Science.gov

Sample records for confinement time

  1. Coupling of transit time instabilities in electrostatic confinement fusion devices

    SciTech Connect

    Gruenwald, J. Fröhlich, M.

    2015-07-15

    A model of the behavior of transit time instabilities in an electrostatic confinement fusion reactor is presented in this letter. It is demonstrated that different modes are excited within the spherical cathode of a Farnsworth fusor. Each of these modes is dependent on the fusion products as well as the acceleration voltage applied between the two electrodes and they couple to a resulting oscillation showing non-linear beat phenomena. This type of instability is similar to the transit time instability of electrons between two resonant surfaces but the presence of ions and the occurring fusion reactions alter the physics of this instability considerably. The physics of this plasma instability is examined in detail for typical physical parameter ranges of electrostatic confinement fusion devices.

  2. High energy and particle confinement times in PDX scoop discharges

    NASA Astrophysics Data System (ADS)

    Budny, R.; Bol, K.; Fonck, R.; Goldston, R.; Grek, B.; Heidbrink, W.; Heifetz, D.; Johnson, D.; Kaita, R.; Kaye, S.; Kugel, H.; Manos, D.; Mccune, D.; Mikkelsen, D.; Owens, K.; Post, D.; Redi, M.; Singer, C.; Strachan, J.

    1984-12-01

    Scoop limited discharges in PDX with neutral beam heating achieved energy and particle confinement times higher than those inferred from similar poloidal rail limiter discharges. We present transport simulations using TRANSP and BALDUR and neutral simulations using DEGAS. Large neutral densities and ionization rates localized near the scoop are inferred. Thermal neutral ionization increases the edge electron density substantially, resulting in a flattened density profile. Fueling from the scoop limiter is deeper than from simple limiters.

  3. Tamping effects and confinement time in NIF experiments

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Cheng, B.; Kwan, T. J. T.; Merrill, F.; Cerjan, C.; Batha, S. H.

    2015-11-01

    Tamper is expected to play an important role in inertial confinement fusion capsule experiments performed at the National Ignition Facility (NIF). It is expected to increase the confinement time of thermonuclear burning (TN) in the hot spot. In this work, we study the dependence of the capsule performance with respect to the density ratio of the pusher to the hot fuel at the cold-hot interface numerically through LASNEX simulations in one-dimension. Our study shows that the dependence of the capsule performance (neutron yield) with respect to the square root of the density ratio is not linear: the sharper the interface, the higher the tamping effect and neutron yields. Our analysis indicates that the tamping factor in both NIC and NIF experiments has not been appreciable and the tamping factor on yield is less than 1.1. Thus, the tamping factor has not yet played a significant role in the current NIF ignition design. Furthermore, the confinement time in NIF experiments will be discussed. (LA-UR-15-25596).

  4. Short Lyapunov time: a method for identifying confined chaos

    NASA Astrophysics Data System (ADS)

    Winter, O. C.; Mourão, D. C.; Giuliatti Winter, S. M.

    2010-11-01

    Context. The orbital instability of minor solar system bodies (asteroids, small satellites, moonlets, and particles) is frequently studied in terms of the Lyapunov characteristic exponent (LCE). Asteroids interior to Jupiter often exihibit very short Lyapunov times, TL, and very large radial variations, becoming Jupiter's crossers and escapers. However, a few cases of asteroids with very short TL and no significant radial variation have been found. These orbits were called “confined chaos” or even “stable chaos”. This feature also appeared in the case of moonlets embedded in Saturn's F ring and disturbed by the nearby satellites Prometheus and Pandora. Aims: We present a simple approach to estimating the contribution of the radial component of the LCE to identify trajectories in the “confined chaos” regime. Methods: To estimate the radial contribution to the maximum LCE, we considered a rotating reference system in which one of the axis was aligned with the radial direction of the reference trajectory. Measuring the distance in the phase space between the two nearby orbits then allowed us to separate the contribution of the radial component from the others. We applied the method to two different dynamical systems: (a) an asteroid around the Sun disturbed by Jupiter; (b) a moonlet of Saturn's F-ring disturbed by the satellites Prometheus and Pandora. Results: In all cases, we found that the method of comparing the radial contribution of the LCE to the entire contribution allows us to correctly distinguish between confined chaos and escapers.

  5. Confined quantum time of arrival for the vanishing potential

    SciTech Connect

    Galapon, Eric A.; Caballar, Roland F.; Bahague, Ricardo

    2005-12-15

    We give full account of our recent report in E. A. Galapon, R. Caballar, and R. Bahague, Phys. Rev. Lett. 93, 180406 (2004), where it is shown that formulating the free quantum time of arrival problem in a segment of the real line suggests rephrasing the quantum time of arrival problem to finding a complete set of states that evolve to unitarily arrive at a given point at a definite time. For a spatially confined particle, here it is shown explicitly that the problem admits a solution in the form of an eigenvalue problem of a class of compact and self-adjoint time of arrival operators derived by a quantization of the classical time of arrival. The eigenfunctions of these operators are numerically demonstrated to unitarily arrive at the origin at their respective eigenvalues.

  6. Modeling the Relaxation Time of DNA Confined in a Nanochannel

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Tree, Douglas R.; Dorfman, Kevin D.

    2014-03-01

    Using a mapping between a dumbbell model and fine-grained Monte Carlo simulations, we have computed the relaxation time of λ-DNA in a high ionic strength buffer confined in a nanochannel (Tree et al., Biomicrofluidics 2013, 7, 054118). The relaxation time thus obtained agrees quantitatively with experimental data (Reisner et al., PRL 2005, 94, 196101) using only a single O(1) fitting parameter to account for the uncertainty in model parameters. In addition to validating our mapping, this agreement supports our previous estimates of the friction coefficient of DNA confined in a nanochannel (Tree et al., PRL 2012, 108, 228105), which have been difficult to validate due to the lack of direct experimental data. Furthermore, our calculation shows that as the channel size passes below ~100 nm (or roughly the Kuhn length of DNA) there is a dramatic drop in the relaxation time. Inasmuch as the chain friction rises with decreasing channel size, the reduction in the relaxation time can be solely attributed to the sharp decline in the fluctuations of the chain extension. Practically, the low variance in the observed DNA extension in such small channels has important implications for genome mapping. This work was supported by the NIH (R01-HG005216 and R01-HG006851) and the NSFC (21204061) and was carried out in part using computing resources at the University of Minnesota Supercomputing Institute.

  7. Modeling the relaxation time of DNA confined in a nanochannel

    PubMed Central

    Tree, Douglas R.; Wang, Yanwei; Dorfman, Kevin D.

    2013-01-01

    Using a mapping between a Rouse dumbbell model and fine-grained Monte Carlo simulations, we have computed the relaxation time of λ-DNA in a high ionic strength buffer confined in a nanochannel. The relaxation time thus obtained agrees quantitatively with experimental data [Reisner et al., Phys. Rev. Lett. 94, 196101 (2005)] using only a single O(1) fitting parameter to account for the uncertainty in model parameters. In addition to validating our mapping, this agreement supports our previous estimates of the friction coefficient of DNA confined in a nanochannel [Tree et al., Phys. Rev. Lett. 108, 228105 (2012)], which have been difficult to validate due to the lack of direct experimental data. Furthermore, the model calculation shows that as the channel size passes below approximately 100 nm (or roughly the Kuhn length of DNA) there is a dramatic drop in the relaxation time. Inasmuch as the chain friction rises with decreasing channel size, the reduction in the relaxation time can be solely attributed to the sharp decline in the fluctuations of the chain extension. Practically, the low variance in the observed DNA extension in such small channels has important implications for genome mapping. PMID:24309551

  8. Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.

    PubMed

    Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht

    2013-09-21

    The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential. PMID:24070284

  9. Finite Time Lyapunov Exponents for magnetically confined plasmas

    NASA Astrophysics Data System (ADS)

    Sugiyama, Linda; Krishnan, Harinarayan

    2012-10-01

    Finite Time Lyapunov Exponents (FTLEs) are applied for the first time to magnetically confined plasmas. The FTLE measures the local divergence or convergence of n-dimensional vector fields. Time-dependent FTLEs are directly related to Lagrangian Coherent Structures, which form the underlying structure of turbulent flows. Modern FTLE methods, developed over the past decade, are evolving rapidly and leading to new practical and theoretical insights into turbulent fluid dynamics. In contrast to fluids, an MHD plasma has two vector fields, the magnetic field and the plasma flow. Accurate methods for computing and visualizing FTLEs for the MHD fields have been developed, based on the VisIt visualization package. They are applied to time slices of a large sawtooth crash in a toroidal plasma, computed by the M3D extended MHD code. The plasma structures for both B and v have unexpected properties that are not brought out by conventional analyses. The sawtooth crash is also found to have well-organized ``flow'' structures in v±B. The FTLE appears to be a sensitive diagnostic for the structure of stochastic magnetic fields. The methods are not restricted to MHD, since they apply to almost any vector field.

  10. Confinement time and energy balance in the CTX spheromak

    SciTech Connect

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.

    1984-01-01

    The multipoint Thomson scattering diagnostic on CTX allows measurement of electron plasma pressure. The pressure correlates well with the poloidal flux function. Analysis using equilibrium models allows the (..beta..)/sub vol/ to be calculated from over 100 Thomson scattering profiles taken under standard conditions of spheromak operation where the plasma parameters vary widely within the discharge. The calculated tau/sub E/ increases with central core temperature and with density. The global magnetic energy decay time tau/sub B/2 is consistent with Spitzer-Harm resistivity, but with an anomaly factor of 2 to 4 which may decrease at small ratios of B/n. The n tau/sub E/ product reaches 4 x 10/sup 9/ s cm/sup -3/ during the hottest part of the discharge. A zero-dimensional energy balance code, which accurately includes all the major atomic physics processes and whose parameters have been constrained by comparision to experimental data, is used to identify the causes of energy loss that contribute to the observed confinement time. The most important power loss is that needed to replace the particles being lost and to maintain the constant density of the plateau.

  11. Full-f gyrokinetic simulation over a confinement time

    SciTech Connect

    Idomura, Yasuhiro

    2014-02-15

    A long time ion temperature gradient driven turbulence simulation over a confinement time is performed using the full-f gyrokinetic Eulerian code GT5D. The convergence of steady temperature and rotation profiles is examined, and it is shown that the profile relaxation can be significantly accelerated when the simulation is initialized with linearly unstable temperature profiles. In the steady state, the temperature profile and the ion heat diffusivity are self-consistently determined by the power balance condition, while the intrinsic rotation profile is sustained by complicated momentum transport processes without momentum input. The steady turbulent momentum transport is characterized by bursty non-diffusive fluxes, and the resulting turbulent residual stress is consistent with the profile shear stress theory [Y. Camenen et al., “Consequences of profile shearing on toroidal momentum transport,” Nucl. Fusion 51, 073039 (2011)] in which the residual stress depends not only on the profile shear and the radial electric field shear but also on the radial electric field itself. Based on the toroidal angular momentum conservation, it is found that in the steady null momentum transport state, the turbulent residual stress is cancelled by the neoclassical counterpart, which is greatly enhanced in the presence of turbulent fluctuations.

  12. Improvement of confinement times of lithium ion and electron plasmas in BX-U

    SciTech Connect

    Himura, H.; Noichi, T.; Nakata, S.; Kawai, S.; Sanpei, A.

    2015-06-29

    Confinements of both electron (e{sup −}) and Lithium ion (Li{sup +}) plasmas in the BX-U machine are improved experimentally. For the e{sup −} plasma, the longest confinement time so far has been ∼ 10 s, which is much longer than the classical electron-electron collision time: τ{sub ee} ∼ 0.6 s. On the other hand, for the Li{sup +} plasma, the longest confinement time has been about 0.5 s, which is still much shorter than the classical ion-ion collision time.

  13. Effects of internal inductance on the energy confinement time by using the solution of equilibrium problem

    NASA Astrophysics Data System (ADS)

    Asif, M.

    2016-06-01

    In this work, dependence of energy confinement time on plasma internal inductance has been studied by using the solution of Grad-Shafranov equation (GSE) for circular cross-section HT-7 tokamak. For this, the Shafranov parameter (asymmetry factor) and poloidal beta were obtained from solution of GSE. Then we can find the dependence of energy confinement time, on plasma internal inductance. It is observed that the maximum energy confinement time is related to the low values of internal inductance (0.7 < li < 0.9).

  14. Strongly confined fluids: Diverging time scales and slowing down of equilibration

    NASA Astrophysics Data System (ADS)

    Schilling, Rolf

    2016-06-01

    The Newtonian dynamics of strongly confined fluids exhibits a rich behavior. Its confined and unconfined degrees of freedom decouple for confinement length L →0 . In that case and for a slit geometry the intermediate scattering functions Sμ ν(q ,t ) simplify, resulting for (μ ,ν )≠(0 ,0 ) in a Knudsen-gas-like behavior of the confined degrees of freedom, and otherwise in S∥(q ,t ) , describing the structural relaxation of the unconfined ones. Taking the coupling into account we prove that the energy fluctuations relax exponentially. For smooth potentials the relaxation times diverge as L-3 and L-4, respectively, for the confined and unconfined degrees of freedom. The strength of the L-3 divergence can be calculated analytically. It depends on the pair potential and the two-dimensional pair distribution function. Experimental setups are suggested to test these predictions.

  15. Exponential time differencing methods with Chebyshev collocation for polymers confined by interacting surfaces

    SciTech Connect

    Liu, Yi-Xin Zhang, Hong-Dong

    2014-06-14

    We present a fast and accurate numerical method for the self-consistent field theory calculations of confined polymer systems. It introduces an exponential time differencing method (ETDRK4) based on Chebyshev collocation, which exhibits fourth-order accuracy in temporal domain and spectral accuracy in spatial domain, to solve the modified diffusion equations. Similar to the approach proposed by Hur et al. [Macromolecules 45, 2905 (2012)], non-periodic boundary conditions are adopted to model the confining walls with or without preferential interactions with polymer species, avoiding the use of surface field terms and the mask technique in a conventional approach. The performance of ETDRK4 is examined in comparison with the operator splitting methods with either Fourier collocation or Chebyshev collocation. Numerical experiments show that our exponential time differencing method is more efficient than the operator splitting methods in high accuracy calculations. This method has been applied to diblock copolymers confined by two parallel flat surfaces.

  16. Exponential time differencing methods with Chebyshev collocation for polymers confined by interacting surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Xin; Zhang, Hong-Dong

    2014-06-01

    We present a fast and accurate numerical method for the self-consistent field theory calculations of confined polymer systems. It introduces an exponential time differencing method (ETDRK4) based on Chebyshev collocation, which exhibits fourth-order accuracy in temporal domain and spectral accuracy in spatial domain, to solve the modified diffusion equations. Similar to the approach proposed by Hur et al. [Macromolecules 45, 2905 (2012)], non-periodic boundary conditions are adopted to model the confining walls with or without preferential interactions with polymer species, avoiding the use of surface field terms and the mask technique in a conventional approach. The performance of ETDRK4 is examined in comparison with the operator splitting methods with either Fourier collocation or Chebyshev collocation. Numerical experiments show that our exponential time differencing method is more efficient than the operator splitting methods in high accuracy calculations. This method has been applied to diblock copolymers confined by two parallel flat surfaces.

  17. A model for inferring transport rates from observed confinement times in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.; Milroy, Richard D.; Slough, John T.

    1985-03-01

    A one-dimensional transport model is developed to simulate the confinement of plasma and magnetic flux in a field-reversed configuration. Given the resistivity, the confinement times can be calculated. Approximate expressions are found which yield the magnitude and gross profile of the resistivity if the confinement times are known. These results are applied to experimental data from experiments, primarily TRX-1, to uncover trends in the transport properties. Several important conclusions emerge. The transport depends profoundly, and inexplicably, on the plasma formation mode. The inferred transport differs in several ways from the predictions of local lower-hybrid-drift turbulence theory. Finally, the gross resistivity exhibits an unusual trend with xs (separatrix radius rs divided by the conducting wall radius rc ), and is peaked near the magnetic axis for certain predictable conditions.

  18. Mean first-passage times of non-Markovian random walkers in confinement.

    PubMed

    Guérin, T; Levernier, N; Bénichou, O; Voituriez, R

    2016-06-16

    The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement. PMID:27306185

  19. Mean first-passage times of non-Markovian random walkers in confinement

    NASA Astrophysics Data System (ADS)

    Guérin, T.; Levernier, N.; Bénichou, O.; Voituriez, R.

    2016-06-01

    The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.

  20. Wave function for harmonically confined electrons in time-dependent electric and magnetostatic fields

    SciTech Connect

    Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht

    2014-01-14

    We derive via the interaction “representation” the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field—the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement – the uniform electron gas – the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.

  1. Fivefold confinement time increase in the Madison Symmetric Torus using inductive poloidal current drive

    SciTech Connect

    Stoneking, M.R.; Lanier, N.E.; Prager, S.C.; Sarff, J.S.; Sinitsyn, D.

    1996-12-01

    Current profile control is employed in the Madison Symmetric Torus reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 ms to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% and the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch.

  2. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    DOE PAGES

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; et al

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  3. Direct observation of low frequency confined acoustic phonons in silver nanoparticles: Terahertz time domain spectroscopy.

    PubMed

    Kumar, Sunil; Kamaraju, N; Karthikeyan, B; Tondusson, M; Freysz, E; Sood, A K

    2010-07-01

    Terahertz time domain spectroscopy has been used to study low frequency confined acoustic phonons of silver nanoparticles embedded in poly(vinyl alcohol) matrix in the spectral range of 0.1-2.5 THz. The real and imaginary parts of the dielectric function show two bands at 0.60 and 2.12 THz attributed to the spheroidal and toroidal modes of silver nanoparticles, thus demonstrating the usefulness of terahertz time domain spectroscopy as a complementary technique to Raman spectroscopy in characterizing the nanoparticles.

  4. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  5. Energy confinement time and electron density profile shape in TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Park, H.K.; Bell, M.G.; Goldston, R.J.; Hawryluk, R.J.; Johnson, D.W.; Scott, S.D.; Wieland, R.M.; Zarnstorff, M.C.; Bitter, M.; Bretz, N.; Budny, R.; Dylla, H.F.; Grek, B.; Howell, R.B.; Hsuan , H.; Johnson, L.C.; Mansfield, D.K.; Ramsey, A.T.; Schivell, J.; Taylor, G.; Ulrickson, M.

    1989-11-01

    The electron density profiles of intense deuterium neutral-beam- heated plasmas (P{sub tot}/P{sub ohm} {gt} 10) are characterized as a peakedness parameter (F{sub ne} = n{sub eo}/{l angle}n{sub e}{r angle}) in the Tokamak Fusion Test Reactor (TFTR). The gross energy confinement time ({tau}{sub E} = E{sub tot}/P{sub tot}) at the time of maximum stored energy is found to be a weak function of the plasma current and total heating power but depends strongly on the peakedness parameter. A regression study showed {tau}{sub E} = 2.4 {times} 10{sup {minus}3}F{sub ne}{sup 0.76}I{sub P}{sup 0.18}P{sub tot}{sup {minus}0.12} for a data set of 561 discharges in the TFTR. Also {tau}{sub E} can be represented as {tau}{sub E} = {tau}{sub E}{sup L}f(F{sub ne}), where {tau}{sub E}{sup L} is the empirical L-mode scaling result. A similar scaling applies to an appropriately defined incremental energy confinement time ({tau}{sub inc} = dE{sub tot}/dP{sub tot}{vert bar}{sub F{sub ne} = constant}). 14 refs., 4 figs.

  6. Wave function for dissipative harmonically confined electrons in a time-dependent electric field

    NASA Astrophysics Data System (ADS)

    Lai, Meng-Yun; Pan, Xiao-Yin; Li, Yu-Qi

    2016-07-01

    We investigate the many-body wave function of a dissipative system of interacting particles confined by a harmonic potential and perturbed by a time-dependent spatially homogeneous electric field. Applying the method of Yu and Sun (1994), it is found that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent (TD) Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical damped driven equation of motion, plus an addition fluctuation term due to the Brownian motion. The wave function reduces to that of the Harmonic Potential Theorem (HPT) wave function in the absence of the dissipation. An example of application of the results derived is also given.

  7. Real time reciprocal space mapping of nano-islands induced by quantum confinment.

    SciTech Connect

    Hong, H.; Gray, A.; Chiang, T. C.

    2011-01-01

    The effects of quantum confinement have been observed pronouncedly in the island morphology of Pb thin films. The evolution of these nano-islands on Si (111)-(7 x 7) and sapphire (001) surfaces has been studied with a new X-ray diffraction method. A charge-coupled device (CCD) camera was used to collect two- and three-dimensional (2-D and 3-D, respectively) maps of the surface X-ray diffraction in real time. Large ranges of the reflectivity curves, with rocking curves at every point on the reflectivity curves, could be measured continuously in a relatively short amount of time. The abundance of information from 2-D k-space maps reveals clear changes in the growth modes of these thin Pb films. With the 3-D extension of this method, it was possible to observe the ordering of the islands. The islands maintain a nearly uniform interisland distance but lack any angular correlation. The interisland ordering is correlated well with the development of 'magic' island heights caused by quantum confinement.

  8. Spot Variation Fluorescence Correlation Spectroscopy Allows for Superresolution Chronoscopy of Confinement Times in Membranes

    PubMed Central

    Ruprecht, Verena; Wieser, Stefan; Marguet, Didier; Schütz, Gerhard J.

    2011-01-01

    Resolving the dynamical interplay of proteins and lipids in the live-cell plasma membrane represents a central goal in current cell biology. Superresolution concepts have introduced a means of capturing spatial heterogeneity at a nanoscopic length scale. Similar concepts for detecting dynamical transitions (superresolution chronoscopy) are still lacking. Here, we show that recently introduced spot-variation fluorescence correlation spectroscopy allows for sensing transient confinement times of membrane constituents at dramatically improved resolution. Using standard diffraction-limited optics, spot-variation fluorescence correlation spectroscopy captures signatures of single retardation events far below the transit time of the tracer through the focal spot. We provide an analytical description of special cases of transient binding of a tracer to pointlike traps, or association of a tracer with nanodomains. The influence of trap mobility and the underlying binding kinetics are quantified. Experimental approaches are suggested that allow for gaining quantitative mechanistic insights into the interaction processes of membrane constituents. PMID:21641330

  9. Effect of crowding and confinement on first-passage times: A model study

    NASA Astrophysics Data System (ADS)

    Antoine, C.; Talbot, J.

    2016-06-01

    We study the "color dynamics" of a hard-disk fluid confined in an annulus, as well as the corresponding hard-sphere system in three dimensions, using event-driven simulation in order to explore the effect of confinement and self-crowding on the search for targets. We compute the mean first-passage times (MFPTs) of red particles transiting from the outer to the inner boundary as well as those of blue particles passing from the inner to the outer boundary for different packing fractions and geometries. In the steady state the reaction rate, defined as the rate of collision of red particles with the inner boundary, is inversely proportional to the sum of the MFPTs. The reaction rate is wall mediated (ballistic) at low densities and diffusion controlled at higher densities and displays a maximum at intermediate densities. At moderate to high densities, the presence of layering has a strong influence on the search process. The numerical results for the reaction rate and MFPTs are compared with a ballistic model at low densities and a Smoluchowski approach with uniform diffusivities at higher densities. We discuss the reasons for the limited validity of the theoretical approaches. The maximum in the reaction rate is qualitatively well rendered by a Bosanquet-like approach that interpolates between the two regimes. Finally, we compute the position-dependent diffusivity from the MFPTs and observe that it is out of phase with the radial density.

  10. Effect of crowding and confinement on first-passage times: A model study.

    PubMed

    Antoine, C; Talbot, J

    2016-06-01

    We study the "color dynamics" of a hard-disk fluid confined in an annulus, as well as the corresponding hard-sphere system in three dimensions, using event-driven simulation in order to explore the effect of confinement and self-crowding on the search for targets. We compute the mean first-passage times (MFPTs) of red particles transiting from the outer to the inner boundary as well as those of blue particles passing from the inner to the outer boundary for different packing fractions and geometries. In the steady state the reaction rate, defined as the rate of collision of red particles with the inner boundary, is inversely proportional to the sum of the MFPTs. The reaction rate is wall mediated (ballistic) at low densities and diffusion controlled at higher densities and displays a maximum at intermediate densities. At moderate to high densities, the presence of layering has a strong influence on the search process. The numerical results for the reaction rate and MFPTs are compared with a ballistic model at low densities and a Smoluchowski approach with uniform diffusivities at higher densities. We discuss the reasons for the limited validity of the theoretical approaches. The maximum in the reaction rate is qualitatively well rendered by a Bosanquet-like approach that interpolates between the two regimes. Finally, we compute the position-dependent diffusivity from the MFPTs and observe that it is out of phase with the radial density. PMID:27415221

  11. A highly efficient neutron time-of-flight detector for inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Yamaguchi, K.; Yamagajo, T.; Nakano, T.; Kasai, T.; Urano, T.; Azechi, H.; Nakai, S.; Iida, T.

    1999-01-01

    We have developed the highly efficient neutron detector system MANDALA for the inertial-confinement-fusion experiment. The MANDALA system consists of 842 elements plastic scintillation detectors and data acquisition electronics. The detection level is the yield of 1.2×105 for 2.5 MeV and 1×105 for 14.1 MeV neutrons (with 100 detected hits). We have calibrated the intrinsic detection efficiencies of the detector elements using a neutron generator facility. Timing calibration and integrity test of the system were also carried out with a 60Co γ ray source. MANDALA system was applied to the implosion experiments at the GEKKO XII laser facility. The integrity test was carried out by implosion experiments.

  12. Passage times of confined cancer cells and deformable particles flowing through a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Khan, Zeina; Kamyabi, Nabiollah; Hussain, Fazle; Vanapalli, Siva

    Circulating tumor cells, the primary cause of cancer metastasis, have to navigate through tight extracellular matrix and capillaries. Unfortunately, understanding of the hydrodynamic interactions between cells and narrow vessel walls is lacking. Using a microfluidic channel of rectangular cross-section, we investigate cell hydrodynamic behavior by measuring cell confinement, passage time through the microchannel, and excess pressure drop. Testing with highly and lowly aggressive cancer cells shows that passage time may not always be indicative of cancer cell aggressiveness as the relationship among passage time, friction and rheology is complex. Transport of deformable particles including droplets of varying viscosity and interfacial tension, as well as elastic particles of different elastic moduli, reveals that passage times depend on particle size and, contrary to prior claims, on viscosity but not on elastic modulus. We also find that particle viscosity and not modulus controls the friction force and lubrication film thickness, suggesting that cancer cell viscosity rather than elasticity controls cell transport on short time-scales.

  13. Use of time-subsidence data during pumping to characterize specific storage and hydraulic conductivity of semi-confining units

    NASA Astrophysics Data System (ADS)

    Burbey, T. J.

    2003-09-01

    A new graphical technique is developed that takes advantage of time-subsidence data collected from either traditional extensometer installations or from newer technologies such as fixed-station global positioning systems or interferometric synthetic aperture radar imagery, to accurately estimate storage properties of the aquifer and vertical hydraulic conductivity of semi-confining units. Semi-log plots of time-compaction data are highly diagnostic with the straight-line portion of the plot reflecting the specific storage of the semi-confining unit. Calculation of compaction during one-log cycle of time from these plots can be used in a simple analytical expression based on the Cooper-Jacob technique to accurately calculate specific storage of the semi-confining units. In addition, these semi-log plots can be used to identify when the pressure transient has migrated through the confining layer into the unpumped aquifer, precluding the need for additional piezometers within the unpumped aquifer or within the semi-confining units as is necessary in the Neuman and Witherspoon method. Numerical simulations are used to evaluate the accuracy of the new technique. The technique was applied to time-drawdown and time-compaction data collected near Franklin Virginia, within the Potomac aquifers of the Coastal Plain, and shows that the method can be easily applied to estimate the inelastic skeletal specific storage of this aquifer system.

  14. Angular radiation temperature simulation for time-dependent capsule drive prediction in inertial confinement fusion

    SciTech Connect

    Jing, Longfei; Yang, Dong; Li, Hang; Zhang, Lu; Lin, Zhiwei; Li, Liling; Kuang, Longyu; Jiang, Shaoen Ding, Yongkun; Huang, Yunbao

    2015-02-15

    The x-ray drive on a capsule in an inertial confinement fusion setup is crucial for ignition. Unfortunately, a direct measurement has not been possible so far. We propose an angular radiation temperature simulation to predict the time-dependent drive on the capsule. A simple model, based on the view-factor method for the simulation of the radiation temperature, is presented and compared with the experimental data obtained using the OMEGA laser facility and the simulation results acquired with VISRAD code. We found a good agreement between the time-dependent measurements and the simulation results obtained using this model. The validated model was then used to analyze the experimental results from the Shenguang-III prototype laser facility. More specifically, the variations of the peak radiation temperatures at different view angles with the albedo of the hohlraum, the motion of the laser spots, the closure of the laser entrance holes, and the deviation of the laser power were investigated. Furthermore, the time-dependent radiation temperature at different orientations and the drive history on the capsule were calculated. The results indicate that the radiation temperature from “U20W112” (named according to the diagnostic hole ID on the target chamber) can be used to approximately predict the drive temperature on the capsule. In addition, the influence of the capsule on the peak radiation temperature is also presented.

  15. Confinement time of electron plasma approaching magnetic pumping transport limit in small aspect ratio C-shaped torus

    NASA Astrophysics Data System (ADS)

    Lachhvani, Lavkesh; Pahari, Sambaran; Goswami, Rajiv; Bajpai, Manu; Yeole, Yogesh; Chattopadhyay, P. K.

    2016-06-01

    A long confinement time of electron plasma, approaching magnetic pumping transport limit, has been observed in SMARTEX-C (a small aspect ratio partial torus with R o / a ˜ 1.59 ). Investigations of the growth rate reveal that they are governed by instabilities like resistive wall destabilization, ion driven instabilities, and electron-neutral collisions. Successful confinement of electron plasmas exceeding > 1 × 10 5 poloidal E → × B → rotations lasting for nearly 2.1 ± 0.1 s is achieved by suppressing these instabilities. The confinement time has been estimated in two ways: (a) from the frequency scaling of the linear diocotron mode launched from sections of the wall that are also used as capacitive probes and (b) by dumping the plasma onto a charge collector at different hold times.

  16. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect

    Hatarik, R. Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Mcnaney, J. M.; Munro, D. H.; Knauer, J. P.

    2015-11-14

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + {sup 3}He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (T{sub ion}) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent T{sub ion}, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT T{sub ion} of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for T{sub ion} and 10% for the neutron yield.

  17. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-01

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + 3He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent Tion, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT Tion of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for Tion and 10% for the neutron yield.

  18. {gamma}-ray 'bang-time' measurements with a gas-Cherenkov detector for inertial-confinement fusion experiments

    SciTech Connect

    Horsfield, C. J.; Caldwell, S. E.; Christensen, C. R.; Evans, S. C.; Mack, J. M.; Sedillo, T.; Young, C. S.; Glebov, V. Yu.

    2006-10-15

    In a laser driven inertial-confinement fusion experiment, bang time is defined as the time between the laser light impinging the target and the peak of the fusion reactions. Bang time is often used to compare computed predictions to experiment. Large laser facilities, such as NIF and LMJ, which are currently under construction, will produce yields far in excess of any previous inertial-confinement fusion experiment. One of the implications of such high yields is that fusion {gamma} rays, which have branching ratios four orders of magnitude less than that of fusion neutrons, may be used to diagnose bang time. This article describes the first of such {gamma}-ray bang-time measurement made using the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The diagnostic used for this was a gas Cherenkov detector. The experimental setup, data and error analyses, and suggested improvements are presented.

  19. Regional fluid flow and heat distribution over geological time scales at the margin of unconfined and confined carbonate sequences

    NASA Astrophysics Data System (ADS)

    Havril, Timea; Mádl-Szönyi, Judit; Molson, John

    2016-04-01

    permeability confining formation, which facilitates buoyancy-driven flow by restricting the dissipation of heat. Over geological time, these cells were gradually overprinted by gravity-driven flow and thermal advection due to the uplift of the western part of the system. The limited thickness of the cover along the western block allowed efficient water infiltration into the system, which leads to an increased cooling effect. Further uplifting of the western part leads to a change of the main character of the flow patterns, with gravity-driven groundwater flow dominating over the effect of buoyancy-driven flow. Although cooling of the system has significantly progressed, conditions over the confined part of the system are still favorable for the development of thermal convection cells, and leads to significant heat accumulation under the confined sub-basin. The flow and heat transport simulations have helped to derive the main evolutionary characteristics of groundwater flow and heat transport patterns for the unconfined and confined parts of the region. The result is flow convergence toward the discharge zone from different sources over geological time scales. This is decisive for heat accumulation as well as for the development of a deep geothermal energy potential in confined carbonates. The research is supported by the Hungarian Research Fund.

  20. Patterned time-orbiting potentials for the confinement and assembly of magnetic dipoles

    PubMed Central

    Chen, A.; Sooryakumar, R.

    2013-01-01

    We present an all-magnetic scheme for the assembly and study of magnetic dipoles within designed confinement profiles that are activated on micro-patterned permalloy films through a precessing magnetic field. Independent control over the confinement and dipolar interactions is achieved by tuning the strength and orientation of the revolving field. The technique is demonstrated with superparamagnetic microspheres field-driven to assemble into closely packed lattice sheets, quasi-1D and other planar structures expandable into dipolar arrays that mirror the patterned surface motifs. PMID:24185093

  1. Structural transitions and long-time self-diffusion of interacting colloids confined by a parabolic potential.

    PubMed

    Euán-Díaz, Edith C; Herrera-Velarde, Salvador; Misko, Vyacheslav R; Peeters, François M; Castañeda-Priego, Ramón

    2015-01-14

    We report on the ordering and dynamics of interacting colloidal particles confined by a parabolic potential. By means of Brownian dynamics simulations, we find that by varying the magnitude of the trap stiffness, it is possible to control the dimension of the system and, thus, explore both the structural transitions and the long-time self-diffusion coefficient as a function of the degree of confinement. We particularly study the structural ordering in the directions perpendicular and parallel to the confinement. Further analysis of the local distribution of the first-neighbors layer allows us to identify the different structural phases induced by the parabolic potential. These results are summarized in a structural state diagram that describes the way in which the colloidal suspension undergoes a structural re-ordering while increasing the confinement. To fully understand the particle dynamics, we take into account hydrodynamic interactions between colloids; the parabolic potential constricts the available space for the colloids, but it does not act on the solvent. Our findings show a non-linear behavior of the long-time self-diffusion coefficient that is associated to the structural transitions induced by the external field.

  2. Influence of time, temperature, confining pressure and fluid content on the experimental compaction of spherical grains

    NASA Astrophysics Data System (ADS)

    Rossi, M.; Vidal, O.; Wunder, B.; Renard, F.

    2007-08-01

    Theoretical models of compaction processes, such as for example intergranular pressure-solution (IPS), focus on deformation occurring at the contacts between spherical grains that constitute an aggregate. In order to investigate the applicability of such models, and to quantify the deformation of particles within an aggregate, isostatic experiments were performed in cold-sealed vessels on glass sphere aggregates at 200 MPa confining pressure and 350 °C with varying amounts of fluid. Several runs were performed in order to investigate the effects of time, fluid content, pressure and temperature, by varying one of these parameters and holding the others fixed. In order to compare the aggregates with natural materials, similar experiments were also performed using quartz sand instead of glass spheres. Experiments with quartz show evidence of IPS, but the strain could not be quantified. Experiments with glass spheres show evidence of several types of deformation processes: both brittle (fracturing) and ductile (plastic flow and fluid-enhanced deformation, such as IPS). In experiments with a large amount of water (≥ 5 vol.%), dissolution and recrystallization of the glass spheres also occurred, coupled with crystallization of new material filling the initial porosity. Experiments performed with a fluid content of less than 1 vol.% indicate creep behavior that is typical of glass deformation, following an exponential law. These experiments can also be made to fit a power law for creep, with a stress exponent of n = 10.5 ± 2.2 in both dry and wet experiments. However, the pre-factor of the power law creep increases 5 times with the addition of water, showing the strong effect of water on the deformation rate. These simple and low-cost experiments provide new insights on the rheology of soda-lime glass, which is used in analogue experiments, and of glass-bearing rocks under mid-crustal P- T conditions. They also highlight the strong enhancement of plasticity of natural

  3. Comparison of confinement in resistive-shell reversed-field pinch devices with two different magnetic shell penetration times

    NASA Astrophysics Data System (ADS)

    Gravestijn, R. M.; Drake, J. R.; Hedqvist, A.; Rachlew, E.

    2004-01-01

    A loop voltage is required to sustain the reversed-field pinch (RFP) equilibrium. The configuration is characterized by redistribution of magnetic helicity but with the condition that the total helicity is maintained constant. The magnetic field shell penetration time, tgrs, has a critical role in the stability and performance of the RFP. Confinement in the EXTRAP device has been studied with two values of tgrs, first (EXTRAP-T2) with tgrs of the order of the typical relaxation cycle timescale and then (EXTRAP-T2R) with tgrs much longer than the relaxation cycle timescale, but still much shorter than the pulse length. Plasma parameters show significant improvements in confinement in EXTRAP-T2R. The typical loop voltage required to sustain comparable electron poloidal beta values is a factor of 3 lower in the EXTRAP-T2R device. The improvement is attributed to reduced magnetic turbulence.

  4. Application of symbolic regression to the derivation of scaling laws for tokamak energy confinement time in terms of dimensionless quantities

    NASA Astrophysics Data System (ADS)

    Murari, A.; Peluso, E.; Lungaroni, M.; Gelfusa, M.; Gaudio, P.

    2016-02-01

    In many scientific applications, it is important to investigate how certain properties scale with the parameters of the systems. The experimental studies of scalings have traditionally been addressed with log regression, which limits the results to power laws and to theoretical and not data-driven dimensionless quantities. This has also been the case in nuclear fusion, in which the scaling of the energy confinement time is a crucial aspect in understanding the physics of transport and in the design of future devices. Traditionally two main assumptions are at the basis of the most widely accepted empirical scaling laws for the confinement time: (a) the dimensionless variables used are the ones derived from the symmetries of the Vlasov equation; (b) the final scalings have the mathematical form of power laws. In this paper, it is shown how symbolic regression (SR), implemented with genetic programming (GP) techniques, can be used to test these hypotheses. Neither assumption is confirmed by the available data of the multi-machine International Tokamak Physics Activity (ITPA) of validated tokamak discharges. The statistically soundest expressions are not power laws and cannot be formulated in terms of the traditional dimensionless quantities. The consequences of the data-driven scaling laws obtained are both practical and theoretical: the confinement time for the ITER can be significantly shorter than foreseen by power laws and different dimensionless variables should be considered for theoretical investigations. On the other hand, higher quality databases should be built to reduce the uncertainties in the extrapolations. It is also worth emphasising that the proposed methodology is fully general and therefore can be applied to any field of science.

  5. Experimental Study of the Effects of Lithium Coated Plasma Facing Components on Energy Confinement Time in the CDX-U Device

    NASA Astrophysics Data System (ADS)

    Spaleta, Jeffrey; Zakharov, Leonid; Majeski, Richard; Kaita, Robert; Gray, Timothy

    2006-10-01

    The first ever measurements of energy confinement time for spherical tokamak plasmas in the presence of lithium coated plasma facing components (PFC's) have been made in the CDX-U device. The energy confinement time, as derived from power balance considerations using parameters calculated from plasma equilibria, was as large as 6 milliseconds for Ohmic plasmas in the presence of both solid and liquid lithium PFC's. This represents a significant improvement over baseline plasmas, which typically had energy confinement times of 1 millisecond or less. The energy confinement for plasmas with lithium PFC's also showed an improvement over that expected from the ITER98(y,1) confinement scaling. The improvement in confinement over this scaling correlates with the observed increase in density ``pump-out'', which is indicative of low wall-recycling. Plasma equilibria were calculated using a modified version of the Equilibrium and Stability Code (ESC), and were constrained by measurements made from a collection of magnetic field diagnostics. The ESC was modified to incorporate the first ever implementation of a novel response function technique for in-situ magnetic field diagnostic calibration that is insensitive to toroidal asymmetries and vessel wall currents.

  6. Neutron time-of-flight ion temperature diagnostic for inertial confinement fusion experiments

    SciTech Connect

    Chrien, R.E.; Simmons, D.F.; Holmberg, D.L.

    1992-05-01

    We are constructing a T{sub i} diagnostic for low neutron yield (5 {times} 10{sup 7} to above 10{sup 9}) d-d and d-t targets in the Nova facility at Livermore. The diagnostic measures the neutron energy spread with 960 scintillator-photomultiplier detectors located 28 m from the target and operates in the single-hit mode. Each detector can measure a single neutron arrival with time resolution of 1 ns or better. The arrival time distribution is constructed from the results of typically 200--500 detector measurements. The ion temperature is determined from the spread in neutron energy {Delta}E{sub n} {proportional_to} T{sub i}{sup {1/2}}, which is related to the arrival time spread by {Delta}t/t = 1({1/2}{Delta}E{sub n}/E{sub n}). Each neutron arrival is detected by using a photomultiplier tube to observe the recoil proton from elastic scattering in a fast plastic scintillator. The timing electronics for each channel consist of a novel constant fraction-like discriminator and a multiple hit time-to-digital converter (TDC). The overall system design, together with single channel performance data, is presented.

  7. Extended gyrokinetic field theory for time-dependent magnetic confinement fields

    SciTech Connect

    Sugama, H.; Watanabe, T.-H.; Nunami, M.

    2014-01-15

    A gyrokinetic system of equations for turbulent toroidal plasmas in time-dependent axisymmetric background magnetic fields is derived from the variational principle. Besides governing equations for gyrocenter distribution functions and turbulent electromagnetic fields, the conditions which self-consistently determine the background magnetic fields varying on a transport time scale are obtained by using the Lagrangian, which includes the constraint on the background fields. Conservation laws for energy and toroidal angular momentum of the whole system in the time-dependent background magnetic fields are naturally derived by applying Noether's theorem. It is shown that the ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work agree with the results from the conventional recursive formulation with the WKB representation except that collisional effects are disregarded here.

  8. Long-time averaged dynamics of a Bose-Einstein condensate in a bichromatic optical lattice with external harmonic confinement

    NASA Astrophysics Data System (ADS)

    Sakhel, Asaad R.

    2016-07-01

    The dynamics of a Bose-Einstein condensate are examined numerically in the presence of a one-dimensional bichromatic optical lattice (BCOL) with external harmonic confinement in the strongly interacting regime. The condensate is excited by a focusing stirring red laser. Two realizations of the BCOL are considered, one with a rational and the other with an irrational ratio of the two constituting wave lengths. The system is simulated by the time-dependent Gross Pitaevskii equation that is solved using the Crank Nicolson method in real time. It is found that for a weak BCOL, the long-time averaged physical observables of the condensate respond only very weakly (or not at all) to changes in the secondary OL depth V1 showing that under these conditions the harmonic trap plays a dominant role in governing the dynamics. However, for a much larger strength of the BCOL, the response is stronger as it begins to compete with the external harmonic trap, such that the frequency of Bloch oscillations of the bosons rises with V1 yielding higher time-averages. Qualitatively there is no difference between the dynamics of the condensate resulting from the use of a rational or irrational ratio of the wavelengths since the external harmonic trap washes it out. It is further found that in the presence of an external harmonic trap, the BCOL acts in favor of superflow.

  9. A diamond detector for inertial confinement fusion X-ray bang-time measurements at the National Ignition Facility

    SciTech Connect

    MacPhee, A G; Brown, C; Burns, S; Celeste, J; Glenzer, S H; Hey, D; Jones, O S; Landen, O; Mackinnon, A J; Meezan, N; Parker, J; Edgell, D; Glebov, V Y; Kilkenny, J; Kimbrough, J

    2010-11-09

    An instrument has been developed to measure X-ray bang-time for inertial confinement fusion capsules; the time interval between the start of the laser pulse and peak X-ray emission from the fuel core. The instrument comprises chemical vapor deposited polycrystalline diamond photoconductive X-ray detectors with highly ordered pyrolytic graphite X-ray monochromator crystals at the input. Capsule bang-time can be measured in the presence of relatively high thermal and hard X-ray background components due to the selective band pass of the crystals combined with direct and indirect X-ray shielding of the detector elements. A five channel system is being commissioned at the National Ignition Facility at Lawrence Livermore National Laboratory for implosion optimization measurements as part of the National Ignition Campaign. Characteristics of the instrument have been measured demonstrating that X-ray bang-time can be measured with {+-} 30ps precision, characterizing the soft X-ray drive to +/- 1eV or 1.5%.

  10. Time-dependent filamentation and stimulated Brillouin forward scattering in inertial confinement fusion plasmas

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.; Afeyan, Bedros B.

    1998-02-01

    Numerical simulations of the temporal evolution of laser light filamentation and stimulated Brillouin forward scattering (SBFS) in plasmas, under conditions that are relevant to laser fusion, are presented and analyzed. Long term unsteady behavior of filaments is observed to be the norm. Temporal and spatial incoherence due to filamentation and SBFS are impressed upon time-independent incident laser beams. The bandwidth and angular divergence imposed upon the beam increase with the strength of the interaction. In addition, the spectrum of the transmitted light is redshifted by an amount that increases with the interaction strength. Spectral analysis of the transmitted light reveals that SBFS plays a role in the generation of the observed temporal incoherence. Incident beams with some spatial incoherence but no temporal smoothing are compared to those with ab initio temporal beam smoothing (TBS). Under typical conditions, TBS beams will undergo far less angular and spectral spreading and far less SBFS than unsmoothed beams.

  11. Overdamped motion of interacting particles in general confining potentials: time-dependent and stationary-state analyses

    NASA Astrophysics Data System (ADS)

    Ribeiro, M. S.; Nobre, F. D.; Curado, E. M. F.

    2012-12-01

    By comparing numerical and analytical results, it is shown that a system of interacting particles under overdamped motion is very well described by a nonlinear Fokker-Planck equation, which can be associated with nonextensive statistical mechanics. The particle-particle interactions considered are repulsive, motivated by three different physical situations: (i) modified Bessel function, commonly used in vortex-vortex interactions, relevant for the flux-front penetration in disordered type-II superconductors; (ii) Yukawa-like forces, useful for charged particles in plasma, or colloidal suspensions; (iii) derived from a Gaussian potential, common in complex fluids, like polymer chains dispersed in a solvent. Moreover, the system is subjected to a general confining potential, φ( x) = ( α| x| z )/ z ( α > 0 , z > 1), so that a stationary state is reached after a sufficiently long time. Recent numerical and analytical investigations, considering interactions of type (i) and a harmonic confining potential ( z = 2), have shown strong evidence that a q-Gaussian distribution, P( x,t), with q = 0, describes appropriately the particle positions during their time evolution, as well as in their stationary state. Herein we reinforce further the connection with nonextensive statistical mechanics, by presenting numerical evidence showing that: (a) in the case z = 2, different particle-particle interactions only modify the diffusion parameter D of the nonlinear Fokker-Planck equation; (b) for z ≠ 2, all cases investigated fit well the analytical stationary solution P st( x), given in terms of a q-exponential (with the same index q = 0) of the general external potential φ( x). In this later case, we propose an approximate time-dependent P( x,t) (not known analytically for z ≠ 2), which is in very good agreement with the simulations for a large range of times, including the approach to the stationary state. The present work suggests that a wide variety of physical phenomena

  12. Is attention confined to one word at a time? The spatial distribution of parafoveal preview benefits during reading.

    PubMed

    Wang, Chin-An; Inhoff, Albrecht W; Radach, Ralph

    2009-10-01

    Eye movements were recorded while participants read declarative sentences. Each sentence contained a critical three-word sequence with a three-letter target word (n), a spatially adjacent post-target word (n+1), and a subsequent nonadjacent post-target word (n+2). The parafoveal previews of words n and n+2 were manipulated so that they were either fully visible or masked until they were fixated. The results revealed longer word n and word n+1 viewing durations when word n had been masked in the parafovea, and this occurred irrespective of whether the target was skipped or fixated. Furthermore, masking of word n diminished the usefulness of the preview of word n+2. These results indicate that the effect of a parafoveally available target preview was not strictly localized. Instead, it influenced target viewing and the viewing of the two subsequent words in the text. These results are difficult to reconcile with the assumption that attention is confined to one word at a time until that word is recognized and that attention is then shifted from the recognized word to the next.

  13. Dynamic response of materials on sub-nanosecond time scales, and beryllium properties for inertial confinement fusion

    SciTech Connect

    Swift, D C; Tierney, T E; Luo, S N; Paisley, D L; Kyrala, G A; Hauer, A; Greenfield, S R; Koskelo, A C; McClellan, K J; Lorenzana, H E; Knudson, M D; Peralta, P P; Loomis, E

    2004-12-09

    During the past few years, substantial progress has been made in developing experimental techniques capable of investigating the response of materials to dynamic loading on nanosecond time scales and shorter, with multiple diagnostics probing different aspects of the behavior. these relatively short time scales are scientifically interesting because plastic flow and phase changes in common materials with simple crystal structures--such as iron--may be suppressed, allowing unusual states to be induced and the dynamics of plasticity and polymorphism to be explored. Loading by laser ablation can be particularly convenient. The TRIDENT laser has been used to impart shocks and isentropic compression waves from {approx}1 to 200GPa in a range of elements and alloys, with diagnostics including surface velocimetry (line-imaging VISAR), surface displacement (framed area imaging), x-ray diffraction (single crystal and polycrystal), ellipsometry, and Raman spectroscopy. A major motivation has been the study of the properties of beryllium under conditions relevant to the fuel capsule in inertial confinement fusion: magnetically-driven shock and isentropic compression shots at Z were used to investigate the equation of state and shock melting characteristics, complemented by laser ablation experiments to investigate plasticity and heterogeneous response. These results will help to constrain acceptable tolerances on manufacturing, and possible loading paths, for inertial fusion ignition experiments at the National Ignition Facility. Laser-based techniques are being developed further for future material dynamics experiments, where it should be possible to obtain high quality data on strength and phase changes up to at least 1TPa.

  14. Experimental study of the effects of lithium coated plasma facing components on energy confinement time in the CDX-U device

    NASA Astrophysics Data System (ADS)

    Spaleta, Jeffrey Dario

    Experimentally constrained equilibrium reconstructions are an important analysis tool used to understand the physics of magnetically confined plasmas. This thesis describes the first ever calculations of equilibrium reconstructions for spherical tokamak plasmas in the presence of lithium coated plasma facing components (PFC's) in the Current Drive eXperiment - Upgrade (CDX-U) device. Equilibria were calculated using a modified version of the Equilibrium and Stability Code (ESC), and were constrained by measurements made from a collection of magnetic field diagnostics. The ESC was modified to incorporate the first ever implementation of a novel response function technique for magnetic field diagnostic calibration. The technique is well suited for situations where the assumption of toroidal symmetry of the magnetic field is invalid, or when wall eddy currents are too large to neglect. Also included is a detailed discussion of the calculation of energy confinement time from power balance arguments, using parameters obtained from equilibrium reconstructions. The energy confinement time, as derived from plasma equilibria, was as large as 6 milliseconds for plasmas in the presence of both solid and liquid lithium PFC's. This represents a significant improvement over baseline plasmas, which typically had energy confinement times of 1 millisecond or less. The energy confinement for plasmas with lithium PFC's also showed an improvement over that expected from the ITER98y1 confinement scaling, which is derived from a database of earlier tokamak results. The improvement in confinement over this scaling correlates with the observed increase in density "pump-out", which is indicative of low wall-recycling. Traditionally, plasma fueling has been dominated by wall-recycling, with 90% or more of the fuel coming from recycling sources instead of externally controlled means, such as gas puffing or pellet injection. Previous lithium wall coating experiments on the Tokamak Fusion Test

  15. Bioaccumulation of toxicants in the zebra mussel, Dreissena polymorpha, at the Times Beach Confined Disposal Facility, Buffalo, New York.

    PubMed

    Roper, J M; Cherry, D S; Simmers, J W; Tatem, H E

    1996-01-01

    This study consisted of a site characterization followed by biomonitoring the zebra mussel, Dreissena polymorpha, at the Times Beach Confined Disposal Facility (CDF), located in Buffalo, New York. Concentrations of selected contaminants, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and metals -arsenic (As), chromium (Cr), barium (Ba), mercury (Hg), cadmium (Cd), lead (Pb), selenium (Se) and silver (Ag)-were at or below detection limits in the water column. Sediment contaminant concentrations, recorded as dry weight, were as high as 549 mg/kg for total PAHs, 9 mg/kg for PCB Aroclor 1248 and 54, 99, 6, 355, 637 and 16 mg/kg for the metals As, Ba, Cd, Cr, Pb and Hg, respectively. To predict contaminant bioavailability, elutriate and whole sediment toxicity tests were performed utilizing the cladoceran, Daphnia magna. Whole sediment tests indicated significant impact. Control survival was 84%, while sediment treatment had survival ranging from 1 to 7%. Mean control reproduction was 86.8 neonates, whereas treatment reproduction ranged from 1.4 to 9.0. Zebra mussels placed both in the water column (Upper) and at the sediment level (Lower) survived the 34-day exposure. Contaminants that significantly accumulated in zebra mussel tissue (wet wt mg/kg) were total PAHs (6.58), fluoranthene (1.23), pyrene (1.08), chrysene (0.98), benzo(a)anthracene (0.60), PCB Aroclor 1248 (1.64), As (0.97), Cr (2.87) and Ba (7.00). Accumulation of these contaminants in zebra mussel tissue represent a potentially realistic hazard to organisms (i.e. fish and birds) that feed on them.

