component, which may be organic (low molecular weight gelator, (bio)polymer), inorganic (e.g. carbon nanotubes, silica etc.) or hybrid organic-inorganic (e.g. polymer and inorganic fillers). Actually, ILs act as structuring media during the formation of inorganic ionogels, their intrinsic organization and physicochemical properties influencing the building of the solid host network. Conversely, some effects of confinement can modify some properties of the guest IL, even though liquid-like dynamics and ion mobility are preserved. Ionogels, which keep the main properties of ILs except outflow, while allowing easy shaping, considerably enlarge the array of applications of ILs. Thus, they form a promising family of solid electrolyte membranes, which gives access to all-solid devices, a topical industrial challenge in domains such as lithium batteries, fuel cells and dye-sensitized solar cells. Replacing conventional media, organic solvents in lithium batteries or water in proton-exchange-membrane fuel cells (PEMFC), by low-vapour-pressure and non flammable ILs presents major advantages such as improved safety and a higher operating temperature range. Implementation of ILs in separation techniques, where they benefit from huge advantages as well, relies again on the development of supported IL membranes such as ionogels. Moreover, functionalization of ionogels can be achieved both by incorporation of organic functions in the solid matrix, and by encapsulation of molecular species (from metal complexes to enzymes) in the immobilized IL phase, which opens new routes for designing advanced materials, especially (bio)catalytic membranes, sensors and drug release systems (194 references).
Banerjee, Chiranjib; Kundu, Niloy; Ghosh, Surajit; Mandal, Sarthak; Kuchlyan, Jagannath; Sarkar, Nilmoni
2013-08-15
In this article we have reported the fluorescence resonance energy transfer (FRET) study in our earlier characterized surface active ionic liquids (SAILs)-containing microemulsion, i.e., N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([P13][Tf2N])/[CTA][AOT]/isopropyl myristate ([IPM]) and N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide ([N3111][Tf2N])/[CTA][AOT]/[IPM] microemulsions (Banerjee, C.; Mandal, S.; Ghosh, S.; Kuchlyan, J.; Kundu, N.; Sarkar, N. J. Phys. Chem. B 2013, 117, 3927-3934). The occurrence of effective FRET from the donor, coumarin-153 (C-153) to the acceptor rhodamine 6G (R6G) is evident from the decrease in the steady state fluorescence intensity of the donor with addition of acceptor and subsequent increase in the fluorescence intensity of the acceptor in the presence of donor. The excitation wavelength dependent FRET from C-153 to R6G has also been performed to assess the dynamic heterogeneity of these confined systems. In time-resolved experiments, the significant rise time of the acceptor in the presence of the donor further confirms the occurrence of FRET. The multiple donor-acceptor (D-A) distances, for various microemulsions, obtained from the rise times of the acceptor emission in the presence of a donor can be rationalized from the varying distribution of the donor, C-153, in the different regions of the microemulsion. Time-resolved measurement reveals that with increasing excitation wavelength from 408 to 440 nm, the contribution of the faster rise component of FRET increases significantly due to the close proximity of the C-153 and R6G in the polar region of the microemulsion where occurrence of FRET is very high. Moreover, we have also studied the FRET with variation of R (R = [room temperature ionic liquids (RTILs)]/[surfactant]) and shown that the effect of excitation wavelength on FRET is similar irrespective of R values.
Experiments on the Effects of Confining Pressure During Reaction-Driven Cracking
NASA Astrophysics Data System (ADS)
Skarbek, R. M.; Savage, H. M.; Kelemen, P. B.; Lambart, S.; Robinson, B.
2016-12-01
Cracking caused by reaction-driven volume increase is an important process in many geological settings. In particular, the interaction of brittle rocks with reactive fluids can create fractures that modify the permeability and reactive surface area, leading to a large variety of feedbacks. The conditions controlling reaction-driven cracking are poorly understood, especially at geologically relevant confining pressures. We conducted two sets of experiments to study the effects of confining pressure on cracking during the formation of gypsum from anhydrite CaSO4 + 2H2O = CaSO4•2H2O, and portlandite from calcium oxide CaO + H2O = Ca(OH)2. In the first set of experiments, we cold-pressed CaSO4, or CaO powder to form cylinders. Samples were confined in steel, and compressed with an axial load of 0.1 to 4 MPa. Water was allowed to infiltrate the initially unsaturated samples through the bottom face via capillary and Darcian flow across a micro-porous frit. The height of the sample was recorded during the experiment, and serves as a measure of volume change due to the hydration reaction. We also recorded acoustic emissions (AEs) using piezoelectric transducers (PZTs), to serve as a measure of cracking during an experiment. Experiments were stopped when the recorded volume change reached 80% - 100% of the stoichiometrically calculated volume change of the reaction. In a second set of experiments, we pressed CaSO4 powder to form cylinders 8.9 cm in length and 3.5 cm in diameter for testing in a tri-axial press with ports for fluid input and output, across the top and bottom faces of the sample. The tri-axial experiments were set up to investigate the reaction-driven cracking process for a range of confining pressures. Cracking during experiments was monitored using strain gauges and PZTs attached to the sample. We measured permeability during experiments by imposing a fluid pressure gradient across the sample. These experiments elucidate the role of cracking caused by crystallization pressure in many important hydration reactions.
An Optical Trap for Relativistic Plasma
NASA Astrophysics Data System (ADS)
Zhang, Ping
2002-11-01
Optical traps have achieved remarkable success recently in confining ultra-cold matter.Traps capable of confining ultra-hot matter, or plasma, have also been built for applications such as basic plasma research and thermonuclear fusion. For instance, low-density plasmas with temperature less than 1 keV have been confined with static magnetic fields in Malmberg-Penning traps. Low-density 10-50 keV plasmas are confined in magnetic mirrors and tokamaks. High density plasmas have been trapped in optical traps with kinetic energies up to 10 keV [J. L. Chaloupka and D. D. Meyerhofer, Phys. Rev. Lett. 83, 4538 (1999)]. We present the results of experiment, theory and numerical simulation on an optical trap capable of confining relativistic plasma. A stationary interference grating with submicron spacing is created when two high-power (terawatt) laser pulses of equal wavelength (1-micron) are focused from orthogonal directions to the same point in space and time in high density underdense plasma. Light pressure gradients bunch electrons into sheets located at the minima of the interference pattern. The density of the bunched electrons is found to be up to ten times the background density, which is orders-of-magnitude above that previously reported for other optical traps or plasma waves. The amplitudes and frequencies of multiple satellites in the scattered spectrum also indicate the presence of a highly nonlinear ion wave and an electron temperature about 100 keV. Energy transfer from the stronger beam to the weaker beam is also observed. Potential applications include a test-bed for detailed studies of relativistic nonlinear scattering, a positron source and an electrostatic wiggler. This research is also relevant to fast igniter fusion or ion acceleration experiments, in which laser pulses with intensities comparable to those used in the experiment may also potentially beat [Y. Sentoku, et al., Appl. Phys. B 74, 207215 (2002)]. The details of a specific application, the injection of electrons into laser-driven plasma waves, will also be presented. With crossed beams, the energy of a laser-accelerated electron beam is increased and its emittance is decreased compared with a single beam, potentially paving the way towards an all-optical monoenergetic electron injector.
Design of BAs-AlN monolayered honeycomb heterojunction structures: A first-principles study
NASA Astrophysics Data System (ADS)
Camacho-Mojica, Dulce C.; López-Urías, Florentino
2016-04-01
BAs and AlN are semiconductor materials with an indirect and direct gap respectively in the bulk phase. Recently, electronic calculations have demonstrated that a single-layer or few layers of BAs and AlN exhibit a graphite-like structure with interesting electronic properties. In this work, infinite sheets single-layer heterojunction structures based on alternated strips with honeycomb BAs and AlN layers are investigated using first-principles density functional theory calculations. Optimized geometries, density of states, band-gaps, formation energies, and wave functions are studied for different strip widths joined along zigzag and armchair edges. Results in optimized heterojunction geometries revealed that BAs narrow strips exhibit a corrugation effect due to a lattice mismatch. It was found that zigzag heterojunctions are more energetically favored than armchair heterojunctions. Furthermore, the formation energy presents a maximum at the point where the heterojunction becomes a planar structure. Electronic charge density results yielded a more ionic behavior in Alsbnd N bonds than the Bsbnd As bonds in accordance with monolayer results. It was observed that the conduction band minimum for both heterojunctions exhibit confined states located mainly at the entire AlN strips whereas the valence band maximum exhibits confined states located mainly at BAs strips. We expect that the present investigation will motivate more experimental and theoretical studies on new layered materials made of III-V semiconductors.
Electrical tuning of a quantum plasmonic resonance
Liu, Xiaoge; Kang, Ju -Hyung; Yuan, Hongtao; ...
2017-06-12
Surface plasmon (SP) excitations in metals facilitate confinement of light into deep-subwavelength volumes and can induce strong light–matter interaction. Generally, the SP resonances supported by noble metal nanostructures are explained well by classical models, at least until the nanostructure size is decreased to a few nanometres, approaching the Fermi wavelength λ F of the electrons. Although there is a long history of reports on quantum size effects in the plasmonic response of nanometre-sized metal particles systematic experimental studies have been hindered by inhomogeneous broadening in ensemble measurements, as well as imperfect control over size, shape, faceting, surface reconstructions, contamination, chargingmore » effects and surface roughness in single-particle measurements. In particular, observation of the quantum size effect in metallic films and its tuning with thickness has been challenging as they only confine carriers in one direction. Here, we show active tuning of quantum size effects in SP resonances supported by a 20-nm-thick metallic film of indium tin oxide (ITO), a plasmonic material serving as a low-carrier-density Drude metal. An ionic liquid (IL) is used to electrically gate and partially deplete the ITO layer. The experiment shows a controllable and reversible blue-shift in the SP resonance above a critical voltage. As a result, a quantum-mechanical model including the quantum size effect reproduces the experimental results, whereas a classical model only predicts a red shift.« less
Electrical tuning of a quantum plasmonic resonance
NASA Astrophysics Data System (ADS)
Liu, Xiaoge; Kang, Ju-Hyung; Yuan, Hongtao; Park, Junghyun; Kim, Soo Jin; Cui, Yi; Hwang, Harold Y.; Brongersma, Mark L.
2017-09-01
Surface plasmon (SP) excitations in metals facilitate confinement of light into deep-subwavelength volumes and can induce strong light-matter interaction. Generally, the SP resonances supported by noble metal nanostructures are explained well by classical models, at least until the nanostructure size is decreased to a few nanometres, approaching the Fermi wavelength λF of the electrons. Although there is a long history of reports on quantum size effects in the plasmonic response of nanometre-sized metal particles, systematic experimental studies have been hindered by inhomogeneous broadening in ensemble measurements, as well as imperfect control over size, shape, faceting, surface reconstructions, contamination, charging effects and surface roughness in single-particle measurements. In particular, observation of the quantum size effect in metallic films and its tuning with thickness has been challenging as they only confine carriers in one direction. Here, we show active tuning of quantum size effects in SP resonances supported by a 20-nm-thick metallic film of indium tin oxide (ITO), a plasmonic material serving as a low-carrier-density Drude metal. An ionic liquid (IL) is used to electrically gate and partially deplete the ITO layer. The experiment shows a controllable and reversible blue-shift in the SP resonance above a critical voltage. A quantum-mechanical model including the quantum size effect reproduces the experimental results, whereas a classical model only predicts a red shift.
The Cuban “Exception”: The Development of an Advanced Scientific System in an Underdeveloped Country
NASA Astrophysics Data System (ADS)
Baracca, Angelo
Science, education, politics, social development and economics are today considered to be highly interdependent. Although none of these factors can exist on their own, they have nevertheless often been considered in isolation from one other, or studies of their interactions have been confined to the consideration of more or less local contexts. When it comes to studying the history of physics in Cuba, however, it is not only inconceivable to separate scientific developments from their social, political, and cultural contexts. But, as this volume shows, the history of physics in Cuba cannot just focus on local contexts since it is closely entangled with global history, from colonialism to the Cold War.
Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L
2016-02-01
Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.
Loomis, E N; Grim, G P; Wilde, C; Wilson, D C; Morgan, G; Wilke, M; Tregillis, I; Merrill, F; Clark, D; Finch, J; Fittinghoff, D; Bower, D
2010-10-01
Development of analysis techniques for neutron imaging at the National Ignition Facility is an important and difficult task for the detailed understanding of high-neutron yield inertial confinement fusion implosions. Once developed, these methods must provide accurate images of the hot and cold fuels so that information about the implosion, such as symmetry and areal density, can be extracted. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations. In this article we present results of source reconstructions based on simulated images that test the methods effectiveness with regard to pinhole misalignment.
Scaling laws for ignition at the National Ignition Facility from first principles.
Cheng, Baolian; Kwan, Thomas J T; Wang, Yi-Ming; Batha, Steven H
2013-10-01
We have developed an analytical physics model from fundamental physics principles and used the reduced one-dimensional model to derive a thermonuclear ignition criterion and implosion energy scaling laws applicable to inertial confinement fusion capsules. The scaling laws relate the fuel pressure and the minimum implosion energy required for ignition to the peak implosion velocity and the equation of state of the pusher and the hot fuel. When a specific low-entropy adiabat path is used for the cold fuel, our scaling laws recover the ignition threshold factor dependence on the implosion velocity, but when a high-entropy adiabat path is chosen, the model agrees with recent measurements.
NASA Astrophysics Data System (ADS)
Hagmann, C.; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Gharibyan, N.; Gostic, J. M.; Wooddy, P. T.; Torretto, P. C.; Bandong, B. B.; Bionta, R.; Cerjan, C. J.; Bernstein, L. A.; Caggiano, J. A.; Herrmann, H. W.; Knauer, J. P.; Sayre, D. B.; Schneider, D. H.; Henry, E. A.; Fortner, R. J.
2015-07-01
A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the 198Au/196Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.
Woo, K. M.; Betti, R.; Shvarts, D.; ...
2018-05-09
Tmore » he study of Rayleigh–aylor instability in the deceleration phase of inertial confinement fusion implosions is carried out using the three-dimensional (3-D) radiation-hydrodynamic Eulerian parallel code DEC3D. In this paper, we show that the yield-over-clean is a strong function of the residual kinetic energy (RKE) for low modes. Our analytical models indicate that the behavior of larger hot-spot volumes observed in low modes and the consequential pressure degradation can be explained in terms of increasing the RKE. hese results are derived using a simple adiabatic implosion model of the deceleration phase as well as through an extensive set of 3-D single-mode simulations using the code DEC3D. he effect of the bulk velocity broadening on ion temperature asymmetries is analyzed for different mode numbers ℓ = 1 -12. he jet observed in low mode ℓ = 1 is shown to cause the largest ion temperature variation in the mode spectrum. Finally, the vortices of high modes within the cold bubbles are shown to cause lower ion temperature variations than low modes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, K. M.; Betti, R.; Shvarts, D.
Tmore » he study of Rayleigh–aylor instability in the deceleration phase of inertial confinement fusion implosions is carried out using the three-dimensional (3-D) radiation-hydrodynamic Eulerian parallel code DEC3D. In this paper, we show that the yield-over-clean is a strong function of the residual kinetic energy (RKE) for low modes. Our analytical models indicate that the behavior of larger hot-spot volumes observed in low modes and the consequential pressure degradation can be explained in terms of increasing the RKE. hese results are derived using a simple adiabatic implosion model of the deceleration phase as well as through an extensive set of 3-D single-mode simulations using the code DEC3D. he effect of the bulk velocity broadening on ion temperature asymmetries is analyzed for different mode numbers ℓ = 1 -12. he jet observed in low mode ℓ = 1 is shown to cause the largest ion temperature variation in the mode spectrum. Finally, the vortices of high modes within the cold bubbles are shown to cause lower ion temperature variations than low modes.« less
Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments
NASA Astrophysics Data System (ADS)
Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.
2015-11-01
Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + 3He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent Tion, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT Tion of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for Tion and 10% for the neutron yield.
Effects of magnetization on fusion product trapping and secondary neutron spectraa)
NASA Astrophysics Data System (ADS)
Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Herrmann, M. C.
2015-05-01
By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG . cm, a ˜ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.
NASA Astrophysics Data System (ADS)
Sawyer, Brian; Britton, Joseph; Keith, Adam; Wang, C.-C. Joseph; Freericks, James; Bollinger, John
2013-10-01
Confined non-neutral plasmas of ions in the regime of strong coupling serve as a platform for studying a diverse range of phenomena including: dense astrophysical matter, quantum computation/simulation, dynamical decoupling, and precision measurements. We describe a method of simultaneously detecting and measuring the temperature of transverse plasma modes in two-dimensional crystals of cold 9Be+ confined within a Penning trap. We employ a spin-dependent optical dipole force (ODF) generated from off-resonant laser beams to directly excite plasma modes transverse to the crystal plane of ~ 100 ions. Extremely small mode excitations (~ 1 nm) may be detected through spin-motion entanglement induced by an ODF as small as 10 yN , and even the shortest-wavelength (~ 20 μm) modes are excited and detected through the spin dependence of the force. This mode-specific thermometry has facilitated characterization and mitigation of ion heating sources in this system. Future work may include sub-yN force detection, spectroscopy/thermometry of the more complex in-plane oscillations, and implementation/confirmation of sub-Doppler cooling. The authors acknowledge support from the DARPA-OLE program.
4th Generation ECR Ion Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyneis, Claude M.; Leitner, D.; Todd, D.S.
2008-12-01
The concepts and technical challenges related to developing a 4th generation ECR ion source with an RF frequency greater than 40 GHz and magnetic confinement fields greater than twice Becr will be explored in this paper. Based on the semi-empirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current 3rd generation ECR ion sources, which operate at RF frequencies between 20 and 30 GHz. While the 3rd generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materialsmore » such as Nb3Sn to reach the required magnetic confinement, which scales linearly with RF frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continue to make this a promising avenue for development.« less
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.
2017-08-14
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this study, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. Themore » general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Finally, our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.« less
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian.
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J
2017-08-01
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this paper, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. The general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.
Controlled Cold Helium Spill Test in the LHC Tunnel at CERN
NASA Astrophysics Data System (ADS)
Koettig, T.; Casas-Cubillos, J.; Chorowski, M.; Dufay-Chanat, L.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Vauthier, N.; van Weelderen, R.; Winkler, T.; Bremer, J.
The helium cooled magnets of the LHC particle accelerator are installed in a confined space, formed by a 27 km circumference 3.8 m diameter underground tunnel. The vacuum enclosures of the superconducting LHC magnets are protected by a lift plate against excessive overpressure created by eventual leaks from the magnet helium bath, or from the helium supply headers. A three-meter long no stay zone has been defined centered to these plates, based on earlier scale model studies, to protect the personnel against the consequences of an eventual opening of such a lift plate. More recently several simulation studies have been carried out modelling the propagation of the resulting helium/air mixture along the tunnel in case of such a cold helium release at a rate in the range of 1 kg/s. To validate the different scale models and simulation studies, real life mock-up tests have been performed in the LHC, releasing about 1000 liter of liquid helium under standard operational tunnel conditions. Data recorded during these tests include oxygen level, temperature and flow speed as well as video recordings, taken up- and downstream of the spill point (-100 m to +200 m) with respect to the ventilation direction in the LHC tunnel. The experimental set-up and measurement results are presented. Generic effects found during the tests will be discussed to allow the transposal to possible cold helium release cases in similar facilities.
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this study, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. Themore » general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Finally, our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.« less
Transport properties of an asymmetric mixture in the dense plasma regime
Ticknor, Christopher; Kress, Joel David; Collins, Lee A.; ...
2016-06-23
Here, we study how concentration changes ionic transport properties along isobars-isotherms for a mixture of hydrogen and silver, representative of turbulent layers relevant to inertial confinement fusion and astrophysics. Hydrogen will typically be fully ionized while silver will be only partially ionized but can have a large effective charge. This will lead to very different physical conditions for the H and Ag. Large first principles orbital free molecular dynamics simulations are performed and the resulting transport properties are analyzed. Comparisons are made with transport theory in the kinetic regime and in the coupled regime. The addition of a small amountmore » of heavy element in a light material has a dramatic effect on viscosity and diffusion of the mixture. This effect is explained through kinetic theory as a manifestation of a crossover between classical diffusion and Lorentz diffusion.« less
Novak, E; Jalarvo, N; Gupta, S; Hong, K; Förster, S; Egami, T; Ohl, M
2018-06-01
Plastic crystals are a promising candidate for solid state ionic conductors. In this work, quasielastic neutron scattering is employed to investigate the center of mass diffusive motions in two types of plastic crystalline cyclic alcohols: cyclohexanol and cyclooctanol. Two separate motions are observed which are attributed to long-range translational diffusion (α-process) and cage rattling (fast β-process). Residence times and diffusion coefficients are calculated for both processes, along with the confinement distances for the cage rattling. In addition, a binary mixture of these two materials is measured to understand how the dynamics change when a second type of molecule is added to the matrix. It is observed that, upon the addition of the larger cyclooctanol molecules into the cyclohexanol solution, the cage size decreases, which causes a decrease in the observed diffusion rates for both the α- and fast β-processes.
Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena
2014-12-24
Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.
Ion transport controlled by nanoparticle-functionalized membranes.
Barry, Edward; McBride, Sean P; Jaeger, Heinrich M; Lin, Xiao-Min
2014-12-17
From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane's electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.
Ion transport controlled by nanoparticle-functionalized membranes
NASA Astrophysics Data System (ADS)
Barry, Edward; McBride, Sean P.; Jaeger, Heinrich M.; Lin, Xiao-Min
2014-12-01
From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane’s electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.
SAXS Study of Sterically Stabilized Lipid Nanocarriers Functionalized by DNA
NASA Astrophysics Data System (ADS)
Angelov, Borislav; Angelova, Angelina; Filippov, Sergey; Karlsson, Göran; Terrill, Nick; Lesieur, Sylviane; Štěpánek, Petr
2012-03-01
The structure of novel spontaneously self-assembled plasmid DNA/lipid complexes is investigated by means of synchrotron radiation small-angle X-ray scattering (SAXS) and Cryo-TEM imaging. Liquid crystalline (LC) hydrated lipid systems are prepared using the non-ionic lipids monoolein and DOPE-PEG2000 and the cationic amphiphile CTAB. The employed plasmid DNA (pDNA) is encoding for the human protein brain-derived neurotrophic factor (BDNF). A coexistence of nanoparticulate objects with different LC inner organizations is established. A transition from bicontinuous membrane sponges, cubosome intermediates and unilamelar liposomes to multilamellar vesicles, functionalized by pDNA, is favoured upon binding and compaction of pBDNF onto the cationic PEGylated lipid nanocarriers. The obtained sterically stabilized multicompartment nanoobjects, with confined supercoiled plasmid DNA (pBDNF), are important in the context of multicompartment lipid nanocarriers of interest for gene therapy of neurodegenerative diseases.
