Sample records for confocal imaging analysis

  1. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo.

    PubMed

    Freeman, Esther E; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N; Anderson, R Rox; Tearney, Guillermo J; Kang, Dongkyun

    2018-04-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging.

  2. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo

    PubMed Central

    Freeman, Esther E.; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N.; Anderson, R. Rox; Tearney, Guillermo J.; Kang, Dongkyun

    2018-01-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging. PMID:29675328

  3. ConfocalGN: A minimalistic confocal image generator

    NASA Astrophysics Data System (ADS)

    Dmitrieff, Serge; Nédélec, François

    Validating image analysis pipelines and training machine-learning segmentation algorithms require images with known features. Synthetic images can be used for this purpose, with the advantage that large reference sets can be produced easily. It is however essential to obtain images that are as realistic as possible in terms of noise and resolution, which is challenging in the field of microscopy. We describe ConfocalGN, a user-friendly software that can generate synthetic microscopy stacks from a ground truth (i.e. the observed object) specified as a 3D bitmap or a list of fluorophore coordinates. This software can analyze a real microscope image stack to set the noise parameters and directly generate new images of the object with noise characteristics similar to that of the sample image. With a minimal input from the user and a modular architecture, ConfocalGN is easily integrated with existing image analysis solutions.

  4. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities

    PubMed Central

    Zehri, Aqib H.; Ramey, Wyatt; Georges, Joseph F.; Mooney, Michael A.; Martirosyan, Nikolay L.; Preul, Mark C.; Nakaji, Peter

    2014-01-01

    Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery. PMID:24872922

  5. Laser scanning confocal microscopy: history, applications, and related optical sectioning techniques.

    PubMed

    Paddock, Stephen W; Eliceiri, Kevin W

    2014-01-01

    Confocal microscopy is an established light microscopical technique for imaging fluorescently labeled specimens with significant three-dimensional structure. Applications of confocal microscopy in the biomedical sciences include the imaging of the spatial distribution of macromolecules in either fixed or living cells, the automated collection of 3D data, the imaging of multiple labeled specimens and the measurement of physiological events in living cells. The laser scanning confocal microscope continues to be chosen for most routine work although a number of instruments have been developed for more specific applications. Significant improvements have been made to all areas of the confocal approach, not only to the instruments themselves, but also to the protocols of specimen preparation, to the analysis, the display, the reproduction, sharing and management of confocal images using bioinformatics techniques.

  6. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores.

    PubMed

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2013-09-01

    Risks associated with pediatric reconstructive heart surgery include injury of the sinoatrial node (SAN) and atrioventricular node (AVN), requiring cardiac rhythm management using implantable pacemakers. These injuries are the result of difficulties in identifying nodal tissues intraoperatively. Here we describe an approach based on confocal microscopy and extracellular fluorophores to quantify tissue microstructure and identify nodal tissue. Using conventional 3-dimensional confocal microscopy we investigated the microstructural arrangement of SAN, AVN, and atrial working myocardium (AWM) in fixed rat heart. AWM exhibited a regular striated arrangement of the extracellular space. In contrast, SAN and AVN had an irregular, reticulated arrangement. AWM, SAN, and AVN tissues were beneath a thin surface layer of tissue that did not obstruct confocal microscopic imaging. Subsequently, we imaged tissues in living rat hearts with real-time fiber-optics confocal microscopy. Fiber-optics confocal microscopy images resembled images acquired with conventional confocal microscopy. We investigated spatial regularity of tissue microstructure from Fourier analysis and second-order image moments. Fourier analysis of fiber-optics confocal microscopy images showed that the spatial regularity of AWM was greater than that of nodal tissues (37.5 ± 5.0% versus 24.3 ± 3.9% for SAN and 23.8 ± 3.7% for AVN; P<0.05). Similar differences of spatial regularities were revealed from second-order image moments (50.0 ± 7.3% for AWM versus 29.3 ± 6.7% for SAN and 27.3 ± 5.5% for AVN; P<0.05). The study demonstrates feasibility of identifying nodal tissue in living heart using extracellular fluorophores and fiber-optics confocal microscopy. Application of the approach in pediatric reconstructive heart surgery may reduce risks of injuring nodal tissues.

  7. Advances in combined endoscopic fluorescence confocal microscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Risi, Matthew D.

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure. Results from an ongoing clinical study to detect ovarian cancer with a novel confocal fluorescent microendoscope are presented. As an imaging modality, confocal fluorescence microendoscopy typically requires exogenous fluorophores, has a relatively limited penetration depth (100 μm), and often employs specialized aperture configurations to achieve real-time imaging in vivo. Two primary research directions designed to overcome these limitations and improve diagnostic capability are presented. Ideal confocal imaging performance is obtained with a scanning point illumination and confocal aperture, but this approach is often unsuitable for real-time, in vivo biomedical imaging. By scanning a slit aperture in one direction, image acquisition speeds are greatly increased, but at the cost of a reduction in image quality. The design, implementation, and experimental verification of a custom multi-point-scanning modification to a slit-scanning multi-spectral confocal microendoscope is presented. This new design improves the axial resolution while maintaining real-time imaging rates. In addition, the multi-point aperture geometry greatly reduces the effects of tissue scatter on imaging performance. Optical coherence tomography (OCT) has seen wide acceptance and FDA approval as a technique for ophthalmic retinal imaging, and has been adapted for endoscopic use. As a minimally invasive imaging technique, it provides morphological characteristics of tissues at a cellular level without requiring the use of exogenous fluorophores. OCT is capable of imaging deeper into biological tissue (˜1-2 mm) than confocal fluorescence microscopy. A theoretical analysis of the use of a fiber-bundle in spectral-domain OCT systems is presented. The fiber-bundle enables a flexible endoscopic design and provides fast, parallelized acquisition of the optical coherence tomography data. However, the multi-mode characteristic of the fibers in the fiber-bundle affects the depth sensitivity of the imaging system. A description of light interference in a multi-mode fiber is presented along with numerical simulations and experimental studies to illustrate the theoretical analysis.

  8. Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    PubMed Central

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-01-01

    Background Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Methods Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). Results We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. Conclusion The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes. PMID:18627634

  9. Extended Field Laser Confocal Microscopy (EFLCM): combining automated Gigapixel image capture with in silico virtual microscopy.

    PubMed

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-07-16

    Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes.

  10. 3D Image Analysis of Geomaterials using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Mulukutla, G.; Proussevitch, A.; Sahagian, D.

    2009-05-01

    Confocal microscopy is one of the most significant advances in optical microscopy of the last century. It is widely used in biological sciences but its application to geomaterials lingers due to a number of technical problems. Potentially the technique can perform non-invasive testing on a laser illuminated sample that fluoresces using a unique optical sectioning capability that rejects out-of-focus light reaching the confocal aperture. Fluorescence in geomaterials is commonly induced using epoxy doped with a fluorochrome that is impregnated into the sample to enable discrimination of various features such as void space or material boundaries. However, for many geomaterials, this method cannot be used because they do not naturally fluoresce and because epoxy cannot be impregnated into inaccessible parts of the sample due to lack of permeability. As a result, the confocal images of most geomaterials that have not been pre-processed with extensive sample preparation techniques are of poor quality and lack the necessary image and edge contrast necessary to apply any commonly used segmentation techniques to conduct any quantitative study of its features such as vesicularity, internal structure, etc. In our present work, we are developing a methodology to conduct a quantitative 3D analysis of images of geomaterials collected using a confocal microscope with minimal amount of prior sample preparation and no addition of fluorescence. Two sample geomaterials, a volcanic melt sample and a crystal chip containing fluid inclusions are used to assess the feasibility of the method. A step-by-step process of image analysis includes application of image filtration to enhance the edges or material interfaces and is based on two segmentation techniques: geodesic active contours and region competition. Both techniques have been applied extensively to the analysis of medical MRI images to segment anatomical structures. Preliminary analysis suggests that there is distortion in the shapes of the segmented vesicles, vapor bubbles, and void spaces due to the optical measurements, so corrective actions are being explored. This will establish a practical and reliable framework for an adaptive 3D image processing technique for the analysis of geomaterials using confocal microscopy.

  11. Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish

    PubMed Central

    Yang, Zhe; Mei, Li; Xia, Fei; Luo, Qingming; Fu, Ling; Gong, Hui

    2015-01-01

    In vivo functional imaging at single-neuron resolution is an important approach to visualize biological processes in neuroscience. Light sheet microscopy (LSM) is a cutting edge in vivo imaging technique that provides micron-scale spatial resolution at high frame rate. Due to the scattering and absorption of tissue, however, conventional LSM is inadequate to resolve cells because of the attenuated signal to noise ratio (SNR). Using dual-beam illumination and confocal dual-slit detection, here a dual-slit confocal LSM is demonstrated to obtain the SNR enhanced images with frame rate twice as high as line confocal LSM method. Through theoretical calculations and experiments, the correlation between the slit’s width and SNR was determined to optimize the image quality. In vivo whole brain structural imaging stacks and the functional imaging sequences of single slice were obtained for analysis of calcium activities at single-cell resolution. A two-fold increase in imaging speed of conventional confocal LSM makes it possible to capture the sequence of the neurons’ activities and help reveal the potential functional connections in the whole zebrafish’s brain. PMID:26137381

  12. Development of a viability standard curve for microencapsulated probiotic bacteria using confocal microscopy and image analysis software.

    PubMed

    Moore, Sarah; Kailasapathy, Kasipathy; Phillips, Michael; Jones, Mark R

    2015-07-01

    Microencapsulation is proposed to protect probiotic strains from food processing procedures and to maintain probiotic viability. Little research has described the in situ viability of microencapsulated probiotics. This study successfully developed a real-time viability standard curve for microencapsulated bacteria using confocal microscopy, fluorescent dyes and image analysis software. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models.

    PubMed

    Wood, Scott T; Dean, Brian C; Dean, Delphine

    2013-04-01

    This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Automated texture-based identification of ovarian cancer in confocal microendoscope images

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Rodriguez, Jeffrey J.; Rouse, Andrew R.; Brewer, Molly A.; Gmitro, Arthur F.

    2005-03-01

    The fluorescence confocal microendoscope provides high-resolution, in-vivo imaging of cellular pathology during optical biopsy. There are indications that the examination of human ovaries with this instrument has diagnostic implications for the early detection of ovarian cancer. The purpose of this study was to develop a computer-aided system to facilitate the identification of ovarian cancer from digital images captured with the confocal microendoscope system. To achieve this goal, we modeled the cellular-level structure present in these images as texture and extracted features based on first-order statistics, spatial gray-level dependence matrices, and spatial-frequency content. Selection of the best features for classification was performed using traditional feature selection techniques including stepwise discriminant analysis, forward sequential search, a non-parametric method, principal component analysis, and a heuristic technique that combines the results of these methods. The best set of features selected was used for classification, and performance of various machine classifiers was compared by analyzing the areas under their receiver operating characteristic curves. The results show that it is possible to automatically identify patients with ovarian cancer based on texture features extracted from confocal microendoscope images and that the machine performance is superior to that of the human observer.

  15. Quantification of confocal fluorescence microscopy for the detection of cervical intraepithelial neoplasia.

    PubMed

    Sheikhzadeh, Fahime; Ward, Rabab K; Carraro, Anita; Chen, Zhao Yang; van Niekerk, Dirk; Miller, Dianne; Ehlen, Tom; MacAulay, Calum E; Follen, Michele; Lane, Pierre M; Guillaud, Martial

    2015-10-24

    Cervical cancer remains a major health problem, especially in developing countries. Colposcopic examination is used to detect high-grade lesions in patients with a history of abnormal pap smears. New technologies are needed to improve the sensitivity and specificity of this technique. We propose to test the potential of fluorescence confocal microscopy to identify high-grade lesions. We examined the quantification of ex vivo confocal fluorescence microscopy to differentiate among normal cervical tissue, low-grade Cervical Intraepithelial Neoplasia (CIN), and high-grade CIN. We sought to (1) quantify nuclear morphology and tissue architecture features by analyzing images of cervical biopsies; and (2) determine the accuracy of high-grade CIN detection via confocal microscopy relative to the accuracy of detection by colposcopic impression. Forty-six biopsies obtained from colposcopically normal and abnormal cervical sites were evaluated. Confocal images were acquired at different depths from the epithelial surface and histological images were analyzed using in-house software. The features calculated from the confocal images compared well with those features obtained from the histological images and histopathological reviews of the specimens (obtained by a gynecologic pathologist). The correlations between two of these features (the nuclear-cytoplasmic ratio and the average of three nearest Delaunay-neighbors distance) and the grade of dysplasia were higher than that of colposcopic impression. The sensitivity of detecting high-grade dysplasia by analysing images collected at the surface of the epithelium, and at 15 and 30 μm below the epithelial surface were respectively 100, 100, and 92 %. Quantitative analysis of confocal fluorescence images showed its capacity for discriminating high-grade CIN lesions vs. low-grade CIN lesions and normal tissues, at different depth of imaging. This approach could be used to help clinicians identify high-grade CIN in clinical settings.

  16. Target-locking acquisition with real-time confocal (TARC) microscopy.

    PubMed

    Lu, Peter J; Sims, Peter A; Oki, Hidekazu; Macarthur, James B; Weitz, David A

    2007-07-09

    We present a real-time target-locking confocal microscope that follows an object moving along an arbitrary path, even as it simultaneously changes its shape, size and orientation. This Target-locking Acquisition with Realtime Confocal (TARC) microscopy system integrates fast image processing and rapid image acquisition using a Nipkow spinning-disk confocal microscope. The system acquires a 3D stack of images, performs a full structural analysis to locate a feature of interest, moves the sample in response, and then collects the next 3D image stack. In this way, data collection is dynamically adjusted to keep a moving object centered in the field of view. We demonstrate the system's capabilities by target-locking freely-diffusing clusters of attractive colloidal particles, and activelytransported quantum dots (QDs) endocytosed into live cells free to move in three dimensions, for several hours. During this time, both the colloidal clusters and live cells move distances several times the length of the imaging volume.

  17. Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images.

    PubMed

    Cunefare, David; Cooper, Robert F; Higgins, Brian; Katz, David F; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina

    2016-05-01

    Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice's coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice's coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images.

  18. Development of an add-on kit for scanning confocal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guo, Kaikai; Zheng, Guoan

    2017-03-01

    Scanning confocal microscopy is a standard choice for many fluorescence imaging applications in basic biomedical research. It is able to produce optically sectioned images and provide acquisition versatility to address many samples and application demands. However, scanning a focused point across the specimen limits the speed of image acquisition. As a result, scanning confocal microscope only works well with stationary samples. Researchers have performed parallel confocal scanning using digital-micromirror-device (DMD), which was used to project a scanning multi-point pattern across the sample. The DMD based parallel confocal systems increase the imaging speed while maintaining the optical sectioning ability. In this paper, we report the development of an add-on kit for high-speed and low-cost confocal microscopy. By adapting this add-on kit to an existing regular microscope, one can convert it into a confocal microscope without significant hardware modifications. Compared with current DMD-based implementations, the reported approach is able to recover multiple layers along the z axis simultaneously. It may find applications in wafer inspection and 3D metrology of semiconductor circuit. The dissemination of the proposed add-on kit under $1000 budget could also lead to new types of experimental designs for biological research labs, e.g., cytology analysis in cell culture experiments, genetic studies on multicellular organisms, pharmaceutical drug profiling, RNA interference studies, investigation of microbial communities in environmental systems, and etc.

  19. Pupil engineering for a confocal reflectance line-scanning microscope

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2011-03-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current confocal point-scanning systems are large, complex, and expensive. A confocal line-scanning microscope, utilizing a of linear array detector can be simpler, smaller, less expensive, and may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A line scanner may be implemented with a divided-pupil, half used for transmission and half for detection, or with a full-pupil using a beamsplitter. The premise is that a confocal line-scanner with either a divided-pupil or a full-pupil will provide high resolution and optical sectioning that would be competitive to that of the standard confocal point-scanner. We have developed a confocal line-scanner that combines both divided-pupil and full-pupil configurations. This combined-pupil prototype is being evaluated to determine the advantages and limitations of each configuration for imaging skin, and comparison of performance to that of commercially available standard confocal point-scanning microscopes. With the combined configuration, experimental evaluation of line spread functions (LSFs), contrast, signal-to-noise ratio, and imaging performance is in progress under identical optical and skin conditions. Experimental comparisons between divided-pupil and full-pupil LSFs will be used to determine imaging performance. Both results will be compared to theoretical calculations using our previously reported Fourier analysis model and to the confocal point spread function (PSF). These results may lead to a simpler class of confocal reflectance scanning microscopes for clinical and surgical dermatology.

  20. Use of stereo vision and 24-bit false-color imagery to enhance visualization of multimodal confocal images

    NASA Astrophysics Data System (ADS)

    Beltrame, Francesco; Diaspro, Alberto; Fato, Marco; Martin, I.; Ramoino, Paola; Sobel, Irwin E.

    1995-03-01

    Confocal microscopy systems can be linked to 3D data oriented devices for the interactive navigation of the operator through a 3D object space. Sometimes, such environments are named `virtual reality' or `augmented reality' systems. We consider optical confocal laser scanning microscopy images, in fluorescence with various excitations and emissions, and versus time The aim of our study has been the quantitative spatial analysis of confocal data using the false-color composition technique. Starting from three 2D confocal fluorescent images at the same slice location in a given biological specimen, a new single image representation of all three parameters has been generated by the false-color technique on a HP 9000/735 workstation, connected to the confocal microscope. The color composite result of the mapping of the three parameters is displayed using a resolution of 24 bits per pixel. The operator may independently vary the mix of each of the three components in the false-color composite via three (R, G, B) mixing sliders. Furthermore, by using the pixel data in the three fluorescent component images, a 3D space containing the density distribution of these three parameters has been constructed. The histogram has been displayed in stereo: it can be used for clustering purposes from the operator, through an original thresholding algorithm.

  1. 3D image restoration for confocal microscopy: toward a wavelet deconvolution for the study of complex biological structures

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats

    2000-05-01

    Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.

  2. Methods of Hematoxylin and Erosin Image Information Acquisition and Optimization in Confocal Microscopy

    PubMed Central

    Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin

    2016-01-01

    Objectives We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. Methods We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. Results An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. Conclusions The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis. PMID:27525165

  3. Methods of Hematoxylin and Erosin Image Information Acquisition and Optimization in Confocal Microscopy.

    PubMed

    Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin; Sohn, Dae Kyung

    2016-07-01

    We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis.

  4. Dynamic Real-time Microscopy of the Urinary Tract Using Confocal Laser Endomicroscopy

    PubMed Central

    Wu, Katherine; Liu, Jen-Jane; Adams, Winifred; Sonn, Geoffrey A.; Mach, Kathleen E.; Pan, Ying; Beck, Andrew H.; Jensen, Kristin C.; Liao, Joseph C.

    2014-01-01

    OBJECTIVES To develop the diagnostic criteria for benign and neoplastic conditions of the urinary tract using probe-based confocal laser endomicroscopy (pCLE), a new technology for dynamic, in vivo imaging with micron-scale resolution. The suggested diagnostic criteria will formulate a guide for pCLE image interpretation in urology. METHODS Patients scheduled for transurethral resection of bladder tumor (TURBT) or nephrectomy were recruited. After white-light cystoscopy (WLC), fluorescein was administered as contrast. Different areas of the urinary tract were imaged with pCLE via direct contact between the confocal probe and the area of interest. Confocal images were subsequently compared with standard hematoxylin and eosin analysis. RESULTS pCLE images were collected from 66 participants, including 2 patients who underwent nephrectomy. We identified key features associated with different anatomic landmarks of the urinary tract, including the kidney, ureter, bladder, prostate, and urethra. In vivo pCLE of the bladder demonstrated distinct differences between normal mucosa and neoplastic tissue. Using mosaicing, a post hoc image-processing algorithm, individual image frames were juxtaposed to form wideangle views to better evaluate tissue microarchitecture. CONCLUSIONS In contrast to standard pathologic analysis of fixed tissue with hematoxylin and eosin, pCLE provides real time microscopy of the urinary tract to enable dynamic interrogation of benign and neoplastic tissues in vivo. The diagnostic criteria developed in this study will facilitate adaptation of pCLE for use in conjunction with WLC to expedite diagnosis of urinary tract pathology, particularly bladder cancer. PMID:21601243

  5. In vivo confocal microscopy of the cornea: New developments in image acquisition, reconstruction and analysis using the HRT-Rostock Corneal Module

    PubMed Central

    Petroll, W. Matthew; Robertson, Danielle M.

    2015-01-01

    The optical sectioning ability of confocal microscopy allows high magnification images to be obtained from different depths within a thick tissue specimen, and is thus ideally suited to the study of intact tissue in living subjects. In vivo confocal microscopy has been used in a variety of corneal research and clinical applications since its development over 25 years ago. In this article we review the latest developments in quantitative corneal imaging with the Heidelberg Retinal Tomograph with Rostock Corneal Module (HRT-RCM). We provide an overview of the unique strengths and weaknesses of the HRT-RCM. We discuss techniques for performing 3-D imaging with the HRT-RCM, including hardware and software modifications that allow full thickness confocal microscopy through focusing (CMTF) of the cornea, which can provide quantitative measurements of corneal sublayer thicknesses, stromal cell and extracellular matrix backscatter, and depth dependent changes in corneal keratocyte density. We also review current approaches for quantitative imaging of the subbasal nerve plexus, which require a combination of advanced image acquisition and analysis procedures, including wide field mapping and 3-D reconstruction of nerve structures. The development of new hardware, software, and acquisition techniques continues to expand the number of applications of the HRT-RCM for quantitative in vivo corneal imaging at the cellular level. Knowledge of these rapidly evolving strategies should benefit corneal clinicians and basic scientists alike. PMID:25998608

  6. 3D Volumetric Analysis of Fluid Inclusions Using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Proussevitch, A.; Mulukutla, G.; Sahagian, D.; Bodnar, B.

