Science.gov

Sample records for confinement time

  1. Classical and revival time periods of confined harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Ghosh, P.; Ghosh, S.; Bera, N.

    2015-02-01

    We have used perturbation theory to compute energy eigenvalues, classical and the revival time periods for a one-dimensional harmonic oscillator confined in a box. First we have considered a simple harmonic oscillator as the unperturbed problem and boundary as perturbation. In next case, free particle in a box is considered as unperturbed problem that has been perturbed by a parabolic potential. We have used Fourier Grid Hamiltonian method to estimate classical and revival time period for the confined harmonic oscillator, which crosses smoothly from free particle in a box to a simple harmonic oscillator.

  2. Confinement from gluodynamics in curved space-time

    SciTech Connect

    Gaete, Patricio; Spallucci, Euro

    2008-01-15

    We determine the static potential for a heavy quark-antiquark pair from gluodynamics in curved space-time. Our calculation is done within the framework of the gauge-invariant, path-dependent, variables formalism. The potential energy is the sum of a Yukawa and a linear potential, leading to the confinement of static charges.

  3. Coupling of transit time instabilities in electrostatic confinement fusion devices

    SciTech Connect

    Gruenwald, J. Fröhlich, M.

    2015-07-15

    A model of the behavior of transit time instabilities in an electrostatic confinement fusion reactor is presented in this letter. It is demonstrated that different modes are excited within the spherical cathode of a Farnsworth fusor. Each of these modes is dependent on the fusion products as well as the acceleration voltage applied between the two electrodes and they couple to a resulting oscillation showing non-linear beat phenomena. This type of instability is similar to the transit time instability of electrons between two resonant surfaces but the presence of ions and the occurring fusion reactions alter the physics of this instability considerably. The physics of this plasma instability is examined in detail for typical physical parameter ranges of electrostatic confinement fusion devices.

  4. Tamping effects and confinement time in NIF experiments

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Cheng, B.; Kwan, T. J. T.; Merrill, F.; Cerjan, C.; Batha, S. H.

    2015-11-01

    Tamper is expected to play an important role in inertial confinement fusion capsule experiments performed at the National Ignition Facility (NIF). It is expected to increase the confinement time of thermonuclear burning (TN) in the hot spot. In this work, we study the dependence of the capsule performance with respect to the density ratio of the pusher to the hot fuel at the cold-hot interface numerically through LASNEX simulations in one-dimension. Our study shows that the dependence of the capsule performance (neutron yield) with respect to the square root of the density ratio is not linear: the sharper the interface, the higher the tamping effect and neutron yields. Our analysis indicates that the tamping factor in both NIC and NIF experiments has not been appreciable and the tamping factor on yield is less than 1.1. Thus, the tamping factor has not yet played a significant role in the current NIF ignition design. Furthermore, the confinement time in NIF experiments will be discussed. (LA-UR-15-25596).

  5. Real-time dynamics of the confining string

    NASA Astrophysics Data System (ADS)

    Loshaj, Frasher

    Quantum chromodynamics (QCD) describes the interaction of quarks and gluons, which are charged under the color group. Due to confinement of color charge, only colorless hadrons are observed in experiment. At very short distances (hard processes), perturbation theory is a valid tool for calculations and predictions can be made which agree well with experiment. Confinement, which is not yet understood from first principles, is important even for hard processes, because after the perturbative evolution is finished, the final colored particles combine to create the final state hadrons. There are many effective theories of confinement developed over the years. We will consider the Abelian projection; the gauge theory becomes Abelian-like and the theory contains magnetic monopoles. Confinement happens due to the dual Meissner effect, where dual in this case means the roles of the electric and magnetic fields are reversed. The field between charges resembles that of an Abrikosov-Nielsen-Olesen vortex or string. Based on the Abelian nature of the confining string, because fermion zero modes are localized along the vortex and by considering very energetic jets, we assume that the dynamics along this string is described by massless quantum electrodynamics in 1+1 dimensions. This theory shares with QCD many important properties: confinement, chiral symmetry breaking, theta-vacuum, and is exactly soluble. We use the model to compute the fragmentation functions of jets in electron-positron annihilation and after fixing two adjustable parameters, we study the modification of fragmentation functions of jets in the QCD medium. We address an important puzzle in hadron scattering: the soft photon yield in processes with hadrons in the final state is much larger than what is expected from the Low theorem. We find that soft photons produced from currents induced during the real-time dynamics of jet fragmentation can contribute in the enhancement of photons. We compare the result with

  6. Short Lyapunov time: a method for identifying confined chaos

    NASA Astrophysics Data System (ADS)

    Winter, O. C.; Mourão, D. C.; Giuliatti Winter, S. M.

    2010-11-01

    Context. The orbital instability of minor solar system bodies (asteroids, small satellites, moonlets, and particles) is frequently studied in terms of the Lyapunov characteristic exponent (LCE). Asteroids interior to Jupiter often exihibit very short Lyapunov times, TL, and very large radial variations, becoming Jupiter's crossers and escapers. However, a few cases of asteroids with very short TL and no significant radial variation have been found. These orbits were called “confined chaos” or even “stable chaos”. This feature also appeared in the case of moonlets embedded in Saturn's F ring and disturbed by the nearby satellites Prometheus and Pandora. Aims: We present a simple approach to estimating the contribution of the radial component of the LCE to identify trajectories in the “confined chaos” regime. Methods: To estimate the radial contribution to the maximum LCE, we considered a rotating reference system in which one of the axis was aligned with the radial direction of the reference trajectory. Measuring the distance in the phase space between the two nearby orbits then allowed us to separate the contribution of the radial component from the others. We applied the method to two different dynamical systems: (a) an asteroid around the Sun disturbed by Jupiter; (b) a moonlet of Saturn's F-ring disturbed by the satellites Prometheus and Pandora. Results: In all cases, we found that the method of comparing the radial contribution of the LCE to the entire contribution allows us to correctly distinguish between confined chaos and escapers.

  7. Confined quantum time of arrival for the vanishing potential

    SciTech Connect

    Galapon, Eric A.; Caballar, Roland F.; Bahague, Ricardo

    2005-12-15

    We give full account of our recent report in E. A. Galapon, R. Caballar, and R. Bahague, Phys. Rev. Lett. 93, 180406 (2004), where it is shown that formulating the free quantum time of arrival problem in a segment of the real line suggests rephrasing the quantum time of arrival problem to finding a complete set of states that evolve to unitarily arrive at a given point at a definite time. For a spatially confined particle, here it is shown explicitly that the problem admits a solution in the form of an eigenvalue problem of a class of compact and self-adjoint time of arrival operators derived by a quantization of the classical time of arrival. The eigenfunctions of these operators are numerically demonstrated to unitarily arrive at the origin at their respective eigenvalues.

  8. Modeling the Relaxation Time of DNA Confined in a Nanochannel

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Tree, Douglas R.; Dorfman, Kevin D.

    2014-03-01

    Using a mapping between a dumbbell model and fine-grained Monte Carlo simulations, we have computed the relaxation time of λ-DNA in a high ionic strength buffer confined in a nanochannel (Tree et al., Biomicrofluidics 2013, 7, 054118). The relaxation time thus obtained agrees quantitatively with experimental data (Reisner et al., PRL 2005, 94, 196101) using only a single O(1) fitting parameter to account for the uncertainty in model parameters. In addition to validating our mapping, this agreement supports our previous estimates of the friction coefficient of DNA confined in a nanochannel (Tree et al., PRL 2012, 108, 228105), which have been difficult to validate due to the lack of direct experimental data. Furthermore, our calculation shows that as the channel size passes below ~100 nm (or roughly the Kuhn length of DNA) there is a dramatic drop in the relaxation time. Inasmuch as the chain friction rises with decreasing channel size, the reduction in the relaxation time can be solely attributed to the sharp decline in the fluctuations of the chain extension. Practically, the low variance in the observed DNA extension in such small channels has important implications for genome mapping. This work was supported by the NIH (R01-HG005216 and R01-HG006851) and the NSFC (21204061) and was carried out in part using computing resources at the University of Minnesota Supercomputing Institute.

  9. Time spectral method for rotorcraft flow with vorticity confinement

    NASA Astrophysics Data System (ADS)

    Butsuntorn, Nawee

    2008-10-01

    This thesis shows that simulation of helicopter flows can adhere to engineering accuracy without the need of massive computing resources or long turnaround time by choosing an alternative framework for rotorcraft simulation. The method works in both hovering and forward flight regimes. The new method has shown to be more computationally efficient and sufficiently accurate. By utilizing the periodic nature of the rotorcraft flow field, the Fourier based Time Spectral method lends itself to the problem and significantly increases the rate of convergence compared to traditional implicit time integration schemes such as the second order backward difference formula (BDF). A Vorticity Confinement method has been explored and has been shown to work well in subsonic and transonic simulations. Vortical structure can be maintained after long distances without resorting to the traditional mesh refinement technique.

  10. Full-f gyrokinetic simulation over a confinement time

    SciTech Connect

    Idomura, Yasuhiro

    2014-02-15

    A long time ion temperature gradient driven turbulence simulation over a confinement time is performed using the full-f gyrokinetic Eulerian code GT5D. The convergence of steady temperature and rotation profiles is examined, and it is shown that the profile relaxation can be significantly accelerated when the simulation is initialized with linearly unstable temperature profiles. In the steady state, the temperature profile and the ion heat diffusivity are self-consistently determined by the power balance condition, while the intrinsic rotation profile is sustained by complicated momentum transport processes without momentum input. The steady turbulent momentum transport is characterized by bursty non-diffusive fluxes, and the resulting turbulent residual stress is consistent with the profile shear stress theory [Y. Camenen et al., “Consequences of profile shearing on toroidal momentum transport,” Nucl. Fusion 51, 073039 (2011)] in which the residual stress depends not only on the profile shear and the radial electric field shear but also on the radial electric field itself. Based on the toroidal angular momentum conservation, it is found that in the steady null momentum transport state, the turbulent residual stress is cancelled by the neoclassical counterpart, which is greatly enhanced in the presence of turbulent fluctuations.

  11. Confinement time and energy balance in the CTX spheromak

    SciTech Connect

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.

    1984-01-01

    The multipoint Thomson scattering diagnostic on CTX allows measurement of electron plasma pressure. The pressure correlates well with the poloidal flux function. Analysis using equilibrium models allows the (..beta..)/sub vol/ to be calculated from over 100 Thomson scattering profiles taken under standard conditions of spheromak operation where the plasma parameters vary widely within the discharge. The calculated tau/sub E/ increases with central core temperature and with density. The global magnetic energy decay time tau/sub B/2 is consistent with Spitzer-Harm resistivity, but with an anomaly factor of 2 to 4 which may decrease at small ratios of B/n. The n tau/sub E/ product reaches 4 x 10/sup 9/ s cm/sup -3/ during the hottest part of the discharge. A zero-dimensional energy balance code, which accurately includes all the major atomic physics processes and whose parameters have been constrained by comparision to experimental data, is used to identify the causes of energy loss that contribute to the observed confinement time. The most important power loss is that needed to replace the particles being lost and to maintain the constant density of the plateau.

  12. Long ion plasma confinement times with a 'rotating wall'

    SciTech Connect

    Anderegg, F.; Huang, X.-P.; Driscoll, C. F.; Severn, G. D.; Sarid, E.

    1995-04-15

    Static field errors in a Penning-Malmberg trap exert a drag on confined non-neutral plasmas, causing radial expansion and loss. We suppress this transport by applying an electrostatic wall asymmetry rotating faster than the plasma. This results in inward radial transport and plasma compression. The experiments are performed on a magnesium ion plasma in a magnetic field of 4 Tesla, with in situ Laser Induced Fluorescence (LIF) measurement of density and temperature profiles. Confinement of ions for up to 10 days is routinely observed.

  13. Improvement of confinement times of lithium ion and electron plasmas in BX-U

    SciTech Connect

    Himura, H.; Noichi, T.; Nakata, S.; Kawai, S.; Sanpei, A.

    2015-06-29

    Confinements of both electron (e{sup −}) and Lithium ion (Li{sup +}) plasmas in the BX-U machine are improved experimentally. For the e{sup −} plasma, the longest confinement time so far has been ∼ 10 s, which is much longer than the classical electron-electron collision time: τ{sub ee} ∼ 0.6 s. On the other hand, for the Li{sup +} plasma, the longest confinement time has been about 0.5 s, which is still much shorter than the classical ion-ion collision time.

  14. Confinement Time Exceeding One Second for a Toroidal Electron Plasma

    SciTech Connect

    Marler, J. P.; Stoneking, M. R.

    2008-04-18

    Nearly steady-state electron plasmas are trapped in a toroidal magnetic field for the first time. We report the first results from a new toroidal electron plasma experiment, the Lawrence Non-neutral Torus II, in which electron densities on the order of 10{sup 7} cm{sup -3} are trapped in a 270 deg. toroidal arc (670 G toroidal magnetic field) by application of trapping potentials to segments of a conducting shell. The total charge inferred from measurements of the frequency of the m=1 diocotron mode is observed to decay on a 3 s time scale, a time scale that approaches the predicted limit due to magnetic pumping transport. Three seconds represents {approx_equal}10{sup 5} periods of the lowest frequency plasma mode, indicating that nearly steady-state conditions are achieved.

  15. Further time-mean measurements in confined swirling flows

    NASA Astrophysics Data System (ADS)

    Lilley, D. G.; Yoon, H. K.

    1984-04-01

    Nonswirling and swirling nonreacting flows in an axisymmetric test section with an expansion ratio D/d = 2, which may be equipped with contraction nozzles of area ratios 2 and 4, are investigated. The effects of a number of geometric parameters on the flow-field are investigated, among them side-wall expansion angles of 90 and 45 deg, swirl vane angles of 0, 38, 45, 60, and 70 deg, and contraction nozzle locations L/D = 1 and 2 (if present). Data are acquired by means of a five-hole pitot probe enabling three time-mean velocity components in the axial, radial, and azimuthal directions to be measured. The velocities are extensively plotted and artistic impressions of recirculation zones are set forth. The presence of a swirler is found to shorten the corner recirculation zone and to generate a central recirculation zone followed by a precessing vortex core. A gradual inlet expansion has the effect of encouraging the flow to remain close to the sidewall and shortening the extent of the corner recirculation zone in all cases investigated.

  16. Diverging Time Scale in the Dimensional Crossover for Liquids in Strong Confinement

    NASA Astrophysics Data System (ADS)

    Mandal, Suvendu; Franosch, Thomas

    2017-02-01

    We study a strongly interacting dense hard-sphere system confined between two parallel plates by event-driven molecular dynamics simulations to address the fundamental question of the nature of the 3D to 2D crossover. As the fluid becomes more and more confined the dynamics of the transverse and lateral degrees of freedom decouple, which is accompanied by a diverging time scale separating 2D from 3D behavior. Relying on the time-correlation function of the transversal kinetic energy, the scaling behavior and its density dependence is explored. Surprisingly, our simulations reveal that its time dependence becomes purely exponential such that memory effects can be ignored. We rationalize our findings quantitatively in terms of an analytic theory which becomes exact in the limit of strong confinement.

  17. New Scalings of Energy Confinement Time of RFP Plasmas and the Extrapolation to Reactor Relevant Region

    NASA Astrophysics Data System (ADS)

    Miyamoto, Kenro

    Data bases of reversed field pinch (RFP) plasma have been gradually accumulated by recent experiments of several RFP devices. New confinement scalings τX(X=RFPs1)E=0.024Aa2IP/P1/2heat, τX(X=RFPs2)E=0.04s(IN)Aa2I1.25P/P1/2heat which are consistent to the recent data are presented, where units are in [s], [m], [MA] and [MW] respectively and s(IN) is a correction function of IN≡IP/πa2‹ne›20). From the standpoint of new scalings, dependences among parameters of possible RFP reactors are analyzed to find the conditions for RFP reactors. Hs1 Hs2 are defined by the ratios of necessary energy confinement time for RFP reactors for burning against τX(X=RFPs1) and τX(X=RFPs2) respectively. When confinement time follows τX(X=RFPs1)E scaling, confinement enhancement factor of at least Hs1=23 is necessary for RFP reactors to be realistic. When confinement time follows τX(X=RFPs2)E scaling, data points in IP-a space of RFP reactors are within the region of target.

  18. Scaling of energy confinement time in the Globus-M spherical tokamak

    NASA Astrophysics Data System (ADS)

    Kurskiev, G. S.; Gusev, V. K.; Sakharov, N. V.; Bakharev, N. N.; Iblyaminova, A. D.; Shchegolev, P. B.; Avdeeva, G. F.; Kiselev, E. O.; Minaev, V. B.; Mukhin, E. E.; Patrov, M. I.; Petrov, Yu V.; Telnova, A. Yu; Tolstyakov, S. Yu

    2017-04-01

    The paper is devoted to an energy confinement study at the Globus-M spherical tokamak (ST). Experiments were performed in single null divertor configuration with elongation as high as 1.8–1.9 for variable plasma current and fixed toroidal magnetic field. The confinement time (τ E) dependence on density for ohmic-heated (OH) deuterium plasma is presented. It was found that τ E rises linearly with plasma current in H-mode with pure ohmic heating. Pronounced electron and ion heating was achieved in discharges with neutral beam injection at a moderate density level. The dependence of τ E on absorbed power was weak.

  19. Generalized Sturmians in the time-dependent frame: effect of a fullerene confining potential

    NASA Astrophysics Data System (ADS)

    Frapiccini, Ana Laura; Gasaneo, Gustavo; Mitnik, Dario M.

    2017-02-01

    In this work we present a novel implementation of the Generalized Sturmian Functions in the time-dependent frame to numerically solve the time-dependent Schrödinger equation. We study the effect of the confinement of H atom in a fullerene cage for the 1s → 2p resonant transition of the atom interacting with a finite laser pulse, calculating the population of bound states and spectral density.

  20. Mean first-passage times of non-Markovian random walkers in confinement

    NASA Astrophysics Data System (ADS)

    Guérin, T.; Levernier, N.; Bénichou, O.; Voituriez, R.

    2016-06-01

    The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.

  1. Electron Temperature and Density Measurements by the Unicity of Particle Confinement Time on the TCABR Tokamak

    SciTech Connect

    Machida, M.; Nascimento, I. C.; Severo, J. H. F.; Sanada, E. K.; Galvao, R. M. O.; Daltrini, A. M.

    2006-12-04

    The electron temperature Te and density ne at inner border side of plasma on TCABR tokamak are determined using the unicity of particle confinement time {tau}p. In this method, the signals from hydrogen Balmer series emissions like H alfa, beta and gama are measured with an absolutely intensity calibrated spectrometer during the discharge and the particle confinement time then is evaluated using these three emissions for large range of electron temperature and density, until the unique value of {tau}p is achieved. The results show that during the current plateau, the values of the edge electron density and temperature in high fill density discharge, present much strong variations compared to the low fill pressure because of larger edge turbulence activity.

  2. Time-dependent Brittle Creep in Rock: The Influence of Confining Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Meredith, P. G.; Heap, M. J.; Baud, P.; Bell, A. F.; Main, I. G.

    2009-12-01

    The characterization of time-dependent brittle creep deformation is fundamental to understanding the long-term evolution and dynamics of the Earth’s crust. The presence of water promotes environment-dependent stress corrosion cracking that allows rock to deform at a constant stress below its short-term failure stress over extended periods of time. Here we report illustrative results from an experimental study of the influence of an elevated temperature on time-dependent brittle creep in water-saturated samples of Bentheim sandstone (initial porosity, Φ = 23%), Darley Dale sandstone (Φ = 13%) and Crab Orchard sandstones (Φ = 4%). We present data obtained from both conventional, constant stress creep experiments and from stress-stepping creep experiments performed under effective confining pressures in the range 10 MPa to 50 MPa and at temperatures from 20° to 75°C. Deformation was monitored throughout each experiment by measuring simultaneously three proxies for evolving crack damage: (1) axial strain, (2) porosity change and (3) the output of acoustic emission (AE) energy, all as functions of time. Results from conventional creep experiments demonstrate that the primary control on creep strain rate and time-to-failure is the applied differential stress. They also suggest the existence of a critical level of crack damage beyond which deformation accelerates and ultimately leads to sample failure on a localized fault. The influence of effective confining pressure was investigated in stress-stepping experiments. In addition to the expected mechanical influence of elevated effective pressure, our results also demonstrate that stress corrosion cracking is inhibited at higher effective confining pressures, with creep strain rates reduced by about 3 orders of magnitude as effective confining pressure is increased from 10 to 50MPa. We have used the same technique to investigate the influence of an elevated temperature. Our results show that, for the same applied

  3. Direct measurement of the confinement time in a magnetically driven liner stagnation

    NASA Astrophysics Data System (ADS)

    Martin, Matthew

    2016-10-01

    We report on direct, radiographic measurement of the stagnation phase of a magnetically driven liner implosion. In experiments on the Z machine, a beryllium liner is filled with liquid deuterium and imploded to a minimum radius of 440 microns (radial convergence ratio of 7.7) over 300ns, achieving a density at stagnation of approximately 10 g/cc. The measured confinement time is 12.2 ns, compared to 14 ns from 1D simulations. Comparison of the evolution of the density profiles from the radiographs with the simulation shows a deviation in the reflected shock trajectory and the stagnation of the trailing mass. Additionally, the magneto-Raleigh-Taylor instability modifies the axial liner mass distribution, leading to enhanced compression with shorter confinement in the bubble region compared to the spikes, reducing the overall pressure-confinement time product by 29 percent as compared to the 1D simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. In collaboration with: Patrick Knapp & Daniel Dolan, Sandia National Labs.

  4. Wave function for harmonically confined electrons in time-dependent electric and magnetostatic fields.

    PubMed

    Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht

    2014-01-14

    We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.

  5. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    DOE PAGES

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; ...

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  6. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  7. Analysis of Molecular Diffusion by First-Passage Time Variance Identifies the Size of Confinement Zones

    PubMed Central

    Rajani, Vishaal; Carrero, Gustavo; Golan, David E.; de Vries, Gerda; Cairo, Christopher W.

    2011-01-01

    The diffusion of receptors within the two-dimensional environment of the plasma membrane is a complex process. Although certain components diffuse according to a random walk model (Brownian diffusion), an overwhelming body of work has found that membrane diffusion is nonideal (anomalous diffusion). One of the most powerful methods for studying membrane diffusion is single particle tracking (SPT), which records the trajectory of a label attached to a membrane component of interest. One of the outstanding problems in SPT is the analysis of data to identify the presence of heterogeneity. We have adapted a first-passage time (FPT) algorithm, originally developed for the interpretation of animal movement, for the analysis of SPT data. We discuss the general application of the FPT analysis to molecular diffusion, and use simulations to test the method against data containing known regions of confinement. We conclude that FPT can be used to identify the presence and size of confinement within trajectories of the receptor LFA-1, and these results are consistent with previous reports on the size of LFA-1 clusters. The analysis of trajectory data for cell surface receptors by FPT provides a robust method to determine the presence and size of confined regions of diffusion. PMID:21402028

  8. Wave function for dissipative harmonically confined electrons in a time-dependent electric field

    NASA Astrophysics Data System (ADS)

    Lai, Meng-Yun; Pan, Xiao-Yin; Li, Yu-Qi

    2016-07-01

    We investigate the many-body wave function of a dissipative system of interacting particles confined by a harmonic potential and perturbed by a time-dependent spatially homogeneous electric field. Applying the method of Yu and Sun (1994), it is found that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent (TD) Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical damped driven equation of motion, plus an addition fluctuation term due to the Brownian motion. The wave function reduces to that of the Harmonic Potential Theorem (HPT) wave function in the absence of the dissipation. An example of application of the results derived is also given.

  9. Ergodicity breaking, ageing, and confinement in generalized diffusion processes with position and time dependent diffusivity

    NASA Astrophysics Data System (ADS)

    Cherstvy, Andrey G.; Metzler, Ralf

    2015-05-01

    We study generalized anomalous diffusion processes whose diffusion coefficient D(x, t) ∼ D0|x|αtβ depends on both the position x of the test particle and the process time t. This process thus combines the features of scaled Brownian motion and heterogeneous diffusion parent processes. We compute the ensemble and time averaged mean squared displacements of this generalized diffusion process. The scaling exponent of the ensemble averaged mean squared displacement is shown to be the product of the critical exponents of the parent processes, and describes both subdiffusive and superdiffusive systems. We quantify the amplitude fluctuations of the time averaged mean squared displacement as function of the length of the time series and the lag time. In particular, we observe a weak ergodicity breaking of this generalized diffusion process: even in the long time limit the ensemble and time averaged mean squared displacements are strictly disparate. When we start to observe this process some time after its initiation we observe distinct features of ageing. We derive a universal ageing factor for the time averaged mean squared displacement containing all information on the ageing time and the measurement time. External confinement is shown to alter the magnitudes and statistics of the ensemble and time averaged mean squared displacements.

  10. Real time reciprocal space mapping of nano-islands induced by quantum confinment.

    SciTech Connect

    Hong, H.; Gray, A.; Chiang, T. C.

    2011-01-01

    The effects of quantum confinement have been observed pronouncedly in the island morphology of Pb thin films. The evolution of these nano-islands on Si (111)-(7 x 7) and sapphire (001) surfaces has been studied with a new X-ray diffraction method. A charge-coupled device (CCD) camera was used to collect two- and three-dimensional (2-D and 3-D, respectively) maps of the surface X-ray diffraction in real time. Large ranges of the reflectivity curves, with rocking curves at every point on the reflectivity curves, could be measured continuously in a relatively short amount of time. The abundance of information from 2-D k-space maps reveals clear changes in the growth modes of these thin Pb films. With the 3-D extension of this method, it was possible to observe the ordering of the islands. The islands maintain a nearly uniform interisland distance but lack any angular correlation. The interisland ordering is correlated well with the development of 'magic' island heights caused by quantum confinement.

  11. Real-Time Reciprocal Space Mapping of Nano-Islands Induced by Quantum Confinement

    NASA Astrophysics Data System (ADS)

    Hong, Hawoong; Gray, Aaron; Chiang, T.-C.

    2011-01-01

    The effects of quantum confinement have been observed pronouncedly in the island morphology of Pb thin films. The evolution of these nano-islands on Si (111)-(7 × 7) and sapphire (001) surfaces has been studied with a new X-ray diffraction method. A charge-coupled device (CCD) camera was used to collect two- and three-dimensional (2-D and 3-D, respectively) maps of the surface X-ray diffraction in real time. Large ranges of the reflectivity curves, with rocking curves at every point on the reflectivity curves, could be measured continuously in a relatively short amount of time. The abundance of information from 2-D k-space maps reveals clear changes in the growth modes of these thin Pb films. With the 3-D extension of this method, it was possible to observe the ordering of the islands. The islands maintain a nearly uniform interisland distance but lack any angular correlation. The interisland ordering is correlated well with the development of "magic" island heights caused by quantum confinement.

  12. Fragile-strong fluid crossover and universal relaxation times in a confined hard-disk fluid.

    PubMed

    Yamchi, Mahdi Zaeifi; Ashwin, S S; Bowles, Richard K

    2012-11-30

    We show that a system of hard disks confined to a narrow channel exhibits a fragile-strong fluid crossover located at the maximum of the isobaric heat capacity and that the relaxation times for different channel widths fall onto a single master curve when rescaled by the relaxation times and temperatures of the crossover. Calculations of the configurational entropy and the inherent structure equation of state find that the crossover is related to properties of the jamming landscape for the model but that the Adam-Gibbs relation does not predict the relaxation behavior. We also show that a facilitated dynamics description of the system, where kinetically excited regions are identified with local packing arrangements of the disks, successfully describes the fragile-strong crossover.

  13. Effect of crowding and confinement on first-passage times: A model study

    NASA Astrophysics Data System (ADS)

    Antoine, C.; Talbot, J.

    2016-06-01

    We study the "color dynamics" of a hard-disk fluid confined in an annulus, as well as the corresponding hard-sphere system in three dimensions, using event-driven simulation in order to explore the effect of confinement and self-crowding on the search for targets. We compute the mean first-passage times (MFPTs) of red particles transiting from the outer to the inner boundary as well as those of blue particles passing from the inner to the outer boundary for different packing fractions and geometries. In the steady state the reaction rate, defined as the rate of collision of red particles with the inner boundary, is inversely proportional to the sum of the MFPTs. The reaction rate is wall mediated (ballistic) at low densities and diffusion controlled at higher densities and displays a maximum at intermediate densities. At moderate to high densities, the presence of layering has a strong influence on the search process. The numerical results for the reaction rate and MFPTs are compared with a ballistic model at low densities and a Smoluchowski approach with uniform diffusivities at higher densities. We discuss the reasons for the limited validity of the theoretical approaches. The maximum in the reaction rate is qualitatively well rendered by a Bosanquet-like approach that interpolates between the two regimes. Finally, we compute the position-dependent diffusivity from the MFPTs and observe that it is out of phase with the radial density.

  14. Sources of water, travel times and protection areas for wells in semi-confined aquifers

    NASA Astrophysics Data System (ADS)

    Zhou, Yangxiao

    2011-11-01

    This paper presents new findings in interpreting analytical solutions of steady radial flow to a well in a semi-confined aquifer (overlain by a phreatic aquifer and aquitard), and demonstrates that 95% of pumped water is derived from leakage water within a radius of 4 times the leakage factor. The travel times of the leakage water from the radii of influence to the well are usually much longer than those derived from the travel time criteria currently used to delineate the well protection areas. The delineation of well protection zones based on the travel time criteria will not properly protect the source of water to the well. Therefore, the percentage of leakage water to the well is used as a new criterion to define the well protection areas. Within each well protection area, the mean residence time is used as an indicator of the renewable period of the aquifer system. Leakage-rate weighted residence times are used to calculate the mean residence time. For the safety and sustainability of drinking water supplies, groundwater in the phreatic aquifer within the radius of influence should be protected.

  15. Time-dependent conductive heat transfer in rarefied polyatomic gases confined between parallel plates

    NASA Astrophysics Data System (ADS)

    Tsimpoukis, A.; Tantos, C.; Valougeorgis, D.

    2017-01-01

    The transient conductive heat transfer through a rarefied gas confined between two infinite parallel plates due to a sudden jump in the temperature of one of the plates is investigated in the whole range of the Knudsen number via kinetic theory. More specifically, the time-dependent heat transfer flow is modelled by the Holway kinetic model subject to diffuse boundary conditions. The governing integro-differential equation is numerically solved using the discrete velocity method in the molecular velocity space and typical finite control volume schemes in time and physical spaces. The time evolution of the density and temperature distributions as well as of the translational and rotational heat fluxes in terms of the two parameters characterizing the heat flow, namely the Knudsen number and the imposed temperature ratio between the plates is provided. The investigation is focused on the effect of the rotational degrees of freedom and a comparison between monatomic and polyatomic gases is performed. It is found that the time needed to reach the steady-state conditions varies between monatomic and polyatomic gases. In all cases the total time to recover the stationary solution in terms of the rarefaction parameter exhibits a minimum close to the well-known Knudsen minimum.

  16. Passage times of confined cancer cells and deformable particles flowing through a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Khan, Zeina; Kamyabi, Nabiollah; Hussain, Fazle; Vanapalli, Siva

    Circulating tumor cells, the primary cause of cancer metastasis, have to navigate through tight extracellular matrix and capillaries. Unfortunately, understanding of the hydrodynamic interactions between cells and narrow vessel walls is lacking. Using a microfluidic channel of rectangular cross-section, we investigate cell hydrodynamic behavior by measuring cell confinement, passage time through the microchannel, and excess pressure drop. Testing with highly and lowly aggressive cancer cells shows that passage time may not always be indicative of cancer cell aggressiveness as the relationship among passage time, friction and rheology is complex. Transport of deformable particles including droplets of varying viscosity and interfacial tension, as well as elastic particles of different elastic moduli, reveals that passage times depend on particle size and, contrary to prior claims, on viscosity but not on elastic modulus. We also find that particle viscosity and not modulus controls the friction force and lubrication film thickness, suggesting that cancer cell viscosity rather than elasticity controls cell transport on short time-scales.

  17. Time-Dependent Ballistic Phenomena of Electron Injected into Half-Ellipse Confined Room

    NASA Astrophysics Data System (ADS)

    Koiso, Takuji; Muraguchi, Masakazu; Takeda, Kyozaburo; Watanabe, Naoki

    2005-06-01

    We theoretically studied the time-developing ballistic phenomena of a single-electron confined in a half-ellipse infinite-potential wall by solving the time-dependent Schrödinger equation numerically. We also solved the corresponding Newton equation in order to compare the classical results with the quantum ones, and extracted the quantum features. The ellipse-shaped potential wall completely reflects an electron and causes the focusing ratio of unity in the classical limit. The dispersion of the wave packet of an electron, however, weakens this characteristic nature, and reduces the focusing ratio from unity. Because the dispersion also lets an electron arrive at the collector indistinctly, we define the effective arrival time by finding inflections in the time-dependent profile of the probability density at the collector. Based on the second-derivation technique, we further determine the quantum arrival time (QAT) at which the intrusion of the wave packet occurs dominantly. The comparison of this QAT with the classical arrival time (CAT) determines whether the corresponding ballistic propagation can be discussed on the basis of the quantum consideration or the classical prediction. We further studied how the change in the half-ellipse potential wall shape affects the ballistic phenomena through the change in the ellipticity γ, the system size L and the dispersion degree σ of the wave packet. Using the ellipse-shaped infinite-potential wall, the application of the magnetic field causes irrational cyclotron motion assisted by the ellipse potential, in addition to the rational cyclotron motions. The numerical solution of the time-dependent Schr\\"{o}dinger equation determines the unique cyclotron motion whose peculiarity is caused by the dispersion of the wave packet and is rarely predicted by the classical limit.

  18. Angular radiation temperature simulation for time-dependent capsule drive prediction in inertial confinement fusion

    SciTech Connect

    Jing, Longfei; Yang, Dong; Li, Hang; Zhang, Lu; Lin, Zhiwei; Li, Liling; Kuang, Longyu; Jiang, Shaoen Ding, Yongkun; Huang, Yunbao

    2015-02-15

    The x-ray drive on a capsule in an inertial confinement fusion setup is crucial for ignition. Unfortunately, a direct measurement has not been possible so far. We propose an angular radiation temperature simulation to predict the time-dependent drive on the capsule. A simple model, based on the view-factor method for the simulation of the radiation temperature, is presented and compared with the experimental data obtained using the OMEGA laser facility and the simulation results acquired with VISRAD code. We found a good agreement between the time-dependent measurements and the simulation results obtained using this model. The validated model was then used to analyze the experimental results from the Shenguang-III prototype laser facility. More specifically, the variations of the peak radiation temperatures at different view angles with the albedo of the hohlraum, the motion of the laser spots, the closure of the laser entrance holes, and the deviation of the laser power were investigated. Furthermore, the time-dependent radiation temperature at different orientations and the drive history on the capsule were calculated. The results indicate that the radiation temperature from “U20W112” (named according to the diagnostic hole ID on the target chamber) can be used to approximately predict the drive temperature on the capsule. In addition, the influence of the capsule on the peak radiation temperature is also presented.

  19. Confinement time of electron plasma approaching magnetic pumping transport limit in small aspect ratio C-shaped torus

    NASA Astrophysics Data System (ADS)

    Lachhvani, Lavkesh; Pahari, Sambaran; Goswami, Rajiv; Bajpai, Manu; Yeole, Yogesh; Chattopadhyay, P. K.

    2016-06-01

    A long confinement time of electron plasma, approaching magnetic pumping transport limit, has been observed in SMARTEX-C (a small aspect ratio partial torus with R o / a ˜ 1.59 ). Investigations of the growth rate reveal that they are governed by instabilities like resistive wall destabilization, ion driven instabilities, and electron-neutral collisions. Successful confinement of electron plasmas exceeding > 1 × 10 5 poloidal E → × B → rotations lasting for nearly 2.1 ± 0.1 s is achieved by suppressing these instabilities. The confinement time has been estimated in two ways: (a) from the frequency scaling of the linear diocotron mode launched from sections of the wall that are also used as capacitive probes and (b) by dumping the plasma onto a charge collector at different hold times.

  20. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-01

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + 3He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent Tion, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT Tion of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for Tion and 10% for the neutron yield.

  1. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect

    Hatarik, R. Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Mcnaney, J. M.; Munro, D. H.; Knauer, J. P.

    2015-11-14

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + {sup 3}He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (T{sub ion}) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent T{sub ion}, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT T{sub ion} of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for T{sub ion} and 10% for the neutron yield.

  2. Regional fluid flow and heat distribution over geological time scales at the margin of unconfined and confined carbonate sequences

    NASA Astrophysics Data System (ADS)

    Havril, Timea; Mádl-Szönyi, Judit; Molson, John

    2016-04-01

    permeability confining formation, which facilitates buoyancy-driven flow by restricting the dissipation of heat. Over geological time, these cells were gradually overprinted by gravity-driven flow and thermal advection due to the uplift of the western part of the system. The limited thickness of the cover along the western block allowed efficient water infiltration into the system, which leads to an increased cooling effect. Further uplifting of the western part leads to a change of the main character of the flow patterns, with gravity-driven groundwater flow dominating over the effect of buoyancy-driven flow. Although cooling of the system has significantly progressed, conditions over the confined part of the system are still favorable for the development of thermal convection cells, and leads to significant heat accumulation under the confined sub-basin. The flow and heat transport simulations have helped to derive the main evolutionary characteristics of groundwater flow and heat transport patterns for the unconfined and confined parts of the region. The result is flow convergence toward the discharge zone from different sources over geological time scales. This is decisive for heat accumulation as well as for the development of a deep geothermal energy potential in confined carbonates. The research is supported by the Hungarian Research Fund.

  3. Comparison of confinement in resistive-shell reversed-field pinch devices with two different magnetic shell penetration times

    NASA Astrophysics Data System (ADS)

    Gravestijn, R. M.; Drake, J. R.; Hedqvist, A.; Rachlew, E.

    2004-01-01

    A loop voltage is required to sustain the reversed-field pinch (RFP) equilibrium. The configuration is characterized by redistribution of magnetic helicity but with the condition that the total helicity is maintained constant. The magnetic field shell penetration time, tgrs, has a critical role in the stability and performance of the RFP. Confinement in the EXTRAP device has been studied with two values of tgrs, first (EXTRAP-T2) with tgrs of the order of the typical relaxation cycle timescale and then (EXTRAP-T2R) with tgrs much longer than the relaxation cycle timescale, but still much shorter than the pulse length. Plasma parameters show significant improvements in confinement in EXTRAP-T2R. The typical loop voltage required to sustain comparable electron poloidal beta values is a factor of 3 lower in the EXTRAP-T2R device. The improvement is attributed to reduced magnetic turbulence.

  4. Groundwater residence time and aquifer recharge in multilayered, semi-confined and faulted aquifer systems using environmental tracers

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, Jordi; Banks, Eddie W.; Batelaan, Okke; Kipfer, Rolf; Brennwald, Matthias S.; Cook, Peter G.

    2017-03-01

    The potential of environmental tracers (δ18O, δ2H, δ13C, 14C, 4He, 20Ne, 40Ar, N2) to assist our understanding of recharge processes, groundwater flow velocities and residence times in semi-confined, multilayered and faulted aquifer systems was tested in a coastal system with Quaternary sediments overlying Tertiary aquifers and fractured bedrock. Carbon-14 groundwater ages were found to increase with depth and distance (<1000 y near the recharge area to >30,000 y near the coast), confirming that the system is semi-confined and the palaeometeoric origin of groundwater as suggested by water stable isotopes. The presence of old groundwater near the top of deep semi-confined aquifers suggests that recharge mainly occurs in the ranges east of the basin. This is also supported by Cl concentrations, which are higher in the overlying Quaternary aquifers. Groundwater flow velocities between 0.3 and 1.8 m y-1 were estimated using 14C ages, resulting in basin recharge estimates between 0.3 × 107 and 2 × 107 m3 y-1. Radiocarbon and 4He-estimated flow velocities were generally in good agreement, although 4He accumulation rates ranging between 8 × 10-12 and 1 × 10-10 cm3 STP g-1 y-1 and 1.7-7.1 × 10-7 cm3 STP g-1 km-1 confirmed slower flow velocities in some areas. These areas could not be captured using 14C. Faults were found to play a paramount role on mixing old fluids rich in salts and 4He, although it was not possible to demonstrate the role of faults in changing flow velocities, this requiring a higher density of sampling points. Our study shows that environmental tracers have potential to study flow processes in semi-confined, faulted, multilayered aquifer systems, provided a high density of sampling points is available.

  5. Application of symbolic regression to the derivation of scaling laws for tokamak energy confinement time in terms of dimensionless quantities

    NASA Astrophysics Data System (ADS)

    Murari, A.; Peluso, E.; Lungaroni, M.; Gelfusa, M.; Gaudio, P.

    2016-02-01

    In many scientific applications, it is important to investigate how certain properties scale with the parameters of the systems. The experimental studies of scalings have traditionally been addressed with log regression, which limits the results to power laws and to theoretical and not data-driven dimensionless quantities. This has also been the case in nuclear fusion, in which the scaling of the energy confinement time is a crucial aspect in understanding the physics of transport and in the design of future devices. Traditionally two main assumptions are at the basis of the most widely accepted empirical scaling laws for the confinement time: (a) the dimensionless variables used are the ones derived from the symmetries of the Vlasov equation; (b) the final scalings have the mathematical form of power laws. In this paper, it is shown how symbolic regression (SR), implemented with genetic programming (GP) techniques, can be used to test these hypotheses. Neither assumption is confirmed by the available data of the multi-machine International Tokamak Physics Activity (ITPA) of validated tokamak discharges. The statistically soundest expressions are not power laws and cannot be formulated in terms of the traditional dimensionless quantities. The consequences of the data-driven scaling laws obtained are both practical and theoretical: the confinement time for the ITER can be significantly shorter than foreseen by power laws and different dimensionless variables should be considered for theoretical investigations. On the other hand, higher quality databases should be built to reduce the uncertainties in the extrapolations. It is also worth emphasising that the proposed methodology is fully general and therefore can be applied to any field of science.

  6. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  7. Extended gyrokinetic field theory for time-dependent magnetic confinement fields

    NASA Astrophysics Data System (ADS)

    Sugama, H.; Watanabe, T.-H.; Nunami, M.

    2014-01-01

    A gyrokinetic system of equations for turbulent toroidal plasmas in time-dependent axisymmetric background magnetic fields is derived from the variational principle. Besides governing equations for gyrocenter distribution functions and turbulent electromagnetic fields, the conditions which self-consistently determine the background magnetic fields varying on a transport time scale are obtained by using the Lagrangian, which includes the constraint on the background fields. Conservation laws for energy and toroidal angular momentum of the whole system in the time-dependent background magnetic fields are naturally derived by applying Noether's theorem. It is shown that the ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work agree with the results from the conventional recursive formulation with the WKB representation except that collisional effects are disregarded here.

  8. Extended gyrokinetic field theory for time-dependent magnetic confinement fields

    SciTech Connect

    Sugama, H.; Watanabe, T.-H.; Nunami, M.

    2014-01-15

    A gyrokinetic system of equations for turbulent toroidal plasmas in time-dependent axisymmetric background magnetic fields is derived from the variational principle. Besides governing equations for gyrocenter distribution functions and turbulent electromagnetic fields, the conditions which self-consistently determine the background magnetic fields varying on a transport time scale are obtained by using the Lagrangian, which includes the constraint on the background fields. Conservation laws for energy and toroidal angular momentum of the whole system in the time-dependent background magnetic fields are naturally derived by applying Noether's theorem. It is shown that the ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work agree with the results from the conventional recursive formulation with the WKB representation except that collisional effects are disregarded here.

  9. A diamond detector for inertial confinement fusion X-ray bang-time measurements at the National Ignition Facility

    SciTech Connect

    MacPhee, A G; Brown, C; Burns, S; Celeste, J; Glenzer, S H; Hey, D; Jones, O S; Landen, O; Mackinnon, A J; Meezan, N; Parker, J; Edgell, D; Glebov, V Y; Kilkenny, J; Kimbrough, J

    2010-11-09

    An instrument has been developed to measure X-ray bang-time for inertial confinement fusion capsules; the time interval between the start of the laser pulse and peak X-ray emission from the fuel core. The instrument comprises chemical vapor deposited polycrystalline diamond photoconductive X-ray detectors with highly ordered pyrolytic graphite X-ray monochromator crystals at the input. Capsule bang-time can be measured in the presence of relatively high thermal and hard X-ray background components due to the selective band pass of the crystals combined with direct and indirect X-ray shielding of the detector elements. A five channel system is being commissioned at the National Ignition Facility at Lawrence Livermore National Laboratory for implosion optimization measurements as part of the National Ignition Campaign. Characteristics of the instrument have been measured demonstrating that X-ray bang-time can be measured with {+-} 30ps precision, characterizing the soft X-ray drive to +/- 1eV or 1.5%.

  10. Long-time averaged dynamics of a Bose-Einstein condensate in a bichromatic optical lattice with external harmonic confinement

    NASA Astrophysics Data System (ADS)

    Sakhel, Asaad R.

    2016-07-01

    The dynamics of a Bose-Einstein condensate are examined numerically in the presence of a one-dimensional bichromatic optical lattice (BCOL) with external harmonic confinement in the strongly interacting regime. The condensate is excited by a focusing stirring red laser. Two realizations of the BCOL are considered, one with a rational and the other with an irrational ratio of the two constituting wave lengths. The system is simulated by the time-dependent Gross Pitaevskii equation that is solved using the Crank Nicolson method in real time. It is found that for a weak BCOL, the long-time averaged physical observables of the condensate respond only very weakly (or not at all) to changes in the secondary OL depth V1 showing that under these conditions the harmonic trap plays a dominant role in governing the dynamics. However, for a much larger strength of the BCOL, the response is stronger as it begins to compete with the external harmonic trap, such that the frequency of Bloch oscillations of the bosons rises with V1 yielding higher time-averages. Qualitatively there is no difference between the dynamics of the condensate resulting from the use of a rational or irrational ratio of the wavelengths since the external harmonic trap washes it out. It is further found that in the presence of an external harmonic trap, the BCOL acts in favor of superflow.

  11. Time-dependent behavior of magnetic fields confined by conducting walls

    SciTech Connect

    Kidder, R.E.; Cecil, A.B.

    1983-03-09

    An equation is derived which describes the total current flowing in a moving conducting surface surrounding a magnetic field, where diffusion of the field into the conductor is taken into account. Analytic and numerical solutions of the current equation are obtained for the cases of exponential and linear compression of the magnetic field with time, respectively. It is assumed that the electrical conductivity is constant, that the conducting surfaces are axially symmetric, and that the thickness and radius of curvature of the conducting walls is large compared with the effective depth of penetration of the field.

  12. Overdamped motion of interacting particles in general confining potentials: time-dependent and stationary-state analyses

    NASA Astrophysics Data System (ADS)

    Ribeiro, M. S.; Nobre, F. D.; Curado, E. M. F.

    2012-12-01

    By comparing numerical and analytical results, it is shown that a system of interacting particles under overdamped motion is very well described by a nonlinear Fokker-Planck equation, which can be associated with nonextensive statistical mechanics. The particle-particle interactions considered are repulsive, motivated by three different physical situations: (i) modified Bessel function, commonly used in vortex-vortex interactions, relevant for the flux-front penetration in disordered type-II superconductors; (ii) Yukawa-like forces, useful for charged particles in plasma, or colloidal suspensions; (iii) derived from a Gaussian potential, common in complex fluids, like polymer chains dispersed in a solvent. Moreover, the system is subjected to a general confining potential, φ( x) = ( α| x| z )/ z ( α > 0 , z > 1), so that a stationary state is reached after a sufficiently long time. Recent numerical and analytical investigations, considering interactions of type (i) and a harmonic confining potential ( z = 2), have shown strong evidence that a q-Gaussian distribution, P( x,t), with q = 0, describes appropriately the particle positions during their time evolution, as well as in their stationary state. Herein we reinforce further the connection with nonextensive statistical mechanics, by presenting numerical evidence showing that: (a) in the case z = 2, different particle-particle interactions only modify the diffusion parameter D of the nonlinear Fokker-Planck equation; (b) for z ≠ 2, all cases investigated fit well the analytical stationary solution P st( x), given in terms of a q-exponential (with the same index q = 0) of the general external potential φ( x). In this later case, we propose an approximate time-dependent P( x,t) (not known analytically for z ≠ 2), which is in very good agreement with the simulations for a large range of times, including the approach to the stationary state. The present work suggests that a wide variety of physical phenomena

  13. The long time tail of molecular velocity correlation in a confined fluid: observation by modulated gradient spin-echo NMR

    NASA Astrophysics Data System (ADS)

    Stepišnik, Janez; Callaghan, Paul T.

    2000-11-01

    In addition to the fast correlation for local stochastic motion the molecular velocity correlation function in a fluid enclosed within the pore boundaries features a slow long time tail decay [1,2]. This article presents a study by the NMR modulated gradient spin-echo method (MGSE) [3] on a system of water trapped in the space between the closely packed polystyrene beads. The results prove that the obtained dependence of spin-echo attenuation on time, gradient strength and modulation frequency nicely corresponds to the recently developed NMR approach, which is able to describe the effects of arbitrarily shaped gradient pulse sequence on the spin-echo attenuation [4,5]. With an MGSE pulse sequence, a repetitive train of RF pulses with interspersed gradient pulses periodically modulates the spin-phase, giving the spin-echo attenuation proportional to a value of the velocity correlation spectrum at the modulation frequency. It enables to extract the low-frequency correlation spectrum of confined water molecules. The function exhibits a negative long time tail characteristic (a low-frequency decay of the spectrum), that can be well fitted with the spectrum calculated from the solution of the Langevin equation for restricted diffusion (which exhibits an exponential decay) as well as with the spectrum obtained when simulating the hydrodynamics of molecular motion constrained by capillary walls (which gives an algebraic decay).

  14. Five-hole pitot probe time-mean velocity measurements in confined swirling flows

    NASA Technical Reports Server (NTRS)

    Yoon, H. K.; Lilley, D. G.

    1983-01-01

    Nonswirling and swirling nonreacting flows in an axisymmetric test section with an expansion ratio D/d = 2, which may be equipped with contraction nozzles of area ratios 2 and 4, are investigated. The effects of a number of geometric parameters on the flow-field are investigated, among them side-wall expansion angles of 90 and 45 deg, swirl vane angles of 0, 38, 45, 60, and 70 deg, and contraction nozzle locations L/D = 1 and 2 (if present). Data are acquired by means of a five-hole pitot probe enabling three time-mean velocity components in the axial, radial, and azimuthal directions to be measured. The velocities are extensively plotted and artistic impressions of recirculation zones are set forth. The presence of a swirler is found to shorten the corner recirculation zone and to generate a central recirculation zone followed by a precessing vortex core. A gradual inlet expansion has the effect of encouraging the flow to remain close to the sidewall and shortening the extent of the corner recirculation zone in all cases investigated.

  15. A new time and space resolved transmission spectrometer for research in inertial confinement fusion and radiation source development

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Ball, C.; Austin, K.; Hansen, S. B.; Kernaghan, M. D.; Lake, P. W.; Ampleford, D. J.; McPherson, L. A.; Sandoval, D.; Gard, P.; Wu, M.; Bourdon, C.; Rochau, G. A.; McBride, R. D.; Sinars, D. B.

    2017-01-01

    We describe the design and function of a new time and space resolved x-ray spectrometer for use in Z-pinch inertial confinement fusion and radiation source development experiments. The spectrometer is designed to measure x-rays in the range of 0.5-1.5 Å (8-25 keV) with a spectral resolution λ/Δλ ˜ 400. The purpose of this spectrometer is to measure the time- and one-dimensional space-dependent electron temperature and density during stagnation. These relatively high photon energies are required to escape the dense plasma created at stagnation and to obtain sensitivity to electron temperatures ≳3 keV. The spectrometer is of the Cauchois type, employing a large 30 × 36 mm2, transmissive quartz optic for which a novel solid beryllium holder was designed. The performance of the crystal was verified using offline tests, and the integrated system was tested using experiments on the Z pulsed power accelerator.

  16. Time evolution of filamentation and self-generated fields in the coronae of directly driven inertial-confinement fusion capsules

    NASA Astrophysics Data System (ADS)

    Séguin, F. H.; Li, C. K.; Manuel, M. J.-E.; Rinderknecht, H. G.; Sinenian, N.; Frenje, J. A.; Rygg, J. R.; Hicks, D. G.; Petrasso, R. D.; Delettrez, J.; Betti, R.; Marshall, F. J.; Smalyuk, V. A.