Stimuli Responsive Ionogels for Sensing Applications—An Overview
Kavanagh, Andrew; Byrne, Robert; Diamond, Dermot; Fraser, Kevin J.
2012-01-01
This overview aims to summarize the existing potential of “Ionogels” as a platform to develop stimuli responsive materials. Ionogels are a class of materials that contain an Ionic Liquid (IL) confined within a polymer matrix. Recently defined as “a solid interconnected network spreading throughout a liquid phase”, the ionogel therefore combines the properties of both its solid and liquid components. ILs are low melting salts that exist as liquids composed entirely of cations and anions at or around 100 °C. Important physical properties of these liquids such as viscosity, density, melting point and conductivity can be altered to suit a purpose by choice of the cation/anion. Here we provide an overview to highlight the literature thus far, detailing the encapsulation of IL and responsive materials within these polymeric structures. Exciting applications in the areas of optical and electrochemical sensing, solid state electrolytes and actuating materials shall be discussed. PMID:24957961
Electron-trapping polycrystalline materials with negative electron affinity.
McKenna, Keith P; Shluger, Alexander L
2008-11-01
The trapping of electrons by grain boundaries in semiconducting and insulating materials is important for a wide range of physical problems, for example, relating to: electroceramic materials with applications as sensors, varistors and fuel cells, reliability issues for solar cell and semiconductor technologies and electromagnetic seismic phenomena in the Earth's crust. Surprisingly, considering their relevance for applications and abundance in the environment, there have been few experimental or theoretical studies of the electron trapping properties of grain boundaries in highly ionic materials such as the alkaline earth metal oxides and alkali halides. Here we demonstrate, by first-principles calculations on MgO, LiF and NaCl, a qualitatively new type of electron trapping at grain boundaries. This trapping is associated with the negative electron affinity of these materials and is unusual as the electron is confined in the empty space inside the dislocation cores.
Electric Field-Controlled Ion Transport In TiO2 Nanochannel.
Li, Dan; Jing, Wenheng; Li, Shuaiqiang; Shen, Hao; Xing, Weihong
2015-06-03
On the basis of biological ion channels, we constructed TiO2 membranes with rigid channels of 2.3 nm to mimic biomembranes with flexible channels; an external electric field was employed to regulate ion transport in the confined channels at a high ionic strength in the absence of electrical double layer overlap. Results show that transport rates for both Na+ and Mg2+ were decreased irrespective of the direction of the electric field. Furthermore, a voltage-gated selective ion channel was formed, the Mg2+ channel closed at -2 V, and a reversed relative electric field gradient was at the same order of the concentration gradient, whereas the Na+ with smaller Stokes radius and lower valence was less sensitive to the electric field and thus preferentially occupied and passed the channel. Thus, when an external electric field is applied, membranes with larger nanochannels have promising applications in selective separation of mixture salts at a high concentration.
Modeling viscosity and diffusion of plasma mixtures across coupling regimes
NASA Astrophysics Data System (ADS)
Arnault, Philippe
2014-10-01
Viscosity and diffusion of plasma for pure elements and multicomponent mixtures are modeled from the high-temperature low-density weakly coupled regime to the low-temperature high-density strongly coupled regime. Thanks to an atom in jellium modeling, the effect of electron screening on the ion-ion interaction is incorporated through a self-consistent definition of the ionization. This defines an effective One Component Plasma, or an effective Binary Ionic Mixture, that is representative of the strength of the interaction. For the viscosity and the interdiffusion of mixtures, approximate kinetic expressions are supplemented by mixing laws applied to the excess viscosity and self-diffusion of pure elements. The comparisons with classical and quantum molecular dynamics results reveal deviations in the range 20--40% on average with almost no predictions further than a factor of 2 over many decades of variation. Applications in the inertial confinement fusion context could help in predicting the growth of hydrodynamic instabilities.
Lifecycle of laser-produced air sparks
Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.
2015-06-03
Here, we investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlifemore » images. Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N 2 +. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.« less
Role of Disulfide Bridges in the Activity and Stability of a Cold-Active α-Amylase
Siddiqui, Khawar Sohail; Poljak, Anne; Guilhaus, Michael; Feller, Georges; D'Amico, Salvino; Gerday, Charles; Cavicchioli, Ricardo
2005-01-01
The cold-adapted α-amylase from Pseudoalteromonas haloplanktis unfolds reversibly and cooperatively according to a two-state mechanism at 30°C and unfolds reversibly and sequentially with two transitions at temperatures below 12°C. To examine the role of the four disulfide bridges in activity and conformational stability of the enzyme, the eight cysteine residues were reduced with β-mercaptoethanol or chemically modified using iodoacetamide or iodoacetic acid. Matrix-assisted laser desorption-time of flight mass spectrometry analysis confirmed that all of the cysteines were modified. The iodoacetamide-modified enzyme reversibly folded/unfolded and retained approximately one-third of its activity. Removal of all disulfide bonds resulted in stabilization of the least stable region of the enzyme (including the active site), with a concomitant decrease in activity (increase in activation enthalpy). Disulfide bond removal had a greater impact on enzyme activity than on stability (particularly the active-site region). The functional role of the disulfide bridges appears to be to prevent the active site from developing ionic interactions. Overall, the study demonstrated that none of the four disulfide bonds are important in stabilizing the native structure of enzyme, and instead, they appear to promote a localized destabilization to preserve activity. PMID:16109962
Lifecycle of laser-produced air sparks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S., E-mail: hari@pnnl.gov; Brumfield, B. E.; Phillips, M. C.
2015-06-15
We investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlife images.more » Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N{sub 2}{sup +}. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.« less
NASA Astrophysics Data System (ADS)
Raithel, Georg; Zhao, Jianming
2017-04-01
Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).
Polarisation analysis on the LET time-of-flight spectrometer
NASA Astrophysics Data System (ADS)
Nilsen, G. J.; Košata, J.; Devonport, M.; Galsworthy, P.; Bewley, R. I.; Voneshen, D. J.; Dalgliesh, R.; Stewart, J. R.
2017-06-01
We present a design for implementing uniaxial polarisation analysis on the LET cold neutron time-of-flight spectrometer, installed on the second target station at ISIS. The polarised neutron beam is to be produced by a transmission-based supermirror polariser with the polarising mirrors arranged in a “double-V” formation. This will be followed by a Mezei-type precession coil spin flipper, selected for its small spatial requirements, as well as a permanent magnet guide field to transport the beam polarisation to the sample position. The sample area will contain a set of holding field coils, whose purpose is to produce a highly homogenous magnetic field for the wide-angle 3He analyser cell. To facilitate fast cell changes and reduce the risk of cell failure, we intend to separate the cell and cryostat from the vacuum of the sample tank by installing both in a vessel at atmospheric pressure. When the instrument upgrade is complete, the performance of LET is expected to be commensurate with existing and planned polarised cold neutron spectrometers at other sources. Finally, we discuss the implications of performing uniaxial polarisation analysis only, and identify quasi-elastic neutron scattering (QENS) on ionic conducting materials as an interesting area to apply the technique.
Dense garnet-like Li5La3Nb2O12 solid electrolyte prepared by self-consolidation method
NASA Astrophysics Data System (ADS)
Zhao, Pengcheng; Xiang, Yu; Xu, Yan; Wen, Yuehua; Zhang, Wenfeng; Zhu, Xiayu; Li, Meng; Zhang, Sontong; Ming, Hai; Jin, Zhaoqing; Cao, Gaoping
2018-06-01
Li5La3Nb2O12 (LLNO) is a typical garnet-like solid electrolyte with solitary cubic structure. However, its ionic conductivity is relatively low due to the low relative density when prepared by cold isostatic pressing method, which usually involves high-pressure machines, poor productivity, tedious pressing operations, and low density. In this paper, self-consolidation method is developed to sinter dense LLNO electrolyte. Although not any pressing operations are employed in the entire process, the relative density of LLNO is promoted up to 95%, which is much higher than the reported values of 45-80%. SEM images reveal that the sample is built by huge particles in size of 80 μm indicating that there are few boundaries in the sample. Moreover, a rich content of Li-Al-O compounds is detected out in the boundary areas, which may act as sintering aids for the sample to consolidate automatically. According to the highest density, the bulk ionic conductivity of LLNO sample reaches up to 1.61 × 10-4 S cm-1 at 30 °C, which is in the same order of magnitude as the value of cubic Li7La3Zr2O12 electrolyte. This work verifies the self-consolidation mechanism for the sintering of ceramic electrolytes and could significantly facilitate the development of LLNO membrane technology.
Mass-imbalanced ionic Hubbard chain
NASA Astrophysics Data System (ADS)
Sekania, Michael; Baeriswyl, Dionys; Jibuti, Luka; Japaridze, George I.
2017-07-01
A repulsive Hubbard model with both spin-asymmetric hopping (t↑≠t↓ ) and a staggered potential (of strength Δ ) is studied in one dimension. The model is a compound of the mass-imbalanced (t↑≠t↓ ,Δ =0 ) and ionic (t↑=t↓ ,Δ >0 ) Hubbard models, and may be realized by cold atoms in engineered optical lattices. We use mostly mean-field theory to determine the phases and phase transitions in the ground state for a half-filled band (one particle per site). We find that a period-two modulation of the particle (or charge) density and an alternating spin density coexist for arbitrary Hubbard interaction strength, U ≥0 . The amplitude of the charge modulation is largest at U =0 , decreases with increasing U and tends to zero for U →∞ . The amplitude for spin alternation increases with U and tends to saturation for U →∞ . Charge order dominates below a value Uc, whereas magnetic order dominates above. The mean-field Hamiltonian has two gap parameters, Δ↑ and Δ↓, which have to be determined self-consistently. For U
A structural model for the in vivo human cornea including collagen-swelling interaction
Cheng, Xi; Petsche, Steven J.; Pinsky, Peter M.
2015-01-01
A structural model of the in vivo cornea, which accounts for tissue swelling behaviour, for the three-dimensional organization of stromal fibres and for collagen-swelling interaction, is proposed. Modelled as a binary electrolyte gel in thermodynamic equilibrium, the stromal electrostatic free energy is based on the mean-field approximation. To account for active endothelial ionic transport in the in vivo cornea, which modulates osmotic pressure and hydration, stromal mobile ions are shown to satisfy a modified Boltzmann distribution. The elasticity of the stromal collagen network is modelled based on three-dimensional collagen orientation probability distributions for every point in the stroma obtained by synthesizing X-ray diffraction data for azimuthal angle distributions and second harmonic-generated image processing for inclination angle distributions. The model is implemented in a finite-element framework and employed to predict free and confined swelling of stroma in an ionic bath. For the in vivo cornea, the model is used to predict corneal swelling due to increasing intraocular pressure (IOP) and is adapted to model swelling in Fuchs' corneal dystrophy. The biomechanical response of the in vivo cornea to a typical LASIK surgery for myopia is analysed, including tissue fluid pressure and swelling responses. The model provides a new interpretation of the corneal active hydration control (pump-leak) mechanism based on osmotic pressure modulation. The results also illustrate the structural necessity of fibre inclination in stabilizing the corneal refractive surface with respect to changes in tissue hydration and IOP. PMID:26156299
Characterization of a neutral protease from lysosomes of rabbit polymorphonuclear leucocytes
Davies, Philip; Rita, Giuseppe A.; Krakauer, Kathrin; Weissmann, Gerald
1971-01-01
1. The subcellular distribution has been investigated of a protease from rabbit polymorphonuclear leucocytes, obtained from peritoneal exudates. The enzyme, optimally active between pH7.0 and 7.5, hydrolyses histone but not haemoglobin, sediments almost exclusively with a granule fraction rich in other lysosomal enzymes, and is latent until the granules are disrupted by various means. 2. Enzymic analysis of specific and azurophilic granules separated by zonal centrifugation showed that neutral protease activity was confined to fractions rich in enzymes characteristic of azurophile granules. 3. Recovery of neutral protease activity from subcellular fractions was several times greater than that found in whole cells. This finding was explained by the presence of a potent inhibitor of the enzyme activity in the cytoplasm. 4. The effect of the inhibitor was reversed by increasing ionic strength (up to 2.5m-potassium chloride) and by polyanions such as heparin and dextran sulphate, but not by an uncharged polymer, dextran. 5. The enzyme was also inhibited, to a lesser extent, by 1-chloro-4-phenyl-3-l-toluene-p-sulphonamidobutan-2-one, soya-bean trypsin inhibitor and ∈-aminohexanoate (∈-aminocaproate). 6. The granule fractions failed to hydrolyse artificial substrates for trypsin and chymotrypsin. 7. Partial separation of the enzyme was achieved by Sephadex gel filtration at high ionic strength and by isoelectric focusing. The partially separated, activated enzyme showed an approximately 300-fold increase in specific activity over that in whole cells. PMID:5126908
Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects
NASA Astrophysics Data System (ADS)
Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman
2017-07-01
Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.
NASA Astrophysics Data System (ADS)
Mermut, Ozzy; Bouchard, Jean-Pierre; Cormier, Jean-Francois; Diamond, Kevin R.; Noiseux, Isabelle; Vernon, Marcia L.; Patterson, Michael S.
2007-07-01
A broadband frequency domain fluorescence lifetime system (from ns to ms time scale) has been developed to study the photochemical and photodynamic behavior of model, well-controlled photosensitizer-encapsulating liposomes. Liposomes are known to be efficient and selective photosensitizer (PS) drug delivery vesicles, however, their chemical and physical effects on the photochemical properties of the photosensitizer have not been well characterized. The liposomes employed in this study (both blank and photosensitizer-complexed) were characterized to determine their: a) size distribution (dynamic light scattering), b) image (scanning electron microscope, confocal fluorescence microscopy), c) concentration of particles (flow cytometry), d) temperature-dependant phase transition behavior (differential scanning calorimetry, and e) spectrofluorescent spectrophotometric properties, e.g. aggregation, in the confined environment. The fluorescence decay behavior of two families of encapsulated photosensitizers, di-and tetrasulfonated metallophthalocyanines, and 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH), has been examined as a function of the liposome's physical properties (size-scale, distribution and concentration of scatterer) and the impact of the photosensitizer spatial confinement determined. It is found that the achievable size range and distribution of the PS-liposomes is controlled by the chemical nature of the PS for large liposomes (1000 nm), and is PS independent for small PS-liposomes (~140nm). The lifetime decay behavior was studied for all three photosensitizer-liposome systems and compared before and after confinement. We found the nature of the decay to be similar before and after encapsulation for the sulfonated phthalocyanines containing ionic moieties (primarily monoexponential) but not for HPPH. In the latter, the decay transitioned from multi- to monoexponential decay upon localizing lypophilic HPPH to the liposomal membrane. This behavior was confirmed by obtaining a similar change in lifetime response with an independent timedomain system. We also varied the environment in temperature and oxygen content to examine the effects on the fluorescent lifetimes of the liposomal complexes. The fluorescence decay of all three PS-containing liposomes showed that the local spatial confinement of PS (dictated by the PS chemistry) into different domains within the liposome directly controls the temperature-response. Membrane-bound photosensitizers were less sensitive to temperature effects as illustrated by the decay dynamics observed in solu, that is, they developed a unique decay behavior that correlated with the phase transition of the membrane. The fluorescent lifetime of PS-encapsulated liposomes in deoxygenated environments, relevant to oxygen independent type I phototoxicity, was also probed in the frequency-domain revealing that liposome-confined PS display very different trends than those observed in solu.
RICKETS AT THE MEDICI COURT OF FLORENCE: THE CASE OF DON FILIPPINO (1577-1582).
Castagna, Maura; Giuffra, Valentina; Fattori, Silvia; Vitiello, Angelica; Caramella, Davide; Giustini, Davide; Fornaciari, Gino
2014-01-01
Among the children found in the crypt of the Grand Duke Giangastone in S. Lorenzo Basilica (Florence), the skeletal remains of a 5-year-old child still wearing his fine high social status clothing were recovered. This child of the Medici family was identified as Don Filippino (1577-1582), son of the Grand Duke Francesco I (1541-1587) and Giovanna from Austria (1547 - 1578). The prince showed several pathological deformities of the cranial and post-cranial skeleton, including enlargement of the cranium, thinning of the cranial vault bones (craniotabes), platybasia and marked bending of femora, tibiae and fibulae. Differential diagnosis suggests that Don Filippino was affected by rickets. The occurrence of this metabolic disease related to vitamin D deficiency in a Renaissance high social class individual can be explained by the practice of very prolonged breast-feeding, up until two years of age. Maternal milk contains insufficient vitamin D ratios and retarded weaning severely exposes children to a higher risk of developing rickets, especially if dietary habits are combined with inadequate exposure to sunlight. Historical sources describe Don Filippino as frail and sickly, with frequent illnesses and persistent slight fevers, and it can be supposed that the child was frequently confined indoors, especially in the cold season. Integration of osteoarchaeological evidence with historical documentation suggests that bone lesions observed in the skeletal remains of Don Filippino are compatible with a diagnosis of rickets, caused by the custom of prolonged breast-feeding associated with inadequate sunlight exposure to sunlight. Historical sources describe Don Filippino as frail and sickly, with frequent illnesses and persistent slight fevers, and it can be supposed that the child was frequently confined indoors, especially in the cold season. Integration of osteoarchaeological evidence with historical documentation suggests that bone lesions observed in the skeletal remains of Don Filippino are compatible with a diagnosis of rickets, caused by the custom of prolonged breast-feeding associated with inadequate sunlight exposure.
Photoevaporation of Clumps in Photodissociation Regions
NASA Technical Reports Server (NTRS)
Gorti, Uma; Hollenbach, David; DeVincenzi, D. (Technical Monitor)
2002-01-01
We present the results of an investigation of the effects of Far Ultraviolet (FUV) radiation (6.0eV < hv < 13.6eV) from hot early type OB stars on clumps in star-forming molecular clouds. Clumps in FUV-illuminated regions (or photodissociation regions or PDRs) undergo external heating and photodissociation as they are exposed to the FUV field, resulting in a loss of cold, molecular lump mass as it is converted to warm atomic gas. The heating, if rapid, creates strong photoevaporative mass flows off the clump surfaces, and drives shocks into the clumps, compressing them to high densities. The clumps lose mass on relatively short timescales. The evolution of an individual clump is found to be sensitive to three dimensionless parameters: Nc0, the ratio of the initial column density of the clump to the column N(0) approx. 10(exp 21) cm(exp -2) of a warm FUV-heated surface region; upsilon, the ratio of the sound speed in the heated surface to that in the cold clump material: and t(FUV)t(c), the ratio of the "turn-on time" t(FUV) of the heating flux on a clump to its initial sound crossing-time t(c). The evolution also depends on whether a confining interclump medium exists, or whether the interclump region has negligible pressure, as is the case for turbulence-generated clumps. In this paper, we use spherical 1-D numerical hydrodynamic models as well as approximate analytical models to study the dependence of clump photoevaporation on the physical parameters of the clump, and to derive the dynamical evolution, mass loss rates and photoevaporative timescales of a clump for a variety of astrophysical situations. Turbulent clumps evolve so that their column densities are equal to a critical value determined by the local FUV field, and typically have short photo evaporation timescales, approx. 10(exp 4-5) years for a 1 M(solar mass) clump in a typical star-forming region (Nc0 = 10, upsilon = 10). Clumps with insufficient magnetic pressure support, and in strong FUV fields may be driven to collapse by the compressional effect of converging shock waves. We also estimate the rocket effect on photoevaporating clumps and find that it is significant only for the smallest clumps, with sizes much less than the extent of the PDR itself. Clumps that are confined by all interclump medium may either get completely photoevaporated, or may preserve a shielded core with a warm, dissociated, protective shell that, absorbs the incident FUV flux. We compare our results with observations of some well studied PDRs: the Orion Bar, M17SW NGC 2023 and the Rosette Nebula. The data are consistent with both interpretations of clump origin. turbulence and pressure confinement, with a slight indication for favouring the turbulent model for clumps over pressure-confined
Asadishad, Bahareh; Olsson, Adam L J; Dusane, Devendra H; Ghoshal, Subhasis; Tufenkji, Nathalie
2014-07-01
In cold climate regions, microorganisms in upper layers of soil are subject to low temperatures and repeated freeze-thaw (FT) conditions during the winter. We studied the effects of cold temperature and FT cycles on the viability and survival strategies (namely motility and biofilm formation) of the common soil bacterium and model pathogen Bacillus subtilis. We also examined the effect of FT on the transport behavior of B. subtilis at two solution ionic strengths (IS: 10 and 100 mM) in quartz sand packed columns. Finally, to study the mechanical properties of the bacteria-surface bond, a quartz crystal microbalance with dissipation monitoring (QCM-D) was used to monitor changes in bond stiffness when B. subtilis attached to a quartz substrate (model sand surface) under different environmental conditions. We observed that increasing the number of FT cycles decreased bacterial viability and that B. subtilis survived for longer time periods in higher IS solution. FT treatment decreased bacterial swimming motility and the transcription of flagellin encoding genes. Although FT exposure had no significant effect on the bacterial growth rate, it substantially decreased B. subtilis biofilm formation and correspondingly decreased the transcription of matrix production genes in higher IS solution. As demonstrated with QCM-D, the bond stiffness between B. subtilis and the quartz surface decreased after FT. Moreover, column transport studies showed higher bacterial retention onto sand grains after exposure to FT. This investigation demonstrates how temperature variations around the freezing point in upper layers of soil can influence key bacterial properties and behavior, including survival and subsequent transport. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Piyush, E-mail: piyush-patel130@yahoo.com; Vyas, S. M., E-mail: s-m-vyas-gu@hotmail.com; Patel, Vimal
The III-VI compound semiconductors is important for the fabrication of ionizing radiation detectors, solid-state electrodes, and photosensitive heterostructures, solar cell and ionic batteries. In this paper, In{sub 2}Se{sub 2.7} Sb{sub 0.3} single crystals were grown by the Bridgman method with temperature gradient of 60 °C/cm and the growth velocity 0.5cm/hr. The as-grown crystals were examined under the optical microscope for surface study, a various growth features observed on top free surface of the single crystal which is predominant of layers growth mechanism. The lattice parameters of as-grown crystal was determined by the XRD analysis. A Vickers’ projection microscope were usedmore » for the study of microhardness on the as-cleaved, cold-worked and annealed samples of the crystals, the results were discussed, and reported in detail.« less
Diffuse charge dynamics in ionic thermoelectrochemical systems.