  16. Spontaneous time reversal symmetry breaking in atomically confined two-dimensional impurity bands in silicon and germanium

    NASA Astrophysics Data System (ADS)

    Ghosh, Arindam

    Three-dimensional bulk-doped semiconductors, in particular phosphorus (P)-doped silicon (Si) and germanium (Ge), are among the best studied systems for many fundamental concepts in solid state physics, ranging from the Anderson metal-insulator transition to the many-body Coulomb interaction effects on quantum transport. Recent advances in material engineering have led to vertically confined doping of phosphorus (P) atoms inside bulk crystalline silicon and germanium, where the electron transport occurs through one or very few atomic layers, constituting a new and unique platform to investigate many of these phenomena at reduced dimensions. In this talk I shall present results of extensive quantum transport experiments in delta-doped silicon and germanium epilayers, over a wide range of doping density that allow independent tuning of the on-site Coulomb interaction and hopping energy scales. We find that low-frequency flicker noise, or the 1 / f noise, in the electrical conductance of these systems is exceptionally low, and in fact among the lowest when compared with other low-dimensional materials. This is attributed to the physical separation of the conduction electrons, embedded inside the crystalline semiconductor matrix, from the charged fluctuators at the surface. Most importantly, we find a remarkable suppression of weak localization effects, including the quantum correction to conductivity and universal conductance fluctuations, with decreasing doping density or, equivalently, increasing effective on-site Coulomb interaction. In-plane magneto-transport measurements indicate the presence of intrinsic local spin fluctuations at low doping although no signatures of long range magnetic order could be identified. We argue that these results indicate a spontaneous breakdown of time reversal symmetry, which is one of the most fundamental and robust symmetries of nonmagnetic quantum systems. While the microscopic origin of this spontaneous time reversal symmetry

  17. Bacteria in Confined Spaces

    NASA Astrophysics Data System (ADS)

    Wilking, Connie; Weitz, David

    2010-03-01

    Bacterial cells can display differentiation between several developmental pathways, from planktonic to matrix-producing, depending upon the colony conditions. We study the confinement of bacteria in hydrogels as well as in liquid-liquid double emulsion droplets and observe the growth and morphology of these colonies as a function of time and environment. Our results can give insight into the behavior of bacterial colonies in confined spaces that can have applications in the areas of food science, cosmetics, and medicine.

  18. Steady-shear-enhanced microdiffusion with multiple time scales of confined, mesoscopic, two-dimensional dusty-plasma liquids.

    PubMed

    Io, Chong-Wai; I, Lin

    2009-09-01

    We experimentally investigate the multitime scale diffusion and the spatiotemporal behaviors of the degrees of enhancement for the longitudinal and the transverse diffusions in a confined mesoscopic quasi-two-dimensional dusty-plasma liquid sheared by two parallel counterpropagating laser beams. The steady external drive directly enhances the longitudinal cooperative hopping, associated with the shear bands that have high shear rate near boundaries. It drastically excites the slow hopping modes to high fluctuation level in the outer band region, accompanied by the enhanced superdiffusion. Through cascaded many-body interaction, the excitation flows from the outer region toward the center region, from the longitudinal modes to the transverse mode, and from the slow hopping modes to the fast caging modes, which are in better contact with the thermal bath. It causes the weaker enhancement of fluctuation level, and diffusion for the center region and the fast modes. The boundary confinement further breaks the system symmetry and enhances anisotropy. It has much stronger effect on the suppression of the transverse hopping modes than the longitudinal hopping mode. The degrees of enhancement of the fluctuations by the shear stress are highly anisotropic for the large amplitude slow modes, especially in the outer region but are more isotropic in the inner band.

  19. Time trends of 1,1,1-trichloroethane, trichloroethylene, and perchloroethylene in confined and unconfined aquifers of a groundwater system in northern Italy.

    PubMed

    Altissimo, Lorenzo; Andreoli, Elisa; Giacometti, Andrea; Marcomini, Antonio

    2002-01-01

    The concentrations of 1,1,1-trichloroethane, trichloroethylene, and perchloroethylene were recorded in a groundwater system of Northern Italy over the period 1985-1997. In the unconfined recharging aquifer these chemicals showed a remarkable overall decline which was accompanied by a five-fold reduction in their consumption (from approx. 250 to approx. 50 tons year-1) over the same period. The time trends for the confined aquifers indicated a steady decline for 1,1,1-trichloroethane which was accompanied by a constant concentration of trichloroethylene and an increasing presence of perchloroethylene. It is suggested that the confined aquifers are recording a contamination which took place in the unconfined recharging aquifer before monitoring period (1982) started. At present, in most of the study area 1,1,1-trichloroethane contamination is below the detection limit (0.1 microgram/L). For trichloroethylene and perchloroethylene, the average unconfined aquifer contamination accounts for approx. 1 +/- 1 and approx. 4 +/- 3 micrograms/L, respectively, while in the confined aquifers the average concentrations are approx. 8 +/- 3 and approx. 35 +/- 5 micrograms/L, respectively.

  20. Confined direct analysis in real time ion source and its applications in analysis of volatile organic compounds of Citrus limon (lemon) and Allium cepa (onion).

    PubMed

    Li, Yue

    2012-05-30

    The DART (direct analysis in real time) ion source is a novel atmospheric pressure ionization technique that enables efficient ionization of gases, liquids and solids with high throughput. A major limit to its wider application in the analysis of gases is its poor detection sensitivity caused by open-air sampling. In this study, a confined interface between the DART ion source outlet and mass spectrometer sampling orifice was developed, where the plasma generated by the atmospheric pressure glow discharge collides and ionizes gas-phase molecules in a Tee-shaped flow tube instead of in open air. It leads to significant increase of collision reaction probability between high energy metastable molecules and analytes. The experimental results show that the ionization efficiency was increased at least by two orders of magnitude. This technique was then applied in the real time analysis of volatile organic compounds (VOCs) of Citrus Limon (lemon) and wounded Allium Cepa (onion). The confined DART ion source was proved to be a powerful tool for the studies of plant metabolomics.

  1. A novel method for modeling the neutron time of flight detector response in current mode to inertial confinement fusion experiments (invited)

    SciTech Connect

    Nelson, A. J.; Cooper, G. W.; Ruiz, C. L.; Chandler, G. A.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; Smelser, R.; Torres, J. A.

    2012-10-15

    A novel method for modeling the neutron time of flight (nTOF) detector response in current mode for inertial confinement fusion experiments has been applied to the on-axis nTOF detectors located in the basement of the Z-Facility. It will be shown that this method can identify sources of neutron scattering, and is useful for predicting detector responses in future experimental configurations, and for identifying potential sources of neutron scattering when experimental set-ups change. This method can also provide insight on how much broadening neutron scattering contributes to the primary signals, which is then subtracted from them. Detector time responses are deconvolved from the signals, allowing a transformation from dN/dt to dN/dE, extracting neutron spectra at each detector location; these spectra are proportional to the absolute yield.

  2. Detection of magnetic barriers in a chaotic domain: first application of finite time Lyapunov exponent method to a magnetic confinement configuration

    NASA Astrophysics Data System (ADS)

    Rubino, G.; Borgogno, D.; Veranda, M.; Bonfiglio, D.; Cappello, S.; Grasso, D.

    2015-08-01

    Magnetic field lines embedded in a plasma confinement system are often characterized by a chaotic motion. This weakens the confinement properties of any magnetic configuration. However, even in case of chaotic domains, magnetic barriers can emerge and limit the field line motion itself. In the context of the numerical simulation of a Reversed-Field Pinch configuration a new magnetic topology analysis, borrowed from previous fluid dynamic studies, is discussed. This methodology relies on the behavior of the Finite Time Lyapunov Exponent (FTLE) associated with the magnetic field. By referring to a previous work in which the magnetic field is given in terms of analytical function (Borgogno et al 2011 Phys. Plasmas 18 102307) the FTLE field shows the presence of ridges, special gradient lines normal to the direction of minimum curvature, forming magnetic barriers. These ridges can be recognized as Lagrangian Coherent Structures (LCSs) for the system, actually opposing the penetration of magnetic field lines across them. In this article a more general numerical scheme for the detection of the LCSs has been adopted that allows analysis of realistic cases in which the magnetic fields are numerically known on a discrete mesh. After a validation test performed on the analytical case, a first application to a numerical magnetohydrodynamics simulation of the RFP, characterized by a broad chaotic region, has been performed. A strong magnetic barrier has been observed that effectively limits the field lines motion inside the chaotic sea.

  3. Thermal noise in confined fluids.

    PubMed

    Sanghi, T; Aluru, N R

    2014-11-01

    In this work, we discuss a combined memory function equation (MFE) and generalized Langevin equation (GLE) approach (referred to as MFE/GLE formulation) to characterize thermal noise in confined fluids. Our study reveals that for fluids confined inside nanoscale geometries, the correlation time and the time decay of the autocorrelation function of the thermal noise are not significantly different across the confinement. We show that it is the strong cross-correlation of the mean force with the molecular velocity that gives rise to the spatial anisotropy in the velocity-autocorrelation function of the confined fluids. Further, we use the MFE/GLE formulation to extract the thermal force a fluid molecule experiences in a MD simulation. Noise extraction from MD simulation suggests that the frequency distribution of the thermal force is non-Gaussian. Also, the frequency distribution of the thermal force near the confining surface is found to be different in the direction parallel and perpendicular to the confinement. We also use the formulation to compute the noise correlation time of water confined inside a (6,6) carbon-nanotube (CNT). It is observed that inside the (6,6) CNT, in which water arranges itself in a highly concerted single-file arrangement, the correlation time of thermal noise is about an order of magnitude higher than that of bulk water.

  4. Thermal noise in confined fluids

    NASA Astrophysics Data System (ADS)

    Sanghi, T.; Aluru, N. R.

    2014-11-01

    In this work, we discuss a combined memory function equation (MFE) and generalized Langevin equation (GLE) approach (referred to as MFE/GLE formulation) to characterize thermal noise in confined fluids. Our study reveals that for fluids confined inside nanoscale geometries, the correlation time and the time decay of the autocorrelation function of the thermal noise are not significantly different across the confinement. We show that it is the strong cross-correlation of the mean force with the molecular velocity that gives rise to the spatial anisotropy in the velocity-autocorrelation function of the confined fluids. Further, we use the MFE/GLE formulation to extract the thermal force a fluid molecule experiences in a MD simulation. Noise extraction from MD simulation suggests that the frequency distribution of the thermal force is non-Gaussian. Also, the frequency distribution of the thermal force near the confining surface is found to be different in the direction parallel and perpendicular to the confinement. We also use the formulation to compute the noise correlation time of water confined inside a (6,6) carbon-nanotube (CNT). It is observed that inside the (6,6) CNT, in which water arranges itself in a highly concerted single-file arrangement, the correlation time of thermal noise is about an order of magnitude higher than that of bulk water.

  5. Confined helium on Lagrange meshes.

    PubMed

    Baye, D; Dohet-Eraly, J

    2015-12-21

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than 10(-10). For larger radii up to 10, they progressively decrease to 10(-3), still improving the best literature results.

  6. Alterations in streaming potential in presence of time periodic pressure-driven flow of a power law fluid in narrow confinements with nonelectrostatic ion-ion interactions.

    PubMed

    Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman

    2014-03-01

    We study the coupled effect of electrokinetic phenomena and fluid rheology in altering the induced streaming potential in narrow fluidic confinements, which is manifested by establishing a time periodic pressure-driven flow in presence of electrical double layer phenomenon. However, in sharp contrast with reported literature, we take into account nonelectrostatic ion-ion interactions toward estimating the same in addition to electrostatic interactions and steric effects. We employ power law based rheological model for estimating the induced streaming potential. We bring out an intricate interaction between nonelectrostatic interactions and fluid rheology on the concerned electrokinetic phenomena, bearing immense consequences toward designing of integrated lab-on-a-chip-based microdevices and nanodevices.

  7. Relativistic scalar particle subject to a confining potential and Lorentz symmetry breaking effects in the cosmic string space-time

    NASA Astrophysics Data System (ADS)

    Belich, H.; Bakke, K.

    2016-03-01

    The behavior of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string space-time is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor (KF)μναβ. Then, by introducing a scalar potential as a modification of the mass term of the Klein-Gordon equation, it is shown that the Klein-Gordon equation in the cosmic string space-time is modified by the effects of the Lorentz symmetry violation backgrounds and bound state solution to the Klein-Gordon equation can be obtained.

  8. Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time.

    PubMed

    Müllner, Fiona E; Wierenga, Corette J; Bonhoeffer, Tobias

    2015-08-01

    Inhibition plays a fundamental role in controlling neuronal activity in the brain. While perisomatic inhibition has been studied in detail, the majority of inhibitory synapses are found on dendritic shafts and are less well characterized. Here, we combine paired patch-clamp recordings and two-photon Ca(2+) imaging to quantify inhibition exerted by individual GABAergic contacts on hippocampal pyramidal cell dendrites. We observed that Ca(2+) transients from back-propagating action potentials were significantly reduced during simultaneous activation of individual nearby inhibitory contacts. The inhibition of Ca(2+) transients depended on the precise spike-timing (time constant < 5 ms) and declined steeply in the proximal and distal direction (length constants 23-28 μm). Notably, Ca(2+) amplitudes in spines were inhibited to the same degree as in the shaft. Given the known anatomical distribution of inhibitory synapses, our data suggest that the collective inhibitory input to a pyramidal cell is sufficient to control Ca(2+) levels across the entire dendritic arbor with micrometer and millisecond precision.

  9. Investigation of gamma-ray time shifts caused by capsule areal density variations in inertial confinement fusion experiments at the national ignition facility and the omega facility

    NASA Astrophysics Data System (ADS)

    Grafil, Elliot M.

    This thesis describes work on Cherenkov based gamma detectors used as diag- nostics at Inertial Confinement Fusion (ICF) facilities. The first part describes the calibration and commissioning of the Gamma Reaction History diagnostic which is a four cell Cherenkov detector array used to characterize the ICF implosion at the National Ignition Facility (NIF) by measuring the gamma rays generated during the fusion event. Two of the key metrics which the GRH measures are Gamma Bang Time (GBT) generated from the D(T,α)n thermonuclear burn and Ablator Peak Time (APT) caused by (n,n‧)gamma reactions in the surrounding capsule ablator. Simulations of ignition capsules predict that GBT and APT should be time synchronized. After GRH commissioning, the array was used during first year of NIF operation in the National Ignition Campaign. Contrary to expectations, time shifts between GBT and APT of order 10s of picoseconds were observed. In order to further investigate the possibility of these time shifts in view of testing both instrument and code credibility an ICF shot campaign at the smaller OMEGA facility in Rochester was devised. It was performed during two full shot days in April of 2013 and 2014 and confirmed in principle the viability of the Cherenkov detector approach but raised additional questions regarding the credibility of the simulation codes used to describe ICF experiments. Specifically the measurements show that the understanding of temporal behavior of GBT vs APT may not be properly modeled in the DRACO code used at OMEGA. In view of the OMEGA results which showed no time shifts between GBT and APT, the readout and timing synchronization system of the GRH setup at the NIF was reevaluated in the framework of this thesis. Motivated by the results, which highlighted the use of wrong optical fiber diameters and possible problems with the installed variable optical attenuators, the NIF equipment has been updated over the recent months and new timing tests will

  10. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion

    SciTech Connect

    Simpson, R. Danly, C.; Fatherley, V. E.; Merrill, F. E.; Volegov, P.; Wilde, C.; Christensen, K.; Fittinghoff, D.; Grim, G. P.; Izumi, N.; Jedlovec, D.; Skulina, K.

    2015-12-15

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

  11. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Simpson, R.; Christensen, K.; Danly, C.; Fatherley, V. E.; Fittinghoff, D.; Grim, G. P.; Izumi, N.; Jedlovec, D.; Merrill, F. E.; Skulina, K.; Volegov, P.; Wilde, C.

    2015-12-01

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

  12. Neutron Time-of-Flight Measurements of Charged-Particle Energy Loss in Inertial Confinement Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Sayre, Daniel; Cerjan, Charlie; Berzak Hopkins, Laura; Caggiano, Joseph; Divol, Laurent; Eckart, Mark; Graziani, Frank; Grim, Gary; Hartouni, Ed; Hatarik, Robert; Le Pape, Sebastien; MacKinnon, Andrew; Schneider, Dieter; Sepke, Scott

    2015-11-01

    Neutron time-of-flight measurements of inflight T (d , n) α reactions created during an implosion of a deuterium gas target have been performed at the National Ignition Facility, with order of magnitude improvements in statistics and resolution over past experiments. In the implosion, energetic tritons emitted by thermonuclear fusion within the deuterium plasma produced over 1011 inflight T (d , n) α reactions. The yield and particle spectrum of inflight reactions are sensitive to the triton's energy loss in the plasma, which, in this implosion, consisted of multi-keV temperatures and number densities above 1024 cm-3. Radiation-hydrodynamic simulations of the implosion were adjusted to match the yield and broadening of the D (d , n) 3 He neutron peak. These same simulations give reasonable agreement with the measured T (d , n) α yield and neutron spectrum, and this provides a strong consistency check of the simulated plasma conditions and energy loss model. This research was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Long-term effects of dredging operations program. Collation and interpretation of data for Times Beach confined disposal facility, Buffalo, New York. Final report

    SciTech Connect

    Stafford, E.A.; Simmers, J.W.; Rhett, R.G.; Brown, C.P.

    1991-06-01

    This interim report, collates all data gathered for the Times Beach confined disposal facility (CDF), Buffalo, New York. This purpose of the studies at the CDF was to determine the mobility and potential hazard of contaminants known to be in the dredged material placed at Times Beach by sampling and analyzing various components of the developing ecosystems. Upland, wetland, and aquatic areas are represented within the CDF and, for each area, inventories of colonizing biota were made and samples collected for measurement of heavy metals and organic compound contaminants. Samples of dredged material, vegetation, and soil-dwelling invertebrates, and vertebrates have been collected and heavy metal concentrations measured. Results suggest that the persistent contaminants, particularly cadmium, are concentrating in the leaf litter zone and moving into the detritivorous invertebrates. Highest concentrations of heavy metals were noted in earthworms. Earth worms, millipedes, woodlice, and spiders appeared to be target organisms for accumulation of heavy metals, and these groups contained higher concentrations of copper and cadmium than the other groups. Polychlorinated biphenyl (PCB) and polynuclear aromatic hydrocarbon contaminants in the dredged material were below machine detection limits in the vertebrate top-predators. Contaminant concentrations in water from ground water wells were below guidance limits.

  14. Study of the 3D Coronal Magnetic Field of Active Region 11117 Around the Time of a Confined Flare Using a Data-Driven CESE-MHD Model

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Feng, X.; Wu, S.; Hu, Q.

    2012-12-01

    Non-potentiality of the solar coronal magnetic field accounts for the solar explosion like flares and CMEs. We apply a data-driven CESE-MHD model to investigate the three-dimensional (3D) coronal magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare occurred on 2010 October 25. The CESE-MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic-field evolution and to consider a simplified solar atomsphere with finite plasma β. Magnetic vector-field data derived from the observations at the photoshpere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria basing on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO) around the time of flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly (AIA), which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most time. The magnetic configuration changes very limited during the studied time interval of two hours. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photoshpere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the magnetic free energy drops during the flare with an amount of 1.7 × 1030 erg, which can be interpreted as the energy budget released by the minor C-class flare.

  15. Combining Real-Time fMRI Neurofeedback Training of the DLPFC with N-Back Practice Results in Neuroplastic Effects Confined to the Neurofeedback Target Region

    PubMed Central

    Sherwood, Matthew S.; Weisend, Michael P.; Kane, Jessica H.; Parker, Jason G.

    2016-01-01

    In traditional fMRI, individuals respond to exogenous stimuli and are naïve to the effects of the stimuli on their neural activity patterns. Changes arising in the fMRI signal are analyzed post-hoc to elucidate the spatial and temporal activation of brain regions associated with the tasks performed. The advent of real-time fMRI has enabled a new method to systematically alter brain activity across space and time using neurofeedback training (NFT), providing a new tool to study internally-driven processes such as neuroplasticity. In this work, we combined n-back practice with fMRI-NFT of the left dorsolateral prefrontal cortex (DLPFC) to better understand the relationship between open- and closed-loop neuromodulation. FMRI data were acquired during both traditional n-back and NFT across five imaging sessions. Region-of-interest (ROI) and voxel-wise 2 × 2 within subjects ANOVAs were carried out to determine the effects of, and interaction between, training session and neuromodulation type. A main effect of training session was identified for only a single, highly focused cluster that shared spatial properties with the fMRI-NFT target region (left DLPFC). This finding indicates that combined open- and closed-loop neuroplastic enhancement techniques result in focal changes that are confined to the target area of NFT, and do not affect up- or down-stream network components that are normally engaged during working memory. Additionally, we identified a main effect of neuromodulation type for 15 clusters with significantly different activation between open- and closed-loop neuromodulation during training, 12 of which demonstrated higher activity during the open-loop neuromodulation. Our results, taken together with previous reports, indicate that fMRI-NFT combined with n-back practice leads to a highly focal volume exhibiting neuroplasticity without additional network effects. PMID:27445733

  16. Momentum Confinement at Low Torque

    SciTech Connect

    Solomon, W M; Burrell, K H; deGrassie, J S; Budny, R; Groebner, R J; Heidbrink, W W; Kinsey, J E; Kramer, G J; Makowski, M A; Mikkelsen, D; Nazikian, R; Petty, C C; Politzer, P A; Scott, S D; Van Zeeland, M A; Zarnstorff, M C

    2007-06-26

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized {beta}{sub N}, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co-neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q{sub min} show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. The relative importance of E x B shearing between the two is modeled using GLF23 and may suggest a possible explanation.

  17. Confinement Aquaculture. Final Report.

    ERIC Educational Resources Information Center

    Delaplaine School District, AR.

    The Delaplaine Agriculture Department Confinement Project, begun in June 1988, conducted a confinement aquaculture program by comparing the growth of channel catfish raised in cages in a pond to channel catfish raised in cages in the Black River, Arkansas. The study developed technology that would decrease costs in the domestication of fish, using…

  18. Indoor Confined Feedlots.

    PubMed

    Grooms, Daniel L; Kroll, Lee Anne K

    2015-07-01

    Indoor confined feedlots offer advantages that make them desirable in northern climates where high rainfall and snowfall occur. These facilities increase the risk of certain health risks, including lameness and tail injuries. Closed confinement can also facilitate the rapid spread of infectious disease. Veterinarians can help to manage these health risks by implementing management practices to reduce their occurrence.

  19. Elastic membranes in confinement.

    PubMed

    Bostwick, J B; Miksis, M J; Davis, S H

    2016-07-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. PMID:27440257

  20. Enhancement of confinement in tokamaks

    SciTech Connect

    Furth, H.P.

    1986-05-01

    A plausible interpretation of the experimental evidence is that energy confinement in tokamaks is governed by two separate considerations: (1) the need for resistive MHD kink-stability, which limits the permissible range of current profiles - and therefore normally also the range of temperature profiles; and (2) the presence of strongly anomalous microscopic energy transport near the plasma edge, which calibrates the amplitude of the global temperature profile, thus determining the energy confinement time tau/sub E/. Correspondingly, there are two main paths towards the enhancement of tokamak confinement: (1) Configurational optimization, to increase the MHD-stable energy content of the plasma core, can evidently be pursued by varying the cross-sectional shape of the plasma and/or finding stable radial profiles with central q-values substantially below unity - but crossing from ''first'' to ''second'' stability within the peak-pressure region would have the greatest ultimate potential. (2) Suppression of edge turbulence, so as to improve the heat insulation in the outer plasma shell, can be pursued by various local stabilizing techniques, such as use of a poloidal divertor. The present confinement model and initial TFTR pellet-injection results suggest that the introduction of a super-high-density region within the plasma core should be particularly valuable for enhancing ntau/subE/. In D-T operation, a centrally peaked plasma pressure profile could possibly lend itself to alpha-particle-driven entry into the second-stability regime.

  1. Understanding and improving confinement in CNT

    NASA Astrophysics Data System (ADS)

    Brenner, Paul; Pedersen, Thomas; Sarasola, Xabier; Durand de Gevigney, Benoit; Traverso, Peter

    2010-11-01

    Confinement studies in the Columbia Non-neutral Torus (CNT) are providing new insights into the physics of pure electron plasmas confined on magnetic surfaces. The confinement of pure electron plasmas has now been measured in the absence of internal objects . These transient plasmas exhibit confinement times that are shorter than expected and have a strong dependence on neutral pressure. Plasmas created by electron emission in one direction have been compared to those created by emission in two directions. The confinement is significantly longer when emitting in only one direction, suggesting that a two-stream instability is present and affects the radial transport rate. Progress on verifying the existence of a two-stream instability will be presented. Experimental results from previously unexplored stellarator configurations, with low shear and large islands will also be shown.

  2. Elastic membranes in confinement

    NASA Astrophysics Data System (ADS)

    Bostwick, Joshua; Miksis, Michael; Davis, Stephen

    2014-11-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and DNA, have finer internal structure in which a membrane (or elastic member) is geometrically ``confined'' by another object. We study the shape stability of elastic membranes in a ``confining'' box and introduce repulsive van der Waals forces to prevent the membrane from intersecting the wall. We aim to define the parameter space associated with mitochondria-like deformations. We compare the confined to `unconfined' solutions and show how the structure and stability of the membrane shapes changes with the system parameters.

  3. Confinement and the safety factor profile

    SciTech Connect

    Batha, S.H.; Levinton, F.M.; Scott, S.D.

    1995-12-01

    The conjecture that the safety factor profile, q(r), controls the improvement in tokamak plasmas from poor confinement in the Low (L-) mode regime to improved confinement in the supershot regime has been tested in two experiments on the Tokamak Fusion Test Reactor (TFTR). First, helium was puffed into the beam-heated phase of a supershot discharge which induced a degradation from supershot to L-mode confinement in about 100 msec, far less than the current relaxation time. The q and shear profiles measured by a motional Stark effect polarimeter showed little change during the confinement degradation. Second, rapid current ramps in supershot plasmas altered the q profile, but were observed not to change significantly the energy confinement. Thus, enhanced confinement in supershot plasmas is not due to a particular q profile which has enhanced stability or transport properties. The discharges making a continuous transition between supershot and L-mode confinement were also used to test the critical-electron-temperature-gradient transport model. It was found that this model could not reproduce the large changes in electron and ion temperature caused by the change in confinement.

  4. Polymer Crystallization under Confinement

    NASA Astrophysics Data System (ADS)

    Floudas, George

    Recent efforts indicated that polymer crystallization under confinement can be substantially different from the bulk. This can have important technological applications for the design of polymeric nanofibers with tunable mechanical strength, processability and optical clarity. However, the question of how, why and when polymers crystallize under confinement is not fully answered. Important studies of polymer crystallization confined to droplets and within the spherical nanodomains of block copolymers emphasized the interplay between heterogeneous and homogeneous nucleation. Herein we report on recent studies1-5 of polymer crystallization under hard confinement provided by model self-ordered AAO nanopores. Important open questions here are on the type of nucleation (homogeneous vs. heterogeneous), the size of critical nucleus, the crystal orientation and the possibility to control the overall crystallinity. Providing answers to these questions is of technological relevance for the understanding of nanocomposites containing semicrystalline polymers. In collaboration with Y. Suzuki, H. Duran, M. Steinhart, H.-J. Butt.

  5. Confinement of bunched beams

    NASA Astrophysics Data System (ADS)

    Hess, Mark; Chen, Chiping

    2001-05-01

    The non-relativistic motion is analyzed for a highly bunched beam propagating through a perfectly conducting cylindrical pipe confined radially by a constant magnetic field parallel to the conductor axis, using a Green's function technique and Hamiltonian dynamics analysis. It is shown that for the confinement of beams with the same charge per unit length, the maximum value of the effective self-field parameter for a highly bunched beam is significantly lower than the Brillouin density limit for an unbunched beam.

  6. Fusion, magnetic confinement

    SciTech Connect

    Berk, H.L.

    1992-08-06

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or {sup 3}He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied.

  7. Enzymatic reactions in confined environments

    NASA Astrophysics Data System (ADS)

    Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter

    2016-05-01

    Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.

  8. Interfacial electrofluidics in confined systems

    PubMed Central

    Tang, Biao; Groenewold, Jan; Zhou, Min; Hayes, Robert A.; Zhou, Guofu (G.F.)

    2016-01-01

    Electrofluidics is a versatile principle that can be used for high speed actuation of liquid interfaces. In most of the applications, the fundamental mechanism of electro-capillary instability plays a crucial role, yet it’s potential richness in confined fluidic layers has not been well addressed. Electrofluidic displays which are comprised of thin pixelated colored films in a range of architectures are excellent systems for studying such phenomena. In this study we show theoretically and experimentally that confinement leads to the generation of a cascade of voltage dependent modes as a result of the electro-capillary instability. In the course of reconciling theory with our experimental data we have observed a number of previously unreported phenomena such as a significant induction time (several milliseconds) prior to film rupture as well as a rupture location not corresponding to the minimum electric field strength in the case of the standard convex water/oil interface used in working devices. These findings are broadly applicable to a wide range of switchable electrofluidic applications and devices having confined liquid films. PMID:27221211

  9. Interfacial electrofluidics in confined systems

    NASA Astrophysics Data System (ADS)

    Tang, Biao; Groenewold, Jan; Zhou, Min; Hayes, Robert A.; Zhou, Guofu (G. F.)

    2016-05-01

    Electrofluidics is a versatile principle that can be used for high speed actuation of liquid interfaces. In most of the applications, the fundamental mechanism of electro-capillary instability plays a crucial role, yet it’s potential richness in confined fluidic layers has not been well addressed. Electrofluidic displays which are comprised of thin pixelated colored films in a range of architectures are excellent systems for studying such phenomena. In this study we show theoretically and experimentally that confinement leads to the generation of a cascade of voltage dependent modes as a result of the electro-capillary instability. In the course of reconciling theory with our experimental data we have observed a number of previously unreported phenomena such as a significant induction time (several milliseconds) prior to film rupture as well as a rupture location not corresponding to the minimum electric field strength in the case of the standard convex water/oil interface used in working devices. These findings are broadly applicable to a wide range of switchable electrofluidic applications and devices having confined liquid films.

  10. The Physics Basis of ITER Confinement

    SciTech Connect

    Wagner, F.

    2009-02-19

    ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode--the preferred confinement regime of ITER.

  11. Study of the Three-dimensional Coronal Magnetic Field of Active Region 11117 around the Time of a Confined Flare Using a Data-Driven CESE-MHD Model

    NASA Astrophysics Data System (ADS)

    Jiang, Chaowei; Feng, Xueshang; Wu, S. T.; Hu, Qiang

    2012-11-01

    We apply a data-driven magnetohydrodynamics (MHD) model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare that occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic field evolution and to consider a simplified solar atomsphere with finite plasma β. Magnetic vector-field data derived from the observations at the photosphere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria based on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory around the time of the flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly, which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most cases. The magnetic configuration changes very little during the studied time interval of 2 hr. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare by ~1030 erg, which seems to be adequate in providing the energy budget of a minor C-class confined flare.

  12. STUDY OF THE THREE-DIMENSIONAL CORONAL MAGNETIC FIELD OF ACTIVE REGION 11117 AROUND THE TIME OF A CONFINED FLARE USING A DATA-DRIVEN CESE-MHD MODEL

    SciTech Connect

    Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2012-11-10

    We apply a data-driven magnetohydrodynamics (MHD) model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare that occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic field evolution and to consider a simplified solar atomsphere with finite plasma {beta}. Magnetic vector-field data derived from the observations at the photosphere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria based on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory around the time of the flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly, which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most cases. The magnetic configuration changes very little during the studied time interval of 2 hr. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare by {approx}10{sup 30} erg, which seems to be adequate in providing the energy budget of a minor C-class confined flare.

  13. Plasma confinement at JET

    NASA Astrophysics Data System (ADS)

    Nunes, I.; JET Contributors

    2016-01-01

    Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10-5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is

  14. Electrofreezing of confined water.

    PubMed

    Zangi, Ronen; Mark, Alan E

    2004-04-15

    We report results from molecular dynamics simulations of the freezing transition of TIP5P water molecules confined between two parallel plates under the influence of a homogeneous external electric field, with magnitude of 5 V/nm, along the lateral direction. For water confined to a thickness of a trilayer we find two different phases of ice at a temperature of T=280 K. The transformation between the two, proton-ordered, ice phases is found to be a strong first-order transition. The low-density ice phase is built from hexagonal rings parallel to the confining walls and corresponds to the structure of cubic ice. The high-density ice phase has an in-plane rhombic symmetry of the oxygen atoms and larger distortion of hydrogen bond angles. The short-range order of the two ice phases is the same as the local structure of the two bilayer phases of liquid water found recently in the absence of an electric field [J. Chem. Phys. 119, 1694 (2003)]. These high- and low-density phases of water differ in local ordering at the level of the second shell of nearest neighbors. The results reported in this paper, show a close similarity between the local structure of the liquid phase and the short-range order of the corresponding solid phase. This similarity might be enhanced in water due to the deep attractive well characterizing hydrogen bond interactions. We also investigate the low-density ice phase confined to a thickness of 4, 5, and 8 molecular layers under the influence of an electric field at T=300 K. In general, we find that the degree of ordering decreases as the distance between the two confining walls increases. PMID:15267616

  15. Confined Space Imager (CSI) Software

    SciTech Connect

    Karelilz, David

    2013-07-03

    The software provides real-time image capture, enhancement, and display, and sensor control for the Confined Space Imager (CSI) sensor system The software captures images over a Cameralink connection and provides the following image enhancements: camera pixel to pixel non-uniformity correction, optical distortion correction, image registration and averaging, and illumination non-uniformity correction. The software communicates with the custom CSI hardware over USB to control sensor parameters and is capable of saving enhanced sensor images to an external USB drive. The software provides sensor control, image capture, enhancement, and display for the CSI sensor system. It is designed to work with the custom hardware.

  16. Totally confined explosive welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J. (Inventor)

    1978-01-01

    The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.

  17. Time-dependent resonant UHF CI approach for the photo-induced dynamics of the multi-electron system confined in 2D QD

    SciTech Connect

    Okunishi, Takuma; Clark, Richard; Takeda, Kyozaburo; Kusakabe, Kouichi; Tomita, Norikazu

    2013-12-04

    We extend the static multi-reference description (resonant UHF) to the dynamic system in order to include the correlation effect over time, and simplify the TD Schrödinger equation (TD-CI) into a time-developed rate equation where the TD external field Ĥ′(t) is then incorporated directly in the Hamiltonian without any approximations. We apply this TD-CI method to the two-electron ground state of a 2D quantum dot (QD) under photon injection and study the resulting two-electron Rabi oscillation.

  18. Classical confined particles

    NASA Technical Reports Server (NTRS)

    Horzela, Andrzej; Kapuscik, Edward

    1993-01-01

    An alternative picture of classical many body mechanics is proposed. In this picture particles possess individual kinematics but are deprived from individual dynamics. Dynamics exists only for the many particle system as a whole. The theory is complete and allows to determine the trajectories of each particle. It is proposed to use our picture as a classical prototype for a realistic theory of confined particles.

  19. Energy confinement in tokamaks

    SciTech Connect

    Sugihara, M.; Singer, C.

    1986-08-01

    A straightforward generalization is made of the ohmic heating energy confinement scalings of Pfeiffer and Waltz and Blackwell et. al. The resulting model is systematically calibrated to published data from limiter tokamaks with ohmic, electron cyclotron, and neutral beam heating. With considerably fewer explicitly adjustable free parameters, this model appears to give a better fit to the available data for limiter discharges than the combined ohmic/auxiliary heating model of Goldston.

  20. Inertial Confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Hendricks, C. D.

    1982-01-01

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques were devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems, and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  1. Freezing in confined geometries

    NASA Technical Reports Server (NTRS)

    Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.

  2. Topological confinement and superconductivity

    SciTech Connect

    Al-hassanieh, Dhaled A; Batista, Cristian D

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  3. Cylindrical confinement of semiflexible polymers

    NASA Astrophysics Data System (ADS)

    Vázquez-Montejo, Pablo; McDargh, Zachary; Deserno, Markus; Guven, Jemal

    2015-06-01

    Equilibrium states of a closed semiflexible polymer binding to a cylinder are described. This may be either by confinement or by constriction. Closed completely bound states are labeled by two integers: the number of oscillations, n , and the number of times it winds the cylinder, p , the latter being a topological invariant. We examine the behavior of these states as the length of the loop is increased by evaluating the energy, the conserved axial torque, and the contact force. The ground state for a given p is the state with n =1 ; a short loop with p =1 is an elliptic deformation of a parallel circle; as its length increases it elongates along the cylinder axis with two hairpin ends. Excited states with n ≥2 and p =1 possess n -fold axial symmetry. Short (long) loops possess energies ≈p E0 (n E0 ), with E0 the energy of a circular loop with same radius as the cylinder; in long loops the axial torque vanishes. Confined bound excited states are initially unstable; however, above a critical length each n -fold state becomes stable: The folded hairpin cannot be unfolded. The ground state for each p is also initially unstable with respect to deformations rotating the loop off the surface into the interior. A closed planar elastic curve aligned along the cylinder axis making contact with the cylinder on its two sides is identified as the ground state of a confined loop. Exterior bound states behave very differently, if free to unbind, as signaled by the reversal in the sign of the contact force. If p =1 , all such states are unstable. If p ≥2 , however, a topological obstruction to complete unbinding exists. If the loop is short, the bound state with p =2 and n =1 provides a stable constriction of the cylinder, partially unbinding as the length is increased. This motif could be relevant to an understanding of the process of membrane fission mediated by dynamin rings.

  4. A novel method for modeling the neutron time of flight (nTOF) detector response in current mode to inertial confinement fusion experiments.

    SciTech Connect

    Nelson, Alan J.; Cooper, Gary Wayne; Ruiz, Carlos L.; Chandler, Gordon Andrew; Fehl, David Lee; Hahn, Kelly Denise; Leeper, Ramon Joe; Smelser, Ruth Marie; Torres, Jose A.

    2013-09-01

    There are several machines in this country that produce short bursts of neutrons for various applications. A few examples are the Zmachine, operated by Sandia National Laboratories in Albuquerque, NM; the OMEGA Laser Facility at the University of Rochester in Rochester, NY; and the National Ignition Facility (NIF) operated by the Department of Energy at Lawrence Livermore National Laboratory in Livermore, California. They all incorporate neutron time of flight (nTOF) detectors which measure neutron yield, and the shapes of the waveforms from these detectors contain germane information about the plasma conditions that produce the neutrons. However, the signals can also be %E2%80%9Cclouded%E2%80%9D by a certain fraction of neutrons that scatter off structural components and also arrive at the detectors, thereby making analysis of the plasma conditions more difficult. These detectors operate in current mode - i.e., they have no discrimination, and all the photomultiplier anode charges are integrated rather than counted individually as they are in single event counting. Up to now, there has not been a method for modeling an nTOF detector operating in current mode. MCNPPoliMiwas developed in 2002 to simulate neutron and gammaray detection in a plastic scintillator, which produces a collision data output table about each neutron and photon interaction occurring within the scintillator; however, the postprocessing code which accompanies MCNPPoliMi assumes a detector operating in singleevent counting mode and not current mode. Therefore, the idea for this work had been born: could a new postprocessing code be written to simulate an nTOF detector operating in current mode? And if so, could this process be used to address such issues as the impact of neutron scattering on the primary signal? Also, could it possibly even identify sources of scattering (i.e., structural materials) that

  5. Confined vortex scrubber

    SciTech Connect

    Not Available

    1990-07-01

    The program objective is to demonstrate efficient removal of fine particulates to sufficiently low levels to meet proposed small scale coal combustor emission standards using a cleanup technology appropriate to small scale coal combustors. This to be accomplished using a novel particulate removal device, the Confined Vortex Scrubber (CVS), which consists of a cylindrical vortex chamber with tangential flue gas inlets. The clean gas exit is via vortex finder outlets, one at either end of the tube. Liquid is introduced into the chamber and is confined within the vortex chamber by the centrifugal force generated by the gas flow itself. This confined liquid forms a layer through which the flue gas is then forced to bubble, producing a strong gas/liquid interaction, high inertial separation forces and efficient particulate cleanup. During this quarter a comprehensive series of cleanup experiments have been made for three CVS configurations. The first CVS configuration tested gave very efficient fine particulate removal at the design air mass flow rate (1 MM BUT/hr combustor exhaust flow), but had over 20{double prime}WC pressure drop. The first CVS configuration was then re-designed to produce the same very efficient particulate collection performance at a lower pressure drop. The current CVS configuration produces 99.4 percent cleanup of ultra-fine fly ash at the design air mass flow at a pressure drop of 12 {double prime}WC with a liquid/air flow ratio of 0.31/m{sup 3}. Unlike venturi scrubbers, the collection performance of the CVS is insensitive to dust loading and to liquid/air flow ratio.

  6. Shear Relaxations of Confined Liquids.

    NASA Astrophysics Data System (ADS)

    Carson, George Amos, Jr.

    Ultrathin (<40 A) films of octamethylcyclotetrasiloxane (OMCTS), hexadecane, and dodecane were subjected to linear and non-linear oscillatory shear between flat plates. Shearing frequencies of 0.1 to 800 s^{-1} were applied at pressures from zero to 0.8 MPa using a surface rheometer only recently developed. In most cases the plates were atomically smooth mica surfaces; the role of surface interactions was examined by replacing these with alkyl chain monolayers. OMCTS and hexadecane were examined at a temperature about 5 Celsius degrees above their melting points and tended to solidify. Newtonian plateaus having enormous viscosities were observed at low shear rates. The onset of shear thinning implied relaxation times of about 0.1 s in the linear structure of the confined liquids. Large activation volumes (~80 nm ^3) suggested that shear involved large-scale collective motion. Dodecane was studied at a much higher temperature relative to its melting point and showed no signs of impending solidification though it exhibited well-defined regions of Newtonian response and power law shear thinning. When treated with molecular sieves before use, dodecane had relaxation times which were short (0.02 s) compared to hexadecane, but still exhibited large-scale collective motion. When treated with silica gel, an unexplained long -time relaxation (10 s) was seen in the Newtonian viscosity of dodecane. The relaxation time of the linear structure, 0.005 s was very small, and the storage modulus was unresolvable. The small activation volume (7nm^3) indicated a much lower level of collective motion. The activation volume remained small when dodecane was confined between tightly bound, low energy, alkyl monolayers. At low strains the storage and loss moduli became very large (>10^4 Pa), probably due to interactions with flaws in the monolayers. Dramatic signs of wall slip were observed at large strains even at low pressures.

  7. Energy confinement in Doublet III with high-Z limiters

    SciTech Connect

    Marcus, F.B.; Adcock, S.J.; Baker, D.R.; Blau, F.P.; Brooks, N.H.; Chase, R.P.; DeBoo, J.C.; Ejima, S.; Fairbanks, E.S.; Fisher, R.K.

    1980-02-01

    This report describes the experimental measurements and data analysis techniques used to evaluate the energy confinement in noncircular plasmas produced in Doublet III. Major aspects of the confinement measurements and analysis techniques are summarized. Machine parameters, diagnostic systems and discharge parameters relavent to the confinement measurements are given. Magnetic analysis techniques used to determine the plasma shape are reviewed. Scaling of the on-axis values of electron temperature, confinement time and Z/sub eff/ with plasma density is presented. Comparison with scaling results from other circular tokamaks is discussed. Numerical and analytic techniques developed for calculating the plasma energy confinement time and self-consistent profiles of density, temperature, current, and flux in non-circular geometries are described. These techniques are applied to the data and used to determine the central and global electron energy confinement time for a typical doublet plasma. Additional aspects of the confinement such as the radial dependence of the electron thermal conductivity and the estimated ion temperature are explored with the aid of a non-circular transport simulation code. The results of the confinement measurements are summarized and discussed. A brief summary of the theoretically expected effects of noncircularity on plasma confinement is included for reference as Appendix I.

  8. Confinement Contains Condensates

    SciTech Connect

    Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.

    2012-03-12

    Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.

  9. Confinement Vessel Dynamic Analysis

    SciTech Connect

    R. Robert Stevens; Stephen P. Rojas

    1999-08-01

    A series of hydrodynamic and structural analyses of a spherical confinement vessel has been performed. The analyses used a hydrodynamic code to estimate the dynamic blast pressures at the vessel's internal surfaces caused by the detonation of a mass of high explosive, then used those blast pressures as applied loads in an explicit finite element model to simulate the vessel's structural response. Numerous load cases were considered. Particular attention was paid to the bolted port connections and the O-ring pressure seals. The analysis methods and results are discussed, and comparisons to experimental results are made.

  10. Threshold power and energy confinement for ITER

    SciTech Connect

    Takizuka, T.

    1996-12-31

    In order to predict the threshold power for L-H transition and the energy confinement performance in ITER, assembling of database and analyses of them have been progressed. The ITER Threshold Database includes data from 10 divertor tokamaks. Investigation of the database gives a scaling of the threshold power of the form P{sub thr} {proportional_to} B{sub t} n{sub e}{sup 0.75} R{sup 2} {times} (n{sub e} R{sup 2}){sup +-0.25}, which predicts P{sub thr} = 100 {times} 2{sup 0{+-}1} MW for ITER at n{sub e} = 5 {times} 10{sup 19} m{sup {minus}3}. The ITER L-mode Confinement Database has also been expanded by data from 14 tokamaks. A scaling of the thermal energy confinement time in L-mode and ohmic phases is obtained; {tau}{sub th} {approximately} I{sub p} R{sup 1.8} n{sub e}{sup 0.4{sub P{sup {minus}0.73}}}. At the ITER parameter, it becomes about 2.2 sec. For the ignition in ITER, more than 2.5 times of improvement will be required from the L-mode. The ITER H-mode Confinement Database is expanded from data of 6 tokamaks to data of 11 tokamaks. A {tau}{sub th} scaling for ELMy H-mode obtained by a standard regression analysis predicts the ITER confinement time of {tau}{sub th} = 6 {times} (1 {+-} 0.3) sec. The degradation of {tau}{sub th} with increasing n{sub e} R{sup 2} (or decreasing {rho}{sub *}) is not found for ELMy H-mode. An offset linear law scaling with a dimensionally correct form also predicts nearly the same {tau}{sub th} value.

  11. Electrons Confined with an Axially Symmetric Magnetic Mirror Field

    SciTech Connect

    Higaki, H.; Ito, K.; Kira, K.; Okamoto, H.

    2008-08-08

    Low energy non-neutral electron plasmas were confined with an axially symmetric magnetic mirror field and an electrostatic potential to investigate the basic confinement properties of a simple magnetic mirror trap. As expected the confinement time became longer as a function of the mirror ratio. The axial electrostatic oscillations of a confined electron plasma were also observed. Obtained results suggested an improved scheme to accumulate low energy charged particles with the use of a magnetic mirror field, which would enable the investigation of electron-positron plasmas.

  12. Properties of radio-frequency heated argon confined uranium plasmas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.

  13. Shear alignment of confined hydrocarbon liquid films.

    PubMed

    Drummond, Carlos; Alcantar, Norma; Israelachvili, Jacob

    2002-07-01

    Shear-induced structural reordering in thin liquid films of the linear saturated alkane n-eicosane (C20H42) was investigated using a surface forces apparatus and freeze-fracture (atomic force) microscopy (AFM). By rapidly freezing a shearing film followed by splitting (cleaving) the films from the confining mica substrate surfaces, it was possible to obtain AFM images of the structures of the films during steady-state sliding, revealing striped domains approximately 2 A in height and a few nanometer wide whose structure depends on the sliding velocity and, most likely, also on the sliding distance and time. In contrast, confined but unsheared films yielded completely featureless images. To the best of our knowledge, the results are the first direct experimental measurement of shear-induced ordering in nano-confined films resulting in layering and domain formation, but any molecular-level alignment, if present, could not be established. PMID:12241373

  14. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition.

    PubMed

    Shimaoka, T; Kaneko, J H; Arikawa, Y; Isobe, M; Sato, Y; Tsubota, M; Nagai, T; Kojima, S; Abe, Y; Sakata, S; Fujioka, S; Nakai, M; Shiraga, H; Azechi, H; Chayahara, A; Umezawa, H; Shikata, S

    2015-05-01

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot.

  15. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition

    SciTech Connect

    Shimaoka, T. Kaneko, J. H.; Tsubota, M.; Arikawa, Y.; Nagai, T.; Kojima, S.; Abe, Y.; Sakata, S.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Isobe, M.; Sato, Y.; Chayahara, A.; Umezawa, H.; Shikata, S.

    2015-05-15

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10{sup 7} cm/s and 1.0 ± 0.3 × 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5–1 keV and neutron yield of more than 10{sup 9} neutrons/shot.

  16. Confined Space Imager (CSI) Software

    2013-07-03

    The software provides real-time image capture, enhancement, and display, and sensor control for the Confined Space Imager (CSI) sensor system The software captures images over a Cameralink connection and provides the following image enhancements: camera pixel to pixel non-uniformity correction, optical distortion correction, image registration and averaging, and illumination non-uniformity correction. The software communicates with the custom CSI hardware over USB to control sensor parameters and is capable of saving enhanced sensor images to anmore » external USB drive. The software provides sensor control, image capture, enhancement, and display for the CSI sensor system. It is designed to work with the custom hardware.« less

  17. Amoeboid motion in confined geometry.

    PubMed

    Wu, Hao; Thiébaud, M; Hu, W-F; Farutin, A; Rafaï, S; Lai, M-C; Peyla, P; Misbah, C

    2015-01-01

    Many eukaryotic cells undergo frequent shape changes (described as amoeboid motion) that enable them to move forward. We investigate the effect of confinement on a minimal model of amoeboid swimmer. A complex picture emerges: (i) The swimmer's nature (i.e., either pusher or puller) can be modified by confinement, thus suggesting that this is not an intrinsic property of the swimmer. This swimming nature transition stems from intricate internal degrees of freedom of membrane deformation. (ii) The swimming speed might increase with increasing confinement before decreasing again for stronger confinements. (iii) A straight amoeoboid swimmer's trajectory in the channel can become unstable, and ample lateral excursions of the swimmer prevail. This happens for both pusher- and puller-type swimmers. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. In this study, we combine numerical and theoretical analyses. PMID:26651631

  18. Amoeboid motion in confined geometry

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Thiébaud, M.; Hu, W.-F.; Farutin, A.; Rafaï, S.; Lai, M.-C.; Peyla, P.; Misbah, C.

    2015-11-01

    Many eukaryotic cells undergo frequent shape changes (described as amoeboid motion) that enable them to move forward. We investigate the effect of confinement on a minimal model of amoeboid swimmer. A complex picture emerges: (i) The swimmer's nature (i.e., either pusher or puller) can be modified by confinement, thus suggesting that this is not an intrinsic property of the swimmer. This swimming nature transition stems from intricate internal degrees of freedom of membrane deformation. (ii) The swimming speed might increase with increasing confinement before decreasing again for stronger confinements. (iii) A straight amoeoboid swimmer's trajectory in the channel can become unstable, and ample lateral excursions of the swimmer prevail. This happens for both pusher- and puller-type swimmers. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. In this study, we combine numerical and theoretical analyses.

  19. Preface: Special Topic on Interfacial and Confined Water

    SciTech Connect

    Molinero, Valeria; Kay, Bruce D.

    2014-11-14

    This Special Topic on the Chemical Physics of Interfacial and Confined Water contains a collection of original research papers that showcase recent theoretical and experimental advances in the field. These papers provide a timely discussion of fundamental aspects of interfacial and confined water that are important in both natural environments and engineered applications.

  20. Home versus hospital confinement

    PubMed Central

    Barry, C. N.

    1980-01-01

    The case for hospital rather than home delivery has been powerfully argued, especially in and since the Report of the Peel Committee. Nevertheless, evidence of comparison with other countries, notably the Netherlands, suggests the choice is not necessarily simple. Some general practitioner units are now reporting perinatal mortality rates which are consistently lower than those of specialist units, and recent statistical analyses suggest that the presence of more high risk cases in consultant units does not explain this. The only big controlled home-versus-hospital trial did not lead to a significantly lower perinatal mortality rate in the hospital group. The onus of proof now seems to lie with those who advocate 100 per cent hospital confinement. PMID:7373581

  1. Working safely in confined spaces

    SciTech Connect

    Bush, C.; Versweyveld, J. )

    1992-08-13

    Working in confined spaces is a delicate balance of the correct equipment, hazard knowledge, proper training, and common sense. Anything less has potentially deadly consequences. The dangerous atmospheric and physical hazards often encountered in confined spaces must be recognized and accounted for. In addition, procedures and practices must conform to Occupational Safety and health Administration (OSHA) confined space regulations. Last year, three men were asphyxiated while surveying beneath a manhole in Boulder, CO. An area newspaper called the deaths the result of a freak accident. Whatever the cause, entering a manhole without first monitoring the air and posting an outside attendant is both extremely dangerous and a violation of safe entry procedures. The National Institute for Health and Occupational Safety (NIOSH) estimates that millions of workers from a wide range of occupations and industries are exposed to confined space hazards every year. Although confined space deaths are not a new phenomenon, only recently has the problem received serious study. Government regulatory agencies are becoming more involved OSHA recently proposed ruling 1910.146, Permit Required Confined Spaces, to mandate safe entry practices and procedures. The ruling requires all employers to develop a specific action plan for confined space entry, including entry procedures, worker training, safety equipment, and emergency action. This first article defines a confined space and examines some common hazards, including toxic, combustible, and oxygen-deficient atmospheres and combustible dusts. A subsequent article will review the use of test instruments, personal protective equipment, worker training, and emergency response.