    2009-05-01

    Fluid inclusions preserve valuable information regarding hydrothermal, metamorphic, and magmatic processes. The molar quantities of liquid and gaseous components in the inclusions can be estimated from their volumetric measurements at room temperatures combined with knowledge of the PVTX properties of the fluid and homogenization temperatures. Thus, accurate measurements of inclusion volumes and their two phase components are critical. One of the greatest advantages of the Laser Scanning Confocal Microscopy (LSCM) in application to fluid inclsion analsyis is that it is affordable for large numbers of samples, given the appropriate software analysis tools and methodology. Our present work is directed toward developing those tools and methods. For the last decade LSCM has been considered as a potential method for inclusion volume measurements. Nevertheless, the adequate and accurate measurement by LSCM has not yet been successful for fluid inclusions containing non-fluorescing fluids due to many technical challenges in image analysis despite the fact that the cost of collecting raw LSCM imagery has dramatically decreased in recent years. These problems mostly relate to image analysis methodology and software tools that are needed for pre-processing and image segmentation, which enable solid, liquid and gaseous components to be delineated. Other challenges involve image quality and contrast, which is controlled by fluorescence of the material (most aqueous fluid inclusions do not fluoresce at the appropriate laser wavelengths), material optical properties, and application of transmitted and/or reflected confocal illumination. In this work we have identified the key problems of image analysis and propose some potential solutions. For instance, we found that better contrast of pseudo-confocal transmitted light images could be overlayed with poor-contrast true-confocal reflected light images within the same stack of z-ordered slices. This approach allows one to narrow the interface boundaries between the phases before the application of segmentation routines. In turn, we found that an active contour segmentation technique works best for these types of geomaterials. The method was developed by adapting a medical software package implemented using the Insight Toolkit (ITK) set of algorithms developed for segmentation of anatomical structures. We have developed a manual analysis procedure with the potential of 2 micron resolution in 3D volume rendering that is specifically designed for application to fluid inclusion volume measurements.

  7. Semiautomated confocal imaging of fungal pathogenesis on plants: Microscopic analysis of macroscopic specimens.

    PubMed

    Minker, Katharine R; Biedrzycki, Meredith L; Kolagunda, Abhishek; Rhein, Stephen; Perina, Fabiano J; Jacobs, Samuel S; Moore, Michael; Jamann, Tiffany M; Yang, Qin; Nelson, Rebecca; Balint-Kurti, Peter; Kambhamettu, Chandra; Wisser, Randall J; Caplan, Jeffrey L

    2018-02-01

    The study of phenotypic variation in plant pathogenesis provides fundamental information about the nature of disease resistance. Cellular mechanisms that alter pathogenesis can be elucidated with confocal microscopy; however, systematic phenotyping platforms-from sample processing to image analysis-to investigate this do not exist. We have developed a platform for 3D phenotyping of cellular features underlying variation in disease development by fluorescence-specific resolution of host and pathogen interactions across time (4D). A confocal microscopy phenotyping platform compatible with different maize-fungal pathosystems (fungi: Setosphaeria turcica, Cochliobolus heterostrophus, and Cercospora zeae-maydis) was developed. Protocols and techniques were standardized for sample fixation, optical clearing, species-specific combinatorial fluorescence staining, multisample imaging, and image processing for investigation at the macroscale. The sample preparation methods presented here overcome challenges to fluorescence imaging such as specimen thickness and topography as well as physiological characteristics of the samples such as tissue autofluorescence and presence of cuticle. The resulting imaging techniques provide interesting qualitative and quantitative information not possible with conventional light or electron 2D imaging. Microsc. Res. Tech., 81:141-152, 2018. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Improved deconvolution of very weak confocal signals.

    PubMed

    Day, Kasey J; La Rivière, Patrick J; Chandler, Talon; Bindokas, Vytas P; Ferrier, Nicola J; Glick, Benjamin S

    2017-01-01

    Deconvolution is typically used to sharpen fluorescence images, but when the signal-to-noise ratio is low, the primary benefit is reduced noise and a smoother appearance of the fluorescent structures. 3D time-lapse (4D) confocal image sets can be improved by deconvolution. However, when the confocal signals are very weak, the popular Huygens deconvolution software erases fluorescent structures that are clearly visible in the raw data. We find that this problem can be avoided by prefiltering the optical sections with a Gaussian blur. Analysis of real and simulated data indicates that the Gaussian blur prefilter preserves meaningful signals while enabling removal of background noise. This approach is very simple, and it allows Huygens to be used with 4D imaging conditions that minimize photodamage.

  9. Analysis of Orientations of Collagen Fibers by Novel Fiber-Tracking Software

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Rajwa, Bartlomiej; Filmer, David L.; Hoffmann, Christoph M.; Yuan, Bo; Chiang, Ching-Shoei; Sturgis, Jennie; Robinson, J. Paul

    2003-12-01

    Recent evidence supports the notion that biological functions of extracellular matrix (ECM) are highly correlated to not only its composition but also its structure. This article integrates confocal microscopy imaging and image-processing techniques to analyze the microstructural properties of ECM. This report describes a two- and three-dimensional fiber middle-line tracing algorithm that may be used to quantify collagen fibril organization. We utilized computer simulation and statistical analysis to validate the developed algorithm. These algorithms were applied to confocal images of collagen gels made with reconstituted bovine collagen type I, to demonstrate the computation of orientations of individual fibers.

  10. On-line 3-dimensional confocal imaging in vivo.

    PubMed

    Li, J; Jester, J V; Cavanagh, H D; Black, T D; Petroll, W M

    2000-09-01

    In vivo confocal microscopy through focusing (CMTF) can provide a 3-D stack of high-resolution corneal images and allows objective measurements of corneal sublayer thickness and backscattering. However, current systems require time-consuming off-line image processing and analysis on multiple software platforms. Furthermore, there is a trade off between the CMTF speed and measurement precision. The purpose of this study was to develop a novel on-line system for in vivo corneal imaging and analysis that overcomes these limitations. A tandem scanning confocal microscope (TSCM) was used for corneal imaging. The TSCM video camera was interfaced directly to a PC image acquisition board to implement real-time digitization. Software was developed to allow in vivo 2-D imaging, CMTF image acquisition, interactive 3-D reconstruction, and analysis of CMTF data to be performed on line in a single user-friendly environment. A procedure was also incorporated to separate the odd/even video fields, thereby doubling the CMTF sampling rate and theoretically improving the precision of CMTF thickness measurements by a factor of two. In vivo corneal examinations of a normal human and a photorefractive keratectomy patient are presented to demonstrate the capabilities of the new system. Improvements in the convenience, speed, and functionality of in vivo CMTF image acquisition, display, and analysis are demonstrated. This is the first full-featured software package designed for in vivo TSCM imaging of the cornea, which performs both 2-D and 3-D image acquisition, display, and processing as well as CMTF analysis. The use of a PC platform and incorporation of easy to use, on line, and interactive features should help to improve the clinical utility of this technology.

  11. Confocal fluorescence microscopy for rapid evaluation of invasive tumor cellularity of inflammatory breast carcinoma core needle biopsies.

    PubMed

    Dobbs, Jessica; Krishnamurthy, Savitri; Kyrish, Matthew; Benveniste, Ana Paula; Yang, Wei; Richards-Kortum, Rebecca

    2015-01-01

    Tissue sampling is a problematic issue for inflammatory breast carcinoma, and immediate evaluation following core needle biopsy is needed to evaluate specimen adequacy. We sought to determine if confocal fluorescence microscopy provides sufficient resolution to evaluate specimen adequacy by comparing invasive tumor cellularity estimated from standard histologic images to invasive tumor cellularity estimated from confocal images of breast core needle biopsy specimens. Grayscale confocal fluorescence images of breast core needle biopsy specimens were acquired following proflavine application. A breast-dedicated pathologist evaluated invasive tumor cellularity in histologic images with hematoxylin and eosin staining and in grayscale and false-colored confocal images of cores. Agreement between cellularity estimates was quantified using a kappa coefficient. 23 cores from 23 patients with suspected inflammatory breast carcinoma were imaged. Confocal images were acquired in an average of less than 2 min per core. Invasive tumor cellularity estimated from histologic and grayscale confocal images showed moderate agreement by kappa coefficient: κ = 0.48 ± 0.09 (p < 0.001). Grayscale confocal images require less than 2 min for acquisition and allow for evaluation of invasive tumor cellularity in breast core needle biopsy specimens with moderate agreement to histologic images. We show that confocal fluorescence microscopy can be performed immediately following specimen acquisition and could indicate the need for additional biopsies at the initial visit.

  12. Swept Field Laser Confocal Microscopy for Enhanced Spatial and Temporal Resolution in Live-Cell Imaging

    PubMed Central

    Castellano-Muñoz, Manuel; Peng, Anthony Wei; Salles, Felipe T.; Ricci, Anthony J.

    2013-01-01

    Confocal fluorescence microscopy is a broadly used imaging technique that enhances the signal-to-noise ratio by removing out of focal plane fluorescence. Confocal microscopes come with a variety of modifications depending on the particular experimental goals. Microscopes, illumination pathways, and light collection were originally focused upon obtaining the highest resolution image possible, typically on fixed tissue. More recently, live-cell confocal imaging has gained importance. Since measured signals are often rapid or transient, thus requiring higher sampling rates, specializations are included to enhance spatial and temporal resolution while maintaining tissue viability. Thus, a balance between image quality, temporal resolution, and tissue viability is needed. A subtype of confocal imaging, termed swept field confocal (SFC) microscopy, can image live cells at high rates while maintaining confocality. SFC systems can use a pinhole array to obtain high spatial resolution, similar to spinning disc systems. In addition, SFC imaging can achieve faster rates by using a slit to sweep the light across the entire image plane, thus requiring a single scan to generate an image. Coupled to a high-speed charge-coupled device camera and a laser illumination source, images can be obtained at greater than 1,000 frames per second while maintaining confocality. PMID:22831554

  13. Semi-automated confocal imaging of fungal pathogenesis on plants: microscopic analysis of macroscopic specimens

    USDA-ARS?s Scientific Manuscript database

    Contextualizing natural genetic variation in plant disease resistance in terms of pathogenesis can provide information about the function of causal genes. Cellular mechanisms associated with pathogenesis can be elucidated with confocal microscopy, but systematic phenotyping platforms—from sample pro...

  14. Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy.

    PubMed

    Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike

    2013-06-01

    Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.

  15. Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike

    2013-06-01

    Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.

  16. Improving confocal microscopy with solid-state semiconductor excitation sources

    NASA Astrophysics Data System (ADS)

    Sivers, Nelson L.

    To efficiently excite the fluorescent dyes used in imaging biological samples with a confocal microscope, the wavelengths of the exciting laser must be near the fluorochrome absorption peak. However, this causes imaging problems when the fluorochrome absorption and emission spectra overlap significantly, i.e. have small Stokes shifts, which is the case for most fluorochromes that emit in the red to infrared. As a result, the reflected laser excitation cannot be distinguished from the information-containing fluorescence signal. However, cryogenically cooling the exciting laser diode enabled the laser emission wavelengths to be tuned to shorter wavelengths, decreasing the interference between the laser and the fluorochrome's fluorescence. This reduced the amount of reflected laser light in the confocal image. However, the cooled laser diode's shorter wavelength signal resulted in slightly less efficient fluorochrome excitation. Spectrophotometric analysis showed that as the laser diodes were cooled, their output power increased, which more than compensated for the lower fluorochrome excitation and resulted in significantly more intense fluorescence. Thus, by tuning the laser diode emission wavelengths away from the fluorescence signal, less reflected laser light and more fluorescence information reached the detector, creating images with better signal to noise ratios. Additionally, new, high, luminous flux, light-emitting diodes (LEDs) are now powerful enough to create confocal fluorescence signals comparable to those produced by the traditional laser excitation sources in fluorescence confocal microscopes. The broader LED spectral response effectively excited the fluorochrome, yet was spectrally limited enough for standard filter sets to separate the LED excitation from the fluorochrome fluorescence signal. Spectrophotometric analysis of the excitation and fluorescence spectra of several fluorochromes showed that high-powered, LED-induced fluorescence contained the same spectral information and could be more intense than that produced by lasers. An alternative, LED-based, confocal microscope is proposed in this thesis that would be capable of exciting multiple fluorochromes in a single specimen, producing images of several distinct cellular components simultaneously. The inexpensive, LED-based, confocal microscope would require lower peak excitation intensities to produce fluorescence signals equal to those produced by laser excitation, reducing cellular damage and slowing fluorochrome photobleaching.

  17. Fluorescence confocal microscopy for pathologists.

    PubMed

    Ragazzi, Moira; Piana, Simonetta; Longo, Caterina; Castagnetti, Fabio; Foroni, Monica; Ferrari, Guglielmo; Gardini, Giorgio; Pellacani, Giovanni

    2014-03-01

    Confocal microscopy is a non-invasive method of optical imaging that may provide microscopic images of untreated tissue that correspond almost perfectly to hematoxylin- and eosin-stained slides. Nowadays, following two confocal imaging systems are available: (1) reflectance confocal microscopy, based on the natural differences in refractive indices of subcellular structures within the tissues; (2) fluorescence confocal microscopy, based on the use of fluorochromes, such as acridine orange, to increase the contrast epithelium-stroma. In clinical practice to date, confocal microscopy has been used with the goal of obviating the need for excision biopsies, thereby reducing the need for pathological examination. The aim of our study was to test fluorescence confocal microscopy on different types of surgical specimens, specifically breast, lymph node, thyroid, and colon. The confocal images were correlated to the corresponding histological sections in order to provide a morphologic parallel and to highlight current limitations and possible applications of this technology for surgical pathology practice. As a result, neoplastic tissues were easily distinguishable from normal structures and reactive processes such as fibrosis; the use of fluorescence enhanced contrast and image quality in confocal microscopy without compromising final histologic evaluation. Finally, the fluorescence confocal microscopy images of the adipose tissue were as accurate as those of conventional histology and were devoid of the frozen-section-related artefacts that can compromise intraoperative evaluation. Despite some limitations mainly related to black/white images, which require training in imaging interpretation, this study confirms that fluorescence confocal microscopy may represent an alternative to frozen sections in the assessment of margin status in selected settings or when the conservation of the specimen is crucial. This is the first study to employ fluorescent confocal microscopy on surgical specimens other than the skin and to evaluate the diagnostic capability of this technology from pathologists' viewpoint.

  18. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment

    PubMed Central

    Nimchuk, Zachary L.; Perdue, Tony D.

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory. PMID:28579995

  19. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment.

    PubMed

    Nimchuk, Zachary L; Perdue, Tony D

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory.

  20. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    PubMed

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  1. Improved deconvolution of very weak confocal signals

    PubMed Central

    Day, Kasey J.; La Rivière, Patrick J.; Chandler, Talon; Bindokas, Vytas P.; Ferrier, Nicola J.; Glick, Benjamin S.

    2017-01-01

    Deconvolution is typically used to sharpen fluorescence images, but when the signal-to-noise ratio is low, the primary benefit is reduced noise and a smoother appearance of the fluorescent structures. 3D time-lapse (4D) confocal image sets can be improved by deconvolution. However, when the confocal signals are very weak, the popular Huygens deconvolution software erases fluorescent structures that are clearly visible in the raw data. We find that this problem can be avoided by prefiltering the optical sections with a Gaussian blur. Analysis of real and simulated data indicates that the Gaussian blur prefilter preserves meaningful signals while enabling removal of background noise. This approach is very simple, and it allows Huygens to be used with 4D imaging conditions that minimize photodamage. PMID:28868135

  2. Improved deconvolution of very weak confocal signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, Kasey J.; La Riviere, Patrick J.; Chandler, Talon

    Deconvolution is typically used to sharpen fluorescence images, but when the signal-to-noise ratio is low, the primary benefit is reduced noise and a smoother appearance of the fluorescent structures. 3D time-lapse (4D) confocal image sets can be improved by deconvolution. However, when the confocal signals are very weak, the popular Huygens deconvolution software erases fluorescent structures that are clearly visible in the raw data. We find that this problem can be avoided by prefiltering the optical sections with a Gaussian blur. Analysis of real and simulated data indicates that the Gaussian blur prefilter preserves meaningful signals while enabling removal ofmore » background noise. Here, this approach is very simple, and it allows Huygens to be used with 4D imaging conditions that minimize photodamage.« less

  3. Improved deconvolution of very weak confocal signals

    DOE PAGES

    Day, Kasey J.; La Riviere, Patrick J.; Chandler, Talon; ...

    2017-06-06

    Deconvolution is typically used to sharpen fluorescence images, but when the signal-to-noise ratio is low, the primary benefit is reduced noise and a smoother appearance of the fluorescent structures. 3D time-lapse (4D) confocal image sets can be improved by deconvolution. However, when the confocal signals are very weak, the popular Huygens deconvolution software erases fluorescent structures that are clearly visible in the raw data. We find that this problem can be avoided by prefiltering the optical sections with a Gaussian blur. Analysis of real and simulated data indicates that the Gaussian blur prefilter preserves meaningful signals while enabling removal ofmore » background noise. Here, this approach is very simple, and it allows Huygens to be used with 4D imaging conditions that minimize photodamage.« less

  4. To boldly glow ... applications of laser scanning confocal microscopy in developmental biology.

    PubMed

    Paddock, S W

    1994-05-01

    The laser scanning confocal microscope (LSCM) is now established as an invaluable tool in developmental biology for improved light microscope imaging of fluorescently labelled eggs, embryos and developing tissues. The universal application of the LSCM in biomedical research has stimulated improvements to the microscopes themselves and the synthesis of novel probes for imaging biological structures and physiological processes. Moreover the ability of the LSCM to produce an optical series in perfect register has made computer 3-D reconstruction and analysis of light microscope images a practical option.

  5. Evaluation of human sclera after femtosecond laser ablation using two photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Kurtz, Ronald; Juhasz, Tibor

    2012-08-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial thickness intrascleral channels can be created with a femtosecond laser operating at a wavelength of 1700 nm. Such channels have the potential to increase outflow facility and reduce elevated IOP. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in human cadaver eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such channels. This demonstrates that concept of integrating femtosecond laser surgery, and two-photon and confocal imaging has the future potential for image-guided high-precision surgery in transparent and translucent tissue.

  6. High throughput, detailed, cell-specific neuroanatomy of dendritic spines using microinjection and confocal microscopy

    PubMed Central

    Dumitriu, Dani; Rodriguez, Alfredo; Morrison, John H.

    2012-01-01

    Morphological features such as size, shape and density of dendritic spines have been shown to reflect important synaptic functional attributes and potential for plasticity. Here we describe in detail a protocol for obtaining detailed morphometric analysis of spines using microinjection of fluorescent dyes, high resolution confocal microscopy, deconvolution and image analysis using NeuronStudio. Recent technical advancements include better preservation of tissue resulting in prolonged ability to microinject, and algorithmic improvements that compensate for the residual Z-smear inherent in all optical imaging. Confocal imaging parameters were probed systematically for the identification of both optimal resolution as well as highest efficiency. When combined, our methods yield size and density measurements comparable to serial section transmission electron microscopy in a fraction of the time. An experiment containing 3 experimental groups with 8 subjects in each can take as little as one month if optimized for speed, or approximately 4 to 5 months if the highest resolution and morphometric detail is sought. PMID:21886104

  7. Ophthalmic applications of confocal microscopy: diagnostics, refractive surgery, and eye banking

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1990-11-01

    Confocal microscopy of ocular tissue provides two advantages over traditional imaging techniques: increased range and transverse resolution and increased contrast. The semitransparent cornea and ocular lens in the living eye can be optically sectioned and observed by reflected light confocal microscopy. Within the cornea we observed various cell components nerve fibers nerve cell bodies and fibrous networks. The confocal microscopic images from the in-situ ocular lens show the lens capsule the lens epithelium and the individual lens fibrils. All of the reflected light confocal microscopic images have high contrast and high resolution. Some of the applications of confocal imaging in ophthalmology include: diagnostics of the cornea and the ocular lens examination prior to and after refractive surgery examination of intraocular lenses (IOL) and examination of eye bank material. Other ophthalmic uses of confocal imaging include: studies of wound healing therapeutics and the effects of contact lenses on the cornea. The proposed features of a clinical confocal microscope are reviewed. 2.

  8. Research and application on imaging technology of line structure light based on confocal microscopy

    NASA Astrophysics Data System (ADS)

    Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen

    2009-11-01

    In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.

  9. Potential application of a handheld confocal endomicroscope imaging system using a variety of fluorophores in experimental gliomas and normal brain.

    PubMed

    Martirosyan, Nikolay L; Georges, Joseph; Eschbacher, Jennifer M; Cavalcanti, Daniel D; Elhadi, Ali M; Abdelwahab, Mohammed G; Scheck, Adrienne C; Nakaji, Peter; Spetzler, Robert F; Preul, Mark C

    2014-02-01

    The authors sought to assess the feasibility of a handheld visible-wavelength confocal endomicroscope imaging system (Optiscan 5.1, Optiscan Pty., Ltd.) using a variety of rapid-acting fluorophores to provide histological information on gliomas, tumor margins, and normal brain in animal models. Mice (n = 25) implanted with GL261 cells were used to image fluorescein sodium (FNa), 5-aminolevulinic acid (5-ALA), acridine orange (AO), acriflavine (AF), and cresyl violet (CV). A U251 glioma xenograft model in rats (n = 5) was used to image sulforhodamine 101 (SR101). A swine (n = 3) model with AO was used to identify confocal features of normal brain. Images of normal brain, obvious tumor, and peritumoral zones were collected using the handheld confocal endomicroscope. Histological samples were acquired through biopsies from matched imaging areas. Samples were visualized with a benchtop confocal microscope. Histopathological features in corresponding confocal images and photomicrographs of H & E-stained tissues were reviewed. Fluorescence induced by FNa, 5-ALA, AO, AF, CV, and SR101 and detected with the confocal endomicroscope allowed interpretation of histological features. Confocal endomicroscopy revealed satellite tumor cells within peritumoral tissue, a definitive tumor border, and striking fluorescent cellular and subcellular structures. Fluorescence in various tumor regions correlated with standard histology and known tissue architecture. Characteristic features of different areas of normal brain were identified as well. Confocal endomicroscopy provided rapid histological information precisely related to the site of microscopic imaging with imaging characteristics of cells related to the unique labeling features of the fluorophores. Although experimental with further clinical trial validation required, these data suggest that intraoperative confocal imaging can help to distinguish normal brain from tumor and tumor margin and may have application in improving intraoperative decisions during resection of brain tumors.