Stout, Robert F; Khair, Aditya S
2017-08-01
Thermoelectrics are increasingly being studied as promising electrical generators in the ongoing search for alternative energy sources. In particular, recent experimental work has examined thermoelectric materials containing ionic charge carriers; however, the majority of mathematical modeling has been focused on their steady-state behavior. Here, we determine the time scales over which the diffuse charge dynamics in ionic thermoelectrochemical systems occur by analyzing the simplest model thermoelectric cell: a binary electrolyte between two parallel, blocking electrodes. We consider the application of a temperature gradient across the device while the electrodes remain electrically isolated from each other. This results in a net voltage, called the thermovoltage, via the Seebeck effect. At the same time, the Soret effect results in migration of the ions toward the cold electrode. The charge dynamics are described mathematically by the Poisson-Nernst-Planck equations for dilute solutions, in which the ion flux is driven by electromigration, Brownian diffusion, and thermal diffusion under a temperature gradient. The temperature evolves according to the heat equation. This nonlinear set of equations is linearized in the (experimentally relevant) limit of a "weak" temperature gradient. From this, we show that the time scale on which the thermovoltage develops is the Debye time, 1/Dκ^{2}, where D is the Brownian diffusion coefficient of both ion species, and κ^{-1} is the Debye length. However, the concentration gradient due to the Soret effect develops on the bulk diffusion time, L^{2}/D, where L is the distance between the electrodes. For thin diffuse layers, which is the condition under which most real devices operate, the Debye time is orders of magnitude less than the diffusion time. Therefore, rather surprisingly, the majority of ion motion occurs after the steady thermovoltage has developed. Moreover, the dynamics are independent of the thermal diffusion coefficients, which simply set the magnitude of the steady-state thermovoltage.
Diffuse charge dynamics in ionic thermoelectrochemical systems
NASA Astrophysics Data System (ADS)
Stout, Robert F.; Khair, Aditya S.
2017-08-01
Thermoelectrics are increasingly being studied as promising electrical generators in the ongoing search for alternative energy sources. In particular, recent experimental work has examined thermoelectric materials containing ionic charge carriers; however, the majority of mathematical modeling has been focused on their steady-state behavior. Here, we determine the time scales over which the diffuse charge dynamics in ionic thermoelectrochemical systems occur by analyzing the simplest model thermoelectric cell: a binary electrolyte between two parallel, blocking electrodes. We consider the application of a temperature gradient across the device while the electrodes remain electrically isolated from each other. This results in a net voltage, called the thermovoltage, via the Seebeck effect. At the same time, the Soret effect results in migration of the ions toward the cold electrode. The charge dynamics are described mathematically by the Poisson-Nernst-Planck equations for dilute solutions, in which the ion flux is driven by electromigration, Brownian diffusion, and thermal diffusion under a temperature gradient. The temperature evolves according to the heat equation. This nonlinear set of equations is linearized in the (experimentally relevant) limit of a "weak" temperature gradient. From this, we show that the time scale on which the thermovoltage develops is the Debye time, 1 /D κ2 , where D is the Brownian diffusion coefficient of both ion species, and κ-1 is the Debye length. However, the concentration gradient due to the Soret effect develops on the bulk diffusion time, L2/D , where L is the distance between the electrodes. For thin diffuse layers, which is the condition under which most real devices operate, the Debye time is orders of magnitude less than the diffusion time. Therefore, rather surprisingly, the majority of ion motion occurs after the steady thermovoltage has developed. Moreover, the dynamics are independent of the thermal diffusion coefficients, which simply set the magnitude of the steady-state thermovoltage.
NASA Astrophysics Data System (ADS)
Álvarez-Lao, Diego J.; García, Nuria
2011-07-01
Cold-adapted large mammal populations spread southward during the coldest and driest phases of the Late Pleistocene reaching the Iberian Peninsula. Presence of woolly rhinoceros ( Coelodonta antiquitatis) can be identified from 23 Iberian sites, which is compiled and analyzed herein, and the fossil specimens from seven of these sites are described here for first time. Morphological and biometrical analyses demonstrate that the Iberian woolly rhinoceros did not significantly differ from individuals of other European populations, but represent the westernmost part of a continuous Eurasian belt of distribution. The first presence of woolly rhino in the Iberian Peninsula has been identified during the late Middle Pleistocene and early Late Pleistocene. However, the highest abundance of this species is recorded during MIS 3 and 2. The latest Iberian occurrences can be dated around 20 ka BP. The presence of woolly rhinoceros in the Iberian Peninsula correlates with periods of extreme dry and cold climatic conditions documented in Iberian terrestrial and marine sediment sequences. From a palaeobiogeographic point of view, the maximum southern spread of C. antiquitatis on the Iberian Peninsula was registered during the late Middle Pleistocene or early Late Pleistocene, reaching the latitude of Madrid (about 40°N). Subsequently, during MIS 3 and 2, all Iberian finds were restricted to the Northern regions of Iberia (Cantabrian area and Catalonia). The southern expansion of C. antiquitatis during the Late Pleistocene in the Iberian Peninsula reached similar latitudes to other Eurasian regions. The ecological composition of fossil assemblages with presence of woolly rhinoceros was statistically analyzed. Results show that temperate ungulate species are predominant at Iberian assemblages, resulting in a particular mixture of temperate and cold elements different of the typical Eurasian cold-adapted faunal associations. This particular situation suggests two possible explanations: a) Eventual migrations during the coldest time spans, resulting in a mixing of cold and temperate faunas, instead a faunal replacing; b) Persistence of woolly rhinoceros populations in the Iberian Peninsula during interglacial episodes confined at cryptic southern refugia.
Overview of environmental and hydrogeologic conditions at Fort Yukon, Alaska
Nakanishi, Allan S.; Dorava, Joseph M.
1994-01-01
The village of Fort Yukon along the Yukon River in east-central Alaska has long cold winters and short summers. The Federal Aviation Administration operates and supports some airport facilities in Fort Yukon and is evaluating the severity of environmental contamination and options for remediation of such contamination at their facilites. Fort Yukon is located on the flood plain of the Yukon River and obtains its drinking water from a shallow aquifer located in the thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Yukon River may affect the quality of the ground water. Alternative drinking-water sources are available from local surface-water bodies or from presently unidentified confined aquifers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odorici, F., E-mail: fabrizio.odorici@bo.infn.it; Malferrari, L.; Montanari, A.
Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to “screen” the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used,more » as explained by plasma diffusion models.« less
Subterranean Fire. Changing theories of the earth during the Renaissance.
Vermij, R
1998-11-01
Aristotle described the earth as a cold and dry body and paid no attention to the phenomenon of terrestrial heat. Renaissance physicians, by contrast, when seeking to understand the origin of hot springs in the context of their balneological studies, came to defend a theory of subterranean fires. This tradition, which started in Italy, became widely known through the works of Georgius Agricola. But although it had implications for the explanation of further natural phenomena, it remained almost exclusively confined to medical circles. As far as physics as an academic discipline was concerned, the ideas concerning subterranean fire were hardly taken note of. Only with the collapse of Aristotelian philosophy in the seventeenth century could these by then "old innovations" obtain a wider significance.
Dilution jet mixing program, supplementary report
NASA Technical Reports Server (NTRS)
Srinivasan, R.; White, C.
1986-01-01
The velocity and temperature distributions predicted by a 3-D numerical model and experimental measurements are compared. Empirical correlations for the jet velocity trajectory developed are presented. The measured velocity distributions for all test cases of phase through phase 3 are presented in the form of contour and oblique plots. quantification of the effects of the following on the jet mixing characteristics with a confined crossflow are: (1) orifice geometry momentum flux ratio and density ratio; (2) nonuniform mainstream temperature and velocity profiles upstream of dilution orifices; (3) cold versus hot jet injection; (4) cross-stream flow are a convergence as encountered in practical dilution zone geometries; (5) 2-D slot versus circular orifices; (6) discrete noncirculcer orifices; (7) single-sided versus opposed jets; (8) single row of jets.
Demonstration of a memory for tightly guided light in an optical nanofiber.
Gouraud, B; Maxein, D; Nicolas, A; Morin, O; Laurat, J
2015-05-08
We report the experimental observation of slow-light and coherent storage in a setting where light is tightly confined in the transverse directions. By interfacing a tapered optical nanofiber with a cold atomic ensemble, electromagnetically induced transparency is observed and light pulses at the single-photon level are stored in and retrieved from the atomic medium. The decay of efficiency with storage time is also measured and related to concurrent decoherence mechanisms. Collapses and revivals can be additionally controlled by an applied magnetic field. Our results based on subdiffraction-limited optical mode interacting with atoms via the strong evanescent field demonstrate an alternative to free-space focusing and a novel capability for information storage in an all-fibered quantum network.
Nonequilibrium Hall Response After a Topological Quench
NASA Astrophysics Data System (ADS)
Unal, F. Nur; Mueller, Erich; Oktel, M. O.
2017-04-01
We theoretically study the Hall response of a lattice system following a quench where the topology of a filled band is suddenly changed. In the limit where the physics is dominated by a single Dirac cone, we find that the change in the Hall conductivity is two-thirds of the quantum of conductivity. We explore this universal behavior in the Haldane model, and discuss cold-atom experiments for its observation. Beyond linear response, the Hall effect crosses over from fractional to integer values. We investigate finite-size effects, and the role of the harmonic confinement. Furthermore, we explore the magnetic field quenches in ladders formed in synthetic dimensions. This work is supported by TUBITAK, NSFPHY-1508300, ARO-MURI W9111NF-14-1-0003.
Inter-conversion of Work and Heat With Plasma Electric Fields
NASA Astrophysics Data System (ADS)
Avinash, K.
2010-11-01
Thermodynamics of a model system where a group of cold charged particles locally confined in a volume VP within a warm plasma of temperature T and fixed volume V (VP<
Alcaraz, Antonio; López, M Lidón; Queralt-Martín, María; Aguilella, Vicente M
2017-10-24
Synthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.
Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel
NASA Astrophysics Data System (ADS)
Poulin, Jerome; Light, Philip S.; Kashyap, Raman; Luiten, Andre N.
2011-11-01
We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow beam can confine cold atoms to the darkest regions of the beam, thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and a guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-μm-radius core hollow fiber, it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When the MOT is positioned farther away, coupling efficiencies over 50% can be achieved with larger core fibers.
2018-03-19
When the polar vortex dips south it often makes headlines. Frigid air, usually confined to the arctic, spills into lower parts of the continent making it a chilly challenge for people going about their day. But there's a warm part to the story as well. While the eastern and southern United States were shivering in January the arctic was experiencing above average temperatures. In maps created with data by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite, warmer-than-normal temperatures are colored in red and below average temperatures are colored in blue. Provided in geographic and polar projections, the maps show regions of unusually cold air hovering over the eastern and southern U.S., eastern Canada and Greenland in January. February shows colder-than-normal air blanketing the northwest U.S., Canada, Western Europe, northwest Africa and East Asia. In both cases, the arctic remains exceptionally warm. During most winters the polar vortex is like a giant counterclockwise whirlpool spinning around the north pole with cold air at its center. Occasionally the vortex splits and its parts move south, usually over the continents. At the same time, warm air from the south moves in to fill the gap, and that northward movement usually occurs over the oceans. The cold air movement gets the most attention because it typically affects many millions of people. However, that cooling is very often accompanied by warming somewhere over the Arctic -- an equally important part of the polar vortex story that usually goes unnoticed but is very apparent in the images shown here. More images are available at https://photojournal.jpl.nasa.gov/catalog/PIA22344
NASA Astrophysics Data System (ADS)
von Cosel, Rudo; Olu, Karine
2009-12-01
Two new genera and three new species of large Vesicomyidae are described from cold-seep sites on pockmarks and other sulfide-rich environments in the Gulf of Guinea (tropical east Atlantic) off Gabon, Congo (Brazzaville) and northern Angola, from 500 to 4000 m depth: " Calyptogena" (s.l.) regab n. sp., Wareniconcha (n.g.) guineensis (Thiele and Jaeckel 1931), Elenaconcha guiness n.g. n. sp., and Isorropodon atalantae n. sp. For two other species already taken by the R/V Valdivia in 1898, Calyptogena valdiviae (Thiele and Jaeckel 1931) and Isorropodon striatum (Thiele and Jaeckel 1931) new localities were discovered, and the species are rediscussed. E. guiness n.g. n.sp. is also recorded from off Banc d'Arguin, Mauritania, collected by commercial fishing vessels. The vesicomyid species here treated were encountered in different depth ranges along the Gabon-Congo-Angola margin, between 500 and 4000 m depth, and it was found that, in comparison with the dredge samples taken by the Valdivia expedition off southern Cameroon and off Rio de Oro (both at 2500 m), the same species occur in other depth ranges, in some cases with a vertical difference of more than 1000 m. .That means that the species are not confined to a given depth thought being typical for them and that the characteristics of the biotope are likely to play a major role in the distribution of the vesicomyids associated to cold seeps or other reduced environments along the West African margin.
Mass ablation and magnetic flux losses through a magnetized plasma-liner wall interface
NASA Astrophysics Data System (ADS)
García-Rubio, F.; Sanz, J.
2017-07-01
The understanding of energy and magnetic flux losses in a magnetized plasma medium confined by a cold wall is of great interest in the success of magnetized liner inertial fusion (MagLIF). In a MagLIF scheme, the fuel is magnetized and subsonically compressed by a cylindrical liner. Magnetic flux conservation is degraded by the presence of gradient-driven transport processes such as thermoelectric effects (Nernst) and magnetic field diffusion. In previous publications [Velikovich et al., Phys. Plasmas 22, 042702 (2015)], the evolution of a hot magnetized plasma in contact with a cold solid wall (liner) was studied using the classical collisional Braginskii's plasma transport equations in one dimension. The Nernst term degraded the magnetic flux conservation, while both thermal energy and magnetic flux losses were reduced with the electron Hall parameter ωeτe with a power-law asymptotic scaling (ωeτe)-1/2. In the analysis made in the present paper, we consider a similar situation, but with the liner being treated differently. Instead of a cold solid wall acting as a heat sink, we model the liner as a cold dense plasma with low thermal conduction (that could represent the cryogenic fuel layer added on the inner surface of the liner in a high-gain MagLIF configuration). Mass ablation comes into play, which adds notably differences to the previous analysis. The direction of the plasma motion is inverted, but the Nernst term still convects the magnetic field towards the liner. Magnetization suppresses the Nernst velocity and improves the magnetic flux conservation. Thermal energy in the hot plasma is lost in heating the ablated material. When the electron Hall parameter is large, mass ablation scales as (ωeτe)-3/10, while both the energy and magnetic flux losses are reduced with a power-law asymptotic scaling (ωeτe)-7/10.
NASA Astrophysics Data System (ADS)
Mugo, Robinson M.; Saitoh, Sei-Ichi; Takahashi, Fumihiro; Nihira, Akira; Kuroyama, Tadaaki
2014-09-01
Cold- and warm-water species' fishing grounds show a spatial synchrony around fronts in the western North Pacific (WNP). However, it is not yet clear whether a front (thermal, salinity or chlorophyll) acts as an absolute barrier to fish migration on either side or its structure allows interaction of species with different physiological requirements. Our objective was to assess potential areas of overlap between cold- and warm-water species using probabilities of presence derived from fishery datasets and remotely sensed environment data in the Kuroshio-Oyashio region in the WNP. Fishery data comprised skipjack tuna (Katsuwonus pelamis) fishing locations and proxy presences (derived from fishing night light images) for neon flying squid (Ommastrephes bartrami) and Pacific saury (Cololabis saira). Monthly (August-November) satellite remotely sensed sea-surface temperature, chlorophyll-a and sea-surface height anomaly images were used as environment data. Maximum entropy (MaxEnt) models were used to determine probabilities of presence (PoP) for each set of fishery and environment data for the area 35-45°N and 140-160°E. Maps of both sets of PoPs were compared and areas of overlap identified using a combined probability map. Results indicated that areas of spatial overlap existed among the species habitats, which gradually widened from September to November. The reasons for these overlaps include the presence of strong thermal/ocean-color gradients between cold Oyashio and warm Kuroshio waters, and also the presence of the sub-arctic front. Due to the high abundance of food along frontal zones, the species use the fronts as foraging grounds while confining within physiologically tolerable waters on either side of the front. The interaction zone around the front points to areas that might be accessible to both species for foraging, which suggests intense prey-predator interaction zones.
Yang, Jie; Wang, Zhen Long; Zhao, Xin Quan; Wang, De Peng; Qi, De Lin; Xu, Bao Hong; Ren, Yong Hong; Tian, Hui Fang
2008-01-01
Background Environmental stress can accelerate the evolutionary rate of specific stress-response proteins and create new functions specialized for different environments, enhancing an organism's fitness to stressful environments. Pikas (order Lagomorpha), endemic, non-hibernating mammals in the modern Holarctic Region, live in cold regions at either high altitudes or high latitudes and have a maximum distribution of species diversification confined to the Qinghai-Tibet Plateau. Variations in energy metabolism are remarkable for them living in cold environments. Leptin, an adipocyte-derived hormone, plays important roles in energy homeostasis. Methodology/Principal Findings To examine the extent of leptin variations within the Ochotona family, we cloned the entire coding sequence of pika leptin from 6 species in two regions (Qinghai-Tibet Plateau and Inner Mongolia steppe in China) and the leptin sequences of plateau pikas (O. curzonia) from different altitudes on Qinghai-Tibet Plateau. We carried out both DNA and amino acid sequence analyses in molecular evolution and compared modeled spatial structures. Our results show that positive selection (PS) acts on pika leptin, while nine PS sites located within the functionally significant segment 85-119 of leptin and one unique motif appeared only in pika lineages-the ATP synthase α and β subunit signature site. To reveal the environmental factors affecting sequence evolution of pika leptin, relative rate test was performed in pikas from different altitudes. Stepwise multiple regression shows that temperature is significantly and negatively correlated with the rates of non-synonymous substitution (Ka) and amino acid substitution (Aa), whereas altitude does not significantly affect synonymous substitution (Ks), Ka and Aa. Conclusions/Significance Our findings support the viewpoint that adaptive evolution may occur in pika leptin, which may play important roles in pikas' ecological adaptation to extreme environmental stress. We speculate that cold, and probably not hypoxia, may be the primary environmental factor for driving adaptive evolution of pika leptin. PMID:18213380
ON THE COAGULATION AND SIZE DISTRIBUTION OF PRESSURE CONFINED CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Xu; Zhou Tingtao; Lin, D. N. C., E-mail: xuhuang@princeton.edu
2013-05-20
Observations of the Pipe Nebula have led to the discovery of dense starless cores. The mass of most cores is too small for their self-gravity to hold them together. Instead, they are thought to be pressure confined. The observed dense cores' mass function (CMF) matches well with the initial mass function of stars in young clusters. Similar CMFs are observed in other star forming regions such as the Aquila Nebula, albeit with some dispersion. The shape of these CMF provides important clues to the competing physical processes which lead to star formation and its feedback on the interstellar media. Inmore » this paper, we investigate the dynamical origin of the mass function of starless cores which are confined by a warm, less dense medium. In order to follow the evolution of the CMF, we construct a numerical method to consider the coagulation between the cold cores and their ablation due to Kelvin-Helmholtz instability induced by their relative motion through the warm medium. We are able to reproduce the observed CMF among the starless cores in the Pipe Nebula. Our results indicate that in environment similar to the Pipe Nebula: (1) before the onset of their gravitational collapse, the mass distribution of the progenitor cores is similar to that of the young stars, (2) the observed CMF is a robust consequence of dynamical equilibrium between the coagulation and ablation of cores, and (3) a break in the slope of the CMF is due to the enhancement of collisional cross section and suppression of ablation for cores with masses larger than the cores' Bonnor-Ebert mass.« less
Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatarik, R., E-mail: hatarik1@llnl.gov; Sayre, D. B.; Caggiano, J. A.
2015-11-14
Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + {sup 3}He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (T{sub ion}) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent T{sub ion}, and DSR. These methods invoke a single temperature,more » static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT T{sub ion} of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for T{sub ion} and 10% for the neutron yield.« less
Fuzzy Dark Matter from Infrared Confining Dynamics
NASA Astrophysics Data System (ADS)
Davoudiasl, Hooman; Murphy, Christopher W.
2017-04-01
A very light boson of mass O (10-22) eV may potentially be a viable dark matter (DM) candidate, which can avoid phenomenological problems associated with cold DM. Such "fuzzy DM (FDM)" may naturally be an axion with a decay constant fa˜1 016- 1 018 GeV and a mass ma˜μ2/fa with μ ˜1 02 eV . Here, we propose a concrete model, where μ arises as a dynamical scale from infrared confining dynamics, analogous to QCD. Our model is an alternative to the usual approach of generating μ through string theoretic instanton effects. We outline the features of this scenario that result from various cosmological constraints. We find that those constraints are suggestive of a period of mild of inflation, perhaps from a strong first order phase transition, that reheats the standard model (SM) sector only. A typical prediction of our scenario, broadly speaking, is a larger effective number of neutrinos compared to the SM value Neff≈3 , as inferred from precision measurements of the cosmic microwave background. Some of the new degrees of freedom may be identified as "sterile neutrinos," which may be required to explain certain neutrino oscillation anomalies. Hence, aspects of our scenario could be testable in terrestrial experiments, which is a novelty of our FDM model.
Effects of magnetization on fusion product trapping and secondary neutron spectra
Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; ...
2015-05-14
In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used tomore » infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.« less
Progress Toward an Neutral Yb Frequency Standard
NASA Astrophysics Data System (ADS)
Cramer, Claire; Hong, Tao; Nagourney, Warren; Fortson, Norval
2004-05-01
We report recent progress toward a direct observation of the ^1S_0^ -- ^3P0 clock transition at 578 nm in atomic Yb and review the experimental path to an optical frequency standard based on neutral Yb confined in a Stark-free optical lattice. Lamb-Dicke confinement in an optical lattice at the ``magic wavelength'' (λ _M) at which ground and excited state light shifts cancel will free the spectrum from Doppler and recoil shifts, providing an optimal environment for a clock consisting of an ensemble of cold, trapped atoms. In^171Yb the ^3P0 level has a hfs induced lifetime of 21 s. With this isotope in a Stark-free lattice at λ M ng 750 nm, perturbations to the clock energy levels can be held below the mHz level, providing an accuracy of a few parts in 10^18[1]. To observe the clock transition we use a shelving scheme that creates a leak in a MOT on the ^1S_0^ -- ^1P1 transition. A laser resonant with the clock transition drives atoms into the ^3P0 state, in which they can escape the MOT, leading to an observable decrease in MOT fluorescence. [1] S. Porsev and A. Derevianko, to be published in PRA
NASA Astrophysics Data System (ADS)
Chen, S. Y.; Han, C. C.; Tsai, C. H.; Huang, J.; Chen-Yang, Y. W.