  2. Confined Selective Withdrawal

    NASA Astrophysics Data System (ADS)

    Evangelio, Alvaro; Campo-Cortes, Francisco; Gordillo, Jose Manuel

    2014-11-01

    It is well known that the controlled production of monodisperse simple and composite emulsions possesses uncountable applications in medicine, pharmacy, materials science and industry. Here we present both experiments and slender-body theory regarding the generation of simple emulsions using a configuration that we have called Confined Selective Withdrawal, since it is an improved configuration of the classical Selective Withdrawal. We consider two different situations, namely, the cases when the outer flow Reynolds number is high and low, respectively. Several geometrical configurations and a wide range of viscosity ratios are analyzed so that the physics behind the phenomenon can be fully understood. In addition, we present both experiments and theory regarding the generation of composite emulsions. This phenomenon is only feasible when the outer flow Reynolds number is low enough. In this case, we propose a more complex theory which requires the simultaneous resolution of two interfaces in order to predict the shape of the jet and the sizes of the drops formed. The excellent agreement between our slender-body approximation and the experimental evidence fully validates our theories.

  3. Inertial confinement fusion

    SciTech Connect

    Powers, L.; Condouris, R.; Kotowski, M.; Murphy, P.W.

    1992-01-01

    This issue of the ICF Quarterly contains seven articles that describe recent progress in Lawrence Livermore National Laboratory's ICF program. The Department of Energy recently initiated an effort to design a 1--2 MJ glass laser, the proposed National Ignition Facility (NIF). These articles span various aspects of a program which is aimed at moving forward toward such a facility by continuing to use the Nova laser to gain understanding of NIF-relevant target physics, by developing concepts for an NIF laser driver, and by envisioning a variety of applications for larger ICF facilities. This report discusses research on the following topics: Stimulated Rotational Raman Scattering in Nitrogen; A Maxwell Equation Solver in LASNEX for the Simulation of Moderately Intense Ultrashort Pulse Experiments; Measurements of Radial Heat-Wave Propagation in Laser-Produced Plasmas; Laser-Seeded Modulation Growth on Directly Driven Foils; Stimulated Raman Scattering in Large-Aperture, High-Fluence Frequency-Conversion Crystals; Fission Product Hazard Reduction Using Inertial Fusion Energy; Use of Inertial Confinement Fusion for Nuclear Weapons Effects Simulations.

  4. Holographic thermalization in a quark confining background

    SciTech Connect

    Ageev, D. S. Aref’eva, I. Ya.

    2015-03-15

    We study holographic thermalization of a strongly coupled theory inspired by two colliding shock waves in a vacuum confining background. Holographic thermalization means a black hole formation, in fact, a trapped surface formation. As the vacuum confining background, we considered the well-know bottom-up AdS/QCD model that provides the Cornell potential and reproduces the QCD β-function. We perturb the vacuum background by colliding domain shock waves that are assumed to be holographically dual to heavy ions collisions. Our main physical assumption is that we can make a restriction on the time of trapped surface formation, which results in a natural limitation on the size of the domain where the trapped surface is produced. This limits the intermediate domain where the main part of the entropy is produced. In this domain, we can use an intermediate vacuum background as an approximation to the full confining background. We find that the dependence of the multiplicity on energy for the intermediate background has an asymptotic expansion whose first term depends on energy as E{sup 1/3}, which is very similar to the experimental dependence of particle multiplicities on the colliding ion energy obtained from the RHIC and LHC. However, this first term, at the energies where the approximation of the confining metric by the intermediate background works, does not saturate the exact answer, and we have to take the nonleading terms into account.

  5. Density shocks in confined microswimmers

    NASA Astrophysics Data System (ADS)

    Tsang, Alan Cheng Hou; Kanso, Eva; Biodynamics Team

    2014-11-01

    Motile microorganisms are often subject to different types of boundary confinement in their natural environment, but the effects of confinement on their dynamics are poorly understood. We consider an idealized model of confined microswimmers restricted to move in a two-dimensional Hele-Shaw cell. We then impose two different types of boundary confinement: circular and sidewalls confinement. We study how boundaries trigger the emergence of global modes. In the case of circular confinement, the microswimmers can spontaneously organize themselves into a single vortex state when the radius of the circular boundary is below a certain critical value, reminiscent to what have been observed in recent experiments of bacterial suspensions. In the case of sidewalls confinement in a rectangular channel, the microswimmers form density shock, via interaction with the sidewalls and background flow. We show that, through controlling the strength of background flow, we can manipulate the density shock to form at the back or front of the swimmer clusters or the suppression of the shock which gives rise to a uniform traveling wave of swimmers.

  6. Poloidal rotation, density asymmetries and momentum confinement in tokamak experiments

    SciTech Connect

    Stacey, W.M.; Jackson, D.R.

    1992-08-01

    Poloidal rotation speeds and density asymmetries are calculated for the deuterium and dominant carbon (oxygen) impurity ions in discharges in ASDEX, DIII, ISX-B, JET, and TFTR for which {upsilon}{sub {phi}} {approximately} {upsilon}{sub th} for the ions. These poloidal rotation speeds and density asymmetries are used to evaluate the neoclassical gyroviscous model for the momentum confinement time. The rather good agreement with experimental momentum confinement times obtained over this wide range of plasma parameters provides a measure of confidence in the calculated density asymmetries and poloidal rotation, as well as arguing for a neoclassical explanation for momentum confinement in tokamaks.

  7. Spatial confinement of muonium atoms

    NASA Astrophysics Data System (ADS)

    Khaw, K. S.; Antognini, A.; Prokscha, T.; Kirch, K.; Liszkay, L.; Salman, Z.; Crivelli, P.

    2016-08-01

    We report the achievement of spatial confinement of muonium atoms (the bound state of a positive muon and an electron). Muonium emitted into a vacuum from mesoporous silica reflects between two SiO2 confining surfaces separated by 1 mm. From the data, one can extract that the reflection probability on the confining surfaces kept at 100 K is about 90% and the reflection process is well described by a cosine law. This technique enables new experiments with this exotic atomic system and is a very important step towards a measurement of the 1 S -2 S transition frequency using continuous-wave laser spectroscopy.

  8. Partial confinement photonic crystal waveguides

    SciTech Connect

    Saini, S.; Hong, C.-Y.; Pfaff, N.; Kimerling, L. C.; Michel, J.

    2008-12-29

    One-dimensional photonic crystal waveguides with an incomplete photonic band gap are modeled and proposed for an integration application that exploits their property of partial angular confinement. Planar apodized photonic crystal structures are deposited by plasma enhanced chemical vapor deposition and characterized by reflectivity as a function of angle and polarization, validating a partial confinement design for light at 850 nm wavelength. Partial confinement identifies an approach for tailoring waveguide properties by the exploitation of conformal film deposition over a substrate with angularly dependent topology. An application for an optoelectronic transceiver is demonstrated.

  9. ITER L-Mode Confinement Database

    SciTech Connect

    S.M. Kaye and the ITER Confinement Database Working Group

    1997-10-01

    This paper describes the content of an L-mode database that has been compiled with data from Alcator C-Mod, ASDEX, DIII, DIII-D, FTU, JET, JFT-2M, JT-60, PBX-M, PDX, T-10, TEXTOR, TFTR, and Tore-Supra. The database consists of a total of 2938 entries, 1881 of which are in the L-phase while 922 are ohmically heated (OH) only. Each entry contains up to 95 descriptive parameters, including global and kinetic information, machine conditioning, and configuration. The paper presents a description of the database and the variables contained therein, and it also presents global and thermal scalings along with predictions for ITER. The L-mode thermal confinement time scaling was determined from a subset of 1312 entries for which the thermal confinement time scaling was provided.

  10. Superhydrophobicity: drying transition of confined water.

    PubMed

    Singh, Seema; Houston, Jack; van Swol, Frank; Brinker, C Jeffrey

    2006-08-01

    Long-range hydrophobic interactions operating underwater are important in the mediation of many natural and synthetic phenomena, such as protein folding, adhesion and colloid stability. Here we show that rough hydrophobic surfaces can experience attractive forces over distances more than 30 times greater than any reported previously, owing to the spontaneous evaporation of the intervening, confined water. Our finding highlights the importance of surface roughness in the interaction of extended structures in water, which has so far been largely overlooked. PMID:16885976

  11. Confinement scaling and ignition in tokamaks

    SciTech Connect

    Perkins, F.W.; Sun, Y.C.

    1985-10-01

    A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 10/sup 15/ cm/sup -3/, high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition.

  12. Gaussian Confinement in a Jkj Decay Model

    NASA Astrophysics Data System (ADS)

    da Silva, Mario L. L.; Hadjimichef, Dimiter; Vasconcellos, Cesar A. Z.

    In microscopic decay models, one attempts to describe hadron strong decays in terms of quark and gluon degrees of freedom. We begin by assuming that strong decays are driven by the same interquark Hamiltonian which determines the spectrum, and that it incorporates gaussian confinement. An A → BC decay matrix element of the JKJ Hamiltonian involves a pair-production current matrix elements times a scatering matrix element. Diagrammatically this corresponds to an interaction between an initial line and produced pair.

  13. Confined explosive joining of tubes

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1979-01-01

    Technique uses explosive ribbon to join and seal tubes hermetically while totally confining explosive products, such as smoke, light, and sound. Only click is audible. Process yields joints of the same strengths as parent metal.

  14. Assessing confinement in coastal lagoons.

    PubMed

    Canu, Donata Melaku; Solidoro, Cosimo; Umgiesser, Georg; Cucco, Andrea; Ferrarin, Christian

    2012-11-01

    Measures of transport scale in aquatic systems can contribute to the formulation of definitions of indicators of the system's ecological properties. This paper addresses confinement, a specific transport scale proposed by biological scientists as a parameter that can capture and synthesize the principal properties that determine the spatial structure of biological communities in transitional environments. Currently, there is no direct experimental measure of confinement. In this study, a methodology based on the accumulation rate within a lagoon of a passive tracer of marine origin is proposed, the influences of different factors in the calculation of confinement are analyzed, and general recommendations are derived. In particular, we analyze the spatial and the temporal variability of confinement and its sensitivity to the seasonal variability of climatic forcing, the inputs from rivers and the parameterization of the tidal exchanges. The Lagoon of Venice is used as a case study.

  15. Alternative approaches to plasma confinement

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1978-01-01

    The paper discusses 20 plasma confinement schemes each representing an alternative to the tokamak fusion reactor. Attention is given to: (1) tokamak-like devices (TORMAC, Topolotron, and the Extrap concept), (2) stellarator-like devices (Torsatron and twisted-coil stellarators), (3) mirror machines (Astron and reversed-field devices, the 2XII B experiment, laser-heated solenoids, the LITE experiment, the Kaktus-Surmac concept), (4) bumpy tori (hot electron bumpy torus, toroidal minimum-B configurations), (5) electrostatically assisted confinement (electrostatically stuffed cusps and mirrors, electrostatically assisted toroidal confinement), (6) the Migma concept, and (7) wall-confined plasmas. The plasma parameters of the devices are presented and the advantages and disadvantages of each are listed.

  16. Tandem mirror plasma confinement apparatus

    DOEpatents

    Fowler, T. Kenneth

    1978-11-14

    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  17. Confined flow of polymer blends.

    PubMed

    Tufano, C; Peters, G W M; Meijer, H E H

    2008-05-01

    The influence of confinement on the steady-state morphology of two different emulsions is investigated. The blends, made from polybutene (PB) in polydimethylsiloxane (PDMS) and polybutadiene (PBD) in PDMS, are sheared between two parallel plates, mostly with a standard gap spacing of 40 microm, in the range of shear rates at which the transition from "bulk" behavior toward "confined" behavior is observed. For both cases, the influence of the concentration was systematically investigated, as well as the shear rate effects on the final steady-state morphology. By decreasing the shear rate, for each blend, the increasing droplets, i.e., increasing confinement for a fixed gap spacing, arrange themselves first into two layers, and when the degree of confinement reaches an even higher value, a single layer of droplets is formed. The ratio between the drop diameters and the gap spacing at which this transition occurs is always lower than 0.5. While decreasing the shear rate, the degree of confinement increases due to drop coalescence. Droplets arrange themselves in superstructures like ordered pearl necklaces and, at the lower shear rates, strings. The aspect ratio and the width of the droplet obtained from optical micrographs are compared to predictions of the single droplet Maffettone-Minale model (MM model(1)). It is found that the theory, meant for unconfined shear flow, is not able to predict the drop deformation when the degree of confinement is above a critical value that depends on the blends considered and the shear rate applied. A recently developed extension of the MM model is reported by Minale (M model(2)) where the effect of the confinement is included by using the Shapira-Haber correction.3 Further extending this M model, by incorporating an effective viscosity as originally proposed by Choi and Showalter,4 we arrive at the mM model that accurately describes the experiments of blends in confined flow. PMID:18348582

  18. Alternative approaches to plasma confinement

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1977-01-01

    The potential applications of fusion reactors, the desirable properties of reactors intended for various applications, and the limitations of the Tokamak concept are discussed. The principles and characteristics of 20 distinct alternative confinement concepts are described, each of which may be an alternative to the Tokamak. The devices are classed as Tokamak-like, stellarator-like, mirror machines, bumpy tori, electrostatically assisted, migma concept, and wall-confined plasma.

  19. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D

    SciTech Connect

    Grierson, B. A. Nazikian, R. M.; Solomon, W. M.; Burrell, K. H.; Garofalo, A. M.; Belli, E. A.; Staebler, G. M.; Evans, T. E.; Smith, S. P.; Chrobak, C.; Fenstermacher, M. E.; McKee, G. R.; Orlov, D. M.; Chrystal, C.

    2015-05-15

    Impurity transport in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP), ELM-suppression, and QH-mode, the confinement time of fluorine (Z = 9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection, the impurity particle confinement time compared to the energy confinement time is in the range of τ{sub p}/τ{sub e}≈2−3. In QH-mode operation, the impurity confinement time is shown to be smaller for intense, coherent magnetic, and density fluctuations of the edge harmonic oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma, the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius, the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2–3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient is higher inside of ρ=0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.

  20. Confined aquifer vulnerability induced by a pumping well in a leakage area

    NASA Astrophysics Data System (ADS)

    Meng, X.; Deng, B.; Shao, J.; Yin, M.; Liu, D.; Hu, Q.

    2015-05-01

    Due to the pollution of shallow groundwater and the rapid development of society and economy which consume more freshwater, the exploitation of confined groundwater is steadily increasing in north China. Therefore, the rapid decline of the confined groundwater head increases the risk of confined aquifer pollution by leaky recharge from shallow aquifers. In this paper, a quantitative method for assessing confined aquifer vulnerability to contamination due to pumping has been developed. This method is based on the shallow and confined groundwater flow model and the advection and dispersion in the aquitard, including sorption. The cumulative time for the pollutant concentration at the top boundary of confined aquifer exceeding the maximum allowable level is defined as the confined aquifer vulnerability index, which can be obtained by numerically solving the solute transport equation. A hypothetical example is chosen as a case study to illustrate the whole process. The results indicate that the proposed method is a practical and reasonable assessment method of confined aquifer vulnerability.

  1. Incommensurability of a Confined System under Shear

    NASA Astrophysics Data System (ADS)

    Braun, O. M.; Vanossi, A.; Tosatti, E.

    2005-07-01

    We study a chain of harmonically interacting atoms confined between two sinusoidal substrate potentials, when the top substrate is driven through an attached spring with a constant velocity. This system is characterized by three inherent length scales and closely related to physical situations with confined lubricant films. We show that, contrary to the standard Frenkel-Kontorova model, the most favorable sliding regime is achieved by choosing chain-substrate incommensurabilities belonging to the class of cubic irrational numbers (e.g., the spiral mean). At large chain stiffness, the well known golden mean incommensurability reveals a very regular time-periodic dynamics with always higher kinetic friction values with respect to the spiral mean case.

  2. From Pauli's birthday to 'Confinement Resonances' - a potted history of Quantum Confinement

    NASA Astrophysics Data System (ADS)

    Connerade, J. P.

    2013-06-01

    Quantum Confinement is in some sense a new subject. International meetings dedicated to Quantum Confinement have occurred only recently in Mexico City (the first in 2010 and the second, in September 2011). However, at least in principle, the subject has existed since a very long time. Surprisingly perhaps, it lay dormant for many years, for want of suitable experimental examples. However, when one looks carefully at its origin, it turns out to have a long and distinguished history. In fact, the problem of quantum confinement raises a number of very interesting issues concerning boundary conditions in elementary quantum mechanics and how they should be applied to real problems. Some of these issues were missed in the earliest papers, but are implicit in the structure of quantum mechanics, and lead to the notion of Confinement Resonances, the existence of which was predicted theoretically more than ten years ago. Although, for several reasons, these resonances remained elusive for a very long time, they have now been observed experimentally, which puts the whole subject in much better shape and, together with the advent of metallofullerenes, has contributed to its revival.

  3. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement

    SciTech Connect

    Betti, R.; Chang, P. Y.; Anderson, K. S.; Nora, R.; Spears, B. K.; Edwards, J.; Lindl, J. D.; Fatenejad, M.; McCrory, R. L.; Shvarts, D.

    2010-05-15

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA[T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptauapprox1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptauapprox1 atm s. Since OMEGA implosions are relatively cold (Tapprox2 keV), their overall ignition parameter chiapprox0.02-0.03 is approx5x lower than in JET (chiapprox0.13), where the average temperature is about 10 keV.

  4. Tgermonuclear Ignition in Inertial Confinement Fusion and Comparison with Magnetic Confinement

    SciTech Connect

    Betti, R.; Chang, P.Y.; Spears, B.K.; Anderson, K.S.; Edwards, J.; Fatenejad, M.; Lindl, J.D.; McCrory, R.L.; Nora, R.; Shvarts, D.

    2010-04-23

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptau ~ 1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptau ~ 1 atm s. Since OMEGA implosions are relatively cold (T ~ 2 keV), their overall ignition parameter chi ~ 0.02–0.03 is ~5X lower than in JET (chi ~ 0.13), where the average temperature is about 10 keV.

  5. DNA Confined in Nanochannels and Nanoslits

    NASA Astrophysics Data System (ADS)

    Tree, Douglas R.

    It has become increasingly apparent in recent years that next-generation sequencing (NGS) has a blind spot for large scale genomic variation, which is crucial for understanding the genotype-phenotype relationship. Genomic mapping methods attempt to overcome the weakesses of NGS by providing a coarse-grained map of the distances between restriction sites to aid in sequence assembly. From such methods, one hopes to realize fast and inexpensive de novo sequencing of human and plant genomes. One of the most promising methods for genomic mapping involves placing DNA inside a device only a few dozen nanometers wide called a nanochannel. A nanochannel stretches the DNA so that the distance between fluorescently labeled restriction sites can be measured en route to obtaining an accurate genome map. Unfortunately for those who wish to design devices, the physics of how DNA stretches when confined in a nanochannel is still an active area of research. Indeed, despite decades old theories from polymer physics regarding weakly and strongly stretched polymers, seminal experiments in the mid-2000s have gone unexplained until very recently. With a goal of creating a realistic engineering model of DNA in nanochannels, this dissertation addresses a number of important outstanding research topics in this area. We first discuss the physics of dilute solutions of DNA in free solution, which show distinctive behavior due to the stiff nature of the polymer. We then turn our attention to the equilibrium regimes of confined DNA and explore the effects of stiff chains and weak excluded volume on the confinement free energy and polymer extension. We also examine dynamic properties such as the diffusion coefficient and the characteristic relaxation time. Finally, we discuss a sister problem related to DNA confined in nanoslits, which shares much of the same physics as DNA confined in channels. Having done this, we find ourselves with a well-parameterized wormlike chain model that is

  6. Thermodynamics of confined gallium clusters

    NASA Astrophysics Data System (ADS)

    Chandrachud, Prachi

    2015-11-01

    We report the results of ab initio molecular dynamics simulations of Ga13 and Ga17 clusters confined inside carbon nanotubes with different diameters. The cluster-tube interaction is simulated by the Lennard-Jones (LJ) potential. We discuss the geometries, the nature of the bonding and the thermodynamics under confinement. The geometries as well as the isomer spectra of both the clusters are significantly affected. The degree of confinement decides the dimensionality of the clusters. We observe that a number of low-energy isomers appear under moderate confinement while some isomers seen in the free space disappear. Our finite-temperature simulations bring out interesting aspects, namely that the heat capacity curve is flat, even though the ground state is symmetric. Such a flat nature indicates that the phase change is continuous. This effect is due to the restricted phase space available to the system. These observations are supported by the mean square displacement of individual atoms, which are significantly smaller than in free space. The nature of the bonding is found to be approximately jellium-like. Finally we note the relevance of the work to the problem of single file diffusion for the case of the highest confinement.

  7. Semiflexible chains in confined spaces

    NASA Astrophysics Data System (ADS)

    Morrison, Greg; Thirumalai, D.

    2009-01-01

    We develop an analytical method for studying the properties of a noninteracting wormlike chain (WLC) in confined geometries. The mean-field-like theory replaces the rigid constraints of confinement with average constraints, thus allowing us to develop a tractable method for treating a WLC wrapped on the surface of a sphere, and fully encapsulated within it. The efficacy of the theory is established by reproducing the exact correlation functions for a WLC confined to the surface of a sphere. In addition, the coefficients in the free energy are exactly calculated. We also describe the behavior of a surface-confined chain under external tension that is relevant for single molecule experiments on histone-DNA complexes. The force-extension curves display spatial oscillations, and the extension of the chain, whose maximum value is bounded by the sphere diameter, scales as f-1 at large forces, in contrast to the unconfined chain that approaches the contour length as f-1/2 . A WLC encapsulated in a sphere, that is relevant for the study of the viral encapsulation of DNA, can also be treated using the mean-field approach. The predictions of the theory for various correlation functions are in excellent agreement with Langevin simulations. We find that strongly confined chains are highly structured by examining the correlations using a local winding axis. The predicted pressure of the system is in excellent agreement with simulations but, as is known, is significantly lower than the pressures seen for DNA packaged in viral capsids.

  8. Modeling the Effects of Confinement during Cookoff of Explosives

    NASA Astrophysics Data System (ADS)

    Hobbs, Michael

    2013-06-01

    In practical scenarios, cookoff of explosives is a three-dimensional transient phenomenon where the rate limiting reactions may occur either in the condensed or gas phase. The effects of confinement are more dramatic when the rate-limiting reactions occur in the gas phase. Explosives can be self-confined, where the decomposing gases are contained within non-permeable regions of the explosive, or confined by a metal or composite container. Self-confinement is prevalent in plastic bonded explosives at full density. The time-to-ignition can be delayed by orders of magnitude if the reactive gases leave the confining apparatus. Delays in ignition can also occur when the confining apparatus has excess gas volume or ullage. Explosives with low melting points, such as trinitrotoluene (TNT) or cyclotrimethylenetrinitramine (RDX) are complex since melting and flow need to be considered when simulating cookoff. Cookoff of composite explosives such as Comp-B (mixture of TNT and RDX) are even more complex since dissolution of one component increases the reactivity of the other component. Understanding the effects of confinement is required to accurately model cookoff at various scales ranging from small laboratory experiments to large real systems that contain explosives. Sandia National Laboratories is managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Confined PBX 9501 gap reinitiation studies

    SciTech Connect

    Salyer, Terry R; Hill, Larry G; Lam, Kin

    2009-01-01

    For explosive systems that exhibit gaps or cracks between their internal components (either by design or mechanical failure), measurable time delays exist for detonation waves crossing them. Reinitiation across such gaps is dependent on the type of explosive, gap width, gap morphology, confinement, and temperature effects. To examine this reinitiation effect, a series of tests has been conducted to measure the time delay across a prescribed gap within an 'infinitely' confined PBX 9501 system. Detonation breakout along the explosive surface is measured with a streak camera, and flow features are examined during reinitiation near the gap. Such tests allow for quantitative determination of the time delay corresponding to the time of initiation across a given gap oriented normal to the direction of the detonation wave. Measured time delays can be compared with numerical calculations, making it possible to validate initiation models as well as estimate detonation run-up distances. Understanding this reinitiation behavior is beneficial for the design and evaluation of explosive systems that require precision timing and performance.

  10. CORRELATIONS IN CONFINED QUANTUM PLASMAS

    SciTech Connect

    DUFTY J W

    2012-01-11

    This is the final report for the project 'Correlations in Confined Quantum Plasmas', NSF-DOE Partnership Grant DE FG02 07ER54946, 8/1/2007 - 7/30/2010. The research was performed in collaboration with a group at Christian Albrechts University (CAU), Kiel, Germany. That collaboration, almost 15 years old, was formalized during the past four years under this NSF-DOE Partnership Grant to support graduate students at the two institutions and to facilitate frequent exchange visits. The research was focused on exploring the frontiers of charged particle physics evolving from new experimental access to unusual states associated with confinement. Particular attention was paid to combined effects of quantum mechanics and confinement. A suite of analytical and numerical tools tailored to the specific inquiry has been developed and employed

  11. Combinational concentration gradient confinement through stagnation flow.

    PubMed

    Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung

    2016-01-21

    Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays. PMID:26671507

  12. Status of global energy confinement studies

    SciTech Connect

    Kaye, S.M.; Bell, M.G. . Plasma Physics Lab.); Barnes, C.W. ); DeBoo, J.C.; Waltz, R. ); Greenwald, M.; Sigmar, D. . Plasma Fusion Center); Riedel, K. . Courant Inst. of Mathematical Sciences); Uckan, N. (Oak Ridge National L

    1990-02-01

    Empirical scaling expressions, reflecting the parametric dependence of the L-mode energy confinement time, have been used not only as benchmarks for tokamak operation and theories of energy transport, but for predicting the performance of proposed tokamak devices. Several scaling expressions based on data from small-and medium-sized devices have done well in predicting performance in larger devices, although great uncertainty exists in extrapolating yet farther, into the ignition regime. Several approaches exist for developing higher confidence scaling expressions. These include reducing the statistical uncertainty by identifying and filling in gaps in the present database, making use of more sophisticated statistical techniques, and developing scalings for confinement regimes within which future devices will operate. Confidence in the scaling expressions will be increased still if the expressions can be more directly tied to transport physics theory. This can be done through the use of dimensionless parameters, better describing the edge and core confinement regimes separately, and by incorporating transport models directly into the scaling expressions. 50 refs., 5 figs., 3 tabs.

  13. Coronal electron confinement by double layers

    SciTech Connect

    Li, T. C.; Drake, J. F.; Swisdak, M.

    2013-12-01

    In observations of flare-heated electrons in the solar corona, a longstanding problem is the unexplained prolonged lifetime of the electrons compared to their transit time across the source. This suggests confinement. Recent particle-in-cell (PIC) simulations, which explored the transport of pre-accelerated hot electrons through ambient cold plasma, showed that the formation of a highly localized electrostatic potential drop, in the form of a double layer (DL), significantly inhibited the transport of hot electrons. The effectiveness of confinement by a DL is linked to the strength of the DL as defined by its potential drop. In this work, we investigate the scaling of the DL strength with the hot electron temperature by PIC simulations and find a linear scaling. We demonstrate that the strength is limited by the formation of parallel shocks. Based on this, we analytically determine the maximum DL strength, and also find a linear scaling with the hot electron temperature. The DL strength obtained from the analytic calculation is comparable to that from the simulations. At the maximum strength, the DL is capable of confining a significant fraction of hot electrons in the source.

  14. Coronal Electron Confinement by Double Layers

    NASA Astrophysics Data System (ADS)

    Li, T. C.; Drake, J. F.; Swisdak, M.

    2013-12-01

    In observations of flare-heated electrons in the solar corona, a longstanding problem is the unexplained prolonged lifetime of the electrons compared to their transit time across the source. This suggests confinement. Recent particle-in-cell (PIC) simulations, which explored the transport of pre-accelerated hot electrons through ambient cold plasma, showed that the formation of a highly localized electrostatic potential drop, in the form of a double layer (DL), significantly inhibited the transport of hot electrons. The effectiveness of confinement by a DL is linked to the strength of the DL as defined by its potential drop. In this work, we investigate the scaling of the DL strength with the hot electron temperature by PIC simulations and find a linear scaling. We demonstrate that the strength is limited by the formation of parallel shocks. Based on this, we analytically determine the maximum DL strength, and also find a linear scaling with the hot electron temperature. The DL strength obtained from the analytic calculation is comparable to that from the simulations. At the maximum strength, the DL is capable of confining a significant fraction of hot electrons in the source.

  15. Combinational concentration gradient confinement through stagnation flow.

    PubMed

    Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung

    2016-01-21

    Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.

  16. Building solids inside nano-space: from confined amorphous through confined solvate to confined 'metastable' polymorph.

    PubMed

    Nartowski, K P; Tedder, J; Braun, D E; Fábián, L; Khimyak, Y Z

    2015-10-14

    The nanocrystallisation of complex molecules inside mesoporous hosts and control over the resulting structure is a significant challenge. To date the largest organic molecule crystallised inside the nano-pores is a known pharmaceutical intermediate - ROY (259.3 g mol(-1)). In this work we demonstrate smart manipulation of the phase of a larger confined pharmaceutical - indomethacin (IMC, 357.8 g mol(-1)), a substance with known conformational flexibility and complex polymorphic behaviour. We show the detailed structural analysis and the control of solid state transformations of encapsulated molecules inside the pores of mesoscopic cellular foam (MCF, pore size ca. 29 nm) and controlled pore glass (CPG, pore size ca. 55 nm). Starting from confined amorphous IMC we drive crystallisation into a confined methanol solvate, which upon vacuum drying leads to the stabilised rare form V of IMC inside the MCF host. In contrast to the pure form, encapsulated form V does not transform into a more stable polymorph upon heating. The size of the constraining pores and the drug concentration within the pores determine whether the amorphous state of the drug is stabilised or it recrystallises into confined nanocrystals. The work presents, in a critical manner, an application of complementary techniques (DSC, PXRD, solid-state NMR, N2 adsorption) to confirm unambiguously the phase transitions under confinement and offers a comprehensive strategy towards the formation and control of nano-crystalline encapsulated organic solids. PMID:26280634

  17. Aerofractures in Confined Granular Media

    NASA Astrophysics Data System (ADS)

    Eriksen, Fredrik K.; Turkaya, Semih; Toussaint, Renaud; Måløy, Knut J.; Flekkøy, Eirik G.

    2015-04-01

    We will present the optical analysis of experimental aerofractures in confined granular media. The study of this generic process may have applications in industries involving hydraulic fracturing of tight rocks, safe construction of dams, tunnels and mines, and in earth science where phenomena such as mud volcanoes and sand injectites are results of subsurface sediment displacements driven by fluid overpressure. It is also interesting to increase the understanding the flow instability itself, and how the fluid flow impacts the solid surrounding fractures and in the rest of the sample. Such processes where previously studied numerically [Niebling 2012a, Niebling 2012b] or in circular geometries. We will here explore experimentally linear geometries. We study the fracturing patterns that form when air flows into a dense, non-cohesive porous medium confined in a Hele-Shaw cell - i.e. into a packing of dry 80 micron beads placed between two glass plates separated by ~1mm. The cell is rectangular and fitted with a semi-permeable boundary to the atmosphere - blocking beads but not air - on one short edge, while the other three edges are impermeable. The porous medium is packed inside the cell between the semi-permeable boundary and an empty volume at the sealed side where the air pressure can be set and kept at a constant overpressure (1-2bar). Thus, for the air trapped inside the cell to release the overpressure it has to move through the solid. At high enough overpressures the air flow deforms the solid and increase permeability in some regions along the air-solid interface, which results in unstable flow and aerofracturing. Aerofractures are thought to be an analogue to hydrofractures, and an advantage of performing aerofracturing experiments in a Hele-Shaw cell is that the fracturing process can easily be observed in the lab. Our experiments are recorded with a high speed camera with a framerate of 1000 frames per second. In the analysis, by using various image

  18. Inertial confinement fusion (ICF) review

    SciTech Connect

    Hammer, D.; Dyson, F.; Fortson, N.; Novick, B.; Panofsky, W.; Rosenbluth, M.; Treiman, S.; York, H.

    1996-03-01

    During its 1996 winter study JASON reviewed the DOE Inertial Confinement Fusion (ICF) program. This included the National Ignition Facility (NIF) and proposed studies. The result of the review was to comment on the role of the ICF program in support of the DOE Science Based Stockpile Stewardship program.

  19. Limiting Spectra from Confining Potentials.

    ERIC Educational Resources Information Center

    Nieto, Michael Martin; Simmons, L. M., Jr.

    1979-01-01

    The author explains that, for confining potentials and large quantum numbers, the bound-state energies rise more rapidly as a function of n the more rapidly the potential rises with distance. However, the spectrum can rise no faster than n squared in the nonrelativistic case, or n in the relativistic case. (Author/GA)

  20. Oscillatory dissipation of a simple confined liquid.

    PubMed

    Maali, Abdelhamid; Cohen-Bouhacina, Touria; Couturier, Gérard; Aimé, Jean-Pierre

    2006-03-01

    We present a sensitive measurement of the dissipation and the effective viscosity of a simple confined liquid (octamethylcyclotetrasiloxane) using an atomic force microscope. The experimental data show that the damping and the effective viscosity increase and present oscillations as the gap between the cantilever tip and the surface is diminished. To our knowledge, the damping and the viscosity modulation are reported here with such good accuracy for the first time. Such an experimental result is different from what has been reported earlier where only a continuous increase of the damping and the viscosity are observed. PMID:16606201

  1. Confining quark condensate model of the nucleon.

    SciTech Connect

    Frank, Michael; Tandy, Peter

    1992-07-01

    We obtain a mean-field solution for the nucleon as a quark-meson soliton obtained from the action of the global color-symmetry model of QCD. All dynamics is generated from an effective interaction of quark currents. At the quark-meson level there are two novel features: (1) absolute confinement is produced from the space-time structure of the dynamical self-energy in the vacuum quark propagator; and (2) the related scalar meson field is an extended q-barq composite that couples nonlocally to quarks. The influence of these features upon the nucleon mass contributions and other nucleon properties is presented.

  2. Confinement and heating studies of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Chrien, Robert E.

    1990-10-01

    Confinement studies of field-reversed configurations (FRCs) have been actively pursued during the past ten years with the larger and longer-lived FRCs produced in the FRX-C and FRX-C/LSM devices. Confinement measurements have included the global FRC quantities and, in some cases, profiles of electron temperature and density. The inferred confinement times and transport coefficients are used for comparison with transport models as well as to find the best operating conditions in the experiment. Global power flow modelling shows that energy confinement during the equilibrium phase is usually dominated by particle losses, with a substantial secondary contribution from electron thermal conduction. Particle losses in present kinetic FRCs are strongly influenced by open field line confinement, which complicates the study of transport mechanisms. The electron thermal conduction is observed to be anomalous, as in other plasma devices. The bulk electrical resistivity is also anomalous and shows no evidence of classical Spitzer scaling. Recently, the resistive anomaly has been shown to correlate with tilt-like magnetic perturbations observed with Mirnov coils. FRC confinement studies have also been extended to a higher temperature regime during magnetic compression heating. In these experiments, translated FRCs are compressed by increasing the external magnetic flux up to a factor of seven on a time scale between the radial Alfven time and the FRC lifetime. Electron and ion temperatures up to 0.4 keV and 1.6 keV, respectively have been obtained. Confinement times scale roughly as r(exp 2) during compression.

  3. Polymer ejection from strong spherical confinement

    NASA Astrophysics Data System (ADS)

    Piili, J.; Linna, R. P.

    2015-12-01

    We examine the ejection of an initially strongly confined flexible polymer from a spherical capsid through a nanoscale pore. We use molecular dynamics for unprecedentedly high initial monomer densities. We show that the time for an individual monomer to eject grows exponentially with the number of ejected monomers. By measurements of the force at the pore we show this dependence to be a consequence of the excess free energy of the polymer due to confinement growing exponentially with the number of monomers initially inside the capsid. This growth relates closely to the divergence of mixing energy in the Flory-Huggins theory at large concentration. We show that the pressure inside the capsid driving the ejection dominates the process that is characterized by the ejection time growing linearly with the lengths of different polymers. Waiting time profiles would indicate that the superlinear dependence obtained for polymers amenable to computer simulations results from a finite-size effect due to the final retraction of polymers' tails from capsids.

  4. Confinement Studies of Auxiliary Heated NSTX Plasmas

    SciTech Connect

    B.P. LeBlanc; M.G. Bell; R.E. Bell; M.L. Bitter; C. Bourdelle; D.A. Gates; S.M. Kaye; R. Maingi; J.E. Menard; D. Mueller; S.F. Paul; A.L. Roquemore; A. Rosenberg1; S.A. Sabbagh; D. Stutman; E.J. Synakowski; V.A. Soukhanovskii; J.R.Wilson; the NSTX Research Team

    2003-05-06

    The confinement of auxiliary heated NSTX discharges is discussed. The energy confinement time in plasmas with either L-mode or H-mode edges is enhanced over the values given by the ITER97L and ITER98Pby(2) scalings, being up to 2-3 times L-mode and 1.5 times H-mode. TRANSP calculations based on the kinetic profile measurements reproduce the magnetics-based determination of stored energy and the measured neutron production rate. Power balance calculations reveal that, in a high power neutral beam heated H-mode discharge, the ion thermal transport is near neoclassical levels, and well below the electron thermal transport, which is the main loss channel. Perturbative impurity injection techniques indicate the particle diffusivity to be slightly above the neoclassical level in discharges with L-mode edge. High-harmonic fast-wave (HHFW) bulk electron heating is described and thermal transport is discussed. Thermal ion transport is found to be above neoclassical level, but thermal electron transport remains the main loss mechanism. Evidences of an electron thermal internal transport barrier obtained with HHFW heating are presented. A description of H-mode discharges obtained during HHFW heating is presented.

  5. Dynamics of Confined Water Molecules in Aqueous Salt Hydrates

    SciTech Connect

    Werhahn, Jasper C.; Pandelov, S.; Yoo, Soohaeng; Xantheas, Sotiris S.; Iglev, H.

    2011-04-01

    The unusual properties of water are largely dictated by the dynamics of the H bond network. A single water molecule has more H bonding sites than atoms, hence new experimental and theoretical investigations about this peculiar liquid have not ceased to appear. Confinement of water to nanodroplets or small molecular clusters drastically changes many of the liquid’s properties. Such confined water plays a major role in the solvation of macro molecules such as proteins and can even be essential to their properties. Despite the vast results available on bulk and confined water, discussions about the correlation between spectral and structural properties continue to this day. The fast relaxation of the OH stretching vibration in bulk water, and the variance of sample geometries in the experiments on confined water obfuscate definite interpretation of the spectroscopic results in terms of structural parameters. We present first time-resolved investigations on a new model system that is ideally suited to overcome many of the problems faced in spectroscopical investigation of the H bond network of water. Aqueous hydrates of inorganic salts provide water molecules in a crystal grid, that enables unambiguous correlations of spectroscopic and structural features. Furthermore, the confined water clusters are well isolated from each other in the crystal matrix, so different degrees of confinement can be achieved by selection of the appropriate salt.

  6. Feynman amplitudes with confinement included

    NASA Astrophysics Data System (ADS)

    Simonov, Yu. A.

    2009-07-01

    Amplitudes for any multipoint Feynman diagram are written taking into account vacuum background confining field. Higher order gluon exchanges are treated within background perturbation theory. For amplitudes with hadrons in initial or final states vertices are shown to be expressed by the corresponding wave function with the renormalized z factors. Examples of two-point functions, three-point functions (form factors), and decay amplitudes are explicitly considered.

  7. Ion beam inertial confinement target

    DOEpatents

    Bangerter, Roger O.; Meeker, Donald J.

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  8. Holographic confinement in inhomogeneous backgrounds

    NASA Astrophysics Data System (ADS)

    Marolf, Donald; Wien, Jason

    2016-08-01

    As noted by Witten, compactifying a d-dimensional holographic CFT on an S 1 gives a class of ( d - 1)-dimensional confining theories with gravity duals. The proto-typical bulk solution dual to the ground state is a double Wick rotation of the AdS d+1 Schwarzschild black hole known as the AdS soliton. We generalize such examples by allowing slow variations in the size of the S 1, and thus in the confinement scale. Coefficients governing the second order response of the system are computed for 3 ≤ d ≤ 8 using a derivative expansion closely related to the fluid-gravity correspondence. The primary physical results are that i) gauge-theory flux tubes tend to align orthogonal to gradients and along the eigenvector of the Hessian with the lowest eigenvalue, ii) flux tubes aligned orthogonal to gradients are attracted to gradients for d ≤ 6 but repelled by gradients for d ≥ 7, iii) flux tubes are repelled by regions where the second derivative along the tube is large and positive but are attracted to regions where the eigenvalues of the Hessian are large and positive in directions orthogonal to the tube, and iv) for d > 3, inhomogeneities act to raise the total energy of the confining vacuum above its zeroth order value.

  9. Edge states in confined active fluids

    NASA Astrophysics Data System (ADS)

    Souslov, Anton; Vitelli, Vincenzo

    Recently, topologically protected edge modes have been proposed and realized in both mechanical and acoustic metamaterials. In one class of such metamaterials, Time-Reversal Symmetry is broken, and, to achieve this TRS breaking in mechanical and acoustic systems, an external energy input must be used. For example, motors provide a driving force that uses energy and, thus, explicitly break TRS. As a result, motors have been used as an essential component in the design of topological metamaterials. By contrast, we explore the design of topological metamaterials that use a class of far-from-equilibrium liquids, called polar active liquids, that spontaneously break TRS. We thus envision the confinement of a polar active liquid to a prescribed geometry in order to realize topological order with broken time-reversal symmetry. We address the design of the requisite geometries, for example a regular honeycomb lattice composed of annular channels, in which the active liquid may be confined. We also consider the physical character of the active liquid that, when introduced into the prescribed geometry, will spontaneously form the flow pattern of a metamaterial with topologically protected edge states. Finally, we comment on potential experimental realizations of such metamaterials.

  10. Glassy dynamics in a confined monatomic fluid

    NASA Astrophysics Data System (ADS)

    Krishnan, S. H.; Ayappa, K. G.

    2012-07-01

    Molecular dynamic simulations of a strongly inhomogeneous system reveals that a single-component soft-sphere fluid can behave as a fragile glass former due to confinement. The self-intermediate scattering function, Fs(k,t), of a Lennard-Jones fluid confined in slit-shaped pores, which can accomodate two to four fluid layers, exhibits a two-step relaxation at moderate temperatures. The mean-squared displacement data are found to follow time-temperature superposition and both the self-diffusivity and late α relaxation times exhibit power-law divergences as the fluid is cooled. The system possesses a crossover temperature and follows the scalings of mode coupling theory for the glass transition. The temperature dependence of the self-diffusivity can be expressed using the Vogel-Fulcher-Tammann equation, and estimates of the fragility index of the system indicates a fragile glass former. At lower temperatures, signatures of additional relaxation processes are observed in the various dynamical quantities with a three-step relaxation observed in the Fs(k,t).

  11. Improved Confinement in the SSPX Spheromak

    NASA Astrophysics Data System (ADS)

    McLean, H. S.; Woodruff, S.; Hill, D. N.; Hooper, E. B.; Bulmer, R.; Wood, R. D.

    2003-10-01

    Energy confinement in the SSPX spheromak has increased significantly. Improvements are due to higher formation current followed by a longer flat-top current with additional tuning of vacuum bias flux to produce a radial profile of current density/magnetic field that is slightly peaked at the magnetic axis. The discharge evolves through an optimum profile indicated by a minimum in magnetic field fluctuations during which time, the q=safety factor profile is also slightly peaked and lies between the two lowest order resonant surfaces with 1/2 < q < 2/3 (q = n/m = toroidal/poloidal mode). Electron temperature Te has increased over previous results from 120 eV to > 200 eV, electron thermal diffusivity in the core is reduced by a factor of four to < 10 m^2/sec. Ohmic power density Poh in the core is about the same, but edge dissipation, which dominates, is reduced. Higher Te and lower Poh doubles the electron energy confinement time within the separatrix to > 200 μs.

  12. SPECIAL TOPIC: ITER H mode confinement database update

    NASA Astrophysics Data System (ADS)

    Thomsen, K.; Campbell, D. J.; Cordey, J. G.; Kardaun, O. J. W. F.; Ryter, F.; Stroth, U.; Kus, A.; DeBoo, J. C.; Schissel, D. P.; Miura, Y.; Suzuki, N.; Mori, M.; Matsuda, T.; Tamai, H.; Takizuka, T.; Itoh, S.-I.; Itoh, K.; Kaye, S. M.

    1994-01-01

    This paper describes an update of the H mode confinement database that has been assembled for the ITER project. Data were collected from six machines of different sizes and shapes: ASDEX, DIII-D, JET, JFT-2M, PBX-M and PDX. The updated database contains better estimates of fast ion energy content and thermal energy confinement times, discharges with RF heating, data using boronization, beryllium and pellets, more systematic parameter scans, and other features. The list of variables in the database has been expanded, and the selection criteria for the standard dataset have been modified. We also present simple scalings of the total and thermal energy confinement time to the new dataset

  13. Effects of confinement on protein folding and protein stability

    NASA Astrophysics Data System (ADS)

    Ping, G.; Yuan, J. M.; Vallieres, M.; Dong, H.; Sun, Z.; Wei, Y.; Li, F. Y.; Lin, S. H.

    2003-05-01

    In a cell, proteins exist in crowded environments; these environments influence their stability and dynamics. Similarly, for an enzyme molecule encapsulated in an inorganic cavity as in biosensors or biocatalysts, confinement and even surface effects play important roles in its stability and dynamics. Using a minimalist model (two-dimensional HP lattice model), we have carried out Monte Carlo simulations to study confinement effects on protein stability. We have calculated heat capacity as a function of temperature using the histogram method and results obtained show that confinement tends to stabilize the folded conformations, consistent with experimental results (some reported here) and previous theoretical analyses. Furthermore, for a protein molecule tethered to a solid surface the stabilization effect can be even greater. We have also investigated the effects of confinement on the kinetics of the refolding and unfolding processes as functions of temperature and box size. As expected, unfolding time increases as box size decreases, however, confinement affects folding times in a more complicated way. Our theoretical results agree with our experimentally observed trends that thermal stability of horseradish peroxidase and acid phosphatase, encapsulated in mesoporous silica, increases as the pore size of the silica matrix decreases.

  14. Confinement dynamics in the reversed field pinch

    SciTech Connect

    Schoenberg, K.F.

    1988-01-01

    The study of basic transport and confinement dynamics is central to the development of the reversed field pinch (RFP) as a confinement concept. Thus, the goal of RFP research is to understand the connection between processes that sustain the RFP configuration and related transport/confinement properties. Recently, new insights into confinement have emerged from a detailed investigation of RFP electron and ion physics. These insights derive from the recognition that both magnetohydrodynamic (MHD) and electron kinetic effects play an important and strongly coupled role in RFP sustainment and confinement dynamics. In this paper, we summarize the results of these studies on the ZT-40M experiment. 8 refs.

  15. Scattering and confinement dynamics of Dirac particles in external electrostatic and Lorentz scalar potentials

    NASA Astrophysics Data System (ADS)

    M, Haritha; P, Durganandini

    2015-06-01

    We study the scattering and confinement of Dirac particles in external electrostatic and Lorentz scalar potentials. We use a numerical finite difference time -domain method to solve the equation and obtain the particle dynamics. We find qualitatively different dynamical behavior for electrostatic and Lorentz scalar potentials. Electrostatic potentials lead to Klein tunneling and do not exhibit confinement, while Lorentz scalar potentials inhibit Klein tunneling and exhibit confinement.

  16. Effect of Aluminium Confinement on ANFO Detonation

    NASA Astrophysics Data System (ADS)

    Short, Mark; Jackson, Scott; Kiyanda, Charles; Shinas, Mike; Hare, Steve; Briggs, Matt

    2013-06-01

    Detonations in confined non-ideal high explosives often have velocities below the confiner sound speed. The effect on detonation propagation of the resulting subsonic flow in the confiner (such as confiner stress waves traveling ahead of the main detonation front or upstream wall deflection into the HE) has yet to be fully understood. Previous work by Sharpe and Bdzil (J. Eng. Math, 2006) has shown that for subsonic confiner flow, there is no limiting thickness for which the detonation dynamics are uninfluenced by further increases in wall thickness. The critical parameters influencing detonation behavior are the wall thickness relative to the HE reaction zone size, and the difference in the detonation velocity and confiner sound speed. Additional possible outcomes of subsonic flow are that for increasing thickness, the confiner is increasingly deflected into the HE upstream of the detonation, and that for sufficiently thick confiners, the detonation speed could be driven up to the sound speed in the confiner. We report here on a further series of experiments in which a mixture of ammonium nitrate and fuel oil (ANFO) is detonated in aluminum confiners with varying HE charge diameter and confiner thickness, and compare the results with the outcomes suggested by Sharpe and Bdzil.

  17. Congestion and communication in confined ant traffic

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A. D.; Goldman, Daniel I.

    2014-03-01

    Many social animals move and communicate within confined spaces. In subterranean fire ants Solenopsis invicta, mobility within crowded nest tunnels is important for resource and information transport. Within confined tunnels, communication and traffic flow are at odds: trafficking ants communicate through tactile interactions while stopped, yet ants that stop to communicate impose physical obstacles on the traffic. We monitor the bi-directional flow of fire ant workers in laboratory tunnels of varied diameter D. The persistence time of communicating ant aggregations, τ, increases approximately linearly with the number of participating ants, n. The sensitivity of traffic flow increases as D decreases and diverges at a minimum diameter, Dc. A cellular automata model incorporating minimal traffic features--excluded volume and communication duration--reproduces features of the experiment. From the model we identify a competition between information transfer and the need to maintain jam-free traffic flow. We show that by balancing information transfer and traffic flow demands, an optimum group strategy exists which maximizes information throughput. We acknowledge funding from NSF PoLS #0957659 and #PHY-1205878.

  18. Space Weather and confined CME events

    NASA Astrophysics Data System (ADS)

    Thalmann, Julia; Temmer, Manuela; Veronig, Astrid; Su, Yang

    2016-04-01

    The unusually large NOAA active region (AR) 2192, observed in October and November 2014, was outstanding in its productivity of major flares (GOES class M5 and larger). During the time when the AR faced Earth, major Space Weather events would have been expected. However, none of the X-flares was associated to a coronal mass ejection. Observational evidence for the confinement of the flare are large initial separation of the flare ribbons, together with an almost absent growth in ribbon separation. The low dynamic of the ribbons also suggests a reconnection site high up in the corona. From NLFF modeling we show that the arcade overlying the AR had a predominantly north-south oriented magnetic system, which served as a strong, also lateral, confinement for the flares at the core of the active region. From the magnetic field modeling we derived the decay of the constraining background, and it was found that the overlying field was only slowly decaying with height. We conclude that observational data of the solar surface, especially of flare ribbon dynamics as well as magnetic field models support Space Weather predictions.

  19. Thermoelectricity in Confined Liquid Electrolytes.

    PubMed

    Dietzel, Mathias; Hardt, Steffen

    2016-06-01

    The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which-for narrow channels-may cause thermovoltages larger in magnitude than for the classical Soret equilibrium. PMID:27314730

  20. Liquid Spreading under Nanoscale Confinement

    NASA Astrophysics Data System (ADS)

    Checco, Antonio

    2009-03-01

    Dynamic atomic force microscopy in the noncontact regime is used to study the morphology of a nonvolatile liquid (squalane) as it spreads along wettable nanostripes embedded in a nonwettable surface. Results show that the liquid profile depends on the amount of lateral confinement imposed by the nanostripes, and it is truncated at the microscopic contact line in good qualitative agreement with classical mesoscale hydrodynamics. However, the width of the contact line is found to be significantly larger than expected theoretically. This behavior may originate from small chemical inhomogeneity of the patterned stripes as well as from thermal fluctuations of the contact line.

  1. Electromelting of Confined Monolayer Ice

    NASA Astrophysics Data System (ADS)

    Qiu, Hu; Guo, Wanlin

    2013-05-01

    In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under a perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to the field-induced disruption of the water-wall interaction induced well-ordered network of the hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.

  2. Electromelting of confined monolayer ice.

    PubMed

    Qiu, Hu; Guo, Wanlin

    2013-05-10

    In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under a perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to the field-induced disruption of the water-wall interaction induced well-ordered network of the hydrogen bond. This electromelting process should add an important new ingredient to the physics of water. PMID:23705718

  3. Soft confinement for polymer solutions

    NASA Astrophysics Data System (ADS)

    Oya, Yutaka; Kawakatsu, Toshihiro

    2014-07-01

    As a model of soft confinement for polymers, we investigated equilibrium shapes of a flexible vesicle that contains a phase-separating polymer solution. To simulate such a system, we combined the phase field theory (PFT) for the vesicle and the self-consistent field theory (SCFT) for the polymer solution. We observed a transition from a symmetric prolate shape of the vesicle to an asymmetric pear shape induced by the domain structure of the enclosed polymer solution. Moreover, when a non-zero spontaneous curvature of the vesicle is introduced, a re-entrant transition between the prolate and the dumbbell shapes of the vesicle is observed. This re-entrant transition is explained by considering the competition between the loss of conformational entropy and that of translational entropy of polymer chains due to the confinement by the deformable vesicle. This finding is in accordance with the recent experimental result reported by Terasawa et al. (Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 5249).