  10. Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis.

    PubMed

    Skytte, Jacob L; Ghita, Ovidiu; Whelan, Paul F; Andersen, Ulf; Møller, Flemming; Dahl, Anders B; Larsen, Rasmus

    2015-06-01

    The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented dairy products. When studying such networks, hundreds of images can be obtained, and here image analysis methods are essential for using the images in statistical analysis. Previously, methods including gray level co-occurrence matrix analysis and fractal analysis have been used with success. However, a range of other image texture characterization methods exists. These methods describe an image by a frequency distribution of predefined image features (denoted textons). Our contribution is an investigation of the choice of image analysis methods by performing a comparative study of 7 major approaches to image texture description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through nearest neighbor classification, variance analysis, and cluster analysis. Our investigation suggests that the texton-based descriptors provide a fuller description of the images compared to gray-level co-occurrence matrix descriptors and fractal analysis, while still being as applicable and in some cases as easy to tune. © 2015 Institute of Food Technologists®

  11. Live-cell confocal microscopy and quantitative 4D image analysis of anchor cell invasion through the basement membrane in C. elegans

    PubMed Central

    Kelley, Laura C.; Wang, Zheng; Hagedorn, Elliott J.; Wang, Lin; Shen, Wanqing; Lei, Shijun; Johnson, Sam A.; Sherwood, David R.

    2018-01-01

    Cell invasion through basement membrane (BM) barriers is crucial during development, leukocyte trafficking, and for the spread of cancer. Despite its importance in normal and diseased states, the mechanisms that direct invasion are poorly understood, in large part because of the inability to visualize dynamic cell-basement membrane interactions in vivo. This protocol describes multi-channel time-lapse confocal imaging of anchor cell invasion in live C. elegans. Methods presented include outline slide preparation and worm growth synchronization (15 min), mounting (20 min), image acquisition (20-180 min), image processing (20 min), and quantitative analysis (variable timing). Images acquired enable direct measurement of invasive dynamics including invadopodia formation, cell membrane protrusions, and BM removal. This protocol can be combined with genetic analysis, molecular activity probes, and optogenetic approaches to uncover molecular mechanisms underlying cell invasion. These methods can also be readily adapted for real-time analysis of cell migration, basement membrane turnover, and cell membrane dynamics by any worm laboratory. PMID:28880279

  12. Frequency domain phase-shifted confocal microscopy (FDPCM) with array detection

    NASA Astrophysics Data System (ADS)

    Ge, Baoliang; Huang, Yujia; Fang, Yue; Kuang, Cuifang; Xiu, Peng; Liu, Xu

    2017-09-01

    We proposed a novel method to reconstruct images taken by array detected confocal microscopy without prior knowledge about its detector distribution. The proposed frequency domain phase-shifted confocal microscopy (FDPCM) shifts the image from each detection channel to its corresponding place by substituting the phase information in Fourier domain. Theoretical analysis shows that our method could approach the resolution nearly twofold of wide-field microscopy. Simulation and experiment results are also shown to verify the applicability and effectiveness of our method. Compared to Airyscan, our method holds the advantage of simplicity and convenience to be applied to array detectors with different structure, which makes FDPCM have great potential in the application of biomedical observation in the future.

  13. Dye-Enhanced Multimodal Confocal Imaging of Brain Cancers

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Curry, William; Yaroslavsky, Anna

    2011-04-01

    Background and Significance: Accurate high resolution intraoperative detection of brain tumors may result in improved patient survival and better quality of life. The goal of this study was to evaluate dye enhanced multimodal confocal imaging for discriminating normal and cancerous brain tissue. Materials and Methods: Fresh thick brain specimens were obtained from the surgeries. Normal and cancer tissues were investigated. Samples were stained in methylene blue and imaged. Reflectance and fluorescence signals were excited at 658nm. Fluorescence emission and polarization were registered from 670 nm to 710 nm. The system provided lateral resolution of 0.6 μm and axial resolution of 7 μm. Normal and cancer specimens exhibited distinctively different characteristics. H&E histopathology was processed from each imaged sample. Results and Conclusions: The analysis of normal and cancerous tissues indicated clear differences in appearance in both the reflectance and fluorescence responses. These results confirm the feasibility of multimodal confocal imaging for intraoperative detection of small cancer nests and cells.

  14. Second-harmonic patterned polarization-analyzed reflection confocal microscope

    NASA Astrophysics Data System (ADS)

    Okoro, Chukwuemeka; Toussaint, Kimani C.

    2017-08-01

    We introduce the second-harmonic patterned polarization-analyzed reflection confocal (SPPARC) microscope-a multimodal imaging platform that integrates Mueller matrix polarimetry with reflection confocal and second-harmonic generation (SHG) microscopy. SPPARC microscopy provides label-free three-dimensional (3-D), SHG-patterned confocal images that lend themselves to spatially dependent, linear polarimetric analysis for extraction of rich polarization information based on the Mueller calculus. To demonstrate its capabilities, we use SPPARC microscopy to analyze both porcine tendon and ligament samples and find differences in both circular degree-of-polarization and depolarization parameters. Moreover, using the collagen-generated SHG signal as an endogenous counterstain, we show that the technique can be used to provide 3-D polarimetric information of the surrounding extrafibrillar matrix plus cells or EFMC region. The unique characteristics of SPPARC microscopy holds strong potential for it to more accurately and quantitatively describe microstructural changes in collagen-rich samples in three spatial dimensions.

  15. Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues - II: prediction of reaction force history of meniscal cartilage specimens.

    PubMed

    Taylor, Zeike A; Kirk, Thomas B; Miller, Karol

    2007-10-01

    The theoretical framework developed in a companion paper (Part I) is used to derive estimates of mechanical response of two meniscal cartilage specimens. The previously developed framework consisted of a constitutive model capable of incorporating confocal image-derived tissue microstructural data. In the present paper (Part II) fibre and matrix constitutive parameters are first estimated from mechanical testing of a batch of specimens similar to, but independent from those under consideration. Image analysis techniques which allow estimation of tissue microstructural parameters form confocal images are presented. The constitutive model and image-derived structural parameters are then used to predict the reaction force history of the two meniscal specimens subjected to partially confined compression. The predictions are made on the basis of the specimens' individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework.

  16. High Definition Confocal Imaging Modalities for the Characterization of Tissue-Engineered Substitutes.

    PubMed

    Mayrand, Dominique; Fradette, Julie

    2018-01-01

    Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.

  17. Confocal Raman Microscopy: new perspective on the weathering of anhydrous cement

    NASA Astrophysics Data System (ADS)

    Torres-Carrasco, M.; del Campo, A.; de la Rubia, MA; Reyes, E.; Moragues, A.; Fernández, JF

    2017-10-01

    Raman spectroscopy when is combined with Confocal microscopy is a non-destructive technique that allow us to obtain information in cementitious materials. In this study, we present non-destructive image and structural analysis of anhydrous cement with carbonation evidences by Confocal Raman Microscopy (CRM). The results obtained by CRM show a direct relationship between the presence of the weathering processes of an anhydrous cement with the presence of sulphates and surprisingly, with the existence of amorphous carbon in the medium.

  18. Development and Beam-Shape Analysis of an Integrated Fiber-Optic Confocal Probe for High-Precision Central Thickness Measurement of Small-Radius Lenses

    PubMed Central

    Sutapun, Boonsong; Somboonkaew, Armote; Amarit, Ratthasart; Chanhorm, Sataporn

    2015-01-01

    This work describes a new design of a fiber-optic confocal probe suitable for measuring the central thicknesses of small-radius optical lenses or similar objects. The proposed confocal probe utilizes an integrated camera that functions as a shape-encoded position-sensing device. The confocal signal for thickness measurement and beam-shape data for off-axis measurement can be simultaneously acquired using the proposed probe. Placing the probe’s focal point off-center relative to a sample’s vertex produces a non-circular image at the camera’s image plane that closely resembles an ellipse for small displacements. We were able to precisely position the confocal probe’s focal point relative to the vertex point of a ball lens with a radius of 2.5 mm, with a lateral resolution of 1.2 µm. The reflected beam shape based on partial blocking by an aperture was analyzed and verified experimentally. The proposed confocal probe offers a low-cost, high-precision technique, an alternative to a high-cost three-dimensional surface profiler, for tight quality control of small optical lenses during the manufacturing process. PMID:25871720

  19. Intravital Confocal and Two-photon Imaging of Dual-color Cells and Extracellular Matrix Mimics

    PubMed Central

    Bal, Ufuk; Andresen, Volker; Baggett, Brenda; Utzinger, Urs

    2013-01-01

    To optimize imaging of cells in three dimensional culture we studied confocal backscattering, Second Harmonic Generation (SHG) and autofluorescence as source of contrast in extracellular matrix (ECM) mimics and evaluated the attenuation as well as bleaching of endogenous cellular fluorescence signals. All common ECM mimics exhibit contrast observable with confocal reflectance microscopy. SHG imaging on collagen I based hydrogels provides high contrast and good optical penetration depth. Agarose is a useful embedding medium because it allows for large optical penetration and exhibits minimal autofluorescence while still providing good reflectance to detect voids in the embedding medium. We labeled breast cancer cells’ outline with DsRed2 and nucleus with eGFP. DsRed2 can be excited with confocal imaging at 568nm, and with two photon excitation (TPE) in the red and longer NIR. eGFP was excited at 488nm for confocal and in the NIR for TPE. While there is small difference in the bleaching rate for eGFP between confocal and TPE we observed significant difference for DsRed2 where bleaching is strongest during TPE in the red wavelengths and smallest during confocal imaging. After a few hundred microns depth in a collagen I hydrogel, TPE fluorescence becomes twice as strong compared to confocal imaging. PMID:23380006

  20. Confocal microlaparoscope for imaging the fallopian tube

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Yu; Rouse, Andrew R.; Chambers, Setsuko K.; Hatch, Kenneth D.; Gmitro, Arthur F.

    2014-11-01

    Recent evidence suggests that ovarian cancer can originate in the fallopian tube. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. A rigid confocal microlaparoscope system designed to image the epithelial surface of the ovary in vivo was previously reported. A new confocal microlaparoscope with an articulating distal tip has been developed to enable in vivo access to human fallopian tubes. The new microlaparoscope is compatible with 5-mm trocars and includes a 2.2-mm-diameter articulating distal tip consisting of a bare fiber bundle and an automated dye delivery system for fluorescence confocal imaging. This small articulating device should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Ex vivo images of animal tissue and human fallopian tube using the new articulating device are presented along with in vivo imaging results using the rigid confocal microlaparoscope system.

  1. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    NASA Astrophysics Data System (ADS)

    Wang, Youmin; Raj, Milan; McGuff, H. Stan; Bhave, Gauri; Yang, Bin; Shen, Ting; Zhang, Xiaojing

    2012-06-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE VR® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment.

  2. Improving high resolution retinal image quality using speckle illumination HiLo imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-01-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis. PMID:25136486

  3. Improving high resolution retinal image quality using speckle illumination HiLo imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-08-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis.

  4. The Relationship between Neurite Density Measured with Confocal Microscopy in a Cleared Mouse Brain and Metrics Obtained from Diffusion Tensor and Diffusion Kurtosis Imaging

    PubMed Central

    Irie, Ryusuke; Kamagata, Koji; Kerever, Aurelien; Ueda, Ryo; Yokosawa, Suguru; Otake, Yosuke; Ochi, Hisaaki; Yoshizawa, Hidekazu; Hayashi, Ayato; Tagawa, Kazuhiko; Okazawa, Hitoshi; Takahashi, Kohske; Sato, Kanako; Hori, Masaaki; Arikawa-Hirasawa, Eri; Aoki, Shigeki

    2018-01-01

    Purpose: Diffusional kurtosis imaging (DKI) enables sensitive measurement of tissue microstructure by quantifying the non-Gaussian diffusion of water. Although DKI is widely applied in many situations, histological correlation with DKI analysis is lacking. The purpose of this study was to determine the relationship between DKI metrics and neurite density measured using confocal microscopy of a cleared mouse brain. Methods: One thy-1 yellow fluorescent protein 16 mouse was deeply anesthetized and perfusion fixation was performed. The brain was carefully dissected out and whole-brain MRI was performed using a 7T animal MRI system. DKI and diffusion tensor imaging (DTI) data were obtained. After the MRI scan, brain sections were prepared and then cleared using aminoalcohols (CUBIC). Confocal microscopy was performed using a two-photon confocal microscope with a laser. Forty-eight ROIs were set on the caudate putamen, seven ROIs on the anterior commissure, and seven ROIs on the ventral hippocampal commissure on the confocal microscopic image and a corresponding MR image. In each ROI, histological neurite density and the metrics of DKI and DTI were calculated. The correlations between diffusion metrics and neurite density were analyzed using Pearson correlation coefficient analysis. Results: Mean kurtosis (MK) (P = 5.2 × 10−9, r = 0.73) and radial kurtosis (P = 2.3 × 10−9, r = 0.74) strongly correlated with neurite density in the caudate putamen. The correlation between fractional anisotropy (FA) and neurite density was moderate (P = 0.0030, r = 0.42). In the anterior commissure and the ventral hippocampal commissure, neurite density and FA are very strongly correlated (P = 1.3 × 10−5, r = 0.90). MK in these areas were very high value and showed no significant correlation (P = 0.48). Conclusion: DKI accurately reflected neurite density in the area with crossing fibers, potentially allowing evaluation of complex microstructures. PMID:29213008

  5. The Relationship between Neurite Density Measured with Confocal Microscopy in a Cleared Mouse Brain and Metrics Obtained from Diffusion Tensor and Diffusion Kurtosis Imaging.

    PubMed

    Irie, Ryusuke; Kamagata, Koji; Kerever, Aurelien; Ueda, Ryo; Yokosawa, Suguru; Otake, Yosuke; Ochi, Hisaaki; Yoshizawa, Hidekazu; Hayashi, Ayato; Tagawa, Kazuhiko; Okazawa, Hitoshi; Takahashi, Kohske; Sato, Kanako; Hori, Masaaki; Arikawa-Hirasawa, Eri; Aoki, Shigeki

    2018-04-10

    Diffusional kurtosis imaging (DKI) enables sensitive measurement of tissue microstructure by quantifying the non-Gaussian diffusion of water. Although DKI is widely applied in many situations, histological correlation with DKI analysis is lacking. The purpose of this study was to determine the relationship between DKI metrics and neurite density measured using confocal microscopy of a cleared mouse brain. One thy-1 yellow fluorescent protein 16 mouse was deeply anesthetized and perfusion fixation was performed. The brain was carefully dissected out and whole-brain MRI was performed using a 7T animal MRI system. DKI and diffusion tensor imaging (DTI) data were obtained. After the MRI scan, brain sections were prepared and then cleared using aminoalcohols (CUBIC). Confocal microscopy was performed using a two-photon confocal microscope with a laser. Forty-eight ROIs were set on the caudate putamen, seven ROIs on the anterior commissure, and seven ROIs on the ventral hippocampal commissure on the confocal microscopic image and a corresponding MR image. In each ROI, histological neurite density and the metrics of DKI and DTI were calculated. The correlations between diffusion metrics and neurite density were analyzed using Pearson correlation coefficient analysis. Mean kurtosis (MK) (P = 5.2 × 10 -9 , r = 0.73) and radial kurtosis (P = 2.3 × 10 -9 , r = 0.74) strongly correlated with neurite density in the caudate putamen. The correlation between fractional anisotropy (FA) and neurite density was moderate (P = 0.0030, r = 0.42). In the anterior commissure and the ventral hippocampal commissure, neurite density and FA are very strongly correlated (P = 1.3 × 10 -5 , r = 0.90). MK in these areas were very high value and showed no significant correlation (P = 0.48). DKI accurately reflected neurite density in the area with crossing fibers, potentially allowing evaluation of complex microstructures.

  6. Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope

    NASA Astrophysics Data System (ADS)

    Saldua, Meagan A.; Olsovsky, Cory A.; Callaway, Evelyn S.; Chapkin, Robert S.; Maitland, Kristen C.

    2012-01-01

    Large area confocal microscopy may provide fast, high-resolution image acquisition for evaluation of tissue in pre-clinical studies with reduced tissue processing in comparison to histology. We present a rapid beam and stage-scanning confocal fluorescence microscope to image cellular and tissue features along the length of the entire excised mouse colon. The beam is scanned at 8,333 lines/sec by a polygon scanning mirror while the specimen is scanned in the orthogonal axis by a motorized translation stage with a maximum speed of 7 mm/sec. A single 1×60 mm2 field of view image spanning the length of the mouse colon is acquired in 10 s. Z-projection images generated from axial image stacks allow high resolution imaging of the surface of non-flat specimens. In contrast to the uniform size, shape, and distribution of colon crypts in confocal images of normal colon, confocal images of chronic bowel inflammation exhibit heterogeneous tissue structure with localized severe crypt distortion.

  7. Automated Image Analysis Corrosion Working Group Update: February 1, 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, James G.

    These are slides for the automated image analysis corrosion working group update. The overall goals were: automate the detection and quantification of features in images (faster, more accurate), how to do this (obtain data, analyze data), focus on Laser Scanning Confocal Microscope (LCM) data (laser intensity, laser height/depth, optical RGB, optical plus laser RGB).

  8. Multidepth imaging by chromatic dispersion confocal microscopy

    NASA Astrophysics Data System (ADS)

    Olsovsky, Cory A.; Shelton, Ryan L.; Saldua, Meagan A.; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.

    2012-03-01

    Confocal microscopy has shown potential as an imaging technique to detect precancer. Imaging cellular features throughout the depth of epithelial tissue may provide useful information for diagnosis. However, the current in vivo axial scanning techniques for confocal microscopy are cumbersome, time-consuming, and restrictive when attempting to reconstruct volumetric images acquired in breathing patients. Chromatic dispersion confocal microscopy (CDCM) exploits severe longitudinal chromatic aberration in the system to axially disperse light from a broadband source and, ultimately, spectrally encode high resolution images along the depth of the object. Hyperchromat lenses are designed to have severe and linear longitudinal chromatic aberration, but have not yet been used in confocal microscopy. We use a hyperchromat lens in a stage scanning confocal microscope to demonstrate the capability to simultaneously capture information at multiple depths without mechanical scanning. A photonic crystal fiber pumped with a 830nm wavelength Ti:Sapphire laser was used as a supercontinuum source, and a spectrometer was used as the detector. The chromatic aberration and magnification in the system give a focal shift of 140μm after the objective lens and an axial resolution of 5.2-7.6μm over the wavelength range from 585nm to 830nm. A 400x400x140μm3 volume of pig cheek epithelium was imaged in a single X-Y scan. Nuclei can be seen at several depths within the epithelium. The capability of this technique to achieve simultaneous high resolution confocal imaging at multiple depths may reduce imaging time and motion artifacts and enable volumetric reconstruction of in vivo confocal images of the epithelium.

  9. ConfocalCheck - A Software Tool for the Automated Monitoring of Confocal Microscope Performance

    PubMed Central

    Hng, Keng Imm; Dormann, Dirk

    2013-01-01

    Laser scanning confocal microscopy has become an invaluable tool in biomedical research but regular quality testing is vital to maintain the system’s performance for diagnostic and research purposes. Although many methods have been devised over the years to characterise specific aspects of a confocal microscope like measuring the optical point spread function or the field illumination, only very few analysis tools are available. Our aim was to develop a comprehensive quality assurance framework ranging from image acquisition to automated analysis and documentation. We created standardised test data to assess the performance of the lasers, the objective lenses and other key components required for optimum confocal operation. The ConfocalCheck software presented here analyses the data fully automatically. It creates numerous visual outputs indicating potential issues requiring further investigation. By storing results in a web browser compatible file format the software greatly simplifies record keeping allowing the operator to quickly compare old and new data and to spot developing trends. We demonstrate that the systematic monitoring of confocal performance is essential in a core facility environment and how the quantitative measurements obtained can be used for the detailed characterisation of system components as well as for comparisons across multiple instruments. PMID:24224017

  10. Parallel, confocal, and complete spectrum imager for fluorescent detection of high-density microarray

    NASA Astrophysics Data System (ADS)

    Bogdanov, Valery L.; Boyce-Jacino, Michael

    1999-05-01

    Confined arrays of biochemical probes deposited on a solid support surface (analytical microarray or 'chip') provide an opportunity to analysis multiple reactions simultaneously. Microarrays are increasingly used in genetics, medicine and environment scanning as research and analytical instruments. A power of microarray technology comes from its parallelism which grows with array miniaturization, minimization of reagent volume per reaction site and reaction multiplexing. An optical detector of microarray signals should combine high sensitivity, spatial and spectral resolution. Additionally, low-cost and a high processing rate are needed to transfer microarray technology into biomedical practice. We designed an imager that provides confocal and complete spectrum detection of entire fluorescently-labeled microarray in parallel. Imager uses microlens array, non-slit spectral decomposer, and high- sensitive detector (cooled CCD). Two imaging channels provide a simultaneous detection of localization, integrated and spectral intensities for each reaction site in microarray. A dimensional matching between microarray and imager's optics eliminates all in moving parts in instrumentation, enabling highly informative, fast and low-cost microarray detection. We report theory of confocal hyperspectral imaging with microlenses array and experimental data for implementation of developed imager to detect fluorescently labeled microarray with a density approximately 103 sites per cm2.

  11. Dimensional metrology of lab-on-a-chip internal structures: a comparison of optical coherence tomography with confocal fluorescence microscopy.