    2012-01-01

    Time-gated radiography with monoenergetic 15-MeV protons, 3-MeV protons, and 4-MeV alpha particles has revealed a rich and complex evolution of electromagnetic field structures in and around imploding, directly driven inertial-confinement fusion (ICF) targets at the OMEGA laser facility. Plastic-shell capsules and solid plastic spheres were imaged during and after irradiation with ICF-relevant laser drive (up to 6 × 1014 W/cm2). Radial filaments appeared while the laser was on; they filled, and were frozen into, the out-flowing corona, persisting until well after the end of the laser drive. Data from specially designed experiments indicate that the filaments were not generated by two-plasmon-decay instabilities or by Rayleigh-Taylor instabilities associated with shell acceleration. Before the onset of visible filamentation, quasi-spherical field structures appeared outside the capsule in the images in a form that suggests outgoing shells of net positive charge. We conjecture that these discrete shells are related to multiple peaks seen previously in the spectra of protons ablated from the targets.

  17. Is attention confined to one word at a time? The spatial distribution of parafoveal preview benefits during reading.

    PubMed

    Wang, Chin-An; Inhoff, Albrecht W; Radach, Ralph

    2009-10-01

    Eye movements were recorded while participants read declarative sentences. Each sentence contained a critical three-word sequence with a three-letter target word (n), a spatially adjacent post-target word (n+1), and a subsequent nonadjacent post-target word (n+2). The parafoveal previews of words n and n+2 were manipulated so that they were either fully visible or masked until they were fixated. The results revealed longer word n and word n+1 viewing durations when word n had been masked in the parafovea, and this occurred irrespective of whether the target was skipped or fixated. Furthermore, masking of word n diminished the usefulness of the preview of word n+2. These results indicate that the effect of a parafoveally available target preview was not strictly localized. Instead, it influenced target viewing and the viewing of the two subsequent words in the text. These results are difficult to reconcile with the assumption that attention is confined to one word at a time until that word is recognized and that attention is then shifted from the recognized word to the next.

  18. Time-dependent Poiseuille flow of a viscous compressible fluid confined between two planar walls with dynamic partial slip boundary condition.

    PubMed

    Felderhof, B U

    2012-06-01

    Time-dependent Poiseuille flow of a viscous compressible fluid confined between two planar walls is studied for a partial slip boundary condition with frequency-dependent slip length. After an initial uniform impulse parallel to the walls, the flow pattern quickly becomes nearly parabolic. For a narrow gap, a dynamic slip length can lead to damped oscillations of total fluid momentum.

  19. Dynamic response of materials on sub-nanosecond time scales, and beryllium properties for inertial confinement fusion

    SciTech Connect

    Swift, D C; Tierney, T E; Luo, S N; Paisley, D L; Kyrala, G A; Hauer, A; Greenfield, S R; Koskelo, A C; McClellan, K J; Lorenzana, H E; Knudson, M D; Peralta, P P; Loomis, E

    2004-12-09

    During the past few years, substantial progress has been made in developing experimental techniques capable of investigating the response of materials to dynamic loading on nanosecond time scales and shorter, with multiple diagnostics probing different aspects of the behavior. these relatively short time scales are scientifically interesting because plastic flow and phase changes in common materials with simple crystal structures--such as iron--may be suppressed, allowing unusual states to be induced and the dynamics of plasticity and polymorphism to be explored. Loading by laser ablation can be particularly convenient. The TRIDENT laser has been used to impart shocks and isentropic compression waves from {approx}1 to 200GPa in a range of elements and alloys, with diagnostics including surface velocimetry (line-imaging VISAR), surface displacement (framed area imaging), x-ray diffraction (single crystal and polycrystal), ellipsometry, and Raman spectroscopy. A major motivation has been the study of the properties of beryllium under conditions relevant to the fuel capsule in inertial confinement fusion: magnetically-driven shock and isentropic compression shots at Z were used to investigate the equation of state and shock melting characteristics, complemented by laser ablation experiments to investigate plasticity and heterogeneous response. These results will help to constrain acceptable tolerances on manufacturing, and possible loading paths, for inertial fusion ignition experiments at the National Ignition Facility. Laser-based techniques are being developed further for future material dynamics experiments, where it should be possible to obtain high quality data on strength and phase changes up to at least 1TPa.

  20. Correcting for bias of molecular confinement parameters induced by small-time-series sample sizes in single-molecule trajectories containing measurement noise.

    PubMed

    Calderon, Christopher P

    2013-07-01

    Several single-molecule studies aim to reliably extract parameters characterizing molecular confinement or transient kinetic trapping from experimental observations. Pioneering works from single-particle tracking (SPT) in membrane diffusion studies [Kusumi et al., Biophys. J. 65, 2021 (1993)] appealed to mean square displacement (MSD) tools for extracting diffusivity and other parameters quantifying the degree of confinement. More recently, the practical utility of systematically treating multiple noise sources (including noise induced by random photon counts) through likelihood techniques has been more broadly realized in the SPT community. However, bias induced by finite-time-series sample sizes (unavoidable in practice) has not received great attention. Mitigating parameter bias induced by finite sampling is important to any scientific endeavor aiming for high accuracy, but correcting for bias is also often an important step in the construction of optimal parameter estimates. In this article, it is demonstrated how a popular model of confinement can be corrected for finite-sample bias in situations where the underlying data exhibit Brownian diffusion and observations are measured with non-negligible experimental noise (e.g., noise induced by finite photon counts). The work of Tang and Chen [J. Econometrics 149, 65 (2009)] is extended to correct for bias in the estimated "corral radius" (a parameter commonly used to quantify confinement in SPT studies) in the presence of measurement noise. It is shown that the approach presented is capable of reliably extracting the corral radius using only hundreds of discretely sampled observations in situations where other methods (including MSD and Bayesian techniques) would encounter serious difficulties. The ability to accurately statistically characterize transient confinement suggests additional techniques for quantifying confined and/or hop diffusion in complex environments.

  1. Correcting for bias of molecular confinement parameters induced by small-time-series sample sizes in single-molecule trajectories containing measurement noise

    NASA Astrophysics Data System (ADS)

    Calderon, Christopher P.

    2013-07-01

    Several single-molecule studies aim to reliably extract parameters characterizing molecular confinement or transient kinetic trapping from experimental observations. Pioneering works from single-particle tracking (SPT) in membrane diffusion studies [Kusumi , Biophys. J.BIOJAU0006-349510.1016/S0006-3495(93)81253-0 65, 2021 (1993)] appealed to mean square displacement (MSD) tools for extracting diffusivity and other parameters quantifying the degree of confinement. More recently, the practical utility of systematically treating multiple noise sources (including noise induced by random photon counts) through likelihood techniques has been more broadly realized in the SPT community. However, bias induced by finite-time-series sample sizes (unavoidable in practice) has not received great attention. Mitigating parameter bias induced by finite sampling is important to any scientific endeavor aiming for high accuracy, but correcting for bias is also often an important step in the construction of optimal parameter estimates. In this article, it is demonstrated how a popular model of confinement can be corrected for finite-sample bias in situations where the underlying data exhibit Brownian diffusion and observations are measured with non-negligible experimental noise (e.g., noise induced by finite photon counts). The work of Tang and Chen [J. Econometrics0304-407610.1016/j.jeconom.2008.11.001 149, 65 (2009)] is extended to correct for bias in the estimated “corral radius” (a parameter commonly used to quantify confinement in SPT studies) in the presence of measurement noise. It is shown that the approach presented is capable of reliably extracting the corral radius using only hundreds of discretely sampled observations in situations where other methods (including MSD and Bayesian techniques) would encounter serious difficulties. The ability to accurately statistically characterize transient confinement suggests additional techniques for quantifying confined and/or hop

  2. Spontaneous time reversal symmetry breaking in atomically confined two-dimensional impurity bands in silicon and germanium

    NASA Astrophysics Data System (ADS)

    Ghosh, Arindam

    Three-dimensional bulk-doped semiconductors, in particular phosphorus (P)-doped silicon (Si) and germanium (Ge), are among the best studied systems for many fundamental concepts in solid state physics, ranging from the Anderson metal-insulator transition to the many-body Coulomb interaction effects on quantum transport. Recent advances in material engineering have led to vertically confined doping of phosphorus (P) atoms inside bulk crystalline silicon and germanium, where the electron transport occurs through one or very few atomic layers, constituting a new and unique platform to investigate many of these phenomena at reduced dimensions. In this talk I shall present results of extensive quantum transport experiments in delta-doped silicon and germanium epilayers, over a wide range of doping density that allow independent tuning of the on-site Coulomb interaction and hopping energy scales. We find that low-frequency flicker noise, or the 1 / f noise, in the electrical conductance of these systems is exceptionally low, and in fact among the lowest when compared with other low-dimensional materials. This is attributed to the physical separation of the conduction electrons, embedded inside the crystalline semiconductor matrix, from the charged fluctuators at the surface. Most importantly, we find a remarkable suppression of weak localization effects, including the quantum correction to conductivity and universal conductance fluctuations, with decreasing doping density or, equivalently, increasing effective on-site Coulomb interaction. In-plane magneto-transport measurements indicate the presence of intrinsic local spin fluctuations at low doping although no signatures of long range magnetic order could be identified. We argue that these results indicate a spontaneous breakdown of time reversal symmetry, which is one of the most fundamental and robust symmetries of nonmagnetic quantum systems. While the microscopic origin of this spontaneous time reversal symmetry

  3. Steady-shear-enhanced microdiffusion with multiple time scales of confined, mesoscopic, two-dimensional dusty-plasma liquids.

    PubMed

    Io, Chong-Wai; I, Lin

    2009-09-01

    We experimentally investigate the multitime scale diffusion and the spatiotemporal behaviors of the degrees of enhancement for the longitudinal and the transverse diffusions in a confined mesoscopic quasi-two-dimensional dusty-plasma liquid sheared by two parallel counterpropagating laser beams. The steady external drive directly enhances the longitudinal cooperative hopping, associated with the shear bands that have high shear rate near boundaries. It drastically excites the slow hopping modes to high fluctuation level in the outer band region, accompanied by the enhanced superdiffusion. Through cascaded many-body interaction, the excitation flows from the outer region toward the center region, from the longitudinal modes to the transverse mode, and from the slow hopping modes to the fast caging modes, which are in better contact with the thermal bath. It causes the weaker enhancement of fluctuation level, and diffusion for the center region and the fast modes. The boundary confinement further breaks the system symmetry and enhances anisotropy. It has much stronger effect on the suppression of the transverse hopping modes than the longitudinal hopping mode. The degrees of enhancement of the fluctuations by the shear stress are highly anisotropic for the large amplitude slow modes, especially in the outer region but are more isotropic in the inner band.

  4. Time trends of 1,1,1-trichloroethane, trichloroethylene, and perchloroethylene in confined and unconfined aquifers of a groundwater system in northern Italy.

    PubMed

    Altissimo, Lorenzo; Andreoli, Elisa; Giacometti, Andrea; Marcomini, Antonio

    2002-01-01

    The concentrations of 1,1,1-trichloroethane, trichloroethylene, and perchloroethylene were recorded in a groundwater system of Northern Italy over the period 1985-1997. In the unconfined recharging aquifer these chemicals showed a remarkable overall decline which was accompanied by a five-fold reduction in their consumption (from approx. 250 to approx. 50 tons year-1) over the same period. The time trends for the confined aquifers indicated a steady decline for 1,1,1-trichloroethane which was accompanied by a constant concentration of trichloroethylene and an increasing presence of perchloroethylene. It is suggested that the confined aquifers are recording a contamination which took place in the unconfined recharging aquifer before monitoring period (1982) started. At present, in most of the study area 1,1,1-trichloroethane contamination is below the detection limit (0.1 microgram/L). For trichloroethylene and perchloroethylene, the average unconfined aquifer contamination accounts for approx. 1 +/- 1 and approx. 4 +/- 3 micrograms/L, respectively, while in the confined aquifers the average concentrations are approx. 8 +/- 3 and approx. 35 +/- 5 micrograms/L, respectively.

  5. Influence of heterogeneity of confined water on photophysical behavior of acridine with amines: a time-resolved fluorescence and laser flash photolysis study.

    PubMed

    Sarangi, Manas Kumar; Dey, Debarati; Basu, Samita

    2011-01-20

    The photophysical behavior of acridine (Acr) shows facilitated water-assisted protonation equilibrium between its deprotonted (Acr* ∼ 10 ns) and protonated forms (AcrH(+*) ∼ 28 ns) within confined region of ordered water molecules inside AOT/H(2)O/n-heptane reverse micelles (RMs). The time-resolved-area-normalized-emission spectra confirm both Acr* and AcrH(+*), while time-resolved-emission spectra depict time evolution between them. Quenching of AcrH(+*) with N,N-dimethylaniline (DMA) is a purely diffusion-controlled bimolecular quenching with linear Stern-Volmer (S-V) plot, while nonlinearity arises with triethylamine (TEA) that forms ground state complex with AcrH(+) (AcrH(+)··H(2)O··TEA) indicating both static and dynamic quenching. Transient intermediates, DMA(•+) and AcrH(•) infer photoinduced electron transfer from DMA to Acr, while those from AcrH(+)··H(2)O··TEA complex suggest water mediated excited-state proton transfer (ESPT) between AcrH(+) and TEA. The ESPT becomes faster in larger RMs due to enhanced mobility of hydronium ions in AcrH(+)··H(2)O··TEA, which reduces in smaller RMs as water becomes much more constrained owing to stronger complexation by excess confinement.

  6. Confined direct analysis in real time ion source and its applications in analysis of volatile organic compounds of Citrus limon (lemon) and Allium cepa (onion).

    PubMed

    Li, Yue

    2012-05-30

    The DART (direct analysis in real time) ion source is a novel atmospheric pressure ionization technique that enables efficient ionization of gases, liquids and solids with high throughput. A major limit to its wider application in the analysis of gases is its poor detection sensitivity caused by open-air sampling. In this study, a confined interface between the DART ion source outlet and mass spectrometer sampling orifice was developed, where the plasma generated by the atmospheric pressure glow discharge collides and ionizes gas-phase molecules in a Tee-shaped flow tube instead of in open air. It leads to significant increase of collision reaction probability between high energy metastable molecules and analytes. The experimental results show that the ionization efficiency was increased at least by two orders of magnitude. This technique was then applied in the real time analysis of volatile organic compounds (VOCs) of Citrus Limon (lemon) and wounded Allium Cepa (onion). The confined DART ion source was proved to be a powerful tool for the studies of plant metabolomics.

  7. A novel method for modeling the neutron time of flight detector response in current mode to inertial confinement fusion experiments (invited)

    SciTech Connect

    Nelson, A. J.; Cooper, G. W.; Ruiz, C. L.; Chandler, G. A.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; Smelser, R.; Torres, J. A.

    2012-10-15

    A novel method for modeling the neutron time of flight (nTOF) detector response in current mode for inertial confinement fusion experiments has been applied to the on-axis nTOF detectors located in the basement of the Z-Facility. It will be shown that this method can identify sources of neutron scattering, and is useful for predicting detector responses in future experimental configurations, and for identifying potential sources of neutron scattering when experimental set-ups change. This method can also provide insight on how much broadening neutron scattering contributes to the primary signals, which is then subtracted from them. Detector time responses are deconvolved from the signals, allowing a transformation from dN/dt to dN/dE, extracting neutron spectra at each detector location; these spectra are proportional to the absolute yield.

  8. Confined helium on Lagrange meshes.

    PubMed

    Baye, D; Dohet-Eraly, J

    2015-12-21

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than 10(-10). For larger radii up to 10, they progressively decrease to 10(-3), still improving the best literature results.

  9. On the importance of minimizing ``coast-time'' in x-ray driven inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Doeppner, T.; Hinkel, D. E.; Berzak Hopkins, L. F.; Kritcher, A.; Landen, O.; Le Pape, S.; Ma, T.; Macphee, A.; Pak, A.; Park, H.-S.; Patel, P. K.; Ralph, J.; Salmonson, J. D.; Springer, P. T.

    2016-10-01

    By the time an ICF implosion has converged a factor of 20, its surface area has shrunk 400x, making it an inefficient x-ray energy absorber. So traditionally, ICF implosions are designed to have the laser drive shut off at a time, toff, well before bang-time, tBT, for a coast-time of tcoast =tBT -toff . Contrary to expectations, high-foot implosions on NIF show a strong dependence of many key ICF quantities on reduced coast-time (by extending the duration of laser peak power at constant power), most notably stagnation pressure. Herein we show that the ablation pressure, pabl, which drives high-foot implosions, is essentially triangular in temporal shape, and that reducing tcoast boosts pabl by 2x. Analytic theory demonstrates that reducing coast-time can lead to a 15% higher implosion velocity, which together with the increased ablation pressure, can boost the stagnation pressure by 2x as compared to a coasting version of the same implosion. Four dimensionless parameters are identified. We find that reducing coast-time to as little as 500 ps still provides some benefit. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Alterations in streaming potential in presence of time periodic pressure-driven flow of a power law fluid in narrow confinements with nonelectrostatic ion-ion interactions.

    PubMed

    Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman

    2014-03-01

    We study the coupled effect of electrokinetic phenomena and fluid rheology in altering the induced streaming potential in narrow fluidic confinements, which is manifested by establishing a time periodic pressure-driven flow in presence of electrical double layer phenomenon. However, in sharp contrast with reported literature, we take into account nonelectrostatic ion-ion interactions toward estimating the same in addition to electrostatic interactions and steric effects. We employ power law based rheological model for estimating the induced streaming potential. We bring out an intricate interaction between nonelectrostatic interactions and fluid rheology on the concerned electrokinetic phenomena, bearing immense consequences toward designing of integrated lab-on-a-chip-based microdevices and nanodevices.

  11. Use of microarray technology to assess the time course of liver stress response after confinement exposure in gilthead sea bream (Sparus aurata L.)

    PubMed Central

    2010-01-01

    Background Selection programs for growth and stress traits in cultured fish are fundamental to the improvement of aquaculture production. The gilthead sea bream (Sparus aurata) is the main aquacultured species in the Mediterranean area and there is considerable interest in the genetic improvement of this species. With the aim of increasing the genomic resources in gilthead sea bream and identifying genes and mechanisms underlying the physiology of the stress response, we developed a cDNA microarray for gilthead sea bream that is enriched by suppression substractive hybridization with stress and immunorelevant genes. This microarray is used to analyze the dynamics of gilthead sea bream liver expression profile after confinement exposure. Results Groups of confined and control juvenile fish were sampled at 6, 24, 72 and 120 h post exposure. GeneSpring analyses identified 202 annotated genes that appeared differentially expressed at least at one sampling time (P < 0.05). Gene expression results were validated by quantitative PCR of 10 target genes, and K-means clustering of differently expressed genes identified four major temporal gene expression profiles. Set 1 encompassed a rapid metabolic readjustment with enhanced uptake and intracellular transport of fatty acids as metabolic fuels. Set 2 was associated with a wide variety of tissue repair and remodeling processes that were mostly mediated by the stress response of the endoplasmic reticulum (ER). Sets 3 and 4 encompassed the re-establishment of cellular homeostasis with increased intracellular trafficking and scavenging of reactive oxygen species (ROS), accompanied by a bidirectional regulation of the immune system and a general decline of ROS production. Conclusions Collectively, these findings show the complex nature of the adaptive stress response with a clear indication that the ER is an important control point for homeostatic adjustments. The study also identifies metabolic pathways which could be analyzed

  12. Investigation of gamma-ray time shifts caused by capsule areal density variations in inertial confinement fusion experiments at the national ignition facility and the omega facility

    NASA Astrophysics Data System (ADS)

    Grafil, Elliot M.

    This thesis describes work on Cherenkov based gamma detectors used as diag- nostics at Inertial Confinement Fusion (ICF) facilities. The first part describes the calibration and commissioning of the Gamma Reaction History diagnostic which is a four cell Cherenkov detector array used to characterize the ICF implosion at the National Ignition Facility (NIF) by measuring the gamma rays generated during the fusion event. Two of the key metrics which the GRH measures are Gamma Bang Time (GBT) generated from the D(T,α)n thermonuclear burn and Ablator Peak Time (APT) caused by (n,n‧)gamma reactions in the surrounding capsule ablator. Simulations of ignition capsules predict that GBT and APT should be time synchronized. After GRH commissioning, the array was used during first year of NIF operation in the National Ignition Campaign. Contrary to expectations, time shifts between GBT and APT of order 10s of picoseconds were observed. In order to further investigate the possibility of these time shifts in view of testing both instrument and code credibility an ICF shot campaign at the smaller OMEGA facility in Rochester was devised. It was performed during two full shot days in April of 2013 and 2014 and confirmed in principle the viability of the Cherenkov detector approach but raised additional questions regarding the credibility of the simulation codes used to describe ICF experiments. Specifically the measurements show that the understanding of temporal behavior of GBT vs APT may not be properly modeled in the DRACO code used at OMEGA. In view of the OMEGA results which showed no time shifts between GBT and APT, the readout and timing synchronization system of the GRH setup at the NIF was reevaluated in the framework of this thesis. Motivated by the results, which highlighted the use of wrong optical fiber diameters and possible problems with the installed variable optical attenuators, the NIF equipment has been updated over the recent months and new timing tests will

  13. Neutron Time-of-Flight Measurements of Charged-Particle Energy Loss in Inertial Confinement Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Sayre, Daniel; Cerjan, Charlie; Berzak Hopkins, Laura; Caggiano, Joseph; Divol, Laurent; Eckart, Mark; Graziani, Frank; Grim, Gary; Hartouni, Ed; Hatarik, Robert; Le Pape, Sebastien; MacKinnon, Andrew; Schneider, Dieter; Sepke, Scott

    2015-11-01

    Neutron time-of-flight measurements of inflight T (d , n) α reactions created during an implosion of a deuterium gas target have been performed at the National Ignition Facility, with order of magnitude improvements in statistics and resolution over past experiments. In the implosion, energetic tritons emitted by thermonuclear fusion within the deuterium plasma produced over 1011 inflight T (d , n) α reactions. The yield and particle spectrum of inflight reactions are sensitive to the triton's energy loss in the plasma, which, in this implosion, consisted of multi-keV temperatures and number densities above 1024 cm-3. Radiation-hydrodynamic simulations of the implosion were adjusted to match the yield and broadening of the D (d , n) 3 He neutron peak. These same simulations give reasonable agreement with the measured T (d , n) α yield and neutron spectrum, and this provides a strong consistency check of the simulated plasma conditions and energy loss model. This research was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion

    SciTech Connect

    Simpson, R. Danly, C.; Fatherley, V. E.; Merrill, F. E.; Volegov, P.; Wilde, C.; Christensen, K.; Fittinghoff, D.; Grim, G. P.; Izumi, N.; Jedlovec, D.; Skulina, K.

    2015-12-15

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

  15. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion.

    PubMed

    Simpson, R; Christensen, K; Danly, C; Fatherley, V E; Fittinghoff, D; Grim, G P; Izumi, N; Jedlovec, D; Merrill, F E; Skulina, K; Volegov, P; Wilde, C

    2015-12-01

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

  16. Study of the 3D Coronal Magnetic Field of Active Region 11117 Around the Time of a Confined Flare Using a Data-Driven CESE-MHD Model

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Feng, X.; Wu, S.; Hu, Q.

    2012-12-01

    Non-potentiality of the solar coronal magnetic field accounts for the solar explosion like flares and CMEs. We apply a data-driven CESE-MHD model to investigate the three-dimensional (3D) coronal magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare occurred on 2010 October 25. The CESE-MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic-field evolution and to consider a simplified solar atomsphere with finite plasma β. Magnetic vector-field data derived from the observations at the photoshpere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria basing on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO) around the time of flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly (AIA), which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most time. The magnetic configuration changes very limited during the studied time interval of two hours. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photoshpere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the magnetic free energy drops during the flare with an amount of 1.7 × 1030 erg, which can be interpreted as the energy budget released by the minor C-class flare.

  17. A Review of Quantum Confinement

    NASA Astrophysics Data System (ADS)

    Connerade, Jean-Patrick

    2009-12-01

    A succinct history of the Confined Atom problem is presented. The hydrogen atom confined to the centre of an impenetrable sphere counts amongst the exactly soluble problems of physics, alongside much more noted exact solutions such as Black Body Radiation and the free Hydrogen atom in absence of any radiation field. It shares with them the disadvantage of being an idealisation, while at the same time encapsulating in a simple way particular aspects of physical reality. The problem was first formulated by Sommerfeld and Welker [1]—henceforth cited as SW—in connection with the behaviour of atoms at very high pressures, and the solution was published on the occasion of Pauli's 60th birthday celebration. At the time, it seemed that there was not much other connection with physical reality beyond a few simple aspects connected to the properties of atoms in solids, for which more appropriate models were soon developed. Thus, confined atoms attracted little attention until the advent of the metallofullerene, which provided the first example of a confined atom with properties quite closely related to those originally considered by SW. Since then, the problem has received much more attention, and many more new features of quantum confinement, quantum compression, the quantum Faraday cage, electronic reorganisation, cavity resonances, etc have been described, which are relevant to real systems. Also, a number of other situations have been uncovered experimentally to which quantum confinement is relevant. Thus, studies of the confined atom are now more numerous, and have been extended both in terms of the models used and the systems to which they can be applied. Connections to thermodynamics are explored through the properties of a confined two-level atom adapted from Einstein's celebrated model, and issues of dynamical screening of electromagnetic radiation by the confining shell are discussed in connection with the Faraday cage produced by a confining conducting shell

  18. A Review of Quantum Confinement

    SciTech Connect

    Connerade, Jean-Patrick

    2009-12-03

    A succinct history of the Confined Atom problem is presented. The hydrogen atom confined to the centre of an impenetrable sphere counts amongst the exactly soluble problems of physics, alongside much more noted exact solutions such as Black Body Radiation and the free Hydrogen atom in absence of any radiation field. It shares with them the disadvantage of being an idealisation, while at the same time encapsulating in a simple way particular aspects of physical reality. The problem was first formulated by Sommerfeld and Welker - henceforth cited as SW - in connection with the behaviour of atoms at very high pressures, and the solution was published on the occasion of Pauli's 60th birthday celebration. At the time, it seemed that there was not much other connection with physical reality beyond a few simple aspects connected to the properties of atoms in solids, for which more appropriate models were soon developed. Thus, confined atoms attracted little attention until the advent of the metallofullerene, which provided the first example of a confined atom with properties quite closely related to those originally considered by SW. Since then, the problem has received much more attention, and many more new features of quantum confinement, quantum compression, the quantum Faraday cage, electronic reorganisation, cavity resonances, etc have been described, which are relevant to real systems. Also, a number of other situations have been uncovered experimentally to which quantum confinement is relevant. Thus, studies of the confined atom are now more numerous, and have been extended both in terms of the models used and the systems to which they can be applied. Connections to thermodynamics are explored through the properties of a confined two-level atom adapted from Einstein's celebrated model, and issues of dynamical screening of electromagnetic radiation by the confining shell are discussed in connection with the Faraday cage produced by a confining conducting shell. The

  19. Combining Real-Time fMRI Neurofeedback Training of the DLPFC with N-Back Practice Results in Neuroplastic Effects Confined to the Neurofeedback Target Region

    PubMed Central

    Sherwood, Matthew S.; Weisend, Michael P.; Kane, Jessica H.; Parker, Jason G.

    2016-01-01

    In traditional fMRI, individuals respond to exogenous stimuli and are naïve to the effects of the stimuli on their neural activity patterns. Changes arising in the fMRI signal are analyzed post-hoc to elucidate the spatial and temporal activation of brain regions associated with the tasks performed. The advent of real-time fMRI has enabled a new method to systematically alter brain activity across space and time using neurofeedback training (NFT), providing a new tool to study internally-driven processes such as neuroplasticity. In this work, we combined n-back practice with fMRI-NFT of the left dorsolateral prefrontal cortex (DLPFC) to better understand the relationship between open- and closed-loop neuromodulation. FMRI data were acquired during both traditional n-back and NFT across five imaging sessions. Region-of-interest (ROI) and voxel-wise 2 × 2 within subjects ANOVAs were carried out to determine the effects of, and interaction between, training session and neuromodulation type. A main effect of training session was identified for only a single, highly focused cluster that shared spatial properties with the fMRI-NFT target region (left DLPFC). This finding indicates that combined open- and closed-loop neuroplastic enhancement techniques result in focal changes that are confined to the target area of NFT, and do not affect up- or down-stream network components that are normally engaged during working memory. Additionally, we identified a main effect of neuromodulation type for 15 clusters with significantly different activation between open- and closed-loop neuromodulation during training, 12 of which demonstrated higher activity during the open-loop neuromodulation. Our results, taken together with previous reports, indicate that fMRI-NFT combined with n-back practice leads to a highly focal volume exhibiting neuroplasticity without additional network effects. PMID:27445733

  20. Confinement studies in TFTR

    SciTech Connect

    Murakami, M.; Arunasalam, V.; Bell, J.D.; Bell, M.G.; Bitter, M.; Blanchard, W.R.; Boody, F.; Boyd, D.; Bretz, N.; Bush, C.E.

    1985-06-01

    The paper describes the present (end of February 1985) status of the plasma confinement studies in the TFTR tokamak with emphasis on those with neutral beam injection (NBI). Recent improvements in the device capabilities have substantially extended operating parameters: B/sub T/ increased to 4.0 T, I/sub p/ to 2.0 MA, injection power (P/sub b/) to 5 MW with H/sup 0/ or D/sup 0/ beams anti n/sub e/ to 5 x 10/sup 19/ m/sup -3/, and Z/sub eff/ reduced to 1.4. With ohmic heating (OH) alone, the previously established scaling for gross energy confinement time (tau/sub E/ = anti n/sub e/q) has been confirmed at higher I/sub p/ and B/sub T/, and the maximum tau/sub E/ of 0.4 sec has been achieved. With NBI at P/sub b/ substantially (by factor >2) higher than P/sub OH/, excellent power and particle accountability have been established. This suggests that the less-than-expected increase in stored energy with NBI is not due to problems of power delivery, but due to problems of confinement deterioration. tau/sub E/ is observed to scale approximately as I/sub p/ P/sub b//sup -0.5/ (independent of anti n/sub e/), consistent with previous L-mode scalings. With NBI we have achieved the maximum tau/sub E/ of 0.2 sec and the maximum T/sub i/(o) of 4.4 keV in the normal operating regime, and even higher T/sub i/(o) in the energetic-ion regime with low-n/sub e/ and low-I/sub p/ operation.

  1. Two particle system in spherically confined plasma environment

    NASA Astrophysics Data System (ADS)

    Munjal, Dipti; Sen, K. D.; Prasad, Vinod

    2017-03-01

    Energy eigenvalues of Harmonium atom are reported for the first time under spherically confined Debye and spherically confined exponentially cosine screened coulomb potential. Energy of different states of Harmonium is analyzed as a function of confinement radius and Debye screening length. Comparison of radial matrix elements of Harmonium atom under spherically confined Debye and spherically confined exponentially cosine screened coulomb potential is done. Interesting results are obtained.

  2. Dynamics of solvent and rotational relaxation of coumarin 153 in room-temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate confined in Brij-35 micelles: a picosecond time-resolved fluorescence spectroscopic study.

    PubMed

    Chakraborty, Anjan; Seth, Debabrata; Chakrabarty, Debdeep; Setua, Palash; Sarkar, Nilmoni

    2005-12-15

    The dynamics of solvent and rotational relaxation of Coumarin 153 (C-153) in ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and in the ionic liquid confined in Brij-35 micellar aggregates have been investigated using steady-state and time-resolved fluorescence spectroscopy. We observed slower dynamics in the presence of micellar aggregates as compared to the pure IL. However, the slowing down in the solvation time on going from neat IL to IL-confined micelles is much smaller compared to that on going from water to water-confined micellar aggregates. The increase in solvation and rotational time in micelles is attributed to the increase in viscosity of the medium. The slow component is assumed to be dependent on the viscosity of the solution and involves large-scale rearrangement of the anions and cations while fast component is assumed to originate from the initial response of the anions during excitation. The slow component increases due to the increase in the viscosity of the medium and increase in fast component is probably due to the hydrogen bonding between the anions and polar headgroup of the surfactant. The dynamics of solvent relaxation was affected to a small extent due to the micelle formation.

  3. Confinement Aquaculture. Final Report.

    ERIC Educational Resources Information Center

    Delaplaine School District, AR.

    The Delaplaine Agriculture Department Confinement Project, begun in June 1988, conducted a confinement aquaculture program by comparing the growth of channel catfish raised in cages in a pond to channel catfish raised in cages in the Black River, Arkansas. The study developed technology that would decrease costs in the domestication of fish, using…

  4. Indoor Confined Feedlots.

    PubMed

    Grooms, Daniel L; Kroll, Lee Anne K

    2015-07-01

    Indoor confined feedlots offer advantages that make them desirable in northern climates where high rainfall and snowfall occur. These facilities increase the risk of certain health risks, including lameness and tail injuries. Closed confinement can also facilitate the rapid spread of infectious disease. Veterinarians can help to manage these health risks by implementing management practices to reduce their occurrence.

  5. Bimetallic Microswimmers Speed Up in Confining Channels

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Zhou, Chao; Wang, Wei; Zhang, H. P.

    2016-11-01

    Synthetic microswimmers are envisioned to be useful in numerous applications, many of which occur in tightly confined spaces. It is therefore important to understand how confinement influences swimmer dynamics. Here we study the motility of bimetallic microswimmers in linear and curved channels. Our experiments show swimmer velocities increase, up to 5 times, with the degree of confinement, and the relative velocity increase depends weakly on the fuel concentration and ionic strength in solution. Experimental results are reproduced in a numerical model which attributes the swimmer velocity increase to electrostatic and electrohydrodynamic boundary effects. Our work not only helps to elucidate the confinement effect of phoretic swimmers, but also suggests that spatial confinement may be used as an effective control method for them.

  6. Elastic membranes in confinement

    NASA Astrophysics Data System (ADS)

    Bostwick, Joshua; Miksis, Michael; Davis, Stephen

    2014-11-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and DNA, have finer internal structure in which a membrane (or elastic member) is geometrically ``confined'' by another object. We study the shape stability of elastic membranes in a ``confining'' box and introduce repulsive van der Waals forces to prevent the membrane from intersecting the wall. We aim to define the parameter space associated with mitochondria-like deformations. We compare the confined to `unconfined' solutions and show how the structure and stability of the membrane shapes changes with the system parameters.

  7. Confinement and the safety factor profile

    SciTech Connect

    Batha, S.H.; Levinton, F.M.; Scott, S.D.

    1995-12-01

    The conjecture that the safety factor profile, q(r), controls the improvement in tokamak plasmas from poor confinement in the Low (L-) mode regime to improved confinement in the supershot regime has been tested in two experiments on the Tokamak Fusion Test Reactor (TFTR). First, helium was puffed into the beam-heated phase of a supershot discharge which induced a degradation from supershot to L-mode confinement in about 100 msec, far less than the current relaxation time. The q and shear profiles measured by a motional Stark effect polarimeter showed little change during the confinement degradation. Second, rapid current ramps in supershot plasmas altered the q profile, but were observed not to change significantly the energy confinement. Thus, enhanced confinement in supershot plasmas is not due to a particular q profile which has enhanced stability or transport properties. The discharges making a continuous transition between supershot and L-mode confinement were also used to test the critical-electron-temperature-gradient transport model. It was found that this model could not reproduce the large changes in electron and ion temperature caused by the change in confinement.

  8. Polymer Crystallization under Confinement

    NASA Astrophysics Data System (ADS)

    Floudas, George

    Recent efforts indicated that polymer crystallization under confinement can be substantially different from the bulk. This can have important technological applications for the design of polymeric nanofibers with tunable mechanical strength, processability and optical clarity. However, the question of how, why and when polymers crystallize under confinement is not fully answered. Important studies of polymer crystallization confined to droplets and within the spherical nanodomains of block copolymers emphasized the interplay between heterogeneous and homogeneous nucleation. Herein we report on recent studies1-5 of polymer crystallization under hard confinement provided by model self-ordered AAO nanopores. Important open questions here are on the type of nucleation (homogeneous vs. heterogeneous), the size of critical nucleus, the crystal orientation and the possibility to control the overall crystallinity. Providing answers to these questions is of technological relevance for the understanding of nanocomposites containing semicrystalline polymers. In collaboration with Y. Suzuki, H. Duran, M. Steinhart, H.-J. Butt.

  9. Confinement and the Pomeron

    SciTech Connect

    White, A.R.

    1989-09-25

    The importance of confinement for obtaining a unitary high-energy limit for QCD is discussed. Minijets'' are argued to build up non-unitary behavior{endash}when k{sub T} {gt} {Lambda} is imposed. For minijets to mix with low k{sub T} Pomeron Field Theory describing confinement, and give consistent asymptotic behavior, new quarks'' must enter the theory above the minijet transverse momentum scale. The Critical Pomeron is the resulting high-energy limit. 22 refs.

  10. Fusion, magnetic confinement

    SciTech Connect

    Berk, H.L.

    1992-08-06

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or {sup 3}He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied.

  11. Enzymatic reactions in confined environments

    NASA Astrophysics Data System (ADS)

    Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter

    2016-05-01

    Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.

  12. Enzymatic reactions in confined environments.

    PubMed

    Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter

    2016-05-05

    Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.

  13. Simulations of Enhanced Confinement

    NASA Astrophysics Data System (ADS)

    Dorland, W.; Kotschenreuther, M.; Liu, Q. P.; Jones, C. S.; Beer, M. A.; Hammett, G. W.

    1996-11-01

    Most existing tokamaks routinely achieve enhanced confinement regimes. Designs for new, larger tokamaks therefore are typically predicated upon reliable enhanced confinement performance. However, most enhanced confinement regimes rely (to some degree) upon sheared E×B flows to stabilize the turbulence that otherwise limits the confinement. For example, the pedestal H-mode transport barrier is typically attributed to shear stabilization [Biglari, Diamond and Terry, Phys. Fl. B, 2 1 (1990)]. Unfortunately, it is easily shown that sheared E×B stabilization of microinstabilities such as the ITG mode does not scale favorably with machine size. Here, using nonlinear gyrofluid simulations in general geometry, we attempt to quantify the confinement enhancement that can be expected from velocity shear stabilization for conventional reactor plasmas. We also consider other microinstability stabilization mechanisms(See related presentations by Beer, Kotschenreuther, Manickam, and Ramos, this conference.) (strong density peaking, Shafranov shift stabilization, dots) and unconventional reactor configurations.^2 Experimental datasets from JET, DIII-D, C-Mod and TFTR are analyzed, and ITER operation is considered.

  14. Improved confinement in JET hybrid discharges

    NASA Astrophysics Data System (ADS)

    Hobirk, J.; Imbeaux, F.; Crisanti, F.; Buratti, P.; Challis, C. D.; Joffrin, E.; Alper, B.; Andrew, Y.; Beaumont, P.; Beurskens, M.; Boboc, A.; Botrugno, A.; Brix, M.; Calabro', G.; Coffey, I.; Conroy, S.; Ford, O.; Frigione, D.; Garcia, J.; Giroud, C.; Hawkes, N. C.; Howell, D.; Jenkins, I.; Keeling, D.; Kempenaars, M.; Leggate, H.; Lotte, P.; de la Luna, E.; Maddison, G. P.; Mantica, P.; Mazzotta, C.; McDonald, D. C.; Meigs, A.; Nunes, I.; Rachlew, E.; Rimini, F.; Schneider, M.; Sips, A. C. C.; Stober, J. K.; Studholme, W.; Tala, T.; Tsalas, M.; Voitsekhovitch, I.; de Vries, P. C.; EFDA contributors, JET

    2012-09-01

    A new technique has been developed to produce plasmas with improved confinement relative to the H98,y2 scaling law (ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Database ITER Physics Basics Editors and ITER EDA 1999 Nucl. Fusion 39 2175) on the JET tokamak. In the mid-size tokamaks ASDEX upgrade and DIII-D heating during the current formation is used to produce a flat q-profile with a minimum close to 1. On JET this technique leads to q-profiles with similar minimum q but opposite to the other tokamaks not to an improved confinement state. By changing the method utilizing a faster current ramp with temporary higher current than in the flattop (current overshoot) plasmas with improved confinement (H98,y2 = 1.35) and good stability (βN ≈ 3) have been produced and extended to many confinement times only limited by technical constraints. The increase in H98,y2-factor is stronger with more heating power as can be seen in a power scan. The q-profile development during the high power phase in JET is reproduced by current diffusion calculated by TRANSP and CRONOS. Therefore the modifications produced by the current overshoot disappear quickly from the edge but the confinement improvement lasts longer, in some cases up to the end of the heating phase.

  15. Confined Brownian ratchets

    NASA Astrophysics Data System (ADS)

    Malgaretti, Paolo; Pagonabarraga, Ignacio; Rubi, J. Miguel

    2013-05-01

    We analyze the dynamics of Brownian ratchets in a confined environment. The motion of the particles is described by a Fick-Jakobs kinetic equation in which the presence of boundaries is modeled by means of an entropic potential. The cases of a flashing ratchet, a two-state model, and a ratchet under the influence of a temperature gradient are analyzed in detail. We show the emergence of a strong cooperativity between the inherent rectification of the ratchet mechanism and the entropic bias of the fluctuations caused by spatial confinement. Net particle transport may take place in situations where none of those mechanisms leads to rectification when acting individually. The combined rectification mechanisms may lead to bidirectional transport and to new routes to segregation phenomena. Confined Brownian ratchets could be used to control transport in mesostructures and to engineer new and more efficient devices for transport at the nanoscale.

  16. Interfacial electrofluidics in confined systems

    NASA Astrophysics Data System (ADS)

    Tang, Biao; Groenewold, Jan; Zhou, Min; Hayes, Robert A.; Zhou, Guofu (G. F.)

    2016-05-01

    Electrofluidics is a versatile principle that can be used for high speed actuation of liquid interfaces. In most of the applications, the fundamental mechanism of electro-capillary instability plays a crucial role, yet it’s potential richness in confined fluidic layers has not been well addressed. Electrofluidic displays which are comprised of thin pixelated colored films in a range of architectures are excellent systems for studying such phenomena. In this study we show theoretically and experimentally that confinement leads to the generation of a cascade of voltage dependent modes as a result of the electro-capillary instability. In the course of reconciling theory with our experimental data we have observed a number of previously unreported phenomena such as a significant induction time (several milliseconds) prior to film rupture as well as a rupture location not corresponding to the minimum electric field strength in the case of the standard convex water/oil interface used in working devices. These findings are broadly applicable to a wide range of switchable electrofluidic applications and devices having confined liquid films.

  17. Interfacial electrofluidics in confined systems

    PubMed Central

    Tang, Biao; Groenewold, Jan; Zhou, Min; Hayes, Robert A.; Zhou, Guofu (G.F.)

    2016-01-01

    Electrofluidics is a versatile principle that can be used for high speed actuation of liquid interfaces. In most of the applications, the fundamental mechanism of electro-capillary instability plays a crucial role, yet it’s potential richness in confined fluidic layers has not been well addressed. Electrofluidic displays which are comprised of thin pixelated colored films in a range of architectures are excellent systems for studying such phenomena. In this study we show theoretically and experimentally that confinement leads to the generation of a cascade of voltage dependent modes as a result of the electro-capillary instability. In the course of reconciling theory with our experimental data we have observed a number of previously unreported phenomena such as a significant induction time (several milliseconds) prior to film rupture as well as a rupture location not corresponding to the minimum electric field strength in the case of the standard convex water/oil interface used in working devices. These findings are broadly applicable to a wide range of switchable electrofluidic applications and devices having confined liquid films. PMID:27221211

  18. The Physics Basis of ITER Confinement

    SciTech Connect

    Wagner, F.

    2009-02-19

    ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode--the preferred confinement regime of ITER.

  19. Comments on experimental results of energy confinement of tokamak plasmas

    SciTech Connect

    Chu, T.K.

    1989-04-01

    The results of energy-confinement experiments on steady-state tokamak plasmas are examined. For plasmas with auxiliary heating, an analysis based on the heat diffusion equation is used to define heat confinement time (the incremental energy confinement time). For ohmically sustained plasmas, experiments show that the onset of the saturation regime of energy confinement, marfeing, detachment, and disruption are marked by distinct values of the parameter /bar n//sub e///bar j/. The confinement results of the two types of experiments can be described by a single surface in 3-dimensional space spanned by the plasma energy, the heating power, and the plasma density: the incremental energy confinement time /tau//sub inc/ = ..delta..W/..delta..P is the correct concept for describing results of heat confinement in a heating experiment; the commonly used energy confinement time defined by /tau//sub E/ = W/P is not. A further examination shows that the change of edge parameters, as characterized by the change of the effective collision frequency ..nu../sub e/*, governs the change of confinement properties. The totality of the results of tokamak experiments on energy confinement appears to support a hypothesis that energy transport is determined by the preservation of the pressure gradient scale length. 70 refs., 6 figs., 1 tab.

  20. Confined Space Imager (CSI) Software

    SciTech Connect

    Karelilz, David

    2013-07-03

    The software provides real-time image capture, enhancement, and display, and sensor control for the Confined Space Imager (CSI) sensor system The software captures images over a Cameralink connection and provides the following image enhancements: camera pixel to pixel non-uniformity correction, optical distortion correction, image registration and averaging, and illumination non-uniformity correction. The software communicates with the custom CSI hardware over USB to control sensor parameters and is capable of saving enhanced sensor images to an external USB drive. The software provides sensor control, image capture, enhancement, and display for the CSI sensor system. It is designed to work with the custom hardware.

  1. STUDY OF THE THREE-DIMENSIONAL CORONAL MAGNETIC FIELD OF ACTIVE REGION 11117 AROUND THE TIME OF A CONFINED FLARE USING A DATA-DRIVEN CESE-MHD MODEL

    SciTech Connect

    Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2012-11-10

    We apply a data-driven magnetohydrodynamics (MHD) model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare that occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic field evolution and to consider a simplified solar atomsphere with finite plasma {beta}. Magnetic vector-field data derived from the observations at the photosphere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria based on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory around the time of the flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly, which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most cases. The magnetic configuration changes very little during the studied time interval of 2 hr. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare by {approx}10{sup 30} erg, which seems to be adequate in providing the energy budget of a minor C-class confined flare.

  2. Study of the Three-dimensional Coronal Magnetic Field of Active Region 11117 around the Time of a Confined Flare Using a Data-Driven CESE-MHD Model

    NASA Astrophysics Data System (ADS)

    Jiang, Chaowei; Feng, Xueshang; Wu, S. T.; Hu, Qiang

    2012-11-01

    We apply a data-driven magnetohydrodynamics (MHD) model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare that occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic field evolution and to consider a simplified solar atomsphere with finite plasma β. Magnetic vector-field data derived from the observations at the photosphere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria based on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory around the time of the flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly, which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most cases. The magnetic configuration changes very little during the studied time interval of 2 hr. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare by ~1030 erg, which seems to be adequate in providing the energy budget of a minor C-class confined flare.

  3. Totally confined explosive welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J. (Inventor)

    1978-01-01

    The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.

  4. Freezing in confined geometries

    NASA Technical Reports Server (NTRS)

    Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.

  5. Energy confinement in tokamaks

    SciTech Connect

    Sugihara, M.; Singer, C.

    1986-08-01

    A straightforward generalization is made of the ohmic heating energy confinement scalings of Pfeiffer and Waltz and Blackwell et. al. The resulting model is systematically calibrated to published data from limiter tokamaks with ohmic, electron cyclotron, and neutral beam heating. With considerably fewer explicitly adjustable free parameters, this model appears to give a better fit to the available data for limiter discharges than the combined ohmic/auxiliary heating model of Goldston.

  6. Classical confined particles

    NASA Technical Reports Server (NTRS)

    Horzela, Andrzej; Kapuscik, Edward

    1993-01-01

    An alternative picture of classical many body mechanics is proposed. In this picture particles possess individual kinematics but are deprived from individual dynamics. Dynamics exists only for the many particle system as a whole. The theory is complete and allows to determine the trajectories of each particle. It is proposed to use our picture as a classical prototype for a realistic theory of confined particles.

  7. Quark confinement dynamics

    SciTech Connect

    Allen, T.J.; Olsson, M.G.; Veseli, S.; Williams, K. |

    1997-05-01

    Starting from Buchm{umlt u}ller{close_quote}s observation that a chromoelectric flux tube meson will exhibit only the Thomas-type spin-orbit interaction, we show that a model built upon the related assumption that a quark feels only a constant radial chromoelectric field in its rest frame implies a complete relativistic effective Hamiltonian that can be written explicitly in terms of quark canonical variables. The model yields linear Regge trajectories and exhibits some similarities to scalar confinement, but with the advantage of being more closely linked to QCD. {copyright} {ital 1997} {ital The American Physical Society}

  8. Confinement Vessel Dynamic Analysis

    SciTech Connect

    R. Robert Stevens; Stephen P. Rojas

    1999-08-01

    A series of hydrodynamic and structural analyses of a spherical confinement vessel has been performed. The analyses used a hydrodynamic code to estimate the dynamic blast pressures at the vessel's internal surfaces caused by the detonation of a mass of high explosive, then used those blast pressures as applied loads in an explicit finite element model to simulate the vessel's structural response. Numerous load cases were considered. Particular attention was paid to the bolted port connections and the O-ring pressure seals. The analysis methods and results are discussed, and comparisons to experimental results are made.

  9. Confinement Contains Condensates

    SciTech Connect

    Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.

    2012-03-12

    Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.

  10. An analysis of early-stage IL-2 capture times in populations of T cells diffusively interacting in a confined environment.

    PubMed

    Labowsky, M

    2016-12-21

    This numerical analysis examines early-stage Interlukin-2 (IL-2) capture in large populations of secreting T helper (Th) and absorbing T regulatory (Treg) cells in an attempt to provide rational guidelines for when diffusive interactions can affect the Th autocrine cycle, as reflected in capture times. Autocrine and paracrine capture is calculated over a wide range of conditions: the mix of cells in a population; cell size and spacing; antigen activated IL-2 secretion and Th receptor expression rates; receptor dissociation constant; and number of resting Treg receptors. Correlations for quickly estimating IL-2 capture over these conditions are provided. This study suggests that a typical Treg can scavenge a significant amount of IL-2 without affecting autocrine capture by the Th. As a result, Treg influence on autocrine capture is shorter-ranged than previously reported. It is conjectured that high early-stage paracrine relative to autocrine capture leads to faster receptor enhancement for a Treg than a Th. The resulting enhancement time gap is considerably longer and, thus, diffusive suppression more likely, for a weakly- as opposed to strongly-activated Th. The methodology can be extended to later-stage capture to confirm this conjecture and to diffusive interactions in other cell-type populations.

  11. Quark Confinement and Strings

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerardus

    QCD was proposed as a theory for the strong interactions long before we had any idea as to how it could be that its fundamental constituents, the quarks, are never seen as physical particles. Massless gluons also do not exist as free particles. How can this be explained? The first indication that this question had to be considered in connection with the topological structure of a gauge theory came when Nielsen and Olesen observed the occurrence of stable magnetic vortex structures [1] in the Abelian Higgs model. Expanding on such ideas, the magnetic monopole solution was found [2]. Other roundabout attempts to understand confinement involve instantons. Today, we have better interpretations of these topological structures, including a general picture of the way they do lead to unbound potentials confining quarks. It is clear that these unbound potentials can be ascribed to a string-like structure of the vortices formed by the QCD field lines. Can string theory be used to analyze QCD? Many researchers think so. The leading expert on this is Sacha Polyakov. In his instructive account he adds how he experienced the course of events in Gauge Theory, emphasizing the fact that quite a few discoveries often ascribed to researchers from the West, actually were made independently by scientists from the Soviet Union…

  12. A novel method for modeling the neutron time of flight (nTOF) detector response in current mode to inertial confinement fusion experiments.

    SciTech Connect

    Nelson, Alan J.; Cooper, Gary Wayne; Ruiz, Carlos L.; Chandler, Gordon Andrew; Fehl, David Lee; Hahn, Kelly Denise; Leeper, Ramon Joe; Smelser, Ruth Marie; Torres, Jose A.