  4. Confinement effects in semimagnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Dietl, Tomasz

    1998-02-01

    An overview is given of selected novel effects observed recently by various groups in modulated structures of Cd 1- xMn xTe. Millikelvin studies of submicron wires doped with either indium or iodine have demonstrated the existence of a new mechanism, by which the universal conductance fluctuations can be generated in mesoscopic systems containing magnetic ions. Moreover, 1/ f conductance noise as well as thermal and magnetic irreversibilities have been observed, providing important information on spin-glass dynamics. Finite size effects in magnetic properties have been probed by direct static and dynamic SQUID measurements on superlattices consisting of few-monolayer spin-glass films separated by nonmagnetic barriers. The confined holes have been found to exert a strong influence upon the magnetic ions and to induce a ferromagnetic phase transition above 1 K in quantum wells modulation doped by nitrogen. Finally, it has been shown also that the giant spin-splitting of the bands offers a tool to tune the coupling between confined photon and exciton modes in photonic structures.

  5. Are polymers glassier upon confinement?

    NASA Astrophysics Data System (ADS)

    Napolitano, Simone; Spiece, Jean; Martinez-Tong, Daniel E.; Sferrazza, Michele; Nogales, Aurora

    Glass forming systems are characterized by a stability against crystallization upon heating and by the easiness with which their liquid phase can be transformed into a solid lacking of long-range order upon cooling (glass forming ability). Here, we discuss on the the thickness dependence of the thermal phase transition temperatures of poly(L-lactide acid) thin films supported onto solid substrates. The determination of the glass transition (Tg), cold crystallization (TCC) and melting (Tm) temperatures down to a thickness of 6 nm via ellipsometry, permitted us to build up parameters describing glass stability and glass forming ability. We observed a strong influence of the film thickness on the latter, while the former is not affected by 1D confinement. Remarkably, the increase in Tg/Tm ratio, a parameter related to glass forming ability, is not accompanied by an increase in TCC-Tg, as observed on the contrary, in bulk metallic glasses. We explained this peculiar behavior of soft matter in confinement considering the impact of irreversible adsorption on local free volume content.

  6. Dynamics of Ice/Water Confined in Nanoporous Alumina.

    PubMed

    Suzuki, Yasuhito; Steinhart, Martin; Graf, Robert; Butt, Hans-Jürgen; Floudas, George

    2015-11-19

    Dielectric (DS), IR spectroscopy, and (1)H MAS NMR are employed in the study of ice/water confined in nanoporous alumina with pore diameters ranging from 400 nm down to 25 nm. Within nanoporous alumina there is a transformation from heterogeneous nucleation of hexagonal ice in the larger pores to homogeneous nucleation of cubic ice in the smaller pores. DS and IR show excellent agreement in the temperature interval and pore size dependence of the transformation. DS further revealed two dynamic processes under confinement. The "fast" and "slow" processes with an Arrhenius temperature dependence are attributed to ice and supercooled water relaxation, respectively. The main relaxation process of ice under confinement ("slow" process) has an activation energy of 44 ± 2 kJ/mol. The latter is in agreement with the reported relaxation times and activation energy of cubic ice prepared following a completely different route (by pressure). (1)H MAS NMR provided new insight in the state of ice structures as well as of supercooled water. Under confinement, a layer of liquid-like water coexists with ice structures. In addition, both ice structures under confinement appear to be more ordered than bulk hexagonal ice. Supercooled water in the smaller pores is different from bulk water. It shows a shift of the signal toward higher chemical shift values which may suggest stronger hydrogen bonding between the water molecules or increasing interactions with the AAO walls. PMID:26511073

  7. Issues in tokamak/stellarator transport and confinement enhancement mechanisms

    SciTech Connect

    Perkins, F.W.

    1990-08-01

    At present, the mechanism for anomalous energy transport in low-{beta} toroidal plasmas -- tokamaks and stellarators -- remains unclear, although transport by turbulent E {times} B velocities associated with nonlinear, fine-scale microinstabilities is a leading candidate. This article discusses basic theoretical concepts of various transport and confinement enhancement mechanisms as well as experimental ramifications which would enable one to distinguish among them and hence identify a dominant transport mechanism. While many of the predictions of fine-scale turbulence are born out by experiment, notable contradictions exist. Projections of ignition margin rest both on the scaling properties of the confinement mechanism and on the criteria for entering enhanced confinement regimes. At present, the greatest uncertainties lie with the basis for scaling confinement enhancement criteria. A series of questions, to be answered by new experimental/theoretical work, is posed to resolve these outstanding contradictions (or refute the fine-scale turbulence model) and to establish confinement enhancement criteria. 73 refs., 4 figs., 5 tabs.

  8. Dynamics of Ice/Water Confined in Nanoporous Alumina.

    PubMed

    Suzuki, Yasuhito; Steinhart, Martin; Graf, Robert; Butt, Hans-Jürgen; Floudas, George

    2015-11-19

    Dielectric (DS), IR spectroscopy, and (1)H MAS NMR are employed in the study of ice/water confined in nanoporous alumina with pore diameters ranging from 400 nm down to 25 nm. Within nanoporous alumina there is a transformation from heterogeneous nucleation of hexagonal ice in the larger pores to homogeneous nucleation of cubic ice in the smaller pores. DS and IR show excellent agreement in the temperature interval and pore size dependence of the transformation. DS further revealed two dynamic processes under confinement. The "fast" and "slow" processes with an Arrhenius temperature dependence are attributed to ice and supercooled water relaxation, respectively. The main relaxation process of ice under confinement ("slow" process) has an activation energy of 44 ± 2 kJ/mol. The latter is in agreement with the reported relaxation times and activation energy of cubic ice prepared following a completely different route (by pressure). (1)H MAS NMR provided new insight in the state of ice structures as well as of supercooled water. Under confinement, a layer of liquid-like water coexists with ice structures. In addition, both ice structures under confinement appear to be more ordered than bulk hexagonal ice. Supercooled water in the smaller pores is different from bulk water. It shows a shift of the signal toward higher chemical shift values which may suggest stronger hydrogen bonding between the water molecules or increasing interactions with the AAO walls.

  9. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    NASA Astrophysics Data System (ADS)

    Park, Jaeyoung; Krall, Nicholas A.; Sieck, Paul E.; Offermann, Dustin T.; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni

    2015-04-01

    We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure) is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad's work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β . This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  10. 8th Conference Quark Confinement and the Hadron Spectrum

    NASA Astrophysics Data System (ADS)

    QCHS 2008, the 8th International Conferencee on Quark Cofinement and the Hadron Spectrum was held from 1 - 6 September 2008 in Mainz at the Johannes-Gutenberg University. This conference was the eighth in a series whose aim it is to bring together people working in QCD and strong-interaction dynamics. This year 206 scientists from 24 countries met in Mainz, for the first time in Germany. The scientific program of the Confinement Conference consisted of 33 plenary talks and parallel sessions covering the following topics: - Vaccuum Structure and Confinement - Light Quarks - Heavy Quarks - Deconfinement - QCD and New Physics - Nuclear and Astroparticle Physics

  11. Improved mechanical stability of HKUST-1 in confined nanospace.

    PubMed

    Casco, M E; Fernández-Catalá, J; Martínez-Escandell, M; Rodríguez-Reinoso, F; Ramos-Fernández, E V; Silvestre-Albero, J

    2015-09-28

    One of the main concerns in the technological application of several metal-organic frameworks (MOFs) relates to their structural instability under pressure (after a conforming step). Here we report for the first time that mechanical instability can be highly improved via nucleation and growth of MOF nanocrystals in the confined nanospace of activated carbons.

  12. Improved mechanical stability of HKUST-1 in confined nanospace.

    PubMed

    Casco, M E; Fernández-Catalá, J; Martínez-Escandell, M; Rodríguez-Reinoso, F; Ramos-Fernández, E V; Silvestre-Albero, J

    2015-09-28

    One of the main concerns in the technological application of several metal-organic frameworks (MOFs) relates to their structural instability under pressure (after a conforming step). Here we report for the first time that mechanical instability can be highly improved via nucleation and growth of MOF nanocrystals in the confined nanospace of activated carbons. PMID:26256926

  13. Quasielastic neutron scattering study of water confined in carbon nanopores

    SciTech Connect

    Chathoth, S. M.; Mamontov, E.; Kolesnikov, A. I.; Gogotsi, Y.; Wesolowski, D. J.

    2011-07-26

    Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, ‹τ›, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, ‹τ› follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 Å ordered mesoporous carbon (CMK) and 16 Å double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.

  14. Dynamic, multiaxial impact response of confined and unconfined ceramic rods

    SciTech Connect

    Wise, J.L.; Grady, D.E.

    1993-09-01

    A new configuration for impact testing was implemented which yielded time-resolved measurements of the dynamic response of materials undergoing multiaxial strain. With this`-Method, one end of an initially stationary rod (ie., right circular cylinder) of test material was subjected to planar impact with a flat-faced projectile. The test rod was either free (unconfined) or mounted within a close-fitting sleeve which provided lateral confinement. Velocity interferometer diagnostics monitored the axial (longitudinal) velocity of the rod free end, and the transverse (radial) velocity for one or more points on the periphery of the rod or confinement sleeve. Analysis of the resultant velocity records allowed assessment of material properties, such as wave speeds and compressive yield strength, without the requirement of intact recovery of the rod. Data were obtained for alumina (Coors AD-99.5) rods in a series of tests involving variations in confinement and peak impact stress.

  15. Collective waves in dense and confined microfluidic droplet arrays.

    PubMed

    Schiller, Ulf D; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard

    2015-08-01

    Excitation mechanisms for collective waves in confined dense one-dimensional microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific 'defect' patterns in flowing droplet trains. Excited longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets. Transversely excited modes obey the dispersion relation of microfluidic phonons and induce a coupling between longitudinal and transverse modes, whose origin is the hydrodynamic interaction of the droplets with the confining walls. Moreover, we investigate the long-time behaviour of the oscillations and discuss possible mechanisms for the onset of instabilities. Our findings demonstrate that the collective dynamics of microfluidic droplet ensembles can be studied particularly well in dense and confined systems. Experimentally, the ability to control microfluidic droplets may allow the modulation of the refractive index of optofluidic crystals, which is a promising approach for the production of dynamically programmable metamaterials. PMID:26107262

  16. Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins

    PubMed Central

    Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker

    2015-01-01

    Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier. PMID:26399746

  17. Spatial confinement governs orientational order in patchy particles

    NASA Astrophysics Data System (ADS)

    Iwashita, Yasutaka; Kimura, Yasuyuki

    2016-06-01

    Orientational order in condensed matter plays a key role in determining material properties such as ferromagnetism, viscoelasticity or birefringence. We studied purely orientational ordering in closely-packed one-patch colloidal particles confined between flat substrates, where the particles can only rotate and are ordered via the sticky interaction between the patches. For the first time, we experimentally realized a rich variety of mesoscopic patterns through orientational ordering of colloids by controlling patch size and confinement thickness. The combination of experiment and numerical simulation reveals the decisive role of confinement: An ordered state(s) is selected from the (meta)stable options in bulk when it is commensurate with the system geometry and boundary conditions; otherwise, frustration induces a unique order. Our study offers a new means of systematic control over mesoscopic structures via orientational ordering in patchy particles. The system would also possess unique functionalities through the rotational response of the particles to external stimuli.

  18. Spatial confinement governs orientational order in patchy particles

    PubMed Central

    Iwashita, Yasutaka; Kimura, Yasuyuki

    2016-01-01

    Orientational order in condensed matter plays a key role in determining material properties such as ferromagnetism, viscoelasticity or birefringence. We studied purely orientational ordering in closely-packed one-patch colloidal particles confined between flat substrates, where the particles can only rotate and are ordered via the sticky interaction between the patches. For the first time, we experimentally realized a rich variety of mesoscopic patterns through orientational ordering of colloids by controlling patch size and confinement thickness. The combination of experiment and numerical simulation reveals the decisive role of confinement: An ordered state(s) is selected from the (meta)stable options in bulk when it is commensurate with the system geometry and boundary conditions; otherwise, frustration induces a unique order. Our study offers a new means of systematic control over mesoscopic structures via orientational ordering in patchy particles. The system would also possess unique functionalities through the rotational response of the particles to external stimuli. PMID:27264521

  19. Analysis of the ITER H-mode confinement database

    SciTech Connect

    Schissel, D.P.; Kardaun, O.J.W.F.; Ryter, F.; Stroth, U.

    1993-05-01

    In order to predict the global energy confinement time in the next generation of large tokamaks it is essential to have data from machines of different sizes and operating parameter regimes. This data can also be used to construct dimensionless scalings and thereby attempt to differentiate between Bohm and gyro-Bohm based transport models. Previously, at the request of the ITER project, H-mode global confinement data was assembled from six machines ASDEX, DIII-D, JET, JFT-2M, PBX-M, and PDX into a single database. This collaboration has continued with the initial database being expanded by extending the plasma parameter space as well as by improving the precision of some of the relevant calculated plasma parameters. This paper summarizes work that has been performed on the newest version (ITERH.DB2) of the confinement database.

  20. Analysis of the ITER H-mode confinement database

    NASA Astrophysics Data System (ADS)

    Schissel, D. P.; Kardaun, O.; Ryter, F.; Stroth, U.

    1993-05-01

    In order to predict the global energy confinement time in the next generation of large tokamaks it is essential to have data from machines of different sizes and operating parameter regimes. This data can also be used to construct dimensionless scalings and thereby attempt to differentiate between Bohm and gyro-Bohm based transport models. Previously, at the request of the ITER project, H-mode global confinement data was assembled from six machines, ASDEX, DIII-D, JET, JFT-2M, PBX-M, and PDX, into a single database. This collaboration has continued with the initial database being expanded by extending the plasma parameter space as well as by improving the precision of some of the relevant calculated plasma parameters. This paper summarizes work that has been performed on the newest version (ITERH.DB2) of the confinement database.

  1. Quasielastic neutron scattering study of water confined in carbon nanopores

    SciTech Connect

    Mavila Chathoth, Suresh; Mamontov, Eugene; Kolesnikov, Alexander I; Gogotsi, Yury G.; Wesolowski, David J

    2011-01-01

    Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, {tau}, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, {tau} follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 {angstrom} ordered mesoporous carbon (CMK) and 16 {angstrom} double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.

  2. Structure and dynamics of supercooled water in neutral confinements

    NASA Astrophysics Data System (ADS)

    Klameth, F.; Vogel, M.

    2013-04-01

    We perform molecular dynamics simulations to study the structure and dynamics of liquid water in neutral nanopores, which are generated by pinning a suitable subset of water molecules in an equilibrium configuration of a bulk system. It is found that such neutral confinement does not disturb the structure of water, in particular, the local tetrahedral order, while it imposes a pronounced spatial inhomogeneity on the dynamics of water. Specifically, when the pore wall is approached, hopping motion sets in and water dynamics slows down. We show that the logarithm of the correlation time is an exponential function of the distance to the wall, indicating a tremendous gradient of water mobility across the confinement. Upon cooling, the length scale associated with this exponential distance dependence and, thus, the range of the wall effect increases, at least down to the critical temperature of mode coupling theory, Tc. Also, the temperature dependence of water dynamics varies across the pore, i.e., fragility is high in the pore center, while it is low near the pore wall. Due to all these effects, time-temperature superposition is violated. Our observations for a neutral confinement reveal that specific interactions at hydrophilic or hydrophobic walls are not the main cause of spatially inhomogeneous dynamics of confined water. In view of similarities with the behavior of Lennard-Jones liquids in neutral confinements, one may rather speculate that the effects observed for confined water are general and result from the existence of a static contribution to the energy landscape, which is imprinted by an immobile environment.

  3. The effect of confinement on the development of an axisymmetric wall-jet in confined jet impingement

    NASA Astrophysics Data System (ADS)

    Guo, Tianqi; Rau, Matthew J.; Vlachos, Pavlos P.; Garimella, Suresh V.

    2015-11-01

    An experimental study of a confined developing axisymmetric wall-jet is reported. The wall-jet is formed downstream of a circular, confined, impinging jet of water. Stereo particle image velocimetry (SPIV) experiments are conducted at three different nozzle-to-plate spacings (2, 4 and 8 jet diameters) and across Reynolds numbers ranging from 1000 to 9000. Special attention is paid to the development of the wall-jet. The growth rate of the boundary layer thickness, decay rate of the local maximum velocity, and velocity profile scaling for both the inner- and outer-layer are investigated. Measurements are obtained with a maximum spatial resolution of 25 μm and a temporal resolution of 750 Hz. Both ensemble-averaged and instantaneous time-resolved three-component, two-dimensional (3C-2D) flow fields are obtained and analyzed. The upper confinement plate is found to limit the supply of ambient liquid for both the impinging-jet and wall-jet entrainment, and thus significantly influences the wall-jet development; the growth and decay rate of the wall-jet are shown to be greatest at the smallest confinement height. The influence of these confining effects on recirculation patterns and coherent-structure evolution is also reported. These flow field measurements and analyses will serve to inform a variety of practical applications that use impinging jets.

  4. Normal modes of confined cold ionic systems

    SciTech Connect

    Schiffer, J.P.; Dubin, D.H.

    1995-08-01

    The normal modes of a cloud of confined ions forming a strongly-correlated plasma were investigated. The results of molecular-dynamics simulations were compared to predictions of a cold fluid mode. Mode frequencies are observed to shift slightly compared to the cold fluid predictions, and the modes are also observed to damp in time. Simulations also reveal a set of torsional oscillations which have no counterpart in cold fluid theory. The frequency shift, damping, and torsional effects are compared to a model that treats trapped plasmas as a visco-elastic spheroid. It may be possible to measure high-frequency bulk and shear moduli of a strongly-correlated plasma from mode excitation experiments on trapped non-neutral plasmas. An example of the results of the calculation is presented.

  5. Spatially confined assembly of nanoparticles.

    PubMed

    Jiang, Lin; Chen, Xiaodong; Lu, Nan; Chi, Lifeng

    2014-10-21

    an increasingly important role in the controllable assembly of NPs. In this Account, we summarize our approaches and progress in fabricating spatially confined assemblies of NPs that allow for the positioning of NPs with high resolution and considerable throughput. The spatially selective assembly of NPs at the desired location can be achieved by various mechanisms, such as, a controlled dewetting process, electrostatically mediated assembly of particles, and confined deposition and growth of NPs. Three nanofabrication techniques used to produce prepatterns on a substrate are summarized: the Langmuir-Blodgett (LB) patterning technique, e-beam lithography (EBL), and nanoimprint lithography (NPL). The particle density, particle size, or interparticle distance in NP assemblies strongly depends on the geometric parameters of the template structure due to spatial confinement. In addition, with smart design template structures, multiplexed NPs can be assembled into a defined structure, thus demonstrating the structural and functional complexity required for highly integrated and multifunction applications.

  6. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... spaces shall not be used at the same time that cargo drafts, equipment, materials, scrap or other loads... 29 Labor 7 2013-07-01 2013-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions...

  7. Heating, Confinement, and Extrapolation to Reactors

    SciTech Connect

    Ongena, J.; Messiaen, A.M

    2004-03-15

    The total amount of heating power coupled to the plasma P{sub tot} and the energy confinement time are determining parameters for realizing the plasma conditions suitable for the reactor. We recall that the ignition condition can be expressed by the following condition on the triple fusion product:NT{tau} = P{sub tot}{tau}{sup 2}/(3 Vol) = 3N{sup 2}T{sup 2}Vol/P{sub tot} > (NT{tau}){sub ignition} (1)with T [approximately equal to] 15 keV where {tau} = E/P{sub tot} is the energy confinement time, E = 3NT Vol for an isothermal plasma with T{sub i} = T{sub e} = T and a plasma volume Vol; N is the plasma density. The value T [approximately equal to] 15 keV corresponds to the minimum value of (NT{tau}){sub ignition} as a function T (see Fig. 1). In the present discussion for the sake of simplicity, we neglect density and temperature profile factors. The heating power in most of the present experiments is given by P{sub tot} = P{sub OH} + P{sub add} where P{sub OH} is the ohmic power and P{sub add} is the additional heating due to neutral beam injection or R.F. heating. At ignition, the additional heating power must come completely from the energetic {alpha} particles produced by the fusion reactions and we must have P{sub tot} = P{sub {alpha}} if we neglect the residual P{sub OH} and the plasma losses by Bremsstrahlung (P{sub Br} [is proportional to] N{sup 2} T{sup 1/2})

  8. Quark confinement in a constituent quark model

    SciTech Connect

    Langfeld, K.; Rho, M.

    1995-07-01

    On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model`s phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density.

  9. Diffusive dynamics of nanoparticles in ultra-confined media.

    PubMed

    Jacob, Jack Deodato C; He, Kai; Retterer, Scott T; Krishnamoorti, Ramanan; Conrad, Jacinta C

    2015-10-14

    Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200-400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3-5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accounted for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Together, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.

  10. A helium-3 refrigerator employing capillary confinement of liquid cryogen

    NASA Technical Reports Server (NTRS)

    Ennis, D. J.; Kittel, P.; Brooks, W.; Miller, A.; Spivak, A. L.

    1983-01-01

    A condensation refrigerator suitable for operation in a zero gravity space environment was constructed. The condensed liquid refrigerant is confined by surface tension inside a porous metal matrix. Helium-4 and helium-3 gases were condensed and held in a copper matrix. Evaporative cooling of confined liquid helium-4 resulted in a temperature of 1.4K. Using a zeolite adsorption pump external to the cryostat, a temperature of 0.6 K was achieved through evaporative cooling of liquid helium-3. The amount of time required for complete evaporation of a controlled mass of liquid helium-4 contained in the copper matrix was measured as a function of the applied background power. For heating powers below 18 mW the measured times are consistent with the normal boiling of the confined volume of liquid refrigerant. At background powers above 18 mW the rapid rise in the temperature of the copper matrix the signature of the absence of confined liquid occurs in a time a factor of two shorter than that expected on the basis of an extrapolation of the low power data.

  11. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1984-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  12. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1987-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  13. Planning for greater confinement disposal

    SciTech Connect

    Gilbert, T.L.; Luner, C.; Meshkov, N.K.; Trevorrow, L.E.; Yu, C.

    1985-01-01

    A report that provides guidance for planning for greater-confinement disposal (GCD) of low-level radioactive waste is being prepared. The report addresses procedures for selecting a GCD technology and provides information for implementing these procedures. The focus is on GCD; planning aspects common to GCD and shallow-land burial are covered by reference. Planning procedure topics covered include regulatory requirements, waste characterization, benefit-cost-risk assessment and pathway analysis methodologies, determination of need, waste-acceptance criteria, performance objectives, and comparative assessment of attributes that support these objectives. The major technologies covered include augered shafts, deep trenches, engineered structures, hydrofracture, improved waste forms, and high-integrity containers. Descriptive information is provided, and attributes that are relevant for risk assessment and operational requirements are given. 10 refs., 3 figs., 2 tabs.

  14. Structure and Dynamics of Octamethylcyclotetrasiloxane Confined between Mica Surfaces.

    PubMed

    Vadhana, V; Ayappa, K G

    2016-03-24

    Using a molecular model for octamethylcyclotetrasiloxane (OMCTS), molecular dynamics simulations are carried out to probe the phase state of OMCTS confined between two mica surfaces in equilibrium with a reservoir. Molecular dynamics simulations are carried out for elevations ranging from 5 to 35 K above the melting point for the OMCTS model used in this study. The Helmholtz free energy is computed for a specific confinement using the two-phase thermodynamic (2PT) method. Analysis of the in-plane pair correlation functions did not reveal signatures of freezing even under an extreme confinement of two layers. OMCTS is found to orient with a wide distribution of orientations with respect to the mica surface, with a distinct preference for the surface parallel configuration in the contact layers. The self-intermediate scattering function is found to decay with increasing relaxation times as the surface separation is decreased, and the two-step relaxation in the scattering function, a signature of glassy dynamics, distinctly evolves as the temperature is lowered. However, even at 5 K above the melting point, we did not observe a freezing transition and the self-intermediate scattering functions relax within 200 ps for the seven-layered confined system. The self-diffusivity and relaxation times obtained from the Kohlrausch-Williams-Watts stretched exponential fits to the late α-relaxation exhibit power law scalings with the packing fraction as predicted by mode coupling theory. A distinct discontinuity in the Helmholtz free energy, potential energy, and a sharp change in the local bond order parameter, Q4, was observed at 230 K for a five-layered system upon cooling, indicative of a first-order transition. A freezing point depression of about 30 K was observed for this five-layered confined system, and at the lower temperatures, contact layers were found to be disordered with long-range order present only in the inner layers. These dynamical signatures indicate that

  15. The ''Kinetic Stabilizer'': A Simpler Tandem Mirror Confinement?

    SciTech Connect

    Post, R.F.

    2000-06-15

    In the search for better approaches to magnetic fusion it is important to keep in mind the lessons learned in the 50 years that fusion plasma confinement has been studied. One of the lessons learned is that ''closed'' and ''open'' fusion devices differ fundamentally with respect to an important property of their confinement, as follows: Without known exception closed systems such as the tokamak, the stellarator, or the reversed-field pinch, have been found to have their confinement times limited by non-classical, i.e., turbulence-related, processes, leading to the requirement that such systems must be scaled-up in dimensions to sizes much larger than would be the case in the absence of turbulence. By contrast, from the earliest days of fusion research, it has been demonstrated that open magnetic systems of the mirror variety can achieve confinement times close to that associated with classical, i.e., collisional, processes. While these good results have been obtained in both axially symmetric fields and in non-axisymmetric fields, the clearest cases have been those in which the confining fields are solenoidal and axially symmetric. These observations, i.e., of confinement not enhanced by turbulence, can be traced theoretically to such factors as the absence of parallel currents in the plasma, and to the constraints on particle drifts imposed by the adiabatic invariants governing particle confinement in axisymmetric open systems. In the past the MHD instability of axially symmetric open systems has been seen as a barrier to their use. However, theory predicts MHD-stable confinement is achievable if sufficient plasma is present in the ''good curvature'' regions outside the mirrors. This theory has been confirmed by experiments on the Gas Dynamic Trap mirror-based experiment at Novosibirsk, In this paper a new way of exploiting this stabilizing principle, involving creating a localized ''stabilizer plasma'' outside a mirror, will be discussed. To create this plasma

  16. Functional assembly of protein fragments induced by spatial confinement.

    PubMed

    Yu, Yongsheng; Wang, Jianpeng; Liu, Jiahui; Ling, Daishun; Xia, Jiang

    2015-01-01

    Natural proteins are often confined within their local microenvironments, such as three-dimensional confinement in organelles or two-dimensional confinement in lipid rafts on cytoplasmic membrane. Spatial confinement restricts proteins' entropic freedom, forces their lateral interaction, and induces new properties that the same proteins lack at the soluble state. So far, the phenomenon of environment-induced protein functional alteration still lacks a full illustration. We demonstrate here that engineered protein fragments, although being non-functional in solution, can be re-assembled within the nanometer space to give the full activity of the whole protein. Specific interaction between hexahistidine-tag (His-tag) and NiO surface immobilizes protein fragments on NiO nanoparticles to form a self-assembled protein "corona" on the particles inside the nanopores of mesoporous silica. Site-specific assembly forces a shoulder-by-shoulder orientation and promotes fragment-fragment interaction; this interaction together with spatial confinement of the mesopores results in functional re-assembly of the protein half fragments. To our surprise, a single half fragment of luciferase (non-catalytic in solution) exhibited luciferase activity when immobilized on NiO in the mesopores, in the absence of the complimentary half. This shows for the first time that spatial confinement can induce the folding of a half fragment, reconstitute the enzyme active site, and re-gain the catalytic capability of the whole protein. Our work thereby highlights the under-documented notion that aside from the chemical composition such as primary sequence, physical environment of a protein also determines its function. PMID:25875003

  17. Order in very cold confined plasmas

    SciTech Connect

    Schiffer, J.P. |

    1995-12-31

    The study of the structure and dynamic properties of classical systems of charged particles confined by external forces, and cooled to very low internal energies, is the subject of this talk. An infinite system of identical charged particles has been known for some time to form a body-centered cubic lattice and is a simple classical prototype for condensed matter. Recent technical developments in storage rings, ion traps, and laser cooling of ions, have made it possible to produce such systems in the laboratory, though somewhat modified because of their finite size. I would like to discuss what one may expect in such systems and also show some examples of experiments. If we approximate the potential of an ion trap with an isotropic harmonic force F = {minus}Kr then the Hamiltonian for this collection of ions is the same as that for J. J. Thomson`s ``plum pudding`` model of the atom, where electrons were thought of as discrete negative charges imbedded in a larger, positive, uniformly charged sphere. The harmonic force macroscopically is canceled by the average space-charge forces of the plasma-, and this fixes the overall radius of the distribution. What remains, are the residual two-body Coulomb interactions that keep the particles within the volume as nearly equidistant as possible in order to minimize the potential energy. The configurations obtained for the minimum energy of small ionic systems [2] in isotropic confinement are shown in figure 1. Indeed this is an `Exotic Atom` and fits well into the subject of this symposium honoring the 60th birthday of Professor Toshi Yamazaki.

  18. Confined Zone Dispersion Project: A DOE assessment

    SciTech Connect

    1999-11-30

    The goal of the US Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept (POC) stage. This document serves as a DOE post-project assessment of the Confined Zone Dispersion Project in CCT Round 3. In 1990, Bechtel Corporation entered into a cooperative agreement to conduct the demonstration project. The Seward Power Station of Pennsylvania Electric Company (now GPU Genco) was the host site. DOE funded 43 percent of the total project cost of $12,173,000. The project was started in June 1990 and was scheduled to be completed in June 1993. As a result of various operating problems, the schedule was extended into 1994 without additional cost to DOE. Bechtel provided the additional financing and GPU Genco provided electricity, steam, and water to operate the unit. The independent evaluation contained herein is based primarily on information from Bechtel's final technical report (1994) as well as other references cited. Confined Zone Dispersion (CZD) is a flue gas desulfurization (FGD) process that removes sulfur dioxide (SO{sub 2}). A finely atomized slurry of reactive lime, calcium hydroxide or Ca(OH){sub 2} is injected into the flue-gas duct work, between the air preheater and the second-stage ESP. The lime reacts with the SO{sub 2}, forming dry solid reaction products. The downstream ESP captures the 2 reaction products along with the fly ash entrained in the flue gas. The CZD process was demonstrated on Unit 5, a 147-MWe utility unit with two flue gas ducts. One of the ducts was extended to provide the requisite residence time and retrofitted with the CZD lime injection equipment.

  19. Runaway electrons and magnetic island confinement

    NASA Astrophysics Data System (ADS)

    Boozer, Allen H.

    2016-08-01

    The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativistic energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. The physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.

  20. Inertial Confinement Fusion Materials Science

    SciTech Connect

    Hamza, A V

    2004-06-01

    Demonstration of thermonuclear ignition and gain on a laboratory scale is one of science's grand challenges. The National Ignition Facility (NIF) is committed to achieving inertial confinement fusion (ICF) by 2010. Success in this endeavor depends on four elements: the laser driver performance, target design, experimental diagnostics performance, and target fabrication and target materials performance. This article discusses the current state of target fabrication and target materials performance. The first three elements will only be discussed insofar as they relate to target fabrication specifications and target materials performance. Excellent reviews of the physics of ICF are given by Lindl [Lindl 1998] and Lindl et al. [Lindl 2004]. To achieve conditions under which inertial confinement is sufficient to achieve thermonuclear burn, an imploded fuel capsule is compressed to conditions of high density and temperature. In the laboratory a driver is required to impart energy to the capsule to effect an implosion. There are three drivers currently being considered for ICF in the laboratory: high-powered lasers, accelerated heavy ions, and x rays resulting from pulsed power machines. Of these, high-powered lasers are the most developed, provide the most symmetric drive, and provide the most energy. Laser drive operates in two configurations. The first is direct drive where the laser energy impinges directly on the ICF capsule and drives the implosion. The second is indirect drive, where the energy from the laser is first absorbed in a high-Z enclosure or hohlraum surrounding the capsule, and the resulting x-rays emitted by the hohlraum material drives the implosion. Using direct drive the laser beam energy is absorbed by the electrons in the outer corona of the target. The electrons transport the energy to the denser shell region to provide the ablation and the resulting implosion. Laser direct drive is generally less efficient and more hydrodynamically unstable than

  1. Confinement-induced resonances in anharmonic waveguides

    SciTech Connect

    Peng Shiguo; Hu Hui; Liu Xiaji; Drummond, Peter D.

    2011-10-15

    We develop the theory of anharmonic confinement-induced resonances (ACIRs). These are caused by anharmonic excitation of the transverse motion of the center of mass (c.m.) of two bound atoms in a waveguide. As the transverse confinement becomes anisotropic, we find that the c.m. resonant solutions split for a quasi-one-dimensional (1D) system, in agreement with recent experiments. This is not found in harmonic confinement theories. A new resonance appears for repulsive couplings (a{sub 3D}>0) for a quasi-two-dimensional (2D) system, which is also not seen with harmonic confinement. After inclusion of anharmonic energy corrections within perturbation theory, we find that these ACIRs agree extremely well with anomalous 1D and 2D confinement-induced resonance positions observed in recent experiments. Multiple even- and odd-order transverse ACIRs are identified in experimental data, including up to N=4 transverse c.m. quantum numbers.

  2. Time?

    NASA Astrophysics Data System (ADS)

    Amoroso, Richard L.

    2013-09-01

    The concept of time in the `clockwork' Newtonian world was irrelevant; and has generally been ignored until recently by several generations of physicists since the implementation of quantum mechanics. We will set aside the utility of time as a property relating to physical calculations of events relating to a metrics line element or as an aspect of the transformation of a particles motion/interaction in a coordinate system or in relation to thermodynamics etc., i.e. we will discard all the usual uses of time as a concept used to circularly define physical parameters in terms of other physical parameters; concentrating instead on time as an aspect of the fundamental cosmic topology of our virtual reality especially as it inseparably relates to the nature and role of the observer in natural science.

  3. Regimes of improved confinement and stability in DIII-D obtained through current profile modifications

    SciTech Connect

    Lao, L.L.; Ferron, J.R.; Taylor, T.S.; Chan, V.S.; Osborne, T.H.; Burrell, K.H.; Chu, M.S.; DeBoo, J.C.; Greenfield, C.M.; Groebner, R.J.; Jackson, G.L.; St. John, H.; Strait, E.J.; Thompson, S.J.; Turnbull, A.D.; Doyle, E.J.; Rettig, C.; James, R.; Wroblewski, D.; Lazarus, E.A.; Zohm, H.

    1992-09-01

    Several regimes of improved confinement and stability have been obtained in recent experiments in the DIII-D tokamak by dynamically varying the toroidal current density profile to transiently produce a poloidal magnetic field profile with more favorable confinement and stability properties. A very peaked current density profile with high plasma internal inductance, {ell}{sub i}, is produced either by a rapid change in the plasma poloidal cross section or by a rapid change in the total plasma current. Values of thermal energy confinement times nearly 1.8 times the JET/DIII-D ELM-free H-mode thermal confinement scaling are obtained. The confinement enhancement factor over the ITER89-P L-mode confinement scaling, H, is as high as 3. Normalized toroidal beta, {beta}{sub N}, greater than 6%-m-T/MA and values of the product {beta}{sub N}H greater than 15 have also been obtained. Both the confinement and the maximum achievable {beta} vary with {ell}{sub i} and decrease as the current profile relaxes. For strongly shaped H-mode discharges, in addition to the current density profile peakedness, as measured by {ell}{sub i} other current profile parameters, such as its distribution near the edge region, may also affect the confinement enhancement.

  4. Regimes of improved confinement and stability in DIII-D obtained through current profile modifications

    SciTech Connect

    Lao, L.L.; Ferron, J.R.; Taylor, T.S.; Chan, V.S.; Osborne, T.H.; Burrell, K.H.; Chu, M.S.; DeBoo, J.C.; Greenfield, C.M.; Groebner, R.J.; Jackson, G.L.; St. John, H.; Strait, E.J.; Thompson, S.J.; Turnbull, A.D. ); Doyle, E.J.; Rettig, C. ); James, R.; Wroblewski, D. (Lawrence Livermore National Lab., CA (United Sta

    1992-09-01

    Several regimes of improved confinement and stability have been obtained in recent experiments in the DIII-D tokamak by dynamically varying the toroidal current density profile to transiently produce a poloidal magnetic field profile with more favorable confinement and stability properties. A very peaked current density profile with high plasma internal inductance, [ell][sub i], is produced either by a rapid change in the plasma poloidal cross section or by a rapid change in the total plasma current. Values of thermal energy confinement times nearly 1.8 times the JET/DIII-D ELM-free H-mode thermal confinement scaling are obtained. The confinement enhancement factor over the ITER89-P L-mode confinement scaling, H, is as high as 3. Normalized toroidal beta, [beta][sub N], greater than 6%-m-T/MA and values of the product [beta][sub N]H greater than 15 have also been obtained. Both the confinement and the maximum achievable [beta] vary with [ell][sub i] and decrease as the current profile relaxes. For strongly shaped H-mode discharges, in addition to the current density profile peakedness, as measured by [ell][sub i] other current profile parameters, such as its distribution near the edge region, may also affect the confinement enhancement.

  5. Wettability and Coalescence of Cu Droplets Subjected to Two-Wall Confinement

    PubMed Central

    Li, Xiongying; Ren, Hongru; Wu, Weikang; Li, Hui; Wang, Long; He, Yezeng; Wang, Junjun; Zhou, Yi

    2015-01-01

    Controlling droplet dynamics via wettability or movement at the nanoscale is a significant goal of nanotechnology. By performing molecular dynamics simulations, we study the wettability and spontaneous coalescence of Cu droplets confined in two carbon walls. We first focus on one drop in the two-wall confinement to reveal confinement effects on wettability and detaching behavior of metallic droplets. Results show that Cu droplets finally display three states: non-detachment, semi-detachment and full detachment, depending on the height of confined space. The contact angle ranges from 125° to 177°, and the contact area radius ranges from 12 to ~80 Å. The moving time of the detached droplet in the full detachment state shows a linear relationship with the height of confined space. Further investigations into two drops subjected to confinement show that the droplets, initially distant from each other, spontaneously coalesce into a larger droplet by detachment. The coalescing time and final position of the merged droplet are precisely controlled by tailoring surface structures of the carbon walls, the height of the confined space or a combination of these approaches. These findings could provide an effective method to control the droplet dynamics by confinement. PMID:26459952

  6. Studies of global energy confinement in TFTR supershots

    SciTech Connect

    Strachan, J.D.

    1993-08-01

    The global energy confinement time, {tau}{sub E}, from TFTR supershot plasmas has been correlated with the hydrogen recycling and the pressure anisotropy. An expression for the global confinement was obtained that describes its value at the time of peak neutron emission for all TFTR supershots obtained in the 1990 campaign, and simultaneously describes the time evolution of {tau}{sub E} for an extensive subset of the 1990 data. The obtained expression is probably not unique and it can be written with different variables. An analysis of the energy balance for many of these supershots indicates that the primary effect of larger {tau}{sub E} is that the central particle diffusivity is lower.

  7. Millisecond burning of confined energetic materials during cookoff

    SciTech Connect

    Schmitt, R.G.; Baer, T.A.

    1997-11-01

    The response of a system containing an energetic material (EM) to an abnormal thermal environment is termed cookoff. To predict the violence of reaction of confined energetic materials during cookoff requires a description of the relevant physical processes that occur on time scales Ranging from days to submicroseconds. The time-to-ignition can be characterized accurately using heat transfer with chemistry and quasistatic mechanics. After ignition the energetic material deflagrates on a millisecond time scale. During this time the mechanical processes become dynamic. If the confinement survives burning then accelerated deflagration can lead to shock formation and deflagration to detonation transition. The focus of this work is the dynamic combustion regime in the millisecond time domain. Due to the mathematical stiffness of the chemistry equations and the prohibitively fine spatial resolution requirements needed to resolve the structure of the flame, an interface tracking approach is used to propagate the burn front. Demonstrative calculations are presented that illustrate the dynamic interaction of the deflagrating energetic material with its confinement.

  8. Waste-acceptance criteria for greater-confinement disposal

    SciTech Connect

    Gilbert, T.L.; Meshkov, N.K.

    1986-01-01

    A methodology for establishing waste-acceptance criteria based on quantitative performance factors that characterize the confinement capabilities of a waste-disposal site and facility has been developed. The methodology starts from the basic objective of protecting public health and safety by providing assurance that dispsoal of the waste will not result in a radiation dose to any member of the general public, in either the short or long term, in excess of an established basic dose limit. The method is based on an explicit, straightforward, and quantitative relationship among individual risk, confinement capabilities, and waste characteristics. A key aspect of the methodology is the introduction of a confinement factor that characterizes the overall confinement capability of a particular facility and can be used for quantitative assessments of the performance of different disposal sites and facilities, as well as for establishing site-specific waste-acceptance criteria. Confinement factors are derived by means of site-specific pathway analyses. They make possible a direct and simple conversion of a basic dose limit into waste-acceptance criteria, specified as concentration limits on radionuclides in the waste streams and expressed in quantitative form as a function of parameters that characterize the site, facility design, waste containers, and waste form. Waste-acceptance criteria can be represented visually as activity/time plots for various waste streams. These plots show the concentrations of radionuclides in a waste stream as a function of time and permit a visual, quantitative assessment of long-term performance, relative risks from different radionuclides in the waste stream, and contributions from ingrowth. 13 refs.

  9. Strongly Non-equilibrium Dynamics of Nanochannel Confined DNA

    NASA Astrophysics Data System (ADS)

    Reisner, Walter

    Nanoconfined DNA exhibits a wide-range of fascinating transient and steady-state non-equilibrium phenomena. Yet, while experiment, simulation and scaling analytics are converging on a comprehensive picture regarding the equilibrium behavior of nanochannel confined DNA, non-equilibrium behavior remains largely unexplored. In particular, while the DNA extension along the nanochannel is the key observable in equilibrium experiments, in the non-equilibrium case it is necessary to measure and model not just the extension but the molecule's full time-dependent one-dimensional concentration profile. Here, we apply controlled compressive forces to a nanochannel confined molecule via a nanodozer assay, whereby an optically trapped bead is slid down the channel at a constant speed. Upon contact with the molecule, a propagating concentration ``shockwave'' develops near the bead and the molecule is dynamically compressed. This experiment, a single-molecule implementation of a macroscopic cylinder-piston apparatus, can be used to observe the molecule response over a range of forcings and benchmark theoretical description of non-equilibrium behavior. We show that the dynamic concentration profiles, including both transient and steady-state response, can be modelled via a partial differential evolution equation combining nonlinear diffusion and convection. Lastly, we present preliminary results for dynamic compression of multiple confined molecules to explore regimes of segregation and mixing for multiple chains in confinement.

  10. Human enteric viruses in groundwater from a confined bedrock aquifer

    USGS Publications Warehouse

    Borchardt, M. A.; Bradbury, K.R.; Gotkowitz, M.B.; Cherry, J.A.; Parker, B.L.

    2007-01-01

    Confined aquifers are overlain by low-permeability aquitards that are commonly assumed to protect underlying aquifers from microbial contaminants. However, empirical data on microbial contamination beneath aquitards is limited. This study determined the occurrence of human pathogenic viruses in well water from a deep sandstone aquifer confined by a regionally extensive shale aquitard. Three public water-supply wells were each sampled 10 times over 15 months. Samples were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) for several virus groups and by cell culture for infectious enteroviruses. Seven of 30 samples were positive by RT-PCR for enteroviruses; one of these was positive for infectious echovirus 18. The virus-positive samples were collected from two wells cased through the aquitard, indicating the viruses were present in the confined aquifer. Samples from the same wells showed atmospheric tritium, indicating water recharged within the past few decades. Hydrogeologic conditions support rapid porous media transport of viruses through the upper sandstone aquifer to the top of the aquitard 61 m below ground surface. Natural fractures in the shale aquitard are one possible virus transport pathway through the aquitard; however, windows, cross-connecting well bores, or imperfect grout seals along well casings also may be involved. Deep confined aquifers can be more vulnerable to contamination by human viruses than commonly believed. ?? 2007 American Chemical Society.

  11. A study of an advanced confined linear energy source

    NASA Technical Reports Server (NTRS)

    Anderson, M. C.; Heidemann, W. B.

    1971-01-01

    A literature survey and a test program to develop and evaluate an advanced confined linear energy source were conducted. The advanced confined linear energy source is an explosive or pyrotechnic X-Cord (mild detonating fuse) supported inside a confining tube capable of being hermetically sealed and retaining all products of combustion. The energy released by initiation of the X-Cord is transmitted through the support material to the walls of the confining tube causing an appreciable change in cross sectional configuration and expansion of the tube. When located in an assembly that can accept and use the energy of the tube expansion, useful work is accomplished through fracture of a structure, movement of a load, reposition of a pin, release of a restraint, or similar action. The tube assembly imparts that energy without release of debris or gases from the device itself. This facet of the function is important to the protection of men or equipment located in close proximity to the system during the time of function.

  12. Radiation and confinement in 0D fusion systems codes

    NASA Astrophysics Data System (ADS)

    Lux, H.; Kemp, R.; Fable, E.; Wenninger, R.

    2016-07-01

    In systems modelling for fusion power plants, it is essential to robustly predict the performance of a given machine design (including its respective operating scenario). One measure of machine performance is the energy confinement time {τ\\text{E}} that is typically predicted from experimentally derived confinement scaling laws (e.g. IPB98(y,2)). However, the conventionally used scaling laws have been derived for ITER which—unlike a fusion power plant—will not have significant radiation inside the separatrix. In the absence of a new high core radiation relevant confinement scaling, we propose an ad hoc correction to the loss power {{P}\\text{L}} used in the ITER confinement scaling and the calculation of the stored energy {{W}\\text{th}} by the radiation losses from the ‘core’ of the plasma {{P}\\text{rad,\\text{core}}} . Using detailed ASTRA / TGLF simulations, we find that an appropriate definition of {{P}\\text{rad,\\text{core}}} is given by 60% of all radiative losses inside a normalised minor radius {ρ\\text{core}}=0.75 . We consider this an improvement for current design predictions, but it is far from an ideal solution. We therefore encourage more detailed experimental and theoretical work on this issue.

  13. Human enteric viruses in groundwater from a confined bedrock aquifer.

    PubMed

    Borchardt, Mark A; Bradbury, Kenneth R; Gotkowitz, Madeline B; Cherry, John A; Parker, Beth L

    2007-09-15

    Confined aquifers are overlain by low-permeability aquitards that are commonly assumed to protect underlying aquifers from microbial contaminants. However, empirical data on microbial contamination beneath aquitards is limited. This study determined the occurrence of human pathogenic viruses in well water from a deep sandstone aquifer confined by a regionally extensive shale aquitard. Three public water-supply wells were each sampled 10 times over 15 months. Samples were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) for several virus groups and by cell culture for infectious enteroviruses. Seven of 30 samples were positive by RT-PCR for enteroviruses; one of these was positive for infectious echovirus 18. The virus-positive samples were collected from two wells cased through the aquitard, indicating the viruses were present in the confined aquifer. Samples from the same wells showed atmospheric tritium, indicating water recharged within the pastfew decades. Hydrogeologic conditions support rapid porous media transport of viruses through the upper sandstone aquifer to the top of the aquitard 61 m below ground surface. Natural fractures in the shale aquitard are one possible virus transport pathway through the aquitard; however, windows, cross-connecting well bores, or imperfect grout seals along well casings also may be involved. Deep confined aquifers can be more vulnerable to contamination by human viruses than commonly believed.

  14. Hydrodynamics of DNA confined in nanoslits and nanochannels

    PubMed Central

    Dorfman, Kevin D.; Gupta, Damini; Jain, Aashish; Muralidhar, Abhiram; Tree, Douglas R.

    2014-01-01

    Modeling the dynamics of a confined, semi exible polymer is a challenging problem, owing to the complicated interplay between the configurations of the chain, which are strongly affected by the length scale for the confinement relative to the persistence length of the chain, and the polymer-wall hydrodynamic interactions. At the same time, understanding these dynamics are crucial to the advancement of emerging genomic technologies that use confinement to stretch out DNA and “read” a genomic signature. In this mini-review, we begin by considering what is known experimentally and theoretically about the friction of a wormlike chain such as DNA confined in a slit or a channel. We then discuss how to estimate the friction coefficient of such a chain, either with dynamic simulations or via Monte Carlo sampling and the Kirk-wood pre-averaging approximation. We then review our recent work on computing the diffusivity of DNA in nanoslits and nanochannels, and conclude with some promising avenues for future work and caveats about our approach. PMID:25566349

  15. Viscoelastic Transient of Confined Red Blood Cells

    PubMed Central

    Prado, Gaël; Farutin, Alexander; Misbah, Chaouqi; Bureau, Lionel

    2015-01-01

    The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into microchannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, ηmem2D ∼ 10−7 N⋅s⋅m−1. By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of ηmem2D, and reconcile seemingly conflicting conclusions from previous works. PMID:25954871

  16. Human Adaptation to Isolated and Confined Environments

    NASA Technical Reports Server (NTRS)

    Evans, Gary W.; Stokols, Daniel; Carrere, Sybil

    1987-01-01

    A study was conducted over seven months in a winter Antarctic isolated and confined environment (ICE). Physiological and psychological data was collected several times a week. Information was collected on a monthly basis on behavior and the use of physical facilities. Adaptation and information indicated that there was a significant decrease in epinephrine and norepinephrine during the middle trimester of the winter. No vital changes were found for blood pressure. Self reports of hostility and anxiety show a linear increase. There were no significant changes in depression during ICE. The physiological and psychological data do not move in a synchronous fashion over time. The data also suggest that both ambient qualities of an ICE and discrete social environmental events, such as the arrival of the summer crew, have an impact on the outcome measures used. It may be most appropiate to develop a model for ICE's that incorporates not only global chronic stressors common to all ICE's but also the role of discrete environmental effects which can minimize or enhance the influence of more chronic stressors. Behavioral adjustment information highlight the importance of developing schedules which balance work and recreational activities.

  17. Mobility in geometrically confined membranes

    PubMed Central

    Domanov, Yegor A.; Aimon, Sophie; Toombes, Gilman E. S.; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S.; Bassereau, Patricia

    2011-01-01

    Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the “membrane size” for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111—3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman–Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion. PMID:21768336

  18. Probing Non-Gaussianity in Confined Diffusion of Nanoparticles.

    PubMed

    Xue, Chundong; Zheng, Xu; Chen, Kaikai; Tian, Yu; Hu, Guoqing

    2016-02-01

    Confined diffusion is ubiquitous in nature. Ever since the "anomalous yet Brownian" motion was observed, the non-Gaussianity in confined diffusion has been unveiled as an important issue. In this Letter, we experimentally investigate the characteristics and source of non-Gaussian behavior in confined diffusion of nanoparticles suspended in polymer solutions. A time-varied and size-dependent non-Gaussianity is reported based on the non-Gaussian parameter and displacement probability distribution, especially when the nanoparticle's size is smaller than the typical polymer mesh size. This non-Gaussianity does not vanish even at the long-time Brownian stage. By inspecting the displacement autocorrelation, we observe that the nanoparticle-structure interaction, indicated by the anticorrelation, is limited in the short-time stage and makes little contribution to the non-Gaussianity in the long-time stage. The main source of the non-Gaussianity can therefore be attributed to hopping diffusion that results in an exponential probability distribution with the large displacements, which may also explain certain processes dominated by rare events in the biological environment. PMID:26784864

  19. Toroidal membrane vesicles in spherical confinement.

    PubMed

    Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael

    2015-09-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

  20. Propagating confined states in phase dynamics

    NASA Technical Reports Server (NTRS)

    Brand, Helmut R.; Deissler, Robert J.

    1992-01-01

    Theoretical treatment is given to the possibility of the existence of propagating confined states in the nonlinear phase equation by generalizing stationary confined states. The nonlinear phase equation is set forth for the case of propagating patterns with long wavelengths and low-frequency modulation. A large range of parameter values is shown to exist for propagating confined states which have spatially localized regions which travel on a background with unique wavelengths. The theoretical phenomena are shown to correspond to such physical systems as spirals in Taylor instabilities, traveling waves in convective systems, and slot-convection phenomena for binary fluid mixtures.

  1. Toroidal membrane vesicles in spherical confinement

    NASA Astrophysics Data System (ADS)

    Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael

    2015-09-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

  2. Confinement of translated field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.; Armstrong, W. T.; Chrien, R. E.; Klingner, P. L.; McKenna, K. F.; Rej, D. J.; Sherwood, E. G.; Siemon, R. E.

    1986-03-01

    The confinement properties of translating field-reversed configurations (FRC) in the FRX-C/T device [Phys. Fluids 29, (1986)] are analyzed and compared to previous data without translation and to available theory. Translation dynamics do not appear to appreciably modify the FRC confinement. Some empirical scaling laws with respect to various plasma parameters are extracted from the data. These are qualitatively similar to those obtained in the TRX-1 device [Phys. Fluids 28, 888 (1985)] without translation and with a different formation method. Translation with a static gas fill offers new opportunities such as improved particle confinement or refueling of the FRC particle inventory.