Three high-purity TiO 2 (anatase) powders (T PF6, T BF4, and T conventional) were prepared by the sol-gel method with/without ionic liquid as template and calcinations at 450 °C. These powders were, then, characterized to investigate their differences in morphological properties. Electrochemical performances of the H 2/O 2 PEMFCs employing the Nafion composite membranes with these three TiO 2 powders as fillers were studied over 80-120 °C under 50% and 95% relative humidity (RH). The result showed that the order of the fillers effect on the performance at 80 and 90 °C was the same as that of the TiO 2 filler's specific surface area (i.e. T PF6 > T conventional > T BF4 > P25, a commercially available nonporous TiO 2 powder). However, the order between T conventional and T BF4 was reversed at 110 and 120 °C under 50% RH. This indicates that the size and the amount of mesopores, which better confined the water molecules, were significant contributing factors to the performances at the higher temperatures. The best power density obtained under 50% RH at 120 °C and a voltage of 0.4 V was from the PEMFC with the T PF6-containing Nafion composite membrane. It was about 5.7 times higher than the value obtained from that with the recast Nafion membrane.
Ultraviolet Photodissociation Spectroscopy of the Cold K⁺·Calix[4]arene Complex in the Gas Phase.
Inokuchi, Yoshiya; Soga, Kazuki; Hirai, Kenta; Kida, Motoki; Morishima, Fumiya; Ebata, Takayuki
2015-08-06
The cooling of ionic species in the gas phase greatly simplifies the UV spectrum, which is of special importance when studying the electronic and geometric structures of large systems, such as biorelated molecules and host-guest complexes. Many efforts have been devoted to achieving ion cooling with a cold, quadrupole Paul ion trap (QIT), but one problem was the insufficient cooling of ions (up to ∼30 K) in the QIT. In this study, we construct a mass spectrometer for the ultraviolet photodissociation (UVPD) spectroscopy of gas-phase cold ions. The instrument consists of an electrospray ion source, a QIT cooled with a He cryostat, and a time-of-flight mass spectrometer. With great care given to the cooling condition, we can achieve ∼10 K for the vibrational temperature of ions in the QIT, which is estimated from UVPD spectra of the benzo-18-crown-6 (B18C6) complex with a potassium ion, K(+)·B18C6. Using this setup, we measure a UVPD spectrum of cold calix[4]arene (C4A) complex with potassium ion, K(+)·C4A. The spectrum shows a very weak band and a strong one at 36018 and 36156 cm(-1), respectively, accompanied by many sharp vibronic bands in the 36000-36600 cm(-1) region. In the geometry optimization of the K(+)·C4A complex, we obtain three stable isomers: one endo and two exo forms. On the basis of the total energy and UV spectral patterns predicted by density functional theory calculations, we attribute the structure of the K(+)·C4A complex to the endo isomer (C2 symmetry), in which the K(+) ion is located inside the cup of C4A. The vibronic bands of K(+)·C4A at 36 018 and 36 156 cm(-1) are assigned to the S1(A)-S0(A) and S2(B)-S0(A) transitions of the endo isomer, respectively.
Antiferromagnetic Chern Insulators in Noncentrosymmetric Systems
NASA Astrophysics Data System (ADS)
Jiang, Kun; Zhou, Sen; Dai, Xi; Wang, Ziqiang
2018-04-01
We investigate a new class of topological antiferromagnetic (AF) Chern insulators driven by electronic interactions in two-dimensional systems without inversion symmetry. Despite the absence of a net magnetization, AF Chern insulators (AFCI) possess a nonzero Chern number C and exhibit the quantum anomalous Hall effect (QAHE). Their existence is guaranteed by the bifurcation of the boundary line of Weyl points between a quantum spin Hall insulator and a topologically trivial phase with the emergence of AF long-range order. As a concrete example, we study the phase structure of the honeycomb lattice Kane-Mele model as a function of the inversion-breaking ionic potential and the Hubbard interaction. We find an easy z axis C =1 AFCI phase and a spin-flop transition to a topologically trivial x y plane collinear antiferromagnet. We propose experimental realizations of the AFCI and QAHE in correlated electron materials and cold atom systems.
A Penning discharge as a dc source for multiply ionized atoms.
NASA Astrophysics Data System (ADS)
Rainer, Kling; Manfred, Kock
1997-10-01
We report upon a specially designed Penning discharge which has been further developed from a source published by Finley et al.(Finley, D. S., Bowyer, S., Paresce, F., Malina, R. F.: Appl. Opt. 18) (1979) 649 towards a radiation standard for the XUV.(Heise, C., Hollandt, J., Kling, R., Kock, M., Kuehne, M.: Appl. Opt. 33) (1994) 5111 The discharge stands out for low buffer gas pressure, high electric power input and a strong superimposed magnetic field. That leads to intense sputtering of the cathodes which can be made of nearly any material. The efficient excitation and ionization of the sputtered atoms permit spectroscopy on multiply ionized spezies. W III and Fe III spectra will be given as examples. We also will present kinetic temperatures of the nonthermal plasma showing that the ionic component is decoupled from the cold neutral gas component.
CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength
Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.
Ionic composition and greenhouse gases evaluation in Tietê River sediment and mud landfill
NASA Astrophysics Data System (ADS)
La-Scalea, M. A.; Fornaro, A.; Abreu, E. L.; Mendonça, C. A.
2012-04-01
There are 39 cities composing the Metropolitan Area of São Paulo (MASP) which has grown seven times during the last sixty years, reaching, in 2011, 19.3 million inhabitants. This fact associated with a strong industrial development provoked, among other consequences, a disordered urbanization along the most important river of the region: Tietê. About 100 Km of its 1,150 Km full extension crosses MASP and, during the 60's, Marginal Tietê roadway was constructed, occupying the river banks as access routes. Tietê River was straightened and several landfills were created with its deposit (sediment and mud). EACH-USP (46.50 W, 23.48 S) lies nowadays in one of these areas, where this work has been developed. Therefore, the goal is to evaluate the chemical composition (ionic and gases) and its variability in function of the depth levels using three wells, from 0.60 to 9.0 m of depth. The wells were perforated in September 2011, end of the dry weather. Each well owns a homemade multiport sampling device (HMSD), being possible to push gas and/or water up from 15 available ports. The gases measurements were carried out using a GEM-2000 plus (Landtec) portable analyzer. Aqueous samples containing solid material were taken at each level depth from ports of the HMSD. However, no water was found in some levels. All samples were kept cooled until analysis procedures. After decantation of the solid material, the supernatant liquid was divided in two portions, being its conductivity (Micronal conductimeter) and pH (pH-meter Metrohm 654 with combined glass electrode) measured with the former and ionic analysis with the latter, in which all samples were filtered (Millex 0.22 micrometer pores) before each ionic chromatographic analysis, using Metrohm 850 System, for the ions: sodium, ammonium, potassium, calcium, magnesium, chloride, nitrate and sulfate. The first sampling stage was carried out during November and December 2011 in the beginning of rainy season in the mid Spring. From all the analysis performed, a large variability of the results may be observed for both gases and ionic composition not only among the wells, but also among the different depth levels. Vertically, one of the wells (W2) showed the same percentage of gases, methane 55% and carbon dioxide 45%, at all depth levels, while the other two wells (W1 and W3) presented these gases percentages only under 5.0 m deep. Concerning oxygen, 25% of this gas was detected at 1.0 m under the surface in W1 and W3. In relation to aqueous samples, the most acidity was observed near the surface (0.60 m deep, W1), pH 4.65, while pH 7.88 was obtained under 5.0 m deep (W3). For ionic concentrations a large range was observed considering all wells, being the lowest values for sulfate, from 0.60 to 20 mg/l, and the highest values for ammonium, between 14 and 53 mg/l. These results variability can be associated to the different soil composition layers, as well as to the biodegradation process and the time confinement of the river material deposit.
Filling box stratification fed by a gravity current
NASA Astrophysics Data System (ADS)
Hogg, Charlie; Huppert, Herbert; Imberger, Jorg
2012-11-01
Fluids in confined basins can be stratified by the filling box mechanism. The source of dense fluid in geophysical applications, such as a cold river entering a warmer lake, can be a gravity current running over a shallow slope. Filling box models are often, however, based on the dynamics of vertically falling, unconfined, plumes which entrain fluid by a different mechanism to gravity currents on shallow slopes. Laboratory tank experiments of a filling box fed by a gravity current running over a shallow slope were carried out using a dye attenuation technique to investigate the development of the stratification of the ambient. These results demonstrate the differences in the stratification generated by a gravity current compared to that generated by a plume and demonstrate the nature of entrainment into gravity currents on shallow slopes.
Propagational characteristics in a warm hybrid plasmonic waveguide
NASA Astrophysics Data System (ADS)
Mahmodi Moghadam, M.; Shahmansouri, M.; Farokhi, B.
2017-12-01
We theoretically analyze the properties of guided modes in a warm planar conductor-gap-dielectric (CGD) system. The latter consists of a high index dielectric, separated from a warm metallic plasma with a low index nano-sized dielectric layer (gap) by using the hydrodynamic model coupled to Maxwell's equations. The effects of thermal pressure on the confinement and the propagation losses of Hybrid Plasmon Polariton (HPP) modes are studied. We found that the thermal effect leads to a reduction in the effective refractive index as well as in the propagation losses of the HPP mode. Furthermore, the cutoff thickness in the warm CGD waveguide is found to be smaller than that in a cold CGD waveguide. The results may be useful in understanding the essential physics of active/passive Plasmonic devices and chip-scale systems.
Discovery of lake-effect clouds on Titan
Brown, M.E.; Schaller, E.L.; Roe, H.G.; Chen, C.; Roberts, J.; Brown, R.H.; Baines, K.H.; Clark, R.N.
2009-01-01
Images from instruments on Cassini as well as from telescopes on the ground reveal the presence of sporadic small-scale cloud activity in the cold late-winter north polar region of Saturn's large moon Titan. These clouds lie underneath the previously discovered uniform polar cloud attributed to a quiescent ethane cloud at ???40 km and appear confined to the same latitudes as those of the largest known hydrocarbon lakes at the north pole of Titan. The physical properties of these clouds suggest that they are due to methane convection and condensation. Such convection could be caused by a process in some ways analogous to terrestrial lake-effect clouds. The lakes on Titan could be a key connection between the surface and the meteorological cycle. ?? 2009 by the American Geophysical Union.
CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Simple Conceptual Diagram
Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Detailed Conceptual Diagram
Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.
Nanopore detection of DNA molecules in crowded neutral polymer solutions
NASA Astrophysics Data System (ADS)
Sharma, Rajesh Kumar; Dai, Liang; Doyle, Patrick; Garaj, Slaven
Nanopore sensing is a precise technique for analysis of the structure and dynamics of individual biomolecules in different environments, and has even become a prominent technique for next-gen DNA sequencing. In the nanopore sensor, an individual DNA molecule is electrophoretically translocated through a single, nanometer-scaled pore in a solid-state membrane separating two chambers filled with electrolyte. The conformation of the molecule is deduced from modulations in the ionic current through the pore during the translocation event. Using nanopores, we investigated the dynamics of the DNA molecules in a crowded solution of neutral polymers of different sizes and concentrations. The translocation dynamics depends significantly on the size and concentration of the polymers, as different contributions to the electrophoretic and entropic forces on the DNA molecules come into play. This setup offers an excellent, tuneable model-system for probing biologically relevant questions regarding the behaviour of DNA molecules in highly confined and crowded environments. Singapore-MIT Alliance for Research and Technology.
Lattice diffusion and vapor solid growths forming nanoarchitectures on ZnO nanowires
NASA Astrophysics Data System (ADS)
Sombrio, Guilherme; Rivaldo-Gómez, C. M.; Pomar, Cesar A. D.; Souza, Jose A.
2017-12-01
We report hierarchical nanoarchitectures formed on the tips and sidewalls of ZnO nanowires which is formed on the top of microtubes. The whole growth process of these micro/nanostructures during thermal oxidation combines lattice/grain/surface ionic diffusion along with vapor solid mechanism. All the process takes place along with the presence of an electric current, which plays an important role forming the ZnO molecules due to Zn metal evaporation and attracting them to condense into nanostructures of several morphologies. The observation of a very long needle-like nanowire reveals the stack nature of the growth. These nanoarchitectures are rarely observed experimentally. Raman scattering confirms phonon confinement in the nanostructures. Photoluminescence measurements indicate a route for engineering defects on the surface of ZnO microtubes after the complete coalescence of the nanostructures through heat treatment. This experiment would be useful for improving nanostructure organization which could provide an impact in the manufacturability of nanostructure-based systems.
Huang, Huaqing; Jin, Kyung-Hwan; Zhang, Shunhong; Liu, Feng
2018-03-14
Two-dimensional (2D) electrides are layered ionic crystals in which anionic electrons are confined in the interlayer space. Here, we report a discovery of nontrivial [Formula: see text] topology in the electronic structures of 2D electride Y 2 C. Based on first-principles calculations, we found a topological [Formula: see text] invariant of (1; 111) for the bulk band and topologically protected surface states in the surfaces of Y 2 C, signifying its nontrivial electronic topology. We suggest a spin-resolved angle-resolved photoemission spectroscopy (ARPES) measurement to detect the unique helical spin texture of the spin-polarized topological surface state, which will provide characteristic evidence for the nontrivial electronic topology of Y 2 C. Furthermore, the coexistence of 2D surface electride states and topological surface state enables us to explain the outstanding discrepancy between the recent ARPES experiments and theoretical calculations. Our findings establish a preliminary link between the electride in chemistry and the band topology in condensed-matter physics, which are expected to inspire further interdisciplinary research between these fields.
Hardening mechanisms in olivine single crystal deformed at 1090 °C: an electron tomography study
NASA Astrophysics Data System (ADS)
Mussi, Alexandre; Cordier, Patrick; Demouchy, Sylvie; Hue, Benoit
2017-11-01
The dislocation microstructures in a single crystal of olivine deformed experimentally in uniaxial compression at 1090 °C and under a confining pressure of 300 MPa, have been investigated by transmission electron tomography in order to better understand deformation mechanisms at the microscale relevant for lithospheric mantle deformations. Investigation by electron tomography reveals microstructures, which are more complex than previously described, composed of ? and ? dislocations commonly exhibiting 3D configurations. Numerous mechanisms such as climb, cross-slip, double cross-slip as well as interactions like junction formations and collinear annihilations are the source of this complexity. The diversity observed advocates for microscale deformation of olivine significantly less simple than classic dislocation creep reported in metals or ice close to melting temperature. Deciphering mechanism of hardening in olivine at temperatures where ionic diffusion is slow and is then expected to play very little role is crucial to better understand and thus model deformation at larger scale and at temperatures (900-1100 °C) highly relevant for the lithospheric mantle.
Designing quantum dots for solotronics.
Kobak, J; Smoleński, T; Goryca, M; Papaj, M; Gietka, K; Bogucki, A; Koperski, M; Rousset, J-G; Suffczyński, J; Janik, E; Nawrocki, M; Golnik, A; Kossacki, P; Pacuski, W
2014-01-01
Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory.
Designing quantum dots for solotronics
Kobak, J.; Smoleński, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczyński, J.; Janik, E.; Nawrocki, M.; Golnik, A.; Kossacki, P.; Pacuski, W.
2014-01-01
Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory. PMID:24463946
Bipolar battery with array of sealed cells
Kaun, Thomas D.; Smaga, John A.
1987-01-01
A lithium alloy/metal sulfide battery as a dipolar battery is disclosed with an array of stacked cells with the anode and cathode electrode materials in each cell sealed in a confining structure and separated from one another except across separator material interposed therebetween. The separator material is contained in a module having separate perforated metallic sheets that sandwich opposite sides of the separator material for the cell and an annular insulating spacer that surrounds the separator material beyond the perforations and is also sandwiched between and sealed to the sheets. The peripheral edges of the sheets project outwardly beyond the spacer, traverse the side edges of the adjacent electrode material to form cup-like electrode holders, and are fused to the adjacent current collector or end face members of the array. Electrolyte is infused into the electrolyte cavity through the perforations of one of the metallic sheets with the perforations also functioning to allow ionic conductance across the separator material between the adjacent electrodes. A gas-tight housing provides an enclosure of the array.
Iterative Addition of Kinetic Effects to Cold Plasma RF Wave Solvers
NASA Astrophysics Data System (ADS)
Green, David; Berry, Lee; RF-SciDAC Collaboration
2017-10-01
The hot nature of fusion plasmas requires a wave vector dependent conductivity tensor for accurate calculation of wave heating and current drive. Traditional methods for calculating the linear, kinetic full-wave plasma response rely on a spectral method such that the wave vector dependent conductivity fits naturally within the numerical method. These methods have seen much success for application to the well-confined core plasma of tokamaks. However, quantitative prediction of high power RF antenna designs for fusion applications has meant a requirement of resolving the geometric details of the antenna and other plasma facing surfaces for which the Fourier spectral method is ill-suited. An approach to enabling the addition of kinetic effects to the more versatile finite-difference and finite-element cold-plasma full-wave solvers was presented by where an operator-split iterative method was outlined. Here we expand on this approach, examine convergence and present a simplified kinetic current estimator for rapidly updating the right-hand side of the wave equation with kinetic corrections. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
Ground-water quality in the western Snake River basin, Swan Falls to Glenns Ferry, Idaho
Parliman, D.J.
1983-01-01
Water-quality data were collected from 92 wells in the western Snake River basin, Swan Falls to Glenns Ferry, Idaho. Current data were compiled with pre-1980 data from 116 wells to define water-quality conditions in major aquifers. Factors affecting water quality are composition of aquifer materials, water temperature, and source of recharge. Mixing of water by interaquifer flow, from confined, hot water aquifers (40 degrees Celsius or greater) with water from cold water aquifers (less than 20 degrees Celsius) occurs along regional complex fault systems, and through partially cased boreholes. Cold water generally contains calcium, magnesium, and bicarbonate plus carbonate ions; hot water generally contains sodium, potassium, and bicarbonate plus carbonate ions. Warm water (between 20 degrees and 40 degrees Celsius) has an intermediate chemical composition resulting from mixing. Ground-water quality is acceptable for most uses, although it locally contains chemical constituents or physical properties that may restrict its use. Effects of thermal water used for irrigation on quality of shallow ground water are inconclusive. Long-term increase in concentrations of several constituents in parts of the study area may be due to effects of land- and water-use activities, such as infiltration of septic-tank effluent. (USGS)
John, Ulrik P; Polotnianka, Renatam M; Sivakumaran, Kailayapillai A; Chew, Orinda; Mackin, Leanne; Kuiper, Micheal J; Talbot, Jonathan P; Nugent, Gregory D; Mautord, Julie; Schrauf, Gustavo E; Spangenberg, German C
2009-04-01
Antarctic hair grass (Deschampsia antarctica E. Desv.), the only grass indigenous to Antarctica, has well-developed freezing tolerance, strongly induced by cold acclimation. Here, we show that in response to low temperatures, D. antarctica expresses potent recrystallization inhibition (RI) activity that, inhibits the growth of small ice crystals into potentially damaging large ones, is proteinaceous and localized to the apoplasm. A gene family from D. antarctica encoding putative homologs of an ice recrystallization inhibition protein (IRIP) has been isolated and characterized. IRIPs are apoplastically targeted proteins with two potential ice-binding motifs: 1-9 leucine-rich repeats (LRRs) and c. 16 'IRIP' repeats. IRIP genes appear to be confined to the grass subfamily Pooideae and their products, exhibit sequence similarity to phytosulphokine receptors and are predicted to adopt conformations with two ice-binding surfaces. D. antarctica IRIP (DaIRIP) transcript levels are greatly enhanced in leaf tissue following cold acclimation. Transgenic Arabidopsis thaliana expressing a DaIRIP has novel RI activity, and purified DaIRIP, when added back to extracts of leaves from non-acclimated D. antarctica, can reconstitute the activity found in acclimated plants. We propose that IRIP-mediated RI activity may contribute to the cryotolerance of D. antarctica, and thus to its unique ability to have colonized Antarctica.
The mechanism of plasma-assisted penetration of NO2- in model tissues
NASA Astrophysics Data System (ADS)
He, Tongtong; Liu, Dingxin; Liu, Zhijie; Liu, Zhichao; Li, Qiaosong; Rong, Mingzhe; Kong, Michael G.
2017-11-01
Cold atmospheric plasmas are reportedly capable of enhancing the percutaneous absorption of drugs, which is a development direction of plasma medicine. This motivated us to study how the enhancement effect was realized. In this letter, gelatin gel films were used as surrogates of human tissues, NaNO2 was used as a representative of small-molecule drugs, and cross-field and linear-field plasma jets were used for the purpose of enhancing the penetration of NaNO2 through the gelatin gel films. The permeability of gelatin gel films was quantified by measuring the NO2- concentration in water which was covered by those films. It was found that the gas flow and electric field of cold plasmas played a crucial role in the permeability enhancement of the model tissues, but the effect of gas flow was mainly confined in the surface layer, while the effect of the electric field was holistic. Those effects might be attributed to the localized squeezing of particles by gas flow and the weakening of the ion-dipole interaction by the AC electric field. The enhancement effect decreases with the increasing mass fraction of gelatin because the macromolecules of gelatin could significantly hinder the penetration of small molecules in the model tissues.
Paracka, Lejla; Wegner, Florian; Blahak, Christian; Abdallat, Mahmoud; Saryyeva, Assel; Dressler, Dirk; Karst, Matthias; Krauss, Joachim K
2017-01-01
Abnormalities in the somatosensory system are increasingly being recognized in patients with dystonia. The aim of this study was to investigate whether sensory abnormalities are confined to the dystonic body segments or whether there is a wider involvement in patients with idiopathic dystonia. For this purpose, we recruited 20 patients, 8 had generalized, 5 had segmental dystonia with upper extremity involvement, and 7 had cervical dystonia. In total, there were 13 patients with upper extremity involvement. We used Quantitative Sensory Testing (QST) at the back of the hand in all patients and at the shoulder in patients with cervical dystonia. The main finding on the hand QST was impaired cold detection threshold (CDT), dynamic mechanical allodynia (DMA), and thermal sensory limen (TSL). The alterations were present on both hands, but more pronounced on the side more affected with dystonia. Patients with cervical dystonia showed a reduced CDT and hot detection threshold (HDT), enhanced TSL and DMA at the back of the hand, whereas the shoulder QST only revealed increased cold pain threshold and DMA. In summary, QST clearly shows distinct sensory abnormalities in patients with idiopathic dystonia, which may also manifest in body regions without evident dystonia. Further studies with larger groups of dystonia patients are needed to prove the consistency of these findings.