    PubMed

    Reyes, D R; Halter, M; Hwang, J

    2015-07-01

    The characterization of internal structures in a polymeric microfluidic device, especially of a final product, will require a different set of optical metrology tools than those traditionally used for microelectronic devices. We demonstrate that optical coherence tomography (OCT) imaging is a promising technique to characterize the internal structures of poly(methyl methacrylate) devices where the subsurface structures often cannot be imaged by conventional wide field optical microscopy. The structural details of channels in the devices were imaged with OCT and analyzed with an in-house written ImageJ macro in an effort to identify the structural details of the channel. The dimensional values obtained with OCT were compared with laser-scanning confocal microscopy images of channels filled with a fluorophore solution. Attempts were also made using confocal reflectance and interferometry microscopy to measure the channel dimensions, but artefacts present in the images precluded quantitative analysis. OCT provided the most accurate estimates for the channel height based on an analysis of optical micrographs obtained after destructively slicing the channel with a microtome. OCT may be a promising technique for the future of three-dimensional metrology of critical internal structures in lab-on-a-chip devices because scans can be performed rapidly and noninvasively prior to their use. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. Methodological challenges of optical tweezers-based X-ray fluorescence imaging of biological model organisms at synchrotron facilities.

    PubMed

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; Bauters, Stephen; De Rijcke, Maarten; Deruytter, David; Janssen, Colin; Riekel, Christian; Burghammer, Manfred; Vincze, Laszlo

    2015-07-01

    Recently, a radically new synchrotron radiation-based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non-contact laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time at ESRF-ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF-related challenges are reported. In general, the applicability of the OT-based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi-elemental analysis is of relevance at the (sub)micrometre spatial resolution level.

  13. A Pulse Coupled Neural Network Segmentation Algorithm for Reflectance Confocal Images of Epithelial Tissue

    PubMed Central

    Malik, Bilal H.; Jabbour, Joey M.; Maitland, Kristen C.

    2015-01-01

    Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard. PMID:25816131

  14. Deep Tissue Fluorescent Imaging in Scattering Specimens Using Confocal Microscopy

    PubMed Central

    Clendenon, Sherry G.; Young, Pamela A.; Ferkowicz, Michael; Phillips, Carrie; Dunn, Kenneth W.

    2015-01-01

    In scattering specimens, multiphoton excitation and nondescanned detection improve imaging depth by a factor of 2 or more over confocal microscopy; however, imaging depth is still limited by scattering. We applied the concept of clearing to deep tissue imaging of highly scattering specimens. Clearing is a remarkably effective approach to improving image quality at depth using either confocal or multiphoton microscopy. Tissue clearing appears to eliminate the need for multiphoton excitation for deep tissue imaging. PMID:21729357

  15. Signal and noise modeling in confocal laser scanning fluorescence microscopy.

    PubMed

    Herberich, Gerlind; Windoffer, Reinhard; Leube, Rudolf E; Aach, Til

    2012-01-01

    Fluorescence confocal laser scanning microscopy (CLSM) has revolutionized imaging of subcellular structures in biomedical research by enabling the acquisition of 3D time-series of fluorescently-tagged proteins in living cells, hence forming the basis for an automated quantification of their morphological and dynamic characteristics. Due to the inherently weak fluorescence, CLSM images exhibit a low SNR. We present a novel model for the transfer of signal and noise in CLSM that is both theoretically sound as well as corroborated by a rigorous analysis of the pixel intensity statistics via measurement of the 3D noise power spectra, signal-dependence and distribution. Our model provides a better fit to the data than previously proposed models. Further, it forms the basis for (i) the simulation of the CLSM imaging process indispensable for the quantitative evaluation of CLSM image analysis algorithms, (ii) the application of Poisson denoising algorithms and (iii) the reconstruction of the fluorescence signal.

  16. Sheet-scanned dual-axis confocal microscopy using Richardson-Lucy deconvolution.

    PubMed

    Wang, D; Meza, D; Wang, Y; Gao, L; Liu, J T C

    2014-09-15

    We have previously developed a line-scanned dual-axis confocal (LS-DAC) microscope with subcellular resolution suitable for high-frame-rate diagnostic imaging at shallow depths. Due to the loss of confocality along one dimension, the contrast (signal-to-background ratio) of a LS-DAC microscope is deteriorated compared to a point-scanned DAC microscope. However, by using a sCMOS camera for detection, a short oblique light-sheet is imaged at each scanned position. Therefore, by scanning the light sheet in only one dimension, a thin 3D volume is imaged. Both sequential two-dimensional deconvolution and three-dimensional deconvolution are performed on the thin image volume to improve the resolution and contrast of one en face confocal image section at the center of the volume, a technique we call sheet-scanned dual-axis confocal (SS-DAC) microscopy.

  17. Strip mosaicing confocal microscopy for rapid imaging over large areas of excised tissue

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2012-03-01

    Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in fresh tissue, without the processing that is required for conventional pathology. Previously, basal cell carcinoma margins were detected by mosaicing of confocal images of 12 x 12 mm2 of excised tissue from Mohs surgery. This mosaicing took 9 minutes. Recently we reported the initial feasibility of a faster approach called "strip mosaicing" on 10 x 10 mm2 of tissue that was demonstrated in 3 minutes. In this paper we report further advances in instrumentation and software. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Thus, strip mosaicing confocal microscopy may serve as an adjunct to pathology for imaging tumor margins to guide surgery.

  18. En-face Flying Spot OCT/Ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Rosen, Richard B.; Garcia, Patricia; Podoleanu, Adrian Gh.; Cucu, Radu; Dobre, George; Trifanov, Irina; van Velthoven, Mirjam E. J.; de Smet, Marc D.; Rogers, John A.; Hathaway, Mark; Pedro, Justin; Weitz, Rishard

    This is a review of a technique for high-resolution imaging of the eye that allows multiple sample sectioning perspectives with different axial resolutions. The technique involves the flying spot approach employed in confocal scanning laser ophthalmoscopy which is extended to OCT imaging via time domain en face fast lateral scanning. The ability of imaging with multiple axial resolutions stimulated the development of the dual en face OCT-confocal imaging technology. Dual imaging also allows various other imaging combinations, such as OCT with confocal microscopy for imaging the eye anterior segment and OCT with fluorescence angiography imaging.

  19. In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope.

    PubMed

    Maitland, Kristen C; Gillenwater, Ann M; Williams, Michelle D; El-Naggar, Adel K; Descour, Michael R; Richards-Kortum, Rebecca R

    2008-11-01

    The purpose of this study was to determine whether in vivo images of oral mucosa obtained with a fiber optic confocal reflectance microscope could be used to differentiate normal and neoplastic tissues. We imaged 20 oral sites in eight patients undergoing surgery for squamous cell carcinoma. Normal and abnormal areas within the oral cavity were identified clinically, and real-time videos of each site were obtained in vivo using a fiber optic confocal reflectance microscope. Following imaging, each site was biopsied and submitted for histopathologic examination. We identified distinct features, such as nuclear irregularity and spacing, which can be used to qualitatively differentiate between normal and abnormal tissue. Representative confocal images of normal, pre-neoplastic, and neoplastic oral tissue are presented. Previous work using much larger microscopes has demonstrated the ability of confocal reflectance microscopy to image cellular and tissue architecture in situ. New advances in technology have enabled miniaturization of imaging systems for in vivo use.

  20. Design of small confocal endo-microscopic probe working under multiwavelength environment

    NASA Astrophysics Data System (ADS)

    Kim, Young-Duk; Ahn, MyoungKi; Gweon, Dae-Gab

    2010-02-01

    Recently, optical imaging system is widely used in medical purpose. By using optical imaging system specific diseases can be easily diagnosed at early stage because optical imaging system has high resolution performance and various imaging method. These methods are used to get high resolution image of human body and can be used to verify whether the cell is infected by virus. Confocal microscope is one of the famous imaging systems which is used for in-vivo imaging. Because most of diseases are accompanied with cellular level changes, doctors can diagnosis at early stage by observing the cellular image of human organ. Current research is focused in the development of endo-microscope that has great advantage in accessibility to human body. In this research, I designed small probe that is connected to confocal microscope through optical fiber bundle and work as endo-microscope. And this small probe is mainly designed to correct chromatic aberration to use various laser sources for both fluorescence type and reflection type confocal images. By using two kinds of laser sources at the same time we demonstrated multi-modality confocal endo-microscope.

  1. Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging

    PubMed Central

    Shimozawa, Togo; Yamagata, Kazuo; Kondo, Takefumi; Hayashi, Shigeo; Shitamukai, Atsunori; Konno, Daijiro; Matsuzaki, Fumio; Takayama, Jun; Onami, Shuichi; Nakayama, Hiroshi; Kosugi, Yasuhito; Watanabe, Tomonobu M.; Fujita, Katsumasa; Mimori-Kiyosue, Yuko

    2013-01-01

    A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to “pinhole cross-talk,” which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals, these strategies dramatically improve higher-resolution intravital imaging. PMID:23401517

  2. Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging.

    PubMed

    Shimozawa, Togo; Yamagata, Kazuo; Kondo, Takefumi; Hayashi, Shigeo; Shitamukai, Atsunori; Konno, Daijiro; Matsuzaki, Fumio; Takayama, Jun; Onami, Shuichi; Nakayama, Hiroshi; Kosugi, Yasuhito; Watanabe, Tomonobu M; Fujita, Katsumasa; Mimori-Kiyosue, Yuko

    2013-02-26

    A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to "pinhole cross-talk," which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals, these strategies dramatically improve higher-resolution intravital imaging.

  3. In Vivo Confocal Intrinsic Optical Signal Identification of Localized Retinal Dysfunction

    PubMed Central

    Zhang, Qiu-Xiang; Lu, Rong-Wen; Curcio, Christine A.; Yao, Xin-Cheng

    2012-01-01

    Purpose. The purposes of this study were to investigate the physiological mechanism of stimulus-evoked fast intrinsic optical signals (IOSs) recorded in dynamic confocal imaging of the retina, and to demonstrate the feasibility of in vivo confocal IOS mapping of localized retinal dysfunctions. Methods. A rapid line-scan confocal ophthalmoscope was constructed to achieve in vivo confocal IOS imaging of frog (Rana pipiens) retinas at cellular resolution. In order to investigate the physiological mechanism of confocal IOS, comparative IOS and electroretinography (ERG) measurements were made using normal frog eyes activated by variable-intensity stimuli. A dynamic spatiotemporal filtering algorithm was developed to reject the contamination of hemodynamic changes on fast IOS recording. Laser-injured frog eyes were employed to test the potential of confocal IOS mapping of localized retinal dysfunctions. Results. Comparative IOS and ERG experiments revealed a close correlation between the confocal IOS and retinal ERG, particularly the ERG a-wave, which has been widely used to evaluate photoreceptor function. IOS imaging of laser-injured frog eyes indicated that the confocal IOS could unambiguously detect localized (30 μm) functional lesions in the retina before a morphological abnormality is detectable. Conclusions. The confocal IOS predominantly results from retinal photoreceptors, and can be used to map localized photoreceptor lesion in laser-injured frog eyes. We anticipate that confocal IOS imaging can provide applications in early detection of age-related macular degeneration, retinitis pigmentosa, and other retinal diseases that can cause pathological changes in the photoreceptors. PMID:23150616

  4. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography).

    PubMed

    Siegel, Nisan; Storrie, Brian; Bruce, Marc; Brooker, Gary

    2015-02-07

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called "CINCH". An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution.

  5. Lateral resolution testing of a novel developed confocal microscopic imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Yunhai; Chang, Jian; Huang, Wei; Xue, Xiaojun; Xiao, Yun

    2015-10-01

    Laser scanning confocal microscope has been widely used in biology, medicine and material science owing to its advantages of high resolution and tomographic imaging. Based on a set of confirmatory experiments and system design, a novel confocal microscopic imaging system is developed. The system is composed of a conventional fluorescence microscope and a confocal scanning unit. In the scanning unit a laser beam coupling module provides four different wavelengths 405nm 488nm 561nm and 638nm which can excite a variety of dyes. The system works in spot-to-spot scanning mode with a two-dimensional galvanometer. A 50 microns pinhole is used to guarantee that stray light is blocked and only the fluorescence signal from the focal point can be received . The three-channel spectral splitter is used to perform fluorescence imaging at three different working wavelengths simultaneously. The rat kidney tissue slice is imaged using the developed confocal microscopic imaging system. Nucleues labeled by DAPI and kidney spherule curved pipe labeled by Alexa Fluor 488 can be imaged clearly and respectively, realizing the distinction between the different components of mouse kidney tissue. The three-dimensional tomographic imaging of mouse kidney tissue is reconstructed by several two-dimensional images obtained in different depths. At last the resolution of the confocal microscopic imaging system is tested quantitatively. The experimental result shows that the system can achieve lateral resolution priority to 230nm.

  6. Spinning Disk Confocal Imaging of Neutrophil Migration in Zebrafish

    PubMed Central

    Lam, Pui-ying; Fischer, Robert S; Shin, William D.; Waterman, Clare M; Huttenlocher, Anna

    2014-01-01

    Live-cell imaging techniques have been substantially improved due to advances in confocal microscopy instrumentation coupled with ultrasensitive detectors. The spinning disk confocal system is capable of generating images of fluorescent live samples with broad dynamic range and high temporal and spatial resolution. The ability to acquire fluorescent images of living cells in vivo on a millisecond timescale allows the dissection of biological processes that have not previously been visualized in a physiologically relevant context. In vivo imaging of rapidly moving cells such as neutrophils can be technically challenging. In this chapter, we describe the practical aspects of imaging neutrophils in zebrafish embryos using spinning disk confocal microscopy. Similar setups can also be applied to image other motile cell types and signaling processes in translucent animals or tissues. PMID:24504955

  7. Superresolution upgrade for confocal spinning disk systems using image scanning microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg

    2017-02-01

    Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).

  8. Modelling the degree of porosity of the ceramic surface intended for implants.

    PubMed

    Stach, Sebastian; Kędzia, Olga; Garczyk, Żaneta; Wróbel, Zygmunt

    2018-05-18

    The main goal of the study was to develop a model of the degree of surface porosity of a biomaterial intended for implants. The model was implemented using MATLAB. A computer simulation was carried out based on the developed model, which resulted in a two-dimensional image of the modelled surface. Then, an algorithm for computerised image analysis of the surface of the actual oxide bioceramic layer was developed, which enabled determining its degree of porosity. In order to obtain the confocal micrographs of a few areas of the biomaterial, measurements were performed using the LEXT OLS4000 confocal laser microscope. The image analysis was carried out using MountainsMap Premium and SPIP. The obtained results allowed determining the input parameters of the program, on the basis of which porous biomaterial surface images were generated. The last part of the study involved verification of the developed model. The modelling method was tested by comparing the obtained results with the experimental data obtained from the analysis of surface images of the test material.

  9. High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential

    PubMed Central

    2014-01-01

    Current musculoskeletal imaging techniques usually target the macro-morphology of articular cartilage or use histological analysis. These techniques are able to reveal advanced osteoarthritic changes in articular cartilage but fail to give detailed information to distinguish early osteoarthritis from healthy cartilage, and this necessitates high-resolution imaging techniques measuring cells and the extracellular matrix within the multilayer structure of articular cartilage. This review provides a comprehensive exploration of the cellular components and extracellular matrix of articular cartilage as well as high-resolution imaging techniques, including magnetic resonance image, electron microscopy, confocal laser scanning microscopy, second harmonic generation microscopy, and laser scanning confocal arthroscopy, in the measurement of multilayer ultra-structures of articular cartilage. This review also provides an overview for micro-structural analysis of the main components of normal or osteoarthritic cartilage and discusses the potential and challenges associated with developing non-invasive high-resolution imaging techniques for both research and clinical diagnosis of early to late osteoarthritis. PMID:24946278

  10. Super-resolution for everybody: An image processing workflow to obtain high-resolution images with a standard confocal microscope.

    PubMed

    Lam, France; Cladière, Damien; Guillaume, Cyndélia; Wassmann, Katja; Bolte, Susanne

    2017-02-15

    In the presented work we aimed at improving confocal imaging to obtain highest possible resolution in thick biological samples, such as the mouse oocyte. We therefore developed an image processing workflow that allows improving the lateral and axial resolution of a standard confocal microscope. Our workflow comprises refractive index matching, the optimization of microscope hardware parameters and image restoration by deconvolution. We compare two different deconvolution algorithms, evaluate the necessity of denoising and establish the optimal image restoration procedure. We validate our workflow by imaging sub resolution fluorescent beads and measuring the maximum lateral and axial resolution of the confocal system. Subsequently, we apply the parameters to the imaging and data restoration of fluorescently labelled meiotic spindles of mouse oocytes. We measure a resolution increase of approximately 2-fold in the lateral and 3-fold in the axial direction throughout a depth of 60μm. This demonstrates that with our optimized workflow we reach a resolution that is comparable to 3D-SIM-imaging, but with better depth penetration for confocal images of beads and the biological sample. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Fast Two-Dimensional Bubble Analysis of Biopolymer Filamentous Networks Pore Size from Confocal Microscopy Thin Data Stacks

    PubMed Central

    Molteni, Matteo; Magatti, Davide; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-01-01

    The average pore size ξ0 of filamentous networks assembled from biological macromolecules is one of the most important physical parameters affecting their biological functions. Modern optical methods, such as confocal microscopy, can noninvasively image such networks, but extracting a quantitative estimate of ξ0 is a nontrivial task. We present here a fast and simple method based on a two-dimensional bubble approach, which works by analyzing one by one the (thresholded) images of a series of three-dimensional thin data stacks. No skeletonization or reconstruction of the full geometry of the entire network is required. The method was validated by using many isotropic in silico generated networks of different structures, morphologies, and concentrations. For each type of network, the method provides accurate estimates (a few percent) of the average and the standard deviation of the three-dimensional distribution of the pore sizes, defined as the diameters of the largest spheres that can be fit into the pore zones of the entire gel volume. When applied to the analysis of real confocal microscopy images taken on fibrin gels, the method provides an estimate of ξ0 consistent with results from elastic light scattering data. PMID:23473499

  12. Real-Time Confocal Imaging Of The Living Eye

    NASA Astrophysics Data System (ADS)

    Jester, James V.; Cavanagh, H. Dwight; Essepian, John; Shields, William J.; Lemp, Michael A.

    1989-12-01

    In 1986, we adapted the Tandem Scanning Reflected Light Microscope of Petran and Hadraysky to permit non-invasive, confocal imaging of the living eye in real-time. We were first to obtain stable, confocal optical sections in vivo, from human and animal eyes. Using confocal imaging systems we have now studied living, normal volunteers, rabbits, cats and primates sequentially, non-invasively, and in real-time. The continued development of real-time confocal imaging systems will unlock the door to a new field of cell biology involving for the first time the study of dynamic cellular processes in living organ systems. Towards this end we have concentrated our initial studies on three areas (1) evaluation of confocal microscope systems for real-time image acquisition, (2) studies of the living normal cornea (epithelium, stroma, endothelium) in human and other species; and (3) sequential wound-healing responses in the cornea in single animals to lamellar-keratectomy injury (cellular migration, inflammation, scarring). We believe that this instrument represents an important, new paradigm for research in cell biology and pathology and that it will fundamentally alter all experimental and clinical approaches in future years.

  13. Digital adaptive optics line-scanning confocal imaging system.

    PubMed

    Liu, Changgeng; Kim, Myung K

    2015-01-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  14. Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: Differentiate malignant melanoma from benign tumor tissue

    NASA Astrophysics Data System (ADS)

    He, Jinping; Wang, Nan; Tsurui, Hiromichi; Kato, Masashi; Iida, Machiko; Kobayashi, Takayoshi

    2016-07-01

    Skin cancer is one of the most common cancers. Melanoma accounts for less than 2% of skin cancer cases but causes a large majority of skin cancer deaths. Early detection of malignant melanoma remains the key factor in saving lives. However, the melanoma diagnosis is still clinically challenging. Here, we developed a confocal photothermal microscope for noninvasive, label-free, three-dimensional imaging of melanoma. The axial resolution of confocal photothermal microscope is ~3 times higher than that of commonly used photothermal microscope. Three-dimensional microscopic distribution of melanin in pigmented lesions of mouse skin is obtained directly with this setup. Classic morphometric and fractal analysis of sixteen 3D images (eight for benign melanoma and eight for malignant) showed a capability of pathology of melanoma: melanin density and size become larger during the melanoma growth, and the melanin distribution also becomes more chaotic and unregulated. The results suggested new options for monitoring the melanoma growth and also for the melanoma diagnosis.

  15. 3D confocal Raman imaging of oil-rich emulsion from enzyme-assisted aqueous extraction of extruded soybean powder.

    PubMed

    Wu, Longkun; Wang, Limin; Qi, Baokun; Zhang, Xiaonan; Chen, Fusheng; Li, Yang; Sui, Xiaonan; Jiang, Lianzhou

    2018-05-30

    The understanding of the structure morphology of oil-rich emulsion from enzyme-assisted extraction processing (EAEP) was a critical step to break the oil-rich emulsion structure in order to recover oil. Albeit EAEP method has been applied as an alternative way to conventional solvent extraction method, the structure morphology of oil-rich emulsion was still unclear. The current study aimed to investigate the structure morphology of oil-rich emulsion from EAEP using 3D confocal Raman imaging technique. With increasing the enzymatic hydrolysis duration from 1 to 3 h, the stability of oil-rich emulsion was decreased as visualized in the 3D confocal Raman images that the protein and oil were mixed together. The subsequent Raman spectrum analysis further revealed that the decreased stability of oil-rich emulsion was due to the protein aggregations via SS bonds or protein-lipid interactions. The conformational transfer in protein indicated the formation of a compact structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography)

    PubMed Central

    Siegel, Nisan; Storrie, Brian; Bruce, Marc

    2016-01-01

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called “CINCH”. An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution. PMID:26839443

  17. Confocal microlaparoscope for imaging the fallopian tube

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Yu; Schafer, Rachel; Rouse, Andrew R.; Gmitro, Arthur F.