  3. Elastic scattering using an artificial confining potential.

    PubMed

    Mitroy, J; Zhang, J Y; Varga, K

    2008-09-19

    The discrete energies of a scattering Hamiltonian calculated under the influence of an artificial confining potential of almost arbitrary functional form can be used to determine its phase shifts. The method exploits the result that two short-range Hamiltonians having the same energy will have the same phase shifts upon removal of the confining potential. An initial verification is performed on a simple model problem. Then the stochastic variational method is used to determine the energies of the confined e(-)-He(2)S(e) system and thus determine the low energy phase shifts.

  4. Effect of confinement on the mode dynamics of dipole clusters.

    PubMed

    Schella, André; Melzer, André; July, Christoph; Bechinger, Clemens

    2015-02-14

    Dynamical properties of colloidal clusters composed of paramagnetic beads are presented. The clusters were trapped either in a parabolic trough or in a hard-wall confinement. In order to access the dynamics of the ensembles, the instantaneous normal mode (INM) approach is utilized, which uses cluster configurations as an input. The peaks in the mode spectra weaken when the system size is increased and when the coupling strength is lowered. The short-time diffusive properties of the clusters are deduced using the INM technique. It is found that angular diffusion is always larger than radial diffusion regardless of the shape of the external trap. Further, short-time diffusion seems to be almost independent of the coupling strength in the solid regime, but decreases with increasing packing fraction and size of the ensembles. In general, it is found that diffusion is larger for parabolically confined than for hard-wall trapped clusters.

  5. Numerical Investigations On The Seismic Behaviour Of Confined Masonry Walls

    SciTech Connect

    Calderini, Chiara; Cattari, Serena; Lagomarsino, Sergio

    2008-07-08

    In the last century, severe earthquakes highlighted the seismic vulnerability of unreinforced masonry buildings. Many technological innovations have been introduced in time in order to improve resistance, ductility, and dissipation properties of this type of constructions. The most widely diffused are reinforced masonry and confined masonry. Damage observation of recent earthquakes demonstrated the effectiveness of the response of confined masonry structures to seismic actions. In general, in this type of structures, reinforced concrete beams and columns are not main structural elements, however, they have the following functions: to confine masonry in order to increase its ductility; to bear tensile stresses derived from bending; to contrast the out-of-plane overturning of masonry panels. It is well evident that these functions are as much effectively performed as the connection between masonry and reinforced concrete elements is good (for example by mean of local interlocking or reinforcements). Confined masonry structures have been extensively studied in the last decades both from a theoretical point of view and by experimental tests Aims of this paper is to give a contribution to the understanding of the seismic behaviour of confined masonry walls by means of numerical parametrical analyses. There latter are performed by mean of the finite element method; a nonlinear anisotropic constitutive law recently developed for masonry is adopted. Comparison with available experimental results are carried out in order to validate the results. A comparison between the resistance obtained from the numerical analyses and the prevision provided by simplified resistance criteria proposed in literature and in codes is finally provided.

  6. Parallel processing numerical method for confined vortex dynamics and applications

    NASA Astrophysics Data System (ADS)

    Bistrian, Diana Alina

    2013-10-01

    This paper explores a combined analytical and numerical technique to investigate the hydrodynamic instability of confined swirling flows, with application to vortex rope dynamics in a Francis turbine diffuser, in condition of sophisticated boundary constraints. We present a new approach based on the method of orthogonal decomposition in the Hilbert space, implemented with a spectral descriptor scheme in discrete space. A parallel implementation of the numerical scheme is conducted reducing the computational time compared to other techniques.

  7. Clusters of polyhedra in spherical confinement

    NASA Astrophysics Data System (ADS)

    Teich, Erin; van Anders, Greg; Klotsa, Daphne; Dshemuchadse, Julia; Glotzer, Sharon

    Dense particle packing in a confining volume is a rich, largely unexplored problem, with applications in blood clotting, plasmonics, industrial packaging and transport, colloidal molecule design, and information storage. We report simulation results for dense clusters of the Platonic solids in spherical confinement, for up to N = 60 constituent particles. We discuss similarities between clusters in terms of symmetry, a connection to spherical codes, and generally the interplay between isotropic geometrical confinement and anisotropic particle shape. Our results showcase the structural diversity and experimental utility of families of solutions to the problem of packing in confinement. E.T. acknowledges support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1256260.

  8. Colloidal cholesteric liquid crystal in spherical confinement.

    PubMed

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S; Lavrentovich, Oleg D; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  9. Colloidal cholesteric liquid crystal in spherical confinement

    PubMed Central

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  10. Human Adaptation To Isolated And Confined Environments

    NASA Technical Reports Server (NTRS)

    Evans, Gary W.; Stokols, Daniel; Carrere, Sna Sybil

    1992-01-01

    Data from Antarctic research station analyzed. Report describes study of physiology and psychology of humans in isolated and confined environment. Suggests ways in which such environments made more acceptable to human inhabitants.

  11. Colloidal cholesteric liquid crystal in spherical confinement

    NASA Astrophysics Data System (ADS)

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-08-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.

  12. Programmed environment management of confined microsocieties

    NASA Technical Reports Server (NTRS)

    Emurian, Henry H.

    1988-01-01

    A programmed environment is described that assists the implementation and management of schedules governing access to all resources and information potentially available to members of a confined microsociety. Living and work schedules are presented that were designed to build individual and group performance repertoires in support of study objectives and sustained adaptation by participants. A variety of measurement requirements can be programmed and standardized to assure continuous assessment of the status and health of a confined microsociety.

  13. Stellarator approach to toroidal plasma confinement

    SciTech Connect

    Johnson, J.L.

    1981-12-01

    An overview is presented of the development and current status of the stellarator approach to controlled thermonuclear confinement. Recent experimental, theoretical, and systems developments have made this concept a viable option for the evolution of the toroidal confinement program. Some experimental study of specific problems associated with departure from two-dimensional symmetry must be undertaken before the full advantages and opportunities of steady-state, net-current-free operation can be realized.

  14. Confined zone dispersion flue gas desulfurization demonstration

    SciTech Connect

    Not Available

    1992-02-27

    The confined zone dispersion (CZD) process involves flue gas post-treatment, physically located between a boiler's outlet and its particulate collector, which in the majority of cases is an electrostatic precipitator. The features that distinguish this process from other similar injection processes are: Injection of an alkaline slurry directly into the duct, instead of injection of dry solids into the duct ahead of a fabric filter. Use of an ultrafine calcium/magnesium hydroxide, type S pressure-hydrated dolomitic lime. This commercial product is made from plentiful, naturally occurring dolomite. Low residence time, made possible by the high effective surface area of the Type S lime. Localized dispersion of the reagent. Slurry droplets contact only part of the gas while the droplets are drying, to remove up to 50 percent of the S0{sub 2} and significant amounts of NO{sub x}. The process uses dual fluid rather than rotary atomizers. Improved electrostatic precipitator performance via gas conditioning from the increased water vapor content, and lower temperatures. Supplemental conditioning with S0{sub 3} is not believed necessary for satisfactory removal of particulate matter.

  15. SPECIAL TOPIC: ITER L mode confinement database

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.; Greenwald, M.; Stroth, U.; Kardaun, O.; Kus, A.; Schissel, D.; DeBoo, J.; Bracco, G.; Thomsen, K.; Cordey, J. G.; Miura, Y.; Matsuda, T.; Tamai, H.; Takizuda, T.; Hirayama, T.; Kikuchi, H.; Naito, O.; Chudnovskij, A.; Ongena, J.; Hoang, G.

    1997-09-01

    This special topic describes the contents of an L mode database that has been compiled with data from Alcator C-Mod, ASDEX, DIII, DIII-D, FTU, JET, JFT-2M, JT-60, PBX-M, PDX, T-10, TEXTOR, TFTR and Tore Supra. The database consists of a total of 2938 entries, 1881 of which are in the L phase while 922 are ohmically heated only (ohmic). Each entry contains up to 95 descriptive parameters, including global and kinetic information, machine conditioning and configuration. The special topic presents a description of the database and the variables contained therein, and it also presents global and thermal scalings along with predictions for ITER. The L mode thermal confinement time scaling, determined from a subset of 1312 entries for which the τE,th are provided, is τE,th = 0.023Ip0.96BT0.03R1.83(R/a)0.06 κ0.64ne0.40Meff0.20P-0.73 in units of seconds, megamps, teslas, metres, -, -, 10-9 m-1

  16. Nutrient balance on Nebraska livestock confinement systems.

    PubMed

    Koelsch, R; Lesoing, G

    1999-01-01

    Managing the environmental risk associated with livestock production is a significant challenge. Nitrogen and phosphorus are commonly implicated as the sources of ground and surface water quality problems associated with livestock production. The degree of imbalance between these nutrient inputs and the managed nutrient outputs for a livestock operation defines the magnitude of potential environmental risk and provides insight as to the underlying causes of these challenges. A nitrogen and phosphorus balance was constructed for 33 Nebraska confinement livestock operations. Twenty-five and 17 of these operations experienced significant nitrogen and phosphorus imbalances, respectively (50% more nutrient inputs than outputs). Nutrient inputs on many livestock operations were observed to be two to four times greater than nutrient outputs as managed crop and livestock products. Size of the livestock operation and the degree of integration of livestock with a cropping operation provided only limited explanation of the variation in nutrient balance observed among the individual operations. Management options that contribute to a more favorable nutrient balance were also identified. Management decisions related to feeding program and exporting of manure nutrients to off-farm users were observed to have a substantial impact on the nutrient imbalance. For modern livestock production systems to successfully respond to nutrient-related environmental problems, management strategies must be implemented that address the commonly experienced imbalances of nitrogen and phosphorus. PMID:15526781

  17. Spin-Orbit Activated Confinement Resonances

    NASA Astrophysics Data System (ADS)

    Keating, David; Manson, Steven; Deshmukh, Pranawa

    2016-05-01

    At high enough Z relativistic effects become important contributors to even the qualitative nature of atomic properties. This is likely to be true for confined atoms as well. One relativistic effect of interest is the spin-orbit activated interchannel coupling of a pair of spin-orbit doublet channels. This interaction is possible owing to the spin-orbit interaction breaking the degenerancy among the electrons of a subshell allowing, for example, the 5p3/2 and 5p1/2 subshells of mercury (Z = 80) and the 6p3/2 and 6p1/2 of radon (Z = 86), to interact. To explore the effect confinement has on spin-orbit activated interchannel coupling, a theoretical study of the 5p subshell of mercury and the 6p subshell of radon both confined in a C60 cage has been performed using the relativistic-random-phase approximation (RRPA) methodology. The effects of the C60 potential modeled by a static spherical well which is reasonable in the energy region well above the C60 plasmons. It is found in the photoionization cross sections of the 5p3/2 of confined mercury and the 6p3/2 of confined radon an extra confinement resonance due to spin-orbit activated interchannel coupling with the respective np1/2 photoionization channels.

  18. Field reversed configuration confinement enhancement through edge biasing and neutral beam injection.

    PubMed

    Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D

    2012-06-22

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms.

  19. Magnetic Field Required for Ignition in a Magnetically Confined Plasma in Reactor-Type Conditions

    NASA Astrophysics Data System (ADS)

    Panarella, Emilio

    1996-11-01

    A complete and rigorous analysis will be given of the ignition conditions for a pulsed DT plasma magnetically confined, where the conduction losses are introduced from heat transfer theory, rather than from the empirically defined energy confinement time. It will be shown that the magnetic field required for ignition greatly exceeds any of those presently considered for major machines. It will also be shown that ignition is independent of particle density. On the basis of these results it is argued that ignition is facilitated in an inertially confined plasma, both of the classical type with lasers, or with the Spherical Pinch, or the Magnetized Target Fusion concepts.

  20. Field Reversed Configuration Confinement Enhancement through Edge Biasing and Neutral Beam Injection

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.; Smirnov, A.; Thompson, M. C.; Korepanov, S.; Akhmetov, T.; Ivanov, A.; Voskoboynikov, R.; Schmitz, L.; Barnes, D.; Binderbauer, M. W.; Brown, R.; Bui, D. Q.; Clary, R.; Conroy, K. D.; Deng, B. H.; Dettrick, S. A.; Douglass, J. D.; Garate, E.; Glass, F. J.; Gota, H.; Guo, H. Y.; Gupta, D.; Gupta, S.; Kinley, J. S.; Knapp, K.; Longman, A.; Hollins, M.; Li, X. L.; Luo, Y.; Mendoza, R.; Mok, Y.; Necas, A.; Primavera, S.; Ruskov, E.; Schroeder, J. H.; Sevier, L.; Sibley, A.; Song, Y.; Sun, X.; Trask, E.; Van Drie, A. D.; Walters, J. K.; Wyman, M. D.

    2012-06-01

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n=2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E×B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms.

  1. Field reversed configuration confinement enhancement through edge biasing and neutral beam injection.

    PubMed

    Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D

    2012-06-22

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms. PMID:23004613

  2. The deflection of a jet by confining surfaces

    NASA Technical Reports Server (NTRS)

    Catalano, G. D.; Morton, J. B.; Humphris, R. R.

    1981-01-01

    Thrust vectoring can be provided by the turning of a jet exhaust by the presence of confining surfaces. This approach is analogous to the upper surface blowing (USB) concept. Mean velocities, velocity autocorrelations, and pressure-velocity correlations are measured. From the autocorrelation curves, the Taylor microscales and the integral length scales are calculated. Convection velocities are calculated from the velocity space-time correlations. Two different confining surfaces (one flat, one with large curvature) are placed adjacent to the lip of a circular nozzle, and the resultant effects on the flow field are determined. In addition, two velocity ratios (exit plane velocity to ambient stream velocity) are examined. The velocity measurements were made with a laser Doppler velocimeter in conjunction with a phase locked-loop processor. Pressure measurements were made using a 1/8th inch condensor type microphone.

  3. Load-Induced Confinement Activates Diamond Lubrication by Water

    NASA Astrophysics Data System (ADS)

    Zilibotti, G.; Corni, S.; Righi, M. C.

    2013-10-01

    Tribochemical reactions are chemical processes, usually involving lubricant or environment molecules, activated at the interface between two solids in relative motion. They are difficult to be monitored in situ, which leaves a gap in the atomistic understanding required for their control. Here we report the real-time atomistic description of the tribochemical reactions occurring at the interface between two diamond films in relative motion, by means of large scale ab initio molecular dynamics. We show that the load-induced confinement is able to catalyze diamond passivation by water dissociative adsorption. Such passivation decreases the energy of the contacting surfaces and increases their electronic repulsion. At sufficiently high coverages, the latter prevents surface sealing, thus lowering friction. Our findings elucidate effects of the nanoscale confinement on reaction kinetics and surface thermodynamics, which are important for the design of new lubricants.

  4. Microscale Confinement features in microfluidic devices can affect biofilm

    SciTech Connect

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh; Acharya, Rajesh K; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2013-01-01

    Biofilms are aggregations of microbes that are encased by extra-cellular polymeric substances (EPS) and adhere to surfaces and interfaces. Biofilm development on abiotic surfaces is a dynamic process, which typically proceeds through an initial phase of adhesion of plankntonic microbes to the substrate, followed by events such as growth, maturation and EPS secretion. However, the coupling of hydrodynamics, microbial adhesion and biofilm growth remain poorly understood. Here, we investigate the effect of semiconfined features on biofilm formation. Using a microfluidic device and fluorescent time-lapse microscopy, we establish that confinement features can significantly affect biofilm formation. Biofilm dynamics change not only as a function of confinement features, but also of the total fluid flow rate, and our combination of experimental results and numerical simulations reveal insights into the link between hydrodynamics and biofilm formation.

  5. Defect topologies in chiral liquid crystals confined to mesoscopic channels

    SciTech Connect

    Schlotthauer, Sergej Skutnik, Robert A.; Stieger, Tillmann; Schoen, Martin

    2015-05-21

    We present Monte Carlo simulations in the grand canonical and canonical ensembles of a chiral liquid crystal confined to mesochannels of variable sizes and geometries. The mesochannels are taken to be quasi-infinite in one dimension but finite in the two other directions. Under thermodynamic conditions chosen and for a selected value of the chirality coupling constant, the bulk liquid crystal exhibits structural characteristics of a blue phase II. This is established through the tetrahedral symmetry of disclination lines and the characteristic simple-cubic arrangement of double-twist helices formed by the liquid-crystal molecules along all three axes of a Cartesian coordinate system. If the blue phase II is then exposed to confinement, the interplay between its helical structure, various anchoring conditions at the walls of the mesochannels, and the shape of the mesochannels gives rise to a broad variety of novel, qualitative disclination-line structures that are reported here for the first time.

  6. Diffusing Polymers in Confined Microdomains and Estimation of Chromosomal Territory Sizes from Chromosome Capture Data

    NASA Astrophysics Data System (ADS)

    Amitai, A.; Holcman, D.

    2013-06-01

    Is it possible to extract the size and structure of chromosomal territories (confined domain) from the encounter frequencies of chromosomal loci? To answer this question, we estimate the mean time for two monomers located on the same polymer to encounter, which we call the mean first encounter time in a confined microdomain (MFETC). We approximate the confined domain geometry by a harmonic potential well and obtain an asymptotic expression that agrees with Brownian simulations for the MFETC as a function of the polymer length, the radius of the confined domain, and the activation distance radius ɛ at which the two searching monomers meet. We illustrate the present approach using chromosome capture data for the encounter rate distribution of two loci depending on their distances along the DNA. We estimate the domain size that restricts the motion of one of these loci for chromosome II in yeast.

  7. Circularly confined microswimmers exhibit multiple global patterns.

    PubMed

    Tsang, Alan Cheng Hou; Kanso, Eva

    2015-04-01

    Geometric confinement plays an important role in the dynamics of natural and synthetic microswimmers from bacterial cells to self-propelled particles in high-throughput microfluidic devices. However, little is known about the effects of geometric confinement on the emergent global patterns in such self-propelled systems. Recent experiments on bacterial cells report that, depending on the cell concentration, cells either spontaneously organize into vortical motion in thin cylindrical and spherical droplets or aggregate at the inner boundary of the droplets. Our goal in this paper is to investigate, in the context of an idealized physical model, the interplay between geometric confinement and level of flagellar activity on the emergent collective patterns. We show that decreasing flagellar activity induces a hydrodynamically triggered transition in confined microswimmers from swirling to global circulation (vortex) to boundary aggregation and clustering. These results highlight that the complex interplay between confinement, flagellar activity, and hydrodynamic flows in concentrated suspensions of microswimmers could lead to a plethora of global patterns that are difficult to predict from geometric consideration alone. PMID:25974581

  8. Packing frustration in dense confined fluids.

    PubMed

    Nygård, Kim; Sarman, Sten; Kjellander, Roland

    2014-09-01

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile--each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  9. Effects of confinement on nanoparticle flows

    NASA Astrophysics Data System (ADS)

    Conrad, Jacinta

    The transport properties of nanoparticles that are dispersed in complex fluids and flowed through narrow confining geometries affect a wide range of materials shaping and forming processes, including three-dimensional printing and nanocomposite processing. Here, I will describe two sets of experiments in which we use optical microscopy to probe the structure and transport properties of suspensions of particles that are confined geometrically. First, we investigate the structure and flow properties of dense suspensions of submicron particles, in which the particles interact via an entropic depletion attraction, that are confined in thin films and microchannels. Second, we characterize the transport properties of nanoparticles, dispersed at low concentration in water or in aqueous solutions of high-molecular weight polymers, that are confined in regular arrays of nanoposts or in disordered porous media. I will discuss our results and their practical implications for materials processing as well as for other applications that require confined transport of nanomaterials through complex media. Welch Foundation (E-1869) and NSF (CBET-1438204).

  10. LETTER: H-mode threshold and confinement in helium and deuterium in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ryter, F.; Pütterich, T.; Reich, M.; Scarabosio, A.; Wolfrum, E.; Fischer, R.; Gemisic Adamov, M.; Hicks, N.; Kurzan, B.; Maggi, C.; Neu, R.; Rohde, V.; Tardini, G.; ASDEX Upgrade TEAM

    2009-06-01

    In 2008, experiments have been carried out in ASDEX Upgrade to compare H-mode power threshold and confinement time in helium and deuterium. A scan in magnetic field and a wide density variation indicate that the threshold power in the two gases is very similar. The density dependence of the threshold exhibits a clear minimum. Confinement in helium is about 30% lower than in deuterium, mainly due to the reduction in the ion density caused by Z = 2 in helium.

  11. INERT Atmosphere confinement operability test procedure

    SciTech Connect

    RISENMAY, H.R.

    1999-02-22

    This Operability Test Procedure (OTP) provides instructions for testing operability of the Inert Atmosphere Confinement (IAC). The Inert Atmosphere Confinement was designed and built for opening cans of metal items that might have hydrided surfaces. Unreviewed Safety Question (USQ) PFP-97-005 addresses the discovery of suspected plutonium hydride forming on plutonium metal currently stored in the Plutonium Finishing Plant vaults. Plutonium hydride reacts quickly with air, liberating energy. The Inert Atmosphere Confinement was designed to prevent this sudden liberation of energy by opening the material in an inert argon atmosphere instead of the normal glovebox atmosphere. The IAC is located in glovebox HC-21A, room 230B of the 234-5Z Building at the Plutonium Finishing Plant (PFP) in the 200-West Area of the Hanford Site.

  12. Neutron Assay System for Confinement Vessel Disposition

    SciTech Connect

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Valdez, Jose I.; Vigil, Georgiana M.

    2012-07-13

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the CVs. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of special nuclear material (SNM) in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le}100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements.

  13. TOPICAL REVIEW: Biopolymer organization upon confinement

    NASA Astrophysics Data System (ADS)

    Marenduzzo, D.; Micheletti, C.; Orlandini, E.

    2010-07-01

    Biopolymers in vivo are typically subject to spatial restraints, either as a result of molecular crowding in the cellular medium or of direct spatial confinement. DNA in living organisms provides a prototypical example of a confined biopolymer. Confinement prompts a number of biophysics questions. For instance, how can the high level of packing be compatible with the necessity to access and process the genomic material? What mechanisms can be adopted in vivo to avoid the excessive geometrical and topological entanglement of dense phases of biopolymers? These and other fundamental questions have been addressed in recent years by both experimental and theoretical means. A review of the results, particularly of those obtained by numerical studies, is presented here. The review is mostly devoted to DNA packaging inside bacteriophages, which is the best studied example both experimentally and theoretically. Recent selected biophysical studies of the bacterial genome organization and of chromosome segregation in eukaryotes are also covered.

  14. Progress in toroidal confinement and fusion research

    SciTech Connect

    Furth, H.P.

    1987-10-01

    During the past 30 years, the characteristic T/sub i/n tau/sub E/-value of toroidal-confinement experiments has advanced by more than seven orders of magnitude. Part of this advance has been due to an increase of gross machine parameters. Most of this advance has been due to an increase of gross machine parameters. Most of the advance is associated with improvements in the ''quality of plasma confinement.'' The combined evidence of spherator and tokamak research clarifies the role of magnetic-field geometry in determining confinement and points to the importance of shielding out plasma edge effects. A true physical understanding of anomalous transport remains to be achieved. 39 refs., 11 figs., 1 tab.

  15. Transition metal catalysis in confined spaces.

    PubMed

    Leenders, Stefan H A M; Gramage-Doria, Rafael; de Bruin, Bas; Reek, Joost N H

    2015-01-21

    Transition metal catalysis plays an important role in both industry and in academia where selectivity, activity and stability are crucial parameters to control. Next to changing the structure of the ligand, introducing a confined space as a second coordination sphere around a metal catalyst has recently been shown to be a viable method to induce new selectivity and activity in transition metal catalysis. In this review we focus on supramolecular strategies to encapsulate transition metal complexes with the aim of controlling the selectivity via the second coordination sphere. As we will discuss, catalyst confinement can result in selective processes that are impossible or difficult to achieve by traditional methods. We will describe the template-ligand approach as well as the host-guest approach to arrive at such supramolecular systems and discuss how the performance of the catalyst is enhanced by confining it in a molecular container.

  16. Crystallization in Micellar Cores: confinement effects and dynamics

    NASA Astrophysics Data System (ADS)

    Lund, Reidar; Zinn, Thomas; Willner, Lutz; Department of Chemistry, University of Oslo Team; Forschungszentrum Jülich Collaboration

    It is well known that liquids confined to small nanoscopic pores and droplets exhibit thermal behavior very different from bulk samples. Here we demonstrate that n-alkanes forming 2-3 nm small micellar cores are considerably affected by confinement in analogue with hard confined systems. We study micelles form by self-assembly of a series of well-defined n-Alkyl-PEO polymers in aqueous solutions. By using small-angle X-ray scattering (SAXS), densiometry and differential scanning calorimetry (DSC), we show that n-alkane exhibit a first-order phase transition i.e. melting. Correlating the structural and thermodynamic data, we find that a melting depression can be accurately described by the Gibbs-Thomson equation. ∖f1 The effect of core crystallinity on the molecular exchange kinetics is investigated using time-resolved small-angle neutron scattering (TR-SANS). We show that there are considerable entropic and enthalpic contributions from the chain packing that affect the kinetic stability of micelles. ∖pard

  17. Structure and Dynamics of Confined Alcohol-Water Mixtures.

    PubMed

    Bampoulis, Pantelis; Witteveen, Jorn P; Kooij, E Stefan; Lohse, Detlef; Poelsema, Bene; Zandvliet, Harold J W

    2016-07-26

    The effect of confinement between mica and graphene on the structure and dynamics of alcohol-water mixtures has been studied in situ and in real time at the molecular level by atomic force microscopy (AFM) at room temperature. AFM images reveal that the adsorbed molecules are segregated into faceted alcohol-rich islands on top of an ice layer on mica, surrounded by a pre-existing multilayer water-rich film. These faceted islands are in direct contact with the graphene surface, revealing a preferred adsorption site. Moreover, alcohol adsorption at low relative humidity (RH) reveals a strong preference of the alcohol molecules for the ordered ice interface. The growth dynamics of the alcohol islands is governed by supersaturation, temperature, the free energy of attachment of molecules to the island edge and two-dimensional (2D) diffusion. The measured diffusion coefficients display a size dependence on the molecular size of the alcohols, and are about 6 orders of magnitude smaller than the bulk diffusion coefficients, demonstrating the effect of confinement on the behavior of the alcohols. These experimental results provide new insights into the behavior of multicomponent fluids in confined geometries, which is of paramount importance in nanofluidics and biology. PMID:27337245

  18. Collective oscillations and coupled modes in confined microfluidic droplet arrays

    NASA Astrophysics Data System (ADS)

    Schiller, Ulf D.; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard

    Microfluidic droplets have a wide range of applications ranging from analytic assays in cellular biology to controlled mixing in chemical engineering. Ensembles of microfluidic droplets are interesting model systems for non-equilibrium many-body phenomena. When flowing in a microchannel, trains of droplets can form microfluidic crystals whose dynamics are governed by long-range hydrodynamic interactions and boundary effects. In this contribution, excitation mechanisms for collective waves in dense and confined microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific `defect' patterns in flowing droplet trains. While longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets, transversely excited modes form propagating waves that behave like microfluidic phonons. We show that the confinement induces a coupling between longitudinal and transverse modes. We also investigate the life time of the collective oscillations and discuss possible mechanisms for the onset of instabilities. Our results demonstrate that microfluidic phonons can exhibit effects beyond the linear theory, which can be studied particularly well in dense and confined systems. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SE 1118/4.

  19. Molecular simulation of chevrons in confined smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Webster, Richard E.; Mottram, Nigel J.; Cleaver, Douglas J.

    2003-08-01

    Chevron structures adopted by confined smectic liquid crystals are investigated via molecular dynamics simulations of the Gay-Berne model. The chevrons are formed by quenching nematic films confined between aligning planar substrates whose easy axes have opposing azimuthal components. When the substrates are perfectly smooth, the chevron formed migrates rapidly towards one of the confining walls to yield a tilted layer structure. However, when substrate roughness is included, by introducing a small-amplitude modulation to the particle-substrate interaction well depth, a symmetric chevron is formed which remains stable over sufficiently long run times for detailed structural information, such as the relevant order parameters and director orientation, to be determined. For both smooth and rough boundaries, the smectic order parameter remains nonzero across the entire chevron, implying that layer identity is maintained across the chevron tip. Also, when the surface-stabilized chevron does eventually revert to a tilted layer structure, it does so via surface slippage, such that layer integrity is maintained throughout the chevron to tilted layer relaxation process.

  20. Structure and Dynamics of Confined Alcohol-Water Mixtures.

    PubMed

    Bampoulis, Pantelis; Witteveen, Jorn P; Kooij, E Stefan; Lohse, Detlef; Poelsema, Bene; Zandvliet, Harold J W

    2016-07-26

    The effect of confinement between mica and graphene on the structure and dynamics of alcohol-water mixtures has been studied in situ and in real time at the molecular level by atomic force microscopy (AFM) at room temperature. AFM images reveal that the adsorbed molecules are segregated into faceted alcohol-rich islands on top of an ice layer on mica, surrounded by a pre-existing multilayer water-rich film. These faceted islands are in direct contact with the graphene surface, revealing a preferred adsorption site. Moreover, alcohol adsorption at low relative humidity (RH) reveals a strong preference of the alcohol molecules for the ordered ice interface. The growth dynamics of the alcohol islands is governed by supersaturation, temperature, the free energy of attachment of molecules to the island edge and two-dimensional (2D) diffusion. The measured diffusion coefficients display a size dependence on the molecular size of the alcohols, and are about 6 orders of magnitude smaller than the bulk diffusion coefficients, demonstrating the effect of confinement on the behavior of the alcohols. These experimental results provide new insights into the behavior of multicomponent fluids in confined geometries, which is of paramount importance in nanofluidics and biology.

  1. Confinement and water quality-induced stress in largemouth bass

    SciTech Connect

    Carmichael, G.J.; Tomasso, J.R.; Simco, B.A.; Davis, K.B.

    1984-11-01

    Plasma values of corticosteroids, glucose, chloride, and osmolality were determined in largemouth bass Micropterus salmoides under various environmental conditions. No differences were observed in quiescent fish due to sex, size, time of day, or the types of holding facilities tested (tanks, raceways, ponds). Differences were observed in plasma glucose, chloride, and osmolality values among fish acclimated to 10, 16, and 23 C. Abrupt temperature changes caused elevations in plasma corticosteroid and glucose concentrations and reduced plasma chloride and osmolality. Confinement in a net, for up to 48 hours, caused elevated glucose and corticosteroids and reduced chloride and osmolality values. After 48 hours of confinement, fish required up to 14 days to recover normal plasma characters. Generally, short-term exposure to poor water quality (high concentrations of CO/sub 2/ and NH/sub 3/, and low concentrations of dissolved oxygen) altered plasma corticosteroids and glucose but had little effect on plasma chloride or osmolality. Net confinement plus poor water quality caused additional stress. Plasma glucose and corticosteroid values were good indicators of stress during application of acute stressors whereas chloride and osmolality were useful indicators of long-term stress and patterns of recovery after stressors were removed.

  2. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement.

    PubMed

    Huang, Qiangsheng; Bao, Fanglin; He, Sailing

    2013-01-28

    The effect of nonlocal optical response is studied for a novel silicon hybrid plasmonic waveguide (HPW). Finite element method is used to implement the hydrodynamic model and the propagation mode is analyzed for a hybrid plasmonic waveguide of arbitrary cross section. The waveguide has an inverted metal nano-rib over a silicon-on-insulator (SOI) structure. An extremely small mode area of~10⁻⁶λ² is achieved together with several microns long propagation distance at the telecom wavelength of 1.55 μm. The figure of merit (FoM) is also improved in the same time, compared to the pervious hybrid plasmonic waveguide. We demonstrate the validity of our method by comparing our simulating results with some analytical results for a metal cylindrical waveguide and a metal slab waveguide in a wide wavelength range. For the HPW, we find that the nonlocal effects can give less loss and better confinement. In particular, we explore the influence of the radius of the rib's tip on the loss and the confinement. We show that the nonlocal effects give some new fundamental limitation on the confinement, leaving the mode area finite even for geometries with infinitely sharp tips.

  3. Single-molecule microscopy using tunable nanoscale confinement

    NASA Astrophysics Data System (ADS)

    McFaul, Christopher M. J.; Leith, Jason; Jia, Bojing; Michaud, François; Arsenault, Adriel; Martin, Andrew; Berard, Daniel; Leslie, Sabrina

    2013-09-01

    We present the design, construction and implementation of a modular microscopy device that transforms a basic inverted fluorescence microscope into a versatile single-molecule imaging system. The device uses Convex Lens- Induced Confinement (CLIC) to improve background rejection and extend diffusion-limited observation time. To facilitate its integration into a wide range of laboratories, this implementation of the CLIC device can use a standard flow-cell, into which the sample is loaded. By mechanically deforming the flow-cell, the device creates a tunable, wedge-shaped imaging chamber which we have modeled using finite element analysis simulations and characterized experimentally using interferometry. A powerful feature of CLIC imaging technology is the ability to examine single molecules under a continuum of applied confinement, from the nanometer to the micrometer scale. We demonstrate, using freely diffusing λ-phage DNA, that when the imposed confinement is on the scale of individual molecules their molecular conformations and diffusivity are altered significantly. To improve the flow-cell stiffness, seal, and re-usability, we have innovated the fabrication of thin PDMS-bonded flow-cells. The presented flow-cell CLIC technology can be combined with surface-lithography to provide an accessible and powerful approach to tune, trap, and image individual molecules under an extended range of imaging conditions. It is well-suited to tackling open problems in biophysics, biotechnology, nanotechnology, materials science, and chemistry.

  4. Microscopic modeling of confined crystal growth and dissolution.

    PubMed

    Høgberget, Jørgen; Røyne, Anja; Dysthe, Dag K; Jettestuen, Espen

    2016-08-01

    We extend the (1+1)-dimensional fluid solid-on-solid (SOS) model to include a confining flat surface opposite to the SOS surface subject to a constant load. This load is balanced by a repulsive surface-surface interaction given by an ansatz which agrees with known analytical solutions in the limit of two separated flat surfaces. Mechanical equilibrium is imposed at all times by repositioning the confining surface. By the use of kinetic Monte Carlo (KMC) we calculate how the equilibrium concentration (deposition rate) depends on the applied load, and find it to reproduce analytical thermodynamics independent of the parameters of the interaction ansatz. We also study the dependency between the surface roughness and the saturation level as we vary the surface tension, and expand on previous analyses of the asymmetry between growth and dissolution by parametrizing the linear growth rate constant for growth and dissolution separately. We find the presence of a confining surface to affect the speed of growth and dissolution equally. PMID:27627386

  5. Microscopic modeling of confined crystal growth and dissolution

    NASA Astrophysics Data System (ADS)

    Høgberget, Jørgen; Røyne, Anja; Dysthe, Dag K.; Jettestuen, Espen

    2016-08-01

    We extend the (1+1)-dimensional fluid solid-on-solid (SOS) model to include a confining flat surface opposite to the SOS surface subject to a constant load. This load is balanced by a repulsive surface-surface interaction given by an ansatz which agrees with known analytical solutions in the limit of two separated flat surfaces. Mechanical equilibrium is imposed at all times by repositioning the confining surface. By the use of kinetic Monte Carlo (KMC) we calculate how the equilibrium concentration (deposition rate) depends on the applied load, and find it to reproduce analytical thermodynamics independent of the parameters of the interaction ansatz. We also study the dependency between the surface roughness and the saturation level as we vary the surface tension, and expand on previous analyses of the asymmetry between growth and dissolution by parametrizing the linear growth rate constant for growth and dissolution separately. We find the presence of a confining surface to affect the speed of growth and dissolution equally.

  6. Electronic quantum confinement in cylindrical potential well

    NASA Astrophysics Data System (ADS)

    Baltenkov, Arkadiy S.; Msezane, Alfred Z.

    2016-04-01

    The effects of quantum confinement on the momentum distribution of electrons confined within a cylindrical potential well have been analyzed. The motivation is to understand specific features of the momentum distribution of electrons when the electron behavior is completely controlled by the parameters of a non-isotropic potential cavity. It is shown that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the three-dimensional space within the framework of the same mathematical model. Some low-lying electronic states with different symmetries have been considered and the corresponding wave functions have been calculated; the behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well has been analyzed. Additionally, the momentum distributions of electrons in these states have been calculated. The limiting cases of the ratio of the cylinder length H and its radius R0 have been considered; when the cylinder length H significantly exceeds its radius R0 and when the cylinder radius is much greater than its length. The cylindrical quantum confinement effects on the momentum distribution of electrons in these potential wells have been analyzed. The possible application of the results obtained here for the description of the general features in the behavior of electrons in nanowires with metallic type of conductivity (or nanotubes) and ultrathin epitaxial films (or graphene sheets) are discussed. Possible experiments are suggested where the quantum confinement can be manifested. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  7. Silver nanoparticles confined in carbon nanotubes: on the understanding of the confinement effect and promotional catalysis for the selective hydrogenation of dimethyl oxalate

    NASA Astrophysics Data System (ADS)

    Zheng, Jianwei; Duan, Xinping; Lin, Haiqiang; Gu, Zhengqiang; Fang, Huihuang; Li, Jianhui; Yuan, Youzhu

    2016-03-01

    A confined Ag nanomaterial in the channels of herringbone multi-walled carbon nanotubes (Ag-in/hCNT) was effectively prepared. The space restriction induces morphological changes of Ag nanoparticles into rough nanowires with an estimated aspect ratio of 60 : 8 (nm/nm). Dihydrogen activation is enhanced through the vacancy-enriched wire-like Ag nanocatalyst, as well as the confinement effect. The grain boundaries of Ag and rolled-up graphene layers of CNTs are speculated to play vital roles in the diffusion of activated hydrogen species. The Ag-in/hCNT catalyst exhibits an activity that is three times higher than that of Ag nanoparticles located on the CNT exterior walls in DMO hydrogenation. This finding may insinuate that interplanar spaces provide available access to the external surface of CNTs. Designed experiments further confirm the importance of herringbone CNTs with higher reaction rate than parallel CNTs, and confined Ag produces considerably more activated hydrogen species, thereby benefiting the reduction of surface copper nanoparticles or DMO molecules during hydrogenation. This paper presents a study of the effective utilization of hydrogen over herringbone CNT confined Ag and an understanding of the confinement and promotional catalytic effects.A confined Ag nanomaterial in the channels of herringbone multi-walled carbon nanotubes (Ag-in/hCNT) was effectively prepared. The space restriction induces morphological changes of Ag nanoparticles into rough nanowires with an estimated aspect ratio of 60 : 8 (nm/nm). Dihydrogen activation is enhanced through the vacancy-enriched wire-like Ag nanocatalyst, as well as the confinement effect. The grain boundaries of Ag and rolled-up graphene layers of CNTs are speculated to play vital roles in the diffusion of activated hydrogen species. The Ag-in/hCNT catalyst exhibits an activity that is three times higher than that of Ag nanoparticles located on the CNT exterior walls in DMO hydrogenation. This finding may

  8. Experimental Achievements on Plasma Confinement and Turbulence

    SciTech Connect

    Fujisawa, A.

    2009-02-19

    This article presents a brief review of the experimental studies on turbulence and resultant transport in toroidal plasmas. The article focuses on two topics, physics of transport barrier and the role of mesoscale structure on plasma confinement, i.e. zonal flows. The two topics show the important roles of the mutual interactions between sheared flows, zonal flows and drift waves for plasma turbulence and transport. The findings can lead us to further generalized concept of the disparate scale interactions which could give a fundamental understanding of the plasma confinement from the first principle.

  9. Electrohydrodynamic Stretching of DNA in Confined Environments

    NASA Astrophysics Data System (ADS)

    Bakajin, O. B.; Duke, T. A. J.; Chou, C. F.; Chan, S. S.; Austin, R. H.; Cox, E. C.

    1998-03-01

    The effect of confinement on the dynamics of polymers was studied by observing the transient extension and relaxation of single DNA molecules as they interacted with obstacles in a specially designed thin slit. Viscous drag was found to increase with the degree of confinement, which we interpret in terms of hydrodynamic screening by the planar surfaces of the slit. Since the DNA was driven by an electrophoretic force, the experimental data support the notion that an electric field acts on a tethered polyelectrolyte equivalently to a hydrodynamic flow.

  10. Electrohydrodynamic Stretching of DNA in Confined Environments

    NASA Astrophysics Data System (ADS)

    Bakajin, O.; Duke, T. A. J.; Chou, C. F.; Chan, S. S.; Austin, Robert; Cox, E. C.

    1998-03-01

    The effect of confinement on the dynamics of polymers was studied by observing the transient extension and relaxation of single DNA molecules as they interacted with obstacles in a specially designed thing slit. Viscous drag was found to increase with the degree of confinement, which we interpret in terms of hydrodynamic screening by the planar surfaces of the slit. Since the DNA was driven by an electrophoretic force, the experimental data establish the equivalence of the action of an electric field and a hydrodynamic fow on a tethered polyelectrolyte.

  11. Neutral Beam Ion Confinement in NSTX

    SciTech Connect

    D.S. Darrow; E.D. Fredrickson; S.M. Kaye; S.S. Medley; and A.L. Roquemore

    2001-07-24

    Neutral-beam (NB) heating in the National Spherical Torus Experiment (NSTX) began in September 2000 using up to 5 MW of 80 keV deuterium (D) beams. An initial assessment of beam ion confinement has been made using neutron detectors, a neutral particle analyzer (NPA), and a Faraday cup beam ion loss probe. Preliminary neutron results indicate that confinement may be roughly classical in quiescent discharges, but the probe measurements do not match a classical loss model. MHD activity, especially reconnection events (REs) causes substantial disturbance of the beam ion population.

  12. Coordinated Water Under Confinement Eases Sliding Friction

    NASA Astrophysics Data System (ADS)

    Defante, Adrian; Dhopotkar, Nishad; Dhinojwala, Ali

    Water is essential to a number of interfacial phenomena such as the lubrication of knee joints, protein folding, mass transport, and adsorption processes. We have used a biaxial friction cell to quantify underwater friction between a hydrophobic elastomeric lens and a hydrophobic self-assembled monolayer in the presence of surfactant solutions. To gain an understanding of the role of water in these processes we have coupled this measurement with surface sensitive sum frequency generation to directly probe the molecular constitution of the confined contact interface. We observe that role of confined coordinated water between two hydrophobic substrates covered with surfactants is the key to obtaining a low coefficient of friction.

  13. Inertial-confinement-fusion targets

    SciTech Connect

    Hendricks, C.D.

    1982-08-10

    Much of the research in laser fusion has been done using simple ball on-stalk targets filled with a deuterium-tritium mixture. The targets operated in the exploding pusher mode in which the laser energy was delivered in a very short time (approx. 100 ps or less) and was absorbed by the glass wall of the target. The high energy density in the glass literally exploded the shell with the inward moving glass compressing the DT fuel to high temperatures and moderate densities. Temperatures achieved were high enough to produce DT reactions and accompanying thermonuclear neutrons and alpha particles. The primary criteria imposed on the target builders were: (1) wall thickness, (2) sphere diameter, and (3) fuel in the sphere.

  14. Phase Transformations in Confined Nanosystems

    SciTech Connect

    Shield, Jeffrey E.; Belashchenko, Kirill

    2014-04-29

    This project discovered that non-equilibrium structures, including chemically ordered structures not observed in bulk systems, form in isolated nanoscale systems. Further, a generalized model was developed that effectively explained the suppression of equilibrium phase transformations. This thermodynamic model considered the free energy decrease associated with the phase transformation was less than the increase in energy associated with the formation of an interphase interface, therefore inhibiting the phase transformation. A critical diameter exists where the system transitions to bulk behavior, and a generalized equation was formulated that successfully predicted this transition in the Fe-Au system. This provided and explains a new route to novel structures not possible in bulk systems. The structural characterization was accomplished using transmission electron microscopy in collaboration with Matthew Kramer of Ames Laboratory. The PI and graduate student visited Ames Laboratory several times a year to conduct the experiments.

  15. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction.

    PubMed

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-09-02

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis.

  16. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    NASA Astrophysics Data System (ADS)

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-09-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis.

  17. Effect of confinement on failure in 95 TATB/5 KEL-F

    SciTech Connect

    Ramsay, J.B.

    1985-01-01

    A modification of the usual wedge test for measuring the failure thickness has been developed that eliminates the effect of the confinement provided by the witness plate. The new test uses a prism of the explosive with a line initiator to start a detonation along the trapezoidal face of the prism. Experiments using PBX 9502 have shown that the failure thickness measured using the prism test is 1/2 the failure diameter measured in long cyclindrical charges, provided the wave can propagate 15 to 25 times the failure width. No significant effects of confinement is observed for low impedance confinement, whereas high impedance materials reduce the failure thickness. Thin layers of confinement reduce the failure thickness significantly. Copper, 0.025 mm thick, and 0.25-mm aluminum each reduce the failure thickness of PBX 9502 by 35%. 6 refs., 7 figs.

  18. Startling temperature effect on proteins when confined: single molecular level behaviour of human serum albumin in a reverse micelle.

    PubMed

    Sengupta, Bhaswati; Yadav, Rajeev; Sen, Pratik

    2016-06-01

    The present work reports the effect of confinement, and temperature therein, on the conformational fluctuation dynamics of domain-I of human serum albumin (HSA) by fluorescence correlation spectroscopy (FCS). The water-pool of a sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelle has been used as the confined environment. It was observed that the conformational fluctuation time is about 6 times smaller compared to bulk medium when confined in a water-pool of 3.5 nm radius. On increasing the size of the water-pool the conformational fluctuation time was found to increase monotonically and approaches the bulk value. The effect of confinement is on par with the general belief about the restricted motion of a macromolecule upon confinement. However, the effect of temperature was found to be surprising. An increase in the temperature from 298 K to 313 K induces a larger change in the conformational fluctuation time in HSA, when confined. In the bulk medium, apparently there is no change in the conformational fluctuation time in the aforementioned temperature range, whereas, when HSA is present in an AOT water-pool of radius 3.5 nm, about an 88% increase in the fluctuation time was observed. The observed prominent thermal effect on the conformational dynamics of domain-I of HSA in the water-pool of an AOT reverse micelle as compared to in the bulk medium was concluded to arise from the confined solvent effect.

  19. Nuclear diagnostics for inertial confinement fusion implosions

    SciTech Connect

    Murphy, T.J.

    1997-11-01

    This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used.

  20. Symmetries in confined classical Coulomb systems

    SciTech Connect

    Schiffer, J.P.

    1991-01-01

    The properties of charged particles confined in a harmonic oscillator potential have become of increased interest lately in view of the development of techniques in ion traps and storage rings. The symmetries in such systems intrigued the imagination of Ted Hecht in connection with the storage ring at Heidelberg, and so perhaps it is an appropriate subject for this symposium.

  1. The Plasma Anvil in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Fechner, Walter; Morley, P. D.

    We examine theoretically an inertial confinement fusion (ICF) target consisting of a spherical wedge embedded in a relatively nondeformable "anvil". Questions such as heat loss to the anvil, optimum wedge angle, liner and anvil materials, anvil deformations and deleterious 2-D shock effects on D-T burn and compression symmetry are discussed.

  2. Zinc oxide nanostructures confined in porous silicas.

    PubMed

    Coasne, Benoit; Mezy, Aude; Pellenq, R J M; Ravot, D; Tedenac, J C

    2009-02-18

    We report on molecular simulations of zinc oxide nanostructures obtained within silica nanopores of diameter D = 1.6 nm and D = 3.2 nm. Both the effects of confinement (by varying the pore size) and degree of pore filling on the structure of the nanomaterial are addressed. Two complementary approaches are adopted: 1) the stability of the three crystalline phases of ZnO (wurtzite, rocksalt, and blende) in the silica nanopores is studied, and 2) ZnO nanostructures are obtained by slowly cooling down a homogeneous liquid phase confined in the silica pores. None of the ideal nanostructures (wurtzite, rocksalt, blende) retains the ideal structure of the initial crystal when confined within the silica pores. Only the structure starting from the ideal wurtzite nanocrystal remains significantly crystalline after relaxation, as revealed by the marked peaks in the pair correlation functions for this system. The morphology and degree of cristallinity of the structures are found to depend on the parameters involved in the synthesis (pore size, filling density). Nanograin boundaries are observed between domains of different crystal structures. Reminiscent features of the bulk behavior, such as faceting of the nanostructures, are also observed when the system size becomes large. We show that the use of nanopores as a template imposes that the confined particles exhibit neutral (basal) surfaces. These predictions provide a guide to experiments on semiconductor nanoparticles.

  3. Clusters of polyhedra in spherical confinement.

    PubMed

    Teich, Erin G; van Anders, Greg; Klotsa, Daphne; Dshemuchadse, Julia; Glotzer, Sharon C

    2016-02-01

    Dense particle packing in a confining volume remains a rich, largely unexplored problem, despite applications in blood clotting, plasmonics, industrial packaging and transport, colloidal molecule design, and information storage. Here, we report densest found clusters of the Platonic solids in spherical confinement, for up to [Formula: see text] constituent polyhedral particles. We examine the interplay between anisotropic particle shape and isotropic 3D confinement. Densest clusters exhibit a wide variety of symmetry point groups and form in up to three layers at higher N. For many N values, icosahedra and dodecahedra form clusters that resemble sphere clusters. These common structures are layers of optimal spherical codes in most cases, a surprising fact given the significant faceting of the icosahedron and dodecahedron. We also investigate cluster density as a function of N for each particle shape. We find that, in contrast to what happens in bulk, polyhedra often pack less densely than spheres. We also find especially dense clusters at so-called magic numbers of constituent particles. Our results showcase the structural diversity and experimental utility of families of solutions to the packing in confinement problem. PMID:26811458

  4. Morphology of diblock copolymers under confinement

    NASA Astrophysics Data System (ADS)

    Ackerman, David; Ganapathysubramanian, Baskar

    The structure adopted by polymer chains is of particular intrest for materials design. In particular, a great deal of effort has been made to study diblock polymers due to the importance they have in industrial applications. The bulk structure of most systems has been the most widely studied. However, when under the effect of confinement, the polymer chains are forced to adopt structures differing from the familiar bulk phases. As many applications utilize polymers in sizes and shapes that lead to these non bulk structures, the confinement effects are important. A commonly used tool for computationally determining structures is the continuum self consistant field theory (SCFT). We discuss our highly scalable parallel framework for SCFT using real space methods (finite element) that is especially well suited to modelling complex geometries. This framework is capable of modeling both Gaussian and worm like chains. We illustate the use of the software framework in determining structures under varying degrees of confinement. We detail the method used and present selected results from a systematic study of confinement using arbitrary structures.

  5. Somersault of Paramecium in extremely confined environments.

    PubMed

    Jana, Saikat; Eddins, Aja; Spoon, Corrie; Jung, Sunghwan

    2015-01-01

    We investigate various swimming modes of Paramecium in geometric confinements and a non-swimming self-bending behavior like a somersault, which is quite different from the previously reported behaviors. We observe that Paramecia execute directional sinusoidal trajectories in thick fluid films, whereas Paramecia meander around a localized region and execute frequent turns due to collisions with adjacent walls in thin fluid films. When Paramecia are further constrained in rectangular channels narrower than the length of the cell body, a fraction of meandering Paramecia buckle their body by pushing on the channel walls. The bucking (self-bending) of the cell body allows the Paramecium to reorient its anterior end and explore a completely new direction in extremely confined spaces. Using force deflection method, we quantify the Young's modulus of the cell and estimate the swimming and bending powers exerted by Paramecium. The analysis shows that Paramecia can utilize a fraction of its swimming power to execute the self-bending maneuver within the confined channel and no extra power may be required for this new kind of self-bending behavior. This investigation sheds light on how micro-organisms can use the flexibility of the body to actively navigate within confined spaces. PMID:26286234

  6. Somersault of Paramecium in extremely confined environments

    PubMed Central

    Jana, Saikat; Eddins, Aja; Spoon, Corrie; Jung, Sunghwan

    2015-01-01

    We investigate various swimming modes of Paramecium in geometric confinements and a non-swimming self-bending behavior like a somersault, which is quite different from the previously reported behaviors. We observe that Paramecia execute directional sinusoidal trajectories in thick fluid films, whereas Paramecia meander around a localized region and execute frequent turns due to collisions with adjacent walls in thin fluid films. When Paramecia are further constrained in rectangular channels narrower than the length of the cell body, a fraction of meandering Paramecia buckle their body by pushing on the channel walls. The bucking (self-bending) of the cell body allows the Paramecium to reorient its anterior end and explore a completely new direction in extremely confined spaces. Using force deflection method, we quantify the Young’s modulus of the cell and estimate the swimming and bending powers exerted by Paramecium. The analysis shows that Paramecia can utilize a fraction of its swimming power to execute the self-bending maneuver within the confined channel and no extra power may be required for this new kind of self-bending behavior. This investigation sheds light on how micro-organisms can use the flexibility of the body to actively navigate within confined spaces. PMID:26286234

  7. Clusters of polyhedra in spherical confinement

    PubMed Central

    Teich, Erin G.; van Anders, Greg; Klotsa, Daphne; Dshemuchadse, Julia; Glotzer, Sharon C.