Density and beta limits in the Madison Symmetric Torus Reversed-Field Pinch
NASA Astrophysics Data System (ADS)
Caspary, Kyle Jonathan
Operational limits and the underlying physics are explored on the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP) using deuterium pellet fueling. The injection of a fast pellet provides a large source of fuel in the plasma edge upon impact with the vessel wall, capable of triggering density limit terminations for the full range of plasma current, up to 600 kA. As the pellet size and plasma density increase, approaching the empirical Greenwald limit, plasma degradation is observed in the form of current decay, increased magnetic activity in the edge and core, increased radiation and plasma cooling. The complete termination of the plasma is consistent with the Greenwald limit; however, a slightly smaller maximum density is observed in discharges without toroidal field reversal. The plasma beta is the ratio of the plasma pressure to the confining magnetic pressure. Beta limits are known to constrain other magnetic confinement devices, but no beta limit has yet been established on the RFP. On MST, the highest beta values are obtained in improved confinement discharges with pellet fueling. By using pellet injection to scan the plasma density during PPCD, we also achieve a scan of Ohmic input power due to the increase in plasma resistivity. We observe a factor of 3 or more increase in Ohmic power as we increase the density from 1*1019 to 3*10 19 m-3. Despite this increased Ohmic power, the electron contribution to beta is constant, suggesting a confinement limited beta for the RFP. The electrons and ions are classically well coupled in these cold, dense pellet fueled plasmas, so the increase in total beta at higher density is primarily due to the increased ion contribution. The interaction of pellet fueling and NBI heating is explored. Modeling of MST's neutral heating beam suggests an optimal density for beam power deposition of 2-3*1019 m-3. Low current, NBI heated discharges show evidence of an increased electron beta in this density range. Additionally, the fast ion population can enhance ablation as well as cause pellet deflection. Other exploratory experiments with the pellet injection system explore additional injection scenarios and expand the injector capabilities.
Zeolite Formation and Weathering Processes in Dry Valleys of Antartica: Martian Analogs
NASA Technical Reports Server (NTRS)
Gibson, E. K., Jr.; Wentworth, S. J.; McKay, D. S.; Socki, R. A.
2004-01-01
Terrestrial weathering processes in cold-desert climates such as the Dry Valleys of Antarctica may provide an excellent analog to chemical weathering and diagenesis of soils on Mars. Detailed studies of soil development and the chemical and mineralogical alterations occurring within soil columns in Wright Valley, Antarctica show incredible complexity in the upper meter of soil. Previous workers noted the ice-free Dry Valleys are the best terrestrial approximations to contemporary Mars. Images returned from the Pathfinder and Spirit landers show similarities to surfaces observed within the Dry Valleys. Similarities to Mars that exist in these valleys are: mean temperatures always below freezing (-20 C), no rainfall, sparse snowfall-rapidly removed by sublimation, desiccating winds, diurnal freeze-thaw cycles (even during daylight hours), low humidity, oxidative environment, relatively high solar radiation and low magnetic fields . The Dry Valley soils contain irregular distributions and low abundances of soil microorganisms that are somewhat unusual on Earth. Physical processes-such as sand abrasion-are dominant mechanisms of rock weathering in Antarctica. However, chemical weathering is also an important process even in such extreme climates. For example, ionic migration occurs even in frozen soils along liquid films on individual soil particles. It has also been shown that water with liquid-like properties is present in soils at temperatures on the order of approx.-80 C and it has been observed that the percentage of oxidized iron increases with increasing soil age and enrichments in oxidized iron occurs toward the surface. The presence of evaporates is evident and appear similar to "evaporite sites" within the Pathfinder and Spirit sites. Evaporites indicate ionic migration and chemical activity even in the permanently frozen zone. The presence of evaporates indicates that chemical weathering of rocks and possibly soils has been active. Authogenic zeolites have been identified within the soil columns because they are fragile; i.e. they are euhedral, unabraded, and unfractured, strongly suggesting in situ formation. Their presence in Antarctic samples is another indication that diagenic processes are active in cold-desert environments. The presence of zeolites, and other clays along with halites, sulfates, carbonates, and hydrates are to be expected within the soil columns on Mars at the Gusev and Isidis Planitia regions. The presence of such water-bearing minerals beneath the surface supplies one of the requirements to support biological activity on Mars.
Advances in the analysis of biological samples using ionic liquids.
Clark, Kevin D; Trujillo-Rodríguez, María J; Anderson, Jared L
2018-02-12
Ionic liquids are a class of solvents and materials that hold great promise in bioanalytical chemistry. Task-specific ionic liquids have recently been designed for the selective extraction, separation, and detection of proteins, peptides, nucleic acids, and other physiologically relevant analytes from complex biological samples. To facilitate rapid bioanalysis, ionic liquids have been integrated in miniaturized and automated procedures. Bioanalytical separations have also benefited from the modification of nonspecific magnetic materials with ionic liquids or the implementation of ionic liquids with inherent magnetic properties. Furthermore, the direct detection of the extracted molecules in the analytical instrument has been demonstrated with structurally tuned ionic liquids and magnetic ionic liquids, providing a significant advantage in the analysis of low-abundance analytes. This article gives an overview of these advances that involve the application of ionic liquids and derivatives in bioanalysis. Graphical abstract Ionic liquids, magnetic ionic liquids, and ionic liquid-based sorbents are increasing the speed, selectivity, and sensitivity in the analysis of biological samples.
NASA Astrophysics Data System (ADS)
Sapori, Daniel; Kepenekian, Mikaël; Pedesseau, Laurent; Katan, Claudine; Even, Jacky
2016-03-01
Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed.Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed. Electronic supplementary information (ESI) available: Complementary results on the electronic structure and dielectric constants of CsPbX3 and CH3NH3PbX3 (X = I, Br, Cl). See DOI: 10.1039/c5nr07175e
Ionic liquids as novel solvents for ionic polymer transducers
NASA Astrophysics Data System (ADS)
Bennett, Matthew D.; Leo, Donald J.
2004-07-01
The use of ionic liquids as solvents for ionic polymer (specifically, Nafion) transducers is demonstrated. Ionic liquids are attractive for this application because of their high inherent stability. Ionic liquids are salts that exist as liquids at room temperature and have no measureable vapor pressure. Therefore, the use of ionic liquids as solvents for ionic polymer transducers can eliminate the traditional problem of water evaporation in these devices. Another benefit of the use of ionic liquids in this way is the reduction or elimination of the characteristic back-relaxation common in water-solvated ionic polymer actuators. The results demonstrate that the viscosity of the ionic liquid and the degree to which the ionic liquid swells the membrane are the important physical parameters to consider. Five ionic liquids were studied, based on substituted pyrrolidinium, phosphonium, or imidazolium cations and fluoroanions. Of these five ionic liquids, transduction is demonstrated in three of them and the best results are obtained with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. This substance has an electrochemical stability window of 4.1 V, a melting point of -10 °C, and a viscosity of 35-45 cP [19]. Results demonstrate that platinum-plated Nafion transducers solvated with this ionic liquid exhibit sensing and actuation responses and that these transducers are stable in air. Endurance testing of this sample reveals a decrease in the free strain of only 25 % after 250,000 actuation cycles in air.
Water-mediated interactions between hydrophobic and ionic species in cylindrical nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaitheeswaran, S.; Reddy, G.; Thirumalai, D.
2009-03-07
We use Metropolis Monte Carlo and umbrella sampling to calculate the free energies of interaction of two methane molecules and their charged derivatives in cylindrical water-filled pores. Confinement strongly alters the interactions between the nonpolar solutes and completely eliminates the solvent separated minimum (SSM) that is seen in bulk water. The free energy profiles show that the methane molecules are either in contact or at separations corresponding to the diameter and the length of the cylindrical pore. Analytic calculations that estimate the entropy of the solutes, which are solvated at the pore surface, qualitatively explain the shape of the freemore » energy profiles. Adding charges of opposite sign and magnitude 0.4e or e (where e is the electronic charge) to the methane molecules decreases their tendency for surface solvation and restores the SSM. We show that confinement induced ion-pair formation occurs whenever l{sub B}/D{approx}O(1), where l{sub B} is the Bjerrum length and D is the pore diameter. The extent of stabilization of the SSM increases with ion charge density as long as l{sub B}/D<1. In pores with D{<=}1.2 nm, in which the water is strongly layered, increasing the charge magnitude from 0.4e to e reduces the stability of the SSM. As a result, ion-pair formation that occurs with negligible probability in the bulk is promoted. In larger diameter pores that can accommodate a complete hydration layer around the solutes, the stability of the SSM is enhanced.« less
Khairy, Houshang; Janardhana, M R
2013-11-01
Hydrogeochemical data of groundwater from the semi-confined aquifer of a coastal two-tier aquifer in Amol-Ghaemshahr plain, Mazandaran Province, Northern Iran reveal salinization of the fresh groundwater (FGW). The saline groundwater zone is oriented at an angle to both Caspian Sea coastline and groundwater flow direction and extends inland from the coastline for more than 40 km. Spearman's rank correlation coefficient matrices, factor analysis data, and values of C ratio, chloro-alkaline indices, and Na(+)/Cl(-) molar ratio indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicate minerals, relict connate saline water, and ion exchange reactions. Saline groundwater samples (SGWS) (n = 20) can be classified into two groups. SGWS of group 1 (n = 17) represent the saline groundwater zone below the Caspian Sea level, and salinization is attributed essentially to (1) lateral intrusion of Caspian seawater as a consequence of (a) excessive withdrawal of groundwater from closely spaced bore wells located in the eastern part of the coastal zone and (b) imbalance between recharge and discharge of the two-tier aquifer and (2) upconing of paleobrine (interfaced with FGW) along deep wells. SGWS of this group contain, on average, 7.9% of saltwater, the composition of which is similar to that of Caspian seawater. SGWS of group 2 (n = 3) belong to the saline groundwater zone encountered above the Caspian Sea level, and salinization of the groundwater representing these samples is attributed to irrigation return flow (n = 2) and inflow of saline river water (n = 1).
Sun, Gongchen; Senapati, Satyajyoti; Chang, Hsueh-Chia
2016-04-07
A microfluidic ion exchange membrane hybrid chip is fabricated using polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (>100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems.
Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil
2016-04-04
Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cold Milky Way HI Gas in Filaments
NASA Astrophysics Data System (ADS)
Kalberla, P. M. W.; Kerp, J.; Haud, U.; Winkel, B.; Ben Bekhti, N.; Flöer, L.; Lenz, D.
2016-04-01
We investigate data from the Galactic Effelsberg-Bonn H I Survey, supplemented with data from the third release of the Galactic All Sky Survey (GASS III) observed at Parkes. We explore the all-sky distribution of the local Galactic H I gas with | {v}{{LSR}}| \\lt 25 km s-1 on angular scales of 11‧-16‧. Unsharp masking is applied to extract small-scale features. We find cold filaments that are aligned with polarized dust emission and conclude that the cold neutral medium (CNM) is mostly organized in sheets that are, because of projection effects, observed as filaments. These filaments are associated with dust ridges, aligned with the magnetic field measured on the structures by Planck at 353 GHz. The CNM above latitudes | b| \\gt 20^\\circ is described by a log-normal distribution, with a median Doppler temperature TD = 223 K, derived from observed line widths that include turbulent contributions. The median neutral hydrogen (H I) column density is NH I ≃ 1019.1 cm-2. These CNM structures are embedded within a warm neutral medium with NH I ≃ 1020 cm-2. Assuming an average distance of 100 pc, we derive for the CNM sheets a thickness of ≲0.3 pc. Adopting a magnetic field strength of Btot = (6.0 ± 1.8) μG, proposed by Heiles & Troland, and assuming that the CNM filaments are confined by magnetic pressure, we estimate a thickness of 0.09 pc. Correspondingly, the median volume density is in the range 14 ≲ n ≲ 47 cm-3. The authors thank the Deutsche Forschungsgemeinschaft (DFG) for support under grant numbers KE757/11-1, KE757/7-3, KE757/7-2, KE757/7-1, and BE4823/1-1.
Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites
NASA Astrophysics Data System (ADS)
Bennett, Matthew; Leo, Donald
2005-05-01
Ionic liquids have shown promise as replacements for water in ionic polymer transducers. Ionic liquids are non-volatile and have a larger electrochemical stability window than water. Therefore, transducers employing ionic liquids can be operated for long periods of time in air and can be actuated with higher voltages. Furthermore, transducers based on ionic liquids do not exhibit the characteristic back relaxation that is common with water-swollen materials. However, the physics of transduction in the ionic liquid-swollen materials is not well understood. In this paper, the morphology of Nafion/ionic liquid composites is characterized using small-angle X-ray scattering (SAXS). The electromechanical transduction behavior of the composites is also investigated. For this testing, five different counterions and two ionic liquids are used. The results reveal that both the morphology and transduction performance of the composites is affected by the identity of the ionic liquid, the cation, and the swelling level of ionic liquid within the membrane. Specifically, speed of response is found to be lower for the membranes that were exchanged with the smaller lithium and potassium ions. The response speed is also found to increase with increased content of ionic liquid. Furthermore, for the two ionic liquids studied, the actuators swollen with the less viscous ionic liquid exhibited a slower response. The slower speed of response corresponds to less contrast between the ionically conductive phase and the inert phase of the polymer. This suggests that disruption of the clustered morphology in the ionic liquid-swollen membranes as compared to water-swollen membranes attenuates ion mobility within the polymer. This attenuation is attributed to swelling of the non-conductive phase by the ionic liquids.
Kim, Ki-jeong; Yuan, Hongtao; Jang, Hoyoung; ...
2018-05-24
Ionic liquids and gels have attracted attention for a variety of energy storage applications, as well as for high performance electrolytes for batteries and super-capacitors. Although the electronic structure of ionic electrolytes in these applications is of practical importance for device design and improved performance, the understanding of the electronic structure of ionic liquids and gels is still at an early stage. Here we report soft x-ray spectroscopic measurements of the surface electronic structure of a representative ammonia-based ionic gel (DEME-TFSI with PSPMMA- PS copolymer). We observe that near the outermost surface, the area of the anion peak (1s Nmore » - core level in TFSI) is relatively larger than that of the cation peak (N + in DEME). This spontaneous ionic polarization of the electrolyte surface, which is absent for the pure ionic liquid without copolymer, can be directly tuned by the copolymer content in the ionic gel, and further results in a modulation in work function. Finally, these results shed new light on the control of surface electronic properties of ionic electrolytes, as well as a difference between their implementation in ionic liquids and gels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki-jeong; Yuan, Hongtao; Jang, Hoyoung
Ionic liquids and gels have attracted attention for a variety of energy storage applications, as well as for high performance electrolytes for batteries and super-capacitors. Although the electronic structure of ionic electrolytes in these applications is of practical importance for device design and improved performance, the understanding of the electronic structure of ionic liquids and gels is still at an early stage. Here we report soft x-ray spectroscopic measurements of the surface electronic structure of a representative ammonia-based ionic gel (DEME-TFSI with PSPMMA- PS copolymer). We observe that near the outermost surface, the area of the anion peak (1s Nmore » - core level in TFSI) is relatively larger than that of the cation peak (N + in DEME). This spontaneous ionic polarization of the electrolyte surface, which is absent for the pure ionic liquid without copolymer, can be directly tuned by the copolymer content in the ionic gel, and further results in a modulation in work function. Finally, these results shed new light on the control of surface electronic properties of ionic electrolytes, as well as a difference between their implementation in ionic liquids and gels.« less
Porous ionic liquids: synthesis and application.
Zhang, Shiguo; Dokko, Kaoru; Watanabe, Masayoshi
2015-07-15
Solidification of fluidic ionic liquids into porous materials yields porous ionic networks that combine the unique characteristics of ionic liquids with the common features of polymers and porous materials. This minireview reports the most recent advances in the design of porous ionic liquids. A summary of the synthesis of ordered and disordered porous ionic liquid-based nanoparticles or membranes with or without templates is provided, together with the new concept of room temperature porous ionic liquids. As a versatile platform for functional materials, porous ionic liquids have shown widespread applications in catalysis, adsorption, sensing, actuation, etc. This new research direction towards ionic liquids chemistry is still in its early stages but has great potential.
Wu, Jia; Xu, Zilin; Pan, Yixuan; Shi, Yi; Bao, Xiujie; Li, Jun; Tong, Yu; Tang, Han; Ma, Shuyan; Wang, Xuedong; Lyu, Jianxin
2018-05-01
Herein, a novel magnetic effervescence tablet-assisted microextraction coupled to in situ metathesis reaction of ionic liquid (IS-META-ILDM) is presented for the determination of four endogenous steroids in human urine, pregnant women's blood, and fetal umbilical cord blood. The magnetic effervescent tablets, which were composed of Fe 3 O 4 nanoparticles, sodium carbonate (alkaline source), and tartaric acid (acidic source), were used to disperse the extractant and for convenient magnetic separation. After the effervescent reaction, in situ reaction between NH 4 PF 6 and [C 6 MIM]BF 4 was adopted to change hydrophilic ionic liquid to hydrophobic liquid, which could be separated from the aqueous phase. The newly developed method has three obvious advantages: (1) combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously; (2) as compared to temperature-controlled ionic liquid dispersive microextraction and cold-induced solidified microextraction, this method avoids a heating and cooling process which significantly reduces the extraction time and energy cost; and (3) the combination of adsorption by magnetic nanoparticles with extraction by in situ metathesis reaction easily produces high recoveries for target analytes. The optimized composition of effervescent tablet and experimental parameters are as follows: 0.64 g mixture of sodium carbonate and tartaric acid, 7 mg of Fe 3 O 4 (20 nm) as magnetic sorbents, 40 μL of [C 6 MIM]BF 4 as the extraction solvent, 0.15 g NH 4 PF 6 , and 300 μL of elution solvent. Under the optimized conditions, the newly developed method provided high extraction recoveries (90.0-118.5%) and low LODs (0.14-0.17 μg L -1 ) in urine and blood samples. In total, this IS-META-ILDM method provided high extraction efficiency, fast and convenient separation, and underutilization of any organic solvent, and thus it has great potential for the determination of trace endogenous steroids in complex human fluids. Graphical abstract The newly developed method has three obvious advantages: combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously. It avoids a heating and cooling process which significantly reduces the extraction time and energy cost and easily produces high recoveries for target analytes.
Sun, Gongchen; Senapati, Satyajyoti
2016-01-01
A microfluidic-ion exchange membrane hybrid chip is fabricated by polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (> 100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems. PMID:26960551
Spatially indirect excitons in coupled quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Chih-Wei Eddy
2004-03-01
Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunitiesmore » for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer) 2 were observed. The spatial and energy distributions of optically active excitons were used as thermodynamic quantities to construct a phase diagram of the exciton system, demonstrating the existence of distinct phases. Optical and electrical properties of the CQW sample were examined thoroughly to provide deeper understanding of the formation mechanisms of these cold exciton systems. These insights offer new strategies for producing cold exciton systems, which may lead to opportunities for the realization of BEC in solid-state systems.« less
Mean-Field Description of Ionic Size Effects with Non-Uniform Ionic Sizes: A Numerical Approach
Zhou, Shenggao; Wang, Zhongming; Li, Bo
2013-01-01
Ionic size effects are significant in many biological systems. Mean-field descriptions of such effects can be efficient but also challenging. When ionic sizes are different, explicit formulas in such descriptions are not available for the dependence of the ionic concentrations on the electrostatic potential, i.e., there is no explicit, Boltzmann type distributions. This work begins with a variational formulation of the continuum electrostatics of an ionic solution with such non-uniform ionic sizes as well as multiple ionic valences. An augmented Lagrange multiplier method is then developed and implemented to numerically solve the underlying constrained optimization problem. The method is shown to be accurate and efficient, and is applied to ionic systems with non-uniform ionic sizes such as the sodium chloride solution. Extensive numerical tests demonstrate that the mean-field model and numerical method capture qualitatively some significant ionic size effects, particularly those for multivalent ionic solutions, such as the stratification of multivalent counterions near a charged surface. The ionic valence-to-volume ratio is found to be the key physical parameter in the stratification of concentrations. All these are not well described by the classical Poisson–Boltzmann theory, or the generalized Poisson–Boltzmann theory that treats uniform ionic sizes. Finally, various issues such as the close packing, limitation of the continuum model, and generalization of this work to molecular solvation are discussed. PMID:21929014
Functionalized ionic liquids and their applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hariprakasha, Humcha Krishnamurthy; Rangan, Krishnaswamy Kasthuri; Sudarshan, Tirumalai Srinivas
2018-01-16
Disclosure of functionalized ionic liquids. Use of disclosed ionic liquids as solvent for carbon dioxide. Use of disclosed ionic liquids as flame retardant. Use of disclosed ionic liquids for coating fabric to obtain flame retardant fabric.
On- and off-axis spectral emission features from laser-produced gas breakdown plasmas
NASA Astrophysics Data System (ADS)
Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.
2017-06-01
Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during their early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of the surrounding ambient: photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of their creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with a pulse duration of 6 ns are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density, and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times, while space and time resolved spectroscopy is used for evaluating the emission features and for inferring plasma physical conditions at on- and off-axis positions. The structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using the computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms, and molecules are separated in time with early time temperatures and densities in excess of 35 000 K and 4 × 1018/cm3 with an existence of thermal equilibrium. However, the emission from the off-kernel positions from the breakdown plasmas showed enhanced ultraviolet radiation with the presence of N2 bands and is represented by non-local thermodynamic equilibrium (non-LTE) conditions. Our results also highlight that the ultraviolet radiation emitted during the early time of spark evolution is the predominant source of the photo-excitation of the surrounding medium.
On- and off-axis spectral emission features from laser-produced gas breakdown plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.
Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early timesmore » of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in time with an early time temperatures and densities in excess of 35000 K and 4×10 18 /cm 3 with an existence of thermal equilibrium. However, the emission from the off-kernel positions from the breakdown plasmas showed enhanced ultraviolet radiation with the presence of N 2 bands and represented by non-LTE conditions. Finally, our results also highlight that the ultraviolet radiation emitted during early time of spark evolution is the predominant source of the photo-excitation of the surrounding medium.« less
On- and off-axis spectral emission features from laser-produced gas breakdown plasmas
Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; ...