    2012-02-01

    Recent evidence suggests that epithelial ovarian cancer may originate in the fimbriated end of the fallopian tube1. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. We have previously reported on a rigid confocal microlaparoscope system that is currently undergoing a clinical trial to image the epithelial surface of the ovary2. In order to gain in vivo access to the fallopian tubes we have developed a new confocal microlaparoscope with an articulating distal tip. The new instrument builds upon the technology developed for the existing confocal microlaparoscope. It has an ergonomic handle fabricated by a rapid prototyping printer. While maintaining compatibility with a 5 mm trocar, the articulating distal tip of the instrument consists of a 2.2 mm diameter bare fiber bundle catheter with automated dye delivery for fluorescence imaging. This small and flexible catheter design should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Early ex vivo mages of human fallopian tube and in vivo imaging results from recent open surgeries using the rigid confocal microlaparoscope system are presented. Ex vivo images from animal models using the new articulating bare fiber system are also presented. These high quality images collected by the new flexible system are similar in quality to those obtained from the epithelial surface of ovaries with the rigid clinical confocal microlaparoscope.

  18. 4Pi-confocal microscopy of live cells

    NASA Astrophysics Data System (ADS)

    Bahlmann, Karsten; Jakobs, Stefan; Hell, Stefan W.

    2002-06-01

    By coherently adding the spherical wavefronts of two opposing lenses, two-photon excitation 4Pi-confocal fluorescence microscopy has achieved three-dimensional imaging with an axial resolution 3-7 times better than confocal microscopy. So far this improvement was possible only in glycerol-mounted, fixed cells. Here we report 4Pi-confocal microscopy of watery objects and its application to the imaging of live cells. Water immersion 4Pi-confocal microscopy of membrane stained live Escherichia coli bacteria attains a 4.3 fold better axial resolution as compared to the best water immersion confocal microscope. The resolution enhancement results into a vastly improved three-dimensional representation of the bacteria. The first images of live biological samples with an all-directional resolution in the 190-280 nm range are presented here, thus establishing a new resolution benchmark in live cell microscopy.

  19. Fibre optic confocal imaging (FOCI) for subsurface microscopy of the colon in vivo.

    PubMed Central

    Delaney, P M; King, R G; Lambert, J R; Harris, M R

    1994-01-01

    Fibre optic confocal imaging (FOCI) is a new type of microscopy which has been recently developed (Delaney et al. 1993). In contrast to conventional light microscopy, FOCI and other confocal techniques allow clear imaging of subsurface structures within translucent objects. However, unlike conventional confocal microscopes which are bulky (because of a need for accurate alignment of large components) FOCI allows the imaging end to be miniaturised and relatively mobile. FOCI is thus particularly suited for clear subsurface imaging of structures within living animals or subjects. The aim of the present study was to assess the suitability of using FOCI for imaging of subsurface structures within the colon, both in vitro (human and rat biopsies) and in vivo (in rats). Images were obtained in fluorescence mode (excitation 488 nm, detection above 515 nm) following topical application of fluorescein. By this technique the glandular structure of the colon was imaged. FOCI is thus suitable for subsurface imaging of the colon in vivo. Images Fig. 2 Fig. 3 PMID:8157487

  20. Analysis of multi-channel microscopy: Spectral self-interference, multi-detector confocal and 4Pi systems

    NASA Astrophysics Data System (ADS)

    Davis, Brynmor J.

    Fluorescence microscopy is an important and ubiquitous tool in biological imaging due to the high specificity with which fluorescent molecules can be attached to an organism and the subsequent nondestructive in-vivo imaging allowed. Focused-light microscopies allow three-dimensional fluorescence imaging but their resolution is restricted by diffraction. This effect is particularly limiting in the axial dimension as the diffraction-limited focal volume produced by a lens is more extensive along the optical axis than perpendicular to it. Approaches such as confocal microscopy and 4Pi microscopy have been developed to improve the axial resolution. Spectral Self-Interference Fluorescence Microscopy (SSFM) is another high-axial-resolution technique and is the principal subject of this dissertation. Nanometer-precision localization of a single fluorescent layer has been demonstrated using SSFM. This accuracy compares favorably with the axial resolutions given by confocal and 4Pi systems at similar operating parameters (these resolutions are approximately 350nm and 80nm respectively). This theoretical work analyzes the expected performance of the SSFM system when imaging a general object, i.e. an arbitrary fluorophore density function rather than a single layer. An existing model of SSFM is used in simulations to characterize the system's resolution. Several statistically-based reconstruction methods are applied to show that the expected resolution for SSFM is similar to 4Pi microscopy for a general object but does give very high localization accuracy when the object is known to consist of a limited number of layers. SSFM is then analyzed in a linear systems framework and shown to have strong connections, both physically and mathematically, to a multi-channel 4Pi microscope. Fourier-domain analysis confirms that SSFM cannot be expected to outperform this multi-channel 4Pi instrument. Differences between the channels in spatial-scanning, multi-channel microscopies are then exploited to show that such instruments can operate at a sub-Nyquist scanning rate but still produce images largely free of aliasing effects. Multi-channel analysis is also used to show how light typically discarded in confocal and 4Pi systems can be collected and usefully incorporated into the measured image.

  1. Automatic analysis for neuron by confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Satou, Kouhei; Aoki, Yoshimitsu; Mataga, Nobuko; Hensh, Takao K.; Taki, Katuhiko

    2005-12-01

    The aim of this study is to develop a system that recognizes both the macro- and microscopic configurations of nerve cells and automatically performs the necessary 3-D measurements and functional classification of spines. The acquisition of 3-D images of cranial nerves has been enabled by the use of a confocal laser scanning microscope, although the highly accurate 3-D measurements of the microscopic structures of cranial nerves and their classification based on their configurations have not yet been accomplished. In this study, in order to obtain highly accurate measurements of the microscopic structures of cranial nerves, existing positions of spines were predicted by the 2-D image processing of tomographic images. Next, based on the positions that were predicted on the 2-D images, the positions and configurations of the spines were determined more accurately by 3-D image processing of the volume data. We report the successful construction of an automatic analysis system that uses a coarse-to-fine technique to analyze the microscopic structures of cranial nerves with high speed and accuracy by combining 2-D and 3-D image analyses.

  2. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy.

    PubMed

    Siegel, Nisan; Brooker, Gary

    2014-09-22

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".

  3. Active confocal imaging for visual prostheses

    PubMed Central

    Jung, Jae-Hyun; Aloni, Doron; Yitzhaky, Yitzhak; Peli, Eli

    2014-01-01

    There are encouraging advances in prosthetic vision for the blind, including retinal and cortical implants, and other “sensory substitution devices” that use tactile or electrical stimulation. However, they all have low resolution, limited visual field, and can display only few gray levels (limited dynamic range), severely restricting their utility. To overcome these limitations, image processing or the imaging system could emphasize objects of interest and suppress the background clutter. We propose an active confocal imaging system based on light-field technology that will enable a blind user of any visual prosthesis to efficiently scan, focus on, and “see” only an object of interest while suppressing interference from background clutter. The system captures three-dimensional scene information using a light-field sensor and displays only an in-focused plane with objects in it. After capturing a confocal image, a de-cluttering process removes the clutter based on blur difference. In preliminary experiments we verified the positive impact of confocal-based background clutter removal on recognition of objects in low resolution and limited dynamic range simulated phosphene images. Using a custom-made multiple-camera system, we confirmed that the concept of a confocal de-cluttered image can be realized effectively using light field imaging. PMID:25448710

  4. Analysis of replication factories in human cells by super-resolution light microscopy

    PubMed Central

    2009-01-01

    Background DNA replication in human cells is performed in discrete sub-nuclear locations known as replication foci or factories. These factories form in the nucleus during S phase and are sites of DNA synthesis and high local concentrations of enzymes required for chromatin replication. Why these structures are required, and how they are organised internally has yet to be identified. It has been difficult to analyse the structure of these factories as they are small in size and thus below the resolution limit of the standard confocal microscope. We have used stimulated emission depletion (STED) microscopy, which improves on the resolving power of the confocal microscope, to probe the structure of these factories at sub-diffraction limit resolution. Results Using immunofluorescent imaging of PCNA (proliferating cell nuclear antigen) and RPA (replication protein A) we show that factories are smaller in size (approximately 150 nm diameter), and greater in number (up to 1400 in an early S- phase nucleus), than is determined by confocal imaging. The replication inhibitor hydroxyurea caused an approximately 40% reduction in number and a 30% increase in diameter of replication factories, changes that were not clearly identified by standard confocal imaging. Conclusions These measurements for replication factory size now approach the dimensions suggested by electron microscopy. This agreement between these two methods, that use very different sample preparation and imaging conditions, suggests that we have arrived at a true measurement for the size of these structures. The number of individual factories present in a single nucleus that we measure using this system is greater than has been previously reported. This analysis therefore suggests that each replication factory contains fewer active replication forks than previously envisaged. PMID:20015367

  5. An invertebrate embryologist's guide to routine processing of confocal images.

    PubMed

    von Dassow, George

    2014-01-01

    It is almost impossible to use a confocal microscope without encountering the need to transform the raw data through image processing. Adherence to a set of straightforward guidelines will help ensure that image manipulations are both credible and repeatable. Meanwhile, attention to optimal data collection parameters will greatly simplify image processing, not only for convenience but for quality and credibility as well. Here I describe how to conduct routine confocal image processing tasks, including creating 3D animations or stereo images, false coloring or merging channels, background suppression, and compressing movie files for display.

  6. Confocal Imaging of Confined Quiescent and Flowing Colloid-polymer Mixtures

    PubMed Central

    Conrad, Jacinta C.

    2014-01-01

    The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly1-3, drug delivery4, improved hydrocarbon recovery5-7, and flowable electrodes for energy storage8. Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained9. Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems10. Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions11-16,37. In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol for imaging colloid-polymer mixtures during microchannel flow. PMID:24894062

  7. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.

    PubMed

    Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki

    2013-07-29

    We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

  8. Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging.

    PubMed

    Dabbah, M A; Graham, J; Petropoulos, I N; Tavakoli, M; Malik, R A

    2011-10-01

    Diabetic peripheral neuropathy (DPN) is one of the most common long term complications of diabetes. Corneal confocal microscopy (CCM) image analysis is a novel non-invasive technique which quantifies corneal nerve fibre damage and enables diagnosis of DPN. This paper presents an automatic analysis and classification system for detecting nerve fibres in CCM images based on a multi-scale adaptive dual-model detection algorithm. The algorithm exploits the curvilinear structure of the nerve fibres and adapts itself to the local image information. Detected nerve fibres are then quantified and used as feature vectors for classification using random forest (RF) and neural networks (NNT) classifiers. We show, in a comparative study with other well known curvilinear detectors, that the best performance is achieved by the multi-scale dual model in conjunction with the NNT classifier. An evaluation of clinical effectiveness shows that the performance of the automated system matches that of ground-truth defined by expert manual annotation. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Functionalization of titanium surface with chitosan via silanation: 3D CLSM imaging of cell biocompatibility behaviour.

    PubMed

    Attik, G N; D'Almeida, M; Toury, B; Grosgogeat, B

    2013-09-16

    Biocompatibility ranks as one of the most important properties of dental materials. One of the criteria for biocompatibility is the absence of material toxicity to cells, according to the ISO 7405 and 10993 recommendations. Among numerous available methods for toxicity assessment; 3-dimensional Confocal Laser Scanning Microscopy (3D CLSM) imaging was chosen because it provides an accurate and sensitive index of living cell behavior in contact with chitosan coated tested implants. The purpose of this study was to investigate the in vitro biocompatibility of functionalized titanium with chitosan via a silanation using sensitive and innovative 3D CLSM imaging as an investigation method for cytotoxicity assessment. The biocompatibility of four samples (controls cells, TA6V, TA6V-TESBA and TA6V-TESBAChitosan) was compared in vitro after 24h of exposure. Confocal imaging was performed on cultured human gingival fibroblast (HGF1) like cells using Live/Dead® staining. Image series were obtained with a FV10i confocal biological inverted system and analyzed with FV10-ASW 3.1 Software (Olympus France). Image analysis showed no cytotoxicity in the presence of the three tested substrates after 24 h of contact. A slight decrease of cell viability was found in contact with TA6V-TESBA with and without chitosan compared to negative control cells. Our findings highlighted the use of 3D CLSM confocal imaging as a sensitive method to evaluate qualitatively and quantitatively the biocompatibility behavior of functionalized titanium with chitosan via a silanation. The biocompatibility of the new functionalized coating to HGF1 cells is as good as the reference in biomedical device implantation TA6V.

  10. Femtosecond laser subsurface scleral treatment in cadaver human sclera and evaluation using two-photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yan, Ying; Lian, Fuqiang; Kurtz, Ron; Juhasz, Tibor

    2016-03-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial-thickness drainage channels can be created with femtosecond laser in the translucent sclera for the potential treatment of glaucoma. We demonstrate the creation of partial-thickness subsurface drainage channels with the femtosecond laser in the cadaver human eyeballs and describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. A femtosecond laser operating at a wavelength of 1700 nm was scanned along a rectangular raster pattern to create the partial thickness subsurface drainage channels in the sclera of cadaver human eyes. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such partial thickness subsurface scleral channels. Our studies suggest that the confocal and two-photon microscopy can be used to investigate femtosecond-laser created partial-thickness drainage channels in the sclera of cadaver human eyes.

  11. Mapping owl's eye cells of patients with cytomegalovirus corneal endotheliitis using in vivo laser confocal microscopy.

    PubMed

    Yokogawa, Hideaki; Kobayashi, Akira; Sugiyama, Kazuhisa

    2013-01-01

    To produce a two-dimensional reconstruction map of owl's eye cells using in vivo laser confocal microscopy in patients with cytomegalovirus (CMV) corneal endotheliitis, and to demonstrate any association between owl's eye cells and coin-shaped lesions observed with slit-lamp biomicroscopy. Two patients (75- and 77-year-old men) with polymerase chain reaction-proven CMV corneal endotheliitis were evaluated in this study. Slit-lamp biomicroscopy and in vivo laser confocal microscopy were performed. Images of owl's eye cells in the endothelial cell layer were arranged and mapped into subconfluent montages. Montage images of owl's eye cells were then superimposed on a slit-lamp photo of the corresponding coin-shaped lesion. Degree of concordance between the confocal microscopic images and slit-lamp photos was evaluated. In both eyes, a two-dimensional reconstruction map of the owl's eye cells was created by computer software using acquired confocal images; the maps showed circular patterns. Superimposing montage images of owl's eye cells onto the photos of a coin-shaped lesion showed good concordance in the two eyes. This study suggests that there is an association between owl's eye cells observed by confocal microscopy and coin-shaped lesions observed by slit-lamp biomicroscopy in patients with CMV corneal endotheliitis. The use of in vivo laser confocal microscopy may provide clues as to the underlying causes of CMV corneal endotheliitis.

  12. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy

    PubMed Central

    Siegel, Nisan; Brooker, Gary

    2014-01-01

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called “CINCH”. PMID:25321701

  13. In vivo assessment of cytological changes by means of reflectance confocal microscopy - demonstration of the effect of topical vitamin E on skin irritation caused by sodium lauryl sulfate.

    PubMed

    Casari, Alice; Farnetani, Francesca; De Pace, Barbara; Losi, Amanda; Pittet, Jean-Christophe; Pellacani, Giovanni; Longo, Caterina

    2017-03-01

    Irritant contact dermatitis is caused by skin barrier damage. Vitamin E is an antioxidant that is commonly used in cosmetics to prevent photo-damage. To show the usefulness of reflectance confocal microscopy in the assessment of irritant skin damage caused by sodium lauryl sulfate (SLS) and of the protective action of vitamin E applied prior to skin irritation. Ten healthy volunteers were enrolled. Irritation was induced by the application of a patch test containing SLS 5% aq. for 24 h. Three sites were compared: one site on which a product with vitamin E was applied before SLS treatment, one site on which the same product was applied after SLS treatment, and one control site (SLS only). Each site was evaluated with reflectance confocal microscopy, providing in vivo tissue images at nearly histological resolution. We also performed a computerized analysis of the VivaStack® images. Reflectance confocal microscopy is able to identify signs of skin irritation and the preventive effect of vitamin E application. Reflectance confocal microscopy is useful in the objective assessment of irritative skin damage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Real-time, non-invasive microscopic confirmation of clinical diagnosis of bullous pemphigoid using in vivo reflectance confocal microscopy.

    PubMed

    Ardigò, M; Agozzino, M; Amorosi, B; Moscarella, E; Cota, C; de Abreu, L; Berardesca, E

    2014-05-01

    Bullous pemphigoid is an autoimmune disease affecting prevalently the elder. In vivo reflectance confocal microscopy is a non-invasive technique for real-time imaging of the skin with cellular-level resolution. No previous data has been reported about confocal microscopy of bullous pemphigoid. Aim of this preliminary study is the evaluation of the potential of in vivo reflectance confocal microscopy for real-time, microscopical confirmation of clinical bullous pemphigoid diagnosis. A total of nine lesions from patients affected by pemphigoid underwent in vivo reflectance confocal microscopy before histological examination. In our preliminary study, confocal microscopy showed high grade of correspondence to histopathology. In particular, presence of sub-epidermal cleft and variable amount of oedema of the upper dermis associated with inflammatory cells infiltration were seen as prevalent confocal features in the bullous lesions considered. Differently, in urticarial lesions, no specific features could be appreciated at confocal analysis beside the presence of signs of spongiosis and perivascular inflammation. Confocal microscopy seems to be useful for in vivo, microscopical confirmation of the clinical suspect of bullous pemphigoid and for biopsy site selection in urticarial lesions to obtain a more significant specimen for histopathological examination. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Evaluation of breast tissue with confocal strip-mosaicking microscopy: a test approach emulating pathology-like examination

    PubMed Central

    Abeytunge, Sanjee; Larson, Bjorg; Peterson, Gary; Morrow, Monica; Rajadhyaksha, Milind

    2017-01-01

    Abstract. Confocal microscopy is an emerging technology for rapid imaging of freshly excised tissue without the need for frozen- or fixed-section processing. Initial studies have described imaging of breast tissue using fluorescence confocal microscopy with small regions of interest, typically 750×750  μm2. We present exploration with a microscope, termed confocal strip-mosaicking microscope (CSM microscope), which images an area of 2×2  cm2 of tissue with cellular-level resolution in 10 min of excision. Using the CSM microscope, we imaged 34 fresh, human, large breast tissue specimens from 18 patients, blindly analyzed by a board-certified pathologist and subsequently correlated with the corresponding standard fixed histopathology. Invasive tumors and benign tissue were clearly identified in CSM strip-mosaic images. Thirty specimens were concordant for image-to-histopathology correlation while four were discordant. PMID:28327961

  16. New developments of X-ray fluorescence imaging techniques in laboratory

    NASA Astrophysics Data System (ADS)

    Tsuji, Kouichi; Matsuno, Tsuyoshi; Takimoto, Yuki; Yamanashi, Masaki; Kometani, Noritsugu; Sasaki, Yuji C.; Hasegawa, Takeshi; Kato, Shuichi; Yamada, Takashi; Shoji, Takashi; Kawahara, Naoki

    2015-11-01

    X-ray fluorescence (XRF) analysis is a well-established analytical technique with a long research history. Many applications have been reported in various fields, such as in the environmental, archeological, biological, and forensic sciences as well as in industry. This is because XRF has a unique advantage of being a nondestructive analytical tool with good precision for quantitative analysis. Recent advances in XRF analysis have been realized by the development of new x-ray optics and x-ray detectors. Advanced x-ray focusing optics enables the making of a micro x-ray beam, leading to micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied for the visualization of elemental distributions inside the samples. This technique was applied for liquid samples and for monitoring chemical reactions such as the metal corrosion of steel samples in the NaCl solutions. In addition, a principal component analysis was applied for reducing the background intensity in XRF spectra obtained during XRF mapping, leading to improved spatial resolution of confocal micro-XRF images. In parallel, the authors have proposed a wavelength dispersive XRF (WD-XRF) imaging spectrometer for a fast elemental imaging. A new two dimensional x-ray detector, the Pilatus detector was applied for WD-XRF imaging. Fast XRF imaging in 1 s or even less was demonstrated for Euro coins and industrial samples. In this review paper, these recent advances in laboratory-based XRF imaging, especially in a laboratory setting, will be introduced.

  17. Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope.

    PubMed

    Mathew, Manoj; Santos, Susana I C O; Zalvidea, Dobryna; Loza-Alvarez, Pablo

    2009-07-01

    In this work we propose and build a multimodal optical workstation that extends a commercially available confocal microscope (Nikon Confocal C1-Si) to include nonlinear/multiphoton microscopy and optical manipulation/stimulation tools such as nanosurgery. The setup allows both subsystems (confocal and nonlinear) to work independently and simultaneously. The workstation enables, for instance, nanosurgery along with simultaneous confocal and brightfield imaging. The nonlinear microscopy capabilities are added around the commercial confocal microscope by exploiting all the flexibility offered by this microscope and without need for any mechanical or electronic modification of the confocal microscope systems. As an example, the standard differential interference contrast condenser and diascopic detector in the confocal microscope are readily used as a forward detection mount for second harmonic generation imaging. The various capabilities of this workstation, as applied directly to biology, are demonstrated using the model organism Caenorhabditis elegans.

  18. Any Way You Slice It—A Comparison of Confocal Microscopy Techniques

    PubMed Central

    Jonkman, James

    2015-01-01

    The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research. PMID:25802490

  19. Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors.