    2016-01-01

    Dense particle packing in a confining volume remains a rich, largely unexplored problem, despite applications in blood clotting, plasmonics, industrial packaging and transport, colloidal molecule design, and information storage. Here, we report densest found clusters of the Platonic solids in spherical confinement, for up to N=60 constituent polyhedral particles. We examine the interplay between anisotropic particle shape and isotropic 3D confinement. Densest clusters exhibit a wide variety of symmetry point groups and form in up to three layers at higher N. For many N values, icosahedra and dodecahedra form clusters that resemble sphere clusters. These common structures are layers of optimal spherical codes in most cases, a surprising fact given the significant faceting of the icosahedron and dodecahedron. We also investigate cluster density as a function of N for each particle shape. We find that, in contrast to what happens in bulk, polyhedra often pack less densely than spheres. We also find especially dense clusters at so-called magic numbers of constituent particles. Our results showcase the structural diversity and experimental utility of families of solutions to the packing in confinement problem. PMID:26811458

  8. Somersault of Paramecium in extremely confined environments

    NASA Astrophysics Data System (ADS)

    Jana, Saikat; Eddins, Aja; Spoon, Corrie; Jung, Sunghwan

    2015-08-01

    We investigate various swimming modes of Paramecium in geometric confinements and a non-swimming self-bending behavior like a somersault, which is quite different from the previously reported behaviors. We observe that Paramecia execute directional sinusoidal trajectories in thick fluid films, whereas Paramecia meander around a localized region and execute frequent turns due to collisions with adjacent walls in thin fluid films. When Paramecia are further constrained in rectangular channels narrower than the length of the cell body, a fraction of meandering Paramecia buckle their body by pushing on the channel walls. The bucking (self-bending) of the cell body allows the Paramecium to reorient its anterior end and explore a completely new direction in extremely confined spaces. Using force deflection method, we quantify the Young’s modulus of the cell and estimate the swimming and bending powers exerted by Paramecium. The analysis shows that Paramecia can utilize a fraction of its swimming power to execute the self-bending maneuver within the confined channel and no extra power may be required for this new kind of self-bending behavior. This investigation sheds light on how micro-organisms can use the flexibility of the body to actively navigate within confined spaces.

  9. Somersault of Paramecium in extremely confined environments.

    PubMed

    Jana, Saikat; Eddins, Aja; Spoon, Corrie; Jung, Sunghwan

    2015-08-19

    We investigate various swimming modes of Paramecium in geometric confinements and a non-swimming self-bending behavior like a somersault, which is quite different from the previously reported behaviors. We observe that Paramecia execute directional sinusoidal trajectories in thick fluid films, whereas Paramecia meander around a localized region and execute frequent turns due to collisions with adjacent walls in thin fluid films. When Paramecia are further constrained in rectangular channels narrower than the length of the cell body, a fraction of meandering Paramecia buckle their body by pushing on the channel walls. The bucking (self-bending) of the cell body allows the Paramecium to reorient its anterior end and explore a completely new direction in extremely confined spaces. Using force deflection method, we quantify the Young's modulus of the cell and estimate the swimming and bending powers exerted by Paramecium. The analysis shows that Paramecia can utilize a fraction of its swimming power to execute the self-bending maneuver within the confined channel and no extra power may be required for this new kind of self-bending behavior. This investigation sheds light on how micro-organisms can use the flexibility of the body to actively navigate within confined spaces.

  10. Hohlraum manufacture for inertial confinement fusion

    SciTech Connect

    Foreman, L.R.; Gobby, P.; Bartos, J.

    1994-07-01

    Hohlraums are an integral part of indirect drive targets for Inertial Confinement Fusion (ICF) research. Hohlraums are made by an electroforming process that combines elements of micromachining and coating technology. The authors describe how these target element are made and extension of the method that allow fabrication of other, more complex target components.

  11. Color Confinement and Dynamical Chiral Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Nakamura, Naoki; Suzuki, Tsuneo

    We study the relation between the quark confinement and the dynamical chiral symmetry breaking in SU(2) QCD by deriving an effective Lagrangian of a monopole field and the chiral fields from the dual Ginzburg-Landau type Lagrangian(DGL Lagrangian)…

  12. Chirally symmetric but confining dense, cold matter

    NASA Astrophysics Data System (ADS)

    Glozman, L. Ya.; Wagenbrunn, R. F.

    2008-03-01

    The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential μ and obtain a clear chiral restoration phase transition at the critical value μcr. Below this value the spectrum is similar to the previously obtained one at μ=0. At μ>μcr the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.

  13. Chirally symmetric but confining dense, cold matter

    SciTech Connect

    Glozman, L. Ya.; Wagenbrunn, R. F.

    2008-03-01

    The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential {mu} and obtain a clear chiral restoration phase transition at the critical value {mu}{sub cr}. Below this value the spectrum is similar to the previously obtained one at {mu}=0. At {mu}>{mu}{sub cr} the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.

  14. National Ignition Facility for Inertial Confinement Fusion

    SciTech Connect

    Paisner, J.A.; Murray, J.R.

    1997-10-08

    The National Ignition Facility for inertial confinement fusion will contain a 1.8 MJ, 500 TW frequency-tripled neodymium glass laser system that will be used to explore fusion ignition and other problems in the physics of high temperature and density. We describe the facility briefly. The NIF is scheduled to be completed in 2003.

  15. Analysis of thermally-degrading, confined HMX

    SciTech Connect

    Hobbs, M.L.; Schmitt, R.G.; Renlund, A.M.

    1996-12-01

    The response of a thermally-degrading, confined HMX pellet is analyzed using a Reactive Elastic-Plastic (REP) constitutive model which is founded on the collapse and growth of internal inclusions resulting from physical and chemical processes such as forced displacement, thermal expansion, and/or decomposition. Axial stress predictions compare adequately to data. Deficiencies in the model and future directions are discussed.

  16. Wellhead protection in confined, semi-confined, fractured and karst aquifer settings

    SciTech Connect

    Not Available

    1993-09-01

    Protection areas around wells producing from confined, fractured, and karst aquifers are, because of their complex hydrogeology, more difficult to define than protection areas for wells in porous media settings. The factsheet provides background information explaining the need to define protection areas for wells that draw public drinking water from several complex hydrogeologic settings: confined, semi-confined, fractured, and karst aquifers. These settings include aquifers in which the ground water is not open to the atmosphere, or the aquifer does not consist of unconsolidated porous media. Several figures illustrate these settings in a general way.

  17. Lubrication analysis of interacting rigid cylindrical particles in confined shear flow

    SciTech Connect

    Cardinaels, R.; Stone, H. A.

    2015-07-15

    Lubrication analysis is used to determine analytical expressions for the elements of the resistance matrix describing the interaction of two rigid cylindrical particles in two-dimensional shear flow in a symmetrically confined channel geometry. The developed model is valid for non-Brownian particles in a low-Reynolds-number flow between two sliding plates with thin gaps between the two particles and also between the particles and the walls. Using this analytical model, a comprehensive overview of the dynamics of interacting cylindrical particles in shear flow is presented. With only hydrodynamic interactions, rigid particles undergo a reversible interaction with no cross-streamline migration, irrespective of the confinement value. However, the interaction time of the particle pair substantially increases with confinement, and at the same time, the minimum distance between the particle surfaces during the interaction substantially decreases with confinement. By combining our purely hydrodynamic model with a simple on/off non-hydrodynamic attractive particle interaction force, the effects of confinement on particle aggregation are qualitatively mapped out in an aggregation diagram. The latter shows that the range of initial relative particle positions for which aggregation occurs is increased substantially due to geometrical confinement. The interacting particle pair exhibits tangential and normal lubrication forces on the sliding plates, which will contribute to the rheology of confined suspensions in shear flow. Due to the combined effects of the confining walls and the particle interaction, the particle velocities and resulting forces both tangential and perpendicular to the walls exhibit a non-monotonic evolution as a function of the orientation angle of the particle pair. However, by incorporating appropriate scalings of the forces, velocities, and doublet orientation angle with the minimum free fraction of the gap height and the plate speed, master curves for

  18. Effects of high sound speed confiners on ANFO detonations

    NASA Astrophysics Data System (ADS)

    Kiyanda, Charles; Jackson, Scott; Short, Mark

    2011-06-01

    The interaction between high explosive (HE) detonations and high sound speed confiners, where the confiner sound speed exceeds the HE's detonation speed, has not been thoroughly studied. The subsonic nature of the flow in the confiner allows stress waves to travel ahead of the main detonation front and influence the upstream HE state. The interaction between the detonation wave and the confiner is also no longer a local interaction, so that the confiner thickness now plays a significant role in the detonation dynamics. We report here on larger scale experiments in which a mixture of ammonium nitrate and fuel oil (ANFO) is detonated in aluminium confiners with varying charge diameter and confiner thickness. The results of these large-scale experiments are compared with previous large-scale ANFO experiments in cardboard, as well as smaller-scale aluminium confined ANFO experiments, to characterize the effects of confiner thickness.

  19. Two-dimensional material confined water.

    PubMed

    Li, Qiang; Song, Jie; Besenbacher, Flemming; Dong, Mingdong

    2015-01-20

    CONSPECTUS: The interface between water and other materials under ambient conditions is of fundamental importance due to its relevance in daily life and a broad range of scientific research. The structural and dynamic properties of water at an interface have been proven to be significantly difference than those of bulk water. However, the exact nature of these interfacial water adlayers at ambient conditions is still under debate. Recent scanning probe microscopy (SPM) experiments, where two-dimensional (2D) materials as ultrathin coatings are utilized to assist the visualization of interfacial water adlayers, have made remarkable progress on interfacial water and started to clarify some of these fundamental scientific questions. In this Account, we review the recently conducted research exploring the properties of confined water between 2D materials and various surfaces under ambient conditions. Initially, we review the earlier studies of water adsorbed on hydrophilic substrates under ambient conditions in the absence of 2D coating materials, which shows the direct microscopic results. Subsequently, we focus on the studies of water adlayer growth at both hydrophilic and hydrophobic substrates in the presence of 2D coating materials. Ice-like water adlayers confined between hydrophobic graphene and hydrophilic substrates can be directly observed in detail by SPM. It was found that the packing structure of the water adlayer was determined by the hydrophilic substrates, while the orientation of intercalation water domains was directed by the graphene coating. In contrast to hydrophilic substrates, liquid-like nanodroplets confined between hydrophobic graphene and hydrophobic substrates appear close to step edges and atomic-scale surface defects, indicating that atomic-scale surface defects play significant roles in determining the adsorption of water on hydrophobic substrates. In addition, we also review the phenomena of confined water between 2D hydrophilic MoS2 and

  20. Two-dimensional material confined water.

    PubMed

    Li, Qiang; Song, Jie; Besenbacher, Flemming; Dong, Mingdong

    2015-01-20

    CONSPECTUS: The interface between water and other materials under ambient conditions is of fundamental importance due to its relevance in daily life and a broad range of scientific research. The structural and dynamic properties of water at an interface have been proven to be significantly difference than those of bulk water. However, the exact nature of these interfacial water adlayers at ambient conditions is still under debate. Recent scanning probe microscopy (SPM) experiments, where two-dimensional (2D) materials as ultrathin coatings are utilized to assist the visualization of interfacial water adlayers, have made remarkable progress on interfacial water and started to clarify some of these fundamental scientific questions. In this Account, we review the recently conducted research exploring the properties of confined water between 2D materials and various surfaces under ambient conditions. Initially, we review the earlier studies of water adsorbed on hydrophilic substrates under ambient conditions in the absence of 2D coating materials, which shows the direct microscopic results. Subsequently, we focus on the studies of water adlayer growth at both hydrophilic and hydrophobic substrates in the presence of 2D coating materials. Ice-like water adlayers confined between hydrophobic graphene and hydrophilic substrates can be directly observed in detail by SPM. It was found that the packing structure of the water adlayer was determined by the hydrophilic substrates, while the orientation of intercalation water domains was directed by the graphene coating. In contrast to hydrophilic substrates, liquid-like nanodroplets confined between hydrophobic graphene and hydrophobic substrates appear close to step edges and atomic-scale surface defects, indicating that atomic-scale surface defects play significant roles in determining the adsorption of water on hydrophobic substrates. In addition, we also review the phenomena of confined water between 2D hydrophilic MoS2 and

  1. Cell Blebbing in Confined Microfluidic Environments

    PubMed Central

    Ibo, Markela; Srivastava, Vasudha; Robinson, Douglas N.; Gagnon, Zachary R.

    2016-01-01

    Migrating cells can extend their leading edge by forming myosin-driven blebs and F-actin-driven pseudopods. When coerced to migrate in resistive environments, Dictyostelium cells switch from using predominately pseudopods to blebs. Bleb formation has been shown to be chemotactic and can be influenced by the direction of the chemotactic gradient. In this study, we determine the blebbing responses of developed cells of Dictyostelium discoideum to cAMP gradients of varying steepness produced in microfluidic channels with different confining heights, ranging between 1.7 μm and 3.8 μm. We show that microfluidic confinement height, gradient steepness, buffer osmolarity and Myosin II activity are important factors in determining whether cells migrate with blebs or with pseudopods. Dictyostelium cells were observed migrating within the confines of microfluidic gradient channels. When the cAMP gradient steepness is increased from 0.7 nM/μm to 20 nM/μm, cells switch from moving with a mixture of blebs and pseudopods to moving only using blebs when chemotaxing in channels with confinement heights less than 2.4 μm. Furthermore, the size of the blebs increases with gradient steepness and correlates with increases in myosin-II localization at the cell cortex. Reduction of intracellular pressure by high osmolarity buffer or inhibition of myosin-II by blebbistatin leads to a decrease in bleb formation and bleb size. Together, our data reveal that the protrusion type formed by migrating cells can be influenced by the channel height and the steepness of the cAMP gradient, and suggests that a combination of confinement-induced myosin-II localization and cAMP-regulated cortical contraction leads to increased intracellular fluid pressure and bleb formation. PMID:27706201

  2. KrF lasers for inertial confinement fusion

    SciTech Connect

    Harris, D.B.; Cartwright, D.C.; Figueira, J.F.; McDonald, T.E.; Sorem, M.E.

    1989-01-01

    The KrF laser has been proposed for inertial confinement fusion (ICF) since its discovery in 1975. Since that time, the laser has seen significant development and has been increased in energy many orders of magnitude to the several kilojoule energy level. The suitability of the KrF laser as a driver for ICF energy applications has been continually reviewed. The latest assessments indicate that the KrF laser still appears to be the leading laser candidate. A worldwide effort exists to advance the KrF laser for ICF applications. 21 refs., 1 fig.

  3. High-performance inertial confinement fusion target implosions on OMEGA

    SciTech Connect

    Meyerhofer, D. D.; McCrory, R L; Betti, R; Boehly, T R; Casey, D T; Collins, T.J.B.; Craxton, R S; Delettrez, J A; Edgell, D H; Epstein, R; Fletcher, K A; Frenje, J A; Glebov, Y Yu; Goncharov, V N; Harding, D R; Hu, S X; Igumenshchev, I V; Knauer, J P; Li, C K; Marozas, J A; Marshall, F J; McKenty, P W; Nilson, P M; Padalino, S P; Petrasso, R D; Radha, P B; Regan, S P; Sangster, T C; Seguin, F H; Seka, W; Short, R W; Shvarts, D; Skupsky, S; Soures, J M; Stoeckl, C; Theobald, W; Yaakobi, B

    2011-04-18

    The Omega Laser Facility is used to study inertial confinement fusion (ICF) concepts. This paper describes progress in direct-drive central hot-spot (CHS) ICF, shock ignition (SI) and fast ignition (FI) since the 2008 IAEA FEC conference. CHS cryogenic deuterium-tritium (DT) target implosions on OMEGA have produced the highest DT areal densities yet measured in ICF implosions (~300 mg cm{sup -2}). Integrated FI experiments have shown a significant increase in neutron yield caused by an appropriately timed high-intensity, high-energy laser pulse.

  4. A molecular dynamics study of freezing in a confined geometry

    NASA Technical Reports Server (NTRS)

    Ma, Wen-Jong; Banavar, Jayanth R.; Koplik, Joel

    1992-01-01

    The dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls is studied by computer simulation. The time development of ordering is quantified and a novel freezing mechanism is observed. The liquid forms layers and subsequent in-plane ordering within a layer is accompanied by a sharpening of the layer in the transverse direction. The effects of channel size, the methods of quench, the liquid-wall interaction and the roughness of walls on the freezing mechanism are elucidated. Comparison with recent experiments on freezing in confined geometries is presented.

  5. Magnetospheric vortex formation: self-organized confinement of charged particles.

    PubMed

    Yoshida, Z; Saitoh, H; Morikawa, J; Yano, Y; Watanabe, S; Ogawa, Y

    2010-06-11

    A magnetospheric configuration gives rise to various peculiar plasma phenomena that pose conundrums to astrophysical studies; at the same time, innovative technologies may draw on the rich physics of magnetospheric plasmas. We have created a "laboratory magnetosphere" with a levitating superconducting ring magnet. Here we show that charged particles (electrons) self-organize a stable vortex, in which particles diffuse inward to steepen the density gradient. The rotating electron cloud is sustained for more than 300 s. Because of its simple geometry and self-organization, this system will have wide applications in confining single- and multispecies charged particles. PMID:20867249

  6. Baryon octet electromagnetic form factors in a confining NJL model

    NASA Astrophysics Data System (ADS)

    Carrillo-Serrano, Manuel E.; Bentz, Wolfgang; Cloët, Ian C.; Thomas, Anthony W.

    2016-08-01

    Electromagnetic form factors of the baryon octet are studied using a Nambu-Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that rEp < rEΣ+ and | rEn | < | rEΞ0 |, whereas the magnetic radii have a pattern largely consistent with a naive expectation based on the dressed quark masses.

  7. Turbulence measurements of lateral jet injection into confined tubular crossflow

    NASA Technical Reports Server (NTRS)

    Ferrell, G. B.; Lilley, D. G.

    1985-01-01

    Experiments have been conducted to characterize the time-mean and turbulent flowfield of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, with no swirl in the crossflow. A six-position single hotwire technique was used to measure the velocities and all turbulent normal and shear stresses. Measurements confirmed that the deflected jet is symmetrical about the vertical plane passing through the crossflow axis, and the jet penetration was found to be reduced from that of comparable velocity-ratio infinite crossflow cases.

  8. Studies of energetic ion confinement during fishbone events in PDX

    SciTech Connect

    Strachan, J.D.; Grek, B.; Heidbrink, W.; Johnson, D.; Kaye, S.; Kugel, H.; LeBlanc, B.; McGuire, K.

    1984-11-01

    The 2.5-MeV neutron emission from the beam-target d(d,n,)/sup 3/He fusion reaction has been examined for all PDX deuterium plasmas which were heated by deuterium neutral beams. The magnitude of the emission was found to scale classically and increase with T/sub e//sup 3/2/ as expected when electron drag is the primary energy degradation mechanism. The time evolution of the neutron emission through fishbone events was measured and used to determine the confinement properties of the energetic beam ions. Many of the experimental results are predicted by the Mode Particle Pumping theory.

  9. Extreme optical confinement in a slotted photonic crystal waveguide

    SciTech Connect

    Caër, Charles; Le Roux, Xavier; Cassan, Eric; Combrié, Sylvain De Rossi, Alfredo

    2014-09-22

    Using Optical Coherence Tomography, we measure the attenuation of slow light modes in slotted photonic crystal waveguides. When the group index is close to 20, the attenuation is below 300 dB cm{sup −1}. Here, the optical confinement in the empty slot is very strong, corresponding to an ultra-small effective cross section of 0.02 μm{sup 2}. This is nearly 10 times below the diffraction limit at λ = 1.5 μm, and it enables an effective interaction with a very small volume of functionalized matter.

  10. On the AlGaInP-bulk and AlGaInP/GaAs-superlattice confinement effects for heterostructure-emitter bipolar transistors

    SciTech Connect

    Tsai, Jung-Hui

    2015-02-09

    The confinement effect and electrical characteristics of heterostructure-emitter bipolar transistors with an AlGaInP bulk-confinement layer and an AlGaInP/GaAs superlattice-confinement layer are first demonstrated and compared by experimentally results. In the two devices, the relatively large valence band discontinuity at AlGaInP/GaAs heterojunction provides excellent confinement effect for holes to enhance current gain. As to the AlGaInP/GaAs superlattice-confinement device, part of thermionic-emission electrons will be trapped in the GaAs quantum wells of the superlattice. This will result in lower collector current and current gain as compared with the bulk-confinement device. Nevertheless, the superlattice-confinement device exhibits a larger current-gain cutoff frequency, which can be attributed that the tunneling behavior is included in the carrier transportation and transporting time across the emitter region could be substantially reduced.

  11. Particle confinement of pellet-fuelled tokamak plasma

    NASA Astrophysics Data System (ADS)

    Valovič, M.; Axon, K.; Garzotti, L.; Saarelma, S.; Thyagaraja, A.; Akers, R.; Gurl, C.; Kirk, A.; Lloyd, B.; Maddison, G. P.; Morris, A. W.; Patel, A.; Shibaev, S.; Scannell, R.; Taylor, D.; Walsh, M.; MAST Team

    2008-07-01

    This paper quantifies the particle confinement of pellet-fuelled plasmas as measured in the Mega Ampere Spherical Tokamak. The dataset is restricted mostly to neutral beam heated plasmas in H-mode and to shallow pellets launched from the high-field side. It is shown that the pellet deposition can be explained only by invoking the ∇B drift of the pellet ablatant. The pellet creates a zone with positive density gradient and increased temperature gradient. Simulations show that these changes could increase the level of micro-turbulence and thus enhance further the penetration of pellet-deposited particles towards the core. Post-pellet dynamics of the density profile is characterized by the pellet retention time τpel. It is shown that τpel correlates with the status of the edge transport barrier (L-mode or H-mode) and decreases rapidly for pellet deposition radius rpel approaching the plasma edge. For ELMy H-mode and pellet deposition radius of rpel ≈ 0.8a, the pellet retention time is about 20% of the energy confinement time. The fuelling requirement by the pellets for ITER and the Component Test Facility based on the spherical tokamak is discussed.

  12. Confined disordered strictly jammed binary sphere packings

    NASA Astrophysics Data System (ADS)

    Chen, D.; Torquato, S.

    2015-12-01

    Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these

  13. Confinement matrices for low- and intermediate-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Omel'Yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.

    2012-02-01

    Mining of uranium for nuclear fuel production inevitably leads to the exhaustion of natural uranium resources and an increase in market price of uranium. As an alternative, it is possible to provide nuclear power plants with reprocessed spent nuclear fuel (SNF), which retains 90% of its energy resource. The main obstacle to this solution is related to the formation in the course of the reprocessing of SNF of a large volume of liquid waste, and the necessity to concentrate, solidify, and dispose of this waste. Radioactive waste is classified into three categories: low-, intermediate-, and high-level (LLW, ILW, and HLW); 95, 4.4, and 0.6% of the total waste are LLW, ILW, and HLW, respectively. Despite its small relative volume, the radioactivity of HLW is approximately equal to the combined radioactivity of LLW + ILW (LILW). The main hazard of HLW is related to its extremely high radioactivity, the occurrence of long-living radionuclides, heat release, and the necessity to confine HLW for an effectively unlimited time period. The problems of handling LILW are caused by the enormous volume of such waste. The available technology for LILW confinement is considered, and conclusion is drawn that its concentration, vitrification, and disposal in shallow-seated repositories is a necessary condition of large-scale reprocessing of SNF derived from VVER-1000 reactors. The significantly reduced volume of the vitrified LILW and its very low dissolution rate at low temperatures makes borosilicate glass an ideal confinement matrix for immobilization of LILW. At the same time, the high corrosion rate of the glass matrix at elevated temperatures casts doubt on its efficient use for immobilization of heat-releasing HLW. The higher cost of LILW vitrification compared to cementation and bitumen impregnation is compensated for by reduced expenditure for construction of additional engineering barriers, as well as by substantial decrease in LLW and ILW volume, localization of shallow

  14. Silver nanoparticles confined in carbon nanotubes: on the understanding of the confinement effect and promotional catalysis for the selective hydrogenation of dimethyl oxalate.

    PubMed

    Zheng, Jianwei; Duan, Xinping; Lin, Haiqiang; Gu, Zhengqiang; Fang, Huihuang; Li, Jianhui; Yuan, Youzhu

    2016-03-21

    A confined Ag nanomaterial in the channels of herringbone multi-walled carbon nanotubes (Ag-in/hCNT) was effectively prepared. The space restriction induces morphological changes of Ag nanoparticles into rough nanowires with an estimated aspect ratio of 60 : 8 (nm/nm). Dihydrogen activation is enhanced through the vacancy-enriched wire-like Ag nanocatalyst, as well as the confinement effect. The grain boundaries of Ag and rolled-up graphene layers of CNTs are speculated to play vital roles in the diffusion of activated hydrogen species. The Ag-in/hCNT catalyst exhibits an activity that is three times higher than that of Ag nanoparticles located on the CNT exterior walls in DMO hydrogenation. This finding may insinuate that interplanar spaces provide available access to the external surface of CNTs. Designed experiments further confirm the importance of herringbone CNTs with higher reaction rate than parallel CNTs, and confined Ag produces considerably more activated hydrogen species, thereby benefiting the reduction of surface copper nanoparticles or DMO molecules during hydrogenation. This paper presents a study of the effective utilization of hydrogen over herringbone CNT confined Ag and an understanding of the confinement and promotional catalytic effects.

  15. JET confinement studies and their scaling to high βN, ITER scenarios

    NASA Astrophysics Data System (ADS)

    McDonald, D. C.; Laborde, L.; DeBoo, J. C.; Ryter, F.; Brix, M.; Challis, C. D.; de Vries, P.; Giroud, C.; Hobirk, J.; Howell, D.; Joffrin, E.; Luce, T. C.; Mailloux, J.; Pericoli-Ridolfini, V.; Sips, A. C. C.; Thomsen, K.; EFDA Contributors, JET

    2008-12-01

    The ITER hybrid scenario aims to exploit non-inductive current drive to enable burn times in excess of 1000 s. To achieve this, and optimize fusion performance, requires high βN (the plasma pressure normalized to a stability scaling) and energy confinement equal to or greater than that predicted for the baseline scenario. This paper discusses results from the JET candidate hybrid scenario, where βN,MHD <= 3.6 plasmas have been produced. Despite a different initial phase, confinement relevant plasma parameters evolve rapidly towards those of equivalent ELMy H-modes and are well described by IPB98(y, 2). In contrast to previous ELMy H-mode studies, a dedicated β scan experiment in the JET hybrid candidate scenario shows a strong negative dependence of global confinement on βN. Analysis indicates that the core transport remains consistent with weakly dependent electrostatic transport, whilst the edge confinement decreases strongly with increasing βN. By combining global confinement data from ASDEX Upgrade, DIII-D and JET hybrid scenario discharges, a multi-machine database is produced. In contrast to the JET case, confinement in ASDEX Upgrade and DIII-D is shown to be inconsistent with IPB98(y, 2) and alternative dependences are explored.

  16. An outbreak of echovirus 11 amongst neonates in a confinement home in Penang, Malaysia.

    PubMed

    Bina Rai, S; Wan Mansor, H; Vasantha, T; Norizah, I; Chua, K B

    2007-08-01

    Confinement homes are private institutions that provide full-time care for newborn babies and their respective postpartum mothers up to one month after delivery. An outbreak of fever and diarrhoea amongst newborns occurred in one such confinement home in Penang between the months of September to October 2004. An outbreak investigation was carried out including all babies, their respective mothers and workers in the home to determine the source of the outbreak and to institute control measures. Based on a working case definition of febrile illness with or without diarrhoea, 11 out of the 13 babies in the confinement home met the case definition. One hundred percent had symptoms of fever. 36.4% had symptoms of diarrhea and other respiratory conditions respectively. The attack rate of among babies in the confinement home was 90%. Echovirus 11 was isolated from 3 out of the 11 febrile cases. Echovirus 11 was isolated from the cerebrospinal fluid and stool of another baby at a private hospital that was epidemiologically linked to the first case. In conclusion, the outbreak of febrile illness amongst newborn babies in the affected confinement home was due to echovirus 11. The source was probably health-care associated with efficient transmission within the confinement home. The faecal-oral route was the most likely mode of transmission.

  17. Effect of Short-Circuit Pathways on Water Quality in Selected Confined Aquifers (Invited)

    NASA Astrophysics Data System (ADS)

    McMahon, P. B.

    2010-12-01

    Confined aquifers in the United States generally contain fewer anthropogenic contaminants than unconfined aquifers because confined aquifers often contain water recharged prior to substantial human development and redox conditions are more reducing, which favors degradation of common contaminants like nitrate and chlorinated solvents. Groundwater in a confined part of the High Plains aquifer near York, Nebraska had an adjusted radiocarbon age of about 2,000 years, and groundwater in a confined part of the Floridan aquifer near Tampa, Florida had apparent ages greater than 60 years on the basis of tritium measurements. Yet compounds introduced more recently into the environment (anthropogenic nitrate and volatile organic compounds) were detected in selected public-supply wells completed in both aquifers. Depth-dependent measurements of flow and chemistry in the pumping supply wells, groundwater age dating, numerical modeling of groundwater flow, and other monitoring data indicated that the confined aquifers sampled by the supply wells were connected to contaminated unconfined aquifers by short-circuit pathways. In the High Plains aquifer, the primary pathways appeared to be inactive irrigation wells screened in both the unconfined and confined aquifers. In the Floridan aquifer, the primary pathways were karst sinkholes and conduits. Heavy pumping in both confined systems exacerbated the problem by reducing the potentiometric surface and increasing groundwater velocities, thus enhancing downward gradients and reducing reaction times for processes like denitrification. From a broader perspective, several confined aquifers in the U.S. have experienced large declines in their potentiometric surfaces because of groundwater pumping and this could increase the potential for contamination in those aquifers, particularly where short-circuit pathways connect them to shallower, contaminated sources of water, such as was observed in York and Tampa.

  18. A COMPARATIVE STUDY OF CONFINED AND ERUPTIVE FLARES IN NOAA AR 10720

    SciTech Connect

    Cheng, X.; Ding, M. D.; Guo, Y.; Zhang, J.; Su, J. T.

    2011-05-10

    We investigate the distinct properties of two types of flares: eruptive flares associated with coronal mass ejections (CMEs) and confined flares without CMEs. Our study sample includes nine M- and X-class flares, all from the same active region (AR), six of which are confined and three others which are eruptive. The confined flares tend to be more impulsive in the soft X-ray time profiles and show slenderer shapes in the Extreme-ultraviolet Imaging Telescope 195 A images, while the eruptive ones are long-duration events and show much more extended brightening regions. The location of the confined flares is closer to the center of the AR, while the eruptive flares are at the outskirts. This difference is quantified by the displacement parameter, which is the distance between the AR center and the flare location; the average displacement of the six confined flares is 16 Mm, while that of the eruptive ones is as large as 39 Mm. Further, through nonlinear force-free field extrapolation, we find that the decay index of the transverse magnetic field in the low corona ({approx}10 Mm) is larger for eruptive flares than for confined ones. In addition, the strength of the transverse magnetic field over the eruptive flare sites is weaker than it is over the confined ones. These results demonstrate that the strength and the decay index of the background magnetic field may determine whether or not a flare is eruptive or confined. The implication of these results on CME models is discussed in the context of torus instability of the flux rope.

  19. Temporary confinement of loose-housed hyperprolific sows reduces piglet mortality.

    PubMed

    Hales, J; Moustsen, V A; Nielsen, M B F; Hansen, C F

    2015-08-01

    The objective of this study was to investigate piglet mortality in a commercial setting where sows were accommodated in a loose-housed system with an option to confine the sow for a few days around farrowing and during early lactation. The study was conducted in a Danish piggery where records were obtained from 2,139 farrowings. Sows were randomly allocated to 1 of 3 treatments: loose-loose (LL), loose-confined (LC), and confined-confined (CC). In LL, sows were loose housed from the time they entered the farrowing pens to weaning. In LC, sows were loose housed until farrowing was finished and then confined to d 4 after farrowing. In CC, sows were confined at d 114 of gestation to d 4 after farrowing. All sows were loose housed from d 5 to weaning. Total piglet mortality was analyzed at batch level to include piglets fostered by nurse sows and at sow level to analyze the effects of confinement during different time periods. Total piglet mortality was greater in LL (26.0%) and LC (25.4%) compared with CC (22.1%; < 0.001). The proportion of stillborn piglets was not different between treatments ( = 0.21) but a larger proportion was crushed in LL (10.7%) compared with LC (9.7%; = 0.03), which again was greater than CC (7.8%; < 0.001). Piglet mortality before equalization was lower in CC (3.7%) than in LL (7.5%) and LC (7.0%; < 0.001). Confinement reduced mortality from litter equalization to d 4 (7.6% for LL vs. 6.7% for LC; = 0.01) but more so in CC (5.6%) than in LC ( < 0.001). From d 4 to weaning, LL had lower mortality (5.6%) than LC (6.9%) and CC (6.6%; = 0.01). A larger proportion of sows in CC were classified as "low mortality" compared with LL and LC both before ( < 0.001) and after ( = 0.002) litter equalization. The results in this study emphasize that the period of time from the birth of the first piglet to litter equalization is important in relation to piglet mortality. The results also suggest that confinement for 4 d after farrowing can reduce mortality

  20. The polymer physics of single DNA confined in nanochannels.

    PubMed

    Dai, Liang; Renner, C Benjamin; Doyle, Patrick S

    2016-06-01

    In recent years, applications and experimental studies of DNA in nanochannels have stimulated the investigation of the polymer physics of DNA in confinement. Recent advances in the physics of confined polymers, using DNA as a model polymer, have moved beyond the classic Odijk theory for the strong confinement, and the classic blob theory for the weak confinement. In this review, we present the current understanding of the behaviors of confined polymers while briefly reviewing classic theories. Three aspects of confined DNA are presented: static, dynamic, and topological properties. The relevant simulation methods are also summarized. In addition, comparisons of confined DNA with DNA under tension and DNA in semidilute solution are made to emphasize universal behaviors. Finally, an outlook of the possible future research for confined DNA is given.

  1. System and method of operating toroidal magnetic confinement devices

    DOEpatents

    Chance, M.S.; Jardin, S.C.; Stix, T.H.; Grimm, R.C.; Manickam, J.; Okabayashi, M.

    1984-08-30

    This invention pertains to methods and arrangements for attaining high beta values in plasma confinement devices. More specifically, this invention pertains to methods for accessing the second stability region of operation in toroidal magnetic confinement devices.

  2. QCD-like behavior of high-temperature confining strings.

    PubMed

    Diamantini, M C; Trugenberger, C A

    2002-06-24

    We show that, contrary to previous string models, the high-temperature behavior of the recently proposed confining strings reproduces exactly the correct large- N QCD result, a necessary condition for any string model of confinement.

  3. Scanning gate imaging in confined geometries

    NASA Astrophysics Data System (ADS)

    Steinacher, R.; Kozikov, A. A.; Rössler, C.; Reichl, C.; Wegscheider, W.; Ensslin, K.; Ihn, T.

    2016-02-01

    This article reports on tunable electron backscattering investigated with the biased tip of a scanning force microscope. Using a channel defined by a pair of Schottky gates, the branched electron flow of ballistic electrons injected from a quantum point contact is guided by potentials of a tunable height well below the Fermi energy. The transition from injection into an open two-dimensional electron gas to a strongly confined channel exhibits three experimentally distinct regimes: one in which branches spread unrestrictedly, one in which branches are confined but the background conductance is affected very little, and one where the branches have disappeared and the conductance is strongly modified. Classical trajectory-based simulations explain these regimes at the microscopic level. These experiments allow us to understand under which conditions branches observed in scanning gate experiments do or do not reflect the flow of electrons.

  4. Spiral precipitation patterns in confined chemical gardens.

    PubMed

    Haudin, Florence; Cartwright, Julyan H E; Brau, Fabian; De Wit, A

    2014-12-01

    Chemical gardens are mineral aggregates that grow in three dimensions with plant-like forms and share properties with self-assembled structures like nanoscale tubes, brinicles, or chimneys at hydrothermal vents. The analysis of their shapes remains a challenge, as their growth is influenced by osmosis, buoyancy, and reaction-diffusion processes. Here we show that chemical gardens grown by injection of one reactant into the other in confined conditions feature a wealth of new patterns including spirals, flowers, and filaments. The confinement decreases the influence of buoyancy, reduces the spatial degrees of freedom, and allows analysis of the patterns by tools classically used to analyze 2D patterns. Injection moreover allows the study in controlled conditions of the effects of variable concentrations on the selected morphology. We illustrate these innovative aspects by characterizing quantitatively, with a simple geometrical model, a new class of self-similar logarithmic spirals observed in a large zone of the parameter space. PMID:25385581

  5. Size scaling of microtubule asters in confinement

    NASA Astrophysics Data System (ADS)

    Pelletier, James; Field, Christine; Krutkramelis, Kaspars; Fakhri, Nikta; Oakey, John; Gatlin, Jay; Mitchison, Timothy

    Microtubule asters are radial arrays of microtubules (MTs) nucleated around organizing centers (MTOCs). Across a wide range of cell types and sizes, aster positioning influences cellular organization. To investigate aster size and positioning, we reconstituted dynamic asters in Xenopus cytoplasmic extract, confined in fluorous oil microfluidic emulsions. In large droplets, we observed centering of MTOCs. In small droplets, we observed a breakdown in natural positioning, with MTOCs at the droplet edge and buckled or bundled MTs along the interface. In different systems, asters are positioned by different forces, such as pushing due to MT polymerization, or pulling due to bulk or cortical dynein. To estimate different contributions to aster positioning, we biochemically perturbed dynactin function, or MT or actin polymerization. We used carbon nanotubes to measure molecular motions and forces in asters. These experimental results inform quantitative biophysical models of aster size and positioning in confinement. JFP was supported by a Fannie and John Hertz Graduate Fellowship.

  6. Inertial-confinement fusion with lasers

    NASA Astrophysics Data System (ADS)

    Betti, R.; Hurricane, O. A.

    2016-05-01

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications in national security and basic sciences. The US is arguably the world leader in the inertial confinement approach to fusion and has invested in large facilities to pursue it, with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Although significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion. Here, we review the current state of the art in inertial confinement fusion research and describe the underlying physical principles.

  7. Spiral precipitation patterns in confined chemical gardens

    PubMed Central

    Haudin, Florence; Brau, Fabian; De Wit, A.

    2014-01-01

    Chemical gardens are mineral aggregates that grow in three dimensions with plant-like forms and share properties with self-assembled structures like nanoscale tubes, brinicles, or chimneys at hydrothermal vents. The analysis of their shapes remains a challenge, as their growth is influenced by osmosis, buoyancy, and reaction–diffusion processes. Here we show that chemical gardens grown by injection of one reactant into the other in confined conditions feature a wealth of new patterns including spirals, flowers, and filaments. The confinement decreases the influence of buoyancy, reduces the spatial degrees of freedom, and allows analysis of the patterns by tools classically used to analyze 2D patterns. Injection moreover allows the study in controlled conditions of the effects of variable concentrations on the selected morphology. We illustrate these innovative aspects by characterizing quantitatively, with a simple geometrical model, a new class of self-similar logarithmic spirals observed in a large zone of the parameter space. PMID:25385581

  8. Confinement-induced miscibility in polymer blends

    NASA Astrophysics Data System (ADS)

    Zhu, S.; Liu, Y.; Rafailovich, M. H.; Sokolov, J.; Gersappe, D.; Winesett, D. A.; Ade, H.

    1999-07-01

    The use of polymer thin films in technology is increasingly widespread-for example, as protective or lithographic surface coatings, or as active (electronic or optical) elements in device architectures. But it is difficult to generate films of polymer mixtures with homogeneous surface properties, because of the tendency of the polymers to phase-separate,. Copolymer compatibilizers can induce miscibility in polymer blends, but only with chemical components that are either close to a critical point in the phase diagram or which have an attractive interaction between them,. Instead of manipulating the chemical composition of the blend, we show here that complete mixing can be obtained in polymer blends by the physical effect of confinement in thin films. The compatibilization results from entropic inhibition of phase separation into micelles, owing to confinement. The result is an intimately mixed microemulsion with a perfectly flat surface and a two-dimensional maze-like structure with columnar domains that extend through the film.

  9. A brief report of gram-negative bacterial endotoxin levels in airborne and settled dusts in animal confinement buildings

    SciTech Connect

    Thedell, T.D.; Mull, J.C.; Olenchock, S.A.

    1980-01-01

    Gram-negative bacterial endotoxins, implicated in adverse worker health responses, were found in settled and airborne dust samples obtained from poultry and swine confinement units. Results of the Limulus amebocyte lysate gel test found endotoxin levels in dust samples ranged from 4.5 to 47.7 micrograms of FDA Klebsiella endotoxin equivalents/gm. Differences in endotoxin levels between dust samples may have been due to variables in time, geographic locations, confined animals, confinement buildings and equipment, and methods of sample collection. Animal confinement workers are potentially exposed to large amounts of gram-negative bacterial endotoxins; however, the respiratory health effects of such exposures to animal confinement workers have yet to be determined.

  10. LDV Measurement of Confined Parallel Jet Mixing

    SciTech Connect

    R.F. Kunz; S.W. D'Amico; P.F. Vassallo; M.A. Zaccaria

    2001-01-31

    Laser Doppler Velocimetry (LDV) measurements were taken in a confinement, bounded by two parallel walls, into which issues a row of parallel jets. Two-component measurements were taken of two mean velocity components and three Reynolds stress components. As observed in isolated three dimensional wall bounded jets, the transverse diffusion of the jets is quite large. The data indicate that this rapid mixing process is due to strong secondary flows, transport of large inlet intensities and Reynolds stress anisotropy effects.

  11. Freezing of fluids confined between mica surfaces.

    PubMed

    Ayappa, K G; Mishra, Ratan K

    2007-12-27

    Using grand ensemble simulations, we show that octamethyl-cyclo-tetra-siloxane (OMCTS) confined between two mica surfaces can form a variety of frozen phases which undergo solid-solid transitions as a function of the separation between the surfaces. For atomically smooth mica surfaces, the following sequence of transitions 1[triangle up] --> 1[triangle up]b --> 2B --> 2 square --> 2[triangle up] are observed in the one- and two-layered regimes, where n[triangle up], n[square], and nB denote triangular, square, and buckled phases, respectively, with the prefix n denoting the number of confined layers. The presence of potassium on mica is seen to have a strong influence on the degree of order induced in the fluid. The sequence of solid-solid transitions that occurs with the smooth mica surface is no longer observed. When equilibrated with a state point near the liquid-solid transition, a counterintuitive freezing scenario is observed in the presence of potassium. Potassium disrupts in-plane ordering in the fluid in contact with the mica surface, and freezing is observed only in the inner confined layers. The largest mica separations at which frozen phases were observed ranged from separations that could accommodate six to seven fluid layers. The extent of freezing and the square-to-triangular lattice transition was found to be sensitive to the presence of potassium as well as the thermodynamic conditions of the bulk fluid. The implications of our results on interpretation of surface force experiments as well as the generic phase behavior of confined soft spheres is discussed. PMID:18092763

  12. Waveforms Measured in Confined Thermobaric Explosion

    SciTech Connect

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2007-05-04

    Experiments with 1.5-g Shock-Dispersed-Fuel (SDF) charges have been conducted in six different chambers. Both flake Aluminum and TNT were used as the fuel. Static pressure gauges on the chamber wall were the main diagnostic. Waveforms for explosions in air were significantly larger than those in nitrogen - thereby demonstrating a strong thermobaric (combustion) effect. This effect increases as the confinement volume decreases and the mixture richness approaches 1.

  13. Effective string description of confining flux tubes

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Meineri, Marco

    2016-08-01

    We review the current knowledge about the theoretical foundations of the effective string theory for confining flux tubes and the comparison of the predictions to pure gauge lattice data. A concise presentation of the effective string theory is provided, incorporating recent developments. We summarize the predictions for the spectrum and the profile/width of the flux tube and their comparison to lattice data. The review closes with a short summary of open questions for future research.

  14. Neoclassical transport in enhanced confinement toroidal plasmas

    SciTech Connect

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1996-11-01

    It has recently been reported that ion thermal transport levels in enhanced confinement tokamak plasmas have been observed to fall below the irreducible minimum level predicted by standard neoclassical theory. This apparent contradiction is resolved in the present analysis by relaxing the basic neoclassical assumption that the ions orbital excursions are much smaller than the local toroidal minor radius and the equilibrium scale lengths of the system.

  15. Spontaneous Patterning of Confined Granular Rods

    NASA Astrophysics Data System (ADS)

    Galanis, Jennifer; Harries, Daniel; Sackett, Dan L.; Losert, Wolfgang; Nossal, Ralph

    2006-01-01

    Vertically vibrated rod-shaped granular materials confined to quasi-2D containers self-organize into distinct patterns. We find, consistent with theory and simulation, a density dependent isotropic-nematic transition. Along the walls, rods interact sterically to form a wetting layer. For high rod densities, complex patterns emerge as a result of competition between bulk and boundary alignment. A continuum elastic energy accounting for nematic distortion and local wall anchoring reproduces the structures seen experimentally.

  16. Quark Confinement Physics in Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    Koma, Y.; Suganuma, H.; Amemiya, K.; Fukushima, M.; Toki, H.

    2000-01-01

    We study abelian dominance and monopole condensation for the quark confinement physics using the lattice QCD simulations in the MA gauge. These phenomena are closely related to the dual superconductor picture of the QCD vacuum, and enable us to construct the dual Ginzburg-Landau (DGL) theory as an useful effective theory of nonperturbative QCD. We then apply the DGL theory to the studies of the low-lying hadron structure and the scalar glueball properties.

  17. Yukawa particles in a confining potential

    SciTech Connect

    Girotto, Matheus Levin, Yan; Santos, Alexandre P. dos; Colla, Thiago

    2014-07-07

    We study the density distribution of repulsive Yukawa particles confined by an external potential. In the weak coupling limit, we show that the mean-field theory is able to accurately account for the particle distribution. In the strong coupling limit, the correlations between the particles become important and the mean-field theory fails. For strongly correlated systems, we construct a density functional theory which provides an excellent description of the particle distribution, without any adjustable parameters.

  18. Terahertz waveguide emitter with subwavelength confinement

    NASA Astrophysics Data System (ADS)

    Martl, Michael; Darmo, Juraj; Dietze, Daniel; Unterrainer, Karl; Gornik, Erich

    2010-01-01

    The generation of broadband terahertz pulses on the facet of waveguides is presented as an alternative to widely used coupling techniques. Dielectric loaded subwavelength waveguide structures with lateral confinement are investigated with respect to propagating modes and waveguide losses. The results show the terahertz waveguide emitter to be a promising tool for terahertz spectroscopy in the near field and for the probing of microstructured devices such as quantum cascade lasers.

  19. Thermal expansion as a function of confining pressure for welded tuff from Yucca Mountain

    SciTech Connect

    Martin, R.J.; Noel, J.S.; Boyd, P.J.; Price, R.H.

    1996-02-01

    Thermal expansion measurements were conducted as a function of confining pressure on welded specimens of Topopah Spring Member tuff recovered from borehole USW SD-12 at Yucca Mountain, NV. Each specimen was tested at confining pressures between 1 and 30 MPa over a nominal temperature range of 25 to 250{degrees}C. On several specimens, the higher confining pressure thermal cycles were performed first to inhibit thermal effects, such as cracking, that occur at lower confining pressures in other rock types. The coefficient of thermal expansion for welded tuff increases with temperature. At temperatures below 100 {times} C the mean coefficient of thermal expansion range from 7.7 to 10.8 {times} 10{sup {minus}6}{sup C {minus}1}. As temperatures approach 250{degrees}C, the thermal expansions increase markedly to values of 14.2 to 20.6 {times} 10{sup {minus}6}{degrees}{sup C{minus}1}. The effect of confining pressure on thermal expansion for tuff is small.

  20. West European magnetic confinement fusion research

    SciTech Connect

    McKenney, B.L.; McGrain, M. . Foreign Applied Sciences Assessment Center); Hazeltine, R.D. . Inst. for Fusion Studies); Gentle, K.W. ); Hogan, J.T. ); Porkolab, M. . Dept. of Physics); Sigmar

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995.

  1. Computer simulation of polypeptides in a confinement.

    PubMed

    Sikorski, Andrzej; Romiszowski, Piotr

    2007-02-01

    A coarse-grained model of polypeptide chains confined in a slit formed by two parallel impenetrable surfaces was studied. The chains were flexible heteropolymers (polypeptides) built of two kinds of united atoms-hydrophobic and hydrophilic. The positions of the united atoms were restricted to the vertices of a [310] lattice. The force field consisted of a rigorous excluded volume, a long-distance potential between a pair of amino-acid residues and a local preference for forming secondary structure (helices). The properties of the chains were studied at a wide range of temperatures from good to bad solvent conditions. Monte-Carlo simulations were carried out using the algorithm based on the chain's local changes of conformation and employing the Replica Exchange technique. The influence of the chain length, the distances between the confining surfaces, the temperature and the force field on the dimension and the structure of chains were studied. It was shown that the presence of the confinement chain complicates the process of the chain collapse to low-temperature structures. For some conditions, one can find a rapid decrease of chain size and a second transition indicated by the rapid decrease of the total energy of the system.

  2. Chemical reactions confined within carbon nanotubes.

    PubMed

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  3. Statics and dynamics of softly confined polymers

    NASA Astrophysics Data System (ADS)

    Scagliarini, Andrea; Sbragaglia, Mauro; Sega, Marcello

    2015-03-01

    A variety of biological and technological problems where long chain molecules are constrained in spaces small compared to the molecule size (like membrane nanopores or nanofluidic slits) motivated recently a growing effort to understand the dynamics and structural scaling properties of polymers confined by solid walls. Our focus is, instead, on polymers confined in different geometries by soft interfaces, mimicking, e.g., DNA packaging inside cell nuclei or, mutatis mutandis, viral capsids. Soft-confinement is achieved by a proper choice of the solvation energies such that the polymer is trapped in one of the two phases of a binary mixture of immiscible liquids. We perform Molecular Dynamics simulations of polymers coupled with a fluctuating lattice Boltzmann method for the embedding matrix. Slab and droplet configurations are considered. In the former case we address the transition among various regimes of size scaling at changing the slab width. Under shear, the droplet is distorted from its equilibrium spherical shape and we explore how the transition from an isotropic geometry to a quasi-tube-like one affects polymer size scaling and knotting degree. Finally, we show how the feedback on the solvent induces viscoelastic rheology that can be related to polymer entanglement.

  4. Density Shock Waves in Confined Microswimmers

    NASA Astrophysics Data System (ADS)

    Tsang, Alan Cheng Hou; Kanso, Eva

    2016-01-01

    Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior, from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from "subsonic" with compression at the back to "supersonic" with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a nontrivial interplay between hydrodynamic interactions and geometric confinement, and it is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechanisms for controlling the emergent density distribution and the average population speed, with potentially profound implications on various processes in industry and biotechnology, such as the transport and sorting of cells in flow channels.

  5. Fast ion JET diagnostics: confinement and losses

    SciTech Connect

    Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; Syme, D. B.; Cecconello, M.; Darrow, D.; Hill, K.; Goloborod'ko, V.; Yavorskij, V.; Johnson, T.; Murari, A.; Reich, M.; Gorini, G.; Zoita, V.

    2008-03-12

    A study of magnetically confined fast ions in tokamaks plays an important role in burning plasma research. To reach ignition and steady burning of a reactor plasma an adequate confinement of energetic ions produced by NBI heating, accelerated with ICRF and born in fusion reactions is essential to provide efficient heating of the bulk plasma. Thus, investigation of the fast ion behaviour is an immediate task for present-day large machines, such as JET, in order to understand the main mechanisms of slowing down, redistribution and losses, and to develop optimal plasma scenarios. Today's JET has an enhanced suite of fast ion diagnostics both of confined and lost ions that enable to significantly contribute to this important area of research. Fast ion populations of p, d, t, {sup 3}He and {sup 4}He, made with ICRF, NBI, and fusion reactions have been investigated in experiments on JET with sophisticated diagnostics in conventional and shear-reversed plasmas, exploring a wide range of effects. This paper will introduce to the JET fast-ion diagnostic techniques and will give an overview of recent observations. A synergy of the unique diagnostic set was utilised in JET, and studies of the response of fast ions to MHD modes (e.g. tornado modes, sawtooth crashes), fast {sup 3}He-ions behaviour in shear-reversed plasmas are impressive examples of that. Some results on fast ion losses in JET experiments with various levels of the toroidal field ripple will be demonstrated.

  6. Electron Confinement in Cylindrical Potential Well

    NASA Astrophysics Data System (ADS)

    Baltenkov, A. S.; Msezane, A. Z.

    2016-05-01

    We show that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the remaining three-dimensional space within the framework of the same mathematical model of the potential well. Some low-lying electronic states with different symmetries are considered and the corresponding wave functions are calculated. The behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well is analyzed. Additionally, the momentum distributions of electrons in these states are calculated. The limiting cases of the ratio of the cylinder length H to its radius R0 are considered; when H significantly exceeds R0 and when R0 is much greater than H. The possible application of the results obtained here for the description of the general features in the behavior of electrons in nanowires with metallic type of conductivity (or nanotubes) and ultrathin epitaxial films (or graphene sheets) are discussed. Possible experiments are suggested as well where the quantum confinement can be manifested. Work supported by the Uzbek Foundation (ASB) and by the U.S. DOE, Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, Office of Energy Research (AZM).

  7. Measurements of uranium mass confined in high density plasmas

    NASA Technical Reports Server (NTRS)

    Stoeffler, R. C.