    2013-09-01

    There are several machines in this country that produce short bursts of neutrons for various applications. A few examples are the Zmachine, operated by Sandia National Laboratories in Albuquerque, NM; the OMEGA Laser Facility at the University of Rochester in Rochester, NY; and the National Ignition Facility (NIF) operated by the Department of Energy at Lawrence Livermore National Laboratory in Livermore, California. They all incorporate neutron time of flight (nTOF) detectors which measure neutron yield, and the shapes of the waveforms from these detectors contain germane information about the plasma conditions that produce the neutrons. However, the signals can also be %E2%80%9Cclouded%E2%80%9D by a certain fraction of neutrons that scatter off structural components and also arrive at the detectors, thereby making analysis of the plasma conditions more difficult. These detectors operate in current mode - i.e., they have no discrimination, and all the photomultiplier anode charges are integrated rather than counted individually as they are in single event counting. Up to now, there has not been a method for modeling an nTOF detector operating in current mode. MCNPPoliMiwas developed in 2002 to simulate neutron and gammaray detection in a plastic scintillator, which produces a collision data output table about each neutron and photon interaction occurring within the scintillator; however, the postprocessing code which accompanies MCNPPoliMi assumes a detector operating in singleevent counting mode and not current mode. Therefore, the idea for this work had been born: could a new postprocessing code be written to simulate an nTOF detector operating in current mode? And if so, could this process be used to address such issues as the impact of neutron scattering on the primary signal? Also, could it possibly even identify sources of scattering (i.e., structural materials) that

  13. Cancer cell motility: lessons from migration in confined spaces

    PubMed Central

    Paul, Colin D.; Mistriotis, Panagiotis; Konstantopoulos, Konstantinos

    2017-01-01

    Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis. PMID:27909339

  14. Properties of radio-frequency heated argon confined uranium plasmas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.

  15. Cancer cell motility: lessons from migration in confined spaces.

    PubMed

    Paul, Colin D; Mistriotis, Panagiotis; Konstantopoulos, Konstantinos

    2017-02-01

    Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis.

  16. Electrons Confined with an Axially Symmetric Magnetic Mirror Field

    SciTech Connect

    Higaki, H.; Ito, K.; Kira, K.; Okamoto, H.

    2008-08-08

    Low energy non-neutral electron plasmas were confined with an axially symmetric magnetic mirror field and an electrostatic potential to investigate the basic confinement properties of a simple magnetic mirror trap. As expected the confinement time became longer as a function of the mirror ratio. The axial electrostatic oscillations of a confined electron plasma were also observed. Obtained results suggested an improved scheme to accumulate low energy charged particles with the use of a magnetic mirror field, which would enable the investigation of electron-positron plasmas.

  17. Amoeboid motion in confined geometry

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Thiébaud, M.; Hu, W.-F.; Farutin, A.; Rafaï, S.; Lai, M.-C.; Peyla, P.; Misbah, C.

    2015-11-01

    Many eukaryotic cells undergo frequent shape changes (described as amoeboid motion) that enable them to move forward. We investigate the effect of confinement on a minimal model of amoeboid swimmer. A complex picture emerges: (i) The swimmer's nature (i.e., either pusher or puller) can be modified by confinement, thus suggesting that this is not an intrinsic property of the swimmer. This swimming nature transition stems from intricate internal degrees of freedom of membrane deformation. (ii) The swimming speed might increase with increasing confinement before decreasing again for stronger confinements. (iii) A straight amoeoboid swimmer's trajectory in the channel can become unstable, and ample lateral excursions of the swimmer prevail. This happens for both pusher- and puller-type swimmers. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. In this study, we combine numerical and theoretical analyses.

  18. Amoeboid motion in confined geometry.

    PubMed

    Wu, Hao; Thiébaud, M; Hu, W-F; Farutin, A; Rafaï, S; Lai, M-C; Peyla, P; Misbah, C

    2015-01-01

    Many eukaryotic cells undergo frequent shape changes (described as amoeboid motion) that enable them to move forward. We investigate the effect of confinement on a minimal model of amoeboid swimmer. A complex picture emerges: (i) The swimmer's nature (i.e., either pusher or puller) can be modified by confinement, thus suggesting that this is not an intrinsic property of the swimmer. This swimming nature transition stems from intricate internal degrees of freedom of membrane deformation. (ii) The swimming speed might increase with increasing confinement before decreasing again for stronger confinements. (iii) A straight amoeoboid swimmer's trajectory in the channel can become unstable, and ample lateral excursions of the swimmer prevail. This happens for both pusher- and puller-type swimmers. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. In this study, we combine numerical and theoretical analyses.

  19. Home versus hospital confinement

    PubMed Central

    Barry, C. N.

    1980-01-01

    The case for hospital rather than home delivery has been powerfully argued, especially in and since the Report of the Peel Committee. Nevertheless, evidence of comparison with other countries, notably the Netherlands, suggests the choice is not necessarily simple. Some general practitioner units are now reporting perinatal mortality rates which are consistently lower than those of specialist units, and recent statistical analyses suggest that the presence of more high risk cases in consultant units does not explain this. The only big controlled home-versus-hospital trial did not lead to a significantly lower perinatal mortality rate in the hospital group. The onus of proof now seems to lie with those who advocate 100 per cent hospital confinement. PMID:7373581

  20. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition

    SciTech Connect

    Shimaoka, T. Kaneko, J. H.; Tsubota, M.; Arikawa, Y.; Nagai, T.; Kojima, S.; Abe, Y.; Sakata, S.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Isobe, M.; Sato, Y.; Chayahara, A.; Umezawa, H.; Shikata, S.

    2015-05-15

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10{sup 7} cm/s and 1.0 ± 0.3 × 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5–1 keV and neutron yield of more than 10{sup 9} neutrons/shot.

  1. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition.

    PubMed

    Shimaoka, T; Kaneko, J H; Arikawa, Y; Isobe, M; Sato, Y; Tsubota, M; Nagai, T; Kojima, S; Abe, Y; Sakata, S; Fujioka, S; Nakai, M; Shiraga, H; Azechi, H; Chayahara, A; Umezawa, H; Shikata, S

    2015-05-01

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot.

  2. Confined Selective Withdrawal

    NASA Astrophysics Data System (ADS)

    Evangelio, Alvaro; Campo-Cortes, Francisco; Gordillo, Jose Manuel

    2014-11-01

    It is well known that the controlled production of monodisperse simple and composite emulsions possesses uncountable applications in medicine, pharmacy, materials science and industry. Here we present both experiments and slender-body theory regarding the generation of simple emulsions using a configuration that we have called Confined Selective Withdrawal, since it is an improved configuration of the classical Selective Withdrawal. We consider two different situations, namely, the cases when the outer flow Reynolds number is high and low, respectively. Several geometrical configurations and a wide range of viscosity ratios are analyzed so that the physics behind the phenomenon can be fully understood. In addition, we present both experiments and theory regarding the generation of composite emulsions. This phenomenon is only feasible when the outer flow Reynolds number is low enough. In this case, we propose a more complex theory which requires the simultaneous resolution of two interfaces in order to predict the shape of the jet and the sizes of the drops formed. The excellent agreement between our slender-body approximation and the experimental evidence fully validates our theories.

  3. Inertial confinement fusion

    SciTech Connect

    Powers, L.; Condouris, R.; Kotowski, M.; Murphy, P.W.

    1992-01-01

    This issue of the ICF Quarterly contains seven articles that describe recent progress in Lawrence Livermore National Laboratory's ICF program. The Department of Energy recently initiated an effort to design a 1--2 MJ glass laser, the proposed National Ignition Facility (NIF). These articles span various aspects of a program which is aimed at moving forward toward such a facility by continuing to use the Nova laser to gain understanding of NIF-relevant target physics, by developing concepts for an NIF laser driver, and by envisioning a variety of applications for larger ICF facilities. This report discusses research on the following topics: Stimulated Rotational Raman Scattering in Nitrogen; A Maxwell Equation Solver in LASNEX for the Simulation of Moderately Intense Ultrashort Pulse Experiments; Measurements of Radial Heat-Wave Propagation in Laser-Produced Plasmas; Laser-Seeded Modulation Growth on Directly Driven Foils; Stimulated Raman Scattering in Large-Aperture, High-Fluence Frequency-Conversion Crystals; Fission Product Hazard Reduction Using Inertial Fusion Energy; Use of Inertial Confinement Fusion for Nuclear Weapons Effects Simulations.

  4. Psychopathological effects of solitary confinement.

    PubMed

    Grassian, S

    1983-11-01

    Psychopathological reactions to solitary confinement were extensively described by nineteenth-century German clinicians. In the United States there have been several legal challenges to the use of solitary confinement, based on allegations that it may have serious psychiatric consequences. The recent medical literature on this subject has been scarce. The author describes psychiatric symptoms that appeared in 14 inmates exposed to periods of increased social isolation and sensory restriction in solitary confinement and asserts that these symptoms form a major, clinically distinguishable psychiatric syndrome.

  5. Spatial confinement of muonium atoms

    NASA Astrophysics Data System (ADS)

    Khaw, K. S.; Antognini, A.; Prokscha, T.; Kirch, K.; Liszkay, L.; Salman, Z.; Crivelli, P.

    2016-08-01

    We report the achievement of spatial confinement of muonium atoms (the bound state of a positive muon and an electron). Muonium emitted into a vacuum from mesoporous silica reflects between two SiO2 confining surfaces separated by 1 mm. From the data, one can extract that the reflection probability on the confining surfaces kept at 100 K is about 90% and the reflection process is well described by a cosine law. This technique enables new experiments with this exotic atomic system and is a very important step towards a measurement of the 1 S -2 S transition frequency using continuous-wave laser spectroscopy.

  6. Confinement scaling and ignition in tokamaks

    SciTech Connect

    Perkins, F.W.; Sun, Y.C.

    1985-10-01

    A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 10/sup 15/ cm/sup -3/, high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition.

  7. Assessing confinement in coastal lagoons.

    PubMed

    Canu, Donata Melaku; Solidoro, Cosimo; Umgiesser, Georg; Cucco, Andrea; Ferrarin, Christian

    2012-11-01

    Measures of transport scale in aquatic systems can contribute to the formulation of definitions of indicators of the system's ecological properties. This paper addresses confinement, a specific transport scale proposed by biological scientists as a parameter that can capture and synthesize the principal properties that determine the spatial structure of biological communities in transitional environments. Currently, there is no direct experimental measure of confinement. In this study, a methodology based on the accumulation rate within a lagoon of a passive tracer of marine origin is proposed, the influences of different factors in the calculation of confinement are analyzed, and general recommendations are derived. In particular, we analyze the spatial and the temporal variability of confinement and its sensitivity to the seasonal variability of climatic forcing, the inputs from rivers and the parameterization of the tidal exchanges. The Lagoon of Venice is used as a case study.

  8. Alternative approaches to plasma confinement

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1978-01-01

    The paper discusses 20 plasma confinement schemes each representing an alternative to the tokamak fusion reactor. Attention is given to: (1) tokamak-like devices (TORMAC, Topolotron, and the Extrap concept), (2) stellarator-like devices (Torsatron and twisted-coil stellarators), (3) mirror machines (Astron and reversed-field devices, the 2XII B experiment, laser-heated solenoids, the LITE experiment, the Kaktus-Surmac concept), (4) bumpy tori (hot electron bumpy torus, toroidal minimum-B configurations), (5) electrostatically assisted confinement (electrostatically stuffed cusps and mirrors, electrostatically assisted toroidal confinement), (6) the Migma concept, and (7) wall-confined plasmas. The plasma parameters of the devices are presented and the advantages and disadvantages of each are listed.

  9. Tandem mirror plasma confinement apparatus

    DOEpatents

    Fowler, T. Kenneth

    1978-11-14

    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  10. Solvent cavitation under solvophobic confinement

    NASA Astrophysics Data System (ADS)

    Ashbaugh, Henry S.

    2013-08-01

    The stability of liquids under solvophobic confinement can tip in favor of the vapor phase, nucleating a liquid-to-vapor phase transition that induces attractive forces between confining surfaces. In the case of water adjacent to hydrophobic surfaces, experimental and theoretical evidence support confinement-mediated evaporation stabilization of biomolecular and colloidal assemblies. The macroscopic thermodynamic theory of cavitation under confinement establishes the connection between the size of the confining surfaces, interfacial free energies, and bulk solvent pressure with the critical evaporation separation and interfacial forces. While molecular simulations have confirmed the broad theoretical trends, a quantitative comparison based on independent measurements of the interfacial free energies and liquid-vapor coexistence properties has, to the best of our knowledge, not yet been performed. To overcome the challenges of simulating a large number of systems to validate scaling predictions for a three-dimensional fluid, we simulate both the forces and liquid-vapor coexistence properties of a two-dimensional Lennard-Jones fluid confined between solvophobic plates over a range of plate sizes and reservoir pressures. Our simulations quantitatively agree with theoretical predictions for solvent-mediated forces and critical evaporation separations once the length dependence of the solvation free energy of an individual confining plate is taken into account. The effective solid-liquid line tension length dependence results from molecular scale correlations for solvating microscopic plates and asymptotically decays to the macroscopic value for plates longer than 150 solvent diameters. The success of the macroscopic thermodynamic theory at describing two-dimensional liquids suggests application to surfactant monolayers to experimentally confirm confinement-mediated cavitation.

  11. Alternative approaches to plasma confinement

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1977-01-01

    The potential applications of fusion reactors, the desirable properties of reactors intended for various applications, and the limitations of the Tokamak concept are discussed. The principles and characteristics of 20 distinct alternative confinement concepts are described, each of which may be an alternative to the Tokamak. The devices are classed as Tokamak-like, stellarator-like, mirror machines, bumpy tori, electrostatically assisted, migma concept, and wall-confined plasma.

  12. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D

    SciTech Connect

    Grierson, B. A. Nazikian, R. M.; Solomon, W. M.; Burrell, K. H.; Garofalo, A. M.; Belli, E. A.; Staebler, G. M.; Evans, T. E.; Smith, S. P.; Chrobak, C.; Fenstermacher, M. E.; McKee, G. R.; Orlov, D. M.; Chrystal, C.

    2015-05-15

    Impurity transport in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP), ELM-suppression, and QH-mode, the confinement time of fluorine (Z = 9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection, the impurity particle confinement time compared to the energy confinement time is in the range of τ{sub p}/τ{sub e}≈2−3. In QH-mode operation, the impurity confinement time is shown to be smaller for intense, coherent magnetic, and density fluctuations of the edge harmonic oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma, the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius, the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2–3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient is higher inside of ρ=0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.

  13. PREFACE: Water in confined geometries

    NASA Astrophysics Data System (ADS)

    Rovere, Mauro

    2004-11-01

    The study of water confined in complex systems in solid or gel phases and/or in contact with macromolecules is relevant to many important processes ranging from industrial applications such as catalysis and soil chemistry, to biological processes such as protein folding or ionic transport in membranes. Thermodynamics, phase behaviour and the molecular mobility of water have been observed to change upon confinement depending on the properties of the substrate. In particular, polar substrates perturb the hydrogen bond network of water, inducing large changes in the properties upon freezing. Understanding how the connected random hydrogen bond network of bulk water is modified when water is confined in small cavities inside a substrate material is very important for studies of stability and the enzymatic activity of proteins, oil recovery or heterogeneous catalysis, where water-substrate interactions play a fundamental role. The modifications of the short-range order in the liquid depend on the nature of the water-substrate interaction, hydrophilic or hydrophobic, as well as on its spatial range and on the geometry of the substrate. Despite extensive study, both experimentally and by computer simulation, there remain a number of open problems. In the many experimental studies of confined water, those performed on water in Vycor are of particular interest for computer simulation and theoretical studies since Vycor is a porous silica glass characterized by a quite sharp distribution of pore sizes and a strong capability to absorb water. It can be considered as a good candidate for studying the general behaviour of water in hydrophilic nanopores. But there there have been a number of studies of water confined in more complex substrates, where the interpretation of experiments and computer simulation is more difficult, such as in zeolites or in aerogels or in contact with membranes. Of the many problems to consider we can mention the study of supercooled water. It is

  14. Two-dimensionally confined topological edge states in photonic crystals

    NASA Astrophysics Data System (ADS)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-11-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  15. Confined separated-swirling flows in diffusing ducts

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.

    1987-01-01

    The objective is to establish a detailed experimental data base for evaluation of Navier-Stokes codes for confined separated flows in diffusing s-ducts. The computational thrusts include the following: (1) extension and validation of the LeRC parabolized Navier-Stokes solver, PEPSIG, into the separated flow regime using 'flare' type approximations; (2) evaluation and extensions of state-of-the-art turbulence models for confined separated flow with and without swirl; and (3) evaluation and validation of LeRC time marching 3-D Navier-Stokes code, PROTEUS, into confined separate flow regime. Various aspects of the study are presented in viewgraph form.

  16. Beam ion confinement on NSTX-U

    NASA Astrophysics Data System (ADS)

    Liu, D.; Heidbrink, W. W.; Hao, G. Z.; Podesta, M.; Darrow, D. S.; Fredrickson, E. D.

    2016-10-01

    A second and more tangential neutral beam line is a major upgrade component of the National Spherical Torus Experiment - Upgrade (NSTX-U) with the purpose of improving neutral beam current drive efficiency and providing more flexibility in current/pressure profile control. Good beam ion confinement is essential to achieve the anticipated improvements in performance. In the planned beam ion confinement experiment, various short and long (relative to fast ion slowing-down time) neutral beam (NB) pulses from six neutral beam sources will be injected into center-stack limited L-mode plasmas to characterize the beam ion confinement and distribution function produced by the new and the existing NBI lines. The neutron rate decay after the turn-off of short NB pulses will be used to estimate the beam ion confinement time and to investigate its dependence on NB source/geometry, injection energy, and plasma current. The tangential and vertical Fast-Ion D-Alpha (FIDA) diagnostics and multi-view Solid State Neutral Particle Analyzer (SSNPA) arrays will be used to measure beam ion slowing-down distribution function and spatial profile during the injection of relatively long NB pulses. Beam ion prompt losses will be monitored with a scintillator Fast Lost Ion Probe (sFLIP) diagnostic. The experimental data and comparisons with classical predictions from NUBEAM modeling will be presented. Work supported by U.S. DOE DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.

  17. From Pauli's birthday to 'Confinement Resonances' - a potted history of Quantum Confinement

    NASA Astrophysics Data System (ADS)

    Connerade, J. P.

    2013-06-01

    Quantum Confinement is in some sense a new subject. International meetings dedicated to Quantum Confinement have occurred only recently in Mexico City (the first in 2010 and the second, in September 2011). However, at least in principle, the subject has existed since a very long time. Surprisingly perhaps, it lay dormant for many years, for want of suitable experimental examples. However, when one looks carefully at its origin, it turns out to have a long and distinguished history. In fact, the problem of quantum confinement raises a number of very interesting issues concerning boundary conditions in elementary quantum mechanics and how they should be applied to real problems. Some of these issues were missed in the earliest papers, but are implicit in the structure of quantum mechanics, and lead to the notion of Confinement Resonances, the existence of which was predicted theoretically more than ten years ago. Although, for several reasons, these resonances remained elusive for a very long time, they have now been observed experimentally, which puts the whole subject in much better shape and, together with the advent of metallofullerenes, has contributed to its revival.

  18. Tgermonuclear Ignition in Inertial Confinement Fusion and Comparison with Magnetic Confinement

    SciTech Connect

    Betti, R.; Chang, P.Y.; Spears, B.K.; Anderson, K.S.; Edwards, J.; Fatenejad, M.; Lindl, J.D.; McCrory, R.L.; Nora, R.; Shvarts, D.

    2010-04-23

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptau ~ 1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptau ~ 1 atm s. Since OMEGA implosions are relatively cold (T ~ 2 keV), their overall ignition parameter chi ~ 0.02–0.03 is ~5X lower than in JET (chi ~ 0.13), where the average temperature is about 10 keV.

  19. Single-molecule mobility in confined and crowded femtoliter chambers

    SciTech Connect

    Collier, Pat; Fowlkes, Jason Davidson

    2013-01-01

    The effects of increased crowding and confinement on the mobility of individual fluorescent molecules were studied using Fluorescence Correlation Spectroscopy (FCS) in a microfluidic device with sealable femtoliter-volume chambers, and compared to three dimensional stochastic Monte Carlo simulations. When crowding and the degree of confinement were increased simultaneously, extended correlation times of fluorescent intensity fluctuations were observed with FCS compared to varying either crowding or confinement alone. Both experimental data and simulation suggest these extended correlation times were due to increased fluorophore adsorption-desorption events at the chamber lid in the presence of crowders. The data in increasingly confined and crowded chambers described here captures some of the salient features of crowding in cell-like environments.

  20. DNA Confined in Nanochannels and Nanoslits

    NASA Astrophysics Data System (ADS)

    Tree, Douglas R.

    It has become increasingly apparent in recent years that next-generation sequencing (NGS) has a blind spot for large scale genomic variation, which is crucial for understanding the genotype-phenotype relationship. Genomic mapping methods attempt to overcome the weakesses of NGS by providing a coarse-grained map of the distances between restriction sites to aid in sequence assembly. From such methods, one hopes to realize fast and inexpensive de novo sequencing of human and plant genomes. One of the most promising methods for genomic mapping involves placing DNA inside a device only a few dozen nanometers wide called a nanochannel. A nanochannel stretches the DNA so that the distance between fluorescently labeled restriction sites can be measured en route to obtaining an accurate genome map. Unfortunately for those who wish to design devices, the physics of how DNA stretches when confined in a nanochannel is still an active area of research. Indeed, despite decades old theories from polymer physics regarding weakly and strongly stretched polymers, seminal experiments in the mid-2000s have gone unexplained until very recently. With a goal of creating a realistic engineering model of DNA in nanochannels, this dissertation addresses a number of important outstanding research topics in this area. We first discuss the physics of dilute solutions of DNA in free solution, which show distinctive behavior due to the stiff nature of the polymer. We then turn our attention to the equilibrium regimes of confined DNA and explore the effects of stiff chains and weak excluded volume on the confinement free energy and polymer extension. We also examine dynamic properties such as the diffusion coefficient and the characteristic relaxation time. Finally, we discuss a sister problem related to DNA confined in nanoslits, which shares much of the same physics as DNA confined in channels. Having done this, we find ourselves with a well-parameterized wormlike chain model that is

  1. Semiflexible chains in confined spaces

    NASA Astrophysics Data System (ADS)

    Morrison, Greg; Thirumalai, D.

    2009-01-01

    We develop an analytical method for studying the properties of a noninteracting wormlike chain (WLC) in confined geometries. The mean-field-like theory replaces the rigid constraints of confinement with average constraints, thus allowing us to develop a tractable method for treating a WLC wrapped on the surface of a sphere, and fully encapsulated within it. The efficacy of the theory is established by reproducing the exact correlation functions for a WLC confined to the surface of a sphere. In addition, the coefficients in the free energy are exactly calculated. We also describe the behavior of a surface-confined chain under external tension that is relevant for single molecule experiments on histone-DNA complexes. The force-extension curves display spatial oscillations, and the extension of the chain, whose maximum value is bounded by the sphere diameter, scales as f-1 at large forces, in contrast to the unconfined chain that approaches the contour length as f-1/2 . A WLC encapsulated in a sphere, that is relevant for the study of the viral encapsulation of DNA, can also be treated using the mean-field approach. The predictions of the theory for various correlation functions are in excellent agreement with Langevin simulations. We find that strongly confined chains are highly structured by examining the correlations using a local winding axis. The predicted pressure of the system is in excellent agreement with simulations but, as is known, is significantly lower than the pressures seen for DNA packaged in viral capsids.

  2. Confinement and Liberation

    NASA Astrophysics Data System (ADS)

    Polyakov, A. M.

    This is a review of topics which haunted me for the last 40 years, starting with spontaneous symmetry breaking and ending with gauge/string/space-time correspondence. While the first part of this article is mostly historical, the second contains some comments, opinions and conjectures which are new.

  3. Psychosocial Accommodation to Group Confinement in the Advanced Base Habitat

    DTIC Science & Technology

    1988-06-01

    identify by block number) FIELD GROUP SUB-GROUP CONFINED ENVIRONMENTS STRESS( PSYCHOLOGY ) "FERSONNEL TEST AND EVALUATION PSYCHOLOGICAL TESTS CONFLICT...during the tests provided an opportunity to assess the psychological effects of the Habitat. Three tests were conducted with four crew members each...IRITY CLASSIFICATION OF TwiS PAGE All other editions are obsolete ’S ,...’LASSIFIED 18. CONFINEMENT( PSYCHOLOGY ), LONG RANCE(TIME), BEHAVIORAL SCIENCE

  4. CORRELATIONS IN CONFINED QUANTUM PLASMAS

    SciTech Connect

    DUFTY J W

    2012-01-11

    This is the final report for the project 'Correlations in Confined Quantum Plasmas', NSF-DOE Partnership Grant DE FG02 07ER54946, 8/1/2007 - 7/30/2010. The research was performed in collaboration with a group at Christian Albrechts University (CAU), Kiel, Germany. That collaboration, almost 15 years old, was formalized during the past four years under this NSF-DOE Partnership Grant to support graduate students at the two institutions and to facilitate frequent exchange visits. The research was focused on exploring the frontiers of charged particle physics evolving from new experimental access to unusual states associated with confinement. Particular attention was paid to combined effects of quantum mechanics and confinement. A suite of analytical and numerical tools tailored to the specific inquiry has been developed and employed

  5. Confined PBX 9501 gap reinitiation studies

    SciTech Connect

    Salyer, Terry R; Hill, Larry G; Lam, Kin

    2009-01-01

    For explosive systems that exhibit gaps or cracks between their internal components (either by design or mechanical failure), measurable time delays exist for detonation waves crossing them. Reinitiation across such gaps is dependent on the type of explosive, gap width, gap morphology, confinement, and temperature effects. To examine this reinitiation effect, a series of tests has been conducted to measure the time delay across a prescribed gap within an 'infinitely' confined PBX 9501 system. Detonation breakout along the explosive surface is measured with a streak camera, and flow features are examined during reinitiation near the gap. Such tests allow for quantitative determination of the time delay corresponding to the time of initiation across a given gap oriented normal to the direction of the detonation wave. Measured time delays can be compared with numerical calculations, making it possible to validate initiation models as well as estimate detonation run-up distances. Understanding this reinitiation behavior is beneficial for the design and evaluation of explosive systems that require precision timing and performance.

  6. Nanoscopic Cellular Imaging: Confinement Broadens Understanding.

    PubMed

    Lee, Stephen A; Ponjavic, Aleks; Siv, Chanrith; Lee, Steven F; Biteen, Julie S

    2016-09-27

    In recent years, single-molecule fluorescence imaging has been reconciling a fundamental mismatch between optical microscopy and subcellular biophysics. However, the next step in nanoscale imaging in living cells can be accessed only by optical excitation confinement geometries. Here, we review three methods of confinement that can enable nanoscale imaging in living cells: excitation confinement by laser illumination with beam shaping; physical confinement by micron-scale geometries in bacterial cells; and nanoscale confinement by nanophotonics.

  7. Status of global energy confinement studies

    SciTech Connect

    Kaye, S.M.; Bell, M.G. . Plasma Physics Lab.); Barnes, C.W. ); DeBoo, J.C.; Waltz, R. ); Greenwald, M.; Sigmar, D. . Plasma Fusion Center); Riedel, K. . Courant Inst. of Mathematical Sciences); Uckan, N. (Oak Ridge National L

    1990-02-01

    Empirical scaling expressions, reflecting the parametric dependence of the L-mode energy confinement time, have been used not only as benchmarks for tokamak operation and theories of energy transport, but for predicting the performance of proposed tokamak devices. Several scaling expressions based on data from small-and medium-sized devices have done well in predicting performance in larger devices, although great uncertainty exists in extrapolating yet farther, into the ignition regime. Several approaches exist for developing higher confidence scaling expressions. These include reducing the statistical uncertainty by identifying and filling in gaps in the present database, making use of more sophisticated statistical techniques, and developing scalings for confinement regimes within which future devices will operate. Confidence in the scaling expressions will be increased still if the expressions can be more directly tied to transport physics theory. This can be done through the use of dimensionless parameters, better describing the edge and core confinement regimes separately, and by incorporating transport models directly into the scaling expressions. 50 refs., 5 figs., 3 tabs.

  8. Confined Tube Crimp Using Portable Hand Tools

    SciTech Connect

    Reynolds, Joseph James; Pereyra, R. A.; Archuleta, Jeffrey Christopher; Martinez, Isaac P.; Nelson, A. M.; Allen, Ronald Scott; Page, R. L.; Freer, Jerry Eugene; Dozhier, Nathan Gus

    2016-04-04

    The Lawrence Radiation Laboratory developed handheld tools that crimp a 1/16 inch OD tube, forming a leak tight seal1 (see Figure 1). The leak tight seal forms by confining the 1/16 inch OD tubing inside a die while applying crimp pressure. Under confined pressure, the tube walls weld at the crimp. The purpose of this study was to determine conditions for fabricating a leak tight tube weld. The equipment was used on a trial-and-error basis, changing the conditions after each attempt until successful welds were fabricated. To better confine the tube, the die faces were polished. Polishing removed a few thousandths of an inch from the die face, resulting in a tighter grip on the tubing wall. Using detergent in an ultrasonic bath, the tubing was cleaned. Also, the time under crimp pressure was increased to 30 seconds. With these modifications, acceptable cold welds were fabricated. After setting the conditions for an acceptable cold weld, the tube was TIG welded across the crimped face.

  9. Combinational concentration gradient confinement through stagnation flow.

    PubMed

    Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung

    2016-01-21

    Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.

  10. Coronal electron confinement by double layers

    SciTech Connect

    Li, T. C.; Drake, J. F.; Swisdak, M.

    2013-12-01

    In observations of flare-heated electrons in the solar corona, a longstanding problem is the unexplained prolonged lifetime of the electrons compared to their transit time across the source. This suggests confinement. Recent particle-in-cell (PIC) simulations, which explored the transport of pre-accelerated hot electrons through ambient cold plasma, showed that the formation of a highly localized electrostatic potential drop, in the form of a double layer (DL), significantly inhibited the transport of hot electrons. The effectiveness of confinement by a DL is linked to the strength of the DL as defined by its potential drop. In this work, we investigate the scaling of the DL strength with the hot electron temperature by PIC simulations and find a linear scaling. We demonstrate that the strength is limited by the formation of parallel shocks. Based on this, we analytically determine the maximum DL strength, and also find a linear scaling with the hot electron temperature. The DL strength obtained from the analytic calculation is comparable to that from the simulations. At the maximum strength, the DL is capable of confining a significant fraction of hot electrons in the source.

  11. Acoustic confinement in superlattice cavities

    NASA Astrophysics Data System (ADS)

    Garcia-Sanchez, Daniel; Déleglise, Samuel; Thomas, Jean-Louis; Atkinson, Paola; Lagoin, Camille; Perrin, Bernard

    2016-09-01

    The large coupling rate between the acoustic and optical fields confined in GaAs/AlAs superlattice cavities makes them appealing systems for cavity optomechanics. We have developed a mathematical model based on the scattering matrix that allows the acoustic guided modes to be predicted in nano and micropillar superlattice cavities. We demonstrate here that the reflection at the surface boundary considerably modifies the acoustic quality factor and leads to significant confinement at the micropillar center. Our mathematical model also predicts unprecedented acoustic Fano resonances on nanopillars featuring small mode volumes and very high mechanical quality factors, making them attractive systems for optomechanical applications.

  12. Special topics in plasma confinement

    NASA Astrophysics Data System (ADS)

    Taylor, J. B.; Newton, S. L.

    2015-10-01

    > These notes are based on lectures given by one of us (J.B.T.) at the University of Texas in Austin in 1991. Part I concerns some basic features of plasma confinement by magnetic fields as an introduction to an account of plasma relaxation in Part II. Part III discusses confinement by magnetic mirrors, especially minimum- systems. It also includes a general discussion of adiabatic invariants and of the principle of maximal ordering in perturbation theory. Part IV is devoted to the analysis of perturbations in toroidal plasmas and the stability of ballooning modes.

  13. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOEpatents

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  14. Building solids inside nano-space: from confined amorphous through confined solvate to confined 'metastable' polymorph.

    PubMed

    Nartowski, K P; Tedder, J; Braun, D E; Fábián, L; Khimyak, Y Z

    2015-10-14

    The nanocrystallisation of complex molecules inside mesoporous hosts and control over the resulting structure is a significant challenge. To date the largest organic molecule crystallised inside the nano-pores is a known pharmaceutical intermediate - ROY (259.3 g mol(-1)). In this work we demonstrate smart manipulation of the phase of a larger confined pharmaceutical - indomethacin (IMC, 357.8 g mol(-1)), a substance with known conformational flexibility and complex polymorphic behaviour. We show the detailed structural analysis and the control of solid state transformations of encapsulated molecules inside the pores of mesoscopic cellular foam (MCF, pore size ca. 29 nm) and controlled pore glass (CPG, pore size ca. 55 nm). Starting from confined amorphous IMC we drive crystallisation into a confined methanol solvate, which upon vacuum drying leads to the stabilised rare form V of IMC inside the MCF host. In contrast to the pure form, encapsulated form V does not transform into a more stable polymorph upon heating. The size of the constraining pores and the drug concentration within the pores determine whether the amorphous state of the drug is stabilised or it recrystallises into confined nanocrystals. The work presents, in a critical manner, an application of complementary techniques (DSC, PXRD, solid-state NMR, N2 adsorption) to confirm unambiguously the phase transitions under confinement and offers a comprehensive strategy towards the formation and control of nano-crystalline encapsulated organic solids.

  15. Aerofractures in Confined Granular Media

    NASA Astrophysics Data System (ADS)

    Eriksen, Fredrik K.; Turkaya, Semih; Toussaint, Renaud; Måløy, Knut J.; Flekkøy, Eirik G.

    2015-04-01

    We will present the optical analysis of experimental aerofractures in confined granular media. The study of this generic process may have applications in industries involving hydraulic fracturing of tight rocks, safe construction of dams, tunnels and mines, and in earth science where phenomena such as mud volcanoes and sand injectites are results of subsurface sediment displacements driven by fluid overpressure. It is also interesting to increase the understanding the flow instability itself, and how the fluid flow impacts the solid surrounding fractures and in the rest of the sample. Such processes where previously studied numerically [Niebling 2012a, Niebling 2012b] or in circular geometries. We will here explore experimentally linear geometries. We study the fracturing patterns that form when air flows into a dense, non-cohesive porous medium confined in a Hele-Shaw cell - i.e. into a packing of dry 80 micron beads placed between two glass plates separated by ~1mm. The cell is rectangular and fitted with a semi-permeable boundary to the atmosphere - blocking beads but not air - on one short edge, while the other three edges are impermeable. The porous medium is packed inside the cell between the semi-permeable boundary and an empty volume at the sealed side where the air pressure can be set and kept at a constant overpressure (1-2bar). Thus, for the air trapped inside the cell to release the overpressure it has to move through the solid. At high enough overpressures the air flow deforms the solid and increase permeability in some regions along the air-solid interface, which results in unstable flow and aerofracturing. Aerofractures are thought to be an analogue to hydrofractures, and an advantage of performing aerofracturing experiments in a Hele-Shaw cell is that the fracturing process can easily be observed in the lab. Our experiments are recorded with a high speed camera with a framerate of 1000 frames per second. In the analysis, by using various image

  16. Achieving Long Confinement in a Toroidal Electron Plasma

    SciTech Connect

    Marler, J. P.; Smoniewski, J.; Ha Bao; Stoneking, M. R.

    2009-03-30

    We observe the m = 1 diocotron mode in a partial toroidal trap, and use it as the primary diagnostic for observing the plasma confinement. The frequency of the m = 1 mode, which is approximately proportional to the trapped charge, decays on a three second timescale. The confinement time exceeds, by at least an order of magnitude, the confinement observed in all other toroidal traps for non-neutral plasmas and approaches the theoretical limit set by magnetic pumping transport. Numerical simulations that include toroidal effects are employed to accurately extract plasma charge, equilibrium position and m = 1 mode amplitude from the experimental data. Future work will include attempts to withdraw the electron source in order to study confinement in a full torus.

  17. Velocity alignment leads to high persistence in confined cells

    NASA Astrophysics Data System (ADS)

    Camley, Brian A.; Rappel, Wouter-Jan

    2014-06-01

    Many cell types display random motility on two-dimensional substrates but crawl persistently in a single direction when confined in a microchannel or on an adhesive micropattern. Does this imply that the motility mechanism of confined cells is fundamentally different from that of unconfined cells? We argue that both free- and confined-cell migration may be described by a generic model of cells as "velocity-aligning" active Brownian particles previously proposed to solve a completely separate problem in collective cell migration. Our model can be mapped to a diffusive escape over a barrier and analytically solved to determine the cell's orientation distribution and repolarization rate. In quasi-one-dimensional confinement, velocity-aligning cells maintain their direction for times that can be exponentially larger than their persistence time in the absence of confinement. Our results suggest an important connection between single- and collective-cell migration: high persistence in confined cells corresponds with fast alignment of velocity to cell-cell forces.

  18. Confinement and lattice gauge theory

    SciTech Connect

    Creutz, M

    1980-06-01

    The motivation for formulating gauge theories on a lattice to study non-perturbative phenomena is reviewed, and recent progress supporting the compatibility of asymptotic freedom and quark confinement in the standard SU(3) Yang-Mills theory of the strong interaction is discussed.

  19. Permit-Required Confined Spaces

    DTIC Science & Technology

    1998-01-01

    Permit-Required Confined Spaces U.S. Department of Labor Occupational Safety and Health Administration OSHA 3138 1998 (Revised) Report Documentation...Department of Labor Occupational Safety & Health Administration 200 Constitution Avenue Washington, DC 20210 Performing Organization Report Number OSHA 3138...determine compliance responsibili- ties, which are set forth in OSHA standards themselves and the Occupational Safety and Health Act. Moreover, because

  20. Inertial confinement fusion (ICF) review

    SciTech Connect

    Hammer, D.; Dyson, F.; Fortson, N.; Novick, B.; Panofsky, W.; Rosenbluth, M.; Treiman, S.; York, H.

    1996-03-01

    During its 1996 winter study JASON reviewed the DOE Inertial Confinement Fusion (ICF) program. This included the National Ignition Facility (NIF) and proposed studies. The result of the review was to comment on the role of the ICF program in support of the DOE Science Based Stockpile Stewardship program.

  1. Dynamical conductivity of confined water

    NASA Astrophysics Data System (ADS)

    Artemov, V. G.

    2017-01-01

    The electrodynamic response of water confined in nanoporous MCM-41 is measured in the frequency range 1 MHz-3 THz at room temperature. The results are analyzed in the context of a recently proposed ionic model of water. We found an increase in dc-conductivity of confined water by 3 orders of magnitude (3.3 · 10-3 Ω-1 · m-1) compared to bulk water (5.5 · 10-6 Ω-1 · m-1). This is attributed to the increase of H3O+ and OH- ion mobility, due to a decrease of the effective potential amplitude by walls of the confining environment. We found that the absorption in the microwave frequency range is much smaller in the medium with confined water than in the bulk water, and the quadratic dependence of the conductivity (σ) on frequency (ω) becomes less steep and tends to σ ~ ω. The results are of fundamental importance and can be used for understanding of the proton transport in systems with water in the nanoconfined state.

  2. Dynamics of Confined Water Molecules in Aqueous Salt Hydrates

    SciTech Connect

    Werhahn, Jasper C.; Pandelov, S.; Yoo, Soohaeng; Xantheas, Sotiris S.; Iglev, H.

    2011-04-01

    The unusual properties of water are largely dictated by the dynamics of the H bond network. A single water molecule has more H bonding sites than atoms, hence new experimental and theoretical investigations about this peculiar liquid have not ceased to appear. Confinement of water to nanodroplets or small molecular clusters drastically changes many of the liquid’s properties. Such confined water plays a major role in the solvation of macro molecules such as proteins and can even be essential to their properties. Despite the vast results available on bulk and confined water, discussions about the correlation between spectral and structural properties continue to this day. The fast relaxation of the OH stretching vibration in bulk water, and the variance of sample geometries in the experiments on confined water obfuscate definite interpretation of the spectroscopic results in terms of structural parameters. We present first time-resolved investigations on a new model system that is ideally suited to overcome many of the problems faced in spectroscopical investigation of the H bond network of water. Aqueous hydrates of inorganic salts provide water molecules in a crystal grid, that enables unambiguous correlations of spectroscopic and structural features. Furthermore, the confined water clusters are well isolated from each other in the crystal matrix, so different degrees of confinement can be achieved by selection of the appropriate salt.

  3. Effect of confinement on droplet coalescence in shear flow.

    PubMed

    Chen, Dongju; Cardinaels, Ruth; Moldenaers, Paula

    2009-11-17

    The effect of confinement on the coalescence of Newtonian (polydimethylsiloxane) droplets in a Newtonian (polyisobutylene) matrix is investigated experimentally. A counter rotating parallel plate device, equipped with a microscopy setup, is used to visualize two interacting droplets during shear flow. The ratio of droplet-to-matrix viscosity is kept constant at 1.1. Droplet collisions are studied for a range of droplet sizes, both in bulk conditions and for gap spacings that are comparable to the droplet size. As a result, we present the first quantitative experimental data set for the coalescence of two equal-sized droplets in a pure shear flow with varying degrees of confinement. Compared to bulk conditions, for droplets smaller than roughly 0.2 times the gap spacing, a slight degree of confinement only decreases the orientation angle at which the droplets coalesce whereas the critical conditions for coalescence remain unaltered. For more confined conditions, the critical capillary number up to which coalescence can occur, increases. Therefore, confinement clearly promotes coalescence. In addition, the droplet trajectories, the time-dependent orientation angle of the droplet pair, and the droplet deformation prior to the coalescence event are systematically studied, and a comparison between the confined and the unconfined situation is provided. It is shown that the presence of two parallel walls can induce changes in the flow field around the droplet pair, which cause an increase of the interaction time between the droplets. Moreover, for sufficiently confined droplets, the additional force originating from the presence of the walls becomes comparable to the hydrodynamic force on the droplet pair, thus influencing the drainage of the matrix film between the droplet surfaces.

  4. Theory of rheology in confinement

    NASA Astrophysics Data System (ADS)

    Aerov, Artem A.; Krüger, Matthias

    2015-10-01

    The viscosity of fluids is generally understood in terms of kinetic mechanisms, i.e., particle collisions, or thermodynamic ones as imposed through structural distortions upon, e.g., applying shear. Often the latter are more relevant, which allows a simpler theoretical description, and, e.g., (damped) Brownian particles can be considered good fluid model systems. We formulate a general theoretical approach for rheology in confinement, based on microscopic equations of motion and classical density functional theory. Specifically, we discuss the viscosity for the case of two parallel walls in relative motion as a function of the wall-to-wall distance, analyzing its relation to the slip length found for a single wall. The previously observed [A. A. Aerov and M. Krüger, J. Chem. Phys. 140, 094701 (2014)., 10.1063/1.4866450] deficiency of inhomogeneous (unphysical) stresses under naive application of shear in confinement is healed when hydrodynamic interactions are included.

  5. Theory of rheology in confinement.

    PubMed

    Aerov, Artem A; Krüger, Matthias

    2015-10-01

    The viscosity of fluids is generally understood in terms of kinetic mechanisms, i.e., particle collisions, or thermodynamic ones as imposed through structural distortions upon, e.g., applying shear. Often the latter are more relevant, which allows a simpler theoretical description, and, e.g., (damped) Brownian particles can be considered good fluid model systems. We formulate a general theoretical approach for rheology in confinement, based on microscopic equations of motion and classical density functional theory. Specifically, we discuss the viscosity for the case of two parallel walls in relative motion as a function of the wall-to-wall distance, analyzing its relation to the slip length found for a single wall. The previously observed [A. A. Aerov and M. Krüger, J. Chem. Phys. 140, 094701 (2014).] deficiency of inhomogeneous (unphysical) stresses under naive application of shear in confinement is healed when hydrodynamic interactions are included.

  6. Confined aquifers as viral reservoirs.

    PubMed

    Smith, Renee J; Jeffries, Thomas C; Roudnew, Ben; Seymour, Justin R; Fitch, Alison J; Simons, Keryn L; Speck, Peter G; Newton, Kelly; Brown, Melissa H; Mitchell, James G

    2013-10-01

    Knowledge about viral diversity and abundance in deep groundwater reserves is limited. We found that the viral community inhabiting a deep confined aquifer in South Australia was more similar to reclaimed water communities than to the viral communities in the overlying unconfined aquifer community. This similarity was driven by high relative occurrence of the single-stranded DNA viral groups Circoviridae, Geminiviridae and Microviridae, which include many known plant and animal pathogens. These groups were present in a 1500-year-old water situated 80 m below the surface, which suggests the potential for long-term survival and spread of potentially pathogenic viruses in deep, confined groundwater. Obtaining a broader understanding of potentially pathogenic viral communities within aquifers is particularly important given the ability of viruses to spread within groundwater ecosystems.

  7. Ion beam inertial confinement target

    DOEpatents

    Bangerter, Roger O.; Meeker, Donald J.

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  8. Inertial-confinement-fusion targets

    SciTech Connect

    Hendricks, C.D.

    1981-11-16

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques have been devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  9. Holographic confinement in inhomogeneous backgrounds

    NASA Astrophysics Data System (ADS)

    Marolf, Donald; Wien, Jason

    2016-08-01

    As noted by Witten, compactifying a d-dimensional holographic CFT on an S 1 gives a class of ( d - 1)-dimensional confining theories with gravity duals. The proto-typical bulk solution dual to the ground state is a double Wick rotation of the AdS d+1 Schwarzschild black hole known as the AdS soliton. We generalize such examples by allowing slow variations in the size of the S 1, and thus in the confinement scale. Coefficients governing the second order response of the system are computed for 3 ≤ d ≤ 8 using a derivative expansion closely related to the fluid-gravity correspondence. The primary physical results are that i) gauge-theory flux tubes tend to align orthogonal to gradients and along the eigenvector of the Hessian with the lowest eigenvalue, ii) flux tubes aligned orthogonal to gradients are attracted to gradients for d ≤ 6 but repelled by gradients for d ≥ 7, iii) flux tubes are repelled by regions where the second derivative along the tube is large and positive but are attracted to regions where the eigenvalues of the Hessian are large and positive in directions orthogonal to the tube, and iv) for d > 3, inhomogeneities act to raise the total energy of the confining vacuum above its zeroth order value.

  10. Sheared magnetofluids and Bernoulli confinement

    NASA Astrophysics Data System (ADS)

    Quevado, H. J.; Bengtson, Roger; Mahajan, S. M.; Valanju, P. M.

    2001-10-01

    New magnetofluid states that differ qualitatively from those accessible to either neutral fluids or to conventional MHD plasmas have been predited theoretically. They are predicted to appear if plasmas with strong velocity shear flows (with large initial values of both magnetic and magnetofluid helicity) are created and allowed to relax. The dynamic invariance of these two helicities will force the plasma to self-organize and relax to a long-lived quasi equilibrium state away from thermal equilibrium. The investigation of these states bears critically upon basic plasma confinement and heating issues in both natural and laboratory plasmas. We have built a magnetic mirror device designed to create and investigate these theoretically predicted pressure-confining magnetofluid states. The primary experimental challenge is to create an initial plasma (with significant flows and currents) which is relatively isolated from walls and embedded in a modest magnetic external field. Our machine has a central bias rod to create a radial electric field for generating fast plasma flow, a large mirror ratio for good centrifugal confinement, and magnetic, Langmuir, and Mach probes to measure the evolution of plasma rotation profiles and fluctuations. Initial results will be presented demonstrating plasma rotation.

  11. Nanoparticle Order through Entropic Confinement

    NASA Astrophysics Data System (ADS)

    Zhang, Ren; Lee, Bongjoon; Stafford, Christopher; Douglas, Jack; Bockstaller, Michael; Karim, Alamgir

    As has been addressed in colloidal science, visual order transitions can be achieved with entropy contributions alone. Herein, entropy-driven ordering of nanoparticle (NP) structures is generated where entropy increase and visual order are achieved simultaneously. We study an ``athermal'' NP-polymer blends where NPs are densely grafted with polymer brush of the same chemical composition as the polymer matrix. Visual order of the NPs is induced by geometrically confining the thin film blends with meso-scale topographic patterns. When the residual layer thickness of the patterned blend films approaches the nanoparticle dimension, exclusive segregation of NPs to less confining imprinted mesa region occurs. This preferential segregation of NPs, defined by partition coefficient K = 0, is attributed to purely entropic penalty, where K denotes the particle density ratio at highly confined residual layer to that at mesa region. We further demonstrate K is fully tunable and even invertible with increasing matrix chain dimension. The associated entropic free energy change (ΔF = - ln K) is calculated to explain NP segregation preference. Accordingly, variation of residual layer thickness and polymer matrix molecule size can both affect NP distribution among patterned thick and thin regions.

  12. Edge states in confined active fluids

    NASA Astrophysics Data System (ADS)

    Souslov, Anton; Vitelli, Vincenzo

    Recently, topologically protected edge modes have been proposed and realized in both mechanical and acoustic metamaterials. In one class of such metamaterials, Time-Reversal Symmetry is broken, and, to achieve this TRS breaking in mechanical and acoustic systems, an external energy input must be used. For example, motors provide a driving force that uses energy and, thus, explicitly break TRS. As a result, motors have been used as an essential component in the design of topological metamaterials. By contrast, we explore the design of topological metamaterials that use a class of far-from-equilibrium liquids, called polar active liquids, that spontaneously break TRS. We thus envision the confinement of a polar active liquid to a prescribed geometry in order to realize topological order with broken time-reversal symmetry. We address the design of the requisite geometries, for example a regular honeycomb lattice composed of annular channels, in which the active liquid may be confined. We also consider the physical character of the active liquid that, when introduced into the prescribed geometry, will spontaneously form the flow pattern of a metamaterial with topologically protected edge states. Finally, we comment on potential experimental realizations of such metamaterials.

  13. Effects of confinement on protein folding and protein stability

    NASA Astrophysics Data System (ADS)

    Ping, G.; Yuan, J. M.; Vallieres, M.; Dong, H.; Sun, Z.; Wei, Y.; Li, F. Y.; Lin, S. H.

    2003-05-01

    In a cell, proteins exist in crowded environments; these environments influence their stability and dynamics. Similarly, for an enzyme molecule encapsulated in an inorganic cavity as in biosensors or biocatalysts, confinement and even surface effects play important roles in its stability and dynamics. Using a minimalist model (two-dimensional HP lattice model), we have carried out Monte Carlo simulations to study confinement effects on protein stability. We have calculated heat capacity as a function of temperature using the histogram method and results obtained show that confinement tends to stabilize the folded conformations, consistent with experimental results (some reported here) and previous theoretical analyses. Furthermore, for a protein molecule tethered to a solid surface the stabilization effect can be even greater. We have also investigated the effects of confinement on the kinetics of the refolding and unfolding processes as functions of temperature and box size. As expected, unfolding time increases as box size decreases, however, confinement affects folding times in a more complicated way. Our theoretical results agree with our experimentally observed trends that thermal stability of horseradish peroxidase and acid phosphatase, encapsulated in mesoporous silica, increases as the pore size of the silica matrix decreases.

  14. Scattering and confinement dynamics of Dirac particles in external electrostatic and Lorentz scalar potentials

    NASA Astrophysics Data System (ADS)

    M, Haritha; P, Durganandini

    2015-06-01

    We study the scattering and confinement of Dirac particles in external electrostatic and Lorentz scalar potentials. We use a numerical finite difference time -domain method to solve the equation and obtain the particle dynamics. We find qualitatively different dynamical behavior for electrostatic and Lorentz scalar potentials. Electrostatic potentials lead to Klein tunneling and do not exhibit confinement, while Lorentz scalar potentials inhibit Klein tunneling and exhibit confinement.

  15. Congestion and communication in confined ant traffic

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A. D.; Goldman, Daniel I.

    2014-03-01

    Many social animals move and communicate within confined spaces. In subterranean fire ants Solenopsis invicta, mobility within crowded nest tunnels is important for resource and information transport. Within confined tunnels, communication and traffic flow are at odds: trafficking ants communicate through tactile interactions while stopped, yet ants that stop to communicate impose physical obstacles on the traffic. We monitor the bi-directional flow of fire ant workers in laboratory tunnels of varied diameter D. The persistence time of communicating ant aggregations, τ, increases approximately linearly with the number of participating ants, n. The sensitivity of traffic flow increases as D decreases and diverges at a minimum diameter, Dc. A cellular automata model incorporating minimal traffic features--excluded volume and communication duration--reproduces features of the experiment. From the model we identify a competition between information transfer and the need to maintain jam-free traffic flow. We show that by balancing information transfer and traffic flow demands, an optimum group strategy exists which maximizes information throughput. We acknowledge funding from NSF PoLS #0957659 and #PHY-1205878.