2017-06-01
Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early timesmore » of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in time with an early time temperatures and densities in excess of 35000 K and 4×1018 /cm3 with an existence of thermal equilibrium. However, the emission from the off-kernel positions from the breakdown plasmas showed enhanced ultraviolet radiation with the presence of N2 bands and represented by non-LTE conditions. Our results also highlight that the ultraviolet radiation emitted during early time of spark evolution is the predominant source of the photo-excitation of the surrounding medium.« less
Nanoparticles in ionic liquids: interactions and organization.
He, Zhiqi; Alexandridis, Paschalis
2015-07-28
Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.
Bazant, Martin Z; Kilic, Mustafa Sabri; Storey, Brian D; Ajdari, Armand
2009-11-30
The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e approximately 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V approximately 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the "compact layer" and "shear plane" effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.
Optical nose based on porous silicon photonic crystal infiltrated with ionic liquids.
Zhang, Haijuan; Lin, Leimiao; Liu, Dong; Chen, Qiaofen; Wu, Jianmin
2017-02-08
A photonic-nose for the detection and discrimination of volatile organic compounds (VOCs) was constructed. Each sensing element on the photonic sensor array was formed by infiltrating a specific type of ionic liquid (IL) into the pore channel of a patterned porous silicon (PSi) chip. Upon exposure to VOC, the density of IL dramatically decreased due to the nano-confinement effect. As a result, the IL located in pore channel expanded its volume and protrude out of the pore channel, leading to the formation of microdroplets on the PSi surface. These VOC-stimulated microdroplets could scatter the light reflected from the PSi rugate filter, thereby producing an optical response to VOC. The intensity of the optical response produced by IL/PSi sensor mainly depends on the size and shape of microdroplets, which is related to the concentration of VOC and the physi-chemical propertied of ILs. For ethanol vapor, the optical response has linear relationship with its relative vapor pressure within 0-60%. The LOD of the IL/PSi sensor for ethanol detection is calculated to be 1.3 ppm. It takes around 30 s to reach a full optical response, while the time for recovery is less than 1 min. In addition, the sensor displayed good stability and reproducibility. Owing to the different molecular interaction between IL and VOC, the ILs/PSi sensor array can generate a unique cross-reactive "fingerprint" in response to a specific type of VOC analyte. With the assistance of image technologies and principle components analysis (PCA), rapid discrimination of VOC analyte could be achieved based on the pattern recognition of photonic sensor array. The technology established in this work allows monitoring in-door air pollution in a visualized way. Copyright © 2016 Elsevier B.V. All rights reserved.
Probing the Failure Mechanism of SnO2 Nanowires for Sodium-ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Meng; Kushima, Akihiro; Shao, Yuyan
2013-09-30
Non-lithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries, performing the same role as lithium in lithium- ion batteries. As sodium and lithium have the same +1 charge, it is assumed that what has been learnt about the operation of lithium ion batteries can be transferred directly to sodium batteries. Using in-situ TEM, in combination with DFT calculations, we probed the structural and chemical evolution of SnO2 nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries [Science 330 (2010) 1515]. Upon Na insertion into SnO2, amore » displacement reaction occurs, leading to the formation of amorphous NaxSn nanoparticles covered by crystalline Na2O shell. With further Na insertion, the NaxSn core crystallized into Na15Sn4 (x=3.75). Upon extraction of Na (desodiation), the NaxSn core transforms to Sn nanoparticles. Associated with a volume shrinkage, nanopores appear and metallic Sn particles are confined in hollow shells of Na2O, mimicking a peapod structure. These pores greatly increase electrical impedance, therefore naturally accounting for the poor cyclability of SnO2. DFT calculations indicate that Na+ diffuses 30 times slower than Li+ in SnO2, in agreement with in-situ TEM measurement. Insertion of Na can chemo-mechanically soften the reaction product to greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO2, no dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.« less
Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo
2016-11-14
We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li + F - and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.
NASA Astrophysics Data System (ADS)
Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo
2016-11-01
We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li+ F- and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.
Trujillo-Rodríguez, María J; Nan, He; Anderson, Jared L
2018-03-09
Three crosslinked polymeric ionic liquid (PIL) sorbent coatings were used in headspace solid-phase microextraction for the determination of a group of ultraviolet filters. The developed crosslinked PIL-based materials include two polycations and a double confined PIL. The method, in combination with gas chromatography-mass spectrometry, is simple, solvent free, and does not require of any derivatization step. After proper optimization of the methodologies with each developed fiber, the analytical performance was compared with a commercial polyacrylate fiber. A study of the normalized calibration slopes, obtained by dividing the calibration slope of each analyte by the coating volume, revealed that the crosslinked fibers can be used as alternatives to commercial fibers for the determination of the selected group of compounds. In particular, the coating nature of the PIL containing the 1-vinylbenzyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide IL as monomer and the 1,12-di(3-vinylbenzylimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide IL as crosslinker is the most suitable for the extraction of the selected compounds despite their coating volume, being 3.6 times lower than the commercial polyacrylate fiber. For this fiber, wide linear ranges, correlation coefficients higher than 0.990, limits of detection ranging from 2.8 ng L -1 to 26 ng L -1 and relative standard deviations ranging from 2.5 to 15% were achieved. Finally, all proposed PIL-based fibers were applied towards the analysis of tap water, pool water and lake water, with the majority of the ultraviolet filters being detected and quantified in the last two types of samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Fuzzy Dark Matter from Infrared Confining Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davoudiasl, Hooman; Murphy, Christopher W.
A very light boson of mass O ( 10 - 22 ) eV may potentially be a viable dark matter (DM) candidate, which can avoid phenomenological problems associated with cold DM. Such “fuzzy DM (FDM)” may naturally be an axion with a decay constant f a ~ 1 0 16 – 1 0 18 GeV and a mass m a ~ μ 2 / f a with μ ~ 1 0 2 eV . Here, we propose a concrete model, where μ arises as a dynamical scale from infrared confining dynamics, analogous to QCD. This model is an alternative tomore » the usual approach of generating μ through string theoretic instanton effects. We outline the features of this scenario that result from various cosmological constraints. We also found that those constraints are suggestive of a period of mild of inflation, perhaps from a strong first order phase transition, that reheats the standard model (SM) sector only. A typical prediction of our scenario, broadly speaking, is a larger effective number of neutrinos compared to the SM value N eff ≈ 3 , as inferred from precision measurements of the cosmic microwave background. Some of the new degrees of freedom may be identified as “sterile neutrinos,” which may be required to explain certain neutrino oscillation anomalies. Thus, aspects of our scenario could be testable in terrestrial experiments, which is a novelty of our FDM model.« less
Mantle transition zone structure beneath the Canadian Shield
NASA Astrophysics Data System (ADS)
Thompson, D. A.; Helffrich, G. R.; Bastow, I. D.; Kendall, J. M.; Wookey, J.; Eaton, D. W.; Snyder, D. B.
2010-12-01
The Canadian Shield is underlain by one of the deepest and most laterally extensive continental roots on the planet. Seismological constraints on the mantle structure beneath the region are presently lacking due to the paucity of stations in this remote area. Presented here is a receiver function study on transition zone structure using data from recently deployed seismic networks from the Hudson Bay region. High resolution images based on high signal-to-noise ratio data show clear arrivals from the 410 km and 660 km discontinuities, revealing remarkably little variation in transition zone structure. Transition zone thickness is close to the global average (averaging 245 km across the study area), and any deviations in Pds arrival time from reference Earth models can be readily explained by upper-mantle velocity structure. The 520 km discontinuity is not a ubiquitous feature, and is only weakly observed in localised areas. These results imply that the Laurentian root is likely confined to the upper-mantle and if any mantle downwelling exists, possibly explaining the existence of Hudson Bay, it is also confined to the upper 400 km. Any thermal perturbations at transition zone depths associated with the existence of the root, whether they be cold downwellings or elevated temperatures due to the insulating effect of the root, are thus either non-existent or below the resolution of the study.
Fuzzy Dark Matter from Infrared Confining Dynamics
Davoudiasl, Hooman; Murphy, Christopher W.
2017-04-03
A very light boson of mass O ( 10 - 22 ) eV may potentially be a viable dark matter (DM) candidate, which can avoid phenomenological problems associated with cold DM. Such “fuzzy DM (FDM)” may naturally be an axion with a decay constant f a ~ 1 0 16 – 1 0 18 GeV and a mass m a ~ μ 2 / f a with μ ~ 1 0 2 eV . Here, we propose a concrete model, where μ arises as a dynamical scale from infrared confining dynamics, analogous to QCD. This model is an alternative tomore » the usual approach of generating μ through string theoretic instanton effects. We outline the features of this scenario that result from various cosmological constraints. We also found that those constraints are suggestive of a period of mild of inflation, perhaps from a strong first order phase transition, that reheats the standard model (SM) sector only. A typical prediction of our scenario, broadly speaking, is a larger effective number of neutrinos compared to the SM value N eff ≈ 3 , as inferred from precision measurements of the cosmic microwave background. Some of the new degrees of freedom may be identified as “sterile neutrinos,” which may be required to explain certain neutrino oscillation anomalies. Thus, aspects of our scenario could be testable in terrestrial experiments, which is a novelty of our FDM model.« less
Preparation of membrane rafts.
Waugh, Mark G; Hsuan, J Justin
2009-01-01
The concept that biological membranes contain microdomains of specialized lipid and protein composition has attracted great attention in recent years. Initially, the focus in the field was very much on the characterization of cholesterol-and sphingolipid-rich plasma membrane microdomains that were resistant to solubilization in the cold non-ionic detergent Triton X-100. Such detergent-insoluble membrane domains were of low buoyant density and could be readily purified on sucrose equilibrium density gradients. The intrinsic buoyancy of the detergent-insoluble domains gave rise to the term "lipid rafts." Cholesterol- and sphingolipid-rich rafts at the plasma membrane have been implicated in a wide range of cellular processes, including pathogen invasion, receptor signaling, and endocytosis. However, work with other non-ionic detergents such as Lubrol WX and Brij-98 has revealed the existence of various raft subtypes with differing lipid compositions and proposed functions. More recently, there has been some focus on isolating lipid rafts from intracellular organelles, in particular membranes from the Golgi-endosomal pathway, where raft lipids have been proposed to function in processes such as the sorting of vesicular cargo and the processing of amyloid precursor protein. While there remains a large degree of controversy surrounding the purity, the physiological importance, and even the existence of different types of lipid rafts in intact cells, the ability to routinely purify such domains has led to significant progress in understanding the functional architecture of biological membranes. We describe a number of widely used methods to prepare rafts, based on early preparations of caveolae by density gradient ultracentrifugation and immunoaffinity precipitation.
Ejection of Coulomb Crystals from a Linear Paul Ion Trap for Ion-Molecule Reaction Studies.
Meyer, K A E; Pollum, L L; Petralia, L S; Tauschinsky, A; Rennick, C J; Softley, T P; Heazlewood, B R
2015-12-17
Coulomb crystals are being increasingly employed as a highly localized source of cold ions for the study of ion-molecule chemical reactions. To extend the scope of reactions that can be studied in Coulomb crystals-from simple reactions involving laser-cooled atomic ions, to more complex systems where molecular reactants give rise to multiple product channels-sensitive product detection methodologies are required. The use of a digital ion trap (DIT) and a new damped cosine trap (DCT) are described, which facilitate the ejection of Coulomb-crystallized ions onto an external detector for the recording of time-of-flight (TOF) mass spectra. This enables the examination of reaction dynamics and kinetics between Coulomb-crystallized ions and neutral molecules: ionic products are typically cotrapped, thus ejecting the crystal onto an external detector reveals the masses, identities, and quantities of all ionic species at a selected point in the reaction. Two reaction systems are examined: the reaction of Ca(+) with deuterated isotopologues of water, and the charge exchange between cotrapped Xe(+) with deuterated isotopologues of ammonia. These reactions are examples of two distinct types of experiment, the first involving direct reaction of the laser-cooled ions, and the second involving reaction of sympathetically-cooled heavy ions to form a mixture of light product ions. Extensive simulations are conducted to interpret experimental results and calculate optimal operating parameters, facilitating a comparison between the DIT and DCT approaches. The simulations also demonstrate a correlation between crystal shape and image shape on the detector, suggesting a possible means for determining crystal geometry for nonfluorescing ions.
NASA Astrophysics Data System (ADS)
Walsh, C. A.; Chittenden, J. P.; McGlinchey, K.; Niasse, N. P. L.; Appelbe, B. D.
2017-04-01
Three-dimensional extended-magnetohydrodynamic simulations of the stagnation phase of inertial confinement fusion implosion experiments at the National Ignition Facility are presented, showing self-generated magnetic fields over 104 T . Angular high mode-number perturbations develop large magnetic fields, but are localized to the cold, dense hot-spot surface, which is hard to magnetize. When low-mode perturbations are also present, the magnetic fields are injected into the hot core, reaching significant magnetizations, with peak local thermal conductivity reductions greater than 90%. However, Righi-Leduc heat transport effectively cools the hot spot and lowers the neutron spectra-inferred ion temperatures compared to the unmagnetized case. The Nernst effect qualitatively changes the results by demagnetizing the hot-spot core, while increasing magnetizations at the edge and near regions of large heat loss.
Probing the Physics of Burning DT Capsules Using Gamma-ray Diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes-Sterbenz, Anna Catherine; Hale, Gerald M.; Jungman, Gerard
2015-02-01
The Gamma Reaction History (GRH) diagnostic developed and lead by the Los Alamos National Laboratory GRH Team is used to determine the bang time and burn width of imploded inertial confinement fusion capsules at the National Ignition Facility. The GRH team is conceptualizing and designing a new Gamma-to-Electron Magnetic Spectrometer (GEMS), that would be capable of an energy resolution ΔE/E~3-5%. In this whitepaper we examine the physics that could be explored by the combination of these two gamma-ray diagnostics, with an emphasis on the sensitivity needed for measurements. The main areas that we consider are hydrodynamical mixing, ablator areal densitymore » and density profile, and temporal variations of the density of the cold fuel and the ablator during the DT burn of the capsule.« less
A comparative study of the tail ion distribution with reduced Fokker-Planck models
NASA Astrophysics Data System (ADS)
McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua; Berk, H. L.
2014-03-01
A series of reduced models are used to study the fast ion tail in the vicinity of a transition layer between plasmas at disparate temperatures and densities, which is typical of the gas and pusher interface in inertial confinement fusion targets. Emphasis is placed on utilizing progressively more comprehensive models in order to identify the essential physics for computing the fast ion tail at energies comparable to the Gamow peak. The resulting fast ion tail distribution is subsequently used to compute the fusion reactivity as a function of collisionality and temperature. While a significant reduction of the fusion reactivity in the hot spot compared to the nominal Maxwellian case is present, this reduction is found to be partially recovered by an increase of the fusion reactivity in the neighboring cold region.
Synthetic dimensions for cold atoms from shaking a harmonic trap
NASA Astrophysics Data System (ADS)
Price, Hannah M.; Ozawa, Tomoki; Goldman, Nathan
2017-02-01
We introduce a simple scheme to implement synthetic dimensions in ultracold atomic gases, which only requires two basic and ubiquitous ingredients: the harmonic trap, which confines the atoms, combined with a periodic shaking. In our approach, standard harmonic oscillator eigenstates are reinterpreted as lattice sites along a synthetic dimension, while the coupling between these lattice sites is controlled by the applied time modulation. The phase of this modulation enters as a complex hopping phase, leading straightforwardly to an artificial magnetic field upon adding a second dimension. We show that this artificial gauge field has important consequences, such as the counterintuitive reduction of average energy under resonant driving, or the realization of quantum Hall physics. Our approach offers significant advantages over previous implementations of synthetic dimensions, providing an intriguing route towards higher-dimensional topological physics and strongly-correlated states.
Walsh, C A; Chittenden, J P; McGlinchey, K; Niasse, N P L; Appelbe, B D
2017-04-14
Three-dimensional extended-magnetohydrodynamic simulations of the stagnation phase of inertial confinement fusion implosion experiments at the National Ignition Facility are presented, showing self-generated magnetic fields over 10^{4} T. Angular high mode-number perturbations develop large magnetic fields, but are localized to the cold, dense hot-spot surface, which is hard to magnetize. When low-mode perturbations are also present, the magnetic fields are injected into the hot core, reaching significant magnetizations, with peak local thermal conductivity reductions greater than 90%. However, Righi-Leduc heat transport effectively cools the hot spot and lowers the neutron spectra-inferred ion temperatures compared to the unmagnetized case. The Nernst effect qualitatively changes the results by demagnetizing the hot-spot core, while increasing magnetizations at the edge and near regions of large heat loss.
Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.
The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energymore » efficient manner.« less
[Advances of poly (ionic liquid) materials in separation science].
Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang
2015-11-01
Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.
Amarasekara, Ananda S
2016-05-25
Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.
Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, T.; CREST/JST, Tokyo 102-0075; Baba, K.
Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we have succeeded in creating the static and stable gas (plasmas)-liquid (ionic liquids) interfacial field using a direct current discharge under a low gas pressure condition. It is clarified that the ionic liquid works as a nonmetal liquid electrode, and furthermore, a secondary electron emission coefficient of the ionic liquid is larger than that of conventional metal electrodes. The plasma potential structure of the gas-liquid interfacial region, and resultant interactions between the plasma and the ionic liquid are revealed by changingmore » a polarity of the electrode in the ionic liquid. By utilizing the ionic liquid as a cathode electrode, the positive ions in the plasma region are found to be irradiated to the ionic liquid. This ion irradiation causes physical and chemical reactions at the gas-liquid interfacial region without the vaporization of the ionic liquid.« less
Ion-Atom Cold Collisions and Atomic Clocks
NASA Technical Reports Server (NTRS)
Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.
1997-01-01
Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions, exploited as a useful tool at room temperature and higher, are greatly enhanced at low energy. For example, collisional spin transfer from one species of polarized atoms to another has long been a useful method for polarizing a sample of atoms where no other means was available. Because optical pumping cannot be used to polarize the nuclear spin of Xe-129 or He-3 (for use in nmr imaging of the lungs), the nuclear spins are polarized via collisions with an optically pumped Rb vapor in a cell containing both gases. In another case, a spin polarized thermal Cs beam was used to polarize the hyperfine states of trapped He(+)-3 ions in order to measure their hyperfine clock transition frequency. The absence of an x-ray light source to optically pump the ground state of the He(+)-3 ion necessitated this alternative state preparation. Similarly, Cd(+) and Sr(+) ions were spin-oriented via collisions in a cell with optically pumped Rb vapor. Resonant RF spin changing transitions in the ground state of the ions were detected by changes in the Rb resonance light absorption. Because cold collision spin exchange rates scale with temperature as T(sup -1/2) this technique is expected to be a far more powerful tool than the room temperature counterpart. This factor of 100 or more enhancement in spin exchange reaction rates at low temperatures is the basis for a novel trapped ion clock where laser cooled neutrals will cool, state select and monitor the ion clock transition. The advantage over conventional direct laser cooling of trapped ions is that the very expensive and cumbersome UV laser light sources, required to excite the ionic cooling transition, are effectively replaced by simple diode lasers.
Active chemisorption sites in functionalized ionic liquids for carbon capture.
Cui, Guokai; Wang, Jianji; Zhang, Suojiang
2016-07-25
Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.
Synthesis of hetero ionic compounds using dialkylcarbonate quaternization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan
2017-09-19
Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.
Synthesis of hetero ionic compounds using dialkylcarbonate quaternization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan
2018-04-03
Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.
Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H₂ Mixture.
Hirota, Yuichiro; Maeda, Yohei; Yamamoto, Yusuke; Miyamoto, Manabu; Nishiyama, Norikazu
2017-08-03
In this study, we present a new concept in chemically stabilized ionic liquid membranes: an ionic liquid organosilica (ILOS) membrane, which is an organosilica membrane with ionic liquid-like properties. A silylated ionic liquid was used as a precursor for synthesis. The permselectivity, permeation mechanism, and stability of the membrane in the H₂/toluene binary system were then compared with a supported ionic liquid membrane. The membrane showed a superior separation factor of toluene/H₂ (>17,000) in a binary mixture system based on a solution-diffusion mechanism with improved durability over the supported ionic liquid membrane.
Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries
Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza
2015-01-01
Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.
Yokota, Yasuyuki; Miyamoto, Hiroo; Imanishi, Akihito; Takeya, Jun; Inagaki, Kouji; Morikawa, Yoshitada; Fukui, Ken-Ichi
2018-05-09
Electric double-layer transistors based on ionic liquid/organic semiconductor interfaces have been extensively studied during the past decade because of their high carrier densities at low operation voltages. Microscopic structures and the dynamics of ionic liquids likely determine the device performance; however, knowledge of these is limited by a lack of appropriate experimental tools. In this study, we investigated ionic liquid/organic semiconductor interfaces using molecular dynamics to reveal the microscopic properties of ionic liquids. The organic semiconductors include pentacene, rubrene, fullerene, and 7,7,8,8-tetracyanoquinodimethane (TCNQ). While ionic liquids close to the substrate always form the specific layered structures, the surface properties of organic semiconductors drastically alter the ionic dynamics. Ionic liquids at the fullerene interface behave as a two-dimensional ionic crystal because of the energy gain derived from the favorable electrostatic interaction on the corrugated periodic substrate.
Ionic liquids in chemical engineering.
Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter
2010-01-01
The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.
Fluorescent probe studies of polarity and solvation within room temperature ionic liquids: a review.
Pandey, Shubha; Baker, Sheila N; Pandey, Siddharth; Baker, Gary A
2012-09-01
Ionic liquids display an array of useful and sometimes unconventional, solvent features and have attracted considerable interest in the field of green chemistry for the potential they hold to significantly reduce environmental emissions. Some of these points have a bearing on the chemical reactivity of these systems and have also generated interest in the physical and theoretical aspects of solvation in ionic liquids. This review presents an introduction to the field of ionic liquids, followed by discussion of investigations into the solvation properties of neat ionic liquids or mixed systems including ionic liquids as a major or minor component. The ionic liquid based multicomponent systems discussed are composed of other solvents, other ionic liquids, carbon dioxide, surfactants or surfactant solutions. Although we clearly focus on fluorescence spectroscopy as a tool to illuminate ionic liquid systems, the issues discussed herein are of general relevance to discussions of polarity and solvent effects in ionic liquids. Transient solvation measurements carried out by means of time-resolved fluorescence measurements are particularly powerful for their ability to parameterize the kinetics of the solvation process in ionic liquids and are discussed as well.
Ionic Liquids and Relative Process Design
NASA Astrophysics Data System (ADS)
Zhang, S.; Lu, X.; Zhang, Y.; Zhou, Q.; Sun, J.; Han, L.; Yue, G.; Liu, X.; Cheng, W.; Li, S.