    1976-01-01

    An X-ray absorption method for measuring the amount of uranium confined in high density, rf-heated uranium plasmas is described. A comparison of measured absorption of 8 keV X-rays with absorption calculated using Beer Law indicated that the method could be used to measure uranium densities from 3 times 10 to the 16th power atoms/cu cm to 5 times 10 to the 18th power atoms/cu cm. Tests were conducted to measure the density of uranium in an rf-heated argon plasma with UF6 infection and with the power to maintain the discharge supplied by a 1.2 MW rf induction heater facility. The uranium density was measured as the flow rate through the test chamber was varied. A maximum uranium density of 3.85 times 10 to the 17th power atoms/cu cm was measured.

  8. Dynamic Polarization of Liquid Helium Three Confined in Fine Powders.

    NASA Astrophysics Data System (ADS)

    Engel, Lloyd William

    Dynamic nuclear polarization (DNP) of liquid ^{3}He confined in fine powders can be produced by pumping the electron spin resonance (ESR) of paramagnetic centers in the powders. This dissertation describes measurements of the DNP of ^{3 }He in five powders, including two sucrose chars and three samples of MgO containing paramagnetic impurities. The experiments were performed with temperatures between 1.3 and 1.8 K, and fields of around 180 Oe. The largest factor by which DNP was observed to enhance the ^{3}He polarization from its value in thermal equilibrium was 1.7. In each powder, the time constant for DNP of the ^{3 }He was slightly longer than, or similar to, the ^{3}He longitudinal relaxation time. Double nuclear resonance experiments involving ^{1}H in one of the char samples, and the confined ^ {3}He were also performed, with and without simultaneous pumping of the ESR of the char. The dissertation includes a description of how observations of DNP of ^{3}He by paramagnetic centers in powders might depend on the atomic motion and spin dynamics of the nuclei in the liquid near the powders surfaces. Mechanisms that might explain the observed DNP are discussed in detail, and qualitative predictions based on those mechanisms are compared with the experimental data.

  9. Molecular Dynamics Study of Polyethylene under Extreme Confinement

    NASA Astrophysics Data System (ADS)

    Kritikos, G.; Sgouros, A.; Vogiatzis, G. G.; Theodorou, D. N.

    2016-08-01

    We present results concerning the dynamics and the structure of adsorbed layers of molten polyethylene (PE) between two graphite surfaces. The molecular weight of the monodisperse PE chains reaches the entanglement regime. We study three cases of interwall distances, equal to two, three and four times the unperturbed radius of gyration (Rg ) of PE chains. The confined system is equilibrated by use of efficient Monte Carlo (MC) algorithms. Conducting molecular dynamics (MD) simulations, we reveal the distribution of relaxation times as a function of distance from the graphite walls at the temperature of 450 K. From the atomic-level stresses we calculate a realistic estimate of the adhesion tension, which is not affected significantly by the width of the pore. Although the distance between the two walls is comparable to the width of the adsorbed layer, we do not record the formation of ‘glassy bridges’ under the studied conditions. The diffusion of polymer chains in the middle layer is not inhibited by the existence of the two adsorbed layers. Extreme confinement conditions imposed by the long range wall potentials bring about an increase in both the adsorption and desorption rates of chains. The presented results seem to cohere with a reduction in the calorimetric (heat capacity step) glass transition temperature (Tg ).

  10. 46 CFR 148.86 - Confined space entry.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Confined space entry. 148.86 Section 148.86 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.86 Confined space entry. (a) Except in an emergency, no person may enter a confined space unless that space has been tested...

  11. Confined Turbulent Swirling Recirculating Flow Predictions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.

    1984-01-01

    Turbulent swirling flow, the STARPIC computer code, turbulence modeling of turbulent flows, the k-xi turbulence model and extensions, turbulence parameters deduction from swirling confined flow measurements, extension of the k-xi to confined swirling recirculating flows, and general predictions for confined turbulent swirling flow are discussed.

  12. 46 CFR 148.86 - Confined space entry.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Confined space entry. 148.86 Section 148.86 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.86 Confined space entry. (a) Except in an emergency, no person may enter a confined space unless that space has been tested...

  13. 46 CFR 148.86 - Confined space entry.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Confined space entry. 148.86 Section 148.86 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.86 Confined space entry. (a) Except in an emergency, no person may enter a confined space unless that space has been tested...

  14. 46 CFR 148.86 - Confined space entry.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Confined space entry. 148.86 Section 148.86 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.86 Confined space entry. (a) Except in an emergency, no person may enter a confined space unless that space has been tested...

  15. Quantification of reaction violence and combustion enthalpy of plastic bonded explosive 9501 under strong confinement

    NASA Astrophysics Data System (ADS)

    Perry, W. Lee; Dickson, Peter M.; Parker, Gary R.; Asay, B. W.

    2005-01-01

    The confinement experienced by an explosive during thermal self-initiation can substantially affect performance in terms of deflagration-to-detonation characteristics and explosion/detonation violence. To this end, we have developed an experiment to quantitatively observe enthalpy change and reaction violence in thermally initiated plastic bonded explosive (PBX) 9501. Traditionally, researchers attempt to quantify violence using terminal observations of fragment size, fragment velocity, and through subjective observations. In the work presented here, the explosive was loaded into a heated gun assembly where we subjected a 300 mg charge to a cook-off schedule and a range of static and inertial confinements. Static confinement was controlled using rupture disks calibrated at 34.5 and 138 MPa. The use of 3.15 and 6.3 g projectile masses provided a variation in inertial confinement. This was a regime of strong confinement; a significant fraction of the explosive energy was required to rupture the disk, and the projectile mass was large compared to the charge mass. The state variables pressure and volume were measured in the breech. From these data, we quantified both the reaction enthalpy change and energy release rate of the explosive on a microsecond time scale using a thermodynamic analyisis. We used these values to unambiguously quantify explosion violence as a function of confinement at a fixed cook-off schedule of 190 C for 1 h. P2τ, a measure of critical shock energy required for shock ignition of an adjacent explosive was also computed. We found variations in this confinement regime to have a weak effect on enthalpy change, power, violence and shock energy. Violence was approximately 100 times lower than detonating trinitrotoluene, but the measured shock energy approached the critical shock energy for initiating secondary high explosives.

  16. Numerical study of a confined slot impinging jet with nanofluids

    PubMed Central

    2011-01-01

    Background Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. Results In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. Conclusions The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4.8 times greater than the

  17. Interpretation of earth tide response of three deep, confined aquifers

    SciTech Connect

    Narasimhan, T.N.; Kanehiro, B.Y.; Witherspoon, P.A.

    1984-03-10

    The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. Moreover, since specific storage S/sub s/ quantifies a drained behavior of the porous medium, one cannot directly estimate S/sub s/from earth tide response. Except for the fact that barometric changes act both on the water surface in the well and on the aquifer as a whole while stress changes associated with earth tides act only in the aquifer, the two phenomena influence the confined aquifer in much the same way. In other words, barometric response contains only as much information on the elastic properties of the aquifer as the earth tide response does. Factors such as well bore storage, aquifer transmissivity, and storage coefficient contribute to time lag and damping of the aquifer response as observed in the well. Analysis shows that the observation of fluid pressure changes alone, without concurrent measurement of external stress changes, is sufficient to interpret uniquely earth tide response. In the present work, change in external stress is estimated from dilatation by assuming a reasonable value for bulk modulus. Earth tide response of geothermal aquifers from Marysville, Montana. East Mesa, California; and Raft River Valley, Idaho, were analyzed, and the ratio of S/sub 3/ to porosity was estimated. Comparison of these estimates with independent pumping tests show reasonable agreement.

  18. A note on the horseshoe confinement model: The Poynting-Robertson effect

    NASA Astrophysics Data System (ADS)

    Giuliatti Winter, S. M.; Winter, O. C.; Guimar aes, A. H. F.

    2004-05-01

    In the present work we numerically simulated the motion of particles coorbital to a small satellite under the Poynting-Robertson light drag effect in order to verify the symmetry suggested by Dermott et al. (\\cite{Dermott79}, \\cite{Dermott80}) on their ring confinement model. The results reveal a more complex scenario, especially for very small particles (micrometer sizes), which present chaotic motion. Despite the complexity of the trajectories the particles remain confined inside the coorbital region. However, the dissipative force caused by the solar radiation also includes the radiation pressure component which can change this configuration. Our results show that the inclusion of the radiation pressure, which is not present in the original confinement model, can destroy the configuration in a time much shorter than the survival time predicted for a dust particle in a horseshoe orbit with a satellite.

  19. Initial deuterium confinement studies in DIII-D tokamak: DIII-D milestone report number 58

    NASA Astrophysics Data System (ADS)

    Deboo, J. C.; Schissel, D. P.; Burrell, K.; Stjohn, H.

    1989-08-01

    The operational space of DIII-D was extended to include high current, high power deuterium neutral beam heating of deuterium discharges in both the single null and double null configurations. Recent completion of the neutron shielding of the DIII-D facility has allowed operation in these new parameter regimes while maintaining a low neutron dose at the site boundary. The plasma current and neutral beam power ranges with D(0) yields D(+) operation were extended to P(sub T) is less than or equal to 12 MW and I(sub p) is less than or equal to 2.5 MA. Comparison of H-mode discharges in pure H with those in pure D indicates a continuing superior confinement in deuterium for values of q is greater than or equal to 3; however at lower values of q the confinement becomes similar. Analysis of the energy confinement in this regime has shown no major differences in current or power scaling compared to H(0) yields D(+) operation. Energy confinement during the ELMing phase of D(0) yields D(+) H-mode discharges scales linearly with the plasma current and deteriorates with neutral beam power. Recent, ongoing time dependent analysis of discharges with long ELM-free periods following the L to H transition indicate that the energy confinement time may be independent of power so that power degradation may be a manifestation of ELMs.

  20. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  1. Confinement of a Dirac Particle to a Hard-Wall Confining Potential Induced by Noninertial Effects

    NASA Astrophysics Data System (ADS)

    Bakke, K.

    2013-01-01

    In this contribution, we discuss the influence of noninertial effects on a Dirac particle in the Minkowski spacetime by showing that the geometry of the manifold can play the role of a hard-wall confining potential. Thus, we discuss a limit case where the relativistic bound states can be achieved in analogous way to having a Dirac particle confined to a quantum dot. We discuss the application of this mathematical model in studies of noninertial effects on condensed matter systems described by the Dirac equation, and compare the nonrelativistic limit of the energy levels with the spectrum of energy of a spin-½ particle confined to a quantum dot [E. Tsitsishvili et al., Phys. Rev. B70 (2004) 115316].

  2. Stationary shapes of confined rotating magnetic liquid droplets.

    PubMed

    Lira, Sérgio A; Miranda, José A; Oliveira, Rafael M

    2010-09-01

    We study the family of steady shapes which arise when a magnetic liquid droplet is confined in a rotating Hele-Shaw cell and subjected to an azimuthal magnetic field. Two different scenarios are considered: first, the magnetic fluid is assumed to be a Newtonian ferrofluid, and then it is taken as a viscoelastic magnetorheological fluid. The influence of the distinct material properties of the fluids on the ultimate morphology of the emerging stationary patterns is investigated by using a vortex-sheet formalism. Some of these exact steady structures are similar to the advanced time patterns obtained by existing time-evolving numerical simulations of the problem. A weakly nonlinear approach is employed to examine this fact and to gain analytical insight about relevant aspects related to the stability of such exact stationary solutions. PMID:21230182

  3. Structure of Polymer Chains Confined in Vycor

    NASA Astrophysics Data System (ADS)

    Lal, Jyotsana; Sinha, Sunil K.; Auvray, Loïc

    1997-11-01

    We observe by Small Angle Neutron Scattering the structure of polystyrene chains in semi-dilute solutions confined in a model porous medium, Vycor. The size of the free chains in solution is always larger than the pore diameter, 70 Å. The use of a suitable mixture of hydrogenated and deuterated solvents and polymers enables us to measure directly the form factor of one single chain among the others. The penetration of the chains in the porous medium is almost complete for the concentration (Φ = 20%) and the range of molecular weight (35 000 < M_w < 800 000) used. The radius of gyration of the confined chains is always smaller than the radius of gyration of the free chains in the equivalent bulk solution. Our measurements are in agreement with the theoretical predictions established by Daoud and de Gennes for chains confined in a cylindrical pore when the chains are entangled and laterally squeezed but remain ideal at large scale along the cylinder axis because of the screening of the excluded volume interactions (so-called regime of “semi-dilute cigars”). The values of the partition coefficient of the chains between the porous medium and the free solution and the asymptotic behavior of the structure factors indicate that polystyrene adsorbs onto the bare surface of Vycor. We show that silanizing Vycor suppresses this adsorption. Nous observons par diffusion de neutrons aux petits angles la structure de chaînes de polystyrène en solution semi-diluée confinées dans un milieu poreux modèle, le Vycor. La taille des chaînes en solution à l'état libre est toujours supérieure au diamètre des pores, 70 Å. L'utilisation d'un mélange adéquat de solvants et de polymères hydrogénés et deutérés nous permet de mesurer directement le facteur de forme d'une seule chaîne au milieu des autres. La pénétration des chaînes dans le milieu poreux est presque totale pour la concentration (Φ = 20%) et la gamme de poids moléculaire (35 000 < M_w < 800 000

  4. Measurements of classical fast ion confinement with fusion product diagnostics

    NASA Astrophysics Data System (ADS)

    Magee, Richard; Clary, Ryan; Korepanov, Sergey; Smirnov, Artem; Garate, Eusebio; Allfrey, Ian; Valentine, Travis; the TAE Team

    2014-10-01

    Neutral beam injected fast ions play a critical role in the C-2 field reversed configuration plasma, helping to sustain magnetic flux against resistive decay and heating the plasma via Coulomb collisions. The fast ions are well confined; due to the relatively low magnetic field strength the fast ions have large, machine-size orbits that permit them to average over otherwise deleterious fluctuations. These same orbits however, have large radial excursions that result in greater interaction of fast ions with edge neutrals and a greater potential for charge exchange losses. In this presentation, the fast ion slowing down time is determined from the decay in neutron flux following beam termination. It is found that the slowing down scaling is close to classical (i.e., τ ~Te3/2/ne) and that charge exchange losses are only significant for ions with 1.5× the nominal injection energy. We will also present initial data from a newly installed proton detector, which complements the temporal resolution of the neutron detector with spatial resolution. The detector will be used to diagnose the axial profile of confined fast ions.

  5. Particle and recycling control in translation, confinement, and sustainment upgrade

    NASA Astrophysics Data System (ADS)

    Grossnickle, J. A.; Vlases, G. C.; Hoffman, A. L.; Melnik, P. A.; Milroy, R. D.; Tankut, A.; Velas, K. M.

    2010-03-01

    Previous work in the translation, confinement, and sustainment upgrade (TCSU) device [H. Y. Guo et al., Phys. Plasmas 15, 056101 (2008)] demonstrated improved plasma parameters; higher temperature, higher poloidal magnetic field, increased current drive, and increased energy confinement, for rotating magnetic field (RMF) driven field reversed configurations (FRC) relative to the earlier TCS device. This was accomplished by improving vacuum conditions and using moderate wall heating (˜100 °C) and glow discharge cleaning for wall conditioning. Two new wall conditioning techniques, siliconization and titanium gettering, have been employed to further reduce impurities and control recycling. Both techniques reduced oxygen line radiation by an order of magnitude, and total radiated power by 50%, but led to little change in overall FRC performance, reinforcing the earlier conclusion that TCSU FRCs are not radiation dominated. Titanium gettering substantially reduced deuterium recycling, requiring a new method of fueling to be developed. This is the first time a FRC has been operated without using wall recycling as the primary method of fueling. The low-recycling FRCs, maintained by enhanced puff fueling, performed similarly to standard recycling fueled FRCs in terms of a key current drive parameter Be/Bω, the ratio of maximum sustained poloidal field to applied RMF field, but better density control allowed for higher temperatures.

  6. Pathways to dewetting in hydrophobic confinement

    PubMed Central

    Remsing, Richard C.; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G.; Garde, Shekhar; Patel, Amish J.

    2015-01-01

    Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces—tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces—namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics—facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie–Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly. PMID:26100866

  7. Spherical microwave confinement and ball lightning

    NASA Astrophysics Data System (ADS)

    Robinson, William Richard

    This dissertation presents the results of research done on unconventional energy technologies from 1995 to 2009. The present civilization depends on an infrastructure that was constructed and is maintained almost entirely using concentrated fuels and ores, both of which will run out. Diffuse renewable energy sources rely on this same infrastructure, and hence face the same limitations. I first examined sonoluminescence directed toward fusion, but demonstrated theoretically that this is impossible. I next studied Low Energy Nuclear Reactions and developed methods for improving results, although these have not been implemented. In 2000, I began Spherical Microwave Confinement (SMC), which confines and heats plasma with microwaves in a spherical chamber. The reactor was designed and built to provide the data needed to investigate the possibility of achieving fusion conditions with microwave confinement. A second objective was to attempt to create ball lightning (BL). The reactor featured 20 magnetrons, which were driven by a capacitor bank and operated in a 0.2 s pulse mode at 2.45 GHz. These provided 20 kW to an icosahedral array of 20 antennas. Video of plasmas led to a redesign of the antennas to provide better coupling of the microwaves to the plasma. A second improvement was a grid at the base of the antennas, which provided corona electrons and an electric field to aid quick formation of plasmas. Although fusion conditions were never achieved and ball lightning not observed, experience gained from operating this basic, affordable system has been incorporated in a more sophisticated reactor design intended for future research. This would use magnets that were originally planned. The cusp geometry of the magnetic fields is suitable for electron cyclotron resonance in the same type of closed surface that in existing reactors has generated high-temperature plasmas. Should ball lightning be created, it could be a practical power source with nearly ideal

  8. Statistical Contact Model for Confined Molecules

    NASA Astrophysics Data System (ADS)

    Santamaria, Ruben; de la Paz, Antonio Alvarez; Roskop, Luke; Adamowicz, Ludwik

    2016-08-01

    A theory that describes in a realistic form a system of atoms under the effects of temperature and confinement is presented. The theory departs from a Lagrangian of the Zwanzig type and contains the main ingredients for describing a system of atoms immersed in a heat bath that is also formed by atoms. The equations of motion are derived according to Lagrangian mechanics. The application of statistical mechanics to describe the bulk effects greatly reduces the complexity of the equations. The resultant equations of motion are of the Langevin type with the viscosity and the temperature of the heat reservoir able to influence the trajectories of the particles. The pressure effects are introduced mechanically by using a container with an atomic structure immersed in the heat bath. The relevant variables that determine the equation of state are included in the formulation. The theory is illustrated by the derivation of the equation of state for a system with 76 atoms confined inside of a 180-atom fullerene-like cage that is immersed in fluid forming the heat bath at a temperature of 350 K and with the friction coefficient of 3.0 {ps}^{-1}. The atoms are of the type believed to form the cores of the Uranus and Neptune planets. The dynamic and the static pressures of the confined system are varied in the 3-5 KBar and 2-30 MBar ranges, respectively. The formulation can be equally used to analyze chemical reactions under specific conditions of pressure and temperature, determine the structure of clusters with their corresponding equation of state, the conditions for hydrogen storage, etc. The theory is consistent with the principles of thermodynamics and it is intrinsically ergodic, of general use, and the first of this kind.

  9. Confined systems within arbitrary enclosed surfaces

    NASA Astrophysics Data System (ADS)

    Burrows, B. L.; Cohen, M.

    2016-06-01

    A new model of electronic confinement in atoms and molecules is presented. This is based on the electronic flux J which is assumed to vanish on some notional bounding surface of arbitrary shape. J is necessarily calculated using an approximate wave-function, whose parameters are chosen to satisfy the required surface conditions. This model embraces the results of all previous calculations for which the wave-functions or their derivatives vanish on conveniently shaped surfaces, but now extends the theory to more general surfaces. Examples include one-centre hydrogen-like atoms, the valence state of Li and the two centre molecular systems {{{H}}}2+ and {{HeH}}++.

  10. Diamond Ablators for Inertial Confinement Fusion

    SciTech Connect

    Biener, J; Mirkarimi, P B; Tringe, J W; Baker, S L; Wang, Y M; Kucheyev, S O; Teslich, N E; Wu, K J; Hamza, A V; Wild, C; Woerner, E; Koidl, P; Bruehne, K; Fecht, H

    2005-06-21

    Diamond has a unique combination of physical properties for the inertial confinement fusion ablator application, such as appropriate optical properties, high atomic density, high yield strength, and high thermal conductivity. Here, we present a feasible concept to fabricate diamond ablator shells. The fabrication of diamond capsules is a multi-step process, which involves diamond chemical vapor deposition on silicon mandrels followed by polishing, microfabrication of holes, and removing of the silicon mandrel by an etch process. We also discuss the pros and cons of coarse-grained optical quality and nanocrystalline chemical vapor deposition diamond films for the ablator application.

  11. Magnetohydrodynamically generated velocities in confined plasma

    SciTech Connect

    Morales, Jorge A. Bos, Wouter J. T.; Schneider, Kai; Montgomery, David C.

    2015-04-15

    We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described.

  12. Summary of progress in inertial confinement fusion

    SciTech Connect

    Younger, S.M.

    1992-01-01

    Progress in inertial confinement fusion (ICF) has been very rapid over the past two years. Significant advances have been made in the production of smooth laser beams, the focusing of light ions beams, and the development of heavy ion accelerators. The availability of advanced target diagnostics on several major drivers has resulted in an extensive database of target performance over a wide range of conditions. Theoretical models of ICF targets are approaching the predictive level with two and even three dimensional calculations becoming routine. Within the next several years information should be available to allow confident extrapolation to ignition on the next generation driver.

  13. Summary of progress in inertial confinement fusion

    SciTech Connect

    Younger, S.M.

    1992-12-31

    Progress in inertial confinement fusion (ICF) has been very rapid over the past two years. Significant advances have been made in the production of smooth laser beams, the focusing of light ions beams, and the development of heavy ion accelerators. The availability of advanced target diagnostics on several major drivers has resulted in an extensive database of target performance over a wide range of conditions. Theoretical models of ICF targets are approaching the predictive level with two and even three dimensional calculations becoming routine. Within the next several years information should be available to allow confident extrapolation to ignition on the next generation driver.

  14. Isolation and confinement - Considerations for colonization

    NASA Technical Reports Server (NTRS)

    Akins, F. R.

    1978-01-01

    This paper discusses three types of isolation (sensory/perceptual, temporal, and social) that could adversely affect mankind in space. The literature dealing with laboratory and field experiments relevant to these areas is summarized and suggestions are given for dealing with these problems within the space colony community. Also, consideration is given to the potential effects of physical confinement and the need for usable space. Finally, a modification of Maslow's hierarchy of needs is proposed as a theoretical framework to understand and investigate mankind's psychological needs in space.

  15. Microwave Reflectometry for Magnetically Confined Plasmas

    SciTech Connect

    Mazzucato, E.

    1998-02-01

    This paper is about microwave reflectometry -- a radar technique for plasma density measurements using the reflection of electromagnetic waves by a plasma cutoff. Both the theoretical foundations of reflectometry and its practical application to the study of magnetically confined plasmas are reviewed in this paper. In particular, the role of short-scale density fluctuations is discussed at length, both as a unique diagnostic tool for turbulence studies in thermonuclear plasmas and for the deleterious effects that fluctuations may have on the measurement of the average plasma density with microwave reflectometry.

  16. Magnetohydrodynamically generated velocities in confined plasma

    NASA Astrophysics Data System (ADS)

    Morales, Jorge A.; Bos, Wouter J. T.; Schneider, Kai; Montgomery, David C.

    2015-04-01

    We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described.

  17. Micromachining of inertial confinement fusion targets

    SciTech Connect

    Gobby, P.L.; Salzer, L.J.; Day, R.D.

    1996-12-31

    Many experiments conducted on today`s largest inertial confinement fusion drive lasers require target components with sub-millimeter dimensions, precisions of a micron or less and surface finishes measured in nanometers. For metal and plastic, techniques using direct machining with diamond tools have been developed that yield the desired parts. New techniques that will be discussed include the quick-flip locator, a magnetically held kinematic mount that has allowed the direct machining of millimeter-sized beryllium hemishells whose inside and outside surface are concentric to within 0.25 micron, and an electronic version of a tracer lathe which has produced precise azimuthal variations of less than a micron.

  18. Equilibrium of an elastically confined liquid drop

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Min; Kim, Ho-Young; Puëll, Jérôme; Mahadevan, L.

    2008-05-01

    When a liquid drop is confined between an elastic plate and a rigid substrate, it spreads spontaneously due to the effects of interfacial forces, eventually reaching an equilibrium shape determined by the balance between elastic and capillary effects. We provide an analytical theory for the static shape of the sheet and the extent of liquid spreading and show that our experiments are quantitatively consistent with the theory. The theory is relevant for the first step of painting when a brush is brought down on to canvas. More mundanely, it allows us to understand the stiction of microcantilevers to wafer substrates occurring in microelectromechanical fabrication processes.

  19. Dynamics of colloids in confined geometries.

    PubMed

    Almenar, L; Rauscher, M

    2011-05-11

    We discuss the Brownian dynamics of colloids in confinement with special emphasis on the influence of the solvent dynamics. We review the derivation of a dynamic density functional theory (DDFT) including some aspects of hydrodynamic interactions and its application to the micro-rheology of suspensions. In particular we discuss the failure of Stokes' law in suspensions and non-equilibrium solvent structure mediated interactions. With regard to hydrodynamic chromatography we also discuss the stationary transport of particles in narrow channels, and the reasons for the failure of DDFT in this situation.

  20. Double-Current-Confined CSP Laser

    NASA Technical Reports Server (NTRS)

    Connolly, John C.

    1992-01-01

    Improved channeled-substrate-planar (CSP) lasers that emit at wavelengths between 860 and 880 nm grown by liquid-phase epitaxy (LPE). Exhibit record high output powers and efficiencies, attained without sacrifice of desirable characteristics of lasers. In fabrication, second reverse-bias p/n junction incorporated to reduce required current. By incorporating two reverse-bias junctions in CSP structure, one doubly confines current. Lasers used eventually as sources of light in intersatellite communications systems and, specifically, NASA Advanced Communications Technology Satellite (ACTS) System.

  1. Effective diffusion of confined active Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Dagdug, Leonardo

    2014-11-01

    We find theoretically the effect of confinement and thermal fluctuations, on the diffusivity of a spherical active swimmer moving inside a two-dimensional narrow cavity of general shape. The explicit formulas for the effective diffusion coefficient of a swimmer moving inside two particular cavities are presented. We also compare our analytical results with Brownian Dynamics simulations and we obtain excellent agreement. L.D. thanks Consejo Nacional de Ciencia y Tecnologia (CONACyT) Mexico, for partial support by Grant No. 176452. M. S. thanks CONACyT and Programa de Mejoramiento de Profesorado (PROMEP) for partially funding this work under Grant No. 103.5/13/6732.

  2. Perlite for permanent confinement of cesium

    NASA Astrophysics Data System (ADS)

    Balencie, J.; Burger, D.; Rehspringer, J.-L.; Estournès, C.; Vilminot, S.; Richard-Plouet, M.; Boos, A.

    2006-06-01

    We present the potential use of expanded perlite, a metastable amorphous hydrated aluminium silicate, as a permanent medium for the long-term confinement of cesium. The method requires simply a loading by mixing an aqueous cesium nitrate solution and expanded perlite at 300 K followed by densification by sintering. The formation of pollucite, CsAlSi2O6, a naturally occurring mineral phase, upon careful heat treatment is demonstrated by X-ray diffraction. Leaching tests on the resulting glass-ceramics reveal a very low Cs departure of 0.5 mg m-2 d-1.

  3. Nanoparticle fabrication by geometrically confined nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Denomme, Ryan C.; Iyer, Krishna; Kreder, Michael; Smith, Brendan; Nieva, Patricia M.

    2013-07-01

    Arrays of metal nanoparticles, typically gold or silver, exhibit localized surface plasmon resonance, a phenomenon that has many applications, such as chemical and biological sensing. However, fabrication of metal nanoparticle arrays with high uniformity and repeatability, at a reasonable cost, is difficult. Nanosphere lithography (NSL) has been used before to produce inexpensive nanoparticle arrays through the use of monolayers of self-assembled microspheres as a deposition mask. However, control over the size and location of the arrays, as well as uniformity over large areas is poor, thus limiting its use to research purposes. In this paper, a new NSL method, called here geometrically confined NSL (GCNSL), is presented. In GCNSL, microsphere assembly is confined to geometric patterns defined in photoresist, allowing high-precision and large-scale nanoparticle patterning while still remaining low cost. Using this new method, it is demonstrated that 400 nm polystyrene microspheres can be assembled inside of large arrays of photoresist patterns. Results show that optimal microsphere assembly is achieved with long and narrow rectangular photoresist patterns. The combination of microsphere monolayers and photoresist patterns is then used as a deposition mask to produce silver nanoparticles at precise locations on the substrate with high uniformity, repeatability, and quality.

  4. Fire Risk Analysis for Armenian NPP Confinement

    SciTech Connect

    Poghosyan, Shahen; Malkhasyan, Albert; Bznuni, Surik; Amirjanyan, Armen

    2006-07-01

    Major fire occurred at Armenian NPP (ANPP) in October 1982 showed that fire-induced initiating events (IE) can have dominant contribution in overall risk of core damage. Probabilistic Safety Assessment study for fire-induced initiating events for ANPP was initiated in 2002. Analysis was performed for compartments fires in which could result in failure of components which are necessary for reactor cold shutdown. Analysis shows that main risk from fire at ANPP is conditioned by fire in cable tunnels 61-64. Meanwhile fire in confinement compartments don't have significant contribution to overall risk of core damage. The exception is so called 'confinement valves compartment' (room no.A-013/2) fire (more than 7.5% of CDF) in which fire could result in the loss of coolant accident with unavailability of primary makeup system, which directly leads to core damage. Detailed analysis of this problem that is common for typical WWER-440/230 reactors with no hermetic MCPs and recommendations for solution are presented in this paper. (authors)

  5. Using Quantum Confinement to Uniquely Identify Devices

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.

    2015-11-01

    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature.

  6. Hierarchical wrinkling in a confined permeable biogel

    PubMed Central

    Leocmach, Mathieu; Nespoulous, Mathieu; Manneville, Sébastien; Gibaud, Thomas

    2015-01-01

    Confined thin surfaces may wrinkle as a result of the growth of excess material. Elasticity or gravity usually sets the wavelength. We explore new selection mechanisms based on hydrodynamics. First, inspired by yoghurt-making processes, we use caseins (a family of milk proteins) as pH-responsive building blocks and the acidulent glucono-δ-lactone to design a porous biogel film immersed in a confined buoyancy-matched viscous medium. Under specific boundary conditions yet without any external stimulus, the biogel film spontaneously wrinkles in cascade. Second, using a combination of titration, rheology, light microscopy, and confocal microscopy, we demonstrate that, during continuous acidification, the gel first shrinks and then swells, inducing wrinkling. Third, taking into account both Darcy flow through the gel and Poiseuille flow in the surrounding solvent, we develop a model that correctly predicts the wrinkling wavelength. Our results should be universal for acid-induced protein gels because they are based on pH-induced charge stabilization/destabilization and therefore could set a benchmark to gain fundamental insights into wrinkled biological tissues, to texture food, or to design surfaces for optical purposes. PMID:26601296

  7. Regimes of DNA confined in a nanochannel

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Doyle, Patrick

    2014-03-01

    Scaling regimes for polymers confined to tubular channels are well established when the channel cross-sectional dimension is either very small (Odjik regime) or large (classic de Gennes regime) relative to the polymer Kuhn length. In the literature, there is no clear consensus regarding the intermediate region and if subregimes even exist to connect these two classic bounding regimes. The confluence of emerging single DNA mapping technologies and a resurged interest in the fundamental properties of confined polymers has led to extensive research in this area using DNA as a model system. Due to the DNA molecule's properties and limitations of nanofabrication, most experiments are performed in this intermediate regime with channel dimensions of a few Kuhn lengths. Here we use simulations and theory to reconcile conflicting theories and show that there are indeed extended de Gennes, partial alignment and hairpin regimes located between the two classic regimes. Simulations results for both chain extension and free energy support the existence of these regimes. This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's research program in BioSystems and Micromechanics, the National Science Foundation (CBET-1335938).

  8. Thermodynamic properties of bulk and confined water.

    PubMed

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H Eugene

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T(L) ≃ 225 K). The second, T* ∼ 315 ± 5 K, is a special locus of the isothermal compressibility K(T)(T, P) and the thermal expansion coefficient α(P)(T, P) in the P-T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T(L)) and the onset of the unfolding process (T*).

  9. Viscosity of confined inhomogeneous nonequilibrium fluids

    NASA Astrophysics Data System (ADS)

    Zhang, Junfang; Todd, B. D.; Travis, Karl P.

    2004-12-01

    We use the nonlocal linear hydrodynamic constitutive model, proposed by Evans and Morriss [Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990)], for computing an effective spatially dependent shear viscosity of inhomogeneous nonequilibrium fluids. The model is applied to a simple atomic fluid undergoing planar Poiseuille flow in a confined channel of several atomic diameters width. We compare the spatially dependent viscosity with a local generalization of Newton's law of viscosity and the Navier-Stokes viscosity, both of which are known to suffer extreme inaccuracies for highly inhomogeneous systems. The nonlocal constitutive model calculates effective position dependent viscosities that are free from the notorious singularities experienced by applying the commonly used local constitutive model. It is simple, general, and has widespread applicability in nanofluidics where experimental measurement of position dependent transport coefficients is currently inaccessible. In principle the method can be used to predict approximate flow profiles of any arbitrary inhomogeneous system. We demonstrate this by predicting the flow profile for a simple fluid undergoing planar Couette flow in a confined channel of several atomic diameters width.

  10. Thermodynamic properties of bulk and confined water

    SciTech Connect

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ≃ 225 K). The second, T{sup *} ∼ 315 ± 5 K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient α{sub P}(T, P) in the P–T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  11. Polymer escape from a confining potential

    SciTech Connect

    Mökkönen, Harri; Ikonen, Timo; Jónsson, Hannes; Ala-Nissila, Tapio

    2014-02-07

    The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.

  12. Using Quantum Confinement to Uniquely Identify Devices

    PubMed Central

    Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.

    2015-01-01

    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature. PMID:26553435

  13. Nematode locomotion in unconfined and confined fluids

    NASA Astrophysics Data System (ADS)

    Bilbao, Alejandro; Wajnryb, Eligiusz; Vanapalli, Siva A.; Blawzdziewicz, Jerzy

    2013-08-01

    The millimeter-long soil-dwelling nematode Caenorhabditis elegans propels itself by producing undulations that propagate along its body and turns by assuming highly curved shapes. According to our recent study [V. Padmanabhan et al., PLoS ONE 7, e40121 (2012), 10.1371/journal.pone.0040121] all these postures can be accurately described by a piecewise-harmonic-curvature model. We combine this curvature-based description with highly accurate hydrodynamic bead models to evaluate the normalized velocity and turning angles for a worm swimming in an unconfined fluid and in a parallel-wall cell. We find that the worm moves twice as fast and navigates more effectively under a strong confinement, due to the large transverse-to-longitudinal resistance-coefficient ratio resulting from the wall-mediated far-field hydrodynamic coupling between body segments. We also note that the optimal swimming gait is similar to the gait observed for nematodes swimming in high-viscosity fluids. Our bead models allow us to determine the effects of confinement and finite thickness of the body of the nematode on its locomotion. These effects are not accounted for by the classical resistive-force and slender-body theories.

  14. Polymer escape from a confining potential

    NASA Astrophysics Data System (ADS)

    Mökkönen, Harri; Ikonen, Timo; Jónsson, Hannes; Ala-Nissila, Tapio

    2014-02-01

    The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.

  15. Confined magnetic monopoles in dense QCD

    SciTech Connect

    Gorsky, A.; Shifman, M.; Yung, A.

    2011-04-15

    Non-Abelian strings exist in the color-flavor locked phase of dense QCD. We show that kinks appearing in the world-sheet theory on these strings, in the form of the kink-antikink bound pairs, are the magnetic monopoles-descendants of the 't Hooft-Polyakov monopoles surviving in such a special form in dense QCD. Our consideration is heavily based on analogies and inspiration coming from certain supersymmetric non-Abelian theories. This is the first ever analytic demonstration that objects unambiguously identifiable as the magnetic monopoles are native to non-Abelian Yang-Mills theories (albeit our analysis extends only to the phase of the monopole confinement and has nothing to say about their condensation). Technically, our demonstration becomes possible due to the fact that low-energy dynamics of the non-Abelian strings in dense QCD is that of the orientational zero modes. It is described by an effective two-dimensional CP(2) model on the string world sheet. The kinks in this model representing confined magnetic monopoles are in a highly quantum regime.

  16. Quantum chromodynamics near the confinement limit

    SciTech Connect

    Quigg, C.

    1985-09-01

    These nine lectures deal at an elementary level with the strong interaction between quarks and its implications for the structure of hadrons. Quarkonium systems are studied as a means for measuring the interquark interaction. This is presumably (part of) the answer a solution to QCD must yield, if it is indeed the correct theory of the strong interactions. Some elements of QCD are reviewed, and metaphors for QCD as a confining theory are introduced. The 1/N expansion is summarized as a way of guessing the consequences of QCD for hadron physics. Lattice gauge theory is developed as a means for going beyond perturbation theory in the solution of QCD. The correspondence between statistical mechanics, quantum mechanics, and field theory is made, and simple spin systems are formulated on the lattice. The lattice analog of local gauge invariance is developed, and analytic methods for solving lattice gauge theory are considered. The strong-coupling expansion indicates the existence of a confining phase, and the renormalization group provides a means for recovering the consequences of continuum field theory. Finally, Monte Carlo simulations of lattice theories give evidence for the phase structure of gauge theories, yield an estimate for the string tension characterizing the interquark force, and provide an approximate description of the quarkonium potential in encouraging good agreement with what is known from experiment.

  17. Study of intermittent small-scale turbulence in Wendelstein 7-AS plasmas during controlled confinement transitions

    NASA Astrophysics Data System (ADS)

    Basse, N. P.; Zoletnik, S.; Michelsen, P. K.; W7-As Team

    2005-01-01

    Confinement transitions in the Wendelstein 7-AS stellarator [H. Renner et al., Plasma Phys. Controlled Fusion 31, 1579 (1989)] can be induced by varying either the internal plasma current or the external magnetic field. In this paper we report on experiments where closely matched confinement states (good and bad) were constructed using the latter method. Analysis using the former scheme has been reported upon previously [S. Zoletnik et al., Plasma Phys. Controlled Fusion 44, 1581 (2002)]. The electron temperature, along with the major spectral characteristics of magnetic and small-scale electron density fluctuations, changes dramatically at the transition from good to bad confinement. The fluctuation power is intermittent, and core bursts traveling in the electron diamagnetic drift (DD) direction are correlated between the bottom and top of the plasma, especially during degraded confinement. A corresponding top-bottom correlation for the edge ion DD direction turbulence feature was not found. Strong correlations are observed both between the two density fluctuation signals and between magnetic and density fluctuations in bad compared to good confinement. The correlation time of the bursts is of order 100μs, similar to the lifetime observed during edge localized modes.

  18. Study of intermittent small-scale turbulence in Wendelstein 7-AS plasmas during controlled confinement transitions

    SciTech Connect

    Basse, N.P.; Zoletnik, S.; Michelsen, P.K.

    2005-01-01

    Confinement transitions in the Wendelstein 7-AS stellarator [H. Renner et al., Plasma Phys. Controlled Fusion 31, 1579 (1989)] can be induced by varying either the internal plasma current or the external magnetic field. In this paper we report on experiments where closely matched confinement states (good and bad) were constructed using the latter method. Analysis using the former scheme has been reported upon previously [S. Zoletnik et al., Plasma Phys. Controlled Fusion 44, 1581 (2002)]. The electron temperature, along with the major spectral characteristics of magnetic and small-scale electron density fluctuations, changes dramatically at the transition from good to bad confinement. The fluctuation power is intermittent, and core bursts traveling in the electron diamagnetic drift (DD) direction are correlated between the bottom and top of the plasma, especially during degraded confinement. A corresponding top-bottom correlation for the edge ion DD direction turbulence feature was not found. Strong correlations are observed both between the two density fluctuation signals and between magnetic and density fluctuations in bad compared to good confinement. The correlation time of the bursts is of order 100 {mu}s, similar to the lifetime observed during edge localized modes.

  19. Dynamics of laser-blow-off induced Li plume in confined geometry

    SciTech Connect

    Kumar, Bhupesh; Singh, R K; Kumar, Ajai

    2013-08-15

    Dynamics of Li plasma plume created by laser-blow-off technique in air ambient is reported. Plasma plume dynamics and its optical emission are investigated in planar and confined geometries using time resolved shadowgraph imaging and optical emission spectroscopy. Significant differences in the plasma characteristics in confined geometry are quantitatively investigated by comparing the plasma parameters (temperature and density) in free expansion and confined geometry configurations. Dynamics and physical parameters of the primary as well as the reflected shock waves (in confined geometry) and their interactions with expanding plasma are briefly addressed. A large enhancement in the emission intensities of Li I 610.3 nm (2p {sup 2}P{sub 1/2,3/2}← 3d {sup 2}P{sub 3/2,5/2}) and 670.8 nm (2s {sup 2}S{sub 1/2}← 2p {sup 2}P{sub 1/2,3/2}) is correlated with the shock wave dynamics in the two geometries. Strong self reversal in the neutral emission infers an increase in the population density of neutrals within the confined plasma plume.

  20. Dynamics and statistics of wave-particle interactions in a confined geometry.

    PubMed

    Gilet, Tristan

    2014-11-01

    A walker is a droplet bouncing on a liquid surface and propelled by the waves that it generates. This macroscopic wave-particle association exhibits behaviors reminiscent of quantum particles. This article presents a toy model of the coupling between a particle and a confined standing wave. The resulting two-dimensional iterated map captures many features of the walker dynamics observed in different configurations of confinement. These features include the time decomposition of the chaotic trajectory in quantized eigenstates and the particle statistics being shaped by the wave. It shows that deterministic wave-particle coupling expressed in its simplest form can account for some quantumlike behaviors.

  1. Determination of broken KAM surfaces for particle orbits in toroidal confinement systems

    SciTech Connect

    White, R. B.

    2015-10-05

    Here, the destruction of Kolmogorov–Arnold–Moser surfaces in a Hamiltonian system is an important topic in nonlinear dynamics, and in particular in the theory of particle orbits in toroidal magnetic confinement systems. Analytic models for transport due to mode-particle resonances are not sufficiently correct to give the effect of these resonances on transport. In this paper we compare three different methods for the detection of the loss of stability of orbits in the dynamics of charged particles in a toroidal magnetic confinement device in the presence of time dependent magnetic perturbations.

  2. Dynamics and statistics of wave-particle interactions in a confined geometry

    NASA Astrophysics Data System (ADS)

    Gilet, Tristan

    2014-11-01

    A walker is a droplet bouncing on a liquid surface and propelled by the waves that it generates. This macroscopic wave-particle association exhibits behaviors reminiscent of quantum particles. This article presents a toy model of the coupling between a particle and a confined standing wave. The resulting two-dimensional iterated map captures many features of the walker dynamics observed in different configurations of confinement. These features include the time decomposition of the chaotic trajectory in quantized eigenstates and the particle statistics being shaped by the wave. It shows that deterministic wave-particle coupling expressed in its simplest form can account for some quantumlike behaviors.

  3. Lateral carrier confinement in InGaN quantum-well nanorods

    SciTech Connect

    Shi, Chentian; Zhang, Chunfeng; Wang, Xiaoyong; Xiao, Min

    2015-07-15

    We review our studies on lateral carrier diffusion in micro-fabricated samples of InGaN nanorods and their parent quantum wells. The carrier diffusion is observed to be strongly confined in nanorods, as manifested by the reduction in the delayed-rise component of time-resolved photoluminescence traces. We further argue that the confinement of carrier diffusion can be applied to suppress the efficiency droop related to defect state recombination and to assist in the energy transfer between InGaN nanorods and nanocrystal phosphors for color conversion.

  4. SPECIAL TOPIC: Global energy confinement H-mode database for ITER

    NASA Astrophysics Data System (ADS)

    Christiansen, J. P.; Cordey, J. G.; Thomsen, K.; Tanga, A.; DeBoo, J. C.; Schissel, D. P.; Taylor, T. S.; Kardaun, O. J. W. F.; Wagner, F.; Ryter, F.; Kaye, S. M.; Miura, Y.; Suzuki, N.; Mori, M.; Matsuda, T.; Tamai, H.; Takizuka, T.; Itoh, S.-I.; Itoh, K.

    1992-02-01

    Describes the content of an H-mode confinement database that has been assembled for the ITER project. Data were collected from six machines of different sizes and shapes: ASDEX, DIII-D, JET, JFT-2M, PBX-M and PDX. A detailed description of the criteria used in the selection of the data and the definition of each of the variables is given. The authors also present an analysis of the conditions of the database, the scalings (power law and offset linear) of the data with both dimensional and dimensionless variables, and predictions of the expected confinement time for ITER

  5. Inertial Confinement Fusion quarterly report, April--June 1995. Volume 5, No. 3

    SciTech Connect

    1995-12-31

    The ICF Quarterly Reports is published four times each fiscal year by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. The journal reports selected current research within the ICF Program. Major areas of investigation presented here include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology.

  6. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    DOEpatents

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  7. Particle confinement property in the cusp-mirror field of a compact fusion reactor

    NASA Astrophysics Data System (ADS)

    Zhu, Limin; Liu, Haifeng; Wang, Xianqu

    2016-09-01

    The cusp-mirror magnetic structure in a compact fusion reactor (CFR) is investigated to understand the properties of the particle confinement for the first time. Compared with a cascade magnetic mirror device, its advanced performance is shown by means of test particle simulations. Some interesting results are obtained as follows: the adiabatic region and non-adiabatic region are found in the CFR’s magnetic configuration. In the non-adiabatic region, due to the magnetic field-free space existing, the ions are scattered stochastically and are not directly guided into the loss cone, unlike the particles around the fixed magnetic lines in the adiabatic region, which decrease the ion loss fraction. The CFR’s configuration, combining advantages of cusp-magnetic configuration and mirror-magnetic configuration, leads to confine particles longer than cascade magnetic mirror’s. This phenomenon may be relevant to the construction of advanced magnetic-confinement devices.

  8. High-Performance of Gas Hydrates in Confined Nanospace for Reversible CH4 /CO2 Storage.

    PubMed

    Casco, Mirian E; Jordá, José L; Rey, Fernando; Fauth, François; Martinez-Escandell, Manuel; Rodríguez-Reinoso, Francisco; Ramos-Fernández, Enrique V; Silvestre-Albero, Joaquín

    2016-07-11

    The molecular exchange of CH4 for CO2 in gas hydrates grown in confined nanospace has been evaluated for the first time using activated carbons as a host structure. The nano-confinement effects taking place inside the carbon cavities and the exceptional physicochemical properties of the carbon structure allows us to accelerate the formation and decomposition process of the gas hydrates from the conventional timescale of hours/days in artificial bulk systems to minutes in confined nanospace. The CH4 /CO2 exchange process is fully reversible with high efficiency at practical temperature and pressure conditions. Furthermore, these activated carbons can be envisaged as promising materials for long-distance natural gas and CO2 transportation because of the combination of a high storage capacity, a high reversibility, and most important, with extremely fast kinetics for gas hydrate formation and release.

  9. Exercise as Countermeasure for Decrements of Performance and Mood During Long-Term Confinement

    NASA Astrophysics Data System (ADS)

    Schneider, Stefan; Piacentini, Maria F.; Meeusen, Romain; Brummer, Vera; Struder, Heiko K.

    2008-06-01

    In order to prepare for crewed exploratory missions to Moon and Mars, currently ESA is participating in two isolation studies, MARS 500 and on the antarctis station CONCORDIA. The aim of the present study is to identify exercise as a countermeasure to confinement addicted changes in mood. It is planned (1) to look at influences of exercise on the serotonergic system, which is known to have mood regulating effects and (2) to record changes in brain cortical activity due to exercise. Mood and performance tests will be carried out several times during the confinement. We hypothesize that impairments in mood due to the isolated and confined environment together with a lack of physical exercise lead to decreases in mental and perceptual motor performance whereas physical exercise linked with an activation of the serotonergic system will improve mood and therefore performance irrespectively of the environmental restrictions.

  10. High-{beta}, improved confinement reversed-field pinch plasmas at high density

    SciTech Connect

    Wyman, M. D.; Chapman, B. E.; Ahn, J. W.; Almagri, A. F.; Anderson, J. K.; Den Hartog, D. J.; Ebrahimi, F.; Ennis, D. A.; Fiksel, G.; Gangadhara, S.; Goetz, J. A.; O'Connell, R.; Oliva, S. P.; Prager, S. C.; Reusch, J. A.; Sarff, J. S.; Stephens, H. D.; Bonomo, F.; Franz, P.; Brower, D. L.

    2008-01-15

    In Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] discharges where improved confinement is brought about by modification of the current profile, pellet injection has quadrupled the density, reaching n{sub e}=4x10{sup 19} m{sup -3}. Without pellet injection, the achievable density in improved confinement discharges had been limited by edge-resonant tearing instability. With pellet injection, the total beta has been increased to 26%, and the energy confinement time is comparable to that at low density. Pressure-driven local interchange and global tearing are predicted to be linearly unstable. Interchange has not yet been observed experimentally, but there is possible evidence of pressure-driven tearing, an instability usually driven by the current gradient in the reversed-field pinch.

  11. Analysis of reflected blast wave pressure profiles in a confined room

    NASA Astrophysics Data System (ADS)

    Sauvan, P. E.; Sochet, I.; Trélat, S.

    2012-05-01

    To understand the blast effects of confined explosions, it is necessary to study the characteristic parameters of the blast wave in terms of overpressure, impulse and arrival time. In a previous study, experiments were performed using two different scales of a pyrotechnic workshop. The main purpose of these experiments was to compare the TNT equivalent for solid and gaseous explosives in terms of mass to define a TNT equivalent in a reflection field and to validate the similitude between real and small scales. To study the interactions and propagations of the reflected shock waves, the present study was conducted by progressively building a confined volume around the charge. In this way, the influence of each wall and the origins of the reflected shock waves can be determined. The purpose of this paper is to report the blast wave interactions that resulted from the detonation of a stoichiometric propane-oxygen mixture in a confined room.

  12. High-Performance of Gas Hydrates in Confined Nanospace for Reversible CH4 /CO2 Storage.

    PubMed

    Casco, Mirian E; Jordá, José L; Rey, Fernando; Fauth, François; Martinez-Escandell, Manuel; Rodríguez-Reinoso, Francisco; Ramos-Fernández, Enrique V; Silvestre-Albero, Joaquín

    2016-07-11

    The molecular exchange of CH4 for CO2 in gas hydrates grown in confined nanospace has been evaluated for the first time using activated carbons as a host structure. The nano-confinement effects taking place inside the carbon cavities and the exceptional physicochemical properties of the carbon structure allows us to accelerate the formation and decomposition process of the gas hydrates from the conventional timescale of hours/days in artificial bulk systems to minutes in confined nanospace. The CH4 /CO2 exchange process is fully reversible with high efficiency at practical temperature and pressure conditions. Furthermore, these activated carbons can be envisaged as promising materials for long-distance natural gas and CO2 transportation because of the combination of a high storage capacity, a high reversibility, and most important, with extremely fast kinetics for gas hydrate formation and release. PMID:27273454

  13. Transient dynamics of confined liquid drops in a uniform electric field

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Chaudhury, Kaustav; Chakraborty, Suman

    2014-05-01

    We analyze the effect of confinement on the transient dynamics of liquid drops, suspended in another immiscible liquid medium, under the influence of an externally applied uniform dc electric field. For our analysis, we adhere to an analytical framework conforming to a Newtonian-leaky-dielectric liquid model in the Stokes flow regime, under the small deformation approximation. We characterize the transient relaxation of the drop shape towards its asymptotic configuration, attributed by the combined confluence of the charge-relaxation time scale and the intrinsic shape-relaxation time scale. While the former appears due to the charge accumulation process on the drop surface over a finite interval of time, the genesis of the latter is found to be intrinsic to the hydrodynamic situation under consideration. In an unbounded condition, the intrinsic shape-relaxation time scale is strongly governed by the viscosity ratio, defined as the ratio of dynamic viscosities of the droplet and the background liquid. However, when the wall effects are brought into consideration, the combined influence of the relative extent of the confinement and the intrinsic viscosity effects, acting in tandem, alter this time scale in a rather complicated and nontrivial manner. We reveal that the presence of confinement may dramatically increase the effective viscosity ratio that could have otherwise been required in an unconfined domain to realize identical time-relaxation characteristics. We also bring out the alterations in the streamline patterns because of the combinations of transient and confinement effects. Thus, our results reveal that the extent of fluidic confinement may provide an elegant alternative towards manipulating the transient dynamics of liquid drops in the presence of an externally applied electric field, bearing far-ranging consequences towards the design and functionalities of several modern-day microfluidic applications.

  14. Confinement properties of 2D porous molecular networks on metal surfaces.

    PubMed

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-04-20

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article

  15. Confinement properties of 2D porous molecular networks on metal surfaces

    NASA Astrophysics Data System (ADS)

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-04-01

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article.