  16. Color Confinement from Fluctuating Topology

    NASA Astrophysics Data System (ADS)

    Kharzeev, Dmitri E.

    QCD possesses a compact gauge group, and this implies a non-trivial topological structure of the vacuum. In this contribution to the Gribov-85 Memorial volume, we first discuss the origin of Gribov copies and their interpretation in terms of fluctuating topology in the QCD vacuum. We then describe the recent work with E. Levin that links the confinement of gluons and color screening to the fluctuating topology, and discuss implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.

  17. Color confinement from fluctuating topology

    NASA Astrophysics Data System (ADS)

    Kharzeev, Dmitri E.

    2016-10-01

    QCD possesses a compact gauge group, and this implies a non-trivial topological structure of the vacuum. In this contribution to the Gribov-85 Memorial volume, we first discuss the origin of Gribov copies and their interpretation in terms of fluctuating topology in the QCD vacuum. We then describe the recent work with E. Levin that links the confinement of gluons and color screening to the fluctuating topology, and discuss implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.

  18. Thermoelectricity in Confined Liquid Electrolytes.

    PubMed

    Dietzel, Mathias; Hardt, Steffen

    2016-06-03

    The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which-for narrow channels-may cause thermovoltages larger in magnitude than for the classical Soret equilibrium.

  19. Electromelting of confined monolayer ice.

    PubMed

    Qiu, Hu; Guo, Wanlin

    2013-05-10

    In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under a perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to the field-induced disruption of the water-wall interaction induced well-ordered network of the hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.

  20. Walking droplets in confined domains

    NASA Astrophysics Data System (ADS)

    Sáenz, Pedro; Bush, John

    2016-11-01

    A millimetric liquid drop can walk spontaneously along the surface of a vibrating fluid bath, propelled by a resonant interaction with its own wave field. These walking droplets exhibit features previously thought to be exclusive to the microscopic quantum realm. We here explore experimentally the dynamics and statistics of this macroscopic wave-particle system in confined domains, or 'corrals'. Particular attention is given to characterizing the influence of the corral geometry on the emergent probability distributions. The relation to analogous quantum systems (specifically, quantum corrals, the quantum mirage and scarring in Bose-Einstein condensates) is discussed. NSF support via CMMI-1333242.

  1. Are polymers glassier upon confinement?

    NASA Astrophysics Data System (ADS)

    Napolitano, Simone; Spiece, Jean; Martinez-Tong, Daniel E.; Sferrazza, Michele; Nogales, Aurora

    Glass forming systems are characterized by a stability against crystallization upon heating and by the easiness with which their liquid phase can be transformed into a solid lacking of long-range order upon cooling (glass forming ability). Here, we discuss on the the thickness dependence of the thermal phase transition temperatures of poly(L-lactide acid) thin films supported onto solid substrates. The determination of the glass transition (Tg), cold crystallization (TCC) and melting (Tm) temperatures down to a thickness of 6 nm via ellipsometry, permitted us to build up parameters describing glass stability and glass forming ability. We observed a strong influence of the film thickness on the latter, while the former is not affected by 1D confinement. Remarkably, the increase in Tg/Tm ratio, a parameter related to glass forming ability, is not accompanied by an increase in TCC-Tg, as observed on the contrary, in bulk metallic glasses. We explained this peculiar behavior of soft matter in confinement considering the impact of irreversible adsorption on local free volume content.

  2. Soft confinement for polymer solutions

    NASA Astrophysics Data System (ADS)

    Oya, Yutaka; Kawakatsu, Toshihiro

    2014-07-01

    As a model of soft confinement for polymers, we investigated equilibrium shapes of a flexible vesicle that contains a phase-separating polymer solution. To simulate such a system, we combined the phase field theory (PFT) for the vesicle and the self-consistent field theory (SCFT) for the polymer solution. We observed a transition from a symmetric prolate shape of the vesicle to an asymmetric pear shape induced by the domain structure of the enclosed polymer solution. Moreover, when a non-zero spontaneous curvature of the vesicle is introduced, a re-entrant transition between the prolate and the dumbbell shapes of the vesicle is observed. This re-entrant transition is explained by considering the competition between the loss of conformational entropy and that of translational entropy of polymer chains due to the confinement by the deformable vesicle. This finding is in accordance with the recent experimental result reported by Terasawa et al. (Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 5249).

  3. Issues in tokamak/stellarator transport and confinement enhancement mechanisms

    SciTech Connect

    Perkins, F.W.

    1990-08-01

    At present, the mechanism for anomalous energy transport in low-{beta} toroidal plasmas -- tokamaks and stellarators -- remains unclear, although transport by turbulent E {times} B velocities associated with nonlinear, fine-scale microinstabilities is a leading candidate. This article discusses basic theoretical concepts of various transport and confinement enhancement mechanisms as well as experimental ramifications which would enable one to distinguish among them and hence identify a dominant transport mechanism. While many of the predictions of fine-scale turbulence are born out by experiment, notable contradictions exist. Projections of ignition margin rest both on the scaling properties of the confinement mechanism and on the criteria for entering enhanced confinement regimes. At present, the greatest uncertainties lie with the basis for scaling confinement enhancement criteria. A series of questions, to be answered by new experimental/theoretical work, is posed to resolve these outstanding contradictions (or refute the fine-scale turbulence model) and to establish confinement enhancement criteria. 73 refs., 4 figs., 5 tabs.

  4. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    NASA Astrophysics Data System (ADS)

    Park, Jaeyoung; Krall, Nicholas A.; Sieck, Paul E.; Offermann, Dustin T.; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni

    2015-04-01

    We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure) is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad's work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β . This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  5. Perfect Abelian dominance of confinement in mesons and baryons in SU(3) lattice QCD

    NASA Astrophysics Data System (ADS)

    Sakumichi, Naoyuki; Suganuma, Hideo

    2016-11-01

    For a long time, the quark confinement mechanism has been one of the most difficult problems in theoretical physics. In particular, there is no clear correspondence between the confinement and non-Abelian nature of QCD. We study the static interquark potential and its Abelian projection in both mesons and baryons in the maximally Abelian (MA) gauge in SU(3) quenched lattice QCD. Remarkably, we find that the quark confining force in QCD can be perfectly described only with Abelian variables in theMAgauge, which we call "perfect Abelian dominance" of the quark confinement.

  6. Quasielastic neutron scattering study of water confined in carbon nanopores

    SciTech Connect

    Chathoth, S. M.; Mamontov, E.; Kolesnikov, A. I.; Gogotsi, Y.; Wesolowski, D. J.

    2011-07-26

    Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, ‹τ›, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, ‹τ› follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 Å ordered mesoporous carbon (CMK) and 16 Å double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.

  7. Quasielastic neutron scattering study of water confined in carbon nanopores

    SciTech Connect

    Mavila Chathoth, Suresh; Mamontov, Eugene; Kolesnikov, Alexander I; Gogotsi, Yury G.; Wesolowski, David J

    2011-01-01

    Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, {tau}, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, {tau} follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 {angstrom} ordered mesoporous carbon (CMK) and 16 {angstrom} double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.

  8. IR spectroscopy of water vapor confined in nanoporous silica aerogel.

    PubMed

    Ponomarev, Yu N; Petrova, T M; Solodov, A M; Solodov, A A

    2010-12-06

    The absorption spectrum of the water vapor, confined in the nanoporous silica aerogel, was measured within 5000-5600 cm(-1) with the IFS 125 HR Fourier spectrometer. It has been shown, that tight confinement of the molecules by the nanoporous size leads to the strong lines broadening and shift. For water vapor lines, the HWHM of confined molecules are on the average 23 times larger than those for free molecules. The shift values are in the range from -0.03 cm(-1) to 0.09 cm(-1). Some spectral lines have negative shift. The data on the half-widths and center shifts for some strongest H(2)O lines have been presented.

  9. Physical investigation of a quad confinement plasma source

    NASA Astrophysics Data System (ADS)

    Knoll, Aaron; Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2016-10-01

    Quad magnetic confinement plasma sources are novel magnetized DC discharges suitable for applications in a broad range of fields, particularly space propulsion, plasma etching and deposition. These sources contain a square discharge channel with magnetic cusps at the four lateral walls, enhancing plasma confinement and electron residence time inside the device. The magnetic field topology is manipulated using four independent electromagnets on each edge of the channel, tuning the properties of the generated plasma. We characterize the plasma ejected from the quad confinement sources using a combination of traditional electrostatic probes and non-intrusive laser-based diagnostics. Measurements show a strong ion acceleration layer located 8 cm downstream of the exit plane, beyond the extent of the magnetic field. The ion velocity field is investigated with different magnetic configurations, demonstrating how ion trajectories may be manipulated. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  10. Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins

    PubMed Central

    Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker

    2015-01-01

    Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier. PMID:26399746

  11. Dynamic, multiaxial impact response of confined and unconfined ceramic rods

    SciTech Connect

    Wise, J.L.; Grady, D.E.

    1993-09-01

    A new configuration for impact testing was implemented which yielded time-resolved measurements of the dynamic response of materials undergoing multiaxial strain. With this`-Method, one end of an initially stationary rod (ie., right circular cylinder) of test material was subjected to planar impact with a flat-faced projectile. The test rod was either free (unconfined) or mounted within a close-fitting sleeve which provided lateral confinement. Velocity interferometer diagnostics monitored the axial (longitudinal) velocity of the rod free end, and the transverse (radial) velocity for one or more points on the periphery of the rod or confinement sleeve. Analysis of the resultant velocity records allowed assessment of material properties, such as wave speeds and compressive yield strength, without the requirement of intact recovery of the rod. Data were obtained for alumina (Coors AD-99.5) rods in a series of tests involving variations in confinement and peak impact stress.

  12. Measurement of the orthopositronium confinement energy in mesoporous thin films

    SciTech Connect

    Crivelli, Paolo; Gendotti, Ulisse; Rubbia, Andre; Liszkay, Laszlo; Perez, Patrice; Corbel, Catherine

    2010-05-15

    In this paper, we present measurements of the ortho-positronium (ortho-Ps) emission energy in vacuum from mesoporous films using the time-of-flight technique. We show evidence of quantum mechanical confinement in the mesopores that defines the minimal energy of the emitted Ps. Two samples with different effective pore sizes, measured with positron annihilation lifetime spectroscopy, are compared for the data collected in the temperature range 50-400 K. The sample with smaller pore size exhibits a higher minimal energy (73{+-}5 meV), compared to the sample with bigger pores (48{+-}5 meV), due to the stronger confinement. The dependence of the emission energy with the temperature of the target is modeled as ortho-Ps being confined in rectangular boxes in thermodynamic equilibrium with the sample. We also measured that the yield of positronium emitted in vacuum is not affected by the temperature of the target.

  13. Spatial confinement governs orientational order in patchy particles

    PubMed Central

    Iwashita, Yasutaka; Kimura, Yasuyuki

    2016-01-01

    Orientational order in condensed matter plays a key role in determining material properties such as ferromagnetism, viscoelasticity or birefringence. We studied purely orientational ordering in closely-packed one-patch colloidal particles confined between flat substrates, where the particles can only rotate and are ordered via the sticky interaction between the patches. For the first time, we experimentally realized a rich variety of mesoscopic patterns through orientational ordering of colloids by controlling patch size and confinement thickness. The combination of experiment and numerical simulation reveals the decisive role of confinement: An ordered state(s) is selected from the (meta)stable options in bulk when it is commensurate with the system geometry and boundary conditions; otherwise, frustration induces a unique order. Our study offers a new means of systematic control over mesoscopic structures via orientational ordering in patchy particles. The system would also possess unique functionalities through the rotational response of the particles to external stimuli. PMID:27264521

  14. Spatially confined assembly of nanoparticles.

    PubMed

    Jiang, Lin; Chen, Xiaodong; Lu, Nan; Chi, Lifeng

    2014-10-21

    an increasingly important role in the controllable assembly of NPs. In this Account, we summarize our approaches and progress in fabricating spatially confined assemblies of NPs that allow for the positioning of NPs with high resolution and considerable throughput. The spatially selective assembly of NPs at the desired location can be achieved by various mechanisms, such as, a controlled dewetting process, electrostatically mediated assembly of particles, and confined deposition and growth of NPs. Three nanofabrication techniques used to produce prepatterns on a substrate are summarized: the Langmuir-Blodgett (LB) patterning technique, e-beam lithography (EBL), and nanoimprint lithography (NPL). The particle density, particle size, or interparticle distance in NP assemblies strongly depends on the geometric parameters of the template structure due to spatial confinement. In addition, with smart design template structures, multiplexed NPs can be assembled into a defined structure, thus demonstrating the structural and functional complexity required for highly integrated and multifunction applications.

  15. Engineered Models of Confined Cell Migration

    PubMed Central

    Paul, Colin D.; Hung, Wei-Chien; Wirtz, Denis; Konstantopoulos, Konstantinos

    2017-01-01

    Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell–substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact. PMID:27420571

  16. Methods for two-dimensional cell confinement.

    PubMed

    Le Berre, Maël; Zlotek-Zlotkiewicz, Ewa; Bonazzi, Daria; Lautenschlaeger, Franziska; Piel, Matthieu

    2014-01-01

    Protocols described in this chapter relate to a method to dynamically confine cells in two dimensions with various microenvironments. It can be used to impose on cells a given height, with an accuracy of less than 100 nm on large surfaces (cm(2)). The method is based on the gentle application of a modified glass coverslip onto a standard cell culture. Depending on the preparation, this confinement slide can impose on the cells a given geometry but also an environment of controlled stiffness, controlled adhesion, or a more complex environment. An advantage is that the method is compatible with most optical microscopy technologies and molecular biology protocols allowing advanced analysis of confined cells. In this chapter, we first explain the principle and issues of using these slides to confine cells in a controlled geometry and describe their fabrication. Finally, we discuss how the nature of the confinement slide can vary and provide an alternative method to confine cells with gels of controlled rigidity.

  17. Confinement of test particles in warped spacetimes

    SciTech Connect

    Ghosh, Suman; Kar, Sayan; Nandan, Hemwati

    2010-07-15

    We investigate test particle trajectories in warped spacetimes with a thick brane warp factor, a cosmological on-brane line element, and a time dependent extra dimension. The geodesic equations are reduced to a first order autonomous dynamical system. Using analytical methods, we arrive at some useful general conclusions regarding possible trajectories. Oscillatory motion, suggesting confinement about the location of the thick brane, arises for a growing warp factor. On the other hand, we find runaway trajectories (exponential-like) for a decaying warp factor. Variations of the extra dimensional scale factor yield certain quantitative differences. Results obtained from explicit numerical evaluations match well with the qualitative conclusions obtained from the dynamical systems analysis.

  18. Normal modes of confined cold ionic systems

    SciTech Connect

    Schiffer, J.P.; Dubin, D.H.

    1995-08-01

    The normal modes of a cloud of confined ions forming a strongly-correlated plasma were investigated. The results of molecular-dynamics simulations were compared to predictions of a cold fluid mode. Mode frequencies are observed to shift slightly compared to the cold fluid predictions, and the modes are also observed to damp in time. Simulations also reveal a set of torsional oscillations which have no counterpart in cold fluid theory. The frequency shift, damping, and torsional effects are compared to a model that treats trapped plasmas as a visco-elastic spheroid. It may be possible to measure high-frequency bulk and shear moduli of a strongly-correlated plasma from mode excitation experiments on trapped non-neutral plasmas. An example of the results of the calculation is presented.

  19. Quark confinement in a constituent quark model

    SciTech Connect

    Langfeld, K.; Rho, M.

    1995-07-01

    On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model`s phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density.

  20. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D [Impurity confinement and transport in high confinement regimes without ELMs on DIII-D

    SciTech Connect

    Grierson, Brian A.; Burrell, Keith H.; Nazikian, Raffi M.; Solomon, Wayne M.; Garofalo, Andrea M.; Belli, Emily A.; Staebler, Gary M.; Fenstermacher, Max E.; McKee, George R.; Evans, Todd E.; Orlov, D. M.; Smith, S. P.; Chrobak, C.; Chrystal, C.

    2015-04-17

    Here, impurity transport in the DIII-D tokamak is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP) ELM-suppression and QH-mode the confinement time of fluorine (Z=9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection the impurity particle confinement time compared to the energy confinement time is in the range of τpe ≈ 2 $-$ 3. In QH-mode operation the impurity confinement time is shown to be smaller for intense, coherent magnetic and density fluctuations of the edge harmonic oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2-3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient higher inside of ρ = 0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.

  1. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D [Impurity confinement and transport in high confinement regimes without ELMs on DIII-D

    DOE PAGES

    Grierson, Brian A.; Burrell, Keith H.; Nazikian, Raffi M.; ...

    2015-04-17

    Here, impurity transport in the DIII-D tokamak is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP) ELM-suppression and QH-mode the confinement time of fluorine (Z=9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection the impurity particle confinement time compared to the energy confinement time is in the range of τp/τe ≈ 2 $-$ 3. In QH-mode operation the impurity confinement time is shown to be smaller for intense, coherent magnetic and density fluctuations of the edge harmonic oscillation thanmore » weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2-3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient higher inside of ρ = 0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.« less

  2. Molecular Motion and Confined Polymers

    NASA Astrophysics Data System (ADS)

    Dobrynin, Andrey V.; Jeon, Junhwan

    2004-03-01

    Microorganisms such as myxobacteria, cyanobacteria, and flexibacteria move by gliding. The gliding has been described by two quite different mechanisms: social (S) motility and adventurous (A) motility. Though retraction of type 4-pili provides the force for the S motility, extrusion of slime, which may be associated with the A motility, is not well known. Nozzle-like structures recently found in cyanobacteria can support the A motility. However, complete understaning A motility is still lacking. To describe the A motility, we use molecular dynamics simulations of a polymer growing inside a cylindrically shaped tube with one end capped. Confined polymers provide a driving force for a tube motion as if a rocket flew with emitting gas. It is seen from the mean-squared displacement of a tube that its motion is ballistic under constant applied force.

  3. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1984-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  4. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1987-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  5. Diffusive dynamics of nanoparticles in ultra-confined media

    DOE PAGES

    Jacob, Jack Deodato; Conrad, Jacinta; Krishnamoorti, Ramanan; ...

    2015-08-10

    Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200 400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3 5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accountedmore » for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Altogether, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.« less

  6. Diffusive dynamics of nanoparticles in ultra-confined media

    SciTech Connect

    Jacob, Jack Deodato; Conrad, Jacinta; Krishnamoorti, Ramanan; Retterer, Scott T.; He, Kai

    2015-08-10

    Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200 400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3 5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accounted for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Altogether, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.

  7. A helium-3 refrigerator employing capillary confinement of liquid cryogen

    NASA Technical Reports Server (NTRS)

    Ennis, D. J.; Kittel, P.; Brooks, W.; Miller, A.; Spivak, A. L.

    1983-01-01

    A condensation refrigerator suitable for operation in a zero gravity space environment was constructed. The condensed liquid refrigerant is confined by surface tension inside a porous metal matrix. Helium-4 and helium-3 gases were condensed and held in a copper matrix. Evaporative cooling of confined liquid helium-4 resulted in a temperature of 1.4K. Using a zeolite adsorption pump external to the cryostat, a temperature of 0.6 K was achieved through evaporative cooling of liquid helium-3. The amount of time required for complete evaporation of a controlled mass of liquid helium-4 contained in the copper matrix was measured as a function of the applied background power. For heating powers below 18 mW the measured times are consistent with the normal boiling of the confined volume of liquid refrigerant. At background powers above 18 mW the rapid rise in the temperature of the copper matrix the signature of the absence of confined liquid occurs in a time a factor of two shorter than that expected on the basis of an extrapolation of the low power data.

  8. Structure and Dynamics of Octamethylcyclotetrasiloxane Confined between Mica Surfaces.

    PubMed

    Vadhana, V; Ayappa, K G

    2016-03-24

    Using a molecular model for octamethylcyclotetrasiloxane (OMCTS), molecular dynamics simulations are carried out to probe the phase state of OMCTS confined between two mica surfaces in equilibrium with a reservoir. Molecular dynamics simulations are carried out for elevations ranging from 5 to 35 K above the melting point for the OMCTS model used in this study. The Helmholtz free energy is computed for a specific confinement using the two-phase thermodynamic (2PT) method. Analysis of the in-plane pair correlation functions did not reveal signatures of freezing even under an extreme confinement of two layers. OMCTS is found to orient with a wide distribution of orientations with respect to the mica surface, with a distinct preference for the surface parallel configuration in the contact layers. The self-intermediate scattering function is found to decay with increasing relaxation times as the surface separation is decreased, and the two-step relaxation in the scattering function, a signature of glassy dynamics, distinctly evolves as the temperature is lowered. However, even at 5 K above the melting point, we did not observe a freezing transition and the self-intermediate scattering functions relax within 200 ps for the seven-layered confined system. The self-diffusivity and relaxation times obtained from the Kohlrausch-Williams-Watts stretched exponential fits to the late α-relaxation exhibit power law scalings with the packing fraction as predicted by mode coupling theory. A distinct discontinuity in the Helmholtz free energy, potential energy, and a sharp change in the local bond order parameter, Q4, was observed at 230 K for a five-layered system upon cooling, indicative of a first-order transition. A freezing point depression of about 30 K was observed for this five-layered confined system, and at the lower temperatures, contact layers were found to be disordered with long-range order present only in the inner layers. These dynamical signatures indicate that

  9. Enzymatic reactivity of glucose oxidase confined in nanochannels.

    PubMed

    Yu, Jiachao; Zhang, Yuanjian; Liu, Songqin

    2014-05-15

    The construction of nanodevices coupled with an integrated real-time detection system for evaluation of the function of biomolecules in biological processes, and enzymatic reaction kinetics occurring at the confined space or interface is a significant challenge. In this work, a nanochannel-enzyme system in which the enzymatic reaction could be investigated with an electrochemical method was constructed. The model system was established by covalently linking glucose oxidase (GOD) onto the inner wall of the nanochannels of the porous anodic alumina (PAA) membrane. An Au disc was attached at the end of the nanochannels of the PAA membrane as the working electrode for detection of H2O2 product of enzymatic reaction. The effects of ionic strength, amount of immobilized enzyme and pore diameter of the nanochannels on the enzymatic reaction kinetics were illustrated. The GOD confined in nanochannels showed high stability and reactivity. Upon addition of glucose to the nanochannel-enzyme system, the current response had a calibration range span from 0.005 to 2 mM of glucose concentration. The apparent Michaelis-Menten constant (K(m)(app)) of GOD confined in nanochannel was 0.4 mM. The presented work provided a platform for real-time monitoring of the enzyme reaction kinetics confined in nanospaces. Such a nanochannel-enzyme system could also help design future biosensors and enzyme reactors with high sensitivity and efficiency.

  10. Negative Pressure Vitrification of the Isochorically Confined Liquid in Nanopores

    NASA Astrophysics Data System (ADS)

    Adrjanowicz, K.; Kaminski, K.; Koperwas, K.; Paluch, M.

    2015-12-01

    Dielectric relaxation studies for model glass-forming liquids confined to nanoporous alumina matrices were examined together with high-pressure results. For confined liquids which show the deviation from bulk dynamics upon approaching the glass transition (the change from the Vogel-Fulcher-Tammann to the Arrhenius law), we have observed a striking agreement between the temperature dependence of the α -relaxation time in the Arrhenius-like region and the isochoric relaxation times extrapolated from the positive range of pressure to the negative pressure domain. Our finding provides strong evidence that glass-forming liquid confined to native nanopores enters the isochoric conditions once the mobility of the interfacial layer becomes frozen in. This results in the negative pressure effects on cooling. We also demonstrate that differences in the sensitivity of various glass-forming liquids to the "confinement effects" can be rationalized by considering the relative importance of thermal energy and density contributions in controlling the α -relaxation dynamics (the Ev/Ep ratio).

  11. Runaway electrons and magnetic island confinement

    SciTech Connect

    Boozer, Allen H.

    2016-08-19

    The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativistic energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. Furthermore, the physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.

  12. Runaway electrons and magnetic island confinement

    NASA Astrophysics Data System (ADS)

    Boozer, Allen H.

    2016-08-01

    The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativistic energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. The physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.

  13. Runaway electrons and magnetic island confinement

    DOE PAGES

    Boozer, Allen H.

    2016-08-19

    The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativisticmore » energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. Furthermore, the physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.« less

  14. Plasma confinement. [Physics for magnetic geometries

    SciTech Connect

    Boozer, A.H.

    1985-03-01

    The physics of plasma confinement by a magnetic field is developed from the basic properties of plasmas through the theory of equilibrium, stability, and transport in toroidal and open-ended configurations. The close relationship between the theory of plasma confinement and Hamiltonian mechanics is emphasized, and the modern view of macroscopic instabilities as three-dimensional equilibria is given.

  15. Climate conditions in bedded confinement buildings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Confinement buildings are utilized for finishing cattle to allow more efficient collection of animal waste and to buffer animals against adverse climatic conditions. Environmental data were obtained from a 29 m wide x 318 m long bedded confinement building with the long axis oriented east to west. T...

  16. Inertial Confinement Fusion Materials Science

    SciTech Connect

    Hamza, A V

    2004-06-01

    Demonstration of thermonuclear ignition and gain on a laboratory scale is one of science's grand challenges. The National Ignition Facility (NIF) is committed to achieving inertial confinement fusion (ICF) by 2010. Success in this endeavor depends on four elements: the laser driver performance, target design, experimental diagnostics performance, and target fabrication and target materials performance. This article discusses the current state of target fabrication and target materials performance. The first three elements will only be discussed insofar as they relate to target fabrication specifications and target materials performance. Excellent reviews of the physics of ICF are given by Lindl [Lindl 1998] and Lindl et al. [Lindl 2004]. To achieve conditions under which inertial confinement is sufficient to achieve thermonuclear burn, an imploded fuel capsule is compressed to conditions of high density and temperature. In the laboratory a driver is required to impart energy to the capsule to effect an implosion. There are three drivers currently being considered for ICF in the laboratory: high-powered lasers, accelerated heavy ions, and x rays resulting from pulsed power machines. Of these, high-powered lasers are the most developed, provide the most symmetric drive, and provide the most energy. Laser drive operates in two configurations. The first is direct drive where the laser energy impinges directly on the ICF capsule and drives the implosion. The second is indirect drive, where the energy from the laser is first absorbed in a high-Z enclosure or hohlraum surrounding the capsule, and the resulting x-rays emitted by the hohlraum material drives the implosion. Using direct drive the laser beam energy is absorbed by the electrons in the outer corona of the target. The electrons transport the energy to the denser shell region to provide the ablation and the resulting implosion. Laser direct drive is generally less efficient and more hydrodynamically unstable than

  17. Composite mesostructures by nano-confinement.

    PubMed

    Wu, Yiying; Cheng, Guosheng; Katsov, Kirill; Sides, Scott W; Wang, Jianfang; Tang, Jing; Fredrickson, Glenn H; Moskovits, Martin; Stucky, Galen D

    2004-11-01

    In a physically confined environment, interfacial interactions, symmetry breaking, structural frustration and confinement-induced entropy loss can play dominant roles in determining molecular organization. Here we present a systematic study of the confined assembly of silica-surfactant composite mesostructures within cylindrical nanochannels of varying diameters. Using exactly the same precursors and reaction conditions that form the two-dimensional hexagonal SBA-15 mesostructured thin film, unprecedented silica mesostructures with chiral mesopores such as single- and double-helical geometries spontaneously form inside individual alumina nanochannels. On tightening the degree of confinement, a transition is observed in the mesopore morphology from a coiled cylindrical to a spherical cage-like geometry. Self-consistent field calculations carried out to account for the observed mesostructures accord well with experiment. The mesostructures produced by confined syntheses are useful as templates for fabricating highly ordered mesostructured nanowires and nanowire arrays.

  18. Size Dependant Nucleation of Confined 2-Decanol

    NASA Astrophysics Data System (ADS)

    Amanuel, Samuel; Bauer, Hillary; Safiq, Alexandrea; Dulmaa, Jargalsaikhan; Khraisat, Amer

    2012-02-01

    We have studied freezing and melting of physically confined 2-decanol in nano porous silica using a Differential Scanning Calorimeter (DSC). Both melting and freezing temperatures are suppressed for physically confined 2-decanol. In the presence of bulk, freezing of the confined system is triggered by freezing of the bulk where nucleation is heterogeneous. There is, however, a cutoff size between 100 nm and 300 nm where phase transition is no longer initiated through heterogeneous nucleation. Below the cutoff size, nucleation is homogeneous where the confined system has to be supercooled further before any phase transition can occur. Melting of the confined system, on the other hand, is not influenced by the presence or absence of the bulk.

  19. Fluid viscosity under confined conditions

    NASA Astrophysics Data System (ADS)

    Rudyak, V. Ya.; Belkin, A. A.

    2014-12-01

    Closed equations of fluid transfer in confined conditions are constructed in this study using ab initio methods of nonequilibrium statistical mechanics. It is shown that the fluid viscosity is not determined by the fluid properties alone, but becomes a property of the "fluid-nanochannel walls" system as a whole. Relations for the tensor of stresses and the interphase force, which specifies the exchange by momentum of fluid molecules with the channel-wall molecules, are derived. It is shown that the coefficient of viscosity is now determined by the sum of three contributions. The first contribution coincides with the expression for the coefficient of the viscosity of fluid in the bulk being specified by the interaction of fluid molecules with each other. The second contribution has the same structure as the first one but is determined by the interaction of fluid molecules with the channel-wall molecules. Finally, the third contribution has no analog in the usual statistical mechanics of transport processes of a simple fluid. It is associated with the correlation of intermolecular forces of the fluid and the channel walls. Thus, it is established that the coefficient of viscosity of fluid in sufficiently small channels will substantially differ from its bulk value.

  20. Cell migration in confined environments.

    PubMed

    Irimia, Daniel

    2014-01-01

    We describe a protocol for measuring the speed of human neutrophils migrating through small channels, in conditions of mechanical confinement comparable to those experienced by neutrophils migrating through tissues. In such conditions, we find that neutrophils move persistently, at constant speed for tens of minutes, enabling precise measurements at single cells resolution, for large number of cells. The protocol relies on microfluidic devices with small channels in which a solution of chemoattractant and a suspension of isolated neutrophils are loaded in sequence. The migration of neutrophils can be observed for several hours, starting within minutes after loading the neutrophils in the devices. The protocol is divided into four main steps: the fabrication of the microfluidic devices, the separation of neutrophils from whole blood, the preparation of the assay and cell loading, and the analysis of data. We discuss the practical steps for the implementation of the migration assays in biology labs, the adaptation of the protocols to various cell types, including cancer cells, and the supplementary device features required for precise measurements of directionality and persistence during migration.

  1. Wettability and Coalescence of Cu Droplets Subjected to Two-Wall Confinement

    PubMed Central

    Li, Xiongying; Ren, Hongru; Wu, Weikang; Li, Hui; Wang, Long; He, Yezeng; Wang, Junjun; Zhou, Yi

    2015-01-01

    Controlling droplet dynamics via wettability or movement at the nanoscale is a significant goal of nanotechnology. By performing molecular dynamics simulations, we study the wettability and spontaneous coalescence of Cu droplets confined in two carbon walls. We first focus on one drop in the two-wall confinement to reveal confinement effects on wettability and detaching behavior of metallic droplets. Results show that Cu droplets finally display three states: non-detachment, semi-detachment and full detachment, depending on the height of confined space. The contact angle ranges from 125° to 177°, and the contact area radius ranges from 12 to ~80 Å. The moving time of the detached droplet in the full detachment state shows a linear relationship with the height of confined space. Further investigations into two drops subjected to confinement show that the droplets, initially distant from each other, spontaneously coalesce into a larger droplet by detachment. The coalescing time and final position of the merged droplet are precisely controlled by tailoring surface structures of the carbon walls, the height of the confined space or a combination of these approaches. These findings could provide an effective method to control the droplet dynamics by confinement. PMID:26459952

  2. Studies of global energy confinement in TFTR supershots

    SciTech Connect

    Strachan, J.D.

    1993-08-01

    The global energy confinement time, {tau}{sub E}, from TFTR supershot plasmas has been correlated with the hydrogen recycling and the pressure anisotropy. An expression for the global confinement was obtained that describes its value at the time of peak neutron emission for all TFTR supershots obtained in the 1990 campaign, and simultaneously describes the time evolution of {tau}{sub E} for an extensive subset of the 1990 data. The obtained expression is probably not unique and it can be written with different variables. An analysis of the energy balance for many of these supershots indicates that the primary effect of larger {tau}{sub E} is that the central particle diffusivity is lower.

  3. Millisecond burning of confined energetic materials during cookoff

    SciTech Connect

    Schmitt, R.G.; Baer, T.A.

    1997-11-01

    The response of a system containing an energetic material (EM) to an abnormal thermal environment is termed cookoff. To predict the violence of reaction of confined energetic materials during cookoff requires a description of the relevant physical processes that occur on time scales Ranging from days to submicroseconds. The time-to-ignition can be characterized accurately using heat transfer with chemistry and quasistatic mechanics. After ignition the energetic material deflagrates on a millisecond time scale. During this time the mechanical processes become dynamic. If the confinement survives burning then accelerated deflagration can lead to shock formation and deflagration to detonation transition. The focus of this work is the dynamic combustion regime in the millisecond time domain. Due to the mathematical stiffness of the chemistry equations and the prohibitively fine spatial resolution requirements needed to resolve the structure of the flame, an interface tracking approach is used to propagate the burn front. Demonstrative calculations are presented that illustrate the dynamic interaction of the deflagrating energetic material with its confinement.

  4. A study of an advanced confined linear energy source

    NASA Technical Reports Server (NTRS)

    Anderson, M. C.; Heidemann, W. B.

    1971-01-01

    A literature survey and a test program to develop and evaluate an advanced confined linear energy source were conducted. The advanced confined linear energy source is an explosive or pyrotechnic X-Cord (mild detonating fuse) supported inside a confining tube capable of being hermetically sealed and retaining all products of combustion. The energy released by initiation of the X-Cord is transmitted through the support material to the walls of the confining tube causing an appreciable change in cross sectional configuration and expansion of the tube. When located in an assembly that can accept and use the energy of the tube expansion, useful work is accomplished through fracture of a structure, movement of a load, reposition of a pin, release of a restraint, or similar action. The tube assembly imparts that energy without release of debris or gases from the device itself. This facet of the function is important to the protection of men or equipment located in close proximity to the system during the time of function.

  5. Human enteric viruses in groundwater from a confined bedrock aquifer

    USGS Publications Warehouse

    Borchardt, M. A.; Bradbury, K.R.; Gotkowitz, M.B.; Cherry, J.A.; Parker, B.L.

    2007-01-01

    Confined aquifers are overlain by low-permeability aquitards that are commonly assumed to protect underlying aquifers from microbial contaminants. However, empirical data on microbial contamination beneath aquitards is limited. This study determined the occurrence of human pathogenic viruses in well water from a deep sandstone aquifer confined by a regionally extensive shale aquitard. Three public water-supply wells were each sampled 10 times over 15 months. Samples were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) for several virus groups and by cell culture for infectious enteroviruses. Seven of 30 samples were positive by RT-PCR for enteroviruses; one of these was positive for infectious echovirus 18. The virus-positive samples were collected from two wells cased through the aquitard, indicating the viruses were present in the confined aquifer. Samples from the same wells showed atmospheric tritium, indicating water recharged within the past few decades. Hydrogeologic conditions support rapid porous media transport of viruses through the upper sandstone aquifer to the top of the aquitard 61 m below ground surface. Natural fractures in the shale aquitard are one possible virus transport pathway through the aquitard; however, windows, cross-connecting well bores, or imperfect grout seals along well casings also may be involved. Deep confined aquifers can be more vulnerable to contamination by human viruses than commonly believed. ?? 2007 American Chemical Society.

  6. Strongly Non-equilibrium Dynamics of Nanochannel Confined DNA

    NASA Astrophysics Data System (ADS)

    Reisner, Walter

    Nanoconfined DNA exhibits a wide-range of fascinating transient and steady-state non-equilibrium phenomena. Yet, while experiment, simulation and scaling analytics are converging on a comprehensive picture regarding the equilibrium behavior of nanochannel confined DNA, non-equilibrium behavior remains largely unexplored. In particular, while the DNA extension along the nanochannel is the key observable in equilibrium experiments, in the non-equilibrium case it is necessary to measure and model not just the extension but the molecule's full time-dependent one-dimensional concentration profile. Here, we apply controlled compressive forces to a nanochannel confined molecule via a nanodozer assay, whereby an optically trapped bead is slid down the channel at a constant speed. Upon contact with the molecule, a propagating concentration ``shockwave'' develops near the bead and the molecule is dynamically compressed. This experiment, a single-molecule implementation of a macroscopic cylinder-piston apparatus, can be used to observe the molecule response over a range of forcings and benchmark theoretical description of non-equilibrium behavior. We show that the dynamic concentration profiles, including both transient and steady-state response, can be modelled via a partial differential evolution equation combining nonlinear diffusion and convection. Lastly, we present preliminary results for dynamic compression of multiple confined molecules to explore regimes of segregation and mixing for multiple chains in confinement.

  7. Mobility in geometrically confined membranes.

    PubMed

    Domanov, Yegor A; Aimon, Sophie; Toombes, Gilman E S; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S; Bassereau, Patricia

    2011-08-02

    Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the "membrane size" for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111-3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman-Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion.

  8. Mobility in geometrically confined membranes

    PubMed Central

    Domanov, Yegor A.; Aimon, Sophie; Toombes, Gilman E. S.; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S.; Bassereau, Patricia

    2011-01-01

    Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the “membrane size” for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111—3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman–Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion. PMID:21768336

  9. Human Adaptation to Isolated and Confined Environments

    NASA Technical Reports Server (NTRS)

    Evans, Gary W.; Stokols, Daniel; Carrere, Sybil

    1987-01-01

    A study was conducted over seven months in a winter Antarctic isolated and confined environment (ICE). Physiological and psychological data was collected several times a week. Information was collected on a monthly basis on behavior and the use of physical facilities. Adaptation and information indicated that there was a significant decrease in epinephrine and norepinephrine during the middle trimester of the winter. No vital changes were found for blood pressure. Self reports of hostility and anxiety show a linear increase. There were no significant changes in depression during ICE. The physiological and psychological data do not move in a synchronous fashion over time. The data also suggest that both ambient qualities of an ICE and discrete social environmental events, such as the arrival of the summer crew, have an impact on the outcome measures used. It may be most appropiate to develop a model for ICE's that incorporates not only global chronic stressors common to all ICE's but also the role of discrete environmental effects which can minimize or enhance the influence of more chronic stressors. Behavioral adjustment information highlight the importance of developing schedules which balance work and recreational activities.

  10. New results on structure of low beta confinement Polywell cusps simulated by comsol multiphysics

    NASA Astrophysics Data System (ADS)

    Mahdavipour, B.; Salar Elahi, A.

    The Inertial electrostatic confinement (IEC) is one of the ways for fusion approaches. It is one of the various methods which can be used to confine hot fusion plasma. The advantage of IEC is that the IEC experiments could be done in smaller size facilities than ITER or NIF, costing less money and moving forward faster. In IEC fusion, we need to trap adequate electrons to confine the desired ion density which is needed for a fusion reactor. Polywell is a device which uses the magnetic cusp system and traps the required amount of electrons for fusion reactions. The purpose of this device is to create a virtual cathode in order to achieve nuclear fusion using inertial electrostatic confinement (Miley and Krupakar Murali, 2014). In this paper, we have simulated the low beta Polywell. Then, we examined the effects of coil spacing, coils current, electron injection energy on confinement time.

  11. Simultaneous confinement of low-energy electrons and positrons in a compact magnetic mirror trap

    NASA Astrophysics Data System (ADS)

    Higaki, H.; Kaga, C.; Fukushima, K.; Okamoto, H.; Nagata, Y.; Kanai, Y.; Yamazaki, Y.

    2017-02-01

    More than 107 electrons and 105 positrons with energy less than a few eV were confined simultaneously for the first time in a compact magnetic mirror trap with plugging potentials. The exponential decay time constant of the confined positrons exceeded 70 ms at the beginning of the simultaneous confinement. Particle simulations in the early stages of the mixing process were also conducted. The results obtained in the experiments and simulations suggested that an improved setup would make it possible to investigate the unexplored field of low-energy electron–positron plasmas experimentally.

  12. Propagating confined states in phase dynamics

    NASA Technical Reports Server (NTRS)

    Brand, Helmut R.; Deissler, Robert J.

    1992-01-01

    Theoretical treatment is given to the possibility of the existence of propagating confined states in the nonlinear phase equation by generalizing stationary confined states. The nonlinear phase equation is set forth for the case of propagating patterns with long wavelengths and low-frequency modulation. A large range of parameter values is shown to exist for propagating confined states which have spatially localized regions which travel on a background with unique wavelengths. The theoretical phenomena are shown to correspond to such physical systems as spirals in Taylor instabilities, traveling waves in convective systems, and slot-convection phenomena for binary fluid mixtures.

  13. Toroidal membrane vesicles in spherical confinement.

    PubMed

    Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael

    2015-09-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

  14. Toroidal membrane vesicles in spherical confinement

    NASA Astrophysics Data System (ADS)

    Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael

    2015-09-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

  15. Spin Dynamics of Electrons Confined in Silicon Heterostructures

    NASA Astrophysics Data System (ADS)

    Jock, Ryan Michael

    The spin states of electrons confined in silicon heterostructures have shown promise as qubits for quantum information processing. Recently, a host of single and few electron silicon quantum dot device architectures have arisen as implementations for quantum computation. These devices often combine regions of low density two-dimensional (2D) electrons, localized electrons, and interfaces depleted of electrons. Electron spin resonance (ESR) is a unique tool for probing the spin dynamics of both mobile and localized electrons at silicon heterointerfaces and investigating the effects limiting the ability to control electrons and their spin states in these structures. We use a continuous wave ESR method to examine localized 2D electron band-tail states at Si/SiO 2 interfaces in large area metal-oxide-semiconductor transistors. We compare two devices, fabricated in different laboratories, which display similar low temperature (4.2 K) peak mobilities. We find that one of the devices displays a smaller band-tail density of confined states and a shallower characteristic confinement. Thus, ESR reveals a difference in device quality, which is not apparent from mobility measurements, and is a valuable tool for evaluating the interface quality in Si/SiO2 heterostructures. Additionally, we use pulsed ESR techniques to study the spin dynamics of electrons confined in Si/SiGe heterostructures. For mobile 2D electrons, the density-dependent Dyakonov-Perel mechanism dominates spin relaxation. At low 2D densities, stronger electron-electron interactions cause an increase in the electron effective mass, leading to an increase in spin susceptibility. For very low densities, natural disorder localizes electrons at the silicon heterointerface. Naturally localized electrons in these structures display short spin relaxation times (< 0.1 ms). By electrostatically confining electrons to quantum dots, the spin relaxation time may be extended. We fabricate large-area dual-gated devices which

  16. Stacking structure of confined 1-butanol in SBA-15 investigated by solid-state NMR spectroscopy.

    PubMed

    Lin, Yun-Chih; Chou, Hung-Lung; Sarma, Loka Subramanyam; Hwang, Bing-Joe

    2009-10-12

    Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid-state NMR spectroscopic investigations on 1-butanol molecules confined in the hydrophilic mesoporous SBA-15 host. A range of NMR spectroscopic measurements comprising of (1)H spin-lattice (T(1)), spin-spin (T(2)) relaxation, (13)C cross-polarization (CP), and (1)H,(1)H two-dimensional nuclear Overhauser enhancement spectroscopy ((1)H,(1)H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide-line (2)H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1-butanol in SBA-15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1-butanol are extremely restricted in the confined space of the SBA-15 pores. The dynamics of the confined molecules of 1-butanol imply that the (1)H,(1)H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1-butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA-15 pores in a time-average state by solid-state NMR spectroscopy with the (1)H,(1)H 2D NOESY technique.

  17. Effect of confinement on the mode dynamics of dipole clusters.

    PubMed

    Schella, André; Melzer, André; July, Christoph; Bechinger, Clemens

    2015-02-14

    Dynamical properties of colloidal clusters composed of paramagnetic beads are presented. The clusters were trapped either in a parabolic trough or in a hard-wall confinement. In order to access the dynamics of the ensembles, the instantaneous normal mode (INM) approach is utilized, which uses cluster configurations as an input. The peaks in the mode spectra weaken when the system size is increased and when the coupling strength is lowered. The short-time diffusive properties of the clusters are deduced using the INM technique. It is found that angular diffusion is always larger than radial diffusion regardless of the shape of the external trap. Further, short-time diffusion seems to be almost independent of the coupling strength in the solid regime, but decreases with increasing packing fraction and size of the ensembles. In general, it is found that diffusion is larger for parabolically confined than for hard-wall trapped clusters.

  18. Numerical Investigations On The Seismic Behaviour Of Confined Masonry Walls

    SciTech Connect

    Calderini, Chiara; Cattari, Serena; Lagomarsino, Sergio

    2008-07-08

    In the last century, severe earthquakes highlighted the seismic vulnerability of unreinforced masonry buildings. Many technological innovations have been introduced in time in order to improve resistance, ductility, and dissipation properties of this type of constructions. The most widely diffused are reinforced masonry and confined masonry. Damage observation of recent earthquakes demonstrated the effectiveness of the response of confined masonry structures to seismic actions. In general, in this type of structures, reinforced concrete beams and columns are not main structural elements, however, they have the following functions: to confine masonry in order to increase its ductility; to bear tensile stresses derived from bending; to contrast the out-of-plane overturning of masonry panels. It is well evident that these functions are as much effectively performed as the connection between masonry and reinforced concrete elements is good (for example by mean of local interlocking or reinforcements). Confined masonry structures have been extensively studied in the last decades both from a theoretical point of view and by experimental tests Aims of this paper is to give a contribution to the understanding of the seismic behaviour of confined masonry walls by means of numerical parametrical analyses. There latter are performed by mean of the finite element method; a nonlinear anisotropic constitutive law recently developed for masonry is adopted. Comparison with available experimental results are carried out in order to validate the results. A comparison between the resistance obtained from the numerical analyses and the prevision provided by simplified resistance criteria proposed in literature and in codes is finally provided.

  19. Clusters of polyhedra in spherical confinement

    NASA Astrophysics Data System (ADS)

    Teich, Erin; van Anders, Greg; Klotsa, Daphne; Dshemuchadse, Julia; Glotzer, Sharon

    Dense particle packing in a confining volume is a rich, largely unexplored problem, with applications in blood clotting, plasmonics, industrial packaging and transport, colloidal molecule design, and information storage. We report simulation results for dense clusters of the Platonic solids in spherical confinement, for up to N = 60 constituent particles. We discuss similarities between clusters in terms of symmetry, a connection to spherical codes, and generally the interplay between isotropic geometrical confinement and anisotropic particle shape. Our results showcase the structural diversity and experimental utility of families of solutions to the problem of packing in confinement. E.T. acknowledges support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1256260.

  20. Communication: Folding of glycosylated proteins under confinement

    NASA Astrophysics Data System (ADS)

    Shental-Bechor, Dalit; Levy, Yaakov

    2011-10-01

    Conjugating flexible polymers (such as oligosaccharides) to proteins or confining a protein in a restricted volume often increases protein thermal stability. In this communication, we investigate the interplay between conjugation and confinement which is not trivial as the magnitude and the mechanism of stabilization are different in each instance. Using coarse-grained computational approach the folding biophysics is studied when the protein is placed in a sphere of variable radius and is conjugated to 0-6 mono- or penta-saccharides. We observe a synergistic effect on thermal stability when short oligosaccharides are attached and the modified protein is confined in a small cage. However, when large oligosaccharides are added, a conflict between confinement and glycosylation arises as the stabilizing effect of the cage is dramatically reduced and it is almost impossible to further stabilize the protein beyond the mild stabilization induced by the sugars.

  1. Model for melting of confined DNA

    NASA Astrophysics Data System (ADS)

    Werner, E.; Reiter-Schad, M.; Ambjörnsson, T.; Mehlig, B.

    2015-06-01

    When DNA molecules are heated they denature. This occurs locally so that loops of molten single DNA strands form, connected by intact double-stranded DNA pieces. The properties of this "melting" transition have been intensively investigated. Recently there has been a surge of interest in this question, in part caused by experiments determining the properties of partially bound DNA confined to nanochannels. But how does such confinement affect the melting transition? To answer this question we introduce and solve a model predicting how confinement affects the melting transition for a simple model system by first disregarding the effect of self-avoidance. We find that the transition is smoother for narrower channels. By means of Monte Carlo simulations we then show that a model incorporating self-avoidance shows qualitatively the same behavior and that the effect of confinement is stronger than in the ideal case.

  2. Controlling the Electromagnetic Field Confinement with Metamaterials

    PubMed Central

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-01-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained. PMID:27886230

  3. Computer simulations of charged colloids in confinement.

    PubMed

    Puertas, Antonio M; de las Nieves, F Javier; Cuetos, Alejandro

    2015-02-15

    We study by computer simulations the interaction between two similarly charged colloidal particles confined between parallel planes, in salt free conditions. Both the colloids and ions are simulated explicitly, in a fine-mesh lattice, and the electrostatic interaction is calculated using Ewald summation in two dimensions. The internal energy is measured by setting the colloidal particles at a given position and equilibrating the ions, whereas the free energy is obtained introducing a bias (attractive) potential between the colloids. Our results show that upon confining the system, the internal energy decreases, resulting in an attractive contribution to the interaction potential for large charges and strong confinement. However, the loss of entropy of the ions is the dominant mechanism in the interaction, irrespective of the confinement of the system. The interaction potential is therefore repulsive in all cases, and is well described by the DLVO functional form, but effective values have to be used for the interaction strength and Debye length.

  4. Colloidal cholesteric liquid crystal in spherical confinement

    PubMed Central

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  5. Human Adaptation To Isolated And Confined Environments

    NASA Technical Reports Server (NTRS)

    Evans, Gary W.; Stokols, Daniel; Carrere, Sna Sybil

    1992-01-01

    Data from Antarctic research station analyzed. Report describes study of physiology and psychology of humans in isolated and confined environment. Suggests ways in which such environments made more acceptable to human inhabitants.

  6. Colloidal cholesteric liquid crystal in spherical confinement

    NASA Astrophysics Data System (ADS)

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-08-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.

  7. Controlling the Electromagnetic Field Confinement with Metamaterials

    NASA Astrophysics Data System (ADS)

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-11-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained.

  8. Confinement and Transport in a Laboratory Magnetosphere

    NASA Astrophysics Data System (ADS)

    Peterson, Ethan; Clark, Michael; Cooper, Christopher; Endrizzi, Douglass; Wallace, John; Weisberg, David; Forest, Cary

    2016-10-01

    Measurements of density, temperature, diamagnetic currents, and ion flows throughout a dipole magnetosphere immersed in a homogeneous plasma are presented. A 1-D ambipolar diffusion transport model developed for multi-cusp confinement systems is adapted for a dipole magnetosphere geometry and compared to measurements. In addition, differential azimuthal flow is imposed on the magnetosphere through electrically driven flow at the boundary of the machine. Modifications to the transport and confinement due to differential rotation are presented as well.

  9. Stellarator approach to toroidal plasma confinement

    SciTech Connect

    Johnson, J.L.

    1981-12-01

    An overview is presented of the development and current status of the stellarator approach to controlled thermonuclear confinement. Recent experimental, theoretical, and systems developments have made this concept a viable option for the evolution of the toroidal confinement program. Some experimental study of specific problems associated with departure from two-dimensional symmetry must be undertaken before the full advantages and opportunities of steady-state, net-current-free operation can be realized.

  10. A dynamical model of color confinement

    NASA Astrophysics Data System (ADS)

    Loh, S.; Biró, T. S.; Mosel, U.; Thoma, M. H.

    1996-02-01

    A dynamical model of confinement based on a transport theoretical description of the Friedberg-Lee model is extended to explicit color degrees of freedom. The string tension is reproduced by an adiabatic string formation from the nucleon ground state. Color isovector oscillation modes of a qq¯-system are investigated for a wide range of relative qq¯-momenta and the dynamical impact of color confinement on the quark motion is shown.