    PubMed

    Snuderl, Matija; Wirth, Dennis; Sheth, Sameer A; Bourne, Sarah K; Kwon, Churl-Su; Ancukiewicz, Marek; Curry, William T; Frosch, Matthew P; Yaroslavsky, Anna N

    2013-01-01

    Intraoperative diagnosis plays an important role in accurate sampling of brain tumors, limiting the number of biopsies required and improving the distinction between brain and tumor. The goal of this study was to evaluate dye-enhanced multimodal confocal imaging for discriminating gliomas from nonglial brain tumors and from normal brain tissue for diagnostic use. We investigated a total of 37 samples including glioma (13), meningioma (7), metastatic tumors (9) and normal brain removed for nontumoral indications (8). Tissue was stained in 0.05 mg/mL aqueous solution of methylene blue (MB) for 2-5 minutes and multimodal confocal images were acquired using a custom-built microscope. After imaging, tissue was formalin fixed and paraffin embedded for standard neuropathologic evaluation. Thirteen pathologists provided diagnoses based on the multimodal confocal images. The investigated tumor types exhibited distinctive and complimentary characteristics in both the reflectance and fluorescence responses. Images showed distinct morphological features similar to standard histology. Pathologists were able to distinguish gliomas from normal brain tissue and nonglial brain tumors, and to render diagnoses from the images in a manner comparable to haematoxylin and eosin (H&E) slides. These results confirm the feasibility of multimodal confocal imaging for intravital intraoperative diagnosis. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  20. Methods to calibrate and scale axial distances in confocal microscopy as a function of refractive index.

    PubMed

    Besseling, T H; Jose, J; Van Blaaderen, A

    2015-02-01

    Accurate distance measurement in 3D confocal microscopy is important for quantitative analysis, volume visualization and image restoration. However, axial distances can be distorted by both the point spread function (PSF) and by a refractive-index mismatch between the sample and immersion liquid, which are difficult to separate. Additionally, accurate calibration of the axial distances in confocal microscopy remains cumbersome, although several high-end methods exist. In this paper we present two methods to calibrate axial distances in 3D confocal microscopy that are both accurate and easily implemented. With these methods, we measured axial scaling factors as a function of refractive-index mismatch for high-aperture confocal microscopy imaging. We found that our scaling factors are almost completely linearly dependent on refractive index and that they were in good agreement with theoretical predictions that take the full vectorial properties of light into account. There was however a strong deviation with the theoretical predictions using (high-angle) geometrical optics, which predict much lower scaling factors. As an illustration, we measured the PSF of a correctly calibrated point-scanning confocal microscope and showed that a nearly index-matched, micron-sized spherical object is still significantly elongated due to this PSF, which signifies that care has to be taken when determining axial calibration or axial scaling using such particles. © 2014 The Authors Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  1. Confocal Endomicroscopy: Instrumentation and Medical Applications

    PubMed Central

    Jabbour, Joey M.; Saldua, Meagan A.; Bixler, Joel N.; Maitland, Kristen C.

    2013-01-01

    Advances in fiber optic technology and miniaturized optics and mechanics have propelled confocal endomicroscopy into the clinical realm. This high resolution, non-invasive imaging technology provides the ability to microscopically evaluate cellular and sub-cellular features in tissue in vivo by optical sectioning. Because many cancers originate in epithelial tissues accessible by endoscopes, confocal endomicroscopy has been explored to detect regions of possible neoplasia at an earlier stage by imaging morphological features in vivo that are significant in histopathologic evaluation. This technique allows real-time assessment of tissue which may improve diagnostic yield by guiding biopsy. Research and development continues to reduce the overall size of the imaging probe, increase the image acquisition speed, and improve resolution and field of view of confocal endomicroscopes. Technical advances will continue to enable application to less accessible organs and more complex systems in the body. Lateral and axial resolutions down to 0.5 μm and 3 μm, respectively, field of view as large as 800×450 μm, and objective lens and total probe outer diameters down to 350 μm and 1.25 mm, respectively, have been achieved. We provide a review of the historical developments of confocal imaging in vivo, the evolution of endomicroscope instrumentation, and the medical applications of confocal endomicroscopy. PMID:21994069

  2. Fused oblique incidence reflectometry and confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Risi, Matthew D.; Rouse, Andrew R.; Gmitro, Arthur F.

    2011-03-01

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure, but relies on exogenous fluorophores, has a relatively limited penetration depth (100 μm) and field of view (700 μm), and produces a high rate of detailed information to the user. A new catheter based multi-modal system has been designed that combines confocal imaging and oblique incidence reflectometry (OIR), which is a non-invasive method capable of rapidly extracting tissue absorption, μa, and reduced scattering, μ's, spectra from tissue. The system builds on previous developments of a custom slit-scan multi-spectral confocal microendoscope and is designed to rapidly switch between diffuse spectroscopy and confocal fluorescence imaging modes of operation. An experimental proof-of-principle catheter has been developed that consists of a fiber bundle for traditional confocal fluorescence imaging and a single OIR source fiber which is manually redirected at +/- 26 degrees. Diffusely scattered light from each orientation of the source fiber is collected via the fiber bundle, with a frame of data representing spectra collected at a range of distances from the OIR source point. Initial results with intralipid phantoms show good agreement to published data over the 550-650 nm spectral range. We successfully imaged and measured the optical properties of rodent cardiac muscle.

  3. Dye-enhanced reflectance and fluorescence confocal microscopy as an optical pathology tool

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Anna N.; Salomatina, Elena; Novak, John; Amat-Roldan, Ivan; Castano, Ana; Hamblin, Michael

    2006-02-01

    Early detection and precise excision of neoplasms are imperative requirements for successful cancer treatment. In this study we evaluated the use of dye-enhanced confocal microscopy as an optical pathology tool in the ex vivo trial with fresh thick non-melanoma skin cancer excisions and in vivo trial with B16F10 melanoma cancer in mice. For the experiments the tumors were rapidly stained using aqueous solutions of either toluidine blue or methylene blue and imaged using multimodal confocal microscope. Reflectance images were acquired at the wavelengths of 630nm and 650 nm. Fluorescence was excited at 630 nm and 650 nm. Fluorescence emission was registered in the range between 680 nm and 710 nm. The images were compared to the corresponding en face frozen H&E sections. The results of the study indicate confocal images of stained cancerous tissue closely resemble corresponding H&E sections both in vivo and in vitro. This remarkable similarity enables interpretation of confocal images in a manner similar to that of histopathology. The developed technique may provide an efficient real-time optical tool for detecting skin pathology.

  4. Confocal imaging of whole vertebrate embryos reveals novel insights into molecular and cellular mechanisms of organ development

    NASA Astrophysics Data System (ADS)

    Hadel, Diana M.; Keller, Bradley B.; Sandell, Lisa L.

    2014-03-01

    Confocal microscopy has been an invaluable tool for studying cellular or sub-cellular biological processes. The study of vertebrate embryology is based largely on examination of whole embryos and organs. The application of confocal microscopy to immunostained whole mount embryos, combined with three dimensional (3D) image reconstruction technologies, opens new avenues for synthesizing molecular, cellular and anatomical analysis of vertebrate development. Optical cropping of the region of interest enables visualization of structures that are morphologically complex or obscured, and solid surface rendering of fluorescent signal facilitates understanding of 3D structures. We have applied these technologies to whole mount immunostained mouse embryos to visualize developmental morphogenesis of the mammalian inner ear and heart. Using molecular markers of neuron development and transgenic reporters of neural crest cell lineage we have examined development of inner ear neurons that originate from the otic vesicle, along with the supporting glial cells that derive from the neural crest. The image analysis reveals a previously unrecognized coordinated spatial organization between migratory neural crest cells and neurons of the cochleovestibular nerve. The images also enable visualization of early cochlear spiral nerve morphogenesis relative to the developing cochlea, demonstrating a heretofore unknown association of neural crest cells with extending peripheral neurite projections. We performed similar analysis of embryonic hearts in mouse and chick, documenting the distribution of adhesion molecules during septation of the outflow tract and remodeling of aortic arches. Surface rendering of lumen space defines the morphology in a manner similar to resin injection casting and micro-CT.

  5. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy.

    PubMed

    Verveer, P. J; Gemkow, M. J; Jovin, T. M

    1999-01-01

    We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented.

  6. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    PubMed Central

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish. PMID:21280920

  7. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy.

    PubMed

    Lim, Daryl; Ford, Tim N; Chu, Kengyeh K; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  8. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    NASA Astrophysics Data System (ADS)

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  9. Effects of benoxinate hydrochloride 0.4% on the morphological appearance of the cornea using confocal microscopy.

    PubMed

    Perez-Gomez, Inma; Hollingsworth, Jo; Efron, Nathan

    2004-03-01

    To investigate whether benoxinate hydrochloride 0.4% used to make confocal microscopy more comfortable alters the morphology of the cornea as viewed with the confocal microscope. Confocal microscopy was performed on both eyes of 10 subjects prior to instillation of either topical anaesthetic or non-preserved sterile saline, on two randomly ordered occasions. Images of all corneal layers were analysed quantitatively and qualitatively in a masked fashion. The images were similar in appearance in 5/10 subjects, there was greater clarity when anaesthetic was instilled in 4/10 subjects, and in the remaining subject there was greater clarity when saline was used. Anaesthetic had no influence on anterior keratocyte density (AKD), posterior keratocyte density (PKD) or endothelial cell density (ECD). Local anaesthetic does not affect corneal morphology as imaged using the confocal microscope. However, failure to use anaesthetic may lead to a degradation of image quality due to patient discomfort and excessive eye movements.

  10. A mercury arc lamp-based multi-color confocal real time imaging system for cellular structure and function.

    PubMed

    Saito, Kenta; Kobayashi, Kentaro; Tani, Tomomi; Nagai, Takeharu

    2008-01-01

    Multi-point scanning confocal microscopy using a Nipkow disk enables the acquisition of fluorescent images with high spatial and temporal resolutions. Like other single-point scanning confocal systems that use Galvano meter mirrors, a commercially available Nipkow spinning disk confocal unit, Yokogawa CSU10, requires lasers as the excitation light source. The choice of fluorescent dyes is strongly restricted, however, because only a limited number of laser lines can be introduced into a single confocal system. To overcome this problem, we developed an illumination system in which light from a mercury arc lamp is scrambled to make homogeneous light by passing it through a multi-mode optical fiber. This illumination system provides incoherent light with continuous wavelengths, enabling the observation of a wide range of fluorophores. Using this optical system, we demonstrate both the high-speed imaging (up to 100 Hz) of intracellular Ca(2+) propagation, and the multi-color imaging of Ca(2+) and PKC-gamma dynamics in living cells.

  11. 3D imaging of particle tracks in Solid State Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2009-04-01

    Inhalation of radon gas (222Rn) and associated ionizing decay products is known to cause lung cancer in human. In the U.K., it has been suggested that 3 to 5 % of total lung cancer deaths can be linked to elevated radon concentrations in the home and/or workplace. Radon monitoring in buildings is therefore routinely undertaken in areas of known risk. Indeed, some organisations such as the Radon Council in the UK and the Environmental Protection Agency in the USA, advocate a ‘to test is best' policy. Radon gas occurs naturally, emanating from the decay of 238U in rock and soils. Its concentration can be measured using CR?39 plastic detectors which conventionally are assessed by 2D image analysis of the surface; however there can be some variation in outcomes / readings even in closely spaced detectors. A number of radon measurement methods are currently in use (for examples, activated carbon and electrets) but the most widely used are CR?39 solid state nuclear track?etch detectors (SSNTDs). In this technique, heavily ionizing alpha particles leave tracks in the form of radiation damage (via interaction between alpha particles and the atoms making up the CR?39 polymer). 3D imaging of the tracks has the potential to provide information relating to angle and energy of alpha particles but this could be time consuming. Here we describe a new method for rapid high resolution 3D imaging of SSNTDs. A ‘LEXT' OLS3100 confocal laser scanning microscope was used in confocal mode to successfully obtain 3D image data on four CR?39 plastic detectors. 3D visualisation and image analysis enabled characterisation of track features. This method may provide a means of rapid and detailed 3D analysis of SSNTDs. Keywords: Radon; SSNTDs; confocal laser scanning microscope; 3D imaging; LEXT

  12. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    PubMed

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  13. 3D tomography of cells in micro-channels

    NASA Astrophysics Data System (ADS)

    Quint, S.; Christ, A. F.; Guckenberger, A.; Himbert, S.; Kaestner, L.; Gekle, S.; Wagner, C.

    2017-09-01

    We combine confocal imaging, microfluidics, and image analysis to record 3D-images of cells in flow. This enables us to recover the full 3D representation of several hundred living cells per minute. Whereas 3D confocal imaging has thus far been limited to steady specimens, we overcome this restriction and present a method to access the 3D shape of moving objects. The key of our principle is a tilted arrangement of the micro-channel with respect to the focal plane of the microscope. This forces cells to traverse the focal plane in an inclined manner. As a consequence, individual layers of passing cells are recorded, which can then be assembled to obtain the volumetric representation. The full 3D information allows for a detailed comparison with theoretical and numerical predictions unfeasible with, e.g., 2D imaging. Our technique is exemplified by studying flowing red blood cells in a micro-channel reflecting the conditions prevailing in the microvasculature. We observe two very different types of shapes: "croissants" and "slippers." Additionally, we perform 3D numerical simulations of our experiment to confirm the observations. Since 3D confocal imaging of cells in flow has not yet been realized, we see high potential in the field of flow cytometry where cell classification thus far mostly relies on 1D scattering and fluorescence signals.

  14. Imaging samples in silica aerogel using an experimental point spread function.

    PubMed

    White, Amanda J; Ebel, Denton S

    2015-02-01

    Light microscopy is a powerful tool that allows for many types of samples to be examined in a rapid, easy, and nondestructive manner. Subsequent image analysis, however, is compromised by distortion of signal by instrument optics. Deconvolution of images prior to analysis allows for the recovery of lost information by procedures that utilize either a theoretically or experimentally calculated point spread function (PSF). Using a laser scanning confocal microscope (LSCM), we have imaged whole impact tracks of comet particles captured in silica aerogel, a low density, porous SiO2 solid, by the NASA Stardust mission. In order to understand the dynamical interactions between the particles and the aerogel, precise grain location and track volume measurement are required. We report a method for measuring an experimental PSF suitable for three-dimensional deconvolution of imaged particles in aerogel. Using fluorescent beads manufactured into Stardust flight-grade aerogel, we have applied a deconvolution technique standard in the biological sciences to confocal images of whole Stardust tracks. The incorporation of an experimentally measured PSF allows for better quantitative measurements of the size and location of single grains in aerogel and more accurate measurements of track morphology.

  15. Next-generation endomyocardial biopsy: the potential of confocal and super-resolution microscopy.

    PubMed

    Crossman, David J; Ruygrok, Peter N; Hou, Yu Feng; Soeller, Christian

    2015-03-01

    Confocal laser scanning microscopy and super-resolution microscopy provide high-contrast and high-resolution fluorescent imaging, which has great potential to increase the diagnostic yield of endomyocardial biopsy (EMB). EMB is currently the gold standard for identification of cardiac allograft rejection, myocarditis, and infiltrative and storage diseases. However, standard analysis is dominated by low-contrast bright-field light and electron microscopy (EM); this lack of contrast makes quantification of pathological features difficult. For example, assessment of cardiac allograft rejection relies on subjective grading of H&E histology, which may lead to diagnostic variability between pathologists. This issue could be solved by utilising the high contrast provided by fluorescence methods such as confocal to quantitatively assess the degree of lymphocytic infiltrate. For infiltrative diseases such as amyloidosis, the nanometre resolution provided by EM can be diagnostic in identifying disease-causing fibrils. The recent advent of super-resolution imaging, particularly direct stochastic optical reconstruction microscopy (dSTORM), provides high-contrast imaging at resolution approaching that of EM. Moreover, dSTORM utilises conventional fluorescence dyes allowing for the same structures to be routinely imaged at the cellular scale and then at the nanoscale. The key benefit of these technologies is that the high contrast facilitates quantitative digital analysis and thereby provides a means to robustly assess critical pathological features. Ultimately, this technology has the ability to provide greater accuracy and precision to EMB assessment, which could result in better outcomes for patients.

  16. High resolution 3D confocal microscope imaging of volcanic ash particles.

    PubMed

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM 10 s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. In vivo laser confocal microscopy findings in patients with map-dot-fingerprint (epithelial basement membrane) dystrophy.

    PubMed

    Kobayashi, Akira; Yokogawa, Hideaki; Sugiyama, Kazuhisa

    2012-01-01

    The purpose of this study was to investigate pathological changes of the corneal cell layer in patients with map-dot-fingerprint (epithelial basement membrane) dystrophy by in vivo laser corneal confocal microscopy. Two patients were evaluated using a cornea-specific in vivo laser scanning confocal microscope (Heidelberg Retina Tomograph 2 Rostock Cornea Module, HRT 2-RCM). The affected corneal areas of both patients were examined. Image analysis was performed to identify corneal epithelial and stromal deposits correlated with this dystrophy. Variously shaped (linear, multilaminar, curvilinear, ring-shape, geographic) highly reflective materials were observed in the "map" area, mainly in the basal epithelial cell layer. In "fingerprint" lesions, multiple linear and curvilinear hyporeflective lines were observed. Additionally, in the affected corneas, infiltration of possible Langerhans cells and other inflammatory cells was observed as highly reflective Langerhans cell-like or dot images. Finally, needle-shaped materials were observed in one patient. HRT 2-RCM laser confocal microscopy is capable of identifying corneal microstructural changes related to map-dot-fingerprint corneal dystrophy in vivo. The technique may be useful in elucidating the pathogenesis and natural course of map-dot-fingerprint corneal dystrophy and other similar basement membrane abnormalities.

  18. Simultaneous confocal fluorescence microscopy and optical coherence tomography for drug distribution and tissue integrity assessment

    NASA Astrophysics Data System (ADS)

    Rinehart, Matthew T.; LaCroix, Jeffrey; Henderson, Marcus; Katz, David; Wax, Adam

    2011-03-01

    The effectiveness of microbicidal gels, topical products developed to prevent infection by sexually transmitted diseases including HIV/AIDS, is governed by extent of gel coverage, pharmacokinetics of active pharmaceutical ingredients (APIs), and integrity of vaginal epithelium. While biopsies provide localized information about drug delivery and tissue structure, in vivo measurements are preferable in providing objective data on API and gel coating distribution as well as tissue integrity. We are developing a system combining confocal fluorescence microscopy with optical coherence tomography (OCT) to simultaneously measure local concentrations and diffusion coefficients of APIs during transport from microbicidal gels into tissue, while assessing tissue integrity. The confocal module acquires 2-D images of fluorescent APIs multiple times per second allowing analysis of lateral diffusion kinetics. The custom Fourier domain OCT module has a maximum a-scan rate of 54 kHz and provides depth-resolved tissue integrity information coregistered with the confocal fluorescence measurements. The combined system is validated by imaging phantoms with a surrogate fluorophore. Time-resolved API concentration measured at fixed depths is analyzed for diffusion kinetics. This multimodal system will eventually be implemented in vivo for objective evaluation of microbicide product performance.

  19. Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy.

    PubMed

    Chidley, Matthew D; Carlson, Kristen D; Richards-Kortum, Rebecca R; Descour, Michael R

    2006-04-10

    The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.

  20. Characterization of a subwavelength-scale 3D void structure using the FDTD-based confocal laser scanning microscopic image mapping technique.

    PubMed

    Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho

    2007-08-20

    In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.

  1. ConfocalVR: Immersive Visualization Applied to Confocal Microscopy.

    PubMed

    Stefani, Caroline; Lacy-Hulbert, Adam; Skillman, Thomas

    2018-06-24

    ConfocalVR is a virtual reality (VR) application created to improve the ability of researchers to study the complexity of cell architecture. Confocal microscopes take pictures of fluorescently labeled proteins or molecules at different focal planes to create a stack of 2D images throughout the specimen. Current software applications reconstruct the 3D image and render it as a 2D projection onto a computer screen where users need to rotate the image to expose the full 3D structure. This process is mentally taxing, breaks down if you stop the rotation, and does not take advantage of the eye's full field of view. ConfocalVR exploits consumer-grade virtual reality (VR) systems to fully immerse the user in the 3D cellular image. In this virtual environment the user can: 1) adjust image viewing parameters without leaving the virtual space, 2) reach out and grab the image to quickly rotate and scale the image to focus on key features, and 3) interact with other users in a shared virtual space enabling real-time collaborative exploration and discussion. We found that immersive VR technology allows the user to rapidly understand cellular architecture and protein or molecule distribution. We note that it is impossible to understand the value of immersive visualization without experiencing it first hand, so we encourage readers to get access to a VR system, download this software, and evaluate it for yourself. The ConfocalVR software is available for download at http://www.confocalvr.com, and is free for nonprofits. Copyright © 2018. Published by Elsevier Ltd.

  2. Template confined synthesis of amorphous carbon nanotubes and its confocal Raman microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maity, Supratim; Roychowdhury, Tuhin; Chattopadhyay, Kalyan Kumar, E-mail: kalyan-chattopadhyay@yahoo.com

    2014-04-24

    Amorphous carbon nanotubes (aCNTs) were synthesized by AAO (anodic aluminum oxide) template at a temperature 500 °C in nitrogen atmosphere using the citric acid as a carbon source without the help of any catalyst particles. Morphological analysis of the as prepared samples was carried out by field emission scanning electron microscopy (FESEM). Confocal Raman imaging has been studied and an attempt has been made to find out the graphitic (sp{sup 2}) and disordered phase of the CNTs.

  3. Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing.

    PubMed

    Thong, Patricia S P; Tandjung, Stephanus S; Movania, Muhammad Mobeen; Chiew, Wei-Ming; Olivo, Malini; Bhuvaneswari, Ramaswamy; Seah, Hock-Soon; Lin, Feng; Qian, Kemao; Soo, Khee-Chee

    2012-05-01

    Oral lesions are conventionally diagnosed using white light endoscopy and histopathology. This can pose a challenge because the lesions may be difficult to visualise under white light illumination. Confocal laser endomicroscopy can be used for confocal fluorescence imaging of surface and subsurface cellular and tissue structures. To move toward real-time "virtual" biopsy of oral lesions, we interfaced an embedded computing system to a confocal laser endomicroscope to achieve a prototype three-dimensional (3-D) fluorescence imaging system. A field-programmable gated array computing platform was programmed to enable synchronization of cross-sectional image grabbing and Z-depth scanning, automate the acquisition of confocal image stacks and perform volume rendering. Fluorescence imaging of the human and murine oral cavities was carried out using the fluorescent dyes fluorescein sodium and hypericin. Volume rendering of cellular and tissue structures from the oral cavity demonstrate the potential of the system for 3-D fluorescence visualization of the oral cavity in real-time. We aim toward achieving a real-time virtual biopsy technique that can complement current diagnostic techniques and aid in targeted biopsy for better clinical outcomes.