Ionic liquids have gained increasing attention in recent years due to their significant advantages, not only as alternative solvents but also as new materials and catalysts. Until now, most research work on ionic liquids has been at the laboratory or pilot scale. In view of the multifarious applications of ionic liquids, more new knowledge is needed and more systematic work on ionic liquids should be carried out deeply and broadly in order to meet the future needs of process design. For example, knowledge of the physicochemical properties is indispensable for the design of new ionic liquids and for the development of novel processes. The synthesis and application of ionic liquids are fundamental parts of engineering science, and the toxicity and environmental assessment of ionic liquids is critical importance for their large scale applications, especially for process design. These research aspects are closely correlated to the industrial applications of ionic liquids and to sustainable processes. However, material process design in the industrial applications of ionic liquids has hardly been implemented. Therefore, this chapter reviews several essential issues that are closely related to process design, such as the synthesis, structure-property relationships, important applications, and toxicity of ionic liquids.
Boundary layer charge dynamics in ionic liquid-ionic polymer transducers
NASA Astrophysics Data System (ADS)
Davidson, Jacob D.; Goulbourne, N. C.
2011-01-01
Ionic polymer transducers (IPTs), also known as ionic polymer-metal composites, are soft sensors and actuators which operate through a coupling of microscale chemical, electrical, and mechanical interactions. The use of an ionic liquid as solvent for an IPT has been shown to dramatically increase transducer lifetime in free-air use, while also allowing for higher applied voltages without electrolysis. In this work, we apply Nernst-Planck/Poisson theory to model charge transport in an ionic liquid IPT by considering a certain fraction of the ionic liquid ions as mobile charge carriers, a phenomenon which is unique to ionic liquid IPTs compared to their water-based counterparts. Numerical simulations are performed using the finite element method to examine how the introduction of another pair of mobile ions affects boundary layer charge dynamics, concentration, and charge density distributions in the electric double layer, and the overall charge transferred and current response of the IPT. Due to interactions with the Nafion ionomer, not all of the ionic liquid ions will function as mobile charge carriers; only a certain fraction will exist as "free" ions. The presence of mobile ionic liquid ions in the transducer will increase the overall charge transferred when a voltage is applied, and cause the current in the transducer to decay more slowly. The additional mobile ions also cause the ionic concentration profiles to exhibit a nonlinear dynamic response, characterized by nonmonotonic ionic concentration profiles in space and time. Although the presence of mobile ionic liquid ions increases the overall amount of charge transferred, this additional charge transfer occurs in a somewhat symmetric manner. Therefore, the additional charge transferred due to the ionic liquid ions does not greatly increase the net bending moment of the transducer; in fact, it is possible that ionic liquid ion movement actually decreases the observed bending response. This suggests that an optimal electromechanical conversion efficiency for bending actuation is achieved by using an ionic liquid where only a relatively small fraction of the ionic liquid ions exist as free ions. Conversely, if it is desired to increase the overall amount of charge transferred, an ionic liquid with a large fraction of free ions should be used. These theoretical considerations are found to be in good qualitative agreement with recent experimental results.
Fast Ignition and Sustained Combustion of Ionic Liquids
NASA Technical Reports Server (NTRS)
Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)
2016-01-01
A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.
2015-12-08
An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.
Influence of the ionic liquid/gas surface on ionic liquid chemistry.
Lovelock, Kevin R J
2012-04-21
Applications such as gas storage, gas separation, NP synthesis and supported ionic liquid phase catalysis depend upon the interaction of different species with the ionic liquid/gas surface. Consequently, these applications cannot proceed to the full extent of their potential without a profound understanding of the surface structure and properties. As a whole, this perspective contains more questions than answers, which demonstrates the current state of the field. Throughout this perspective, crucial questions are posed and a roadmap is proposed to answer these questions. A critical analysis is made of the field of ionic liquid/gas surface structure and properties, and a number of design rules are mined. The effects of ionic additives on the ionic liquid/gas surface structure are presented. A possible driving force for surface formation is discussed that has, to the best of my knowledge, not been postulated in the literature to date. This driving force suggests that for systems composed solely of ions, the rules for surface formation of dilute electrolytes do not apply. The interaction of neutral additives with the ionic liquid/gas surface is discussed. Particular attention is focussed upon H(2)O and CO(2), vital additives for many applications of ionic liquids. Correlations between ionic liquid/gas surface structure and properties, ionic liquid surfaces plus additives, and ionic liquid applications are given. This journal is © the Owner Societies 2012
Ionic Liquids Database- (ILThermo)
National Institute of Standards and Technology Data Gateway
SRD 147 NIST Ionic Liquids Database- (ILThermo) (Web, free access) IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.
Ionic liquid and nanoparticle hybrid systems: Emerging applications.
He, Zhiqi; Alexandridis, Paschalis
2017-06-01
Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.
Hayakawa, Toru; Yoshida, Yuri; Yasui, Masanori; Ito, Toshiaki; Wakamatsu, Jun-ichi; Hattori, Akihito; Nishimura, Takanori
2015-08-01
The gelation of myosin has a very important role in meat products. We have already shown that myosin in low ionic strength solution containing L-histidine forms a transparent gel after heating. To clarify the mechanism of this unique gelation, we investigated the changes in the nature of myosin subfragments during heating in solutions with low and high ionic strengths with and without L-histidine. The hydrophobicity of myosin and heavy meromyosin (HMM) in low ionic strength solution containing L-histidine was lower than in high ionic strength solution. The SH contents of myosin and HMM in low ionic strength solution containing l-histidine did not change during the heating process, whereas in high ionic strength solution they decreased slightly. The heat-induced globular masses of HMM in low ionic strength solution containing L-histidine were smaller than those in high ionic strength solution. These findings suggested that the polymerization of HMM molecules by heating was suppressed in low ionic strength solution containing L-histidine, resulting in formation of the unique gel. © 2015 Institute of Food Technologists®
Heat-induced gelation of myosin in a low ionic strength solution containing L-histidine.
Hayakawa, T; Yoshida, Y; Yasui, M; Ito, T; Iwasaki, T; Wakamatsu, J; Hattori, A; Nishimura, T
2012-01-01
Binding properties are important for meat products and are substantially derived from the heat-induced gelation of myosin. We have shown that myosin is solubilized in a low ionic strength solution containing L-histidine. To clarify its processing characteristics, we investigated properties and structures of heat-induced gels of myosin solubilized in a low ionic strength solution containing L-histidine. Myosin in a low ionic strength solution formed transparent gels at 40-50°C, while myosin in a high ionic strength solution formed opaque gels at 60-70°C. The gel of myosin in a low ionic strength solution with L-histidine showed a fine network consisting of thin strands and its viscosity was lower than that of myosin in a high ionic strength solution at 40-50°C. The rheological properties of heat-induced gels of myosin at low ionic strength are different from those at high ionic strength. This difference might be caused by structural changes in the rod region of myosin in a low ionic strength solution containing L-histidine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Identification and Characterization of Extremophile Microorganisms with Significance to Astrobiology
NASA Technical Reports Server (NTRS)
Bej, Asim K.
2003-01-01
It is now well recognized that microorganisms thrive in extreme ecological conditions such as geothermal vents, polar region, acid and alkaline lakes, and the cold pressurized depth of the ocean floor of this planet. Morphological, physiological, biochemical and genetic adaptations to extreme environments by these extremophile microorganisms have generated immense interest amongst astrobiologists who increasingly believe in the existence of extraterrestrial life. The evidence collected by NASA's space probe Galileo suggested the presence of liquid water and volcanic activity on Mars and Jupiter's satellite Europa. Volcanic activity provides some of the heat necessary to keep the water on Europa from freezing that could provide important dissolved chemicals needed by living organisms. The possibility of the existence of hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters on Mars, and a layer of liquid water under the ice on Europa provide sufficient 'raison d'etre' to study microorganisms in similar extreme environments on Earth, which could provide us with a model that would help establish the existence of extraterrestrial life on other planetary bodies. The objectives of the summer research project were as follows: (1) application of molecular approaches to help establish new species of extremophile microorganisms isolated from a hypersaline alkaline lake; and (2) identification of a major cold-shock gene (cspA) homolog from a psychrotolerant microorganism, PmagG1.
Cold cathode emission studies on topographically modified few layer and single layer MoS2 films
NASA Astrophysics Data System (ADS)
Gaur, Anand P. S.; Sahoo, Satyaprakash; Mendoza, Frank; Rivera, Adriana M.; Kumar, Mohit; Dash, Saroj P.; Morell, Gerardo; Katiyar, Ram S.
2016-01-01
Nanostructured materials, such as carbon nanotubes, are excellent cold cathode emitters. Here, we report comparative field emission (FE) studies on topographically tailored few layer MoS2 films consisting of ⟨0001⟩ plane perpendicular (⊥) to c-axis (i.e., edge terminated vertically aligned) along with planar few layer and monolayer (1L) MoS2 films. FE measurements exhibited lower turn-on field Eto (defined as required applied electric field to emit current density of 10 μA/cm2) ˜4.5 V/μm and higher current density ˜1 mA/cm2, for edge terminated vertically aligned (ETVA) MoS2 films. However, Eto magnitude for planar few layer and 1L MoS2 films increased further to 5.7 and 11 V/μm, respectively, with one order decrease in emission current density. The observed differences in emission behavior, particularly for ETVA MoS2 is attributed to the high value of geometrical field enhancement factor (β), found to be ˜1064, resulting from the large confinement of localized electric field at edge exposed nanograins. Emission behavior of planar few layers and 1L MoS2 films are explained under a two step emission mechanism. Our studies suggest that with further tailoring the microstructure of ultra thin ETVA MoS2 films would result in elegant FE properties.
Chip-based microtrap arrays for cold polar molecules
NASA Astrophysics Data System (ADS)
Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping
2017-12-01
Compared to the atomic chip, which has been a powerful platform to perform an astonishing range of applications from rapid Bose-Einstein condensate (BEC) production to the atomic clock, the molecular chip is only in its infant stages. Recently a one-dimensional electric lattice was demonstrated to trap polar molecules on a chip. This excellent work opens up the way to building a molecular chip laboratory. Here we propose a two-dimensional (2D) electric lattice on a chip with concise and robust structure, which is formed by arrays of squared gold wires. Arrays of microtraps that originate in the microsize electrodes offer a steep gradient and thus allow for confining both light and heavy polar molecules. Theoretical analysis and numerical calculations are performed using two types of sample molecules, N D3 and SrF, to justify the possibility of our proposal. The height of the minima of the potential wells is about 10 μm above the surface of the chip and can be easily adjusted in a wide range by changing the voltages applied on the electrodes. These microtraps offer intriguing perspectives for investigating cold molecules in periodic potentials, such as quantum computing science, low-dimensional physics, and some other possible applications amenable to magnetic or optical lattice. The 2D adjustable electric lattice is expected to act as a building block for a future gas-phase molecular chip laboratory.
Electrolyte compositions for lithium ion batteries
Sun, Xiao-Guang; Dai, Sheng; Liao, Chen
2016-03-29
The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.
2012-05-01
fluorophenyl)sulfone (DPA-PS:BP) is investigated for ionic polymer actuators. The uniqueness of DPA-PS:BP is that it can have a high ionic liquid (IL... ionic liquid Q M Zhang, Gokhan Hatipoglu, Yang Liu, Ran Zhao, Mitra Yoonessi, Dean M Tigelaar, Srinivas Tadigadapa Virginia Polytechnic Institute...DPA-PS:BP) is investigated for ionic polymer actuators. The uniqueness of DPA-PS:BP is that it can have a high ionic liquid (IL) uptake and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arges, Christopher G.; Kambe, Yu; Dolejsi, Moshe
Block copolymer electrolytes (BCEs) represent an attractive choice as solid-state ionic conductors for electrochemical technologies used in energy storage and conversion, water treatment, sensors, and data storage and processing. Unlocking the maximum ionic conductivity of BCEs requires an intimate understanding as to how the microphase separated structure influences transport properties. However, elucidating such knowledge remains elusive due to the challenging task of precisely engineering BCEs with a defined structure in bulk materials. In this work, we examined BCEs in a thin film format because it was amenable to attaining BCEs with a desired nanostructure. Specifically, we systematically investigated anion-conducting BCEsmore » with different degrees of connectivity of the ionic domains. For the first time, we demonstrate that increasing terminal defects in the ionic domain from 1 terminal defect per mu m(2) to 20 terminal defects per mu m(2) ( a relatively small amount of defects) decreased ionic conductivity by 67% compared to the maximum value attained. Conversely, maximizing ionic domain connectivity increased the ionic conductivity by two-fold over a non-ordered BCE film. These experiments highlight that microphase separation alone was insufficient for ameliorating ionic conductivity in BCEs. Rather, microphase separation coupled with complete ionic domain connectivity realized BCEs with significantly enhanced ionic conductivity.« less
Thermotropic Ionic Liquid Crystals
Axenov, Kirill V.; Laschat, Sabine
2011-01-01
The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986
Thermotropic Ionic Liquid Crystals.
Axenov, Kirill V; Laschat, Sabine
2011-01-14
The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.
NASA Astrophysics Data System (ADS)
Siu, Ana Rosa
Proton transport in proton exchange membranes (PEMs) depends on interaction between water and acid groups covalently bound to the polymer. Although the presence of water is important in maintaining the PEM's functions, a thorough understanding of this topic is still lacking. The objective of this work is to provide a better understanding of how the nature water, confined to ionic domains of the polymer, influences the membrane's ability to transport protons, methanol and water. Understanding this topic will facilitate development of new materials with favorable transport properties for fuel cells use. Five classes of polymer membranes were used in this work: polyacrylonitrile-graft-poly(styrenesulfonic) acid (PAN-g-macPSSA); poly(vinylidene difluoride) irradiation-graft-poly(styrenesulfonic) acid (PVDF-g-PSSA); poly(ethylenetetrafluoroethylene) irradiation-graft-poly(styrenesulfonic) acid (ETFE-gPSSA); PVDF-g-PSSA with hydroxyethylmethacrylate (HEMA); and perfluorosulfonic acid membrane (Nafion). The nature of water within the polymers (freezable versus non-freezable states) was measured by systematically freezing samples, and observing the temperature at which water freezes and the amount of heat released in the process. Freezing water-swollen membranes resulted in a 4-fold decrease in the proton conductivity of the PEM. Activation energies of proton transport before and after freezing were ˜ 0.15 eV and 0.5 eV, consistent with proton transport through liquid water and bound water, respectively. Reducing the content of water in membrane samples decreased the amount of freezable and non-freezable water. Calorimetric measurements of membranes in various degrees of hydration showed that water molecules became non-freezable when lambda, (water molecules per sulfonic acid group) was less than ˜14. Proton conduction through membranes containing only non-freezable water was demonstrated to be feasible. Diffusion experiments showed that the permeability of methanol decreased when the content of free water in the membranes decreased. Variation in permeability trends observed for the different polymer classes of the same content of free water was explained on the basis of tortuosity and interaction of methanol within the ionic network. Finally, a novel set of polymers containing non-ionic hydrophilic segments were examined for enhanced water transport in order to see if such domains might offset the flux of water due to electro-osmosis.
Environmental factors affecting feed intake of steers in different housing systems in the summer
NASA Astrophysics Data System (ADS)
Koknaroglu, H.; Otles, Z.; Mader, T.; Hoffman, M. P.
2008-07-01
A total of 188 yearling steers of predominantly Angus and Hereford breeds, with mean body weight of 299 kg, were used in this study, which started on 8 April and finished on 3 October, to assess the effects of environmental factors on feed intake of steers in various housing systems. Housing consisted of outside lots with access to overhead shelter, outside lots with no overhead shelter and a cold confinement building. Ad libitum corn, 2.27 kg of 35% dry matter whole plant sorghum silage and 0.68 kg of a 61% protein-vitamin-mineral supplement was offered. Feed that was not consumed was measured to determine feed intake. The temperature data were recorded by hygro-thermographs. Hourly temperatures and humidity were used to develop weather variables. Regression analysis was used and weather variables were regressed on dry matter intake (DMI). When addition of a new variable did not improve R 2 more than one unit, then the number of variables in the model was truncated. Cattle in confinement had lower DMI than those in open lots and those in open lots with access to an overhead shelter ( P < 0.05). Cattle in outside lots with access to overhead shelter had similar DMI compared to those in open lots ( P = 0.065). Effect of heat was predominantly displayed in August in the three housing systems. In terms of explaining variation in DMI, in outside lots with access to overhead shelter, average and daytime temperatures were important factors, whereas in open lots, nocturnal, peak and average temperatures were important factors. In confinement buildings, the previous day’s temperature and humidity index were the most important factors explaining variation in DMI. Results show the effect of housing and weather variables on DMI in summer and when considering these results, cattle producers wishing to improve cattle feedlot performance should consider housing conditions providing less stress or more comfort.
Field nanoemitter: One-dimension Al4C3 ceramics
NASA Astrophysics Data System (ADS)
Sun, Y.; Cui, H.; Gong, L.; Chen, Jian; Shen, P. K.; Wang, C. X.
2011-07-01
As a kind of ionic (or salt-like) carbide, Al4C3 hardly any active functions have been found except for structure material purposes. However, considering the unique characteristic features of its crystal structure, we think Al4C3 in fact might have huge potential for exhibiting active functionality on field-emission application. Herein, we report for the first time the catalyst-free synthesis and excellent field emission properties of Al4C3 one-dimension (1-D) nanostructures. The 1-D nanostructures acting as cold electron emitters display excellent field emission performance with the turn-on field as low as 1.4-2.0 V μm-1 and the threshold field down to 4.2-4.4 V μm-1. Such emitters are technologically useful, because they can be easily fabricated on large substrates, and the synthesis process is simple and broadly applicable. The findings conceptually provide new opportunities for the application of Al4C3 ceramic material in vacuum microelectronic devices.
NASA Astrophysics Data System (ADS)
Wolk, Arron B.; Garand, Etienne; Jones, Ian M.; Kamrath, Michael Z.; Hamilton, Rew; Johnson, Mark A.
2012-06-01
We report the infrared predissociation spectra of a family of ionic diphenylacetylene molecular switch complexes. The electrosprayed complexes were trapped and cooled in a cryogenic (10K) quadrupole ion trap and tagged with molecular deuterium. The infrared spectra of the vibrationally cold species reveal sharp transitions over a wide energy range (800 - 3800 cm-1), facilitating comparison to harmonic spectra. The evolution of the band pattern upon derivatization of the complexes exposes the signatures of the amide, urea, and carbonyl functionalities, enabling unambiguous identification of the non-covalent interactions that control the secondary structure of the molecule. Complexation with the tetramethylammonium cation reveals a conformation analogous to that of the neutral molecule, while halide ion attachment induces a conformational change similar to that observed earlier in solution. In several cases, both the donor and acceptor groups involved in the multidentate H-bonds are observed, providing a microscopic mechanical picture of the interactions at play. I. Jones, and A. Hamilton, Angew. Chem. Intl. Edit. 50, 4597 (2011).
Detection of griseofulvin in a marine strain of Penicillium waksmanii by ion trap mass spectrometry.
Petit, K E; Mondeguer, F; Roquebert, M F; Biard, J F; Pouchus, Y F
2004-07-01
A marine strain of Penicillium waksmanii Zaleski was isolated from a sample of seawater from shellfish-farming area in the Loire estuary (France). The in vitro marine culture showed an important antifungal activity. Bioassay-guided fractionation was used to purify the crude extract. Dereplication by electrospray-ion trap/mass spectrometry (ESI-IT/MS) afforded the identification of the antifungal compound, after a semi-purification consisting of two stages. A comparison of the ionic composition between the active and the non-active fractions allowed the detection of a monocharged ion at m/z 353 containing a chlorine atom, which could be attributed to the antifungal griseofulvin [C17H17ClO6+H]+. Multi-stage fragmentation (MSn) confirmed the identity of the m/z 353 ion of the antifungal fraction as griseofulvin. It is the first description of griseofulvin production by a strain of P. waksmanii and the first chemical study of a strain of this species isolated from marine temperate cold water. Copyright 2004 Elsevier B.V.
Dislocations in bilayer graphene
NASA Astrophysics Data System (ADS)
Butz, Benjamin; Dolle, Christian; Niekiel, Florian; Weber, Konstantin; Waldmann, Daniel; Weber, Heiko B.; Meyer, Bernd; Spiecker, Erdmann
2014-01-01
Dislocations represent one of the most fascinating and fundamental concepts in materials science. Most importantly, dislocations are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly affect the local electronic and optical properties of semiconductors and ionic crystals. In materials with small dimensions, they experience extensive image forces, which attract them to the surface to release strain energy. However, in layered crystals such as graphite, dislocation movement is mainly restricted to the basal plane. Thus, the dislocations cannot escape, enabling their confinement in crystals as thin as only two monolayers. To explore the nature of dislocations under such extreme boundary conditions, the material of choice is bilayer graphene, the thinnest possible quasi-two-dimensional crystal in which such linear defects can be confined. Homogeneous and robust graphene membranes derived from high-quality epitaxial graphene on silicon carbide provide an ideal platform for their investigation. Here we report the direct observation of basal-plane dislocations in freestanding bilayer graphene using transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. Our investigation reveals two striking size effects. First, the absence of stacking-fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern that corresponds to an alternating ABAC change of the stacking order. Second, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane that results directly from accommodation of strain. In fact, the buckling changes the strain state of the bilayer graphene and is of key importance for its electronic properties. Our findings will contribute to the understanding of dislocations and of their role in the structural, mechanical and electronic properties of bilayer and few-layer graphene.
Campuzano, Iain; Bush, Matthew F; Robinson, Carol V; Beaumont, Claire; Richardson, Keith; Kim, Hyungjun; Kim, Hugh I
2012-01-17
We present the use of drug-like molecules as a traveling wave (T-wave) ion mobility (IM) calibration sample set, covering the m/z range of 122.1-609.3, the nitrogen collision cross-section (Ω(N(2))) range of 124.5-254.3 Å(2) and the helium collision cross-section (Ω(He)) range of 63.0-178.8 Å(2). Absolute Ω(N(2)) and Ω(He) values for the drug-like calibrants and two diastereomers were measured using a drift-tube instrument with radio frequency (RF) ion confinement. T-wave drift-times for the protonated diastereomers betamethasone and dexamethasone are reproducibly different. Calibration of these drift-times yields T-wave Ω(N(2)) values of 189.4 and 190.4 Å(2), respectively. These results demonstrate the ability of T-wave IM spectrometry to differentiate diastereomers differing in Ω(N(2)) value by only 1 Å(2), even though the resolution of these IM experiments were ∼40 (Ω/ΔΩ). Demonstrated through density functional theory optimized geometries and ionic electrostatic surface potential analysis, the small but measurable mobility difference between the two diastereomers is mainly due to short-range van der Waals interactions with the neutral buffer gas and not long-range charge-induced dipole interactions. The experimental RF-confining drift-tube and T-wave Ω(N(2)) values were also evaluated using a nitrogen based trajectory method, optimized for T-wave operating temperature and pressures, incorporating additional scaling factors to the Lennard-Jones potentials. Experimental Ω(He) values were also compared to the original and optimized helium based trajectory methods.