  11. 915nm high-power broad area laser diodes with ultra-small optical confinement based on Asymmetric Decoupled Confinement Heterostructure (ADCH)

    NASA Astrophysics Data System (ADS)

    Yamagata, Yuji; Yamada, Yumi; Muto, Masanori; Sato, Syunta; Nogawa, Ryozaburo; Sakamoto, Akira; Yamaguchi, Masayuki

    2015-03-01

    915nm high-power and high-reliability single emitter laser diodes based on Asymmetric Decoupled Confinement Heterostructure (ADCH) are demonstrated. Advantage of ADCH is that it can optimize active layer confinement (?) and confinement ratio of p- to n-doped layer (?p/?n), independently, to manage large effective spot size and low internal loss without any penalty in carrier confinement. 4mm-cavity, 100μm wide stripe LDs with large effective spot size of 1.5μm demonstrates record high Catastrophic-optical-damage (COD) free operation over 42W output. Accelerated aging tests are conducted for 325 devices in total with 1.8 million device hours. Mean time to failure of random failure mode is estimated to be 1.1 million hours for 12W at room temperature.

  12. Confined Space Evaluation Student Manual, #19613

    SciTech Connect

    Chochoms, Michael

    2016-08-29

    Many workplaces contain spaces that are considered to be “confined” because their configuration hinders the activities of employees who must enter into, work in, and exit from them. In general, the permit-required confined spaces (PRCSs) Occupational Safety and Health Administration (OSHA) standard requires that Los Alamos National Laboratory (LANL) evaluate the workplace to determine if any spaces are PRCSs. The standard specifies strict procedures for the evaluation and atmospheric testing of a space before and during an entry by workers. The OSHA PRCS standard provides for alternative (less stringent than full-permit) entry procedures in cases where the only hazard in a space is atmospheric and the hazard can be controlled by forced air. At LANL, all confined spaces or potential confined spaces on LANL-owned or -operated property must be identified and evaluated by a confined space evaluator accompanied by a knowledgeable person. This course provides the information needed by confined space evaluators to make judgements about whether a space is a confined space, and if so, whether the space will require a permit for entry.

  13. Vorticity confinement technique for drag prediction

    NASA Astrophysics Data System (ADS)

    Povitsky, Alex; Snyder, Troy

    2011-11-01

    This work couples wake-integral drag prediction and vorticity confinement technique (VC) for the improved prediction of drag from CFD simulations. Induced drag computations of a thin wing are shown to be more accurate than the more widespread method of surface pressure integration when compared to theoretical lifting-line value. Furthermore, the VC method improves trailing vortex preservation and counteracts the shift from induced drag to numerical entropy drag with increasing distance of Trefftz plane downstream of the wing. Accurate induced drag prediction via the surface integration of pressure barring a sufficiently refined surface grid and increased computation time. Furthermore, the alternative wake-integral technique for drag prediction suffers from numerical dissipation. VC is shown to control the numerical dissipation with very modest computational overhead. The 2-D research code is used to test specific formulations of the VC body force terms and illustrate the computational efficiency of the method compared to a ``brute force'' reduction in spatial step size. For the 3-D wing simulation, ANSYS FLUENT is employed with the VC body force terms added to the solver with user-defined functions (UDFs). VC is successfully implemented to highly unsteady flows typical for Micro Air Vehicles (MAV) producing oscillative drag force either by natural vortex shedding at high angles of attack or by flapping wing motion.

  14. Optical properties of matrix confined species

    NASA Astrophysics Data System (ADS)

    Lezhnina, M. M.; Kynast, U. H.

    2010-11-01

    A majority of optically functional materials can be perceived as a liaison between ionic or molecular guests and a more or less rigid host. The guests exhibit an optical function, whereas the host provides suitable space, both of them synergistically complementing each other. The embracement of guests and hosts is often very intimate, as e.g. in typical phosphors, where luminescent ions even become part of the host. While the host-guest terminology usually is not applied to such marriages, the term becomes appropriate, if the host grants some degrees of spatial freedom, yet giving order and structure to its guests. Zeolites, clays and inverse opals are porous materials naturally providing hospitable cavities, channels or other compartments, and at the same time the guests are often demanded to occupy preassigned positions within these, or to structurally adapt to the interior host topology. Whereas zeolites and clays are merely patient providers of guest space, inverse opals, can actively turn the light on and off. The present article summarises and highlights recent experimental evidence, ongoing research and some envisaged merits resulting from the interaction of matrix confined luminescent ions, complexes and molecules with a focus on the optical properties of rare earth based materials.

  15. Field reversed configuration confinement enhancement through edge biasing and neutral beam injection.

    PubMed

    Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D

    2012-06-22

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms.

  16. Microscale Confinement features in microfluidic devices can affect biofilm

    SciTech Connect

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh; Acharya, Rajesh K; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2013-01-01

    Biofilms are aggregations of microbes that are encased by extra-cellular polymeric substances (EPS) and adhere to surfaces and interfaces. Biofilm development on abiotic surfaces is a dynamic process, which typically proceeds through an initial phase of adhesion of plankntonic microbes to the substrate, followed by events such as growth, maturation and EPS secretion. However, the coupling of hydrodynamics, microbial adhesion and biofilm growth remain poorly understood. Here, we investigate the effect of semiconfined features on biofilm formation. Using a microfluidic device and fluorescent time-lapse microscopy, we establish that confinement features can significantly affect biofilm formation. Biofilm dynamics change not only as a function of confinement features, but also of the total fluid flow rate, and our combination of experimental results and numerical simulations reveal insights into the link between hydrodynamics and biofilm formation.

  17. Visualizing Chemical Interaction Dynamics of Confined DNA Molecules

    NASA Astrophysics Data System (ADS)

    Henkin, Gilead; Berard, Daniel; Stabile, Frank; Leslie, Sabrina

    We present a novel nanofluidic approach to controllably introducing reagent molecules to interact with confined biopolymers and visualizing the reaction dynamics in real time. By dynamically deforming a flow cell using CLiC (Convex Lens-induced Confinement) microscopy, we are able to tune reaction chamber dimensions from micrometer to nanometer scales. We apply this gentle deformation to load and extend DNA polymers within embedded nanotopographies and visualize their interactions with other molecules in solution. Quantifying the change in configuration of polymers within embedded nanotopographies in response to binding/unbinding of reagent molecules provides new insights into their consequent change in physical properties. CLiC technology enables an ultra sensitive, massively parallel biochemical analysis platform which can acces a broader range of interaction parameters than existing devices.

  18. Confinement and power balance in the S-1 spheromak

    SciTech Connect

    Levinton, F.M.; Meyerhofer, D.D.; Mayo, R.M.; Janos, A.C.; Ono, Y.; Ueda, Y.; Yamada, M.

    1989-07-01

    The confinement and scaling features of the S-1 spheromak have been investigated using magnetic, spectroscopic, and Thomson scattering data in conjunction with numerical modeling. Results from the multipoint Thomson scattering diagnostic shows that the central beta remains constant (/beta//sub to/ /approximately/ 5%) as the plasma current density increases from 0.68--2.1 MA/m/sup 2/. The density is observed to increase slowly over this range, while the central electron temperature increases much more rapidly. Analysis of the global plasma parameters shows a decrease in the volume average beta and energy confinement as the total current is increased. The power balance has been modeled numerically with a 0-D non-equilibrium time-dependent coronal model and is consistent with the experimental observations. 20 refs., 12 figs., 2 tabs.

  19. The deflection of a jet by confining surfaces

    NASA Technical Reports Server (NTRS)

    Catalano, G. D.; Morton, J. B.; Humphris, R. R.

    1981-01-01

    Thrust vectoring can be provided by the turning of a jet exhaust by the presence of confining surfaces. This approach is analogous to the upper surface blowing (USB) concept. Mean velocities, velocity autocorrelations, and pressure-velocity correlations are measured. From the autocorrelation curves, the Taylor microscales and the integral length scales are calculated. Convection velocities are calculated from the velocity space-time correlations. Two different confining surfaces (one flat, one with large curvature) are placed adjacent to the lip of a circular nozzle, and the resultant effects on the flow field are determined. In addition, two velocity ratios (exit plane velocity to ambient stream velocity) are examined. The velocity measurements were made with a laser Doppler velocimeter in conjunction with a phase locked-loop processor. Pressure measurements were made using a 1/8th inch condensor type microphone.

  20. Defect topologies in chiral liquid crystals confined to mesoscopic channels

    SciTech Connect

    Schlotthauer, Sergej Skutnik, Robert A.; Stieger, Tillmann; Schoen, Martin

    2015-05-21

    We present Monte Carlo simulations in the grand canonical and canonical ensembles of a chiral liquid crystal confined to mesochannels of variable sizes and geometries. The mesochannels are taken to be quasi-infinite in one dimension but finite in the two other directions. Under thermodynamic conditions chosen and for a selected value of the chirality coupling constant, the bulk liquid crystal exhibits structural characteristics of a blue phase II. This is established through the tetrahedral symmetry of disclination lines and the characteristic simple-cubic arrangement of double-twist helices formed by the liquid-crystal molecules along all three axes of a Cartesian coordinate system. If the blue phase II is then exposed to confinement, the interplay between its helical structure, various anchoring conditions at the walls of the mesochannels, and the shape of the mesochannels gives rise to a broad variety of novel, qualitative disclination-line structures that are reported here for the first time.

  1. Surface-Activated Coupling Reactions Confined on a Surface.

    PubMed

    Dong, Lei; Liu, Pei Nian; Lin, Nian

    2015-10-20

    Chemical reactions may take place in a pure phase of gas or liquid or at the interface of two phases (gas-solid or liquid-solid). Recently, the emerging field of "surface-confined coupling reactions" has attracted intensive attention. In this process, reactants, intermediates, and products of a coupling reaction are adsorbed on a solid-vacuum or a solid-liquid interface. The solid surface restricts all reaction steps on the interface, in other words, the reaction takes place within a lower-dimensional, for example, two-dimensional, space. Surface atoms that are fixed in the surface and adatoms that move on the surface often activate the surface-confined coupling reactions. The synergy of surface morphology and activity allow some reactions that are inefficient or prohibited in the gas or liquid phase to proceed efficiently when the reactions are confined on a surface. Over the past decade, dozens of well-known "textbook" coupling reactions have been shown to proceed as surface-confined coupling reactions. In most cases, the surface-confined coupling reactions were discovered by trial and error, and the reaction pathways are largely unknown. It is thus highly desirable to unravel the mechanisms, mechanisms of surface activation in particular, of the surface-confined coupling reactions. Because the reactions take place on surfaces, advanced surface science techniques can be applied to study the surface-confined coupling reactions. Among them, scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are the two most extensively used experimental tools. The former resolves submolecular structures of individual reactants, intermediates, and products in real space, while the latter monitors the chemical states during the reactions in real time. Combination of the two methods provides unprecedented spatial and temporal information on the reaction pathways. The experimental findings are complemented by theoretical modeling. In particular, density

  2. Dielectric relaxation studies of poly(propylene glycol) confined in vermiculite clay.

    PubMed

    Schwartz, G A; Bergman, R; Mattsson, J; Swenson, J

    2003-11-01

    The molecular dynamics of oligomeric poly(propylene glycol) (PPG) liquids (M(w)=1200, 2000 and 4000 g/mol) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy. In addition to the alpha-relaxation, the normal mode relaxation process was studied for all samples both in bulk and confinement. For the normal mode process the relaxation rate in the clay is drastically shifted to lower frequencies compared to that of the bulk material in contrast to the alpha-process whose relaxation time is only slightly affected by the confinement. Also the temperature dependence of the relaxation time for the normal mode process is strongly affected by the confinement. Moreover, in the clay the intensity of the normal mode is stronger than that of the alpha-process, in contrast to the bulk samples where the opposite is observed.

  3. Diffusing Polymers in Confined Microdomains and Estimation of Chromosomal Territory Sizes from Chromosome Capture Data

    NASA Astrophysics Data System (ADS)

    Amitai, A.; Holcman, D.

    2013-06-01

    Is it possible to extract the size and structure of chromosomal territories (confined domain) from the encounter frequencies of chromosomal loci? To answer this question, we estimate the mean time for two monomers located on the same polymer to encounter, which we call the mean first encounter time in a confined microdomain (MFETC). We approximate the confined domain geometry by a harmonic potential well and obtain an asymptotic expression that agrees with Brownian simulations for the MFETC as a function of the polymer length, the radius of the confined domain, and the activation distance radius ɛ at which the two searching monomers meet. We illustrate the present approach using chromosome capture data for the encounter rate distribution of two loci depending on their distances along the DNA. We estimate the domain size that restricts the motion of one of these loci for chromosome II in yeast.

  4. Modulus-pressure equation for confined fluids

    NASA Astrophysics Data System (ADS)

    Gor, Gennady Y.; Siderius, Daniel W.; Shen, Vincent K.; Bernstein, Noam

    2016-10-01

    Ultrasonic experiments allow one to measure the elastic modulus of bulk solid or fluid samples. Recently such experiments have been carried out on fluid-saturated nanoporous glass to probe the modulus of a confined fluid. In our previous work [G. Y. Gor et al., J. Chem. Phys., 143, 194506 (2015)], using Monte Carlo simulations we showed that the elastic modulus K of a fluid confined in a mesopore is a function of the pore size. Here we focus on the modulus-pressure dependence K(P), which is linear for bulk materials, a relation known as the Tait-Murnaghan equation. Using transition-matrix Monte Carlo simulations we calculated the elastic modulus of bulk argon as a function of pressure and argon confined in silica mesopores as a function of Laplace pressure. Our calculations show that while the elastic modulus is strongly affected by confinement and temperature, the slope of the modulus versus pressure is not. Moreover, the calculated slope is in a good agreement with the reference data for bulk argon and experimental data for confined argon derived from ultrasonic experiments. We propose to use the value of the slope of K(P) to estimate the elastic moduli of an unknown porous medium.

  5. Colloid-polymer mixtures under slit confinement.

    PubMed

    Pérez-Ramírez, Allan; Figueroa-Gerstenmaier, Susana; Odriozola, Gerardo

    2017-03-14

    We report a NVT molecular dynamic study of colloid-polymer mixtures under slit confinement. For this purpose, we are employing the Asakura-Oosawa model for studying colloidal particles, polymer coils, and hard walls as the external confining field. The colloid-polymer size ratio, q, is varied in the range 1⩾q⩾0.4 and the confinement distance, H, in 10σc⩾H⩾3σc, σc being the colloidal diameter. Vapor-liquid coexistence properties are assessed, from which phase diagrams are built. The obtained data fulfill the corresponding states law for a constant H when q is varied. The shift of the polymer and colloidal chemical potentials of coexistence follows a linear relationship with (H-σc)(-1) for H≳4σc. The confined vapor-liquid interfaces can be fitted with a semicircular line of curvature (H-σc)(-1), from which the contact angle can be obtained. We observe complete wetting of the confining walls for reservoir polymer concentrations above and close to the critical value, and partial wetting for reservoir polymer concentrations above and far from it.

  6. Colloid-polymer mixtures under slit confinement

    NASA Astrophysics Data System (ADS)

    Pérez-Ramírez, Allan; Figueroa-Gerstenmaier, Susana; Odriozola, Gerardo

    2017-03-01

    We report a NVT molecular dynamic study of colloid-polymer mixtures under slit confinement. For this purpose, we are employing the Asakura-Oosawa model for studying colloidal particles, polymer coils, and hard walls as the external confining field. The colloid-polymer size ratio, q, is varied in the range 1 ⩾q ⩾0.4 and the confinement distance, H, in 10 σc ⩾H ⩾3 σc , σc being the colloidal diameter. Vapor-liquid coexistence properties are assessed, from which phase diagrams are built. The obtained data fulfill the corresponding states law for a constant H when q is varied. The shift of the polymer and colloidal chemical potentials of coexistence follows a linear relationship with (H-σc ) -1 for H ≳4 σc . The confined vapor-liquid interfaces can be fitted with a semicircular line of curvature (H-σc ) -1, from which the contact angle can be obtained. We observe complete wetting of the confining walls for reservoir polymer concentrations above and close to the critical value, and partial wetting for reservoir polymer concentrations above and far from it.

  7. Effects of confinement on nanoparticle flows

    NASA Astrophysics Data System (ADS)

    Conrad, Jacinta

    The transport properties of nanoparticles that are dispersed in complex fluids and flowed through narrow confining geometries affect a wide range of materials shaping and forming processes, including three-dimensional printing and nanocomposite processing. Here, I will describe two sets of experiments in which we use optical microscopy to probe the structure and transport properties of suspensions of particles that are confined geometrically. First, we investigate the structure and flow properties of dense suspensions of submicron particles, in which the particles interact via an entropic depletion attraction, that are confined in thin films and microchannels. Second, we characterize the transport properties of nanoparticles, dispersed at low concentration in water or in aqueous solutions of high-molecular weight polymers, that are confined in regular arrays of nanoposts or in disordered porous media. I will discuss our results and their practical implications for materials processing as well as for other applications that require confined transport of nanomaterials through complex media. Welch Foundation (E-1869) and NSF (CBET-1438204).

  8. Stiffness and Confinement Ratios of SMA Wire Jackets for Confining Concrete

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Kim, Dong Joo; Youn, Heejung

    2014-07-01

    This article discusses the effects of the stiffness and confinement ratios of shape memory alloy (SMA) wire jackets on the behavior of confined concrete. SMA wire jackets are an effective confining material to improve concrete behavior; for example, by increasing peak strength and failure strain. The stiffness and confinement ratios of fiber-reinforced polymer jackets have been extensively discussed and their effects are well known. However, assessment of the stiffness and confinement ratios of SMA wire jackets has not previously been conducted. In this study, we investigate the effects of the stiffness and confinement ratios of steel jackets, and then compare the results with those of SMA wire jackets. In general, the stiffness ratios of SMA wire jackets are relatively smaller than those of steel jackets, and most of them have lower stiffness ratios because the Young's moduli of the SMAs are relatively small. The active confining pressure of the SMA wires does not improve the lower stiffness-ratio effect since the amount of active confining pressure is not sufficiently large.

  9. Confinement-Induced Supercriticality and Phase Equilibria of Hydrocarbons in Nanopores.

    PubMed

    Luo, Sheng; Lutkenhaus, Jodie L; Nasrabadi, Hadi

    2016-11-08

    For over a century, the phase behavior of bulk fluids has been described as PVT (pressure-volume-temperature) three-dimensional properties, but it has become increasingly clear that the liquid-vapor phase behavior in confined geometries is significantly altered from the bulk. Efforts have been devoted to accessing confined phase transitions using sorption, molecular simulations, and theoretical methods. However, a comprehensive picture of PVT relationships for confined hydrocarbons remains uncertain. Herein, we introduce d (confining pore diameter) as a fourth dimension, and we present PVT-d behavior of confined fluids in nanopores. For the first time, a T-d phase diagram is presented for n-hexane, n-octane, and n-decane under multiple confinement scales (37.9, 14.8, 9.8, 6.0, 4.1, 3.3, and 2.2 nm cylindrical pore diameter) using experimental differential scanning calorimetry and PVT-d equation of state theory at atmospheric pressure. As pore diameter decreases from 37.9 to 4.1 nm, the bubble point increases by as much as 15 K above bulk, until we observe behavior consistent with a supercritical state, pointing to confinement-induced supercriticality. Remarkably, experimental and theoretical findings overlap very well, showing that this approach effectively captures the phase boundaries between the liquid, vapor, and supercritical fluid regions. The model and completed EOS are additionally extended to calculation of isothermal capillary adsorption, and its validity is discussed.

  10. Freezing of mixtures confined in silica nanopores: experiment and molecular simulation.

    PubMed

    Coasne, Benoit; Czwartos, Joanna; Sliwinska-Bartkowiak, Malgorzata; Gubbins, Keith E

    2010-08-28

    Freezing of mixtures confined in silica nanopores is investigated by means of experiment and molecular simulation. The experiments consist of differential scanning calorimetry and dielectric relaxation spectroscopy measurements for CCl(4)/C(6)H(5)Br mixtures confined in Vycor having pores with a mean diameter of about D=4.2 nm. Molecular simulations consist of grand canonical Monte Carlo simulations combined with the parallel tempering technique for Lennard-Jones Ar/Kr mixtures confined in a silica cylindrical nanopore with a diameter of D=3.2 nm. The experimental and molecular simulation data provide a consistent picture of freezing of mixtures in cylindrical silica nanopores having a size smaller than ten times the size of the confined molecules. No sharp change in the properties of the confined mixture occurs upon melting, which suggests that the confined system does not crystallize. In the case of the molecular simulations, this result is confirmed by the fact that except for the contact layer, the percentage of crystal-like atoms is less than 6% (whatever the temperature). The molecular simulations also show that the composition of the mixture is shifted, upon confinement, toward the component having the strongest wall/fluid attraction.

  11. Turbulence and atomic physics in magnetically confined plasmas

    NASA Astrophysics Data System (ADS)

    Marandet, Y.; Bufferand, H.; Ciraolo, G.; Nace, N.; Serre, E.; Tamain, P.; Valentinuzzi, M.

    2017-03-01

    An overview of issues related to the interplay between atomic process and turbulence in the peripheral regions of magnetically confined fusion devices is presented. Both atomic processes and turbulence play key roles for fusion, but have most of the time been treated separately. The effects of fluctuations on the time averaged ionization balance, on the transport of neutral particles (atoms and molecules) are discussed, using stochastic models to generate fluctuations with statistically relevant properties. Then applications to optical diagnostics of turbulence, namely gas puff imaging and beam emission spectroscopy are discussed.

  12. Progress in toroidal confinement and fusion research

    SciTech Connect

    Furth, H.P.

    1987-10-01

    During the past 30 years, the characteristic T/sub i/n tau/sub E/-value of toroidal-confinement experiments has advanced by more than seven orders of magnitude. Part of this advance has been due to an increase of gross machine parameters. Most of this advance has been due to an increase of gross machine parameters. Most of the advance is associated with improvements in the ''quality of plasma confinement.'' The combined evidence of spherator and tokamak research clarifies the role of magnetic-field geometry in determining confinement and points to the importance of shielding out plasma edge effects. A true physical understanding of anomalous transport remains to be achieved. 39 refs., 11 figs., 1 tab.

  13. Neutron Assay System for Confinement Vessel Disposition

    SciTech Connect

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Valdez, Jose I.; Vigil, Georgiana M.

    2012-07-13

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the CVs. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of special nuclear material (SNM) in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le}100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements.

  14. Transition metal catalysis in confined spaces.

    PubMed

    Leenders, Stefan H A M; Gramage-Doria, Rafael; de Bruin, Bas; Reek, Joost N H

    2015-01-21

    Transition metal catalysis plays an important role in both industry and in academia where selectivity, activity and stability are crucial parameters to control. Next to changing the structure of the ligand, introducing a confined space as a second coordination sphere around a metal catalyst has recently been shown to be a viable method to induce new selectivity and activity in transition metal catalysis. In this review we focus on supramolecular strategies to encapsulate transition metal complexes with the aim of controlling the selectivity via the second coordination sphere. As we will discuss, catalyst confinement can result in selective processes that are impossible or difficult to achieve by traditional methods. We will describe the template-ligand approach as well as the host-guest approach to arrive at such supramolecular systems and discuss how the performance of the catalyst is enhanced by confining it in a molecular container.

  15. Properties of Water Confined in Ionic Liquids

    PubMed Central

    Saihara, Koji; Yoshimura, Yukihiro; Ohta, Soichi; Shimizu, Akio

    2015-01-01

    The varying states of water confined in the nano-domain structures of typical room temperature ionic liquids (ILs) were investigated by 1H NMR and by measurements of self-diffusion coefficients while systematically varying the IL cations and anions. The NMR peaks for water in BF4-based ILs were clearly split, indicating the presence of two discrete states of confined water (H2O and HOD). Proton and/or deuterium exchange rate among the water molecules was very slowly in the water-pocket. Notably, no significant changes were observed in the chemical shifts of the ILs. Self-diffusion coefficient results showed that water molecules exhibit a similar degree of mobility, although their diffusion rate is one order of magnitude faster than that of the IL cations and anions. These findings provide information on a completely new type of confinement, that of liquid water in soft matter. PMID:26024339

  16. TOPICAL REVIEW: Biopolymer organization upon confinement

    NASA Astrophysics Data System (ADS)

    Marenduzzo, D.; Micheletti, C.; Orlandini, E.

    2010-07-01

    Biopolymers in vivo are typically subject to spatial restraints, either as a result of molecular crowding in the cellular medium or of direct spatial confinement. DNA in living organisms provides a prototypical example of a confined biopolymer. Confinement prompts a number of biophysics questions. For instance, how can the high level of packing be compatible with the necessity to access and process the genomic material? What mechanisms can be adopted in vivo to avoid the excessive geometrical and topological entanglement of dense phases of biopolymers? These and other fundamental questions have been addressed in recent years by both experimental and theoretical means. A review of the results, particularly of those obtained by numerical studies, is presented here. The review is mostly devoted to DNA packaging inside bacteriophages, which is the best studied example both experimentally and theoretically. Recent selected biophysical studies of the bacterial genome organization and of chromosome segregation in eukaryotes are also covered.

  17. Theory of Activated Relaxation in Nanoscale Confined Liquids

    NASA Astrophysics Data System (ADS)

    Mirigian, Stephen; Schweizer, Kenneth

    2014-03-01

    We extend the recently developed Elastically Cooperative Nonlinear Langevin Equation(ECNLE) theory of activated relaxation in supercooled liquids to treat the case of geometrically confined liquids. Generically, confinement of supercooled liquids leads to a speeding up of the dynamics(with a consequent depression of the glass transition temperature) extending on the order of tens of molecular diameters away from a free surface. At present, this behavior is not theoretically well understood. Our theory interprets the speed up in dynamics in terms of two coupled effects. First, a direct surface effect, extending two to three molecular diameters from a free surface, and related to a local rearrangement of molecules with a single cage. The second is a longer ranged ``confinement'' effect, extending tens of molecular diameters from a free surface and related to the long range elastic penalty necessary for a local rearrangement. The theory allows for the calculation of relaxation time and Tg profiles within a given geometry and first principles calculations of relevant length scales. Comparison to both dynamic and pseudo-thermodynamic measurements shows reasonable agreement to experiment with no adjustable parameters.

  18. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement.

    PubMed

    Huang, Qiangsheng; Bao, Fanglin; He, Sailing

    2013-01-28

    The effect of nonlocal optical response is studied for a novel silicon hybrid plasmonic waveguide (HPW). Finite element method is used to implement the hydrodynamic model and the propagation mode is analyzed for a hybrid plasmonic waveguide of arbitrary cross section. The waveguide has an inverted metal nano-rib over a silicon-on-insulator (SOI) structure. An extremely small mode area of~10⁻⁶λ² is achieved together with several microns long propagation distance at the telecom wavelength of 1.55 μm. The figure of merit (FoM) is also improved in the same time, compared to the pervious hybrid plasmonic waveguide. We demonstrate the validity of our method by comparing our simulating results with some analytical results for a metal cylindrical waveguide and a metal slab waveguide in a wide wavelength range. For the HPW, we find that the nonlocal effects can give less loss and better confinement. In particular, we explore the influence of the radius of the rib's tip on the loss and the confinement. We show that the nonlocal effects give some new fundamental limitation on the confinement, leaving the mode area finite even for geometries with infinitely sharp tips.

  19. Confinement and viscoelastic effects on chain closure dynamics

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Pinaki; Sharma, Rati; Cherayil, Binny J.

    2012-06-01

    Chemical reactions inside cells are typically subject to the effects both of the cell's confining surfaces and of the viscoelastic behavior of its contents. In this paper, we show how the outcome of one particular reaction of relevance to cellular biochemistry - the diffusion-limited cyclization of long chain polymers - is influenced by such confinement and crowding effects. More specifically, starting from the Rouse model of polymer dynamics, and invoking the Wilemski-Fixman approximation, we determine the scaling relationship between the mean closure time tc of a flexible chain (no excluded volume or hydrodynamic interactions) and the length N of its contour under the following separate conditions: (a) confinement of the chain to a sphere of radius d and (b) modulation of its dynamics by colored Gaussian noise. Among other results, we find that in case (a) when d is much smaller than the size of the chain, tc ˜ Nd2, and that in case (b), tc ˜ N2/(2 - 2H), H being a number between 1/2 and 1 that characterizes the decay of the noise correlations. H is not known a priori, but values of about 0.7 have been used in the successful characterization of protein conformational dynamics. At this value of H (selected for purposes of illustration), tc ˜ N3.4, the high scaling exponent reflecting the slow relaxation of the chain in a viscoelastic medium.

  20. Confinement and water quality-induced stress in largemouth bass

    SciTech Connect

    Carmichael, G.J.; Tomasso, J.R.; Simco, B.A.; Davis, K.B.

    1984-11-01

    Plasma values of corticosteroids, glucose, chloride, and osmolality were determined in largemouth bass Micropterus salmoides under various environmental conditions. No differences were observed in quiescent fish due to sex, size, time of day, or the types of holding facilities tested (tanks, raceways, ponds). Differences were observed in plasma glucose, chloride, and osmolality values among fish acclimated to 10, 16, and 23 C. Abrupt temperature changes caused elevations in plasma corticosteroid and glucose concentrations and reduced plasma chloride and osmolality. Confinement in a net, for up to 48 hours, caused elevated glucose and corticosteroids and reduced chloride and osmolality values. After 48 hours of confinement, fish required up to 14 days to recover normal plasma characters. Generally, short-term exposure to poor water quality (high concentrations of CO/sub 2/ and NH/sub 3/, and low concentrations of dissolved oxygen) altered plasma corticosteroids and glucose but had little effect on plasma chloride or osmolality. Net confinement plus poor water quality caused additional stress. Plasma glucose and corticosteroid values were good indicators of stress during application of acute stressors whereas chloride and osmolality were useful indicators of long-term stress and patterns of recovery after stressors were removed.

  1. Single-molecule microscopy using tunable nanoscale confinement

    NASA Astrophysics Data System (ADS)

    McFaul, Christopher M. J.; Leith, Jason; Jia, Bojing; Michaud, François; Arsenault, Adriel; Martin, Andrew; Berard, Daniel; Leslie, Sabrina

    2013-09-01

    We present the design, construction and implementation of a modular microscopy device that transforms a basic inverted fluorescence microscope into a versatile single-molecule imaging system. The device uses Convex Lens- Induced Confinement (CLIC) to improve background rejection and extend diffusion-limited observation time. To facilitate its integration into a wide range of laboratories, this implementation of the CLIC device can use a standard flow-cell, into which the sample is loaded. By mechanically deforming the flow-cell, the device creates a tunable, wedge-shaped imaging chamber which we have modeled using finite element analysis simulations and characterized experimentally using interferometry. A powerful feature of CLIC imaging technology is the ability to examine single molecules under a continuum of applied confinement, from the nanometer to the micrometer scale. We demonstrate, using freely diffusing λ-phage DNA, that when the imposed confinement is on the scale of individual molecules their molecular conformations and diffusivity are altered significantly. To improve the flow-cell stiffness, seal, and re-usability, we have innovated the fabrication of thin PDMS-bonded flow-cells. The presented flow-cell CLIC technology can be combined with surface-lithography to provide an accessible and powerful approach to tune, trap, and image individual molecules under an extended range of imaging conditions. It is well-suited to tackling open problems in biophysics, biotechnology, nanotechnology, materials science, and chemistry.

  2. Mapping out Min protein patterns in fully confined fluidic chambers

    PubMed Central

    Caspi, Yaron; Dekker, Cees

    2016-01-01

    The bacterial Min protein system provides a major model system for studying reaction-diffusion processes in biology. Here we present the first in vitro study of the Min system in fully confined three-dimensional chambers that are lithography-defined, lipid-bilayer coated and isolated through pressure valves. We identify three typical dynamical behaviors that occur dependent on the geometrical chamber parameters: pole-to-pole oscillations, spiral rotations, and traveling waves. We establish the geometrical selection rules and show that, surprisingly, Min-protein spiral rotations govern the larger part of the geometrical phase diagram. Confinement as well as an elevated temperature reduce the characteristic wavelength of the Min patterns, although even for confined chambers with a bacterial-level viscosity, the patterns retain a ~5 times larger wavelength than in vivo. Our results provide an essential experimental base for modeling of intracellular Min gradients in bacterial cell division as well as, more generally, for understanding pattern formation in reaction-diffusion systems. DOI: http://dx.doi.org/10.7554/eLife.19271.001 PMID:27885986

  3. Collective oscillations and coupled modes in confined microfluidic droplet arrays

    NASA Astrophysics Data System (ADS)

    Schiller, Ulf D.; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard

    Microfluidic droplets have a wide range of applications ranging from analytic assays in cellular biology to controlled mixing in chemical engineering. Ensembles of microfluidic droplets are interesting model systems for non-equilibrium many-body phenomena. When flowing in a microchannel, trains of droplets can form microfluidic crystals whose dynamics are governed by long-range hydrodynamic interactions and boundary effects. In this contribution, excitation mechanisms for collective waves in dense and confined microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific `defect' patterns in flowing droplet trains. While longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets, transversely excited modes form propagating waves that behave like microfluidic phonons. We show that the confinement induces a coupling between longitudinal and transverse modes. We also investigate the life time of the collective oscillations and discuss possible mechanisms for the onset of instabilities. Our results demonstrate that microfluidic phonons can exhibit effects beyond the linear theory, which can be studied particularly well in dense and confined systems. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SE 1118/4.

  4. Effect of confinement on the collapsing mechanism of a flexible polymer chain.

    PubMed

    Das, Siddhartha; Chakraborty, Suman

    2010-11-07

    In this paper, Brownian dynamics simulation (BDS) studies are executed to demonstrate the distinctive influences of the extent of confinement on the collapsing mechanism and kinetics of a flexible hydrophobic polymer chain in a poor solvent. The collapsing behavior is quantified by the time of collapse, which below a critical dimension of the confinement (h(c)), encounters a drastic reduction with a further strengthening in the degree of confinement. For dimensions greater than this critical one, the collapse occurs through the well-known hydrodynamic interaction (HI) controlled multiple-globule-mediated mechanisms. However, for channel dimensions less than this critical one, the collapse mechanism is drastically altered. Under such circumstances, the collapse gets predominantly controlled by the confinement effects (with negligible contribution of the HIs) and occurs via the formation of a single central globule. This central globule rapidly engulfs the noncondensed polymer segments, and in the process largely hastens up the collapsing event. Under such circumstances, the collapse time is found to decrease linearly with decrements in the channel height. On the contrary, for channel heights greater than h(c), the multiple-globule-mediated collapse is characterized by a collapse time that shows an exponential dependence on the channel height, rapidly attaining a state in which the confinement effect becomes inconsequential and HIs dictate the entire collapsing behavior. We further propose detailed arguments based on physical reasoning as well as free energy estimations to conclusively support the qualitative and quantitative nature of influences of the confinement on the polymer collapse.

  5. Confinement induced binding of noble gas atoms

    NASA Astrophysics Data System (ADS)

    Khatua, Munmun; Pan, Sudip; Chattaraj, Pratim K.

    2014-04-01

    The stability of Ngn@B12N12 and Ngn@B16N16 systems is assessed through a density functional study and ab initio simulation. Although they are found to be thermodynamically unstable with respect to the dissociation of individual Ng atoms and parent cages, ab initio simulation reveals that except Ne2@B12N12 they are kinetically stable to retain their structures intact throughout the simulation time (500 fs) at 298 K. The Ne2@B12N12 cage dissociates and the Ne atoms get separated as the simulation proceeds at this temperature but at a lower temperature (77 K) it is also found to be kinetically stable. He-He unit undergoes translation, rotation and vibration inside the cavity of B12N12 and B16N16 cages. Electron density analysis shows that the He-He interaction in He2@B16N16 is of closed-shell type whereas for the same in He2@B12N12 there may have some degree of covalent character. In few cases, especially for the heavier Ng atoms, the Ng-N/B bonds are also found to have some degree of covalent character. But the Wiberg bond indices show zero bond order in He-He bond and very low bond order in cases of Ng-N/B bonds. The energy decomposition analysis further shows that the ΔEorb term contributes 40.9% and 37.3% towards the total attraction in the He2 dimers having the same distances as in He2@B12N12 and He2@B16N16, respectively. Therefore, confinement causes some type of orbital interaction between two He atoms, which akins to some degree of covalent character.

  6. Phase transition of physically confined 2-decanol

    NASA Astrophysics Data System (ADS)

    Griffin, Harrisonn; Amanuel, Samuel

    2014-03-01

    We have studied phase transition of physically confined 2-decanol in nano porous silica using power compensated differential scanning calorimeter (DSC). Like bulk, the physically confined also exhibit hysteresis between its melting and freezing temperature. However, its thermal history plays significant role in determining its freezing temperature. The melting temperature, on the other hand, did not show similar changes with respect to thermal history, suggesting that it is truly driven thermodynamically rather than kinetically. In addition, there seems to be a cutoff in size where crystallization front could not proceed.

  7. Coordinated Water Under Confinement Eases Sliding Friction

    NASA Astrophysics Data System (ADS)

    Defante, Adrian; Dhopotkar, Nishad; Dhinojwala, Ali

    Water is essential to a number of interfacial phenomena such as the lubrication of knee joints, protein folding, mass transport, and adsorption processes. We have used a biaxial friction cell to quantify underwater friction between a hydrophobic elastomeric lens and a hydrophobic self-assembled monolayer in the presence of surfactant solutions. To gain an understanding of the role of water in these processes we have coupled this measurement with surface sensitive sum frequency generation to directly probe the molecular constitution of the confined contact interface. We observe that role of confined coordinated water between two hydrophobic substrates covered with surfactants is the key to obtaining a low coefficient of friction.

  8. Silver nanoparticles confined in carbon nanotubes: on the understanding of the confinement effect and promotional catalysis for the selective hydrogenation of dimethyl oxalate

    NASA Astrophysics Data System (ADS)

    Zheng, Jianwei; Duan, Xinping; Lin, Haiqiang; Gu, Zhengqiang; Fang, Huihuang; Li, Jianhui; Yuan, Youzhu

    2016-03-01

    A confined Ag nanomaterial in the channels of herringbone multi-walled carbon nanotubes (Ag-in/hCNT) was effectively prepared. The space restriction induces morphological changes of Ag nanoparticles into rough nanowires with an estimated aspect ratio of 60 : 8 (nm/nm). Dihydrogen activation is enhanced through the vacancy-enriched wire-like Ag nanocatalyst, as well as the confinement effect. The grain boundaries of Ag and rolled-up graphene layers of CNTs are speculated to play vital roles in the diffusion of activated hydrogen species. The Ag-in/hCNT catalyst exhibits an activity that is three times higher than that of Ag nanoparticles located on the CNT exterior walls in DMO hydrogenation. This finding may insinuate that interplanar spaces provide available access to the external surface of CNTs. Designed experiments further confirm the importance of herringbone CNTs with higher reaction rate than parallel CNTs, and confined Ag produces considerably more activated hydrogen species, thereby benefiting the reduction of surface copper nanoparticles or DMO molecules during hydrogenation. This paper presents a study of the effective utilization of hydrogen over herringbone CNT confined Ag and an understanding of the confinement and promotional catalytic effects.A confined Ag nanomaterial in the channels of herringbone multi-walled carbon nanotubes (Ag-in/hCNT) was effectively prepared. The space restriction induces morphological changes of Ag nanoparticles into rough nanowires with an estimated aspect ratio of 60 : 8 (nm/nm). Dihydrogen activation is enhanced through the vacancy-enriched wire-like Ag nanocatalyst, as well as the confinement effect. The grain boundaries of Ag and rolled-up graphene layers of CNTs are speculated to play vital roles in the diffusion of activated hydrogen species. The Ag-in/hCNT catalyst exhibits an activity that is three times higher than that of Ag nanoparticles located on the CNT exterior walls in DMO hydrogenation. This finding may

  9. Mixing in confined stratified aquifers

    NASA Astrophysics Data System (ADS)

    Bolster, Diogo; Valdés-Parada, Francisco J.; LeBorgne, Tanguy; Dentz, Marco; Carrera, Jesus

    2011-03-01

    Spatial variability in a flow field leads to spreading of a tracer plume. The effect of microdispersion is to smooth concentration gradients that exist in the system. The combined effect of these two phenomena leads to an 'effective' enhanced mixing that can be asymptotically quantified by an effective dispersion coefficient (i.e. Taylor dispersion). Mixing plays a fundamental role in driving chemical reactions. However, at pre-asymptotic times it is considerably more difficult to accurately quantify these effects by an effective dispersion coefficient as spreading and mixing are not the same (but intricately related). In this work we use a volume averaging approach to calculate the concentration distribution of an inert solute release at pre-asymptotic times in a stratified formation. Mixing here is characterized by the scalar dissipation rate, which measures the destruction of concentration variance. As such it is an indicator for the degree of mixing of a system. We study pre-asymptotic solute mixing in terms of explicit analytical expressions for the scalar dissipation rate and numerical random walk simulations. In particular, we divide the concentration field into a mean and deviation component and use dominant balance arguments to write approximate governing equations for each, which we then solve analytically. This allows us to explicitly evaluate the separate contributions to mixing from the mean and the deviation behavior. We find an approximate, but accurate expression (when compared to numerical simulations) to evaluate mixing. Our results shed some new light on the mechanisms that lead to large scale mixing and allow for a distinction between solute spreading, represented by the mean concentration, and mixing, which comes from both the mean and deviation concentrations, at pre-asymptotic times.

  10. Study of Chiral Confining Model with Vector Mesons

    NASA Astrophysics Data System (ADS)

    Ren, Ching-Yun

    1991-02-01

    This dissertation consists of two parts, the study of the chiral confining model and the investigation of vacuum instability. In the first part we present a chiral confining model in which a bag is formed dynamically. The major topics addressed are: construction of the model, mean-field solution, anomalously large rho nucleon tensor coupling, and a projection method including the quantum effects of mesons. Two features of QCD, namely, chiral invariance and vacuum condensates, are crucial ingredients of our chiral confining model. The interaction of the valence quarks with the quark condensate is described via the sigma field. It generates the quark dynamical mass. The interaction of the quarks with the gluon condensate is described in our model through the color dielectric function, epsilon. This interaction generates the bag within which quarks are absolutely confined. The introduction of the color dielectric function epsilon modifies the quark-meson interaction by multiplying a factor epsilon ^{-1/2}. Thus the quark part of the rho meson source current is structurally different from the isovector part of the electromagnetic current. Thus the chiral confining model provides a natural explanation why the tensor coupling of the rho meson, kappa_rho, is larger than the isovector part of the anomalous magnetic moment of the nucleon, kappa_upsilon . We have improved a simple method of calculating expectation values of operators in states of good angular momentum projected from a hedgehog baryon state. We have included the contributions of quantum mesons. The symmetry of the hedgehog state under grand-reversal introduces remarkable simplification in the calculation of matrix elements of operators which do not contain time derivatives of meson fields. The quantum meson contributions turn out to be (3/2)/< B|{bf J }^2| B> times the classical meson fields contributions, with | B> being the hedgehog state. In the second part we show that the perturbative vacuum of model

  11. Inertial-confinement-fusion targets

    SciTech Connect

    Hendricks, C.D.

    1982-08-10

    Much of the research in laser fusion has been done using simple ball on-stalk targets filled with a deuterium-tritium mixture. The targets operated in the exploding pusher mode in which the laser energy was delivered in a very short time (approx. 100 ps or less) and was absorbed by the glass wall of the target. The high energy density in the glass literally exploded the shell with the inward moving glass compressing the DT fuel to high temperatures and moderate densities. Temperatures achieved were high enough to produce DT reactions and accompanying thermonuclear neutrons and alpha particles. The primary criteria imposed on the target builders were: (1) wall thickness, (2) sphere diameter, and (3) fuel in the sphere.

  12. Phase Transformations in Confined Nanosystems

    SciTech Connect

    Shield, Jeffrey E.; Belashchenko, Kirill

    2014-04-29

    This project discovered that non-equilibrium structures, including chemically ordered structures not observed in bulk systems, form in isolated nanoscale systems. Further, a generalized model was developed that effectively explained the suppression of equilibrium phase transformations. This thermodynamic model considered the free energy decrease associated with the phase transformation was less than the increase in energy associated with the formation of an interphase interface, therefore inhibiting the phase transformation. A critical diameter exists where the system transitions to bulk behavior, and a generalized equation was formulated that successfully predicted this transition in the Fe-Au system. This provided and explains a new route to novel structures not possible in bulk systems. The structural characterization was accomplished using transmission electron microscopy in collaboration with Matthew Kramer of Ames Laboratory. The PI and graduate student visited Ames Laboratory several times a year to conduct the experiments.

  13. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    NASA Astrophysics Data System (ADS)

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-09-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis.

  14. National Ignition Facility for Inertial Confinement Fusion

    SciTech Connect

    Paisner, J.A.; Murray, J.R.

    1997-10-08

    The National Ignition Facility for inertial confinement fusion will contain a 1.8 MJ, 500 TW frequency-tripled neodymium glass laser system that will be used to explore fusion ignition and other problems in the physics of high temperature and density. We describe the facility briefly. The NIF is scheduled to be completed in 2003.

  15. Analysis of thermally-degrading, confined HMX

    SciTech Connect

    Hobbs, M.L.; Schmitt, R.G.; Renlund, A.M.

    1996-12-01

    The response of a thermally-degrading, confined HMX pellet is analyzed using a Reactive Elastic-Plastic (REP) constitutive model which is founded on the collapse and growth of internal inclusions resulting from physical and chemical processes such as forced displacement, thermal expansion, and/or decomposition. Axial stress predictions compare adequately to data. Deficiencies in the model and future directions are discussed.

  16. Clusters of polyhedra in spherical confinement

    PubMed Central

    Teich, Erin G.; van Anders, Greg; Klotsa, Daphne; Dshemuchadse, Julia; Glotzer, Sharon C.

    2016-01-01

    Dense particle packing in a confining volume remains a rich, largely unexplored problem, despite applications in blood clotting, plasmonics, industrial packaging and transport, colloidal molecule design, and information storage. Here, we report densest found clusters of the Platonic solids in spherical confinement, for up to N=60 constituent polyhedral particles. We examine the interplay between anisotropic particle shape and isotropic 3D confinement. Densest clusters exhibit a wide variety of symmetry point groups and form in up to three layers at higher N. For many N values, icosahedra and dodecahedra form clusters that resemble sphere clusters. These common structures are layers of optimal spherical codes in most cases, a surprising fact given the significant faceting of the icosahedron and dodecahedron. We also investigate cluster density as a function of N for each particle shape. We find that, in contrast to what happens in bulk, polyhedra often pack less densely than spheres. We also find especially dense clusters at so-called magic numbers of constituent particles. Our results showcase the structural diversity and experimental utility of families of solutions to the packing in confinement problem. PMID:26811458

  17. Clusters of polyhedra in spherical confinement.

    PubMed

    Teich, Erin G; van Anders, Greg; Klotsa, Daphne; Dshemuchadse, Julia; Glotzer, Sharon C

    2016-02-09

    Dense particle packing in a confining volume remains a rich, largely unexplored problem, despite applications in blood clotting, plasmonics, industrial packaging and transport, colloidal molecule design, and information storage. Here, we report densest found clusters of the Platonic solids in spherical confinement, for up to [Formula: see text] constituent polyhedral particles. We examine the interplay between anisotropic particle shape and isotropic 3D confinement. Densest clusters exhibit a wide variety of symmetry point groups and form in up to three layers at higher N. For many N values, icosahedra and dodecahedra form clusters that resemble sphere clusters. These common structures are layers of optimal spherical codes in most cases, a surprising fact given the significant faceting of the icosahedron and dodecahedron. We also investigate cluster density as a function of N for each particle shape. We find that, in contrast to what happens in bulk, polyhedra often pack less densely than spheres. We also find especially dense clusters at so-called magic numbers of constituent particles. Our results showcase the structural diversity and experimental utility of families of solutions to the packing in confinement problem.

  18. Monosymptomatic hypochondriacal psychosis and prolonged solitary confinement.

    PubMed

    Humphreys, M; Burnett, F

    1994-10-01

    A man previously imprisoned for 11 years developed unremitting and treatment-resistant monosymptomatic hypochondriacal psychosis following a period in excess of 12 months in solitary confinement. We are unaware of any other reported incidences of this disorder arising in such circumstances.

  19. Non-resonant Nanoscale Extreme Light Confinement

    SciTech Connect

    Subramania, Ganapathi Subramanian; Huber, Dale L.

    2014-09-01

    A wide spectrum of photonics activities Sandia is engaged in such as solid state lighting, photovoltaics, infrared imaging and sensing, quantum sources, rely on nanoscale or ultrasubwavelength light-matter interactions (LMI). The fundamental understanding in confining electromagnetic power and enhancing electric fields into ever smaller volumes is key to creating next generation devices for these programs. The prevailing view is that a resonant interaction (e.g. in microcavities or surface-plasmon polaritions) is necessary to achieve the necessary light confinement for absorption or emission enhancement. Here we propose new paradigm that is non-resonant and therefore broadband and can achieve light confinement and field enhancement in extremely small areas [~(λ/500)^2 ]. The proposal is based on a theoretical work[1] performed at Sandia. The paradigm structure consists of a periodic arrangement of connected small and large rectangular slits etched into a metal film named double-groove (DG) structure. The degree of electric field enhancement and power confinement can be controlled by the geometry of the structure. The key operational principle is attributed to quasistatic response of the metal electrons to the incoming electromagnetic field that enables non-resonant broadband behavior. For this exploratory LDRD we have fabricated some test double groove structures to enable verification of quasistatic electronic response in the mid IR through IR optical spectroscopy. We have addressed some processing challenges in DG structure fabrication to enable future design of complex sensor and detector geometries that can utilize its non-resonant field enhancement capabilities.].

  20. Crystallization of carbon tetrachloride in confined geometries.

    PubMed

    Meziane, Adil; Grolier, Jean-Pierre E; Baba, Mohamed; Nedelec, Jean-Marie

    2007-01-01

    The thermal behaviour of carbon tetrachloride confined in silica gels of different porosities was studied by differential scanning calorimetry. Both the melting point and the low temperature phase transition were measured and found to be inextricably dependant on the degree of confinement. The amount of solvent was varied through two sets of experiments, sequential addition and original progressive evaporation allowing the measurement of DSC signals for the various transitions as a function of the amount of CCl4. These experiments allowed the determination of the transition enthalpies in the confined state, which in turn allowed the determination of the exact quantities of solvent undergoing these transitions. A clear correlation was found between the amounts of solvent (both free and confined) undergoing the two transitions, demonstrating that the formation of the adsorbed layer t does not interfere with the second transition. The thickness of this layer and the porous volumes of the two silica samples were measured and found to be in very close agreement with the values determined by gas sorption.

  1. Structure of confined films of chain alcohols

    SciTech Connect

    Mugele, Friedrich; Baldelli, Steven; Somorjai, Gabor A.; Salmeron, Miquel

    1999-09-30

    The structure of thin films of simple chain alcohols (1-octanol and 1-undecanol) confined between two atomically smooth mica surfaces has been investigated using a surface forces apparatus (SFA). In both systems, the substrate-molecule interaction leads to a strongly bound first layer on each surface. Additional liquid organizes into highly compressible bilayers, which could be expelled by applying sufficiently high pressure.

  2. Glycerol in micellar confinement with tunable rigidity

    NASA Astrophysics Data System (ADS)

    Lannert, Michael; Müller, Allyn; Gouirand, Emmanuel; Talluto, Vincenzo; Rosenstihl, Markus; Walther, Thomas; Stühn, Bernd; Blochowicz, Thomas; Vogel, Michael

    2016-12-01

    We investigate the glassy dynamics of glycerol in the confinement of a microemulsion system, which is stable on cooling down to the glass transition of its components. By changing the composition, we vary the viscosity of the matrix, while keeping the confining geometry intact, as is demonstrated by small angle X-ray scattering. By means of 2H NMR, differential scanning calorimetry, and triplet solvation dynamics we, thus, probe the dynamics of glycerol in confinements of varying rigidity. 2H NMR results show that, at higher temperatures, the dynamics of confined glycerol is unchanged compared to bulk behavior, while the reorientation of glycerol molecules becomes significantly faster than in the bulk in the deeply supercooled regime. However, comparison of different 2H NMR findings with data from calorimetry and solvation dynamics reveals that this acceleration is not due to the changed structural relaxation of glycerol, but rather due to the rotational motion of essentially rigid glycerol droplets or of aggregates of such droplets in a more fluid matrix. Thus, independent of the matrix mobility, the glycerol dynamics remains unchanged except for the smallest droplets, where an increase of Tg and, thus, a slowdown of the structural relaxation is observed even in a fluid matrix.

  3. Nuclear diagnostics for inertial confinement fusion implosions

    SciTech Connect

    Murphy, T.J.

    1997-11-01

    This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used.