  4. Modular Scanning Confocal Microscope with Digital Image Processing.

    PubMed

    Ye, Xianjun; McCluskey, Matthew D

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.

  5. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue.

    PubMed

    Yoshitake, Tadayuki; Giacomelli, Michael G; Cahill, Lucas C; Schmolze, Daniel B; Vardeh, Hilde; Faulkner-Jones, Beverly E; Connolly, James L; Fujimoto, James G

    2016-12-01

    Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.

  6. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue

    PubMed Central

    Yoshitake, Tadayuki; Giacomelli, Michael G.; Cahill, Lucas C.; Schmolze, Daniel B.; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Connolly, James L.; Fujimoto, James G.

    2016-01-01

    Abstract. Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue. PMID:28032121

  7. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue

    NASA Astrophysics Data System (ADS)

    Yoshitake, Tadayuki; Giacomelli, Michael G.; Cahill, Lucas C.; Schmolze, Daniel B.; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Connolly, James L.; Fujimoto, James G.

    2016-12-01

    Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.

  8. Use of a white light supercontinuum laser for confocal interference-reflection microscopy

    PubMed Central

    Chiu, L-D; Su, L; Reichelt, S; Amos, WB

    2012-01-01

    Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460–700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser. PMID:22432542

  9. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community. PMID:24921725

  10. Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy.

    PubMed

    Jiang, Shihong; Walker, John

    2010-01-20

    We report a differential fluorescence speckle confocal microscope that acquires an image in a fraction of a second by exploiting the very high frame rate of modern digital micromirror devices (DMDs). The DMD projects a sequence of predefined binary speckle patterns to the sample and modulates the intensity of the returning fluorescent light simultaneously. The fluorescent light reflecting from the DMD's "on" and "off" pixels is modulated by correlated speckle and anticorrelated speckle, respectively, to form two images on two CCD cameras in parallel. The sum of the two images recovers a widefield image, but their difference gives a near-confocal image in real time. Experimental results for both low and high numerical apertures are shown.

  11. Fast evaluation of 69 basal cell carcinomas with ex vivo fluorescence confocal microscopy: criteria description, histopathological correlation, and interobserver agreement.

    PubMed

    Bennàssar, Antoni; Carrera, Cristina; Puig, Susana; Vilalta, Antoni; Malvehy, Josep

    2013-07-01

    Fluorescence confocal microscopy (FCM) represents a first step toward a rapid "bedside pathology" in the Mohs surgery setting and in other fields of general pathology. To describe and validate FCM criteria for the main basal cell carcinoma (BCC) subtypes and to demonstrate the overall agreement with classic pathologic analysis of hematoxylin-eosin-stained samples. DESIGN A total of 69 BCCs from 66 patients were prospectively imaged using ex vivo FCM. Confocal mosaics were evaluated in real time and compared with classic pathologic analysis. Department of Dermatology, Hospital Clínic of Barcelona, Barcelona, Spain, between November 2010 and July 2011. Patients with BCC attending the Mohs Surgery Unit. Presence or absence of BCC and histological subtype (superficial, nodular, and infiltrating) in the confocal mosaics. Eight criteria for BCC were described, evaluated, and validated. Although there were minor differences among BCC subtypes, the most BCC-defining criteria were peripheral palisading, clefting, nuclear pleomorphism, and presence of stroma. These criteria were validated with independent observers (κ values >0.7 [corrected] for most criteria). We herein propose, describe, and validate FCM criteria for BCC diagnosis. Fluorescence confocal microscopy is an attractive alternative to histopathologic analysis of frozen sections during Mohs surgery because large areas of freshly excised tissue can be assessed in real time without the need for tissue processing while minimizing labor and costs.

  12. Assessment of fresh breast tissue specimens with confocal strip-mosaicking microscopy in an emulated pathology setting (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjeewa; Larson, Bjorg A.; Peterson, Gary; Rajadhyaksha, Milind; Murray, Melissa

    2017-02-01

    Confocal microscopy is in clinical use to diagnose skin cancers in the United States and in Europe. Potentially, this technology may provide bed-side pathology in breast cancer surgery during tumor removal. Initial studies have described major findings of invasive breast cancers as seen on fluorescence confocal microscopy. In many of these studies the region of interest (ROI) used in the analysis was user-selected and small (typically 15 square-mm). Although these important findings open exploration into rapid pathology, further development and implementation in a surgical setting will require examination of large specimens in a blinded fashion that will address the needs of typical surgical settings. In post surgery pathology viewing, pathologists inspect the entire pathology section with a low (2X) magnification objective lens initially and then zoomed in to ROIs with higher magnification lenses (10X to 40X) magnifications to further investigate suspected regions. In this study we explore the possibility of implementation in a typical surgical setting with a new microscope, termed confocal strip-mosaicking microscope (CSM microscope), which images an area of 400 square-mm (2 cm x 2 cm) of tissue with cellular level resolution in 10 minutes. CSM images of 34 human breast tissue specimens from 18 patients were blindly analyzed by a board-certified pathologist and correlated with the corresponding standard fixed histopathology. Invasive tumors and benign tissue were clearly identified in CSM images. Thirty specimens were concordant for images-to-histopathology correlation while four were discordant. Preliminary results from on-going work to molecularly target tumor margin will also be presented.

  13. Solar Confocal interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.

    2007-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the interferometer provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal interferometers. A slow-response thermal-controlled interferometer provides a stable system for laboratory investigation, while a piezoelectric interferometer provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these interferometers. The field of view versus aperture for confocal interferometers is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar interferometers as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal interferometers. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.

  14. Comparison of Cornea Module and DermaInspect for noninvasive imaging of ocular surface pathologies

    NASA Astrophysics Data System (ADS)

    Steven, Philipp; Müller, Maya; Koop, Norbert; Rose, Christian; Hüttmann, Gereon

    2009-11-01

    Minimally invasive imaging of ocular surface pathologies aims at securing clinical diagnosis without actual tissue probing. For this matter, confocal microscopy (Cornea Module) is in daily use in ophthalmic practice. Multiphoton microscopy is a new optical technique that enables high-resolution imaging and functional analysis of living tissues based on tissue autofluorescence. This study was set up to compare the potential of a multiphoton microscope (DermaInspect) to the Cornea Module. Ocular surface pathologies such as pterygia, papillomae, and nevi were investigated in vivo using the Cornea Module and imaged immediately after excision by DermaInspect. Two excitation wavelengths, fluorescence lifetime imaging and second-harmonic generation (SHG), were used to discriminate different tissue structures. Images were compared with the histopathological assessment of the samples. At wavelengths of 730 nm, multiphoton microscopy exclusively revealed cellular structures. Collagen fibrils were specifically demonstrated by second-harmonic generation. Measurements of fluorescent lifetimes enabled the highly specific detection of goblet cells, erythrocytes, and nevus-cell clusters. At the settings used, DermaInspect reaches higher resolutions than the Cornea Module and obtains additional structural information. The parallel detection of multiphoton excited autofluorescence and confocal imaging could expand the possibilities of minimally invasive investigation of the ocular surface toward functional analysis at higher resolutions.

  15. Confocal microscopy and 3-D distribution of dead cells in cryopreserved pancreatic islets

    NASA Astrophysics Data System (ADS)

    Merchant, Fatima A.; Aggarwal, Shanti J.; Diller, Kenneth R.; Bartels, Keith A.; Bovik, Alan C.

    1992-06-01

    Our laboratory is involved in studies of changes in shape and size of biological specimens under osmotic stress at ambient and sub-zero temperatures. This paper describes confocal microscopy, image processing and analysis of 3-D distribution of cells in acridine orange/propidium iodide (AO/PI) fluorescent stained frozen-thawed islet of Langerhans. Isolated and cultured rat pancreatic islets were frozen and thawed in 2 M dimethylsulfoxide and examined under a Zeiss laser scanning confocal microscope. Two micrometers to five micrometers serial sections of the islets were obtained and processed to obtain high contrast images which were later processed in two steps. The first step consisted of the isolation of the region of interest by template masking followed by grey level thresholding to obtain a binary image. Three-dimensional blob coloring algorithm was applied and the number of voxels in each region and the number of regions were counted. The volumetric distribution of the dead cells in the islets was computed by calculating the distance from the center of each blob to the centroid of the 3-D image. An increase in the number of blobs moving from the center toward the periphery of the islet was observed indicating that the freeze damage was more concentrated in the outer edges of the islet.

  16. Enhanced Bioactivity of Internally Functionalized Cationic Dendrimers with PEG Cores

    DTIC Science & Technology

    2012-11-09

    Miltenyi) by counting 10 000 events. Cell Culture and Confocal Imaging. HeLa (CCL-2) were purchased from ATCC and cultured following manufacturer’s...concentration of PI before confocal imaging. Internalization Assay and Colocalization Studies. To monitor dendrimer internalization, cells were incubated...calcein. After 2 h of incubation at 37 °C, cells were washed three times with PBS and then analyzed by confocal microscopy. Ethidium Bromide Intercalation

  17. Intracellular Protein Delivery for Treating Breast Cancer

    DTIC Science & Technology

    2012-06-01

    are efficiently internalized by mammalian cells lines as characterized by confocal microscopy, and rhodamine-labeled apoptin can be observed in the...To determine the cellular localization of delivered proteins, confocal images were taken with HeLa, MCF-7, or HEF cells incubated with 20 nM of S-S...and analyzed by Nikon NIS Element software. Fluorescence images were acquired on a Yokogawa spinning-disk confocal scanner system using a Nikon

  18. In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens.

    PubMed

    Carlson, Kristen; Chidley, Matthew; Sung, Kung-Bin; Descour, Michael; Gillenwater, Ann; Follen, Michele; Richards-Kortum, Rebecca

    2005-04-01

    For in vivo optical diagnostic technologies to be distributed to the developed and developing worlds, optical imaging systems must be constructed of inexpensive components. We present a fiber-optic confocal reflectance microscope with a cost-effective injection-molded plastic miniature objective lens for in vivo imaging of human tissues in near real time. The measured lateral resolution is less than 2.2 microm, and the measured axial resolution is 10 microm. Confocal images of ex vivo cervical tissue biopsies and in vivo human lip taken at 15 frames/s demonstrate the microscope's capability of imaging cell morphology and tissue architecture.

  19. Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues.

    PubMed

    Sung, Kung-Bin; Liang, Chen; Descour, Michael; Collier, Tom; Follen, Michele; Richards-Kortum, Rebecca

    2002-10-01

    We have built a fiber-optic confocal reflectance microscope capable of imaging human tissues in near real time. Miniaturization of the objective lens and the mechanical components for positioning and axially scanning the objective enables the device to be used in inner organs of the human body. The lateral resolution is 2 micrometers and axial resolution is 10 micrometers. Confocal images of fixed tissue biopsies and the human lip in vivo have been obtained at 15 frames/s without any fluorescent stains. Both cell morphology and tissue architecture can be appreciated from images obtained with this microscope.

  20. Dual-model automatic detection of nerve-fibres in corneal confocal microscopy images.

    PubMed

    Dabbah, M A; Graham, J; Petropoulos, I; Tavakoli, M; Malik, R A

    2010-01-01

    Corneal Confocal Microscopy (CCM) imaging is a non-invasive surrogate of detecting, quantifying and monitoring diabetic peripheral neuropathy. This paper presents an automated method for detecting nerve-fibres from CCM images using a dual-model detection algorithm and compares the performance to well-established texture and feature detection methods. The algorithm comprises two separate models, one for the background and another for the foreground (nerve-fibres), which work interactively. Our evaluation shows significant improvement (p approximately 0) in both error rate and signal-to-noise ratio of this model over the competitor methods. The automatic method is also evaluated in comparison with manual ground truth analysis in assessing diabetic neuropathy on the basis of nerve-fibre length, and shows a strong correlation (r = 0.92). Both analyses significantly separate diabetic patients from control subjects (p approximately 0).

  1. Confocal bioimaging the living cornea with autofluorescence and specific fluorescent probes

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.; Paddock, Stephen W.

    1990-08-01

    Confocal bioimaging of the fine structure of the living rabbit cornea with both reflected light and fluorescent light has been demonstrated with a laser scanning confocal imaging system. Kalman averaging was used to reduce the noise in the images. Superficial epithelial, basal epithelial cells, stromal keratocytes, and endothelial cells were imaged. These cells and their subcellular structures were imaged in the two modes for comparison. The superficial epithelial cells were imaged by their autofluorescence (488/520 nm). This fluorescence signal may be due to the mitochondrial flavoproteins and can be used as a noninvasive indicator of cellular oxidative function. Thiazole orange was used to stain cell nuclei for fluorescence imaging. DiOC6 was used to stain the endoplasmic reticulum for fluorescence imaging. Fluorescein- conjugated phalloidin was used to stain actin for fluorescence imaging.

  2. Detecting cells in time varying intensity images in confocal microscopy for gene expression studies in living cells

    NASA Astrophysics Data System (ADS)

    Mitra, Debasis; Boutchko, Rostyslav; Ray, Judhajeet; Nilsen-Hamilton, Marit

    2015-03-01

    In this work we present a time-lapsed confocal microscopy image analysis technique for an automated gene expression study of multiple single living cells. Fluorescence Resonance Energy Transfer (FRET) is a technology by which molecule-to-molecule interactions are visualized. We analyzed a dynamic series of ~102 images obtained using confocal microscopy of fluorescence in yeast cells containing RNA reporters that give a FRET signal when the gene promoter is activated. For each time frame, separate images are available for three spectral channels and the integrated intensity snapshot of the system. A large number of time-lapsed frames must be analyzed to identify each cell individually across time and space, as it is moving in and out of the focal plane of the microscope. This makes it a difficult image processing problem. We have proposed an algorithm here, based on scale-space technique, which solves the problem satisfactorily. The algorithm has multiple directions for even further improvement. The ability to rapidly measure changes in gene expression simultaneously in many cells in a population will open the opportunity for real-time studies of the heterogeneity of genetic response in a living cell population and the interactions between cells that occur in a mixed population, such as the ones found in the organs and tissues of multicellular organisms.

  3. CALIBRATION AND VALIDATION OF CONFOCAL SPECTRAL IMAGING SYSTEMS

    EPA Science Inventory

    Confocal spectral imaging (CSI) microscope systems now on the market can perform spectral characterization of biological specimens containing fluorescent proteins, labels or dyes. Some CSI have been found to present inconsistent spectral characterizations within a particular syst...

  4. A novel method for enhancing the lateral resolution and image SNR in confocal microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Youhua; Zhu, Dazhao; Fang, Yue; Kuang, Cuifang; Liu, Xu

    2017-12-01

    There is always a tradeoff between the resolution and the signal-to-noise ratio (SNR) in confocal microscopy. In particular, the pinhole size is very important for maintaining a balance between them. In this paper, we propose a method for improving the lateral resolution and image SNR in confocal microscopy without making any changes to the hardware. By using the fluorescence emission difference (FED) approach, we divide the images acquired by different pinhole sizes into one image acquired by the central pinhole and several images acquired by ring-shaped pinholes. Then, they are added together with the deconvolution method. Simulation and experimental results for fluorescent particles and cells show that our method can achieve a far better resolution than a large pinhole and a higher SNR than a small pinhole. Moreover, our method can improve the performance of classic confocal laser scanning microscopy (CLSM) to a certain extent, especially CLSM with a continuously variable pinhole.

  5. Ex Vivo (Fluorescence) Confocal Microscopy in Surgical Pathology: State of the Art.

    PubMed

    Ragazzi, Moira; Longo, Caterina; Piana, Simonetta

    2016-05-01

    First developed in 1957, confocal microscopy is a powerful imaging tool that can be used to obtain near real-time reflected light images of untreated human tissue with nearly histologic resolution. Besides its research applications, in the last decades, confocal microscopy technology has been proposed as a useful device to improve clinical diagnosis, especially in ophthalmology, dermatology, and endomicroscopy settings, thanks to advances in instrument development. Compared with the wider use of the in vivo tissue assessment, ex vivo applications of confocal microscopy are not fully explored. A comprehensive review of the current literature was performed here, focusing on the reliable applications of ex vivo confocal microscopy in surgical pathology and on some potential evolutions of this new technique from pathologists' viewpoint.

  6. Confocal Raman imaging for cancer cell classification

    NASA Astrophysics Data System (ADS)

    Mathieu, Evelien; Van Dorpe, Pol; Stakenborg, Tim; Liu, Chengxun; Lagae, Liesbet

    2014-05-01

    We propose confocal Raman imaging as a label-free single cell characterization method that can be used as an alternative for conventional cell identification techniques that typically require labels, long incubation times and complex sample preparation. In this study it is investigated whether cancer and blood cells can be distinguished based on their Raman spectra. 2D Raman scans are recorded of 114 single cells, i.e. 60 breast (MCF-7), 5 cervix (HeLa) and 39 prostate (LNCaP) cancer cells and 10 monocytes (from healthy donors). For each cell an average spectrum is calculated and principal component analysis is performed on all average cell spectra. The main features of these principal components indicate that the information for cell identification based on Raman spectra mainly comes from the fatty acid composition in the cell. Based on the second and third principal component, blood cells could be distinguished from cancer cells; and prostate cancer cells could be distinguished from breast and cervix cancer cells. However, it was not possible to distinguish breast and cervix cancer cells. The results obtained in this study, demonstrate the potential of confocal Raman imaging for cell type classification and identification purposes.

  7. Adaptive thresholding image series from fluorescence confocal scanning laser microscope using orientation intensity profiles

    NASA Astrophysics Data System (ADS)

    Feng, Judy J.; Ip, Horace H.; Cheng, Shuk H.

    2004-05-01

    Many grey-level thresholding methods based on histogram or other statistic information about the interest image such as maximum entropy and so on have been proposed in the past. However, most methods based on statistic analysis of the images concerned little about the characteristics of morphology of interest objects, which sometimes could provide very important indication which can help to find the optimum threshold, especially for those organisms which have special texture morphologies such as vasculature, neuro-network etc. in medical imaging. In this paper, we propose a novel method for thresholding the fluorescent vasculature image series recorded from Confocal Scanning Laser Microscope. After extracting the basic orientation of the slice of vessels inside a sub-region partitioned from the images, we analysis the intensity profiles perpendicular to the vessel orientation to get the reasonable initial threshold for each region. Then the threshold values of those regions near the interest one both in x-y and optical directions have been referenced to get the final result of thresholds of the region, which makes the whole stack of images look more continuous. The resulting images are characterized by suppressing both noise and non-interest tissues conglutinated to vessels, while improving the vessel connectivities and edge definitions. The value of the method for idealized thresholding the fluorescence images of biological objects is demonstrated by a comparison of the results of 3D vascular reconstruction.

  8. WAVELENGTH AND ALIGNMENT TESTS FOR CONFOCAL SPECTRAL IMAGING SYSTEMS

    EPA Science Inventory

    Confocal spectral imaging (CSI) microscope systems now on the market delineate multiple fluorescent proteins, labels, or dyes within biological specimens by performing spectral characterizations. However, we find that some CSI present inconsistent spectral profiles of reference s...

  9. Modular Scanning Confocal Microscope with Digital Image Processing

    PubMed Central

    McCluskey, Matthew D.

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength. PMID:27829052

  10. Handheld tunable focus confocal microscope utilizing a double-clad fiber coupler for in vivo imaging of oral epithelium

    NASA Astrophysics Data System (ADS)

    Olsovsky, Cory; Hinsdale, Taylor; Cuenca, Rodrigo; Cheng, Yi-Shing Lisa; Wright, John M.; Rees, Terry D.; Jo, Javier A.; Maitland, Kristen C.

    2017-05-01

    A reflectance confocal endomicroscope with double-clad fiber coupler and electrically tunable focus lens is applied to imaging of the oral mucosa. The instrument is designed to be lightweight and robust for clinical use. The tunable lens allows axial scanning through >250 μm in the epithelium when the probe tip is placed in contact with tissue. Images are acquired at 6.6 frames per second with a field of view diameter up to 850 μm. In vivo imaging of a wide range of normal sites in the oral cavity demonstrates the accessibility of the handheld probe. In vivo imaging of clinical lesions diagnosed as inflammation and dysplasia illustrates the ability of reflectance confocal endomicroscopy to image cellular changes associated with pathology.

  11. Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging.

    PubMed

    Braaf, Boy; de Boer, Johannes F

    2017-03-20

    Three-dimensional confocal fluorescence imaging of in vivo tissues is challenging due to sample motion and limited imaging speeds. In this paper a novel method is therefore presented for scanning confocal epi-fluorescence microscopy with instantaneous depth-sensing based on self-interference fluorescence microscopy (SIFM). A tabletop epi-fluorescence SIFM setup was constructed with an annular phase plate in the emission path to create a spectral self-interference signal that is phase-dependent on the axial position of a fluorescent sample. A Mach-Zehnder interferometer based on a 3 × 3 fiber-coupler was developed for a sensitive phase analysis of the SIFM signal with three photon-counter detectors instead of a spectrometer. The Mach-Zehnder interferometer created three intensity signals that alternately oscillated as a function of the SIFM spectral phase and therefore encoded directly for the axial sample position. Controlled axial translation of fluorescent microsphere layers showed a linear dependence of the SIFM spectral phase with sample depth over axial image ranges of 500 µm and 80 µm (3.9 × Rayleigh range) for 4 × and 10 × microscope objectives respectively. In addition, SIFM was in good agreement with optical coherence tomography depth measurements on a sample with indocyanine green dye filled capillaries placed at multiple depths. High-resolution SIFM imaging applications are demonstrated for fluorescence angiography on a dye-filled capillary blood vessel phantom and for autofluorescence imaging on an ex vivo fly eye.