  16. Probing confined and unconfined hemoglobin molecules with photoacoustics

    NASA Astrophysics Data System (ADS)

    Saha, Ratan K.; Karmakar, Subhajit; Roy, Madhusudan

    2014-03-01

    Photoacoustic (PA) measurements on confined and unconfined hemoglobin molecules are presented. In vitro experiments were performed with porcine red blood cells (RBCs) at 532 and 1064 nm at various laser fluences. Fluence was gradually changed from 8 to 21 mJ/cm2/pulse for 532 nm and 353 to 643 mJ/cm2/pulse for 1064 nm. PA signals from suspended RBCs (SRBCs) and hemolyzed RBCs (HRBCs) were measured using a needle hydrophone at hematocrits ranging from 10 to 60%. PA amplitude was found to be varied linearly with the laser fluence for each type of samples at the above two optical radiations. At 532 nm, PA signals from SRBCs and HRBCs were measured to be nearly equal, whereas, at 1064 nm, signal amplitude for SRBCs was approximately 2 times higher than that of HRBCs. The results suggest that it may be feasible to detect hemolysis with PAs.

  17. Development of Compton Radiography Diagnostics for Inertial Confinement Fusion Implosions

    SciTech Connect

    Tommasini, R; Hatchett, S P; Hey, D S; Izumi, N; Koch, J A; Landen, O L; Mackinnon, A J; Delettrez, J; Glebov, V; Stoeckl, C

    2010-11-16

    An important diagnostic tool for inertial confinement fusion will be time-resolved radiographic imaging of the dense cold fuel surrounding the hot spot. The measurement technique is based on point-projection radiography at photon energies from 60-200 keV where the Compton effect is the dominant contributor to the opacity of the fuel or pusher. We have successfully applied this novel Compton Radiography technique to the study of the final compression of directly driven plastic capsules at the OMEGA facility. The radiographs have a spatial and temporal resolution of {approx}10 {micro}m and {approx}10ps, respectively. A statistical accuracy of {approx}0.5% in transmission per resolution element is achieved, allowing localized measurements of areal mass densities to 7% accuracy. The experimental results show 3D non-uniformities and lower than 1D expected areal densities attributed to drive asymmetries and hydroinstabilities.

  18. KULL: LLNL's ASCI Inertial Confinement Fusion Simulation Code

    SciTech Connect

    Rathkopf, J. A.; Miller, D. S.; Owen, J. M.; Zike, M. R.; Eltgroth, P. G.; Madsen, N. K.; McCandless, K. P.; Nowak, P. F.; Nemanic, M. K.; Gentile, N. A.; Stuart, L. M.; Keen, N. D.; Palmer, T. S.

    2000-01-10

    KULL is a three dimensional, time dependent radiation hydrodynamics simulation code under development at Lawrence Livermore National Laboratory. A part of the U.S. Department of Energy's Accelerated Strategic Computing Initiative (ASCI), KULL's purpose is to simulate the physical processes in Inertial Confinement Fusion (ICF) targets. The National Ignition Facility, where ICF experiments will be conducted, and ASCI are part of the experimental and computational components of DOE's Stockpile Stewardship Program. This paper provides an overview of ASCI and describes KULL, its hydrodynamic simulation capability and its three methods of simulating radiative transfer. Particular emphasis is given to the parallelization techniques essential to obtain the performance required of the Stockpile Stewardship Program and to exploit the massively parallel processor machines that ASCI is procuring.

  19. Nonvolatile semiconductor memory having three dimension charge confinement

    DOEpatents

    Dawson, L. Ralph; Osbourn, Gordon C.; Peercy, Paul S.; Weaver, Harry T.; Zipperian, Thomas E.

    1991-01-01

    A layered semiconductor device with a nonvolatile three dimensional memory comprises a storage channel which stores charge carriers. Charge carriers flow laterally through the storage channel from a source to a drain. Isolation material, either a Schottky barrier or a heterojunction, located in a trench of an upper layer controllably retains the charge within the a storage portion determined by the confining means. The charge is retained for a time determined by the isolation materials' nonvolatile characteristics or until a change of voltage on the isolation material and the source and drain permit a read operation. Flow of charge through an underlying sense channel is affected by the presence of charge within the storage channel, thus the presences of charge in the memory can be easily detected.

  20. Sequential detection of temporal communities by estrangement confinement.

    PubMed

    Kawadia, Vikas; Sreenivasan, Sameet

    2012-01-01

    Temporal communities are the result of a consistent partitioning of nodes across multiple snapshots of an evolving network, and they provide insights into how dense clusters in a network emerge, combine, split and decay over time. To reliably detect temporal communities we need to not only find a good community partition in a given snapshot but also ensure that it bears some similarity to the partition(s) found in the previous snapshot(s), a particularly difficult task given the extreme sensitivity of community structure yielded by current methods to changes in the network structure. Here, motivated by the inertia of inter-node relationships, we present a new measure of partition distance called estrangement, and show that constraining estrangement enables one to find meaningful temporal communities at various degrees of temporal smoothness in diverse real-world datasets. Estrangement confinement thus provides a principled approach to uncovering temporal communities in evolving networks. PMID:23145317

  1. Effects of confinement and crowding on folding of model proteins.

    PubMed

    Wojciechowski, M; Cieplak, Marek

    2008-12-01

    We perform molecular dynamics simulations for a simple coarse-grained model of crambin placed inside of a softly repulsive sphere of radius R. The confinement makes folding at the optimal temperature slower and affects the folding scenarios, but both effects are not dramatic. The influence of crowding on folding are studied by placing several identical proteins within the sphere, denaturing them, and then by monitoring refolding. If the interactions between the proteins are dominated by the excluded volume effects, the net folding times are essentially like for a single protein. An introduction of inter-proteinic attractive contacts hinders folding when the strength of the attraction exceeds about a half of the value of the strength of the single protein contacts. The bigger the strength of the attraction, the more likely is the occurrence of aggregation and misfolding.

  2. Madness and crime: Zefinha, the longest confined woman in Brazil.

    PubMed

    Diniz, Debora; Brito, Luciana

    2016-01-01

    Living in a forensic hospital for the last 38 years, Josefa da Silva is the longest female inhabitant surviving the penal and psychiatric regime in Brazil. This paper analyses dossier, judicial proceedings, interviews and photographs about her. The psychiatric report is the key component of the medical and penal doubling of criminal insanity. Twelve psychiatric reports illustrate three time frames of the court files: abnormality, danger, and abandonment. The psychiatric authority over confinement has moved from discipline to security, and from disciplinary security to social assistance. In the arrangement between the penal and psychiatric powers, the judge recognizes the medical authority over the truth of insanity. It is the medicine of the reasons for Zefinha's internment that altered over the decades.

  3. Hydrogen Confinement in Carbon Nanopores: Extreme Densification at Ambient Temperature

    SciTech Connect

    Gallego, Nidia C; He, Lilin; Saha, Dipendu; Contescu, Cristian I; Melnichenko, Yuri B

    2011-01-01

    In-situ small angle neutron scattering (SANS) studies of hydrogen confined in small pores of polyfurfuryl alcohol-derived activated carbon (PFAC) at room-temperature provided for the first time its phase behavior in equilibrium with external H2 at pressures up to 200 bar. The data was used to evaluate the density of the adsorbed fluid, which appears to be a function of both pore size and pressure, and approaches the liquid hydrogen density in narrow nanopores at 200 bar. The surface-molecule interactions responsible for densification of hydrogen within the pores create internal pressures which exceed by a factor of up to ~ 60 the external gas pressures, confirming the benefits of adsorptive over compressive storage. These results can be utilized to guide the development of new carbon adsorbents tailored for maximum hydrogen storage capacities at near ambient temperatures.

  4. Antiproton powered propulsion with magnetically confined plasma engines

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1989-01-01

    The reaction of the matter-antimatter annihilation, with its specific energy being over 250 times the specific energy released in nuclear fusion, is considered as an energy source for spacecraft propulsion. A concept of a magnetically confined pulsed plasma engine is described. In this concept, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas; the resulting charge annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. Numerical simulations were developed to calculate the annihilation rate of antiprotons in hydrogen and to follow the resulting ion, muon, and electron/positron number density evolutions.

  5. Anisotropic confinement effects in a two-dimensional plasma crystal.

    PubMed

    Laut, I; Zhdanov, S K; Räth, C; Thomas, H M; Morfill, G E

    2016-01-01

    The spectral asymmetry of the wave-energy distribution of dust particles during mode-coupling-induced melting, observed for the first time in plasma crystals by Couëdel et al. [Phys. Rev. E 89, 053108 (2014)PLEEE81539-375510.1103/PhysRevE.89.053108], is studied theoretically and by molecular-dynamics simulations. It is shown that an anisotropy of the well confining the microparticles selects the directions of preferred particle motion. The observed differences in intensity of waves of opposed directions are explained by a nonvanishing phonon flux. Anisotropic phonon scattering by defects and Umklapp scattering are proposed as possible reasons for the mean phonon flux. PMID:26871180

  6. Madness and crime: Zefinha, the longest confined woman in Brazil.

    PubMed

    Diniz, Debora; Brito, Luciana

    2016-01-01

    Living in a forensic hospital for the last 38 years, Josefa da Silva is the longest female inhabitant surviving the penal and psychiatric regime in Brazil. This paper analyses dossier, judicial proceedings, interviews and photographs about her. The psychiatric report is the key component of the medical and penal doubling of criminal insanity. Twelve psychiatric reports illustrate three time frames of the court files: abnormality, danger, and abandonment. The psychiatric authority over confinement has moved from discipline to security, and from disciplinary security to social assistance. In the arrangement between the penal and psychiatric powers, the judge recognizes the medical authority over the truth of insanity. It is the medicine of the reasons for Zefinha's internment that altered over the decades. PMID:27008077

  7. Temperature measurements on a HSLA-100 steel confinement vessel

    SciTech Connect

    Lohsen, R.A.

    1998-05-07

    Temperature measurements have been made on HSLA-100 steel confinement vessel number 6-2-3-1. These measurements are intended to give a view of the vessel temperature response under conditions similar to operational conditions, starting from worst case. The vessel`s temperature must be above the minimum operating temperature when used to contain an explosive event to ensure that the vessel material has the desired crack arrest properties. Several series of temperature measurements have been conducted over 24 and 48 hour periods during February 1998. These tests were intended to demonstrate that after running the heaters in the environmental shelter for some time, (1) the vessel warms up to temperatures well above the minimum operating temperature, (2) that through-thickness temperature gradients are negligible, and (3) that the temperature differences from one part of the vessel to another are small.

  8. Neutron Assay System for Confinement Vessel Disposition

    SciTech Connect

    Frame, Katherine C; Bourne, Mark M; Crooks, William J; Evans, Louise; Mayo, Douglas R; Miko, David K; Salazar, William R; Stange, Sy; Valdez, Jose I; Vigil, Georgiana M

    2012-07-13

    Waste will be removed from confinement vessels remaining from 1970s-era experiments. Los Alamos has 9+ spherical confinement vessels remaining from experiments. Each vessel contains {approx} 500 lbs of radioactive debris such as actinide metals and oxides, metals, powdered silica, graphite, and wires and hardware. In order to dispose of the vessels, debris and contamination must be removed. Neutron assay system was designed to assay vessels before and after cleanout. System requirements are: (1) Modular and moveable; (2) Capable of detecting {approx}100g {sup 239}Pu equivalent in a 2-inch thick steel sphere with 6 foot diameter; and (3) Capable of safeguards-quality assays. Initial design parameters arethe use of 4-atm {sup 3}He tubes with length of 6 feet, and {sup 3}He tubes embedded in polyethelene for moderation. This paper describes the calibration of the Confinement Vessel Assay System (CVAS) and quantification of its uncertainties. Assay uncertainty depends on five factors: (1) Statistical uncertainty in the assay measurement; (2) Statistical uncertainty in the background measurement; (3) Statistical uncertainty in the isotopics determination - This should be much smaller than the other uncertainties; (4) Systematic uncertainty due to position bias; and (5) Systematic uncertainty due to fluctuations in cosmic ray spallation. This one can be virtually eliminated by performing the background measurement with an empty vessel - but that may not be possible. We used modeling and experiments to quantify the systematic uncertainties. The calibration assumes a uniform distribution of material, but reality will be different. MCNPX modeling was used to quantify the positional bias. The model was benchmarked to build confidence in its results. Material at top of vessel is 44% greater than amount assayed, according to singles. Material near 19-tube detector is 38% less than amount assayed, according to singles. Cosmic ray spallation contributes significantly to the

  9. Simulation of Spheromak Evolution and Energy Confinement

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce I.

    2004-11-01

    Electron temperatures near 400 eV were observed transiently in the Los Alamos CTX spheromak experiment.[1] Temperatures of 100-200 eV have been observed in the SSPX spheromak.[2] Understanding the energy confinement in these experiments is a challenging problem. Results from numerical simulations with the NIMROD nonlinear resistive MHD code (at zero or finite plasma pressure) have shown that closed flux surfaces with net current can arise only after electrostatic drive is reduced.[3,4] Computations in the last year have directly investigated the importance of inductive effects on energy confinement including the evolution of the temperature and number density using thermal transport coefficients, electrical resistivity, and Ohmic heating that are appropriate for collisional plasmas. In conditions with sustained coaxial electrostatic drive, the cold edge plasma impedes parallel thermal conduction to the wall, despite the chaotic magnetic topology, allowing the plasma core temperature to reach tens of eVs. When the drive is temporarily removed, relatively symmetric closed flux surfaces form. Magnetic reconnection occurs rapidly in the cold outer plasma, and core temperatures increase toward 100 eV or more. Applying a second current pulse, as in some SSPX discharges,[5] is shown to improve performance by delaying the onset of MHD modes that are resonant in the closed-flux region, and higher current, increased magnetic fields, and larger volumes of closed flux can be achieved. The simulations reveal the sensitivity with respect to symmetry-breaking magnetic fluctuations of the magnetic surfaces and the energy confinement. We present a detailed comparison of results from nonlinear simulations with laboratory measurements from SSPX[5,6] and assess transport mechanisms through computational diagnostics. The simulation results are yielding electron temperatures and other features agreeing well with SSPX observations. [1] T. R. Jarboe, Plasma Phys. Control. Fusion 36, 945

  10. Fundamental limits of material toughening in molecularly confined polymers.

    PubMed

    Isaacson, Scott G; Lionti, Krystelle; Volksen, Willi; Magbitang, Teddie P; Matsuda, Yusuke; Dauskardt, Reinhold H; Dubois, Geraud

    2016-03-01

    The exceptional mechanical properties of polymer nanocomposites are achieved through intimate mixing of the polymer and inorganic phases, which leads to spatial confinement of the polymer phase. In this study we probe the mechanical and fracture properties of polymers in the extreme limits of molecular confinement, where a stiff inorganic phase confines the polymer chains to dimensions far smaller than their bulk radius of gyration. We show that polymers confined at molecular length scales dissipate energy through a confinement-induced molecular bridging mechanism that is distinct from existing entanglement-based theories of polymer deformation and fracture. We demonstrate that the toughening is controlled by the molecular size and the degree of confinement, but is ultimately limited by the strength of individual molecules.

  11. Active matter in lateral parabolic confinement: From subdiffusion to superdiffusion

    NASA Astrophysics Data System (ADS)

    Ribeiro, H. E.; Potiguar, F. Q.

    2016-11-01

    In this work we studied the diffusive behavior of active brownian particles under lateral parabolic confinement. The results showed that we go from subdiffusion to ballistic motion as we vary the angular noise strength and confinement intensity. We argued that the subdiffusion regimes appear as consequence of the restricted space available for diffusion (achieved either through large confinement and/or large noise); we saw that when there are large confinement and noise intensity, a similar configuration to single file diffusion appears; on the other hand, normal and superdiffusive regimes may occur due to low noise (longer persistent motion), either through exploring a wider region around the potential minimum in the transverse direction (low confinement), or by forming independent clusters (high confinement).

  12. Evaluation of the Kirkwood approximation for the diffusivity of channel-confined DNA chains in the de Gennes regime

    PubMed Central

    Dorfman, Kevin D.

    2015-01-01

    We use Brownian dynamics with hydrodynamic interactions to calculate both the Kirkwood (short-time) diffusivity and the long-time diffusivity of DNA chains from free solution down to channel confinement in the de Gennes regime. The Kirkwood diffusivity in confinement is always higher than the diffusivity obtained from the mean-squared displacement of the center-of-mass, as is the case in free solution. Moreover, the divergence of the local diffusion tensor, which is non-zero in confinement, makes a negligible contribution to the latter diffusivity in confinement. The maximum error in the Kirkwood approximation in our simulations is about 2% for experimentally relevant simulation times. The error decreases with increasing confinement, consistent with arguments from blob theory and the molecular-weight dependence of the error in free solution. In light of the typical experimental errors in measuring the properties of channel-confined DNA, our results suggest that the Kirkwood approximation is sufficiently accurate to model experimental data. PMID:25945138

  13. Acid gas removal in a confined vortex scrubber

    SciTech Connect

    Hura, H.S.; Diehl, R.C.

    1994-12-31

    This paper reports results of acid gas removal tests performed on a confined vortex scrubber. The confined vortex scrubber (CVS) was developed at the Energy Technology Office of Textron Defense Systems (ETO/TDS) under company as well as Pittsburgh Energy Technology Center (PETC) funding. Previous tests on the CVS have demonstrated > 98% capture for sub-micron fly ash particles, as well as high mercury vapor removal from gas streams. In the recent tests water, sodium hydroxide, and sodium sulfite and bisulfite solutions were used to scrub out hydrochloric, acid gas (HCl) and sulfur dioxide (SO{sub 2}) doped in air supplied to the CVS. The capture efficiency was determined as a function of acid gas concentration, liquor flow rate, and liquor type. When the liquor was supplied only inside the CVS squirrel cage the HCl removal efficiency varied from 85--100% while the SO{sub 2} removal efficiency varied from 60--80%. Significantly higher captures were obtained at 1/3 rd the liquor flow rate by spraying the liquor upstream of the CVS in the air inlet pipe, and increasing the liquor/gas contact time. Total HCl captures > 95% and SO{sub 2} captures > 85% were obtained at a liquid/gas ratio of only 2 gal/1,000 acf for acid gas concentrations of 200--1,800 ppmv. There were no significant differences in the SO{sub 2}, scrubbing ability of the three sodium solutions, and the HCl scrubbing ability of water and a sodium hydroxide solution. These results suggest that the acid gas capture in the CVS is mass transfer limited because of the extremely short gas residence times in the CVS.

  14. Confinement and Tritium Stripping Systems for APT Tritium Processing

    SciTech Connect

    Hsu, R.H.; Heung, L.K.

    1997-10-20

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented.

  15. Electron Energy Confinement for HHFW Heating and Current Drive Phasing on NSTX

    SciTech Connect

    J.C. Hosea; S. Bernabei; T. Biewer; B. LeBlanc; C.K. Phillips; J.R. Wilson; D. Stutman; P. Ryan; D.W. Swain

    2005-05-03

    Thomson scattering laser pulses are synchronized relative to modulated HHFW power to permit evaluation of the electron energy confinement time during and following HHFW pulses for both heating and current drive antenna phasing. Profile changes resulting from instabilities require that the total electron stored energy, evaluated by integrating the midplane electron pressure P(sub)e(R) over the magnetic surfaces prescribed by EFIT analysis, be used to derive the electron energy confinement time. Core confinement is reduced during a sawtooth instability but, although the electron energy is distributed outward by the sawtooth, the bulk electron energy confinement time is essentially unaffected. The radial deposition of energy into the electrons is noticeably more peaked for current drive phasing (longer wavelength excitation) relative to that for heating phasing (shorter wavelength excitation) as is expected theoretically. However, the power delivered to the core plasma is reduced consider ably for the current drive phasing, indicating that surface/peripheral damping processes play a more important role for this case.

  16. Engineering tube shapes to control confined transport

    NASA Astrophysics Data System (ADS)

    Reguera, D.; Rubi, J. M.

    2014-12-01

    Transport of particles in confined structures can be modeled by means of diffusion in a potential of entropic nature. The entropic transport model proposes a drift-diffusion kinetic equation for the evolution of the probability density in which the diffusion coefficient depends on position and the drift term contains an entropic force. The model has been applied to analyze transport in single cavities and through periodic structures of different shape, and to investigate the nature of non-equilibrium fluctuations as well. The transport characteristics depends strongly on the contour of the region through which particles move, which defines the entropic potential. We show that the form of the entropic potential can be properly designed to optimize and govern how molecules diffuse and get drifted in tortuous channels. The shape of a tube or channel can be smartly engineered to control transport for the desired application.

  17. Planning for greater-confinement disposal

    SciTech Connect

    Gilbert, T.L.; Luner, C.; Meshkov, N.K.; Trevorrow, L.E.; Yu, C.

    1984-01-01

    This contribution is a progress report for preparation of a document that will summarize procedures and technical information needed to plan for and implement greater-confinement disposal (GCD) of low-level radioactive waste. Selection of a site and a facility design (Phase I), and construction, operation, and extended care (Phase II) will be covered in the document. This progress report is limited to Phase I. Phase I includes determination of the need for GCD, design alternatives, and selection of a site and facility design. Alternative designs considered are augered shafts, deep trenches, engineered structures, high-integrity containers, hydrofracture, and improved waste form. Design considerations and specifications, performance elements, cost elements, and comparative advantages and disadvantages of the different designs are covered. Procedures are discussed for establishing overall performance objectives and waste-acceptance criteria, and for comparative assessment of the performance and cost of the different alternatives. 16 references.

  18. Greater confinement disposal of radioactive wastes

    SciTech Connect

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive waste (LLW) includes a broad spectrum of different radionuclide concentrations, half-lives, and hazards. Standard shallow-land burial practice can provide adequate protection of public health and safety for most LLW. A small volume fraction (approx. 1%) containing most of the activity inventory (approx. 90%) requires specific measures known as greater-confinement disposal (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics.

  19. Honeycomb optical lattices with harmonic confinement

    SciTech Connect

    Block, J. Kusk; Nygaard, N.

    2010-05-15

    We consider the fate of the Dirac points in the spectrum of a honeycomb optical lattice in the presence of a harmonic confining potential. By numerically solving the tight binding model, we calculate the density of states and find that the energy dependence can be understood from analytical arguments. In addition, we show that the density of states of the harmonically trapped lattice system can be understood by application of a local density approximation based on the density of states in the homogeneous lattice. The Dirac points are found to survive locally in the trap as evidenced by the local density of states. Furthermore, they give rise to a distinct spatial profile of a noninteracting Fermi gas.

  20. Fabrication issues of oxide-confined VCSELs

    SciTech Connect

    Geib, K.M.; Choquette, K.D.; Hou, H.Q.; Hammons, B.E.

    1997-04-01

    To insert high-performance oxide-confined vertical-cavity surface- emitting lasers (VCSELs) into the manufacturing arena, we have examined the critical parameters that must be controlled to establish a repeatable and uniform wet thermal oxidation process for AlGaAs. These parameters include the AlAs mole fraction, sample temperature, carrier gas flow, and bubbler water temperature. Knowledge of these parameters has enable the compilation of oxidation rate data for AlGaAs which exhibits an Arrhenius rate dependence. The compositionally dependent activation energies for Al{sub x}Ga{sub 1-x}As layers of x=1.00, 0.98, and 0.92 are found to be 1.24, 1.75, and 1.88 eV, respectively. 7 figs, 1 tab, 14 refs.

  1. Generalized Lawson Criteria for Inertial Confinement Fusion

    SciTech Connect

    Tipton, Robert E.

    2015-08-27

    The Lawson Criterion was proposed by John D. Lawson in 1955 as a general measure of the conditions necessary for a magnetic fusion device to reach thermonuclear ignition. Over the years, similar ignition criteria have been proposed which would be suitable for Inertial Confinement Fusion (ICF) designs. This paper will compare and contrast several ICF ignition criteria based on Lawson’s original ideas. Both analytical and numerical results will be presented which will demonstrate that although the various criteria differ in some details, they are closely related and perform similarly as ignition criteria. A simple approximation will also be presented which allows the inference of each ignition parameter directly from the measured data taken on most shots fired at the National Ignition Facility (NIF) with a minimum reliance on computer simulations. Evidence will be presented which indicates that the experimentally inferred ignition parameters on the best NIF shots are very close to the ignition threshold.

  2. Dancing droplets: Contact angle, drag, and confinement

    NASA Astrophysics Data System (ADS)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  3. Fueling of magnetic-confinement devices

    SciTech Connect

    Milora, S.L.

    1981-01-01

    A general overview of the fueling of magnetic confinement devices is presented, with particular emphasis on recent experimental results. Various practical fueling mechanisms are considered, such as cold gas inlet (or plasma edge fueling), neutral beam injection, and injection of high speed cryogenic hydrogen pellets. The central role played by charged particle transport and recycle of plasma particles from material surfaces in contact with the plasma is discussed briefly. The various aspects of hydrogen pellet injection are treated in detail, including applications to the production of high purity startup plasmas for stellarators and other devices, refueling of tokamak plasmas, pellet ablation theory, and the technology and performance characteristics of low and high speed pellet injectors.

  4. Jet-contaminant interactions in confined geometries

    NASA Astrophysics Data System (ADS)

    1985-02-01

    A numerical simulation is presented for investigation of the early phase of the flow interaction between a water jet and a chemical contaminant residing in cavities of a wall and in corners of two perpendicular walls. Such an interaction often occurs in surface decontamination processes. The flow model for this analysis is a two-dimensional, two-fluid flow governed by the unsteady Navier-Stokes equations. The equations were solved via finite difference schemes using the SOLA-VOF code. Computer plots of the flow development are presented. The results show that an inclined jet is more effective than a normal jet for decontaminating these confined geometries. In all flow cases studied, the impact pressure on the impingement wall far exceeds the corresponding steady-state dynamic pressure of the jet.

  5. Relativistic constituent quark model with infrared confinement

    SciTech Connect

    Branz, Tanja; Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Ivanov, Mikhail A.; Koerner, Juergen G.

    2010-02-01

    We refine the relativistic constituent quark model developed in our previous papers to include the confinement of quarks. It is done, first, by introducing the scale integration in the space of {alpha} parameters, and, second, by cutting this scale integration on the upper limit which corresponds to an infrared cutoff. In this manner one removes all possible thresholds present in the initial quark diagram. The cutoff parameter is taken to be the same for all physical processes. We adjust other model parameters by fitting the calculated quantities of the basic physical processes to available experimental data. As an application, we calculate the electromagnetic form factors of the pion and the transition form factors of the {omega} and {eta} Dalitz decays.

  6. Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement

    SciTech Connect

    Furth, H.P.

    1985-05-01

    The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved.

  7. Coaxial Compound Helicopter for Confined Urban Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Elmore, Joshua F.; Keen, Ernest B.; Gallaher, Andrew T.; Nunez, Gerardo F.

    2016-01-01

    A rotorcraft was designed for military operations in a confined urban environment. The specifications included major increases in useful load, range, and speed relative current aircraft capabilities, with a size constraint based on the dimensions of urban streets and intersections. Analysis showed that this combination of requirements is best satisfied by a coaxial main-rotor configuration, with lift compounding to off-load the rotors at high speed, and ducted fans under the rotor disk for propulsion. The baseline design is described, and the aircraft performance is summarized for utility, attack, MEDEVAC, and cargo delivery missions. The impact on size and performance is examined for a number of excursions, including lift-offset main rotors. Technology development required to achieve this advance in capability is recommended.

  8. Tokamak confinement projections and performance goals

    SciTech Connect

    Uckan, N.A.

    1988-01-01

    One key quantity to be determined in the design of burning-plasma devices (CIT, ITER, reactors, etc.) is the level of plasma current (I) required to meet the desired plasma performance goals (ignition, high Q, etc.) and device objectives (fusion power, wall loading, current drive power, etc.). It is shown that these goals and objectives can be expressed in terms of the ''figure-of-merit'' parameter IA/sup alpha//R/sup x/(/approximately/f(LB/sup y/), where A is the aspect ratio, R is the major radius, L(= R, a) is the characteristic length, B is the toroidal magnetic field on axis, and the exponents ..cap alpha.. /approximately/ 1 +- 0.5 and x /approximately/ 0-0.5 (y /approximately/ 1-2) depend on the confinement assumptions and operational limits. To reach ignition or high Q, the main goal is to optimize IA/sup alpha//R/sup x/, subject to other engineering design constraints. In a CIT-like device (with R /approximately/ 2 m, kappa /approximately/ 2, q/sub psi/ greater than or equal to 3), the ignition requirements is I(A/3)/sup alpha/ /approximately/ 9-15 MA for ''enhanced'' L-mode (H-mode) confinement scaling expressions; an ITER-like device (with R /approximately/ 5-6 m, kappa /approximately/ 2, q/sub psi/ greater than or equal to 3) would require I(A/3)/sup alpha/ /approximately/ 15-25 MA. These requirements are embodied in the present CIT (with I /approximately/ 11 MA, A /approximately 3.25) and ITER (with I /approximately/ 18-22, A /approximately/ 3.1-2.6) designs. 12 refs., 1 fig., 3 tabs.

  9. Dynamics of colloids confined in microcylinders.

    PubMed

    Ghosh, S; Wijnperlé, D; Mugele, F; Duits, M H G

    2016-02-01

    We studied both global and local effects of cylindrical confinement on the diffusive behavior of hard sphere (HS) colloids. Using confocal scanning laser microscopy (CSLM) and particle tracking, we measured the mean squared displacement (MSD) of 1 micron sized silica particles in water-glycerol. This combination of fluid and setup allowed us to measure MSDs in a 4-dimensional parameter space, defined by the HS volume fraction (Φ: 0.05-0.39), cylinder radius (R: 2.5-20 micron), distance to the wall (z) and lagtime (τ: 0.03-60 s). MSDs for the entire cylinder confirm earlier findings that both narrowing the cylinder and populating it cause a slower dynamics. Additionally a decrease in R was found to cause a stronger ordering of the fluid. The effect of confinement on dynamics was further examined as a function of (z) location. For the largest cylinder (with minor curvature), we found that the strong decrease in MSD near the wall, becomes much less pronounced for higher Φ. Analyzing the radial (r) and azimuthal (θ) components, we found pronounced differences in the z-dependence that were 'hidden' in the total MSD. Near the wall, the r-MSD shows a much steeper z-dependence while at larger z, it shows a remarkable anti-correlation with the (peaked) density n(z). Also the dependence of the r-MSD on lagtime correlates with n(z): diffusive in between layers, but subdiffusive inside layers. These observations bring earlier findings together, while also shedding new light on the diffusive dynamics of concentrated colloids in narrow capillaries. PMID:26670697

  10. Confinement-induced resonances in low-dimensional quantum systems.

    PubMed

    Haller, Elmar; Mark, Manfred J; Hart, Russell; Danzl, Johann G; Reichsöllner, Lukas; Melezhik, Vladimir; Schmelcher, Peter; Nägerl, Hanns-Christoph

    2010-04-16

    We report on the observation of confinement-induced resonances in strongly interacting quantum-gas systems with tunable interactions for one- and two-dimensional geometry. Atom-atom scattering is substantially modified when the s-wave scattering length approaches the length scale associated with the tight transversal confinement, leading to characteristic loss and heating signatures. Upon introducing an anisotropy for the transversal confinement we observe a splitting of the confinement-induced resonance. With increasing anisotropy additional resonances appear. In the limit of a two-dimensional system we find that one resonance persists. PMID:20481986

  11. The cruel and unusual phenomenology of solitary confinement

    PubMed Central

    Gallagher, Shaun

    2014-01-01

    What happens when subjects are deprived of intersubjective contact? This paper looks closely at the phenomenology and psychology of one example of that deprivation: solitary confinement. It also puts the phenomenology and psychology of solitary confinement to use in the legal context. Not only is there no consensus on whether solitary confinement is a “cruel and unusual punishment,” there is no consensus on the definition of the term “cruel” in the use of that legal phrase. I argue that we can find a moral consensus on the meaning of “cruelty” by looking specifically at the phenomenology and psychology of solitary confinement. PMID:24971072

  12. Confinement dynamics of a semiflexible chain inside nano-spheres

    NASA Astrophysics Data System (ADS)

    Fathizadeh, A.; Heidari, Maziar; Eslami-Mossallam, B.; Ejtehadi, M. R.

    2013-07-01

    We study the conformations of a semiflexible chain, confined in nano-scaled spherical cavities, under two distinct processes of confinement. Radial contraction and packaging are employed as two confining procedures. The former method is performed by gradually decreasing the diameter of a spherical shell which envelopes a confined chain. The latter procedure is carried out by injecting the chain inside a spherical shell through a hole on the shell surface. The chain is modeled with a rigid body molecular dynamics simulation and its parameters are adjusted to DNA base-pair elasticity. Directional order parameter is employed to analyze and compare the confined chain and the conformations of the chain for two different sizes of the spheres are studied in both procedures. It is shown that for the confined chains in the sphere sizes of our study, they appear in spiral or tennis-ball structures, and the tennis-ball structure is more likely to be observed in more compact confinements. Our results also show that the dynamical procedure of confinement and the rate of the confinement are influential parameters of the structure of the chain inside spherical cavities.

  13. Motion blur filtering: A statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory.

    PubMed

    Calderon, Christopher P

    2016-05-01

    Single particle tracking (SPT) can aid in understanding a variety of complex spatiotemporal processes. However, quantifying diffusivity and confinement forces from individual live cell trajectories is complicated by inter- and intratrajectory kinetic heterogeneity, thermal fluctuations, and (experimentally resolvable) statistical temporal dependence inherent to the underlying molecule's time correlated confined dynamics experienced in the cell. The problem is further complicated by experimental artifacts such as localization uncertainty and motion blur. The latter is caused by the tagged molecule emitting photons at different spatial positions during the exposure time of a single frame. The aforementioned experimental artifacts induce spurious time correlations in measured SPT time series that obscure the information of interest (e.g., confinement forces and diffusivity). We develop a maximum likelihood estimation (MLE) technique that decouples the above noise sources and systematically treats temporal correlation via time series methods. This ultimately permits a reliable algorithm for extracting diffusivity and effective forces in confined or unconfined environments. We illustrate how our approach avoids complications inherent to mean square displacement or autocorrelation techniques. Our algorithm modifies the established Kalman filter (which does not handle motion blur artifacts) to provide a likelihood based time series estimation procedure. The result extends A. J. Berglund's motion blur model [Phys. Rev. E 82, 011917 (2010)PLEEE81539-375510.1103/PhysRevE.82.011917] to handle confined dynamics. The approach can also systematically utilize (possibly time dependent) localization uncertainty estimates afforded by image analysis if available. This technique, which explicitly treats confinement and motion blur within a time domain MLE framework, uses an exact likelihood (time domain methods facilitate analyzing nonstationary signals). Our estimator is demonstrated

  14. Motion blur filtering: A statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory

    NASA Astrophysics Data System (ADS)

    Calderon, Christopher P.

    2016-05-01

    Single particle tracking (SPT) can aid in understanding a variety of complex spatiotemporal processes. However, quantifying diffusivity and confinement forces from individual live cell trajectories is complicated by inter- and intratrajectory kinetic heterogeneity, thermal fluctuations, and (experimentally resolvable) statistical temporal dependence inherent to the underlying molecule's time correlated confined dynamics experienced in the cell. The problem is further complicated by experimental artifacts such as localization uncertainty and motion blur. The latter is caused by the tagged molecule emitting photons at different spatial positions during the exposure time of a single frame. The aforementioned experimental artifacts induce spurious time correlations in measured SPT time series that obscure the information of interest (e.g., confinement forces and diffusivity). We develop a maximum likelihood estimation (MLE) technique that decouples the above noise sources and systematically treats temporal correlation via time series methods. This ultimately permits a reliable algorithm for extracting diffusivity and effective forces in confined or unconfined environments. We illustrate how our approach avoids complications inherent to mean square displacement or autocorrelation techniques. Our algorithm modifies the established Kalman filter (which does not handle motion blur artifacts) to provide a likelihood based time series estimation procedure. The result extends A. J. Berglund's motion blur model [Phys. Rev. E 82, 011917 (2010), 10.1103/PhysRevE.82.011917] to handle confined dynamics. The approach can also systematically utilize (possibly time dependent) localization uncertainty estimates afforded by image analysis if available. This technique, which explicitly treats confinement and motion blur within a time domain MLE framework, uses an exact likelihood (time domain methods facilitate analyzing nonstationary signals). Our estimator is demonstrated to be

  15. Hiding and Confining Charges via Tube-Like Wormholes

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo; Kaganovich, Alexander; Nissimov, Emil; Pacheva, Svetlana

    -extent intermediate region of dS2 between its two horizons. Both "throats" are occupied by the two oppositely charged lightlike branes and the whole electric flux produced by the latter is confined entirely within the middle finite-extent "tube-like" "universe." A crucial ingredient is the special form of the nonlinear gauge field action, which contains both the standard Maxwell term as well as a square root of the latter. This theory was previously shown to produce a QCD-like confining dynamics in flat space-time.

  16. Plasma confinement to enhance the momentum coupling coefficient in ablative laser micro-propulsion: a novel approach

    NASA Astrophysics Data System (ADS)

    Ahmad, Muhammad Raza; Jamil, Yasir; Qaiser Zakaria, M.; Hussain, Tousif; Ahmad, Riaz

    2015-07-01

    We introduce for the first time the novel idea of manipulating the momentum coupling coefficient using plasma confinement and shock wave reflection from the cavity walls. The plasma was confined using cylindrical geometries of various cavity aspect ratios to manipulate the momentum coupling coefficient (C m ). The Nd: YAG laser (532 nm, 5 ns pulse duration) was focused on the ferrite sample surface to produce plasma in a region surrounded by cylindrical cavity walls. The multiple reflections of the shockwaves from the cavity walls confined the laser-induced plasma to the central region of the cavity that subsequently resulted in a significant enhancement of the momentum coupling coefficient values. The plasma shielding effect has also been observed for particular values of laser fluencies and cavity aspect ratios. Compared with the direct ablation, the confined ablation provides an effective way to obtain high C m values.

  17. Final report for confinement vessel analysis. Task 3, Analysis of confinement vessel doors

    SciTech Connect

    Lewis, B.B.

    1993-12-31

    The confinement vessel has five closure doors of two different sizes. The vessel must withstand an initial dynamic load and a quasi-static internal pressure with no leakage of gases through the port seals. Task 3 of the Confinement Vessel Analysis Program was to assess the doors for safety. Of primary concern is the integrity of the seal. This encompasses the structural integrity of the door and nozzle as separate structural elements and the relative motion between the door and nozzle which could cause leakage of gases around the seals. In addition, the authors would like to obtain a better understanding of the effect of the bolt preload, especially as it affects the dynamic response of the structure. The authors explain the objectives of the task in Section 1, describe the models used for the analyses in Section 2, and give results in Section 3. They list conclusions and recommendations in Section 4.

  18. Efficiency of passive magnetic-confinement methods for rapidly rotating rings

    NASA Astrophysics Data System (ADS)

    Hull, John R.

    1985-11-01

    Rapidly rotating, large-diameter rings have potential for use as low-cost electrical-energy storage devices. The efficiency of passive electromagnetic and electrodynamic methods to confine the rotating rings is investigated. Confinement methods examined include repulsive image force, repulsive null flux, attractive image force, and radially stable attractive. For each method the decay time is given in terms of the ring material properties and design parameters. The repulsive techniques are shown to have decay times of less than a day when optimized within a set of practical design constraints. The two attractive levitation methods result in the largest decay times, but are inherently unstable. When null-flux stabilizers are used with attractive levitation, the decay time is shown to depend on magnetic field inhomogeneity. Finally, an inherently stable and very efficient attractive levitation method is proposed. The new method is based on an analogy with alternating-gradient synchrotrons and should have application in high-speed ground transportation.

  19. Flow regimes for fluid injection into a confined porous medium

    SciTech Connect

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.

  20. Flow regimes for fluid injection into a confined porous medium

    DOE PAGES

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  1. Dynamics of viral hemorrhagic septicemia, viral erythrocytic necrosis and ichthyophoniasis in confined juvenile Pacific herring Clupea pallasii

    USGS Publications Warehouse

    Hershberger, P.; Hart, A.; Gregg, J.; Elder, N.; Winton, J.

    2006-01-01

    Capture of wild, juvenile herring Clupea pallasii from Puget Sound (Washington, USA) and confinement in laboratory tanks resulted in outbreaks of viral hemorrhagic septicemia (VHS), viral erythrocytic necrosis (VEN) and ichthyophoniasis; however, the timing and progression of the 3 diseases differed. The VHS epidemic occurred first, characterized by an initially low infection prevalence that increased quickly with confinement time, peaking at 93 to 98% after confinement for 6 d, then decreasing to negligible levels after 20 d. The VHS outbreak was followed by a VEN epidemic that, within 12 d of confinement, progressed from undetectable levels to 100% infection prevalence with >90% of erythrocytes demonstrating inclusions. The VEN epidemic persisted for 54 d, after which the study was terminated, and was characterized by severe blood dyscrasias including reduction of mean hematocrit from 42 to 6% and replacement of mature erythrocytes with circulating erythroblasts and ghost cells. All fish with ichthyophoniasis at capture died within the first 3 wk of confinement, probably as a result of the multiple stressors associated with capture, transport, confinement, and progression of concomitant viral diseases. The results illustrate the differences in disease ecology and possible synergistic effects of pathogens affecting marine fish and highlight the difficulty in ascribing a single causation to outbreaks of disease among populations of wild fishes. ?? Inter-Research 2006.

  2. Thermal-mechanical fluctuations of fluid membranes in confined geometries: The case of soft confinement

    SciTech Connect

    Podgornik, R.; Parsegian, V.A. )

    1992-02-01

    By definition, membrane or macromolecular assembly is an event of molecular confinement against the configurational entropy of a disordered state. Bilayer membranes under progressive confinement experience a continual damping of undulatory fluctuations, first interpreted as a steric force (Helfrich. Z. Naturforsch. 1978). This paper uses a new, diffusion-equation formalism based on the Feynman-type variational principle to describe how direct interbilayer forces - of hydration, electrostatic double layers, and van der Waals attraction - confine membrane fluctuations. We recover theoretical results to examine measured forces in multilamellar arrays showing that [open quotes]soft[close quotes] collisions, through long-range forces, create a mutual enhancement of both the direct forces and the undulatory steric interactions. Thus, there is yet another way to resolve the old, but false, dilemma to choose between steric and direct forces driving membrane assembly. One may develop a systematic connection between bilayer charge, hydration, and flexibility and the action of configurational entropic forces. The results make clear that one should measure forces between membranes or macromolecules in a way that allows them to express their native mechanical freedom. 15 refs., 3 figs.

  3. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinementa)

    NASA Astrophysics Data System (ADS)

    Betti, R.; Chang, P. Y.; Spears, B. K.; Anderson, K. S.; Edwards, J.; Fatenejad, M.; Lindl, J. D.; McCrory, R. L.; Nora, R.; Shvarts, D.

    2010-05-01

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Pτ for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter χ including pressure, confinement time, and temperature is derived to complement the product Pτ. A metric for performance assessment should include both χ and Pτ. The ignition parameter and the product Pτ are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Pτ ˜1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Pτ ˜1 atm s. Since OMEGA implosions are relatively cold (T ˜2 keV), their overall ignition parameter χ ˜0.02-0.03 is ˜5× lower than in JET (χ ˜0.13), where the average temperature is about 10 keV.

  4. Inelastic Neutron Scattering Studies of the Dynamics of Glass-Forming Materials in Confinement

    NASA Astrophysics Data System (ADS)

    Zorn, Reiner

    2015-03-01

    The study of the dynamics of glass-forming liquids in nanoscopic confinement may contribute to the understanding of the glass transition. Especially, the question of a cooperativity length scale may be addressed. In this presentation, results obtained by inelastic neutron scattering are presented. The first experiments were done to study the α relaxation of glass-forming liquids and polymers in nanoporous silica. Neutron scattering is a suitable method to study such composite materials because the scattering of the liquid component can be emphasized by proper choice of isotopes. By combining time-of-flight spectroscopy and backscattering spectroscopy it is possible to cover the large dynamical range spanned by the dynamics of glass-forming materials. The experiments demonstrated a broadening of the spectrum of relaxation times with faster as well as slower components compared to the bulk. In later experiments `soft' confinement in a microemulsion was used to reduce surface effects. In this system a definite acceleration of the dynamics was observed. In all cases the glass-specific fast vibrational dynamics (boson peak) was also studied, revealing a characteristic confinement dependence which allows conclusions on its nature. Finally, studies were carried out on polymers by neutron spin echo spectroscopy with the aim of observing the confinement effect on polymer specific dynamics (Rouse motion). These studies showed that a comparatively simple model is able to explain the deviation from bulk behavior.

  5. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support

    SciTech Connect

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester's Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  6. Dynamic mechanical analysis of supercooled water in nanoporous confinement

    NASA Astrophysics Data System (ADS)

    Soprunyuk, Viktor; Schranz, Wilfried; Huber, Patrick

    2016-08-01

    Dynamical mechanical analysis (\\text{DMA})(f=0.2\\text{--}100 \\text{Hz}) is used to study the dynamics of confined water in mesoporous Gelsil (2.6 nm and 5 nm pores) and Vycor (10 nm) in the temperature range from T=80 \\text{K} to 300 K. Confining water into nanopores partly suppresses crystallization and allows us to perform measurements of supercooled water below 235 K, i.e., in water's so-called “no man's land”, in parts of the pores. Two distinct relaxation peaks are observed in tan δ around T1 ≈ 145 \\text{K} (P1) and T2 ≈ 205 \\text{K}~(P2) for Gelsil 2.6 nm and Gelsil 5 nm at 0.2 Hz. Both peaks shift to higher T with increasing pore size d and change with f in a systematic way, typical of an Arrhenius behaviour of the corresponding relaxation times. For P 1 we obtain an average activation energy of E\\text{a} = 0.47 \\text{eV} , in good agreement with literature values, suggesting that P 1 corresponds to the glass transition of supercooled water. The observation of a pronounced softening of the Young's modulus around 165 K (for Gelsil 2.6 nm at 0.2 Hz) supports the conjecture of a glass-to-liquid transition in the vicinity of P 1. In addition we find a clear-cut (1/d)-dependence of the calculated glass transition temperatures which extrapolates to T_\\text{g}(1/d=0)=136 \\text{K} , in agreement with the traditional value of water.

  7. Confinement-driven increase in ionomer thin-film modulus.

    PubMed

    Page, Kirt A; Kusoglu, Ahmet; Stafford, Christopher M; Kim, Sangcheol; Kline, R Joseph; Weber, Adam Z

    2014-05-14

    Ion-conductive polymers, or ionomers, are critical materials for a wide range of electrochemical technologies. For optimizing the complex heterogeneous structures in which they occur, there is a need to elucidate the governing structure-property relationships, especially at nanoscale dimensions where interfacial interactions dominate the overall materials response due to confinement effects. It is widely acknowledged that polymer physical behavior can be drastically altered from the bulk when under confinement and the literature is replete with examples thereof. However, there is a deficit in the understanding of ionomers when confined to the nanoscale, although it is apparent from literature that confinement can influence ionomer properties. Herein we show that as one particular ionomer, Nafion, is confined to thin films, there is a drastic increase in the modulus over the bulk value, and we demonstrate that this stiffening can explain previously observed deviations in materials properties such as water transport and uptake upon confinement. Moreover, we provide insight into the underlying confinement-induced stiffening through the application of a simple theoretical framework based on self-consistent micromechanics. This framework can be applied to other polymer systems and assumes that as the polymer is confined the mechanical response becomes dominated by the modulus of individual polymer chains.

  8. LAGOON WATER FROM CONFINED ANIMAL FEED OPERATIONS AND AMPHIBIAN DEVELOPMENT

    EPA Science Inventory


    Lagoon Water from Confined Animal Feed Operations and Amphibian Development. Dumont, J. N.* and Slagle, S., Oklahoma State University, Stillwater, OK, and Hutchins, S. R., U.S. Environmental Protection Agency (NRMRL/SPRD), Ada, OK. There is some evidence that confined anima...

  9. 25 CFR 141.21 - Trade confined to premises.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Trade confined to premises. 141.21 Section 141.21 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES BUSINESS PRACTICES ON THE NAVAJO, HOPI AND ZUNI RESERVATIONS General Business Practices § 141.21 Trade confined to premises....

  10. 25 CFR 141.21 - Trade confined to premises.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Trade confined to premises. 141.21 Section 141.21 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES BUSINESS PRACTICES ON THE NAVAJO, HOPI AND ZUNI RESERVATIONS General Business Practices § 141.21 Trade confined to premises....

  11. 25 CFR 141.21 - Trade confined to premises.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Trade confined to premises. 141.21 Section 141.21 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES BUSINESS PRACTICES ON THE NAVAJO, HOPI AND ZUNI RESERVATIONS General Business Practices § 141.21 Trade confined to premises....

  12. 25 CFR 141.21 - Trade confined to premises.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Trade confined to premises. 141.21 Section 141.21 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES BUSINESS PRACTICES ON THE NAVAJO, HOPI AND ZUNI RESERVATIONS General Business Practices § 141.21 Trade confined to premises....

  13. Apparatus for Demonstrating Confined and Unconfined Aquifer Characteristics.

    ERIC Educational Resources Information Center

    Gillham, Robert W.; O'Hannesin, Stephanie F.

    1984-01-01

    Students in hydrogeology classes commonly have difficulty appreciating differences between the mechanisms of water release from confined and unconfined aquifers. Describes a simple and inexpensive laboratory model for demonstrating the hydraulic responses of confined and unconfined aquifers to pumping. Includes a worked example to demonstrate the…

  14. 29 CFR 1910.146 - Permit-required confined spaces.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... available to retrieve personnel from vertical type permit spaces more than 5 feet (1.52 m) deep. (4) If an... 29 Labor 5 2012-07-01 2012-07-01 false Permit-required confined spaces. 1910.146 Section 1910.146...-required confined spaces. (a) Scope and application. This section contains requirements for practices...

  15. 29 CFR 1910.146 - Permit-required confined spaces.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... available to retrieve personnel from vertical type permit spaces more than 5 feet (1.52 m) deep. (4) If an... 29 Labor 5 2011-07-01 2011-07-01 false Permit-required confined spaces. 1910.146 Section 1910.146...-required confined spaces. (a) Scope and application. This section contains requirements for practices...

  16. A method to estimate groundwater depletion from confining layers

    USGS Publications Warehouse

    Konikow, L.F.; Neuzil, C.E.

    2007-01-01

    Although depletion of storage in low-permeability confining layers is the source of much of the groundwater produced from many confined aquifer systems, it is all too frequently overlooked or ignored. This makes effective management of groundwater resources difficult by masking how much water has been derived from storage and, in some cases, the total amount of water that has been extracted from an aquifer system. Analyzing confining layer storage is viewed as troublesome because of the additional computational burden and because the hydraulic properties of confining layers are poorly known. In this paper we propose a simplified method for computing estimates of confining layer depletion, as well as procedures for approximating confining layer hydraulic conductivity (K) and specific storage (Ss) using geologic information. The latter makes the technique useful in developing countries and other settings where minimal data are available or when scoping calculations are needed. As such, our approach may be helpful for estimating the global transfer of groundwater to surface water. A test of the method on a synthetic system suggests that the computational errors will generally be small. Larger errors will probably result from inaccuracy in confining layer property estimates, but these may be no greater than errors in more sophisticated analyses. The technique is demonstrated by application to two aquifer systems: the Dakota artesian aquifer system in South Dakota and the coastal plain aquifer system in Virginia. In both cases, depletion from confining layers was substantially larger than depletion from the aquifers.

  17. 25 CFR 141.21 - Trade confined to premises.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Trade confined to premises. 141.21 Section 141.21 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES BUSINESS PRACTICES ON THE NAVAJO, HOPI AND ZUNI RESERVATIONS General Business Practices § 141.21 Trade confined to premises....

  18. Plutonium Finishing Plant assessment of confinement system bypass leakage

    SciTech Connect

    Dick, J.D.

    1996-09-30

    The purpose of this report is to document walk-through`s of the safety class confinement systems at the Plutonium Finishing Plant (PFP). In addition this document outlines the actions taken to assess the confinement system for bypass leakage as well as establishing disposition for discovered deficiencies at the PFP.

  19. Protein folding under confinement: A role for solvent

    PubMed Central

    Lucent, Del; Vishal, V.; Pande, Vijay S.

    2007-01-01

    Although most experimental and theoretical studies of protein folding involve proteins in vitro, the effects of spatial confinement may complicate protein folding in vivo. In this study, we examine the folding dynamics of villin (a small fast folding protein) with explicit solvent confined to an inert nanopore. We have calculated the probability of folding before unfolding (Pfold) under various confinement regimes. Using Pfold correlation techniques, we observed two competing effects. Confining protein alone promotes folding by destabilizing the unfolded state. In contrast, confining both protein and solvent gives rise to a solvent-mediated effect that destabilizes the native state. When both protein and solvent are confined we see unfolding to a compact unfolded state different from the unfolded state seen in bulk. Thus, we demonstrate that the confinement of solvent has a significant impact on protein kinetics and thermodynamics. We conclude with a discussion of the implications of these results for folding in confined environments such as the chaperonin cavity in vivo. PMID:17563390

  20. 8 CFR 1236.2 - Confined aliens, incompetents, and minors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...(c) of 8 CFR chapter I. (b) Service custody and cost of maintenance. An alien confined because of... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Confined aliens, incompetents, and minors. 1236.2 Section 1236.2 Aliens and Nationality EXECUTIVE OFFICE FOR IMMIGRATION REVIEW, DEPARTMENT...