  4. Capillary breakup of fluid threads within confinement

    NASA Astrophysics Data System (ADS)

    Hu, Guoqing; Xue, Chundong; Chen, Xiaodong

    2016-11-01

    Fluid thread breakup is a widespread phenomenon in nature, industry, and daily life. Driven by surface tension (or capillarity) at low flow-rate condition, the breakup scenario is usually called capillary instability or Plateau-Rayleigh instability. Fluid thread deforms under confinement of ambient fluid to form a fluid neck. Thinning of the neck at low flow-rate condition is quasistatic until the interface becomes unstable and collapses to breakup. Underlying mechanisms and universalities of both the stable and unstable thinning remain, however, unclear and even contradictory. Here we conduct new numerical and experimental studies to show that confined interfaces are not only stabilized but also destabilized by capillarity at low flow-rate condition. Capillary stabilization is attributed to confinement-determined internal pressure that is higher than capillary pressure along the neck. Two origins of capillary destabilization are identified: one is confinement-induced gradient of capillary pressure along the interface; the other is the competition between local capillary pressure and internal pressure. This work was supported by National Natural Science Foundation of China (Grant No. 11402274, 11272321, and 11572334).

  5. Wellhead protection in confined, semi-confined, fractured and karst aquifer settings

    SciTech Connect

    Not Available

    1993-09-01

    Protection areas around wells producing from confined, fractured, and karst aquifers are, because of their complex hydrogeology, more difficult to define than protection areas for wells in porous media settings. The factsheet provides background information explaining the need to define protection areas for wells that draw public drinking water from several complex hydrogeologic settings: confined, semi-confined, fractured, and karst aquifers. These settings include aquifers in which the ground water is not open to the atmosphere, or the aquifer does not consist of unconsolidated porous media. Several figures illustrate these settings in a general way.

  6. Two-dimensional material confined water.

    PubMed

    Li, Qiang; Song, Jie; Besenbacher, Flemming; Dong, Mingdong

    2015-01-20

    CONSPECTUS: The interface between water and other materials under ambient conditions is of fundamental importance due to its relevance in daily life and a broad range of scientific research. The structural and dynamic properties of water at an interface have been proven to be significantly difference than those of bulk water. However, the exact nature of these interfacial water adlayers at ambient conditions is still under debate. Recent scanning probe microscopy (SPM) experiments, where two-dimensional (2D) materials as ultrathin coatings are utilized to assist the visualization of interfacial water adlayers, have made remarkable progress on interfacial water and started to clarify some of these fundamental scientific questions. In this Account, we review the recently conducted research exploring the properties of confined water between 2D materials and various surfaces under ambient conditions. Initially, we review the earlier studies of water adsorbed on hydrophilic substrates under ambient conditions in the absence of 2D coating materials, which shows the direct microscopic results. Subsequently, we focus on the studies of water adlayer growth at both hydrophilic and hydrophobic substrates in the presence of 2D coating materials. Ice-like water adlayers confined between hydrophobic graphene and hydrophilic substrates can be directly observed in detail by SPM. It was found that the packing structure of the water adlayer was determined by the hydrophilic substrates, while the orientation of intercalation water domains was directed by the graphene coating. In contrast to hydrophilic substrates, liquid-like nanodroplets confined between hydrophobic graphene and hydrophobic substrates appear close to step edges and atomic-scale surface defects, indicating that atomic-scale surface defects play significant roles in determining the adsorption of water on hydrophobic substrates. In addition, we also review the phenomena of confined water between 2D hydrophilic MoS2 and

  7. Lubrication analysis of interacting rigid cylindrical particles in confined shear flow

    SciTech Connect

    Cardinaels, R.; Stone, H. A.

    2015-07-15

    Lubrication analysis is used to determine analytical expressions for the elements of the resistance matrix describing the interaction of two rigid cylindrical particles in two-dimensional shear flow in a symmetrically confined channel geometry. The developed model is valid for non-Brownian particles in a low-Reynolds-number flow between two sliding plates with thin gaps between the two particles and also between the particles and the walls. Using this analytical model, a comprehensive overview of the dynamics of interacting cylindrical particles in shear flow is presented. With only hydrodynamic interactions, rigid particles undergo a reversible interaction with no cross-streamline migration, irrespective of the confinement value. However, the interaction time of the particle pair substantially increases with confinement, and at the same time, the minimum distance between the particle surfaces during the interaction substantially decreases with confinement. By combining our purely hydrodynamic model with a simple on/off non-hydrodynamic attractive particle interaction force, the effects of confinement on particle aggregation are qualitatively mapped out in an aggregation diagram. The latter shows that the range of initial relative particle positions for which aggregation occurs is increased substantially due to geometrical confinement. The interacting particle pair exhibits tangential and normal lubrication forces on the sliding plates, which will contribute to the rheology of confined suspensions in shear flow. Due to the combined effects of the confining walls and the particle interaction, the particle velocities and resulting forces both tangential and perpendicular to the walls exhibit a non-monotonic evolution as a function of the orientation angle of the particle pair. However, by incorporating appropriate scalings of the forces, velocities, and doublet orientation angle with the minimum free fraction of the gap height and the plate speed, master curves for

  8. Cell Blebbing in Confined Microfluidic Environments

    PubMed Central

    Ibo, Markela; Srivastava, Vasudha; Robinson, Douglas N.; Gagnon, Zachary R.

    2016-01-01

    Migrating cells can extend their leading edge by forming myosin-driven blebs and F-actin-driven pseudopods. When coerced to migrate in resistive environments, Dictyostelium cells switch from using predominately pseudopods to blebs. Bleb formation has been shown to be chemotactic and can be influenced by the direction of the chemotactic gradient. In this study, we determine the blebbing responses of developed cells of Dictyostelium discoideum to cAMP gradients of varying steepness produced in microfluidic channels with different confining heights, ranging between 1.7 μm and 3.8 μm. We show that microfluidic confinement height, gradient steepness, buffer osmolarity and Myosin II activity are important factors in determining whether cells migrate with blebs or with pseudopods. Dictyostelium cells were observed migrating within the confines of microfluidic gradient channels. When the cAMP gradient steepness is increased from 0.7 nM/μm to 20 nM/μm, cells switch from moving with a mixture of blebs and pseudopods to moving only using blebs when chemotaxing in channels with confinement heights less than 2.4 μm. Furthermore, the size of the blebs increases with gradient steepness and correlates with increases in myosin-II localization at the cell cortex. Reduction of intracellular pressure by high osmolarity buffer or inhibition of myosin-II by blebbistatin leads to a decrease in bleb formation and bleb size. Together, our data reveal that the protrusion type formed by migrating cells can be influenced by the channel height and the steepness of the cAMP gradient, and suggests that a combination of confinement-induced myosin-II localization and cAMP-regulated cortical contraction leads to increased intracellular fluid pressure and bleb formation. PMID:27706201

  9. Dynamical properties of confined supercooled water: an NMR study

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2006-09-01

    We report a set of dynamical data of confined water measured in a very deeply supercooled regime (290-190 K). Water is contained in silica matrices (MCM-41-S) which consist of 1D cylindrical pores with diameters d = 14,18 and 24 Å. When confined in these tubular pores, water does not crystallize, and can be supercooled well below 200 K. We use the NMR technique to obtain the characteristic proton relaxation time-constants (the spin-lattice relaxation time-constant T1 and the spin-spin relaxation time-constant T2) and a direct measurement of the self-diffusion coefficient in the whole temperature range. We give evidence of the existence of a fragile-to-strong dynamic crossover (FSC) at TL = 225 K from the temperature dependence of the self-diffusion coefficient. A combination of the NMR self-diffusion coefficient with the average translational relaxation time, as measured by quasi-elastic neutron scattering, shows a well defined decoupling of transport coefficients, i.e. the breakdown of the Stokes-Einstein relation, on approaching the crossover temperature TL.

  10. A molecular dynamics study of freezing in a confined geometry

    NASA Technical Reports Server (NTRS)

    Ma, Wen-Jong; Banavar, Jayanth R.; Koplik, Joel

    1992-01-01

    The dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls is studied by computer simulation. The time development of ordering is quantified and a novel freezing mechanism is observed. The liquid forms layers and subsequent in-plane ordering within a layer is accompanied by a sharpening of the layer in the transverse direction. The effects of channel size, the methods of quench, the liquid-wall interaction and the roughness of walls on the freezing mechanism are elucidated. Comparison with recent experiments on freezing in confined geometries is presented.

  11. Zonal flow generation in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Peterson, J. L.; Humbird, K. D.; Field, J. E.; Brandon, S. T.; Langer, S. H.; Nora, R. C.; Spears, B. K.; Springer, P. T.

    2017-03-01

    A supervised machine learning algorithm trained on a multi-petabyte dataset of inertial confinement fusion simulations has identified a class of implosions that robustly achieve high yield, even in the presence of drive variations and hydrodynamic perturbations. These implosions are purposefully driven with a time-varying asymmetry, such that coherent flow generation during hotspot stagnation forces the capsule to self-organize into an ovoid, a shape that appears to be more resilient to shell perturbations than spherical designs. This new class of implosions, whose configurations are reminiscent of zonal flows in magnetic fusion devices, may offer a path to robust inertial fusion.

  12. Enhanced motility of a microswimmer in rigid and elastic confinement.

    PubMed

    Ledesma-Aguilar, Rodrigo; Yeomans, Julia M

    2013-09-27

    We analyze the effect of confining rigid and elastic boundaries on the motility of a model dipolar microswimmer. Flexible boundaries are deformed by the velocity field of the swimmer in such a way that the motility of both extensile and contractile swimmers is enhanced. The magnitude of the increase in swimming velocity is controlled by the ratio of the swimmer-advection and elastic time scales, and the dipole moment of the swimmer. We explain our results by considering swimming between inclined rigid boundaries.

  13. Enhanced Motility of a Microswimmer in Rigid and Elastic Confinement

    NASA Astrophysics Data System (ADS)

    Ledesma-Aguilar, Rodrigo; Yeomans, Julia M.

    2013-09-01

    We analyze the effect of confining rigid and elastic boundaries on the motility of a model dipolar microswimmer. Flexible boundaries are deformed by the velocity field of the swimmer in such a way that the motility of both extensile and contractile swimmers is enhanced. The magnitude of the increase in swimming velocity is controlled by the ratio of the swimmer-advection and elastic time scales, and the dipole moment of the swimmer. We explain our results by considering swimming between inclined rigid boundaries.

  14. Zonal flow generation in inertial confinement fusion implosions

    DOE PAGES

    Peterson, J. L.; Humbird, K. D.; Field, J. E.; ...

    2017-03-06

    A supervised machine learning algorithm trained on a multi-petabyte dataset of inertial confinement fusion simulations has identified a class of implosions that robustly achieve high yield, even in the presence of drive variations and hydrodynamic perturbations. These implosions are purposefully driven with a time-varying asymmetry, such that coherent flow generation during hotspot stagnation forces the capsule to self-organize into an ovoid, a shape that appears to be more resilient to shell perturbations than spherical designs. Here this new class of implosions, whose configurations are reminiscent of zonal flows in magnetic fusion devices, may offer a path to robust inertial fusion.

  15. Primary sinonasal tuberculosis confined to the unilateral maxillary sinus.

    PubMed

    Kim, Kyung Yeon; Bae, Jung Ho; Park, Jee Soo; Lee, Seung-Sin

    2014-01-01

    Extrapulmonary tuberculosis is not rare and occurs mainly in the head and neck region. Cervical tuberculous lymphadenopathy is the most common form of extrapulmonary tuberculosis. Sinonasal tuberculosis is known to occur very rarely due to the protective functions of sinonasal mucosa. Although some signs of sinonasal tuberculosis may be present, such as associated facial abscesses, the symptoms and signs are usually nonspecific. Clinical suspicion is important for timely diagnosis and proper management of sinonasal tuberculosis due to its rarity and nonspecific clinical presentation. We report a case of tuberculosis confined to the unilateral maxillary sinus that was first misdiagnosed as recurrent rhinosinusitis after endoscopic sinus surgery.

  16. KrF lasers for inertial confinement fusion

    SciTech Connect

    Harris, D.B.; Cartwright, D.C.; Figueira, J.F.; McDonald, T.E.; Sorem, M.E.

    1989-01-01

    The KrF laser has been proposed for inertial confinement fusion (ICF) since its discovery in 1975. Since that time, the laser has seen significant development and has been increased in energy many orders of magnitude to the several kilojoule energy level. The suitability of the KrF laser as a driver for ICF energy applications has been continually reviewed. The latest assessments indicate that the KrF laser still appears to be the leading laser candidate. A worldwide effort exists to advance the KrF laser for ICF applications. 21 refs., 1 fig.

  17. Multibeam Stimulated Raman Scattering in Inertial Confinement Fusion Conditions

    NASA Astrophysics Data System (ADS)

    Michel, P.; Divol, L.; Dewald, E. L.; Milovich, J. L.; Hohenberger, M.; Jones, O. S.; Hopkins, L. Berzak; Berger, R. L.; Kruer, W. L.; Moody, J. D.

    2015-07-01

    Stimulated Raman scattering from multiple laser beams arranged in a cone sharing a common daughter wave is investigated for inertial confinement fusion (ICF) conditions in a inhomogeneous plasma. It is found that the shared electron plasma wave (EPW) process, where the lasers collectively drive the same EPW, can lead to an absolute instability when the electron density reaches a matching condition dependent on the cone angle of the laser beams. This mechanism could explain recent experimental observations of hot electrons at early times in ICF experiments, at densities well below quarter critical when two plasmon decay is not expected to occur.

  18. Multibeam Stimulated Raman Scattering in Inertial Confinement Fusion Conditions.

    PubMed

    Michel, P; Divol, L; Dewald, E L; Milovich, J L; Hohenberger, M; Jones, O S; Hopkins, L Berzak; Berger, R L; Kruer, W L; Moody, J D

    2015-07-31

    Stimulated Raman scattering from multiple laser beams arranged in a cone sharing a common daughter wave is investigated for inertial confinement fusion (ICF) conditions in a inhomogeneous plasma. It is found that the shared electron plasma wave (EPW) process, where the lasers collectively drive the same EPW, can lead to an absolute instability when the electron density reaches a matching condition dependent on the cone angle of the laser beams. This mechanism could explain recent experimental observations of hot electrons at early times in ICF experiments, at densities well below quarter critical when two plasmon decay is not expected to occur.

  19. Extreme optical confinement in a slotted photonic crystal waveguide

    SciTech Connect

    Caër, Charles; Le Roux, Xavier; Cassan, Eric; Combrié, Sylvain De Rossi, Alfredo

    2014-09-22

    Using Optical Coherence Tomography, we measure the attenuation of slow light modes in slotted photonic crystal waveguides. When the group index is close to 20, the attenuation is below 300 dB cm{sup −1}. Here, the optical confinement in the empty slot is very strong, corresponding to an ultra-small effective cross section of 0.02 μm{sup 2}. This is nearly 10 times below the diffraction limit at λ = 1.5 μm, and it enables an effective interaction with a very small volume of functionalized matter.

  20. Studies of energetic ion confinement during fishbone events in PDX

    SciTech Connect

    Strachan, J.D.; Grek, B.; Heidbrink, W.; Johnson, D.; Kaye, S.; Kugel, H.; LeBlanc, B.; McGuire, K.

    1984-11-01

    The 2.5-MeV neutron emission from the beam-target d(d,n,)/sup 3/He fusion reaction has been examined for all PDX deuterium plasmas which were heated by deuterium neutral beams. The magnitude of the emission was found to scale classically and increase with T/sub e//sup 3/2/ as expected when electron drag is the primary energy degradation mechanism. The time evolution of the neutron emission through fishbone events was measured and used to determine the confinement properties of the energetic beam ions. Many of the experimental results are predicted by the Mode Particle Pumping theory.

  1. On the AlGaInP-bulk and AlGaInP/GaAs-superlattice confinement effects for heterostructure-emitter bipolar transistors

    SciTech Connect

    Tsai, Jung-Hui

    2015-02-09

    The confinement effect and electrical characteristics of heterostructure-emitter bipolar transistors with an AlGaInP bulk-confinement layer and an AlGaInP/GaAs superlattice-confinement layer are first demonstrated and compared by experimentally results. In the two devices, the relatively large valence band discontinuity at AlGaInP/GaAs heterojunction provides excellent confinement effect for holes to enhance current gain. As to the AlGaInP/GaAs superlattice-confinement device, part of thermionic-emission electrons will be trapped in the GaAs quantum wells of the superlattice. This will result in lower collector current and current gain as compared with the bulk-confinement device. Nevertheless, the superlattice-confinement device exhibits a larger current-gain cutoff frequency, which can be attributed that the tunneling behavior is included in the carrier transportation and transporting time across the emitter region could be substantially reduced.

  2. Computational Support for Alternative Confinement Concepts Basic Plasma Science

    SciTech Connect

    Dalton D. Schnack

    2002-12-09

    This is the final report for contract DE-FG03-99ER54528, ''Computational Support for Alternative Confinement Concepts''. Progress was made in the following areas of investigation: (1) Extensive studies of the confinement properties of conventional Reversed-field Pinch (RFP) configurations (i.e., without current profile control) were performed in collaboration with the Royal Institute of Technology (KTH) in Stockholm, Sweden. These studies were carried out using the full 3-dimensional, finite-{beta}, resistive MHD model in the DEBS code, including ohmic heating and anisotropic heat conduction, and thus for the first time included the self-consistent effects of the dynamo magnetic fluctuations on the confinement properties of the RFP. By using multi-variant regression analysis of these results, scaling laws for various properties characterizing the conventional RFP were obtained. In particular, it was found that the, for constant ratio of I/N (where I is the current and N = na{sup 2} is the line density), and over a range of Lundquist numbers S that approaches 10{sup 6}, the fluctuations scale as {delta}B/B {approx} S{sup -0.14}, the temperature scales as T {approx} I{sup 0.56}, the poloidal beta scales as {beta}{sub {theta}} {approx} I{sup -0.4}, and the energy confinement time scales as {tau}{sub E} {approx} I{sup 0.34}. The degradation of poloidal beta with current is a result of the weak scaling of the fluctuation level with the Lundquist number, and leads to the unfavorable scaling laws for temperature and energy confinement time. These results compare reasonably well with experimental data, and emphasize the need for external control of the dynamo fluctuations in the RFP. (2) Studies of feedback stabilization of resistive wall modes in the RFP were performed with the DEBS code in collaboration with the CNR/RFX group in Padua, Italy. The ideal growth rates are ''passively'' reduced by the presence of a resistive wall within the radius for perfectly conducting

  3. Confined disordered strictly jammed binary sphere packings

    NASA Astrophysics Data System (ADS)

    Chen, D.; Torquato, S.

    2015-12-01

    Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these

  4. Glass-like dynamics in confined and congested ant traffic.

    PubMed

    Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A D; Goldman, Daniel I

    2015-09-07

    The collective movement of animal groups often occurs in confined spaces. As animal groups are challenged to move at high density, their mobility dynamics may resemble the flow of densely packed non-living soft materials such as colloids, grains, or polymers. However, unlike inert soft-materials, self-propelled collective living systems often display social interactions whose influence on collective mobility are only now being explored. In this paper, we study the mobility of bi-directional traffic flow in a social insect (the fire ant Solenopsis invicta) as we vary the diameter of confining foraging tunnels. In all tunnel diameters, we observe the emergence of spatially heterogeneous regions of fast and slow traffic that are induced through two phenomena: physical obstruction, arising from the inability of individual ants to interpenetrate, and time-delay resulting from social interaction in which ants stop to briefly antennate. Density correlation functions reveal that the relaxation dynamics of high density traffic fluctuations scale linearly with fluctuation size and are sensitive to tunnel diameter. We separate the roles of physical obstruction and social interactions in traffic flow using cellular automata based simulation. Social interaction between ants is modeled as a dwell time (Tint) over which interacting ants remain stationary in the tunnel. Investigation over a range of densities and Tint reveals that the slowing dynamics of collective motion in social living systems are consistent with dynamics near a fragile glass transition in inert soft-matter systems. In particular, flow is relatively insensitive to density until a critical density is reached. As social interaction affinity is increased (increasing Tint) traffic dynamics change and resemble a strong glass transition. Thus, social interactions play an important role in the mobility of collective living systems at high density. Our experiments and model demonstrate that the concepts of soft

  5. Confinement matrices for low- and intermediate-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Omel'Yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.

    2012-02-01

    Mining of uranium for nuclear fuel production inevitably leads to the exhaustion of natural uranium resources and an increase in market price of uranium. As an alternative, it is possible to provide nuclear power plants with reprocessed spent nuclear fuel (SNF), which retains 90% of its energy resource. The main obstacle to this solution is related to the formation in the course of the reprocessing of SNF of a large volume of liquid waste, and the necessity to concentrate, solidify, and dispose of this waste. Radioactive waste is classified into three categories: low-, intermediate-, and high-level (LLW, ILW, and HLW); 95, 4.4, and 0.6% of the total waste are LLW, ILW, and HLW, respectively. Despite its small relative volume, the radioactivity of HLW is approximately equal to the combined radioactivity of LLW + ILW (LILW). The main hazard of HLW is related to its extremely high radioactivity, the occurrence of long-living radionuclides, heat release, and the necessity to confine HLW for an effectively unlimited time period. The problems of handling LILW are caused by the enormous volume of such waste. The available technology for LILW confinement is considered, and conclusion is drawn that its concentration, vitrification, and disposal in shallow-seated repositories is a necessary condition of large-scale reprocessing of SNF derived from VVER-1000 reactors. The significantly reduced volume of the vitrified LILW and its very low dissolution rate at low temperatures makes borosilicate glass an ideal confinement matrix for immobilization of LILW. At the same time, the high corrosion rate of the glass matrix at elevated temperatures casts doubt on its efficient use for immobilization of heat-releasing HLW. The higher cost of LILW vitrification compared to cementation and bitumen impregnation is compensated for by reduced expenditure for construction of additional engineering barriers, as well as by substantial decrease in LLW and ILW volume, localization of shallow

  6. Persistence of atomic spectral line on laser-induced Cu plasma with spatial confinement

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Chen, Anmin; Sui, Laizhi; Li, Suyu; Liu, Dunli; Wang, Xiaowei; Jiang, Yuanfei; Huang, Xuri; Jin, Mingxing

    2016-11-01

    This paper carries out the spatial confinement effect on laser-induced Cu breakdown spectroscopy in a cylindrical cavity via a nanosecond pulsed Q-switch Nd:YAG laser operating at a wavelength of 1064 nm. The temporal evolution of the laser-induced plasma spectroscopy is used to investigate the characteristics of spectral persistence. The atomic spectral persistence in plasma generated from Cu with spatial confinement is experimentally demonstrated, where the results indicate that the diameter of the confinement cavity plays a very important role in the persistence of an excited neutral Cu emission line, while the depth of the confinement cavity is almost independent of Cu (I) line persistence. As the diameter of the confinement cavity increases, the persistence of the Cu (I) line in the plasma grows longer under a certain limit. The likely reason for this phenomenon is that under spatial confinement, the reflected shockwave compresses the plasma and leads to an increase in the plasma temperature and density at a certain delay time, which causes further excitation of atomic population to higher excited levels. Finally, the collision rate between particles in the plasma plume is increased.

  7. [Analysis of Cr in soil by LIBS based on conical spatial confinement of plasma].

    PubMed

    Lin, Yong-Zeng; Yao, Ming-Yin; Chen, Tian-Bing; Li, Wen-Bing; Zheng, Mei-Lan; Xu, Xue-Hong; Tu, Jian-Ping; Liu, Mu-Hua

    2013-11-01

    The present study is to improve the sensitivity of detection and reduce the limit of detection in detecting heavy metal of soil by laser induced breakdown spectroscopy (LIBS). The Cr element of national standard soil was regarded as the research object. In the experiment, a conical cavity with small diameter end of 20 mm and large diameter end of 45 mm respectively was installed below the focusing lens near the experiment sample to mainly confine the signal transmitted by plasma and to some extent to confine the plasma itself in the LIBS setup. In detecting Cr I 425.44 nm, the beast delay time gained from experiment is 1.3 micros, and the relative standard deviation is below 10%. Compared with the setup of non-spatial confinement, the spectral intensity of Cr in the soil sample was enhanced more than 7%. Calibration curve was established in the Cr concentration range from 60 to 400 microg x g(-1). Under the condition of spatial confinement, the liner regression coefficient and the limit of detection were 0.997 71 and 18.85 microg x g(-1) respectively, however, the regression coefficient and the limit of detection were 0.991 22 and 36.99 microg x g(-1) without spatial confinement. So, this shows that conical spatial confinement can/improve the sensitivity of detection and enhance the spectral intensity. And it is a good auxiliary function in detecting Cr in the soil by laser induced breakdown spectroscopy.

  8. The polymer physics of single DNA confined in nanochannels.

    PubMed

    Dai, Liang; Renner, C Benjamin; Doyle, Patrick S

    2016-06-01

    In recent years, applications and experimental studies of DNA in nanochannels have stimulated the investigation of the polymer physics of DNA in confinement. Recent advances in the physics of confined polymers, using DNA as a model polymer, have moved beyond the classic Odijk theory for the strong confinement, and the classic blob theory for the weak confinement. In this review, we present the current understanding of the behaviors of confined polymers while briefly reviewing classic theories. Three aspects of confined DNA are presented: static, dynamic, and topological properties. The relevant simulation methods are also summarized. In addition, comparisons of confined DNA with DNA under tension and DNA in semidilute solution are made to emphasize universal behaviors. Finally, an outlook of the possible future research for confined DNA is given.

  9. System Description for the Double Shell Tank (DST) Confinement System

    SciTech Connect

    ROSSI, H.

    2000-01-12

    This document provides a description of the Double-Shell Tank (DST) Confinement System. This description will provide a basis for developing functional, performance and test requirements (i.e., subsystem specification), as necessary, for the DST Confinement System.

  10. System and method of operating toroidal magnetic confinement devices

    DOEpatents

    Chance, M.S.; Jardin, S.C.; Stix, T.H.; Grimm, R.C.; Manickam, J.; Okabayashi, M.

    1984-08-30

    This invention pertains to methods and arrangements for attaining high beta values in plasma confinement devices. More specifically, this invention pertains to methods for accessing the second stability region of operation in toroidal magnetic confinement devices.

  11. Inertial-confinement fusion with lasers

    NASA Astrophysics Data System (ADS)

    Betti, R.; Hurricane, O. A.

    2016-05-01

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications in national security and basic sciences. The US is arguably the world leader in the inertial confinement approach to fusion and has invested in large facilities to pursue it, with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Although significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion. Here, we review the current state of the art in inertial confinement fusion research and describe the underlying physical principles.

  12. Spiral precipitation patterns in confined chemical gardens.

    PubMed

    Haudin, Florence; Cartwright, Julyan H E; Brau, Fabian; De Wit, A

    2014-12-09

    Chemical gardens are mineral aggregates that grow in three dimensions with plant-like forms and share properties with self-assembled structures like nanoscale tubes, brinicles, or chimneys at hydrothermal vents. The analysis of their shapes remains a challenge, as their growth is influenced by osmosis, buoyancy, and reaction-diffusion processes. Here we show that chemical gardens grown by injection of one reactant into the other in confined conditions feature a wealth of new patterns including spirals, flowers, and filaments. The confinement decreases the influence of buoyancy, reduces the spatial degrees of freedom, and allows analysis of the patterns by tools classically used to analyze 2D patterns. Injection moreover allows the study in controlled conditions of the effects of variable concentrations on the selected morphology. We illustrate these innovative aspects by characterizing quantitatively, with a simple geometrical model, a new class of self-similar logarithmic spirals observed in a large zone of the parameter space.

  13. Size scaling of microtubule asters in confinement

    NASA Astrophysics Data System (ADS)

    Pelletier, James; Field, Christine; Krutkramelis, Kaspars; Fakhri, Nikta; Oakey, John; Gatlin, Jay; Mitchison, Timothy

    Microtubule asters are radial arrays of microtubules (MTs) nucleated around organizing centers (MTOCs). Across a wide range of cell types and sizes, aster positioning influences cellular organization. To investigate aster size and positioning, we reconstituted dynamic asters in Xenopus cytoplasmic extract, confined in fluorous oil microfluidic emulsions. In large droplets, we observed centering of MTOCs. In small droplets, we observed a breakdown in natural positioning, with MTOCs at the droplet edge and buckled or bundled MTs along the interface. In different systems, asters are positioned by different forces, such as pushing due to MT polymerization, or pulling due to bulk or cortical dynein. To estimate different contributions to aster positioning, we biochemically perturbed dynactin function, or MT or actin polymerization. We used carbon nanotubes to measure molecular motions and forces in asters. These experimental results inform quantitative biophysical models of aster size and positioning in confinement. JFP was supported by a Fannie and John Hertz Graduate Fellowship.

  14. The confined space-hypoxia syndrome.

    PubMed

    Zugibe, F T; Costello, J T; Breithaupt, M K; Zappi, E; Allyn, B

    1987-03-01

    Two meter readers of a local water company were found dead in an underground water meter pit. Studies revealed a decrease in oxygen and an increase in carbon dioxide in the pit as a result of aerobic microorganisms present in the pit. Such an atmosphere may be rapidly fatal to the unwary worker who frequents such an environment. It is of paramount importance that this occupational hazard be recognized so that preventative measures may be established. We propose that the term "Confined Space-Hypoxia Syndrome" be adopted to all such confined space accidents occurring in water meter pits, tanks, holds of ships, mines, underground storage bins, and so forth, resulting from oxygen-deficient atmospheres. A series of recommended preventative procedures is included.

  15. Pressure-confined Lyman-alpha clouds

    SciTech Connect

    Baron, E.; Carswell, R.F.; Hogan, C.J.; Weymann, R.J.

    1989-02-01

    Results are presented of numerical models of pressure-confined spherical gas clouds which produce absorption resembling the low to intermediate atomic column density lines found in high-redshift QSO spectra. One-dimensional hydrodynamical models including electron conduction are described, and the rate equations are solved to find ionization and excitation states. Results are presented for both static and adiabatically expanding confining media covering a range of initial pressures. It is found that Ly-alpha lines are very similar over a wide range of conditions and that the most promising diagnostic of pressure is to compare the column density in H I to that in He I and He II. No single-pressure model can explain the wide range of observed H I column densities. 18 references.

  16. Anomalous structural transition of confined hard squares.

    PubMed

    Gurin, Péter; Varga, Szabolcs; Odriozola, Gerardo

    2016-11-01

    Structural transitions are examined in quasi-one-dimensional systems of freely rotating hard squares, which are confined between two parallel walls. We find two competing phases: one is a fluid where the squares have two sides parallel to the walls, while the second one is a solidlike structure with a zigzag arrangement of the squares. Using transfer matrix method we show that the configuration space consists of subspaces of fluidlike and solidlike phases, which are connected with low probability microstates of mixed structures. The existence of these connecting states makes the thermodynamic quantities continuous and precludes the possibility of a true phase transition. However, thermodynamic functions indicate strong tendency for the phase transition and our replica exchange Monte Carlo simulation study detects several important markers of the first order phase transition. The distinction of a phase transition from a structural change is practically impossible with simulations and experiments in such systems like the confined hard squares.

  17. Confinement and stability of a Crystalline Beam

    SciTech Connect

    Ruggiero, A.G.

    1993-05-10

    This technical report defines and describes a Crystalline Beam. This is an ordered state of matter made of electrically charged ions which are moving together in a storage ring with very high density and small velocity spread. In particular, the paper analyses the requirements for the confinement and the stability of the Beam. It is demonstrated that a storage ring made of one circular weak-focusing magnet, similar to a Betatron, is the most suitable for the confinement and stability of the Crystalline Beam. The disruptive effects of drift insertions have also been investigated. Requirements on final densities and velocity spreads are also calculated and reported. A matrix formalism is developed for the design of the storage ring. The important issue of the disruption caused by the curvature of the closed trajectory is not here discussed; it is the subject of a subsequent paper.

  18. Atypical quantum confinement effect in silicon nanowires.

    PubMed

    Sorokin, Pavel B; Avramov, Pavel V; Chernozatonskii, Leonid A; Fedorov, Dmitri G; Ovchinnikov, Sergey G

    2008-10-09

    The quantum confinement effect (QCE) of linear junctions of silicon icosahedral quantum dots (IQD) and pentagonal nanowires (PNW) was studied using DFT and semiempirical AM1 methods. The formation of complex IQD/PNW structures leads to the localization of the HOMO and LUMO on different parts of the system and to a pronounced blue shift of the band gap; the typical QCE with a monotonic decrease of the band gap upon the system size breaks down. A simple one-electron one-dimensional Schrodinger equation model is proposed for the description and explanation of the unconventional quantum confinement behavior of silicon IQD/PNW systems. On the basis of the theoretical models, the experimentally discovered deviations from the typical QCE for nanocrystalline silicon are explained.

  19. Nonlinear adhesion dynamics of confined lipid membranes

    NASA Astrophysics Data System (ADS)

    To, Tung; Le Goff, Thomas; Pierre-Louis, Olivier

    Lipid membranes, which are ubiquitous objects in biological environments are often confined. For example, they can be sandwiched between a substrate and the cytoskeleton between cell adhesion, or between other membranes in stacks, or in the Golgi apparatus. We present a study of the nonlinear dynamics of membranes in a model system, where the membrane is confined between two flat walls. The dynamics derived from the lubrication approximation is highly nonlinear and nonlocal. The solution of this model in one dimension exhibits frozen states due to oscillatory interactions between membranes caused by the bending rigidity. We develope a kink model for these phenomena based on the historical work of Kawasaki and Otha. In two dimensions, the dynamics is more complex, and depends strongly on the amount of excess area in the system. We discuss the relevance of our findings for experiments on model membranes, and for biological systems. Supported by the grand ANR Biolub.

  20. Multiphase flows in confinement with complex geometries

    NASA Astrophysics Data System (ADS)

    Aymard, Benjamin; Pradas, Marc; Vaes, Urbain; Kalliadasis, Serafim

    2016-11-01

    Understanding the dynamics of immiscible fluids in confinement is crucial in numerous applications such as oil recovery, fuel cells and the rapidly growing field of microfluidics. Complexities such as microstructures, chemical-topographical heterogeneities or porous membranes, can often induce non-trivial effects such as critical phenomena and phase transitions . The dynamics of confined multiphase flows may be efficiently described using diffuse-interface theory, leading to the Cahn-Hilliard-Navier-Stokes(CHNS) equations with Cahn wetting boundary conditions. Here we outline an efficient numerical method to solve the CHNS equations using advanced geometry-capturing mesh techniques both in two and three dimensional scenarios. The methodology is applied to two different systems: a droplet on a spatially chemical-topographical heterogeneous substrateand a microfluidic separator.

  1. Spiral precipitation patterns in confined chemical gardens

    PubMed Central

    Haudin, Florence; Brau, Fabian; De Wit, A.

    2014-01-01

    Chemical gardens are mineral aggregates that grow in three dimensions with plant-like forms and share properties with self-assembled structures like nanoscale tubes, brinicles, or chimneys at hydrothermal vents. The analysis of their shapes remains a challenge, as their growth is influenced by osmosis, buoyancy, and reaction–diffusion processes. Here we show that chemical gardens grown by injection of one reactant into the other in confined conditions feature a wealth of new patterns including spirals, flowers, and filaments. The confinement decreases the influence of buoyancy, reduces the spatial degrees of freedom, and allows analysis of the patterns by tools classically used to analyze 2D patterns. Injection moreover allows the study in controlled conditions of the effects of variable concentrations on the selected morphology. We illustrate these innovative aspects by characterizing quantitatively, with a simple geometrical model, a new class of self-similar logarithmic spirals observed in a large zone of the parameter space. PMID:25385581

  2. Neoclassical transport in enhanced confinement toroidal plasmas

    SciTech Connect

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1996-11-01

    It has recently been reported that ion thermal transport levels in enhanced confinement tokamak plasmas have been observed to fall below the irreducible minimum level predicted by standard neoclassical theory. This apparent contradiction is resolved in the present analysis by relaxing the basic neoclassical assumption that the ions orbital excursions are much smaller than the local toroidal minor radius and the equilibrium scale lengths of the system.

  3. Effective string description of confining flux tubes

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Meineri, Marco

    2016-08-01

    We review the current knowledge about the theoretical foundations of the effective string theory for confining flux tubes and the comparison of the predictions to pure gauge lattice data. A concise presentation of the effective string theory is provided, incorporating recent developments. We summarize the predictions for the spectrum and the profile/width of the flux tube and their comparison to lattice data. The review closes with a short summary of open questions for future research.

  4. LDV Measurement of Confined Parallel Jet Mixing

    SciTech Connect

    R.F. Kunz; S.W. D'Amico; P.F. Vassallo; M.A. Zaccaria

    2001-01-31

    Laser Doppler Velocimetry (LDV) measurements were taken in a confinement, bounded by two parallel walls, into which issues a row of parallel jets. Two-component measurements were taken of two mean velocity components and three Reynolds stress components. As observed in isolated three dimensional wall bounded jets, the transverse diffusion of the jets is quite large. The data indicate that this rapid mixing process is due to strong secondary flows, transport of large inlet intensities and Reynolds stress anisotropy effects.

  5. [Ethics and solitary confinement in psychiatry].

    PubMed

    Andrieu, Jean-Pierre

    2014-01-01

    The decision to treat a patient in solitary confinement in psychiatry does not follow any protocol and is not made on a case-by-case basis. Team deliberation opens discussion and enables the group as a whole to take responsibility for clarifying what is to be supported by the team and implemented by the carer during treatment. When presented with complex situations, uncertainty can be a force when it calls upon an ethical dilemma.

  6. Statistical Mechanics of Confined Quantum Particles

    NASA Astrophysics Data System (ADS)

    Bannur, Vishnu M.; Udayanandan, K. M.

    We develop statistical mechanics and thermodynamics of Bose and Fermi systems in relativistic harmonic oscillator (RHO) confining potential, which is applicable in quark gluon plasma (QGP), astrophysics, Bose-Einstein condensation (BEC) etc. Detailed study of QGP system is carried out and compared with lattice results. Furthermore, as an application, our equation of state (EoS) of QGP is used to study compact stars like quark star.

  7. Structure of confined films of chain alcohols

    SciTech Connect

    Mugele, F.; Baldelli, S.; Somorjai, G.A.; Salmeron, M.

    2000-04-13

    The structure of thin films of simple chain alcohols (1-octanol and 1-undecanol) confined between two atomically smooth mica surfaces has been investigated using a surface forces apparatus. Contact angle measurements and optical sum frequency generation were used for additional characterization. In both systems, the substrate-molecule interaction leads to a strongly bound first layer on each surface. Additional liquid organizes into highly compressible bilayers, which could be expelled by applying sufficiently high pressure.

  8. Waveforms Measured in Confined Thermobaric Explosion

    SciTech Connect

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2007-05-04

    Experiments with 1.5-g Shock-Dispersed-Fuel (SDF) charges have been conducted in six different chambers. Both flake Aluminum and TNT were used as the fuel. Static pressure gauges on the chamber wall were the main diagnostic. Waveforms for explosions in air were significantly larger than those in nitrogen - thereby demonstrating a strong thermobaric (combustion) effect. This effect increases as the confinement volume decreases and the mixture richness approaches 1.

  9. Laser driven instabilities in inertial confinement fusion

    SciTech Connect

    Kruer, W.L.

    1990-06-04

    Parametric instabilities excited by an intense electromagnetic wave in a plasma is a fundamental topic relevant to many applications. These applications include laser fusion, heating of magnetically-confined plasmas, ionospheric modification, and even particle acceleration for high energy physics. In laser fusion, these instabilities have proven to play an essential role in the choice of laser wavelength. Characterization and control of the instabilities is an ongoing priority in laser plasma experiments. Recent progress and some important trends will be discussed. 8 figs.

  10. Yukawa particles in a confining potential

    SciTech Connect

    Girotto, Matheus Levin, Yan; Santos, Alexandre P. dos; Colla, Thiago

    2014-07-07

    We study the density distribution of repulsive Yukawa particles confined by an external potential. In the weak coupling limit, we show that the mean-field theory is able to accurately account for the particle distribution. In the strong coupling limit, the correlations between the particles become important and the mean-field theory fails. For strongly correlated systems, we construct a density functional theory which provides an excellent description of the particle distribution, without any adjustable parameters.

  11. A brief report of gram-negative bacterial endotoxin levels in airborne and settled dusts in animal confinement buildings

    SciTech Connect

    Thedell, T.D.; Mull, J.C.; Olenchock, S.A.

    1980-01-01

    Gram-negative bacterial endotoxins, implicated in adverse worker health responses, were found in settled and airborne dust samples obtained from poultry and swine confinement units. Results of the Limulus amebocyte lysate gel test found endotoxin levels in dust samples ranged from 4.5 to 47.7 micrograms of FDA Klebsiella endotoxin equivalents/gm. Differences in endotoxin levels between dust samples may have been due to variables in time, geographic locations, confined animals, confinement buildings and equipment, and methods of sample collection. Animal confinement workers are potentially exposed to large amounts of gram-negative bacterial endotoxins; however, the respiratory health effects of such exposures to animal confinement workers have yet to be determined.

  12. MHD Stability of Centrifugally Confined Plasmas

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Min

    2003-10-01

    Centrifugally confined plasmas utilize centrifugal forces from plasma rotation to augment magnetic confinement, as an alternative approach to fusion. One magnetic geometry is mirror-type, with rotation about the axis induced from a central, biased core conductor. The outward centrifugal forces from the rotation have a component along the field lines, thus confining ions to the center. The immediate concern, of course, is that the system could be flute unstable to the interchange. The antidote here is that the radial shear in the rotation could stabilize the flute. Our 2D simulations show, first, that plasma pressure is highly peaked at the center away from the mirror end coils. Next, 3D simulations show unequivocally that velocity shear is providing the stability. Further study indicates that the flute stability is sensitive to the density profile. A favorable density profile could be achieved by judiciously placing the particle source, also necessary for a steady state centrifuge. As flows approach the Alfven speed, electromagnetic modes could be involved. The latter is motivated by the question of whether magnetorotational instability, thought to be an angular momentum transporter in accretion disks, could be found in centrifugal plasmas, since all the ingredients are there. We show that the MRI as understood should be stable; however, a related astrophysical instability, the Parker instability, could arise. The Parker instability results in plasma accumulating in regions of bent field lines, further accentuating the bending.

  13. Counterpropagating Rossby waves in confined plane wakes

    PubMed Central

    Biancofiore, L.; Gallaire, F.

    2012-01-01

    In the present work, we revisit the temporal and the spatio-temporal stability of confined plane wakes under the perspective of the counterpropagating Rossby waves (CRWs). Within the context of broken line velocity profiles, each vorticity discontinuity can be associated to a counterpropagating Rossby wave. In the case of a wake modeled by a broken line profile, the interaction of two CRWs is shown to originate in a shear instability. Following this description, we first recover the stability results obtained by Juniper [J. Fluid Mech. 590, 163–185 (2007)]10.1017/S0022112007007975 and Biancofiore and Gallaire [Phys. Fluids 23, 034103 (2011)]10.1063/1.3554764 by means of the classical normal mode analysis. In this manner, we propose an explanation of the stabilizing influence of the confinement on the temporal stability properties. The CRW description further allows us to propose a new interpretation of the counterintuitive spatio-temporal destabilization in wake flows at moderate confinement noticed by Juniper [J. Fluid Mech. 565, 171–195 (2006)]10.1017/S0022112006001558: it is well predicted by the mean group velocity of the uncoupled CRWs. PMID:22865998

  14. Density Shock Waves in Confined Microswimmers

    NASA Astrophysics Data System (ADS)

    Tsang, Alan Cheng Hou; Kanso, Eva

    2016-01-01

    Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior, from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from "subsonic" with compression at the back to "supersonic" with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a nontrivial interplay between hydrodynamic interactions and geometric confinement, and it is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechanisms for controlling the emergent density distribution and the average population speed, with potentially profound implications on various processes in industry and biotechnology, such as the transport and sorting of cells in flow channels.

  15. Fast ion JET diagnostics: confinement and losses

    SciTech Connect

    Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; Syme, D. B.; Cecconello, M.; Darrow, D.; Hill, K.; Goloborod'ko, V.; Yavorskij, V.; Johnson, T.; Murari, A.; Reich, M.; Gorini, G.; Zoita, V.

    2008-03-12

    A study of magnetically confined fast ions in tokamaks plays an important role in burning plasma research. To reach ignition and steady burning of a reactor plasma an adequate confinement of energetic ions produced by NBI heating, accelerated with ICRF and born in fusion reactions is essential to provide efficient heating of the bulk plasma. Thus, investigation of the fast ion behaviour is an immediate task for present-day large machines, such as JET, in order to understand the main mechanisms of slowing down, redistribution and losses, and to develop optimal plasma scenarios. Today's JET has an enhanced suite of fast ion diagnostics both of confined and lost ions that enable to significantly contribute to this important area of research. Fast ion populations of p, d, t, {sup 3}He and {sup 4}He, made with ICRF, NBI, and fusion reactions have been investigated in experiments on JET with sophisticated diagnostics in conventional and shear-reversed plasmas, exploring a wide range of effects. This paper will introduce to the JET fast-ion diagnostic techniques and will give an overview of recent observations. A synergy of the unique diagnostic set was utilised in JET, and studies of the response of fast ions to MHD modes (e.g. tornado modes, sawtooth crashes), fast {sup 3}He-ions behaviour in shear-reversed plasmas are impressive examples of that. Some results on fast ion losses in JET experiments with various levels of the toroidal field ripple will be demonstrated.

  16. Effect of Confinement on Suspension Rheology

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Meera; Leahy, Brian; Lin, Yen-Chih; Cohen, Itai

    Confined systems are ubiquitous in nature and occur at widely separated length scales from the atomic to granular. While the flow properties of both atomic and granular systems has been well studied, examining the rheology of the intermediate length scale in colloidal suspensions is challenging. We use a confocal rheoscope to image the particle configuration in a suspension of silica microspheres while simultaneously measuring its stress responses. The confocal rheoscope has two precisely-aligned parallel plates that can confine the suspension with a variable gap size ranging from 3 to 30 particle diameters, allowing us to measure the response of the system as a function of the gap size. We find that the viscosity of the system decreases with confinement in sharp contrast to the increase reported in atomic and granular systems. The microscopy images indicate that this decrease in viscosity is due to the formation of particle layers in this shear regime where hydrodynamic forces dominate particle interactions. We discuss these results and their implications.

  17. Evaporation rate of water in hydrophobic confinement.

    PubMed

    Sharma, Sumit; Debenedetti, Pablo G

    2012-03-20

    The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm(2)), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50 kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm(2)) than by the smaller (1 nm(2)) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube.

  18. Electrostatic Confinement of Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Pacheco, Jose; Weathers, Duncan; Ordonez, Carlos

    2009-04-01

    Many experiments rely on the confinement of charged particles. Examples of these experiments range from fusion studies to antiproton-positron studies for antihydrogen production. Researchers have already developed a variety of techniques for controlling and trapping charged particles. Examples of systems devised for such purposes include electrostatic traps in the form of a cavity [1],[2] or in the form of a storage ring like ELISA [3]. For this project, we are pursuing a different approach [4], which relies on a purely electrostatic environment for ion confinement. This system consists of a periodic electrode configuration of cylindrical symmetry that acts to confine an ion beam in the radial direction. In this manner, it is expected that long particle lifetimes inside the trap will be achieved, and that the system will have an inherent scalability to different ion energy. Results obtained from simulation of the proposed system will be presented and discussed along with a brief overview of the steps taken to develop a laboratory prototype. [1] M. Dahan et al., Rev. Sci. Instr. 69 (1998) 76. [2] H. F. Krause et al., American Institute of Physics. CAARI 16^th Int'l Conf. (2001). [3] S.P. Moller et al., Proc. of the 1997 Particle Accelerator Conference. vol 1. pp 1027-1029. Vancouver, Canada. May 1997. [4] J.R. Correa et al., Nucl. Instr. and Meth. In Phys. Res. B 241 (2005) 909-912.

  19. Positron confinement in embedded lithium nanoclusters

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  20. Chemical reactions confined within carbon nanotubes.

    PubMed

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  1. Chain-like molecules confined in nanopores

    NASA Astrophysics Data System (ADS)

    Huber, Patrick; Soprunyuk, Viktor; Hofmann, Tommy; Knorr, Klaus

    2004-03-01

    We present an x-ray diffraction study on chain-like molecules, i.e. a selection of n-alkane molecules, embedded in the pores of nanoporous silica matrices. The lengths of the hydrocarbon chains are comparable to the mean diameter ( 7nm) of the tubular like nanopores which leads to drastic geometric restrictions. Diffraction patterns, recorded on heating and cooling between 200 K and 310 K, elucidate how the structure and phase behavior of the molecules is affected by the random substrate disorder and the confinement. The confined n-alkanes form close-packed structures by aligning parallel to the pore axis. In the case of the medium-length hydrocarbon chains one basic ordering principle known from the bulk crystalline state, i.e. the lamellar ordering of the molecules, is quenched[1], whereas for shorter n-alkanes this ordering principle survives[2]. The confined solids mimic the orientational order-disorder transitions known from the 3D unconfined crystals albeit in a modified fashion. 1. P. Huber, D. Wallacher, J. Albers, K. Knorr, Europhysics Letters, in press; 2. P. Huber, D. Wallacher, J. Albers, K. Knorr, Journal of Physics: Condensed Matter 15, 309 (2003).

  2. Electron Confinement in Cylindrical Potential Well

    NASA Astrophysics Data System (ADS)

    Baltenkov, A. S.; Msezane, A. Z.

    2016-05-01

    We show that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the remaining three-dimensional space within the framework of the same mathematical model of the potential well. Some low-lying electronic states with different symmetries are considered and the corresponding wave functions are calculated. The behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well is analyzed. Additionally, the momentum distributions of electrons in these states are calculated. The limiting cases of the ratio of the cylinder length H to its radius R0 are considered; when H significantly exceeds R0 and when R0 is much greater than H. The possible application of the results obtained here for the description of the general features in the behavior of electrons in nanowires with metallic type of conductivity (or nanotubes) and ultrathin epitaxial films (or graphene sheets) are discussed. Possible experiments are suggested as well where the quantum confinement can be manifested. Work supported by the Uzbek Foundation (ASB) and by the U.S. DOE, Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, Office of Energy Research (AZM).

  3. Measurements of uranium mass confined in high density plasmas

    NASA Technical Reports Server (NTRS)

    Stoeffler, R. C.

    1976-01-01

    An X-ray absorption method for measuring the amount of uranium confined in high density, rf-heated uranium plasmas is described. A comparison of measured absorption of 8 keV X-rays with absorption calculated using Beer Law indicated that the method could be used to measure uranium densities from 3 times 10 to the 16th power atoms/cu cm to 5 times 10 to the 18th power atoms/cu cm. Tests were conducted to measure the density of uranium in an rf-heated argon plasma with UF6 infection and with the power to maintain the discharge supplied by a 1.2 MW rf induction heater facility. The uranium density was measured as the flow rate through the test chamber was varied. A maximum uranium density of 3.85 times 10 to the 17th power atoms/cu cm was measured.

  4. 46 CFR 148.86 - Confined space entry.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Confined space entry. 148.86 Section 148.86 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.86 Confined space entry. (a) Except in an emergency, no person may enter a confined space unless that space has been tested...

  5. 46 CFR 148.86 - Confined space entry.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Confined space entry. 148.86 Section 148.86 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.86 Confined space entry. (a) Except in an emergency, no person may enter a confined space unless that space has been tested...

  6. 46 CFR 148.86 - Confined space entry.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Confined space entry. 148.86 Section 148.86 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.86 Confined space entry. (a) Except in an emergency, no person may enter a confined space unless that space has been tested...

  7. Confined Turbulent Swirling Recirculating Flow Predictions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.

    1984-01-01

    Turbulent swirling flow, the STARPIC computer code, turbulence modeling of turbulent flows, the k-xi turbulence model and extensions, turbulence parameters deduction from swirling confined flow measurements, extension of the k-xi to confined swirling recirculating flows, and general predictions for confined turbulent swirling flow are discussed.

  8. 25 CFR 141.21 - Trade confined to premises.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Trade confined to premises. 141.21 Section 141.21 Indians... NAVAJO, HOPI AND ZUNI RESERVATIONS General Business Practices § 141.21 Trade confined to premises. The licensee shall confine all trade on the reservation to the premises specified in the license, except,...

  9. 46 CFR 148.86 - Confined space entry.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Confined space entry. 148.86 Section 148.86 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.86 Confined space entry. (a) Except in an emergency, no person may enter a confined space unless that space has been tested...