Dislocations in bilayer graphene.
Butz, Benjamin; Dolle, Christian; Niekiel, Florian; Weber, Konstantin; Waldmann, Daniel; Weber, Heiko B; Meyer, Bernd; Spiecker, Erdmann
2014-01-23
Dislocations represent one of the most fascinating and fundamental concepts in materials science. Most importantly, dislocations are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly affect the local electronic and optical properties of semiconductors and ionic crystals. In materials with small dimensions, they experience extensive image forces, which attract them to the surface to release strain energy. However, in layered crystals such as graphite, dislocation movement is mainly restricted to the basal plane. Thus, the dislocations cannot escape, enabling their confinement in crystals as thin as only two monolayers. To explore the nature of dislocations under such extreme boundary conditions, the material of choice is bilayer graphene, the thinnest possible quasi-two-dimensional crystal in which such linear defects can be confined. Homogeneous and robust graphene membranes derived from high-quality epitaxial graphene on silicon carbide provide an ideal platform for their investigation. Here we report the direct observation of basal-plane dislocations in freestanding bilayer graphene using transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. Our investigation reveals two striking size effects. First, the absence of stacking-fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern that corresponds to an alternating AB B[Symbol: see text]AC change of the stacking order. Second, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane that results directly from accommodation of strain. In fact, the buckling changes the strain state of the bilayer graphene and is of key importance for its electronic properties. Our findings will contribute to the understanding of dislocations and of their role in the structural, mechanical and electronic properties of bilayer and few-layer graphene.
Ren, Hang; Cheyne, Cameron G; Fleming, Aaron M; Burrows, Cynthia J; White, Henry S
2018-04-18
Measurement of single-molecule reactions can elucidate microscopic mechanisms that are often hidden from ensemble analysis. Herein, we report the acid-base titration of a single DNA duplex confined within the wild-type α-hemolysin (α-HL) nanopore for up to 3 h, while monitoring the ionic current through the nanopore. Modulation between two states in the current-time trace for duplexes containing the C:C mismatch in proximity to the latch constriction of α-HL is attributed to the base flipping of the C:C mismatch. As the pH is lowered, the rate for the C:C mismatch to flip from the intra-helical state to the extra-helical state ( k intra-extra ) decreases, while the rate for base flipping from the extra-helical state to the intra-helical state ( k extra-intra ) remains unchanged. Both k intra-extra and k extra-intra are on the order of 1 × 10 -2 s -1 to 1 × 10 -1 s -1 and remain stable over the time scale of the measurement (several hours). Analysis of the pH-dependent kinetics of base flipping using a hidden Markov kinetic model demonstrates that protonation/deprotonation occurs while the base pair is in the intra-helical state. We also demonstrate that the rate of protonation is limited by transport of H + into the α-HL nanopore. Single-molecule kinetic isotope experiments exhibit a large kinetic isotope effect (KIE) for k intra-extra ( k H / k D ≈ 5) but a limited KIE for k extra-intra ( k H / k D ≈ 1.3), supporting our model. Our experiments correspond to the longest single-molecule measurements performed using a nanopore, and demonstrate its application in interrogating mechanisms of single-molecule reactions in confined geometries.
Wang, Weina; Ma, Ruiyang; Wu, Qiuhua; Wang, Chun; Wang, Zhi
2013-06-07
In this paper, a magnetic microsphere-confined graphene adsorbent (Fe3O4@SiO2-G) was fabricated and used for the extraction of five polycyclic aromatic hydrocarbons (fluorene, anthracene, phenanthrene, fluoranthene and pyrene) from environmental water samples prior to high performance liquid chromatography with fluorescence detection. The Fe3O4@SiO2-G was characterized by various instrumental methods. Various experimental parameters that could affect the extraction efficiencies, such as the amount of Fe3O4@SiO2-G, the pH and ionic strength of sample solution, the extraction time and the desorption conditions, were investigated. Due to the high surface area and excellent adsorption capacity of the Fe3O4@SiO2-G, satisfactory extraction can be achieved with only 15mg of the adsorbent per 250mL solution and 5min extraction. Under the optimum conditions, a linear response was observed in the concentration range of 5-1500ngL(-1) for fluorene, 2.5-1500ngL(-1) for anthracene and 15-1500ngL(-1) for phenanthrene, fluoranthene and pyrene, with the correlation coefficients (r) ranging from 0.9897 to 0.9961. The limits of detection (S/N=3) of the method were between 0.5 and 5.0ngL(-1). The relative standard deviations (RSDs) were less than 5.6%. The recoveries of the method were in the range between 83.2% and 108.2%. The results indicated that this graphene-based magnetic nanocomposite had a great adsorptive ability toward the five polycyclic aromatic hydrocarbons from environmental water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
The electrode/ionic liquid interface: electric double layer and metal electrodeposition.
Su, Yu-Zhuan; Fu, Yong-Chun; Wei, Yi-Min; Yan, Jia-Wei; Mao, Bing-Wei
2010-09-10
The last decade has witnessed remarkable advances in interfacial electrochemistry in room-temperature ionic liquids. Although the wide electrochemical window of ionic liquids is of primary concern in this new type of solvent for electrochemistry, the unusual bulk and interfacial properties brought about by the intrinsic strong interactions in the ionic liquid system also substantially influence the structure and processes at electrode/ionic liquid interfaces. Theoretical modeling and experimental characterizations have been indispensable in reaching a microscopic understanding of electrode/ionic liquid interfaces and in elucidating the physics behind new phenomena in ionic liquids. This Minireview describes the status of some aspects of interfacial electrochemistry in ionic liquids. Emphasis is placed on high-resolution and molecular-level characterization by scanning tunneling microscopy and vibrational spectroscopies of interfacial structures, and the initial stage of metal electrodeposition with application in surface nanostructuring.
Ding, Xueqin; Li, Li; Wang, Yuzhi; Chen, Jing; Huang, Yanhua; Xu, Kaijia
2014-12-01
A series of novel tetramethylguanidinium ionic liquids and hexaalkylguanidinium ionic liquids have been synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids were confirmed by (1)H NMR spectroscopy and mass spectrometry. A green guanidinium ionic liquid based microwave-assisted extraction method has been developed with these guanidinium ionic liquids for the effective extraction of Praeruptorin A from Radix peucedani. After extraction, reversed-phase high-performance liquid chromatography with UV detection was employed for the analysis of Praeruptorin A. Several significant operating parameters were systematically optimized by single-factor and L9 (3(4)) orthogonal array experiments. The amount of Praeruptorin A extracted by [1,1,3,3-tetramethylguanidine]CH2CH(OH)COOH is the highest, reaching 11.05 ± 0.13 mg/g. Guanidinium ionic liquid based microwave-assisted extraction presents unique advantages in Praeruptorin A extraction compared with guanidinium ionic liquid based maceration extraction, guanidinium ionic liquid based heat reflux extraction and guanidinium ionic liquid based ultrasound-assisted extraction. The precision, stability, and repeatability of the process were investigated. The mechanisms of guanidinium ionic liquid based microwave-assisted extraction were researched by scanning electron microscopy and IR spectroscopy. All the results show that guanidinium ionic liquid based microwave-assisted extraction has a huge potential in the extraction of bioactive compounds from complex samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanical properties and XRD of Nafion modified by 2-hydroxyethylammonium ionic liquids
NASA Astrophysics Data System (ADS)
Garaev, V.; Pavlovica, S.; Reinholds, I.; Vaivars, G.
2013-12-01
In this work, the Nafion 112 membrane impregnated with 2-hydroxyethylammonium carboxylate ionic liquids have been investigated. The used ionic liquids were 2-hydroxyethylammonium formate [HEA]F, acetate [HEA]A and lactate [HEA]L. Prepared composite membranes Nafion/ionic liquid are characterized by mechanical testing, such as tensile test and creep test. It is found that ionic liquids decrease elastic modulus and creep compliance, but do not have significant effect on the tensile strength. Also, composite membranes were studied by wide angle X-ray diffraction. All ionic liquids shift the peak maximum to the lower angle. In this work, only biodegradable ionic liquids were used for composite preparation.
Biocatalytic transformations in ionic liquids.
van Rantwijk, Fred; Madeira Lau, Rute; Sheldon, Roger A
2003-03-01
Room temperature ionic liquids are non-volatile, thermally stable and highly polar; they are also moderately hydrophilic solvents. Here, we discuss their use as reaction media for biocatalysis. Enzymes of widely diverging types are catalytically active in ionic liquids or aqueous biphasic ionic liquid systems. Lipases, in particular, maintain their activity in anhydrous ionic liquid media; the (enantio)selectivity and operational stability are often better than in traditional media. The unconventional solvent properties of ionic liquids have been exploited in biocatalyst recycling and product recovery schemes that are not feasible with traditional solvent systems.
Direct current dielectrophoretic manipulation of the ionic liquid droplets in water.
Zhao, Kai; Li, Dongqing
2018-07-13
The ionic liquids (ILs) as the environmentally benign solvents show great potentials in microemulsion carrier systems and have been widely used in the biochemical and pharmaceutical fields. In the work, the ionic liquid-in-water microemulsions were fabricated by using two kinds of hydrophobic ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF 6 ] and 1-Hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF 6 ] with Tween 20. The ionic liquid droplets in water experience the dielectrophoretic (DEP) forces induced by applying electrical field via a nano-orifice and a micron orifice on the opposite channel walls of a microchannel. The dielectrophoretic behaviors of the ionic liquid-in-water emulsion droplets were investigated under direct current (DC) electric field. The positive and negative DEP behaviors of the ionic liquid-in-water droplets varying with the electrical conductivity of the suspending medium were investigated and two kinds of the ionic liquid droplets of similar sizes were separated by their different DEP behaviors. In addition, the separation of the ionic liquid-in-water droplets by size was conducted. This paper, for the first time to our knowledge, presents the DC-DEP manipulation of the ionic liquid-in-water emulsion droplets by size and by type. This method provides a platform to manipulate the ionic liquid droplets individually. Copyright © 2018 Elsevier B.V. All rights reserved.
Thermally modulated biomolecule transport through nanoconfined channels
NASA Astrophysics Data System (ADS)
Liu, Lei; Zhu, Lizhong
2015-04-01
In this work, a nanofluidic device containing both a feed cell and a permeation cell linked by nanopore arrays has been fabricated, which is employed to investigate thermally controlled biomolecular transporting properties through confined nanochannels. The ionic currents modulated by the translocations of goat antibody to human immunoglobulin G (IgG) or bovine serum albumin (BSA) are recorded and analyzed. The results suggest that the modulation effect decreases with the electrolyte concentration increasing, while the effects generated by IgG translocation are more significant than that generated by BSA translocation. More importantly, there is a maximum decreasing value in each modulated current curve with biomolecule concentration increasing for thermally induced intermolecular collision. Furthermore, the turning point for the maximum shifts to lower biomolecule concentrations with the system temperature rising (from 4°C to 45°C), and it is mainly determined by the temperature in the feed cell if the temperature difference exists in the two separated cells. These findings are expected to be valuable for the future design of novel sensing device based on nanopore and/or nanopore arrays.
Correlation and transport properties for mixtures at constant pressure and temperature
NASA Astrophysics Data System (ADS)
White, Alexander J.; Collins, Lee A.; Kress, Joel D.; Ticknor, Christopher; Clérouin, Jean; Arnault, Philippe; Desbiens, Nicolas
2017-06-01
Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. We present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2 g/cm 3 , namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity for various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. The concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.
Electroplating Gold-Silver Alloys for Spherical Capsules for NIF Double-Shell Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandarkar, N.; Horwood, C.; Bunn, T.
For Inertial Confinement Fusion (ICF) implosions, a design based on gradients of high and mid Z materials could potentially be more robust than single element capsule systems. To that end, gold and silver alloys were electroplated on 2.0 mm diameter surrogate brass spheres using a new flow–based pulsed plating method specifically designed to minimize surface roughness without reducing plating rates. The coatings were analyzed by scanning electron microscope (SEM) and white light interferometry for surface topography, and by energy dispersive x-ray spectroscopy (EDX) to determine near-surface gold and silver compositions. The alloy range attainable was 15 to 85 weight percentmore » gold using 1:1 and 1:3 silver to gold ratio plating baths at applied potentials of -0.7 volts to -1.8 volts. This range was bounded by the open circuit potential of the system and hydrogen evolution, and in theory could be extended by using ionic liquids or aprotic solutions. Preliminary gradient trials proved constant composition alloy data could be translated to smooth gradient plating, albeit at higher gold compositions.« less
Correlation and transport properties for mixtures at constant pressure and temperature
White, Alexander J.; Collins, Lee A.; Kress, Joel D.; ...
2017-06-02
Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. In this paper, we present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2g/cm 3, namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity formore » various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. Finally, the concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.« less
Colloidal paradigm in supercapattery electrode systems
NASA Astrophysics Data System (ADS)
Chen, Kunfeng; Xue, Dongfeng
2018-01-01
Among decades of development, electrochemical energy storage systems are now sorely in need of a new design paradigm at the nano size and ion level to satisfy the higher energy and power demands. In this review paper, we introduce a new colloidal electrode paradigm for supercapattery that integrates multiple-scale forms of matter, i.e. ion clusters, colloidal ions, and nanosized materials, into one colloid system, coupled with multiple interactions, i.e. electrostatic, van der Waals forces, and chemical bonding, thus leading to the formation of many redox reactive centers. This colloidal electrode not only keeps the original ionic nature in colloidal materials, but also creates a new attribute of high electroactivity. Colloidal supercapattery is a perfect application example of the novel colloidal electrode, leading to higher specific capacitance than traditional electrode materials. The high electroactivity of the colloidal electrode mainly comes from the contribution of exposed reactive centers, owing to the confinement effect of carbon and a binder matrix. Systematic and thorough research on the colloidal system will significantly promote the development of fundamental science and the progress of advanced energy storage technology.
NATO Advanced Study Institute on Spectroscopy
NASA Technical Reports Server (NTRS)
DiBartolo, Baldassare; Barnes, James (Technical Monitor)
2001-01-01
This booklet presents an account of the course 'Spectroscopy of Systems with Spatially Confined Structures' held in Erice-Sicily, Italy, from June 15 to June 30, 2001. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the 'Ettore Majorana' Centre for Scientific Culture. The purpose of this course was to present and discuss nanometer-scale physics, a rapidly progressing field. The top-down approach of semiconductor technology will soon meet the scales of the bottom-up approaches of supramolecular chemistry and of spatially localized excitations in ionic crystals. This course dealt with the fabrication, measurement and understanding of the relevant structures and brought together the scientific communities responsible for these development. The advances in this area of physics have already let to applications in optoelectronics and will likely lead to many more. The subjects of the course included spatially resolved structures such as quantum wells, quantum wires and quantum dots, single atoms and molecules, clusters, fractal systems, and the development of related techniques like near-field spectroscopy and confocal microscopy to study such systems.
Van Meervelt, Veerle; Soskine, Misha; Maglia, Giovanni
2015-01-01
Protein-DNA interactions play critical roles in biological systems, and they often involve complex mechanisms and dynamics that are not easily measured by ensemble experiments. Recently, we have shown that folded proteins can be internalised inside ClyA nanopores and studied by ionic current recordings at the single-molecule level. Here, we use ClyA nanopores to sample the interaction between the G-quadruplex fold of the thrombin binding aptamer (TBA) and human thrombin (HT). Surprisingly, the internalisation of the HT:TBA complex inside the nanopore induced two types of current blockades with distinguished residual current and lifetime. Using single nucleobase substitutions to TBA we showed that these two types of blockades originate from TBA binding to thrombin with two isomeric orientations. Voltage dependencies and the use of ClyA nanopores with two different diameters allowed assessing the effect of the applied potential and confinement, and revealed that the two binding configurations of TBA to HT display different lifetimes. These results show that the ClyA nanopores might provide a new approach to probe conformational heterogeneity in protein:DNA interactions. PMID:25493908
Correlation and transport properties for mixtures at constant pressure and temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Alexander J.; Collins, Lee A.; Kress, Joel D.
Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. In this paper, we present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2g/cm 3, namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity formore » various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. Finally, the concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.« less
Gate modulation of proton transport in a nanopore.
Mei, Lanju; Yeh, Li-Hsien; Qian, Shizhi
2016-03-14
Proton transport in confined spaces plays a crucial role in many biological processes as well as in modern technological applications, such as fuel cells. To achieve active control of proton conductance, we investigate for the first time the gate modulation of proton transport in a pH-regulated nanopore by a multi-ion model. The model takes into account surface protonation/deprotonation reactions, surface curvature, electroosmotic flow, Stern layer, and electric double layer overlap. The proposed model is validated by good agreement with the existing experimental data on nanopore conductance with and without a gate voltage. The results show that the modulation of proton transport in a nanopore depends on the concentration of the background salt and solution pH. Without background salt, the gated nanopore exhibits an interesting ambipolar conductance behavior when pH is close to the isoelectric point of the dielectric pore material, and the net ionic and proton conductance can be actively regulated with a gate voltage as low as 1 V. The higher the background salt concentration, the lower is the performance of the gate control on the proton transport.
Microstructural aspects in steel fiber reinforced acrylic emulsion polymer modified concrete
NASA Astrophysics Data System (ADS)
Hazimmah, Dayang; Ayob, Afizah; Sie Yee, Lau; Chee Cung, Wong
2018-03-01
Scanning electron microscope observations of polymer-free and polymer-modified cements have shown that the polymer particles are partitioned between the inside of hydrates and the surface of anhydrous cement grains. For optimum dosage of acrylic emulsion polymer with 2.5%, the C-S-H gel in this structure is finer and more acicular. Some polymer adheres or deposit on the surface of the C-S-H gel. The presence of acrylic emulsion polymer confines the ionic diffusion so that the Ca(OH)2 crystallized locally to form fine crystals. The void in the structures seems to be smaller but no polymer films appears to be bridging the walls of pores although many polymer bonds or C-S-H spread into the pore spaces. In addition to porosity reduction, acrylic emulsion polymer modified the hydration products in the steel fiber -matrix ITZ. The hydration product C-S-H appeared as a needle like shape. The needle-shaped C-S-H increases and gradually formed the gel, with needles growing into the pore space. The phenomenon is more obvious as curing age increased.
Liew, Chiam-Wen; Ramesh, S
2015-06-25
Biopolymer electrolytes containing corn starch, lithium hexafluorophosphate (LiPF6) and ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) are prepared by solution casting technique. Temperature dependence-ionic conductivity studies reveal Vogel-Tamman-Fulcher (VTF) relationship which is associated with free volume theory. Ionic liquid-based biopolymer electrolytes show lower glass transition temperature (Tg) than ionic liquid-free biopolymer electrolyte. X-ray diffraction (XRD) studies demonstrate higher amorphous region of ionic liquid-added biopolymer electrolytes. In addition, the potential stability window of the biopolymer electrolyte becomes wider and stable up to 2.9V. Conclusively, the fabricated electric double layer capacitor (EDLC) shows improved electrochemical performance upon addition of ionic liquid into the biopolymer electrolyte. The specific capacitance of EDLC based on ionic liquid-added polymer electrolyte is relatively higher than that of ionic liquid-free polymer electrolyte as depicted in cyclic voltammogram. Copyright © 2015 Elsevier Ltd. All rights reserved.
Elution of viruses by ionic and nonionic surfactants.
Fujito, B T; Lytle, C D
1996-01-01
The ionic and nonionic surfactants sodium dodecyl sulfate and Triton X-100, respectively, eluted two viruses, phi X174 and PRD1, which were adsorbed to the ionic and nonionic binding membranes cationic polysulfone and nitrocellulose, respectively. Results indicated that complete elution was readily achieved only when combinations of surfactants and binding membranes were matched (i.e., ionic-ionic or nonionic-nonionic). PMID:8795240
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.
2016-08-14
The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binarymore » liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids’ nanostructure. It is observed that as the cationic alkyl tail length increases, the changes in the binary mixtures’ properties become more pronounced.« less
NASA Technical Reports Server (NTRS)
Ye, Gang; Voigt, Gerd-Hannes
1989-01-01
A model is presented of an axially symmetric pole-on magnetosphere in MHD force balance, in which both plasma thermal pressure gradients and centrifugal force are taken into account. Assuming that planetary rotation leads to differentially rotating magnetotail field lines, the deformation of magnetotail field lines under the influence of both thermal plasma pressure and centrifugal forces was calculated. Analytic solutions to the Grad-Shafranov equation are presented, which include the centrifugal force term. It is shown that the nonrotational magnetosphere with hot thermal plasma leads to a field configuration without a toroidal B(phi) component and without field-aligned Birkeland currents. The other extreme, a rapidly rotating magnetosphere with cold plasma, leads to a configuration in which plasma must be confined within a thin disk in a plane where the radial magnetic field component B(r) vanishes locally.
Rhodes, Charles K.; Boyer, Keith
2004-02-17
An apparatus and method for the generation of ultrabright multikilovolt x-rays from saturated amplification on noble gas transition arrays from hollow atom states is described. Conditions for x-ray amplification in this spectral region combine the production of cold, high-Z matter, with the direct, selective multiphoton excitation of hollow atoms from clusters using ultraviolet radiation and a nonlinear mode of confined, self-channeled propagation in plasmas. Data obtained is consistent with the presence of saturated amplification on several transition arrays of the hollow atom Xe(L) spectrum (.lambda..about.2.9 .ANG.). An estimate of the peak brightness achieved is .about.10.sup.29 .gamma..multidot.s.sup.-1.multidot.mm.sup.-2.multidot.mr.sup.-2 (0.1% Bandwidth).sup.-1, that is .about.10.sup.5 -fold higher than presently available synchotron technology.
Multiple coherent light scattering in ultracold rubidium
NASA Astrophysics Data System (ADS)
Kulatunga, P.; Sukenik, C. I.; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.
2001-11-01
We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.
Multiple coherent light scattering in ultracold rubidium
NASA Astrophysics Data System (ADS)
Havey, M. D.; Sukenik, C. I.; Kulatunga, P.; Kupriyanov, D. V.; Sokolov, I. M.
2001-05-01
We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.