  10. Structural properties and fragile to strong transition in confined water.

    PubMed

    De Marzio, M; Camisasca, G; Conde, M M; Rovere, M; Gallo, P

    2017-02-28

    We derive by computer simulation the radial distribution functions of water confined in a silica pore modeled to reproduce MCM-41. We perform the calculations in a range of temperatures from ambient to deep supercooling for the subset of water molecules that reside in the inner shell (free water) by applying the excluded volume corrections. By comparing with bulk water we find that the first shell of the oxygen-oxygen and hydrogen-hydrogen radial distribution functions is less sharp and the first minimum fills in while the oxygen-hydrogen structure does not significantly change, indicating that the free water keeps the hydrogen bond short range order. The two body excess entropy of supercooled water is calculated from the radial distribution functions. We connect the behavior of this function to the relaxation time of the same system already studied in previous simulations. We show that the two body entropy changes its behavior in coincidence with the crossover of the relaxation time from the mode coupling fragile to the strong Arrhenius regime. As for bulk water also in confinement, the two body entropy has a strict connection with the dynamical relaxation.

  11. Molecular Dynamics Study of Polyethylene under Extreme Confinement

    NASA Astrophysics Data System (ADS)

    Kritikos, G.; Sgouros, A.; Vogiatzis, G. G.; Theodorou, D. N.

    2016-08-01

    We present results concerning the dynamics and the structure of adsorbed layers of molten polyethylene (PE) between two graphite surfaces. The molecular weight of the monodisperse PE chains reaches the entanglement regime. We study three cases of interwall distances, equal to two, three and four times the unperturbed radius of gyration (Rg ) of PE chains. The confined system is equilibrated by use of efficient Monte Carlo (MC) algorithms. Conducting molecular dynamics (MD) simulations, we reveal the distribution of relaxation times as a function of distance from the graphite walls at the temperature of 450 K. From the atomic-level stresses we calculate a realistic estimate of the adhesion tension, which is not affected significantly by the width of the pore. Although the distance between the two walls is comparable to the width of the adsorbed layer, we do not record the formation of ‘glassy bridges’ under the studied conditions. The diffusion of polymer chains in the middle layer is not inhibited by the existence of the two adsorbed layers. Extreme confinement conditions imposed by the long range wall potentials bring about an increase in both the adsorption and desorption rates of chains. The presented results seem to cohere with a reduction in the calorimetric (heat capacity step) glass transition temperature (Tg ).

  12. Interpretation of earth tide response of three deep, confined aquifers

    SciTech Connect

    Narasimhan, T.N.; Kanehiro, B.Y.; Witherspoon, P.A.

    1984-03-10

    The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. Moreover, since specific storage S/sub s/ quantifies a drained behavior of the porous medium, one cannot directly estimate S/sub s/from earth tide response. Except for the fact that barometric changes act both on the water surface in the well and on the aquifer as a whole while stress changes associated with earth tides act only in the aquifer, the two phenomena influence the confined aquifer in much the same way. In other words, barometric response contains only as much information on the elastic properties of the aquifer as the earth tide response does. Factors such as well bore storage, aquifer transmissivity, and storage coefficient contribute to time lag and damping of the aquifer response as observed in the well. Analysis shows that the observation of fluid pressure changes alone, without concurrent measurement of external stress changes, is sufficient to interpret uniquely earth tide response. In the present work, change in external stress is estimated from dilatation by assuming a reasonable value for bulk modulus. Earth tide response of geothermal aquifers from Marysville, Montana. East Mesa, California; and Raft River Valley, Idaho, were analyzed, and the ratio of S/sub 3/ to porosity was estimated. Comparison of these estimates with independent pumping tests show reasonable agreement.

  13. Numerical study of a confined slot impinging jet with nanofluids

    PubMed Central

    2011-01-01

    Background Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. Results In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. Conclusions The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4.8 times greater than the

  14. Spin probe dynamics of n-hexadecane in confined geometry

    NASA Astrophysics Data System (ADS)

    Lukešová, Miroslava; Švajdlenková, Helena; Sippel, Pit; Macová, Eva; Berek, Dušan; Loidl, Alois; Bartoš, Josef

    2015-02-01

    A combined study of the rotational dynamics of the stable free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and the phase behavior of n-hexadecane (n-HXD) in the bulk and the confined states in a series of silica gels (SG) by means of ESR and DSC is presented. A slow to fast motion transition of the spin probe TEMPO in the bulk n-HXD occurs at T50 G,bulk ≪ Tm,bulk, i.e., well below the melting temperature due to its trapping and localized mobility in the interlamellar gap of the crystallites [J. Bartoš, H. Švajdlenková, M. Zaleski, M. Edelmann, M. Lukešová, Physica B 430, 99 (2013)]. On the other hand, the dynamics of the TEMPO in the confined systems is strongly slowing down with T50 G (Dpore) >Tm(Dpore) and slightly increases with the pore size Dpore = 60, 100 and 300 Å of the SG's. At the same time, both the corresponding melting temperature, Tm (Dpore), and melting enthalpy, ΔHm (Dpore), decrease with Dpore together with the mutual anti-correlation between T50 G and Tm as a function of the inverse of pore diameter, 1/Dpore. Moreover, the dynamic heterogeneity of the TEMPO in the confined state below T50 G (Dpore) is closely related to the phase transformation. The strong slowing down of the spin probe motion likely results from its preferential localization at the interface layer of the matrix pore due to specific interaction of TEMPO molecules with the polar silanol groups of the SG matrix. This is supported by special study on a series of the variously filled n-HXD/SG systems, other similar experimental findings as well as by theoretical spectral argument.

  15. Quantification of reaction violence and combustion enthalpy of plastic bonded explosive 9501 under strong confinement

    NASA Astrophysics Data System (ADS)

    Perry, W. Lee; Dickson, Peter M.; Parker, Gary R.; Asay, B. W.

    2005-01-01

    The confinement experienced by an explosive during thermal self-initiation can substantially affect performance in terms of deflagration-to-detonation characteristics and explosion/detonation violence. To this end, we have developed an experiment to quantitatively observe enthalpy change and reaction violence in thermally initiated plastic bonded explosive (PBX) 9501. Traditionally, researchers attempt to quantify violence using terminal observations of fragment size, fragment velocity, and through subjective observations. In the work presented here, the explosive was loaded into a heated gun assembly where we subjected a 300 mg charge to a cook-off schedule and a range of static and inertial confinements. Static confinement was controlled using rupture disks calibrated at 34.5 and 138 MPa. The use of 3.15 and 6.3 g projectile masses provided a variation in inertial confinement. This was a regime of strong confinement; a significant fraction of the explosive energy was required to rupture the disk, and the projectile mass was large compared to the charge mass. The state variables pressure and volume were measured in the breech. From these data, we quantified both the reaction enthalpy change and energy release rate of the explosive on a microsecond time scale using a thermodynamic analyisis. We used these values to unambiguously quantify explosion violence as a function of confinement at a fixed cook-off schedule of 190 C for 1 h. P2τ, a measure of critical shock energy required for shock ignition of an adjacent explosive was also computed. We found variations in this confinement regime to have a weak effect on enthalpy change, power, violence and shock energy. Violence was approximately 100 times lower than detonating trinitrotoluene, but the measured shock energy approached the critical shock energy for initiating secondary high explosives.

  16. Confinement and dynamics of neutral beam injected fast ions in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Liu, D.; Almagri, F.; Anderson, J. K.; den Hartog, D. J.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Fiksel, G.; Deichuli, P.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Stupishin, N.; Andre, R.; McCune, D.

    2010-11-01

    The new 1MW neutral beam injector (97% H, 3% D) on MST provides a good test-bed for study of fast ions in the RFP. Analysis of the D-D fusion neutron flux decay at beam turn-off reveals that the confinement time of the fast ions is at least 10 ms, ten-fold larger than the thermal conferment times for particles and energy in standard stochastic plasmas. Also, the fast ion confinement increases with magnetic field strength. Dependence of fast ion confinement on plasma parameters, beam energy, and injection direction will be characterized and compared with TRANSP simulations. In addition, an advanced neutral particle analyzer and a prototype of fast ion charge exchange spectroscopy are under construction to measure neutralized fast ions and induced Doppler-shifted Hα light, respectively, thereby resolving fast ion density and energy distribution. Initial measurements of fast-ion dynamics during magnetic reconnection events will be presented.

  17. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  18. Monte Carlo simulations of supercoiled DNAs confined to a plane.

    PubMed Central

    Fujimoto, Bryant S; Schurr, J Michael

    2002-01-01

    Recent advances in atomic force microscopy (AFM) have enabled researchers to obtain images of supercoiled DNAs deposited on mica surfaces in buffered aqueous milieux. Confining a supercoiled DNA to a plane greatly restricts its configurational freedom, and could conceivably alter certain structural properties, such as its twist and writhe. A program that was originally written to perform Monte Carlo simulations of supercoiled DNAs in solution was modified to include a surface potential. This potential flattens the DNAs to simulate the effect of deposition on a surface. We have simulated transfers of a 3760-basepair supercoiled DNA from solution to a surface in both 161 and 10 mM ionic strength. In both cases, the geometric and thermodynamic properties of the supercoiled DNAs on the surface differ significantly from the corresponding quantities in solution. At 161 mM ionic strength, the writhe/twist ratio is 1.20-1.33 times larger for DNAs on the surface than for DNAs in solution and significant differences in the radii of gyration are also observed. Simulated surface structures in 161 mM ionic strength closely resemble those observed by AFM. Simulated surface structures in 10 mM ionic strength are similar to a minority of the structures observed by AFM, but differ from the majority of such structures for unknown reasons. In 161 mM ionic strength, the internal energy (excluding the surface potential) decreases substantially as the DNA is confined to the surface. Evidently, supercoiled DNAs in solution are typically deformed farther from the minimum energy configuration than are the corresponding surface-confined DNAs. Nevertheless, the work (Delta A(int)) done on the internal coordinates, which include uniform rotations at constant configuration, during the transfer is positive and 2.6-fold larger than the decrease in internal energy. The corresponding entropy change is negative, and its contribution to Delta A(int) is positive and exceeds the decrease in internal

  19. The history of research into improved confinement regimes

    NASA Astrophysics Data System (ADS)

    Wagner, F.

    2017-01-01

    Increasing the pressure by additional heating of magnetically confined plasmas had the consequence that turbulent processes became more violent and plasma confinement degraded. Since this experience from the early 1980ies, fusion research was dominated by the search for confinement regimes with improved properties. It was a gratifying experience that toroidally confined plasmas are able to self-organise in such a way that turbulence diminishes, resulting in a confinement with good prospects to reach the objectives of fusion R&D. The understanding of improved confinement regimes revolutionized the understanding of turbulent transport in high-temperature plasmas. In this paper the story of research into improved confinement regimes will be narrated starting with 1980.

  20. B activation enhancement in submicron confined implants in Si

    NASA Astrophysics Data System (ADS)

    Bruno, E.; Mirabella, S.; Impellizzeri, G.; Priolo, F.; Giannazzo, F.; Raineri, V.; Napolitani, E.

    2005-09-01

    We implanted 3keV B ions into a crystalline Si film, grown by molecular-beam epitaxy and masked by SiO2 stripes with opening widths ranging from 3.2μm down to 0.38μm. Thermal anneals were performed at 800°C for several times. By quantitative high-resolution scanning capacitance microscopy, we demonstrated that the electrical reactivation of inactive B after postimplant annealing is obtained at faster rates as the window width decreases. Total electrical activation is gained first in the narrowest window, with times shorter by nearly a factor of 4 compared to the widest one. In addition, since inactive B seems to be caused by B clustering induced by implantation, our results put in evidence a strong effect of implantation confinement also on B clusters dissolution mechanism. These results have a strong impact on the modern silicon-based device engineering.

  1. Confinement-induced resonance in quasi-one-dimensional systems under transversely anisotropic confinement

    NASA Astrophysics Data System (ADS)

    Peng, Shi-Guo; Bohloul, Seyyed S.; Liu, Xia-Ji; Hu, Hui; Drummond, Peter D.

    2010-12-01

    We theoretically investigate the confinement-induced resonance for quasi-one-dimensional quantum systems under transversely anisotropic confinement, using a two-body s-wave-scattering model in the zero-energy collision limit. We predict a single resonance for any transverse anisotropy, whose position shows a slight downshift with increasing anisotropy. We compare our prediction with the recent experimental result by Haller [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.104.153203 104, 153203 (2010)], in which two resonances are observed in the presence of transverse anisotropy. The discrepancy between theory and experiment remains to be resolved.

  2. Statistical Contact Model for Confined Molecules

    NASA Astrophysics Data System (ADS)

    Santamaria, Ruben; de la Paz, Antonio Alvarez; Roskop, Luke; Adamowicz, Ludwik

    2016-08-01

    A theory that describes in a realistic form a system of atoms under the effects of temperature and confinement is presented. The theory departs from a Lagrangian of the Zwanzig type and contains the main ingredients for describing a system of atoms immersed in a heat bath that is also formed by atoms. The equations of motion are derived according to Lagrangian mechanics. The application of statistical mechanics to describe the bulk effects greatly reduces the complexity of the equations. The resultant equations of motion are of the Langevin type with the viscosity and the temperature of the heat reservoir able to influence the trajectories of the particles. The pressure effects are introduced mechanically by using a container with an atomic structure immersed in the heat bath. The relevant variables that determine the equation of state are included in the formulation. The theory is illustrated by the derivation of the equation of state for a system with 76 atoms confined inside of a 180-atom fullerene-like cage that is immersed in fluid forming the heat bath at a temperature of 350 K and with the friction coefficient of 3.0 {ps}^{-1}. The atoms are of the type believed to form the cores of the Uranus and Neptune planets. The dynamic and the static pressures of the confined system are varied in the 3-5 KBar and 2-30 MBar ranges, respectively. The formulation can be equally used to analyze chemical reactions under specific conditions of pressure and temperature, determine the structure of clusters with their corresponding equation of state, the conditions for hydrogen storage, etc. The theory is consistent with the principles of thermodynamics and it is intrinsically ergodic, of general use, and the first of this kind.

  3. Collective colloid diffusion under soft two-dimensional confinement

    NASA Astrophysics Data System (ADS)

    Panzuela, S.; Peláez, Raúl P.; Delgado-Buscalioni, R.

    2017-01-01

    This work presents a numerical and theoretical investigation of the collective dynamics of colloids in an unbounded solution but trapped in a harmonic potential. Under strict two-dimensional confinement (infinitely stiff trap) the collective colloidal diffusion is enhanced and diverges at zero wave number (like k-1), due to the hydrodynamic propagation of the confining force across the layer. The analytic solution for the collective diffusion of colloids under a Gaussian trap of width δ still shows enhanced diffusion for large wavelengths k δ <1 , while a gradual transition to normal diffusion for k δ >1 . At intermediate and short wavelengths, we illustrate to what extent the hydrodynamic enhancement of diffusion is masked by the conservative forces between colloids. At very large wavelengths, the collective diffusion becomes faster than the solvent momentum transport and a transition from Stokesian dynamics to inertial dynamics takes place. Using our inertial coupling method code (resolving fluid inertia), we study this transition by performing simulations at small Schmidt number. Simulations confirm theoretical predictions for the k →0 limit [Phys. Rev. E 90, 062314 (2014), 10.1103/PhysRevE.90.062314] showing negative density-density time correlations. However, at finite k simulations show deviations from the theory.

  4. Collective colloid diffusion under soft two-dimensional confinement.

    PubMed

    Panzuela, S; Peláez, Raúl P; Delgado-Buscalioni, R

    2017-01-01

    This work presents a numerical and theoretical investigation of the collective dynamics of colloids in an unbounded solution but trapped in a harmonic potential. Under strict two-dimensional confinement (infinitely stiff trap) the collective colloidal diffusion is enhanced and diverges at zero wave number (like k^{-1}), due to the hydrodynamic propagation of the confining force across the layer. The analytic solution for the collective diffusion of colloids under a Gaussian trap of width δ still shows enhanced diffusion for large wavelengths kδ<1, while a gradual transition to normal diffusion for kδ>1. At intermediate and short wavelengths, we illustrate to what extent the hydrodynamic enhancement of diffusion is masked by the conservative forces between colloids. At very large wavelengths, the collective diffusion becomes faster than the solvent momentum transport and a transition from Stokesian dynamics to inertial dynamics takes place. Using our inertial coupling method code (resolving fluid inertia), we study this transition by performing simulations at small Schmidt number. Simulations confirm theoretical predictions for the k→0 limit [Phys. Rev. E 90, 062314 (2014)PLEEE81539-375510.1103/PhysRevE.90.062314] showing negative density-density time correlations. However, at finite k simulations show deviations from the theory.

  5. Isolation and confinement - Considerations for colonization

    NASA Technical Reports Server (NTRS)

    Akins, F. R.

    1978-01-01

    This paper discusses three types of isolation (sensory/perceptual, temporal, and social) that could adversely affect mankind in space. The literature dealing with laboratory and field experiments relevant to these areas is summarized and suggestions are given for dealing with these problems within the space colony community. Also, consideration is given to the potential effects of physical confinement and the need for usable space. Finally, a modification of Maslow's hierarchy of needs is proposed as a theoretical framework to understand and investigate mankind's psychological needs in space.

  6. Central cell confinement in MFTF-B

    SciTech Connect

    Jong, R.A.

    1981-05-05

    The point code TANDEM has been used to survey the range of plasma parameters which can be attained in MFTF-B. The code solves for the electron and ion densities and temperatures in the central cell, yin-yang, barrier, and A-cell regions as well as the plasma potential in each region. In these studies, the A-cell sloshing ion beams were fixed while the neutral beams in the yin-yang and central cell, the gas feed in the central cell, and the applied ECRH power ..beta.., central cell ion density and temperature, and the confining potential are discussed.

  7. Confined kinematics of suspended rigid fibres

    NASA Astrophysics Data System (ADS)

    Scheuer, A.; Perez, M.; Abisset-Chavanne, E.; Chinesta, F.; Keunings, R.

    2016-10-01

    We address the extension of Jeffery's model, governing the orientation of rods immersed in a Newtonian fluid, to confined regimes occurring when the thickness of the flow domain is narrower than the rod length. The main modelling ingredients concern: (i) the consideration of the rod interactions with one or both gap walls and their effects on the rod orientation kinematics; (ii) the consideration of non-uniform strain rates at the scale of the rod, requiring higher-order descriptions. Such scenarios are very close to those encountered in real composites forming processes and have never been appropriately addressed from a microstructural point of view.

  8. Summary of progress in inertial confinement fusion

    SciTech Connect

    Younger, S.M.

    1992-12-31

    Progress in inertial confinement fusion (ICF) has been very rapid over the past two years. Significant advances have been made in the production of smooth laser beams, the focusing of light ions beams, and the development of heavy ion accelerators. The availability of advanced target diagnostics on several major drivers has resulted in an extensive database of target performance over a wide range of conditions. Theoretical models of ICF targets are approaching the predictive level with two and even three dimensional calculations becoming routine. Within the next several years information should be available to allow confident extrapolation to ignition on the next generation driver.

  9. Summary of progress in inertial confinement fusion

    SciTech Connect

    Younger, S.M.

    1992-01-01

    Progress in inertial confinement fusion (ICF) has been very rapid over the past two years. Significant advances have been made in the production of smooth laser beams, the focusing of light ions beams, and the development of heavy ion accelerators. The availability of advanced target diagnostics on several major drivers has resulted in an extensive database of target performance over a wide range of conditions. Theoretical models of ICF targets are approaching the predictive level with two and even three dimensional calculations becoming routine. Within the next several years information should be available to allow confident extrapolation to ignition on the next generation driver.

  10. Effective diffusion of confined active Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Dagdug, Leonardo

    2014-11-01

    We find theoretically the effect of confinement and thermal fluctuations, on the diffusivity of a spherical active swimmer moving inside a two-dimensional narrow cavity of general shape. The explicit formulas for the effective diffusion coefficient of a swimmer moving inside two particular cavities are presented. We also compare our analytical results with Brownian Dynamics simulations and we obtain excellent agreement. L.D. thanks Consejo Nacional de Ciencia y Tecnologia (CONACyT) Mexico, for partial support by Grant No. 176452. M. S. thanks CONACyT and Programa de Mejoramiento de Profesorado (PROMEP) for partially funding this work under Grant No. 103.5/13/6732.

  11. Diamond Ablators for Inertial Confinement Fusion

    SciTech Connect

    Biener, J; Mirkarimi, P B; Tringe, J W; Baker, S L; Wang, Y M; Kucheyev, S O; Teslich, N E; Wu, K J; Hamza, A V; Wild, C; Woerner, E; Koidl, P; Bruehne, K; Fecht, H

    2005-06-21

    Diamond has a unique combination of physical properties for the inertial confinement fusion ablator application, such as appropriate optical properties, high atomic density, high yield strength, and high thermal conductivity. Here, we present a feasible concept to fabricate diamond ablator shells. The fabrication of diamond capsules is a multi-step process, which involves diamond chemical vapor deposition on silicon mandrels followed by polishing, microfabrication of holes, and removing of the silicon mandrel by an etch process. We also discuss the pros and cons of coarse-grained optical quality and nanocrystalline chemical vapor deposition diamond films for the ablator application.

  12. Anomalous diffusion in confined turbulent convection.

    PubMed

    Boffetta, G; De Lillo, F; Musacchio, S

    2012-06-01

    Turbulent convection in quasi-one-dimensional geometry is studied by means of high-resolution direct numerical simulations within the framework of Rayleigh-Taylor turbulence. Geometrical confinement has dramatic effects on the dynamics of the turbulent flow, inducing a transition from superdiffusive to subdiffusive evolution of the mixing layer and arresting the growth of kinetic energy. A nonlinear diffusion model is shown to reproduce accurately the above phenomenology. The model is used to predict, without free parameters, the spatiotemporal evolution of the heat flux profile and the dependence of the Nusselt number on the Rayleigh number.

  13. Particle dispersion in confined turbulent swirling flows

    NASA Astrophysics Data System (ADS)

    Chen, C. P.

    1986-06-01

    This paper reports a numerical investigation of confined swirling flows of gas-particle mixtures. A recently developed two-fluid, multiple-scale mixing model is applied to study the influence of particles on the intensity of the reverse flows of the gas phase and the effects of swirl on the particle dispersion in an annular expanding chamber under isothermal condition. The calculations were made for different swirl strength of injection of the annular jet into the mixing chamber. Results agree well qualitatively with experimental information available. It is also found that the calculated flow fields depend heavily on the prescription of the inlet flow conditions.

  14. Particle dispersion in confined turbulent swirling flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1986-01-01

    This paper reports a numerical investigation of confined swirling flows of gas-particle mixtures. A recently developed two-fluid, multiple-scale mixing model is applied to study the influence of particles on the intensity of the reverse flows of the gas phase and the effects of swirl on the particle dispersion in an annular expanding chamber under isothermal condition. The calculations were made for different swirl strength of injection of the annular jet into the mixing chamber. Results agree well qualitatively with experimental information available. It is also found that the calculated flow fields depend heavily on the prescription of the inlet flow conditions.

  15. Confined systems within arbitrary enclosed surfaces

    NASA Astrophysics Data System (ADS)

    Burrows, B. L.; Cohen, M.

    2016-06-01

    A new model of electronic confinement in atoms and molecules is presented. This is based on the electronic flux J which is assumed to vanish on some notional bounding surface of arbitrary shape. J is necessarily calculated using an approximate wave-function, whose parameters are chosen to satisfy the required surface conditions. This model embraces the results of all previous calculations for which the wave-functions or their derivatives vanish on conveniently shaped surfaces, but now extends the theory to more general surfaces. Examples include one-centre hydrogen-like atoms, the valence state of Li and the two centre molecular systems {{{H}}}2+ and {{HeH}}++.

  16. Effects of polydispersity on confined homopolymer melts: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Rorrer, Nicholas A.; Dorgan, John R.

    2014-12-01

    New insight into the molecular scale details of polymer melts under confined conditions is obtained from the first dynamic Monte Carlo study incorporating polydispersity. While confinement effects on polymers have been widely explored, little work exists on the effects of polydispersity. This is surprising given the near universal presence of polydispersity in physical systems. To address this shortcoming, a new variation of on-lattice dynamic Monte Carlo simulation is used to provide an understanding of how polydispersity alters confinement effects on polymer melts. Polymer melts of varying polydispersity are simulated between two hard walls (surface interaction parameter, χs = 0) of variable spacing. As plate spacing decreases, polymer chains adopt conformations in which the end-to-end vector is parallel to the hard walls. However, polydisperse melts with the same length average molecular weight, Nw (which is analogous to the weight average molecular weight, Mw) show reduced orientation effects. Polydispersity provides greater degrees of freedom; that is, there are more configurations for the system to adopt to accommodate confinement without ordering. At plate spacings of four radii of gyration and only modest polydispersity index values (polydispersity index, PDI = 1.42), the order parameters are reduced by 15% compared to the monodisperse case. The same PDI value corresponds to a 10% reduction in the perturbations of the end-to-end vector and Rouse time. Interestingly, length-based migration effects are observed. Longer chains reside away from the walls and the shorter chains are found nearer the walls; at equilibrium there is a molecular weight based fractionation across the gap. Confinement also leads to a "speeding up" of the polymer dynamics. Altered dynamic phenomena include a reduction of the Rouse time for the same average molecular weight and an altered scaling behavior with plate spacing. Reptation times are also reduced and polydispersity smoothes

  17. Using Quantum Confinement to Uniquely Identify Devices

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.

    2015-11-01

    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature.

  18. Hierarchical wrinkling in a confined permeable biogel

    PubMed Central

    Leocmach, Mathieu; Nespoulous, Mathieu; Manneville, Sébastien; Gibaud, Thomas

    2015-01-01

    Confined thin surfaces may wrinkle as a result of the growth of excess material. Elasticity or gravity usually sets the wavelength. We explore new selection mechanisms based on hydrodynamics. First, inspired by yoghurt-making processes, we use caseins (a family of milk proteins) as pH-responsive building blocks and the acidulent glucono-δ-lactone to design a porous biogel film immersed in a confined buoyancy-matched viscous medium. Under specific boundary conditions yet without any external stimulus, the biogel film spontaneously wrinkles in cascade. Second, using a combination of titration, rheology, light microscopy, and confocal microscopy, we demonstrate that, during continuous acidification, the gel first shrinks and then swells, inducing wrinkling. Third, taking into account both Darcy flow through the gel and Poiseuille flow in the surrounding solvent, we develop a model that correctly predicts the wrinkling wavelength. Our results should be universal for acid-induced protein gels because they are based on pH-induced charge stabilization/destabilization and therefore could set a benchmark to gain fundamental insights into wrinkled biological tissues, to texture food, or to design surfaces for optical purposes. PMID:26601296

  19. Polymer escape from a confining potential

    SciTech Connect

    Mökkönen, Harri; Ikonen, Timo; Jónsson, Hannes; Ala-Nissila, Tapio

    2014-02-07

    The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.

  20. Fire Risk Analysis for Armenian NPP Confinement

    SciTech Connect

    Poghosyan, Shahen; Malkhasyan, Albert; Bznuni, Surik; Amirjanyan, Armen

    2006-07-01

    Major fire occurred at Armenian NPP (ANPP) in October 1982 showed that fire-induced initiating events (IE) can have dominant contribution in overall risk of core damage. Probabilistic Safety Assessment study for fire-induced initiating events for ANPP was initiated in 2002. Analysis was performed for compartments fires in which could result in failure of components which are necessary for reactor cold shutdown. Analysis shows that main risk from fire at ANPP is conditioned by fire in cable tunnels 61-64. Meanwhile fire in confinement compartments don't have significant contribution to overall risk of core damage. The exception is so called 'confinement valves compartment' (room no.A-013/2) fire (more than 7.5% of CDF) in which fire could result in the loss of coolant accident with unavailability of primary makeup system, which directly leads to core damage. Detailed analysis of this problem that is common for typical WWER-440/230 reactors with no hermetic MCPs and recommendations for solution are presented in this paper. (authors)

  1. Instability and Fracture of Confined Elastic Gels

    NASA Astrophysics Data System (ADS)

    Webber, Rebecca; Shull, Kenneth; Roos, Alexandra; Creton, Costantino

    2002-03-01

    During adhesive failure in confined elastic systems, crack propagation occurs in an unstable manner. The arising instabilities can be classified as either bulk or interfacial. Both types of instabilities have been observed in a variety of systems. However, a quantitative understanding of the phenomena has yet to be achieved. In this work, both interfacial and bulk instabilities, as well as the transition between these two categories, has been investigated using a thermoreversible triblock copolymer gel. Experiments to study the failure modes of confined elastic layers were performed using an axisymmetric adhesion test. In these tests, a rigid glass punch was brought into contact with a thin gel layer. Load and displacement data were collected as the punch was retracted from the sample surface. Images of the interface between the probe and sample, displaying the deformation morphology, were also collected during testing. These tests allowed exploration of interfacial phenomena. For some experiments, the punch was further bonded to the sample by heating, resulting in a change in the mode of deformation experienced by the thin gel layer.

  2. Thermodynamic properties of bulk and confined water

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene

    2014-11-01

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (TL ≃ 225 K). The second, T* ˜ 315 ± 5 K, is a special locus of the isothermal compressibility KT(T, P) and the thermal expansion coefficient αP(T, P) in the P-T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (TL) and the onset of the unfolding process (T*).

  3. Thermodynamic properties of bulk and confined water

    SciTech Connect

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ≃ 225 K). The second, T{sup *} ∼ 315 ± 5 K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient α{sub P}(T, P) in the P–T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  4. Regimes of DNA confined in a nanochannel

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Doyle, Patrick

    2014-03-01

    Scaling regimes for polymers confined to tubular channels are well established when the channel cross-sectional dimension is either very small (Odjik regime) or large (classic de Gennes regime) relative to the polymer Kuhn length. In the literature, there is no clear consensus regarding the intermediate region and if subregimes even exist to connect these two classic bounding regimes. The confluence of emerging single DNA mapping technologies and a resurged interest in the fundamental properties of confined polymers has led to extensive research in this area using DNA as a model system. Due to the DNA molecule's properties and limitations of nanofabrication, most experiments are performed in this intermediate regime with channel dimensions of a few Kuhn lengths. Here we use simulations and theory to reconcile conflicting theories and show that there are indeed extended de Gennes, partial alignment and hairpin regimes located between the two classic regimes. Simulations results for both chain extension and free energy support the existence of these regimes. This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's research program in BioSystems and Micromechanics, the National Science Foundation (CBET-1335938).

  5. Using Quantum Confinement to Uniquely Identify Devices

    PubMed Central

    Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.

    2015-01-01

    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature. PMID:26553435

  6. Quantum chromodynamics near the confinement limit

    SciTech Connect

    Quigg, C.

    1985-09-01

    These nine lectures deal at an elementary level with the strong interaction between quarks and its implications for the structure of hadrons. Quarkonium systems are studied as a means for measuring the interquark interaction. This is presumably (part of) the answer a solution to QCD must yield, if it is indeed the correct theory of the strong interactions. Some elements of QCD are reviewed, and metaphors for QCD as a confining theory are introduced. The 1/N expansion is summarized as a way of guessing the consequences of QCD for hadron physics. Lattice gauge theory is developed as a means for going beyond perturbation theory in the solution of QCD. The correspondence between statistical mechanics, quantum mechanics, and field theory is made, and simple spin systems are formulated on the lattice. The lattice analog of local gauge invariance is developed, and analytic methods for solving lattice gauge theory are considered. The strong-coupling expansion indicates the existence of a confining phase, and the renormalization group provides a means for recovering the consequences of continuum field theory. Finally, Monte Carlo simulations of lattice theories give evidence for the phase structure of gauge theories, yield an estimate for the string tension characterizing the interquark force, and provide an approximate description of the quarkonium potential in encouraging good agreement with what is known from experiment.

  7. Nematode locomotion in unconfined and confined fluids

    NASA Astrophysics Data System (ADS)

    Bilbao, Alejandro; Wajnryb, Eligiusz; Vanapalli, Siva A.; Blawzdziewicz, Jerzy

    2013-08-01

    The millimeter-long soil-dwelling nematode Caenorhabditis elegans propels itself by producing undulations that propagate along its body and turns by assuming highly curved shapes. According to our recent study [V. Padmanabhan et al., PLoS ONE 7, e40121 (2012), 10.1371/journal.pone.0040121] all these postures can be accurately described by a piecewise-harmonic-curvature model. We combine this curvature-based description with highly accurate hydrodynamic bead models to evaluate the normalized velocity and turning angles for a worm swimming in an unconfined fluid and in a parallel-wall cell. We find that the worm moves twice as fast and navigates more effectively under a strong confinement, due to the large transverse-to-longitudinal resistance-coefficient ratio resulting from the wall-mediated far-field hydrodynamic coupling between body segments. We also note that the optimal swimming gait is similar to the gait observed for nematodes swimming in high-viscosity fluids. Our bead models allow us to determine the effects of confinement and finite thickness of the body of the nematode on its locomotion. These effects are not accounted for by the classical resistive-force and slender-body theories.

  8. Block copolymer morphologies confined by square-shaped particle: Hard and soft confinement

    NASA Astrophysics Data System (ADS)

    Zhang, Qiyi; Yang, Wenyan; Hu, Kaiyan

    2016-11-01

    The self-assembly of diblock copolymers confined around one square-shaped particle is studied systematically within two-dimensional self-consistent field theory (SCFT). In this model, we assume that the thin block copolymer film is confined in the vicinity of a square-shaped particle by a homopolymer melt, which is equivalent to the poor solvents. Multiple sequences of square-shaped particle-induced copolymer aggregates with different shapes and self-assembled internal morphologies are predicted as functions of the particle size, the structural portion of the copolymer, and the volume fraction of the copolymer. A rich variety of aggregates are found with complex internal self-assembled morphologies including complex structures of the vesicle, with one or several inverted micelle surrounded by the outer monolayer with the particle confined in the core. These results demonstrate that the assemblies of diblock copolymers formed around the square-shaped particle in poor solvents are of immediate interest to the assembly of copolymer and the morphology of biomembrane in the confined environment, as well as to the transitions of vesicles to micelles. Project supported by the National Natural Science Foundation of China (Grant No. 20804060) and the Research Foundation of Chongqing University of Science and Technology, China (Grant No. CK2013B16).

  9. Study of intermittent small-scale turbulence in Wendelstein 7-AS plasmas during controlled confinement transitions

    SciTech Connect

    Basse, N.P.; Zoletnik, S.; Michelsen, P.K.

    2005-01-01

    Confinement transitions in the Wendelstein 7-AS stellarator [H. Renner et al., Plasma Phys. Controlled Fusion 31, 1579 (1989)] can be induced by varying either the internal plasma current or the external magnetic field. In this paper we report on experiments where closely matched confinement states (good and bad) were constructed using the latter method. Analysis using the former scheme has been reported upon previously [S. Zoletnik et al., Plasma Phys. Controlled Fusion 44, 1581 (2002)]. The electron temperature, along with the major spectral characteristics of magnetic and small-scale electron density fluctuations, changes dramatically at the transition from good to bad confinement. The fluctuation power is intermittent, and core bursts traveling in the electron diamagnetic drift (DD) direction are correlated between the bottom and top of the plasma, especially during degraded confinement. A corresponding top-bottom correlation for the edge ion DD direction turbulence feature was not found. Strong correlations are observed both between the two density fluctuation signals and between magnetic and density fluctuations in bad compared to good confinement. The correlation time of the bursts is of order 100 {mu}s, similar to the lifetime observed during edge localized modes.

  10. Study of intermittent small-scale turbulence in Wendelstein 7-AS plasmas during controlled confinement transitions

    NASA Astrophysics Data System (ADS)

    Basse, N. P.; Zoletnik, S.; Michelsen, P. K.; W7-As Team

    2005-01-01

    Confinement transitions in the Wendelstein 7-AS stellarator [H. Renner et al., Plasma Phys. Controlled Fusion 31, 1579 (1989)] can be induced by varying either the internal plasma current or the external magnetic field. In this paper we report on experiments where closely matched confinement states (good and bad) were constructed using the latter method. Analysis using the former scheme has been reported upon previously [S. Zoletnik et al., Plasma Phys. Controlled Fusion 44, 1581 (2002)]. The electron temperature, along with the major spectral characteristics of magnetic and small-scale electron density fluctuations, changes dramatically at the transition from good to bad confinement. The fluctuation power is intermittent, and core bursts traveling in the electron diamagnetic drift (DD) direction are correlated between the bottom and top of the plasma, especially during degraded confinement. A corresponding top-bottom correlation for the edge ion DD direction turbulence feature was not found. Strong correlations are observed both between the two density fluctuation signals and between magnetic and density fluctuations in bad compared to good confinement. The correlation time of the bursts is of order 100μs, similar to the lifetime observed during edge localized modes.

  11. Single particle dynamics of water confined in a hydrophobically modified MCM-41-S nanoporous matrix

    NASA Astrophysics Data System (ADS)

    Faraone, Antonio; Liu, Kao-Hsiang; Mou, Chung-Yuan; Zhang, Yang; Chen, Sow-Hsin

    2009-04-01

    The single particle dynamics of water confined in a hydrophobically modified MCM-41-S sample has been studied using three high resolution quasielastic neutron scattering spectrometers in the temperature range from 300 to 210 K. A careful modeling of the dynamics allowed us to obtain good agreement among the results obtained with the three instruments, which have very different energy resolutions. The picture arising from the data is that, because of the heterogenous environment experienced by the water molecules, the dynamics show a broad distribution of relaxation times. However, the Fickian diffusive behavior is retained. In the investigated temperature range we found no evidence of the dynamic crossover, from a non-Arrhenius to an Arrhenius behavior, which was detected for water confined in hydrophilic MCM-41-S. This finding is in agreement with what was reported by Chu et al. [Phys. Rev. E 76, 021505 (2007)] for water confined in other hydrophobic confining media that the dynamic crossover takes place at a much lower temperature. The results reported in the paper help clarify the role that the chemical interaction between the water molecules and the walls of the confining host plays in determining the characteristics of the water dynamics, as compared to purely geometric constraints such as the size and shape of the pores.

  12. Particle Confinement Properties of Lower Hybrid Current Drive Plasma on the HL-1 Tokamak

    NASA Astrophysics Data System (ADS)

    Duan, Xuru; Yuan, Chengjie; Qian, Shangjie; Ding, Xuantong; Yuan, Bin; Yang, Guang; Diao, Guangyue

    1994-03-01

    The particle confinement property of LHCD (lower hybrid current drive) plasma on the HL-1 tokamak is mainly affected by the line-averaged density of electrons (ne). With ne < 2.0 × 1013 cm-3, the particle confinement time (τp) is improved with the suppression of Hα(Dα) fluctuation at the edge, and tends to increase with the power PLH. The peak of τp appears near the critical density (1.0×1013 cm-3). These results are not influenced by the current drive directions.

  13. Generalized Bogoliubov transformation for confined fields: Applications for the Casimir effect

    SciTech Connect

    Silva, J.C. da; Khanna, F.C.; Matos Neto, A.; Santana, A.E.

    2002-11-01

    The Bogoliubov transformation in thermofield dynamics, an operator formalism for the finite-temperature quantum field theory, is generalized to describe a field in arbitrary confined regions of space and time. Starting with the scalar field, the approach is extended to the electromagnetic field and the energy-momentum tensor is written via the Bogoliubov transformation. In this context, the Casimir effect is calculated for zero and nonzero temperature, and therefore it can be considered as a vacuum condensation effect of the electromagnetic field. This aspect opens an interesting perspective for using this procedure as an effective scheme for calculations in the studies of confined fields, including interacting fields.

  14. Stark-assisted quantum confinement of wavepackets. A coupling of nonadiabatic interaction and CW-laser

    SciTech Connect

    Arasaki, Yasuki; Mizuno, Yuta; Takatsuka, Kazuo; Scheit, Simona

    2016-01-28

    When a nonadiabatic system that has an ionic state (large dipole moment) and a covalent state (small dipole moment) is located in a strong laser field, the crossing point of the two potential energy curves is forced to oscillate due to the oscillating laser field and to meet wavepackets moving on the potential curves many times. This leads to additional transitions between the two states, and under favorable conditions, the wavepacket may be confined in a spatial region rich in nonadiabatic interaction. In this paper, taking the LiF molecule system in a continuous-wave driving field as a prototypical example, the dynamical origins of the wavepacket confinement are theoretically investigated.

  15. Lateral carrier confinement in InGaN quantum-well nanorods

    SciTech Connect

    Shi, Chentian; Zhang, Chunfeng; Wang, Xiaoyong; Xiao, Min

    2015-07-15

    We review our studies on lateral carrier diffusion in micro-fabricated samples of InGaN nanorods and their parent quantum wells. The carrier diffusion is observed to be strongly confined in nanorods, as manifested by the reduction in the delayed-rise component of time-resolved photoluminescence traces. We further argue that the confinement of carrier diffusion can be applied to suppress the efficiency droop related to defect state recombination and to assist in the energy transfer between InGaN nanorods and nanocrystal phosphors for color conversion.

  16. Transverse ion loss in the end mirror systems of an ambipolar confinement system (tandem mirror)

    SciTech Connect

    Pekker, L.S.

    1983-03-01

    This paper analyzes the transverse loss of the ''central'' ions confined by the end mirror systems of a tendem mirror system. This loss results from the pronounced elongation of the drift trajectories in the transverse direction and can substantially shorten the plasma confinement time in the system, tau/sub c/. A classification of the drift surfaces of the trapped ions is offered. The current of these ions drawn by the limiter is calculated. The effect of the ''inverse-loss-cone'' instability and of the radial electric field on tau/sub c/ is also discussed.

  17. Enhanced confinement regimes and control technology in the DIII-D tokamak

    SciTech Connect

    Lohr, J.; Burrell, K.H.; Coda, S.

    1993-07-01

    Advanced tokamak performance has been demonstrated in the DIII-D tokamak in a series of experiments which brought together developments in technology and improved understanding of the physical principles underlying tokamak operation. The achievement of greatly improved confinement coupled with development of new systems for real time plasma control have permitted investigation of the heretofore hidden or poorly controlled variables which together determine global confinement. These experiments, which included work in transport and control of the plasma boundary, point toward development of operationally and economically attractive reactors based on the tokamak. Some of these experiments are described.

  18. Determination of broken KAM surfaces for particle orbits in toroidal confinement systems

    SciTech Connect

    White, R. B.

    2015-10-05

    Here, the destruction of Kolmogorov–Arnold–Moser surfaces in a Hamiltonian system is an important topic in nonlinear dynamics, and in particular in the theory of particle orbits in toroidal magnetic confinement systems. Analytic models for transport due to mode-particle resonances are not sufficiently correct to give the effect of these resonances on transport. In this paper we compare three different methods for the detection of the loss of stability of orbits in the dynamics of charged particles in a toroidal magnetic confinement device in the presence of time dependent magnetic perturbations.

  19. Effect of internal magnetic structure on energetic ion confinement in tokamaks

    SciTech Connect

    Roberts, D.W.; Kaita, R.; Levinton, F.; Asakura, N.; Bell, R.; Chance, M.; Duperrex, P.; Gammel, G.; Hatcher, R.; Holland, A.; Kaye, S.; Kessel, C.; Kugel, H.; LeBlanc, B.; Manickam, J.; Okabayashi, M.; Paul, S.; Pomphrey, N.; Powell, E.; Sauthoff, N.; Sesnic, S.; Takahashi, H.; White, R. )

    1993-08-16

    For the tokamak magnetic confinement concept, theory has predicted a distinct relationship between the plasma shape, the internal magnetic structure, and the presence or absence of fast ion losses in the presence of plasma instabilities. We have, for the first time, carried out measurements of the magnetic safety factor profile, [ital q]([ital r]), in plasmas unstable to a specific instability, the so-called fishbone'' mode. The experimental equilibria reconstructed from these data have been used to demonstrate that when the plasma is unstable to fishbones, the fast ion confinement properties depend strongly on the radius of the magnetic surface where [ital q]([ital r])=1.

  20. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y. H.

    1977-01-01

    Digitally implemented spectral analysis techniques were used to investigate the frequency-dependent fluctuation-induced particle transport across a toroidal magnetic field. When the electric field pointed radially inward, the transport was inward and a significant enhancement of the plasma density and confinement time resulted.

  1. Inertial Confinement Fusion quarterly report, April--June 1995. Volume 5, No. 3

    SciTech Connect

    1995-12-31

    The ICF Quarterly Reports is published four times each fiscal year by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. The journal reports selected current research within the ICF Program. Major areas of investigation presented here include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology.

  2. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    DOEpatents

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  3. The dependence of Ammonium-Nitrate Fuel-Oil (ANFO) detonation on confinement

    DOE PAGES

    Jackson, Scott I.

    2016-11-17

    As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less

  4. The dependence of Ammonium-Nitrate Fuel-Oil (ANFO) detonation on confinement

    SciTech Connect

    Jackson, Scott I.

    2016-11-17

    As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as a function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.

  5. Initial confinement studies of ohmically heated plasmas in the Tokamak Fusion Test Reactor

    SciTech Connect

    Efthimion, P.C.; Bell, M.; Blanchard, W.R.; Bretz, N.; Cecchi, J.L.; Coonrod, J.; Davis, S.; Dylla, H.F.; Fonck, R.; Furth, H.P.

    1984-06-01

    Initial operation of the Tokamak Fusion Test Reactor (TFTR) has concentrated upon confinement studies of ohmically heated hydrogen and deuterium plasmas. Total energy confinement times (tau/sub E/) are 0.1 to 0.2 s for a line-average density range (anti n/sub e/) of 1 to 2.5 x 10/sup 19/ m/sup -3/ with electron temperatures of T/sub e/(o) approx. 1.2 to 2.2 keV, ion temperatures of T/sub i/(o) approx. 0.9 to 1.5 keV, and Z/sub eff/ approx. 3. A comparison of PLT, PDX, and TFTR plasma confinement supports a dimension-cubed scaling law.

  6. Confinement studies of reversed field pinch plasma on TPE-1RM20

    SciTech Connect

    Yagi, Yasuyuki; Hirano, Yoichi; Maejima, Yoshiki; Shimada, Toshio; Hirota, Isao

    1995-04-01

    Confinement properties of a reversed field pinch (RFP), TPE-1RM20, are intensively presented. Plasma current, I{sub p}, dependencies of confinement properties are particularly shown in comparison with the forerunner machine, TPE-1RM15. The results without any active density controls are presented in this paper. It is shown that both machines have almost the same, relatively high, I/N values (<= 12 x 10{sup -14} Am) and the poloidal beta, {Beta}{sub p} (= 0.1) and they do not change very much with I{sub p}, where N is the column density. The energy confinement time, {tau}{sub E}, linearly increases with I{sub p} and the behavior of the resistive part of the loop voltage has an important role to the I{sub p} dependence of {tau}{sub E}. 8 refs., 3 figs.

  7. Quantifying Fusion Born Ion Populations in Magnetically Confined Plasmas using Ion Cyclotron Emission

    DOE PAGES

    Carbajal, L.; Warwick Univ., Coventry; Dendy, R. O.; ...

    2017-03-07

    Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P ICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n /n i , of fusion-born alpha-particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a longstanding question in the physics of fusion alpha particle confinement and stability in MCF plasmas. It confirms the MCI as the likely emissionmore » mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.« less

  8. Self-Induced Oscillation for Electron-Hole Pair Confined in Quantum Dot

    SciTech Connect

    Tagawa, Tomoki; Tsubaki, Atsushi; Ishizuki, Masamu; Takeda, Kyozaburo

    2011-12-23

    We study the time-dependent (TD) phenomena of the electron-hole or electron-electron pair confined in the square quantum dot (SQD) system by computationally solving TD Schroedinger equation under the unrestricted Hartree-Fock (UHF) approach. A typical vacillation is found both in the electron and hole when the charged pair is strongly confined in the SQD while the charged particles have initially the same orbital symmetry. The FFT analysis elucidates that the transition matrix element due to the coulomb interaction involves the eigen frequency {omega} being equal to the excitation energy when the resonative vacillation appears. Thus, Coulomb potential has a potential to cause the self-induced ''Rabi'' oscillation when the charged-particle pair is confined only in the QD.

  9. Analysis of reflected blast wave pressure profiles in a confined room

    NASA Astrophysics Data System (ADS)

    Sauvan, P. E.; Sochet, I.; Trélat, S.

    2012-05-01

    To understand the blast effects of confined explosions, it is necessary to study the characteristic parameters of the blast wave in terms of overpressure, impulse and arrival time. In a previous study, experiments were performed using two different scales of a pyrotechnic workshop. The main purpose of these experiments was to compare the TNT equivalent for solid and gaseous explosives in terms of mass to define a TNT equivalent in a reflection field and to validate the similitude between real and small scales. To study the interactions and propagations of the reflected shock waves, the present study was conducted by progressively building a confined volume around the charge. In this way, the influence of each wall and the origins of the reflected shock waves can be determined. The purpose of this paper is to report the blast wave interactions that resulted from the detonation of a stoichiometric propane-oxygen mixture in a confined room.

  10. Flow-induced polymer translocation through a nanopore from a confining nanotube

    NASA Astrophysics Data System (ADS)

    Ding, Mingming; Chen, Qiaoyue; Duan, Xiaozheng; Shi, Tongfei

    2016-05-01

    We study the flow-induced polymer translocation through a nanopore from a confining nanotube, using a hybrid simulation method that couples point particles into a fluctuating lattice-Boltzmann fluid. Our simulation illustrates that the critical velocity flux of the polymer linearly decreases with the decrease in the size of the confining nanotube, which corresponds well with our theoretical analysis based on the blob model of the polymer translocation. Moreover, by decreasing the size of the confining nanotube, we find a significantly favorable capture of the polymer near its ends, as well as a longer translocation time. Our results provide the computational and theoretical support for the development of nanotechnologies based on the ultrafiltration and the single-molecule sequencing.

  11. High-Performance of Gas Hydrates in Confined Nanospace for Reversible CH4 /CO2 Storage.

    PubMed

    Casco, Mirian E; Jordá, José L; Rey, Fernando; Fauth, François; Martinez-Escandell, Manuel; Rodríguez-Reinoso, Francisco; Ramos-Fernández, Enrique V; Silvestre-Albero, Joaquín

    2016-07-11

    The molecular exchange of CH4 for CO2 in gas hydrates grown in confined nanospace has been evaluated for the first time using activated carbons as a host structure. The nano-confinement effects taking place inside the carbon cavities and the exceptional physicochemical properties of the carbon structure allows us to accelerate the formation and decomposition process of the gas hydrates from the conventional timescale of hours/days in artificial bulk systems to minutes in confined nanospace. The CH4 /CO2 exchange process is fully reversible with high efficiency at practical temperature and pressure conditions. Furthermore, these activated carbons can be envisaged as promising materials for long-distance natural gas and CO2 transportation because of the combination of a high storage capacity, a high reversibility, and most important, with extremely fast kinetics for gas hydrate formation and release.

  12. Exercise as Countermeasure for Decrements of Performance and Mood During Long-Term Confinement

    NASA Astrophysics Data System (ADS)

    Schneider, Stefan; Piacentini, Maria F.; Meeusen, Romain; Brummer, Vera; Struder, Heiko K.

    2008-06-01

    In order to prepare for crewed exploratory missions to Moon and Mars, currently ESA is participating in two isolation studies, MARS 500 and on the antarctis station CONCORDIA. The aim of the present study is to identify exercise as a countermeasure to confinement addicted changes in mood. It is planned (1) to look at influences of exercise on the serotonergic system, which is known to have mood regulating effects and (2) to record changes in brain cortical activity due to exercise. Mood and performance tests will be carried out several times during the confinement. We hypothesize that impairments in mood due to the isolated and confined environment together with a lack of physical exercise lead to decreases in mental and perceptual motor performance whereas physical exercise linked with an activation of the serotonergic system will improve mood and therefore performance irrespectively of the environmental restrictions.

  13. A GASFLOW analysis of a steam explosion accident in a typical light-water reactor confinement building

    SciTech Connect

    Travis, J.R.; Wilson, T.L.; Spore, J.W.; Lam, K.L.; Rao, D.V.

    1994-09-01

    Steam over-pressurization resulting from ex-vessel steam explosion (fuel-coolant interaction) may pose a serious challenge to the integrity of a typical light-water reactor confinement building. If the steam generation rate exceeds the removal capacity of the Airborne Activity Confinement System, confinement over pressurization occurs. Thus, there is a large potential for an uncontrolled and unfiltered release of fission products from the confinement atmosphere to the environment at the time of the steam explosion. The GASFLOW computer code was used to analyze the effects of a hypothetical steam explosion and the transport of steam and hydrogen throughout a typical light-water reactor confinement building. The effects of rapid pressurization and the resulting forces on the internal structures and the heat exchanger service bay hatch covers were calculated. Pressurization of the ventilation system and the potential damage to the ventilation fans and high-efficiency particulate air filters were assessed. Because of buoyancy forces and the calculated confinement velocity field, the hydrogen diffuses and mixes in the confinement atmosphere but tends to be transported to its upper region.

  14. Sub-diffusion and population dynamics of water confined in soft environments

    NASA Astrophysics Data System (ADS)

    Hanot, Samuel; Lyonnard, Sandrine; Mossa, Stefano

    2016-02-01

    We have studied by using molecular dynamics computer simulations the dynamics of water confined in ionic surfactant phases, ranging from well ordered lamellar structures to micelles at low and high water loading, respectively. We have analysed in depth the main dynamical features in terms of mean-squared displacements and intermediate scattering functions, and found clear evidence of sub-diffusive behaviour. We have identified water molecules lying at the charged interface with the hydrophobic confining matrix as the main factor responsible for this unusual feature, and given a comprehensive picture of dynamics based on a very precise analysis of lifetimes at the interface. We conclude by providing, for the first time to our knowledge, a unique framework for rationalizing the existence of important dynamical heterogeneities in fluids adsorbed in soft confining environments.We have studied by using molecular dynamics computer simulations the dynamics of water confined in ionic surfactant phases, ranging from well ordered lamellar structures to micelles at low and high water loading, respectively. We have analysed in depth the main dynamical features in terms of mean-squared displacements and intermediate scattering functions, and found clear evidence of sub-diffusive behaviour. We have identified water molecules lying at the charged interface with the hydrophobic confining matrix as the main factor responsible for this unusual feature, and given a comprehensive picture of dynamics based on a very precise analysis of lifetimes at the interface. We conclude by providing, for the first time to our knowledge, a unique framework for rationalizing the existence of important dynamical heterogeneities in fluids adsorbed in soft confining environments. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR05853H

  15. Neutron Assay System for Confinement Vessel Disposition

    SciTech Connect

    Frame, Katherine C; Bourne, Mark M; Crooks, William J; Evans, Louise; Mayo, Douglas R; Miko, David K; Salazar, William R; Stange, Sy; Valdez, Jose I; Vigil, Georgiana M

    2012-07-13

    Waste will be removed from confinement vessels remaining from 1970s-era experiments. Los Alamos has 9+ spherical confinement vessels remaining from experiments. Each vessel contains {approx} 500 lbs of radioactive debris such as actinide metals and oxides, metals, powdered silica, graphite, and wires and hardware. In order to dispose of the vessels, debris and contamination must be removed. Neutron assay system was designed to assay vessels before and after cleanout. System requirements are: (1) Modular and moveable; (2) Capable of detecting {approx}100g {sup 239}Pu equivalent in a 2-inch thick steel sphere with 6 foot diameter; and (3) Capable of safeguards-quality assays. Initial design parameters arethe use of 4-atm {sup 3}He tubes with length of 6 feet, and {sup 3}He tubes embedded in polyethelene for moderation. This paper describes the calibration of the Confinement Vessel Assay System (CVAS) and quantification of its uncertainties. Assay uncertainty depends on five factors: (1) Statistical uncertainty in the assay measurement; (2) Statistical uncertainty in the background measurement; (3) Statistical uncertainty in the isotopics determination - This should be much smaller than the other uncertainties; (4) Systematic uncertainty due to position bias; and (5) Systematic uncertainty due to fluctuations in cosmic ray spallation. This one can be virtually eliminated by performing the background measurement with an empty vessel - but that may not be possible. We used modeling and experiments to quantify the systematic uncertainties. The calibration assumes a uniform distribution of material, but reality will be different. MCNPX modeling was used to quantify the positional bias. The model was benchmarked to build confidence in its results. Material at top of vessel is 44% greater than amount assayed, according to singles. Material near 19-tube detector is 38% less than amount assayed, according to singles. Cosmic ray spallation contributes significantly to the

  16. Diffusion of micrometer-sized soft particles in confinement

    NASA Astrophysics Data System (ADS)

    Jordan, Benjamin; Aptowicz, Kevin

    We investigate the diffusion of micrometer sized poly(N-isopropylacrylamide) (PNIPAM) gel particles in confinement. The influence of confinement on the transport of small particles is becoming increasingly important for microfluidics and bio-fluidics. Analytical solutions to this problem are limited to very unique geometries or gross approximations. Computational methods have provided more insight into the problem as well as experimental investigations. However, most research has focused on the hard-sphere problem. In this work, we will explore the diffusion of soft particles in confinement. The dynamics of the particles confined between two parallel walls is captured with video-microscopy. In addition, we use a recently developed technique to measurement confinement of particles in-situ with a precision of 1%. This poster will present some preliminary results of how confinement affects the diffusion of these soft particles. We acknowledge support from Grant DMR-1206231.

  17. Confining individual DNA molecules in an axisymmetric entropy gradient

    NASA Astrophysics Data System (ADS)

    Peters, Robert D.; Dalnoki-Veress, Kari

    2010-03-01

    Many asymmetric and discontinuous confining environments have been used to study the properties of confined DNA. We have developed a unique method for studying DNA in micropipettes, resulting in a confining environment that is axisymmetric with a continuously changing entropy gradient. An applied electric field forces the chain into sub-micron confinement and fluorescence microscopy is used to track the effect of confinement on the entropy of individual DNA chains. Releasing the electric field, we probe the dynamics of the DNA chain in a continuously changing confinement, yielding a comprehensive study of the entropic force. This technique provides a novel method for studying the effect of polymer chain architecture on entropy. These architectures include knots in polymer chains, cyclic chains, or the presence of histones amongst DNA molecules.

  18. Development of Compton radiography of inertial confinement fusion implosions

    SciTech Connect

    Tommasini, R.; Hatchett, S. P.; Hey, D. S.; Iglesias, C.; Izumi, N.; Koch, J. A.; Landen, O. L.; MacKinnon, A. J.; Sorce, C.; Delettrez, J. A.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2011-05-15

    An important diagnostic tool for inertial confinement fusion will be time-resolved radiographic imaging of the dense cold fuel surrounding the hot spot. The measurement technique is based on point-projection radiography at photon energies from 60 to 200 keV where the Compton effect is the dominant contributor to the opacity of the fuel or pusher. We have successfully applied this novel Compton radiography technique to the study of the final compression of directly driven plastic capsules at the OMEGA facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The radiographs have a spatial and temporal resolution of {approx}10 {mu}m and {approx}10 ps, respectively. A statistical accuracy of {approx}0.5% in transmission per resolution element is achieved, allowing localized measurements of areal mass densities to 7% accuracy. The experimental results show 3D nonuniformities and lower than 1D expected areal densities attributed to drive asymmetries and hydroinstabilities.

  19. Nonvolatile semiconductor memory having three dimension charge confinement

    DOEpatents

    Dawson, L. Ralph; Osbourn, Gordon C.; Peercy, Paul S.; Weaver, Harry T.; Zipperian, Thomas E.

    1991-01-01

    A layered semiconductor device with a nonvolatile three dimensional memory comprises a storage channel which stores charge carriers. Charge carriers flow laterally through the storage channel from a source to a drain. Isolation material, either a Schottky barrier or a heterojunction, located in a trench of an upper layer controllably retains the charge within the a storage portion determined by the confining means. The charge is retained for a time determined by the isolation materials' nonvolatile characteristics or until a change of voltage on the isolation material and the source and drain permit a read operation. Flow of charge through an underlying sense channel is affected by the presence of charge within the storage channel, thus the presences of charge in the memory can be easily detected.

  20. KULL: LLNL's ASCI Inertial Confinement Fusion Simulation Code

    SciTech Connect

    Rathkopf, J. A.; Miller, D. S.; Owen, J. M.; Zike, M. R.; Eltgroth, P. G.; Madsen, N. K.; McCandless, K. P.; Nowak, P. F.; Nemanic, M. K.; Gentile, N. A.; Stuart, L. M.; Keen, N. D.; Palmer, T. S.

    2000-01-10

    KULL is a three dimensional, time dependent radiation hydrodynamics simulation code under development at Lawrence Livermore National Laboratory. A part of the U.S. Department of Energy's Accelerated Strategic Computing Initiative (ASCI), KULL's purpose is to simulate the physical processes in Inertial Confinement Fusion (ICF) targets. The National Ignition Facility, where ICF experiments will be conducted, and ASCI are part of the experimental and computational components of DOE's Stockpile Stewardship Program. This paper provides an overview of ASCI and describes KULL, its hydrodynamic simulation capability and its three methods of simulating radiative transfer. Particular emphasis is given to the parallelization techniques essential to obtain the performance required of the Stockpile Stewardship Program and to exploit the massively parallel processor machines that ASCI is procuring.

  1. Effects of confinement and crowding on folding of model proteins.

    PubMed

    Wojciechowski, M; Cieplak, Marek

    2008-12-01

    We perform molecular dynamics simulations for a simple coarse-grained model of crambin placed inside of a softly repulsive sphere of radius R. The confinement makes folding at the optimal temperature slower and affects the folding scenarios, but both effects are not dramatic. The influence of crowding on folding are studied by placing several identical proteins within the sphere, denaturing them, and then by monitoring refolding. If the interactions between the proteins are dominated by the excluded volume effects, the net folding times are essentially like for a single protein. An introduction of inter-proteinic attractive contacts hinders folding when the strength of the attraction exceeds about a half of the value of the strength of the single protein contacts. The bigger the strength of the attraction, the more likely is the occurrence of aggregation and misfolding.

  2. Antiproton powered propulsion with magnetically confined plasma engines

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1989-01-01

    The reaction of the matter-antimatter annihilation, with its specific energy being over 250 times the specific energy released in nuclear fusion, is considered as an energy source for spacecraft propulsion. A concept of a magnetically confined pulsed plasma engine is described. In this concept, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas; the resulting charge annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. Numerical simulations were developed to calculate the annihilation rate of antiprotons in hydrogen and to follow the resulting ion, muon, and electron/positron number density evolutions.

  3. Antiproton powered propulsion with magnetically confined plasma engines

    SciTech Connect

    Lapointe, M.R.

    1989-01-01

    The reaction of the matter-antimatter annihilation, with its specific energy being over 250 times the specific energy released in nuclear fusion, is considered as an energy source for spacecraft propulsion. A concept of a magnetically confined pulsed plasma engine is described. In this concept, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas; the resulting charge annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. Numerical simulations were developed to calculate the annihilation rate of antiprotons in hydrogen and to follow the resulting ion, muon, and electron/positron number density evolutions. 22 refs.

  4. Madness and crime: Zefinha, the longest confined woman in Brazil.

    PubMed

    Diniz, Debora; Brito, Luciana

    2016-01-01

    Living in a forensic hospital for the last 38 years, Josefa da Silva is the longest female inhabitant surviving the penal and psychiatric regime in Brazil. This paper analyses dossier, judicial proceedings, interviews and photographs about her. The psychiatric report is the key component of the medical and penal doubling of criminal insanity. Twelve psychiatric reports illustrate three time frames of the court files: abnormality, danger, and abandonment. The psychiatric authority over confinement has moved from discipline to security, and from disciplinary security to social assistance. In the arrangement between the penal and psychiatric powers, the judge recognizes the medical authority over the truth of insanity. It is the medicine of the reasons for Zefinha's internment that altered over the decades.

  5. Dynamics of Polymer Chains Confined in Slit-Like Pores

    NASA Astrophysics Data System (ADS)

    Milchev, Andrey; Binder, Kurt

    1996-01-01

    Monte Carlo simulations of an off-lattice bead sping model of polymer chains are presented, confining the chains between two repulsive parallel planes a distance D apart. Varying the chain length N from N=16 to N=128, we show that under good solvent conditions the chains behave like two-dimensional self-avoiding walks, their mean square gyration radius scales as <~ngle R_g^2ranglepropto N^{2ν} with ν =3/4. The density profile across the slit is independent of N and maximal in the center of the slit. The dynamical properties of the chains are found to be in full agreement with the Rouse model with excluded volume in d=2 dimensions, the relaxation times vary like taupropto N^z with z=2ν+1=5/2, the diffusion constant still being given by D_Npropto 1/N. The dynamical behavior of various mean square displacements is analyzed in detail.

  6. Liquid water confined in carbon nanochannels at high temperatures.

    PubMed

    Nagy, G; Gordillo, M C; Guàrdia, E; Martí, J

    2007-11-01

    Structure, hydrogen bonding, electrostatics, dielectric, and dynamical properties of liquid water confined in flat graphene nanochannels are investigated by molecular dynamics simulations. A wide range of temperatures (between 20 and 360 degrees C) have been considered. Molecular structure suffers substantial changes when the system is heated, with a significant loss of structure and hydrogen bonding. In such case, the interface between adsorbed and bulk-like water has a marked tendency to disappear, and the two preferential orientations of water nearby the graphite layers at room temperature are essentially merging above the boiling point. The general trend for the static dielectric constant is its reduction at high temperature states, as compared to ambient conditions. Similarly, residence times of water molecules in adsorbed and bulk-like regions are significantly influenced by temperature, as well. Finally, we observed relevant changes in water diffusion and spectroscopy along the range of temperatures analyzed.

  7. Development of Compton Radiography Diagnostics for Inertial Confinement Fusion Implosions

    SciTech Connect

    Tommasini, R; Hatchett, S P; Hey, D S; Izumi, N; Koch, J A; Landen, O L; Mackinnon, A J; Delettrez, J; Glebov, V; Stoeckl, C

    2010-11-16

    An important diagnostic tool for inertial confinement fusion will be time-resolved radiographic imaging of the dense cold fuel surrounding the hot spot. The measurement technique is based on point-projection radiography at photon energies from 60-200 keV where the Compton effect is the dominant contributor to the opacity of the fuel or pusher. We have successfully applied this novel Compton Radiography technique to the study of the final compression of directly driven plastic capsules at the OMEGA facility. The radiographs have a spatial and temporal resolution of {approx}10 {micro}m and {approx}10ps, respectively. A statistical accuracy of {approx}0.5% in transmission per resolution element is achieved, allowing localized measurements of areal mass densities to 7% accuracy. The experimental results show 3D non-uniformities and lower than 1D expected areal densities attributed to drive asymmetries and hydroinstabilities.

  8. Plasma transport coefficients for nonsymmetric toroidal confinement systems

    SciTech Connect

    Hirshman, S.P.; Shaing, K.C.; van Rij, W.I.; Beasley, C.O. Jr.; Crume, E.C. Jr.

    1986-03-01

    A variational principle is developed for computing accurate values of local plasma transport coefficients in nonsymmetric toroidal confinement configurations. Numerical solutions of the linearized drift Fokker-Planck equation are used to obtain the thermodynamic fluxes as functions of collision frequenty and the radial electric field. Effects resulting from the variation of the longitudinal adiabatic invariant J along an orbit (due to particle transitions from helically trapped to toroidally trapped orbits) are treated. The velocity-space distribution resulting from trapped, circulating, and transition particle orbits is well represented by a Legendre polynomial expansion in the pitch angle coordinate. The computational effort is significantly reduced from that required with Monte Carlo methods through use of an efficient treatment of the disparity between the time scales of collisionless and collisional particle dynamics. Numerical computations for a stellarator configuration are presented. 24 refs. 9 figs.

  9. Confinement and Tritium Stripping Systems for APT Tritium Processing

    SciTech Connect

    Hsu, R.H.; Heung, L.K.

    1997-10-20

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented.

  10. Fabrication issues of oxide-confined VCSELs

    SciTech Connect

    Geib, K.M.; Choquette, K.D.; Hou, H.Q.; Hammons, B.E.

    1997-04-01

    To insert high-performance oxide-confined vertical-cavity surface- emitting lasers (VCSELs) into the manufacturing arena, we have examined the critical parameters that must be controlled to establish a repeatable and uniform wet thermal oxidation process for AlGaAs. These parameters include the AlAs mole fraction, sample temperature, carrier gas flow, and bubbler water temperature. Knowledge of these parameters has enable the compilation of oxidation rate data for AlGaAs which exhibits an Arrhenius rate dependence. The compositionally dependent activation energies for Al{sub x}Ga{sub 1-x}As layers of x=1.00, 0.98, and 0.92 are found to be 1.24, 1.75, and 1.88 eV, respectively. 7 figs, 1 tab, 14 refs.

  11. Fueling of magnetic-confinement devices

    SciTech Connect

    Milora, S.L.

    1981-01-01

    A general overview of the fueling of magnetic confinement devices is presented, with particular emphasis on recent experimental results. Various practical fueling mechanisms are considered, such as cold gas inlet (or plasma edge fueling), neutral beam injection, and injection of high speed cryogenic hydrogen pellets. The central role played by charged particle transport and recycle of plasma particles from material surfaces in contact with the plasma is discussed briefly. The various aspects of hydrogen pellet injection are treated in detail, including applications to the production of high purity startup plasmas for stellarators and other devices, refueling of tokamak plasmas, pellet ablation theory, and the technology and performance characteristics of low and high speed pellet injectors.

  12. Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement

    SciTech Connect

    Furth, H.P.

    1985-05-01

    The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved.

  13. Generalized Lawson Criteria for Inertial Confinement Fusion

    SciTech Connect

    Tipton, Robert E.

    2015-08-27

    The Lawson Criterion was proposed by John D. Lawson in 1955 as a general measure of the conditions necessary for a magnetic fusion device to reach thermonuclear ignition. Over the years, similar ignition criteria have been proposed which would be suitable for Inertial Confinement Fusion (ICF) designs. This paper will compare and contrast several ICF ignition criteria based on Lawson’s original ideas. Both analytical and numerical results will be presented which will demonstrate that although the various criteria differ in some details, they are closely related and perform similarly as ignition criteria. A simple approximation will also be presented which allows the inference of each ignition parameter directly from the measured data taken on most shots fired at the National Ignition Facility (NIF) with a minimum reliance on computer simulations. Evidence will be presented which indicates that the experimentally inferred ignition parameters on the best NIF shots are very close to the ignition threshold.

  14. Relativistic constituent quark model with infrared confinement

    SciTech Connect

    Branz, Tanja; Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Ivanov, Mikhail A.; Koerner, Juergen G.

    2010-02-01

    We refine the relativistic constituent quark model developed in our previous papers to include the confinement of quarks. It is done, first, by introducing the scale integration in the space of {alpha} parameters, and, second, by cutting this scale integration on the upper limit which corresponds to an infrared cutoff. In this manner one removes all possible thresholds present in the initial quark diagram. The cutoff parameter is taken to be the same for all physical processes. We adjust other model parameters by fitting the calculated quantities of the basic physical processes to available experimental data. As an application, we calculate the electromagnetic form factors of the pion and the transition form factors of the {omega} and {eta} Dalitz decays.

  15. Statistical Mechanics of Confined Biological Materials

    NASA Astrophysics Data System (ADS)

    El Kinani, R.; Benhamou, M.; Kaïdi, H.

    2017-03-01

    In this work, we propose a model to study the Statistical Mechanics of a confined bilayer-membrane that fluctuates between two interactive flat substrates. From the scaling laws point of view, the bilayer-membranes and strings are very similar. Therefore, it is sufficient to consider only the problem of a string. We assume that the bilayer-membrane (or string) interact with the substrate via a Double Morse potential that reproduces well the characteristics of the real interaction. We show that the Statistical Mechanic of the string can be adequately described by the Schrödinger equation approach that we solve exactly using the Bethe method. Finally, from the exact value of the energy of the ground state, we extract the expression of the free energy density as well as the specific heat.

  16. Simulations of artificial swimmers in confined flows

    NASA Astrophysics Data System (ADS)

    Brandt, Luca; Zhu, Lailai; Gjølberg, Eerik

    2012-11-01

    Miniature swimmming robots are potentially powerful for microobject manipulation, such as flow control in lab-on-a-chip, localized drug delivery and screening for diseases. Magnetically driven artificial bacterial flagella (ABF) performing helical motion is advantegous due to high swimming speed and accurate control. Using boundary element method, we numerically investigate the propulsion of ABF in free space and near solid boundaries. Step-out at high actuation frequencies, wobbling and near-wall drifting are documented, in qualitative agreement with recent experiments. We aim to explore the effect of swimmer shape on the performance, thus benefiting design of efficient microswimmers. Propulsion of ABF confined by a solid wall with and without background shear flow is also studied, with a focus on wall-induced hydrodynamic interaction and its influence on the stability of the motion. Funding by VR (the Swedish Research Council) and Linne flow centre at KTH is acknowledged.

  17. Coaxial Compound Helicopter for Confined Urban Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Elmore, Joshua F.; Keen, Ernest B.; Gallaher, Andrew T.; Nunez, Gerardo F.

    2016-01-01

    A rotorcraft was designed for military operations in a confined urban environment. The specifications included major increases in useful load, range, and speed relative current aircraft capabilities, with a size constraint based on the dimensions of urban streets and intersections. Analysis showed that this combination of requirements is best satisfied by a coaxial main-rotor configuration, with lift compounding to off-load the rotors at high speed, and ducted fans under the rotor disk for propulsion. The baseline design is described, and the aircraft performance is summarized for utility, attack, MEDEVAC, and cargo delivery missions. The impact on size and performance is examined for a number of excursions, including lift-offset main rotors. Technology development required to achieve this advance in capability is recommended.

  18. Dancing droplets: Contact angle, drag, and confinement

    NASA Astrophysics Data System (ADS)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  19. Highly confined photonic nanojet from elliptical particles

    NASA Astrophysics Data System (ADS)

    Jalali, T.; Erni, D.

    2014-07-01

    Elliptically shaped particles with different size and refractive indices have been studied under plane wave illumination using simulation tools such as 2D-FDTD, 2D-MMP, and 3D-MMP. Owing to careful manipulation, the power distribution in the vicinity of the particles opposite boundary resulted in a tightly focused photonic nanojet. Their waists are significantly smaller than the diffraction limit while propagating over several optical wavelengths without significant divergence. In this paper, we report on the manipulation of the particles elliptical shapes and the underlying refractive indices with respect to a maximally confined power distribution in the resulting nanojet which has been parameterized according to both, the beam waist and the beam divergence. The result that elliptical particles (i.e. oblate spheroids) turned out to be superior to spherical ones was underpinned within a highly accurate and fast 3D-MMP simulation using ring multipoles.

  20. Influence of Ambient Temperature and Confinement on the Chemical Immobilization of Fallow Deer ( Dama dama ).

    PubMed

    Costa, Giovanna Lucrezia; Nastasi, Bernadette; Musicò, Marcello; Spadola, Filippo; Morici, Manuel; Cucinotta, Giuseppe; Interlandi, Claudia

    2017-04-01

    We used physiological parameters and the duration and quality of anesthesia to compare the effects of two ambient temperatures and of the duration of pre-immobilization confinement on the chemical immobilization of fallow deer. We divided 45 free-ranging fallow deer ( Dama dama ) into two groups: Group A were deer captured in winter (average 12 C), using 1 mg/kg of xylazine and 1 mg/kg of tiletamine-zolazepam; and Group B were deer captured in spring (average 24 C), using 2 mg/kg of xylazine and 1.5 mg/kg of tiletamine-zolazepam, after being confined in a pen. We observed lower mean respiratory rate and oxygen saturation in Group B. In contrast, the mean body temperature and the mean blood lactate concentration were significantly higher in Group B, and quality of anesthesia was better in Group A. Mean induction time (time to achieve recumbency) and durations of recumbency were the same in Groups A and B: approximately 8 and 50 min, respectively. Despite the lower drug dosage, better sedation was obtained in Group A than in group B. The time of year, most likely associated with differences in ambient temperature and in confinement, influenced the recommended dosage for xylazine and tiletamine-zolazepam in fallow deer. As all the animals were sound, we concluded that the only factors that influenced the outcome of the present study were the ambient temperature and the level of stress caused by confinement in the pen.

  1. Thermal barrier confinement experiments in TMX-U tandem mirror. Revision 1

    SciTech Connect

    Simonen, T.C.; Allen, S.L.; Baldwin, D.E.; Casper, T.A.; Clauser, J.F.; Coensgen, F.H.; Cohen, R.H.; Correll, D.L.; Cummins, W.F.; Damm, C.C.

    1984-07-26

    In our recent experiments on the TMX-U thermal-barrier device, we achieved the end plugging of axial ion losses up to a central cell density of n/sub c/ = 6 x 10/sup 12/ cm/sup -3/. During lower density experiments, we measured the axial potential profile characteristic of a thermal barrier and found an ion-confining potential greater than 1.5 kV and a potential depression of 0.45 kV in the barrier region. The average beta of hot end plug electrons has reached 15% and of hot central cell ions has reached 6%. In addition, we heated deuterium ions in the central cell with ICRF to an average perpendicular energy of 2 keV. During strong end plugging at low density (7 x 10/sup 11/ cm/sup -3/), the axial ion confinement time tau/sub parallel to/ reached 50 to 100 ms while the nonambiopolar radial ion confinement time tau/sub perpendicular to/ was 14 ms - independent of end plugging. Electrically floating end walls doubled the radial ion confinement time. At higher densities and lower potentials, tau/sub parallel to/ was 6 to 12 ms and tau/sub perpendicular to/ exceeded 100 ms.

  2. High beta and confinement studies on TFTR

    SciTech Connect

    Navratil, G.A.; Bhattacharjee, A.; Iacono, R.; Mauel, M.E.; Sabbagh, S.A. ); Kesner, J. )

    1992-01-01

    A new regime of high poloidal beta operation in TFTR was developed in the course of the first two years of this project (9/25/89 to 9/24/91). Our proposal to continue this successful collaboration between Columbia University and the Massachusetts Institute of Technology with the Princeton Plasma Physics Laboratory for a three year period (9/25/91 to 9/24/94) to continue to investigate improved confinement and tokamak performance in high poloidal beta plasmas in TFTR through the DT phase of operation was approved by the DOE and this is a report of our progress during the first 9 month budget period of the three year grant (9/25/91 to 6/24/92). During the approved three year project period we plan to (1) extend and apply the low current, high QDD discharges to the operation of TFTR using Deuterium and Tritium plasma; (2) continue the analysis and plan experiments on high poloidal beta phenomena in TFTR including: stability properties, enhanced global confinement, local transport, bootstrap current, and divertor formation; (3) plan and carry out experiments on TFTR which attempt to elevate the central q to values > 2 where entry to the second stability regime is predicted to occur; and (4) collaborate on high beta experiments using bean-shaped plasmas with a stabilizing conducting shell in PBX-M. In the seven month period covered by this report we have made progress in each of these four areas through the submission of 4 TFTR Experimental Proposals and the partial execution of 3 of these using a total of 4.5 run days during the August 1991 to February 1992 run.

  3. Confinement dynamics of a semiflexible chain inside nano-spheres.

    PubMed

    Fathizadeh, A; Heidari, Maziar; Eslami-Mossallam, B; Ejtehadi, M R

    2013-07-28

    We study the conformations of a semiflexible chain, confined in nano-scaled spherical cavities, under two distinct processes of confinement. Radial contraction and packaging are employed as two confining procedures. The former method is performed by gradually decreasing the diameter of a spherical shell which envelopes a confined chain. The latter procedure is carried out by injecting the chain inside a spherical shell through a hole on the shell surface. The chain is modeled with a rigid body molecular dynamics simulation and its parameters are adjusted to DNA base-pair elasticity. Directional order parameter is employed to analyze and compare the confined chain and the conformations of the chain for two different sizes of the spheres are studied in both procedures. It is shown that for the confined chains in the sphere sizes of our study, they appear in spiral or tennis-ball structures, and the tennis-ball structure is more likely to be observed in more compact confinements. Our results also show that the dynamical procedure of confinement and the rate of the confinement are influential parameters of the structure of the chain inside spherical cavities.

  4. The cruel and unusual phenomenology of solitary confinement.

    PubMed

    Gallagher, Shaun

    2014-01-01

    What happens when subjects are deprived of intersubjective contact? This paper looks closely at the phenomenology and psychology of one example of that deprivation: solitary confinement. It also puts the phenomenology and psychology of solitary confinement to use in the legal context. Not only is there no consensus on whether solitary confinement is a "cruel and unusual punishment," there is no consensus on the definition of the term "cruel" in the use of that legal phrase. I argue that we can find a moral consensus on the meaning of "cruelty" by looking specifically at the phenomenology and psychology of solitary confinement.

  5. Mechanical behavior of concrete columns confined by basalt FRP windings

    NASA Astrophysics Data System (ADS)

    Ciniņa, I.; Zīle, E.; Zīle, O.

    2012-11-01

    The results of an experimental investigation of round concrete columns confined by a wound basalt filament yarn are presented. Basalt is an attractive material for strengthening purposes due to its low cost coupled with a good mechanical performance, especially at high temperatures. It is shown that the basalt FRP confinement provides a considerable strengthening effect. The winding equipment employed in this study has the ability to set a desired pretension force of the yarn and thereby to produce a prestressed confinement. It is found that the prestressed confinement notably delays the onset of intense internal cracking of concrete.

  6. The cruel and unusual phenomenology of solitary confinement

    PubMed Central

    Gallagher, Shaun

    2014-01-01

    What happens when subjects are deprived of intersubjective contact? This paper looks closely at the phenomenology and psychology of one example of that deprivation: solitary confinement. It also puts the phenomenology and psychology of solitary confinement to use in the legal context. Not only is there no consensus on whether solitary confinement is a “cruel and unusual punishment,” there is no consensus on the definition of the term “cruel” in the use of that legal phrase. I argue that we can find a moral consensus on the meaning of “cruelty” by looking specifically at the phenomenology and psychology of solitary confinement. PMID:24971072

  7. Free Energy of a Polymer in Slit-Like Confinement across the Odijk, moderate confinement, and Bulk Regimes

    NASA Astrophysics Data System (ADS)

    Kamanzi, Albert; Leith, Jason S.; Sean, David; Berard, Daniel; Guthrie, Andrew C.; McFaul, Christopher M. J.; Slater, Gary W.; de Haan, Hendrick W.; Leslie, Sabrina R.; McGill University Team; University of Ottawa, University of Ontario Collaboration

    We directly measure the free energy of confinement for semi-flexible polymers from the nanoscale to bulk regimes in slit-like confinement. We use Convex Lens-induced Confinement (CLiC) microscopy of DNA to load and directly count molecules at equilibrium in a single chamber of smoothly increasing height. CLiC microscopy allows for direct visualization of polymers in free solution over long periods, as a function of tunable vertical confinement - from the millimeter to the nanometer scale, and within a single device. Our direct characterization of the free energy of confinement, across several orders of magnitude of applied confinement, agree with new simulations established in this work. We compare experimental results to the ``de Gennes blob model'', to theory published by Casassa, as well as to simulations by Chen and Sullivan, in appropriate regimes. This work establishes a robust platform for understanding and manipulating polymers at the nanoscale, with a wide range of applications to biomedical technologies.

  8. Motion blur filtering: A statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory.

    PubMed

    Calderon, Christopher P

    2016-05-01

    Single particle tracking (SPT) can aid in understanding a variety of complex spatiotemporal processes. However, quantifying diffusivity and confinement forces from individual live cell trajectories is complicated by inter- and intratrajectory kinetic heterogeneity, thermal fluctuations, and (experimentally resolvable) statistical temporal dependence inherent to the underlying molecule's time correlated confined dynamics experienced in the cell. The problem is further complicated by experimental artifacts such as localization uncertainty and motion blur. The latter is caused by the tagged molecule emitting photons at different spatial positions during the exposure time of a single frame. The aforementioned experimental artifacts induce spurious time correlations in measured SPT time series that obscure the information of interest (e.g., confinement forces and diffusivity). We develop a maximum likelihood estimation (MLE) technique that decouples the above noise sources and systematically treats temporal correlation via time series methods. This ultimately permits a reliable algorithm for extracting diffusivity and effective forces in confined or unconfined environments. We illustrate how our approach avoids complications inherent to mean square displacement or autocorrelation techniques. Our algorithm modifies the established Kalman filter (which does not handle motion blur artifacts) to provide a likelihood based time series estimation procedure. The result extends A. J. Berglund's motion blur model [Phys. Rev. E 82, 011917 (2010)PLEEE81539-375510.1103/PhysRevE.82.011917] to handle confined dynamics. The approach can also systematically utilize (possibly time dependent) localization uncertainty estimates afforded by image analysis if available. This technique, which explicitly treats confinement and motion blur within a time domain MLE framework, uses an exact likelihood (time domain methods facilitate analyzing nonstationary signals). Our estimator is demonstrated

  9. Motion blur filtering: A statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory

    NASA Astrophysics Data System (ADS)

    Calderon, Christopher P.

    2016-05-01

    Single particle tracking (SPT) can aid in understanding a variety of complex spatiotemporal processes. However, quantifying diffusivity and confinement forces from individual live cell trajectories is complicated by inter- and intratrajectory kinetic heterogeneity, thermal fluctuations, and (experimentally resolvable) statistical temporal dependence inherent to the underlying molecule's time correlated confined dynamics experienced in the cell. The problem is further complicated by experimental artifacts such as localization uncertainty and motion blur. The latter is caused by the tagged molecule emitting photons at different spatial positions during the exposure time of a single frame. The aforementioned experimental artifacts induce spurious time correlations in measured SPT time series that obscure the information of interest (e.g., confinement forces and diffusivity). We develop a maximum likelihood estimation (MLE) technique that decouples the above noise sources and systematically treats temporal correlation via time series methods. This ultimately permits a reliable algorithm for extracting diffusivity and effective forces in confined or unconfined environments. We illustrate how our approach avoids complications inherent to mean square displacement or autocorrelation techniques. Our algorithm modifies the established Kalman filter (which does not handle motion blur artifacts) to provide a likelihood based time series estimation procedure. The result extends A. J. Berglund's motion blur model [Phys. Rev. E 82, 011917 (2010), 10.1103/PhysRevE.82.011917] to handle confined dynamics. The approach can also systematically utilize (possibly time dependent) localization uncertainty estimates afforded by image analysis if available. This technique, which explicitly treats confinement and motion blur within a time domain MLE framework, uses an exact likelihood (time domain methods facilitate analyzing nonstationary signals). Our estimator is demonstrated to be

  10. Don't Fence Me In: Free Meanders in a Confined River Valley

    NASA Astrophysics Data System (ADS)

    Eke, E. C.; Wilcock, P. R.

    2015-12-01

    The interaction between meandering river channels and inerodible valley walls provides a useful test of our ability to understand meander dynamics. In some cases, river meanders confined between valley walls display distinctive angular bends in a dynamic equilibrium such that their size and shape persist as the meander migrates. In other cases, meander geometry is more varied and changes as the meander migrates. The ratio of channel to valley width has been identified as a useful parameter for defining confined meanders, but is not sufficient to distinguish cases in which sharp angular bends are able to migrate with little change in geometry. Here, we examine the effect of water and sediment supply on the geometry of confined rivers in order to identify conditions under which meander geometry reaches a persistent dynamic equilibrium. Because channel width and meander geometry are closely related, we use a numerical meander model that allows for independent migration of both banks, thereby allowing channel width to vary in space and time. We hypothesize that confined meanders with persistent angular bends have smaller transport rates of bed material and that their migration is driven by erosion of the cutbank (bank-pull migration). When bed material supply is sufficiently large that point bar deposition drives meander migration (bar-push migration), confined meander bends have a larger radius of curvature and a geometry that varies as the meander migrates. We test this hypothesis using historical patterns of confined meander migration for rivers with different rates of sediment supply and bed material transport. Interpretation of the meander migration pattern is provided by the free-width meander migration model.

  11. Plasma confinement to enhance the momentum coupling coefficient in ablative laser micro-propulsion: a novel approach

    NASA Astrophysics Data System (ADS)

    Ahmad, Muhammad Raza; Jamil, Yasir; Qaiser Zakaria, M.; Hussain, Tousif; Ahmad, Riaz

    2015-07-01

    We introduce for the first time the novel idea of manipulating the momentum coupling coefficient using plasma confinement and shock wave reflection from the cavity walls. The plasma was confined using cylindrical geometries of various cavity aspect ratios to manipulate the momentum coupling coefficient (C m ). The Nd: YAG laser (532 nm, 5 ns pulse duration) was focused on the ferrite sample surface to produce plasma in a region surrounded by cylindrical cavity walls. The multiple reflections of the shockwaves from the cavity walls confined the laser-induced plasma to the central region of the cavity that subsequently resulted in a significant enhancement of the momentum coupling coefficient values. The plasma shielding effect has also been observed for particular values of laser fluencies and cavity aspect ratios. Compared with the direct ablation, the confined ablation provides an effective way to obtain high C m values.

  12. Flow regimes for fluid injection into a confined porous medium

    DOE PAGES

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; ...

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  13. Flow regimes for fluid injection into a confined porous medium

    SciTech Connect

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.

  14. Spatial confinement in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Xingwen; Yang, Zefeng; Wu, Jian; Wei, Wenfu; Qiu, Yan; Jia, Shenli; Qiu, Aici

    2017-01-01

    The spatial confinement of plasma produced by a nanosecond laser is investigated using time resolved spectroscopy, fast imaging, interferometry, and numerical computation. The dynamics of the plasma, depending on shock waves, laser power, and wall distances, are studied. Experimental results confirm that the plasma is constricted by the reflected shock associated with a temperature and density gradient. The peak laser power determines the initial plasma parameters which affect the spectral intensities and the velocity of the reflective shock waves. The wall distance determines the reflection time of the shocks, which in turn influences the time delay of the collision between the two reflective shocks. The numerical results reveal a fast propagation process surrounding the reflective shocks, which indicates that the velocity of the reflective shock wave is influenced by the density of the plasma. The maximum enhancement factor ~5.2 is realized at a delay time of 11.7 µs under a pulse laser energy of 180 mJ and a wall distance of 9 mm.

  15. Dynamics of viral hemorrhagic septicemia, viral erythrocytic necrosis and ichthyophoniasis in confined juvenile Pacific herring Clupea pallasii

    USGS Publications Warehouse

    Hershberger, P.; Hart, A.; Gregg, J.; Elder, N.; Winton, J.

    2006-01-01

    Capture of wild, juvenile herring Clupea pallasii from Puget Sound (Washington, USA) and confinement in laboratory tanks resulted in outbreaks of viral hemorrhagic septicemia (VHS), viral erythrocytic necrosis (VEN) and ichthyophoniasis; however, the timing and progression of the 3 diseases differed. The VHS epidemic occurred first, characterized by an initially low infection prevalence that increased quickly with confinement time, peaking at 93 to 98% after confinement for 6 d, then decreasing to negligible levels after 20 d. The VHS outbreak was followed by a VEN epidemic that, within 12 d of confinement, progressed from undetectable levels to 100% infection prevalence with >90% of erythrocytes demonstrating inclusions. The VEN epidemic persisted for 54 d, after which the study was terminated, and was characterized by severe blood dyscrasias including reduction of mean hematocrit from 42 to 6% and replacement of mature erythrocytes with circulating erythroblasts and ghost cells. All fish with ichthyophoniasis at capture died within the first 3 wk of confinement, probably as a result of the multiple stressors associated with capture, transport, confinement, and progression of concomitant viral diseases. The results illustrate the differences in disease ecology and possible synergistic effects of pathogens affecting marine fish and highlight the difficulty in ascribing a single causation to outbreaks of disease among populations of wild fishes. ?? Inter-Research 2006.

  16. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor.

    PubMed

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-28

    The properties of water under confinement are of practical and fundamental interest. In this work, we study the properties of water in the self-assembled lyotropic phases of Gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments, the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, D(T), and rotational relaxation time, τ(R). We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the values to those directly measured in the simulations. We find that the de-coupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of D(T) and τ(R) can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale.

  17. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support

    SciTech Connect

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester's Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  18. Dynamic mechanical analysis of supercooled water in nanoporous confinement

    NASA Astrophysics Data System (ADS)

    Soprunyuk, Viktor; Schranz, Wilfried; Huber, Patrick

    2016-08-01

    Dynamical mechanical analysis (\\text{DMA})(f=0.2\\text{--}100 \\text{Hz}) is used to study the dynamics of confined water in mesoporous Gelsil (2.6 nm and 5 nm pores) and Vycor (10 nm) in the temperature range from T=80 \\text{K} to 300 K. Confining water into nanopores partly suppresses crystallization and allows us to perform measurements of supercooled water below 235 K, i.e., in water's so-called “no man's land”, in parts of the pores. Two distinct relaxation peaks are observed in tan δ around T1 ≈ 145 \\text{K} (P1) and T2 ≈ 205 \\text{K}~(P2) for Gelsil 2.6 nm and Gelsil 5 nm at 0.2 Hz. Both peaks shift to higher T with increasing pore size d and change with f in a systematic way, typical of an Arrhenius behaviour of the corresponding relaxation times. For P 1 we obtain an average activation energy of E\\text{a} = 0.47 \\text{eV} , in good agreement with literature values, suggesting that P 1 corresponds to the glass transition of supercooled water. The observation of a pronounced softening of the Young's modulus around 165 K (for Gelsil 2.6 nm at 0.2 Hz) supports the conjecture of a glass-to-liquid transition in the vicinity of P 1. In addition we find a clear-cut (1/d)-dependence of the calculated glass transition temperatures which extrapolates to T_\\text{g}(1/d=0)=136 \\text{K} , in agreement with the traditional value of water.

  19. Inertial confinement fusion target component fabrication and technology development support

    NASA Astrophysics Data System (ADS)

    Steinman, D.

    1993-03-01

    On December 31, 1990, the U.S. Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development, and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester's Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  20. Inertial confinement fusion target component fabrication and technology development report

    NASA Astrophysics Data System (ADS)

    Steinman, D.

    1994-03-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities which took place under this contract during the period of October 1, 1992 through September 30, 1993. During this period, GA was assigned 18 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included 'Capabilities Activation' and 'Capabilities Demonstration' to enable us to begin production of glass and composite polymer capsules. Capsule delivery tasks included 'Small Glass Shell Deliveries' and 'Composite Polymer Capsules' for Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). We also were asked to provide direct 'Onsite Support' at LLNL and LANL. We continued planning for the transfer of 'Micromachining Equipment from Rocky Flats' and established 'Target Component Micromachining and Electroplating Facilities' at GA. We fabricated over 1100 films and filters of 11 types for Sandia National Laboratory and provided full-time onsite engineering support for target fabrication and characterization. We initiated development of methods to make targets for the Naval Research Laboratory. We investigated spherical interferometry, built an automated capsule sorter, and developed an apparatus for calorimetric measurement of fuel fill for LLNL. We assisted LANL in the 'Characterization of Opaque b-Layered Targets.' We developed deuterated and UV-opaque polymers for use by the University of Rochester's Laboratory for Laser Energetics (UR/LLE) and devised a triple-orifice droplet generator to demonstrate the controlled-mass nature of the microencapsulation process.

  1. Enhanced H2 uptake in solvents confined in mesoporous metal-organic framework.

    PubMed

    Clauzier, Stephanie; Ho, Linh Ngoc; Pera-Titus, Marc; Coasne, Benoit; Farrusseng, David

    2012-10-24

    Hydrogen uptake at 298 K and 30 bar in hybrid sorbents consisting of n-hexane confined in MIL-101 is found to be 22 times larger than in sole n-hexane. The enhanced solubility in MIL-101, found to be 3 times larger than in mesoporous silica of similar pore size, highlights the key roles played by surface chemistry and accessible surface area.

  2. 46 CFR 148.85 - Required equipment for confined spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Required equipment for confined spaces. 148.85 Section 148.85 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF... Required equipment for confined spaces. When transporting a material that is listed in Table 148.10 of...

  3. Confinement-driven increase in ionomer thin-film modulus.

    PubMed

    Page, Kirt A; Kusoglu, Ahmet; Stafford, Christopher M; Kim, Sangcheol; Kline, R Joseph; Weber, Adam Z

    2014-05-14

    Ion-conductive polymers, or ionomers, are critical materials for a wide range of electrochemical technologies. For optimizing the complex heterogeneous structures in which they occur, there is a need to elucidate the governing structure-property relationships, especially at nanoscale dimensions where interfacial interactions dominate the overall materials response due to confinement effects. It is widely acknowledged that polymer physical behavior can be drastically altered from the bulk when under confinement and the literature is replete with examples thereof. However, there is a deficit in the understanding of ionomers when confined to the nanoscale, although it is apparent from literature that confinement can influence ionomer properties. Herein we show that as one particular ionomer, Nafion, is confined to thin films, there is a drastic increase in the modulus over the bulk value, and we demonstrate that this stiffening can explain previously observed deviations in materials properties such as water transport and uptake upon confinement. Moreover, we provide insight into the underlying confinement-induced stiffening through the application of a simple theoretical framework based on self-consistent micromechanics. This framework can be applied to other polymer systems and assumes that as the polymer is confined the mechanical response becomes dominated by the modulus of individual polymer chains.

  4. Plutonium Finishing Plant assessment of confinement system bypass leakage

    SciTech Connect

    Dick, J.D.

    1996-09-30

    The purpose of this report is to document walk-through`s of the safety class confinement systems at the Plutonium Finishing Plant (PFP). In addition this document outlines the actions taken to assess the confinement system for bypass leakage as well as establishing disposition for discovered deficiencies at the PFP.

  5. Apparatus for Demonstrating Confined and Unconfined Aquifer Characteristics.

    ERIC Educational Resources Information Center

    Gillham, Robert W.; O'Hannesin, Stephanie F.

    1984-01-01

    Students in hydrogeology classes commonly have difficulty appreciating differences between the mechanisms of water release from confined and unconfined aquifers. Describes a simple and inexpensive laboratory model for demonstrating the hydraulic responses of confined and unconfined aquifers to pumping. Includes a worked example to demonstrate the…

  6. 29 CFR 1910.146 - Permit-required confined spaces.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Permit-required confined spaces. 1910.146 Section 1910.146 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS General Environmental Controls § 1910.146 Permit-required confined spaces. (a) Scope...

  7. 29 CFR 1910.146 - Permit-required confined spaces.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Permit-required confined spaces. 1910.146 Section 1910.146 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS General Environmental Controls § 1910.146 Permit-required confined spaces. (a) Scope...

  8. 29 CFR 1910.146 - Permit-required confined spaces.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Permit-required confined spaces. 1910.146 Section 1910.146 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS General Environmental Controls § 1910.146 Permit-required confined spaces. (a) Scope...

  9. 29 CFR 1910.146 - Permit-required confined spaces.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Permit-required confined spaces. 1910.146 Section 1910.146 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS General Environmental Controls § 1910.146 Permit-required confined spaces. (a) Scope...

  10. 29 CFR 1910.146 - Permit-required confined spaces.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Permit-required confined spaces. 1910.146 Section 1910.146 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS General Environmental Controls § 1910.146 Permit-required confined spaces. (a) Scope...

  11. Admissible release from the chernobyl new safe confinement

    SciTech Connect

    Batiy, Valeriy; Paskevych, Sergei; Rudko, Vladimir; Sizov, Andrey; Shcherbin, Vladimir; Schmieman, Eric A.

    2005-08-08

    Calculation of admissible releases at different exploitation stages of New Safe Confinement at the existing ChNPP ''Shelter'' object are given. Vain conclusions of calculations are given as well as recommendations for planning of activities connected with the New Safe Confinement construction.

  12. 28 CFR 540.17 - Correspondence between confined inmates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Correspondence between confined inmates... MANAGEMENT CONTACT WITH PERSONS IN THE COMMUNITY Correspondence § 540.17 Correspondence between confined... witness in a legal action in which both inmates are involved. Such correspondence may be approved in...

  13. 28 CFR 540.17 - Correspondence between confined inmates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Correspondence between confined inmates... MANAGEMENT CONTACT WITH PERSONS IN THE COMMUNITY Correspondence § 540.17 Correspondence between confined... witness in a legal action in which both inmates are involved. Such correspondence may be approved in...

  14. 28 CFR 540.17 - Correspondence between confined inmates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Correspondence between confined inmates... MANAGEMENT CONTACT WITH PERSONS IN THE COMMUNITY Correspondence § 540.17 Correspondence between confined... witness in a legal action in which both inmates are involved. Such correspondence may be approved in...

  15. 28 CFR 540.17 - Correspondence between confined inmates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Correspondence between confined inmates... MANAGEMENT CONTACT WITH PERSONS IN THE COMMUNITY Correspondence § 540.17 Correspondence between confined... witness in a legal action in which both inmates are involved. Such correspondence may be approved in...

  16. Interlevel cascade transition in electrically confined quantum wire arrays.

    PubMed

    Wu, Wei; Hassani, Iman; Mohseni, Hooman

    2011-09-27

    Vertical stacks of electrically confined quantum wires were demonstrated in devices with large areas. Multiple current plateaus and strong differential conductance oscillations were observed at above liquid nitrogen temperatures because of interlevel cascade transition of carriers. Our simulation results for charge transport, as well as interlevel infrared photoresponse red-shift, due to lateral electric field confinement show good agreement with experimental data.

  17. A method to estimate groundwater depletion from confining layers

    USGS Publications Warehouse

    Konikow, L.F.; Neuzil, C.E.

    2007-01-01

    Although depletion of storage in low-permeability confining layers is the source of much of the groundwater produced from many confined aquifer systems, it is all too frequently overlooked or ignored. This makes effective management of groundwater resources difficult by masking how much water has been derived from storage and, in some cases, the total amount of water that has been extracted from an aquifer system. Analyzing confining layer storage is viewed as troublesome because of the additional computational burden and because the hydraulic properties of confining layers are poorly known. In this paper we propose a simplified method for computing estimates of confining layer depletion, as well as procedures for approximating confining layer hydraulic conductivity (K) and specific storage (Ss) using geologic information. The latter makes the technique useful in developing countries and other settings where minimal data are available or when scoping calculations are needed. As such, our approach may be helpful for estimating the global transfer of groundwater to surface water. A test of the method on a synthetic system suggests that the computational errors will generally be small. Larger errors will probably result from inaccuracy in confining layer property estimates, but these may be no greater than errors in more sophisticated analyses. The technique is demonstrated by application to two aquifer systems: the Dakota artesian aquifer system in South Dakota and the coastal plain aquifer system in Virginia. In both cases, depletion from confining layers was substantially larger than depletion from the aquifers.

  18. 46 CFR 148.85 - Required equipment for confined spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Required equipment for confined spaces. 148.85 Section 148.85 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF... Required equipment for confined spaces. When transporting a material that is listed in Table 148.10 of...

  19. Einstein's Photoemission from Quantum Confined Superlattices.

    PubMed

    Debbarma, S; Ghatak, K P

    2016-01-01

    This paper is dedicated to the 83th Birthday of Late Professor B. R. Nag, D.Sc., formerly Head of the Departments of Radio Physics and Electronics and Electronic Science of the University of Calcutta, a firm believer of the concept of theoretical minimum of Landau and an internationally well known semiconductor physicist, to whom the second author remains ever grateful as a student and research worker from 1974-2004. In this paper, an attempt is made to study, the Einstein's photoemission (EP) from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum well heavily doped superlattices (QWHDSLs) with graded interfaces in the presence of quantizing magnetic field on the basis of newly formulated electron dispersion relations within the frame work of k · p formalism. The EP from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum wells of heavily doped effective mass superlattices respectively has been presented under magnetic quantization. Besides the said emissions, from the quantum dots of the aforementioned heavily doped SLs have further investigated for the purpose of comparison and complete investigation in the context of EP from quantum confined superlattices. Using appropriate SLs, it appears that the EP increases with increasing surface electron concentration and decreasing film thickness in spiky manners, which are the characteristic features of such quantized hetero structures. Under magnetic quantization, the EP oscillates with inverse quantizing magnetic field due to Shuvnikov-de Haas effect. The EP increases with increasing photo energy in a step-like manner and the numerical values of EP with all the physical variables are totally band structure dependent for all the cases. The most striking features are that the presence of poles in the dispersion relation of the materials in the absence of band tails create the complex energy spectra in the corresponding HD constituent materials of such quantum confined superlattices and effective electron

  20. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    SciTech Connect

    Post, R F; Fowler, T K; Bulmer, R; Byers, J; Hua, D; Tung, L

    2004-07-15

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma. At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employed a low-beta code written especially to analyze the beam injection/stabilization process, and a new code SYMTRAN (by Hua and Fowler) that solves the coupled radial and axial particle and energy transport in a K-S TM. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values. The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma. Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging. Our studies have confirmed the viability of the K-S-T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution. In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K