  12. DURIP: A Confocal Imaging System for Ultra-Fast Three-Dimensional Transport Studies in Thermal Management Applications

    DTIC Science & Technology

    2011-12-01

    Transport Phenomena and Thermal Management Applications,” Proceedings of the XXVIII UIT Heat Transfer Conference, Brescia, Italy, June 21-23, 2010...measurements in microscale systems. The integrated confocal microscope system is a critical component to obtain understanding of fluid- heat ...objective of this work was to develop a high speed three-dimensional (3D) confocal imaging system to study coupled fluidic and heat transport

  13. Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy.

    PubMed

    Sredar, Nripun; Fagbemi, Oladipo E; Dubra, Alfredo

    2018-04-01

    To demonstrate the viability of improving transverse image resolution in reflectance scanning adaptive optics ophthalmoscopy using sub-Airy disk confocal detection. The foveal cone mosaic was imaged in five human subjects free of known eye disease using two custom adaptive optics scanning light ophthalmoscopes (AOSLOs) in reflectance with 7.75 and 4.30 mm pupil diameters. Confocal pinholes of 0.5, 0.6, 0.8, and 1.0 Airy disk diameters (ADDs) were used in a retinal conjugate plane before the light detector. Average cone photoreceptor intensity profile width and power spectrum were calculated for the resulting images. Detected energy using a model eye was recorded for each pinhole size. The cone photoreceptor mosaic is better resolved with decreasing confocal pinhole size, with the high spatial frequency content of the images enhanced in both the large- and small-pupil AOSLOs. The average cone intensity profile width was reduced by ∼15% with the use of a 0.5 ADD pinhole when compared to a 1.0 ADD, with an accompanying reduction in signal greater than a factor of four. The use of sub-Airy disk confocal pinhole detection without increasing retinal light exposure results in a substantial improvement in image resolution at the cost of larger than predicted signal reduction. Improvement in transverse resolution using sub-Airy disk confocal detection is a practical and low-cost approach that is applicable to all point- and line-scanning ophthalmoscopes, including optical coherence tomographers.

  14. Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy

    PubMed Central

    Sredar, Nripun; Fagbemi, Oladipo E.

    2018-01-01

    Purpose To demonstrate the viability of improving transverse image resolution in reflectance scanning adaptive optics ophthalmoscopy using sub-Airy disk confocal detection. Methods The foveal cone mosaic was imaged in five human subjects free of known eye disease using two custom adaptive optics scanning light ophthalmoscopes (AOSLOs) in reflectance with 7.75 and 4.30 mm pupil diameters. Confocal pinholes of 0.5, 0.6, 0.8, and 1.0 Airy disk diameters (ADDs) were used in a retinal conjugate plane before the light detector. Average cone photoreceptor intensity profile width and power spectrum were calculated for the resulting images. Detected energy using a model eye was recorded for each pinhole size. Results The cone photoreceptor mosaic is better resolved with decreasing confocal pinhole size, with the high spatial frequency content of the images enhanced in both the large- and small-pupil AOSLOs. The average cone intensity profile width was reduced by ∼15% with the use of a 0.5 ADD pinhole when compared to a 1.0 ADD, with an accompanying reduction in signal greater than a factor of four. Conclusions The use of sub-Airy disk confocal pinhole detection without increasing retinal light exposure results in a substantial improvement in image resolution at the cost of larger than predicted signal reduction. Translational Relevance Improvement in transverse resolution using sub-Airy disk confocal detection is a practical and low-cost approach that is applicable to all point- and line-scanning ophthalmoscopes, including optical coherence tomographers. PMID:29629239

  15. Three-dimensional imaging of porous media using confocal laser scanning microscopy.

    PubMed

    Shah, S M; Crawshaw, J P; Boek, E S

    2017-02-01

    In the last decade, imaging techniques capable of reconstructing three-dimensional (3-D) pore-scale model have played a pivotal role in the study of fluid flow through complex porous media. In this study, we present advances in the application of confocal laser scanning microscopy (CLSM) to image, reconstruct and characterize complex porous geological materials with hydrocarbon reservoir and CO 2 storage potential. CLSM has a unique capability of producing 3-D thin optical sections of a material, with a wide field of view and submicron resolution in the lateral and axial planes. However, CLSM is limited in the depth (z-dimension) that can be imaged in porous materials. In this study, we introduce a 'grind and slice' technique to overcome this limitation. We discuss the practical and technical aspects of the confocal imaging technique with application to complex rock samples including Mt. Gambier and Ketton carbonates. We then describe the complete workflow of image processing to filtering and segmenting the raw 3-D confocal volumetric data into pores and grains. Finally, we use the resulting 3-D pore-scale binarized confocal data obtained to quantitatively determine petrophysical pore-scale properties such as total porosity, macro- and microporosity and single-phase permeability using lattice Boltzmann (LB) simulations, validated by experiments. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  16. Multispectral confocal microscopy images and artificial neural nets to monitor the photosensitizer uptake and degradation in Candida albicans cells

    NASA Astrophysics Data System (ADS)

    Romano, Renan A.; Pratavieira, Sebastião.; da Silva, Ana P.; Kurachi, Cristina; Guimarães, Francisco E. G.

    2017-07-01

    This study clearly demonstrates that multispectral confocal microscopy images analyzed by artificial neural networks provides a powerful tool to real-time monitoring photosensitizer uptake, as well as photochemical transformations occurred.

  17. Confocal microscopy imaging of solid tissue

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer acquired images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ...

  18. Quantitative Live-Cell Confocal Imaging of 3D Spheroids in a High-Throughput Format.

    PubMed

    Leary, Elizabeth; Rhee, Claire; Wilks, Benjamin T; Morgan, Jeffrey R

    2018-06-01

    Accurately predicting the human response to new compounds is critical to a wide variety of industries. Standard screening pipelines (including both in vitro and in vivo models) often lack predictive power. Three-dimensional (3D) culture systems of human cells, a more physiologically relevant platform, could provide a high-throughput, automated means to test the efficacy and/or toxicity of novel substances. However, the challenge of obtaining high-magnification, confocal z stacks of 3D spheroids and understanding their respective quantitative limitations must be overcome first. To address this challenge, we developed a method to form spheroids of reproducible size at precise spatial locations across a 96-well plate. Spheroids of variable radii were labeled with four different fluorescent dyes and imaged with a high-throughput confocal microscope. 3D renderings of the spheroid had a complex bowl-like appearance. We systematically analyzed these confocal z stacks to determine the depth of imaging and the effect of spheroid size and dyes on quantitation. Furthermore, we have shown that this loss of fluorescence can be addressed through the use of ratio imaging. Overall, understanding both the limitations of confocal imaging and the tools to correct for these limits is critical for developing accurate quantitative assays using 3D spheroids.

  19. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, M.; Ebel, D.S.

    2009-03-19

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length ofmore » {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.« less

  20. Fibered Confocal Fluorescence Microscopy for the Noninvasive Imaging of Langerhans Cells in Macaques.

    PubMed

    Todorova, Biliana; Salabert, Nina; Tricot, Sabine; Boisgard, Raphaël; Rathaux, Mélanie; Le Grand, Roger; Chapon, Catherine

    2017-01-01

    We developed a new approach to visualize skin Langerhans cells by in vivo fluorescence imaging in nonhuman primates. Macaques were intradermally injected with a monoclonal, fluorescently labeled antibody against HLA-DR molecule and were imaged for up to 5 days by fibered confocal microscopy (FCFM). The network of skin Langerhans cells was visualized by in vivo fibered confocal fluorescence microscopy. Quantification of Langerhans cells revealed no changes to cell density with time. Ex vivo experiments confirmed that injected fluorescent HLA-DR antibody specifically targeted Langerhans cells in the epidermis. This study demonstrates the feasibility of single-cell, in vivo imaging as a noninvasive technique to track Langerhans cells in nontransgenic animals.

  1. Confocal retinal imaging using a digital light projector with a near infrared VCSEL source

    NASA Astrophysics Data System (ADS)

    Muller, Matthew S.; Elsner, Ann E.

    2018-02-01

    A custom near infrared VCSEL source has been implemented in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). The use of near infrared light improves patient comfort, avoids pupil constriction, penetrates the deeper retina, and does not mask visual stimuli. The DLO performs confocal imaging by synchronizing a sequence of lines displayed with a digital micromirror device to the rolling shutter exposure of a 2D CMOS camera. Real-time software adjustments enable multiply scattered light imaging, which rapidly and cost-effectively emphasizes drusen and other scattering disruptions in the deeper retina. A separate 5.1" LCD display provides customizable visible stimuli for vision experiments with simultaneous near infrared imaging.

  2. In vivo laser confocal microscopy findings in patients with map-dot-fingerprint (epithelial basement membrane) dystrophy

    PubMed Central

    Kobayashi, Akira; Yokogawa, Hideaki; Sugiyama, Kazuhisa

    2012-01-01

    Background: The purpose of this study was to investigate pathological changes of the corneal cell layer in patients with map-dot-fingerprint (epithelial basement membrane) dystrophy by in vivo laser corneal confocal microscopy. Methods: Two patients were evaluated using a cornea-specific in vivo laser scanning confocal microscope (Heidelberg Retina Tomograph 2 Rostock Cornea Module, HRT 2-RCM). The affected corneal areas of both patients were examined. Image analysis was performed to identify corneal epithelial and stromal deposits correlated with this dystrophy. Results: Variously shaped (linear, multilaminar, curvilinear, ring-shape, geographic) highly reflective materials were observed in the “map” area, mainly in the basal epithelial cell layer. In “fingerprint” lesions, multiple linear and curvilinear hyporeflective lines were observed. Additionally, in the affected corneas, infiltration of possible Langerhans cells and other inflammatory cells was observed as highly reflective Langerhans cell-like or dot images. Finally, needle-shaped materials were observed in one patient. Conclusion: HRT 2-RCM laser confocal microscopy is capable of identifying corneal microstructural changes related to map-dot-fingerprint corneal dystrophy in vivo. The technique may be useful in elucidating the pathogenesis and natural course of map-dot-fingerprint corneal dystrophy and other similar basement membrane abnormalities. PMID:22888214

  3. Feasibility of confocal endomicroscopy in the diagnosis of pediatric gastrointestinal disorders

    PubMed Central

    Venkatesh, Krishnappa; Cohen, Marta; Evans, Clair; Delaney, Peter; Thomas, Steven; Taylor, Christopher; Abou-Taleb, Ashraf; Kiesslich, Ralf; Thomson, Mike

    2009-01-01

    AIM: To evaluate the feasibility and utility of confocal laser endomicroscopy (CLE) in the description of normal gastrointestinal (GI) mucosa and in the diagnosis of GI disorders in children, in comparison to histology. METHODS: Forty-four patients (19 female) median age 10.9 years (range 0.7-16.6 years) with suspected or known GI pathology underwent esophago-gastro-duodenoscopy (OGD) (n = 36) and/or ileocolonoscopy (IC) (n = 31) with CLE using sodium fluorescein and acriflavine as contrast agents. Histological sections were compared with same site confocal images by two experienced pediatric and GI histopathologists and endoscopists, respectively. RESULTS: Duodenum and ileum were intubated in all but one patient undergoing OGD and IC. The median procedure time was 16.4 min (range 7-25 min) for OGD and 27.9 min (range 15-45 min) for IC. A total of 4798 confocal images were compared with 153 biopsies from the upper GI tract from 36 procedures, and 4661 confocal images were compared with 188 biopsies from the ileocolon from 31 procedures. Confocal images were comparable to conventional histology both in normal and in pathological conditions such as esophagitis, Helicobacter pylori gastritis, celiac disease, inflammatory bowel disease, colonic heterotopia, and graft versus host disease. CONCLUSION: CLE offers the prospect of targeting biopsies to abnormal mucosa, thereby increasing diagnostic yield, reducing the number of biopsies, decreasing the burden on the histopathological services, and reducing costs. PMID:19437560

  4. RELIABILITY OF CONFOCAL MICROSCOPY SPECTRAL IMAGING SYSTEMS: USE OF MULTISPECTRAL BEADS

    EPA Science Inventory

    Background: There is a need for a standardized, impartial calibration, and validation protocol on confocal spectral imaging (CSI) microscope systems. To achieve this goal, it is necessary to have testing tools to provide a reproducible way to evaluate instrument performance. ...

  5. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells.

    PubMed

    Okuno, Masanari; Hamaguchi, Hiro-o

    2010-12-15

    We have developed a multifocus confocal Raman microspectroscopic system for the fast multimode vibrational imaging of living cells. It consists of an inverted microscope equipped with a microlens array, a pinhole array, a fiber bundle, and a multichannel Raman spectrometer. Forty-eight Raman spectra from 48 foci under the microscope are simultaneously obtained by using multifocus excitation and image-compression techniques. The multifocus confocal configuration suppresses the background generated from the cover glass and the cell culturing medium so that high-contrast images are obtainable with a short accumulation time. The system enables us to obtain multimode (10 different vibrational modes) vibrational images of living cells in tens of seconds with only 1 mW laser power at one focal point. This image acquisition time is more than 10 times faster than that in conventional single-focus Raman microspectroscopy.

  6. Phase sensitive optical coherence microscopy for photothermal imaging of gold nanorods

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Podoleanu, Adrian G.; Dobre, George

    2018-03-01

    We describe a swept source based phase sensitive optical coherence microscopy (OCM) system for photothermal imaging of gold nanorods (GNR). The phase sensitive OCM system employed in the study has a displacement sensitivity of 0.17 nm to vibrations at single frequencies below 250 Hz. We demonstrate the generation of phase maps and confocal phase images. By displaying the difference between successive confocal phase images, we perform the confocal photothermal imaging of accumulated GNRs behind a glass coverslip and behind the scattering media separately. Compared with two-photon luminescence (TPL) detection techniques reported in literature, the technique in this study has the advantage of a simplified experimental setup and provides a more efficient method for imaging the aggregation of GNR. However, the repeatability performance of this technique suffers due to jitter noise from the swept laser source.

  7. Handheld tunable focus confocal microscope utilizing a double-clad fiber coupler for in vivo imaging of oral epithelium

    PubMed Central

    Olsovsky, Cory; Hinsdale, Taylor; Cuenca, Rodrigo; Cheng, Yi-Shing Lisa; Wright, John M.; Rees, Terry D.; Jo, Javier A.; Maitland, Kristen C.

    2017-01-01

    Abstract. A reflectance confocal endomicroscope with double-clad fiber coupler and electrically tunable focus lens is applied to imaging of the oral mucosa. The instrument is designed to be lightweight and robust for clinical use. The tunable lens allows axial scanning through >250  μm in the epithelium when the probe tip is placed in contact with tissue. Images are acquired at 6.6 frames per second with a field of view diameter up to 850  μm. In vivo imaging of a wide range of normal sites in the oral cavity demonstrates the accessibility of the handheld probe. In vivo imaging of clinical lesions diagnosed as inflammation and dysplasia illustrates the ability of reflectance confocal endomicroscopy to image cellular changes associated with pathology. PMID:28541447

  8. In vivo subsurface morphological and functional cellular and subcellular imaging of the gastrointestinal tract with confocal mini-microscopy

    PubMed Central

    Goetz, Martin; Memadathil, Beena; Biesterfeld, Stefan; Schneider, Constantin; Gregor, Sebastian; Galle, Peter R; Neurath, Markus F; Kiesslich, Ralf

    2007-01-01

    AIM: To evaluate a newly developed hand-held confocal probe for in vivo microscopic imaging of the complete gastrointestinal tract in rodents. METHODS: A novel rigid confocal probe (diameter 7 mm) was designed with optical features similar to the flexible endomicroscopy system for use in humans using a 488 nm single line laser for fluorophore excitation. Light emission was detected at 505 to 750 nm. The field of view was 475 μm × 475 μm. Optical slice thickness was 7 μm with a lateral resolution of 0.7 μm. Subsurface serial images at different depths (surface to 250 μm) were generated in real time at 1024 × 1024 pixels (0.8 frames/s) by placing the probe onto the tissue in gentle, stable contact. Tissue specimens were sampled for histopathological correlation. RESULTS: The esophagus, stomach, small and large intestine and meso, liver, pancreas and gall bladder were visualised in vivo at high resolution in n = 48 mice. Real time microscopic imaging with the confocal mini-microscopy probe was easy to achieve. The different staining protocols (fluorescein, acriflavine, FITC-labelled dextran and L. esculentum lectin) each highlighted specific aspects of the tissue, and in vivo imaging correlated excellently with conventional histology. In vivo blood flow monitoring added a functional quality to morphologic imaging. CONCLUSION: Confocal microscopy is feasible in vivo allowing the visualisation of the complete GI tract at high resolution even of subsurface tissue structures. The new confocal probe design evaluated in this study is compatible with laparoscopy and significantly expands the field of possible applications to intra-abdominal organs. It allows immediate testing of new in vivo staining and application options and therefore permits rapid transfer from animal studies to clinical use in patients. PMID:17465494

  9. Semi-automated scoring of triple-probe FISH in human sperm using confocal microscopy.

    PubMed

    Branch, Francesca; Nguyen, GiaLinh; Porter, Nicholas; Young, Heather A; Martenies, Sheena E; McCray, Nathan; Deloid, Glen; Popratiloff, Anastas; Perry, Melissa J

    2017-09-01

    Structural and numerical sperm chromosomal aberrations result from abnormal meiosis and are directly linked to infertility. Any live births that arise from aneuploid conceptuses can result in syndromes such as Kleinfelter, Turners, XYY and Edwards. Multi-probe fluorescence in situ hybridization (FISH) is commonly used to study sperm aneuploidy, however manual FISH scoring in sperm samples is labor-intensive and introduces errors. Automated scoring methods are continuously evolving. One challenging aspect for optimizing automated sperm FISH scoring has been the overlap in excitation and emission of the fluorescent probes used to enumerate the chromosomes of interest. Our objective was to demonstrate the feasibility of combining confocal microscopy and spectral imaging with high-throughput methods for accurately measuring sperm aneuploidy. Our approach used confocal microscopy to analyze numerical chromosomal abnormalities in human sperm using enhanced slide preparation and rigorous semi-automated scoring methods. FISH for chromosomes X, Y, and 18 was conducted to determine sex chromosome disomy in sperm nuclei. Application of online spectral linear unmixing was used for effective separation of four fluorochromes while decreasing data acquisition time. Semi-automated image processing, segmentation, classification, and scoring were performed on 10 slides using custom image processing and analysis software and results were compared with manual methods. No significant differences in disomy frequencies were seen between the semi automated and manual methods. Samples treated with pepsin were observed to have reduced background autofluorescence and more uniform distribution of cells. These results demonstrate that semi-automated methods using spectral imaging on a confocal platform are a feasible approach for analyzing numerical chromosomal aberrations in sperm, and are comparable to manual methods. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  10. Video-Rate Confocal Microscopy for Single-Molecule Imaging in Live Cells and Superresolution Fluorescence Imaging

    PubMed Central

    Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul

    2012-01-01

    There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0–85 μm from the surface of a coverglass. PMID:23083712

  11. Spatially-controlled illumination with rescan confocal microscopy enhances image quality, resolution and reduces photodamage

    NASA Astrophysics Data System (ADS)

    Krishnaswami, Venkataraman; De Luca, Giulia M. R.; Breedijk, Ronald M. P.; Van Noorden, Cornelis J. F.; Manders, Erik M. M.; Hoebe, Ron A.

    2017-02-01

    Fluorescence microscopy is an important tool in biomedical imaging. An inherent trade-off lies between image quality and photodamage. Recently, we have introduced rescan confocal microscopy (RCM) that improves the lateral resolution of a confocal microscope down to 170 nm. Previously, we have demonstrated that with controlled-light exposure microscopy, spatial control of illumination reduces photodamage without compromising image quality. Here, we show that the combination of these two techniques leads to high resolution imaging with reduced photodamage without compromising image quality. Implementation of spatially-controlled illumination was carried out in RCM using a line scanning-based approach. Illumination is spatially-controlled for every line during imaging with the help of a prediction algorithm that estimates the spatial profile of the fluorescent specimen. The estimation is based on the information available from previously acquired line images. As a proof-of-principle, we show images of N1E-115 neuroblastoma cells, obtained by this new setup with reduced illumination dose, improved resolution and without compromising image quality.

  12. Anatomical and metabolic small-animal whole-body imaging using ring-shaped confocal photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.

    2013-03-01

    Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.

  13. Dual-axis reflective continuous-wave terahertz confocal scanning polarization imaging and image fusion

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Qi

    2017-01-01

    A dual-axis reflective continuous-wave terahertz (THz) confocal scanning polarization imaging system was adopted. THz polarization imaging experiments on gaps on film and metallic letters "BeLLE" were carried out. Imaging results indicate that the THz polarization imaging is sensitive to the tilted gap or wide flat gap, suggesting the THz polarization imaging is able to detect edges and stains. An image fusion method based on the digital image processing was proposed to ameliorate the imaging quality of metallic letters "BeLLE." Objective and subjective evaluation both prove that this method can improve the imaging quality.

  14. Image formation of volume holographic microscopy using point spread functions

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Oh, Se Baek; Kou, Shan Shan; Lee, Justin; Sheppard, Colin J. R.; Barbastathis, George

    2010-04-01

    We present a theoretical formulation to quantify the imaging properties of volume holographic microscopy (VHM). Volume holograms are formed by exposure of a photosensitive recording material to the interference of two mutually coherent optical fields. Recently, it has been shown that a volume holographic pupil has spatial and spectral sectioning capability for fluorescent samples. Here, we analyze the point spread function (PSF) to assess the imaging behavior of the VHM with a point source and detector. The coherent PSF of the VHM is derived, and the results are compared with those from conventional microscopy, and confocal microscopy with point and slit apertures. According to our analysis, the PSF of the VHM can be controlled in the lateral direction by adjusting the parameters of the VH. Compared with confocal microscopes, the performance of the VHM is comparable or even potentially better, and the VHM is also able to achieve real-time and three-dimensional (3D) imaging due to its multiplexing ability.

  15. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python.

    PubMed

    Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri

    2014-01-01

    In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.

  16. Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts

    PubMed Central

    Ozbay, Baris N.; Losacco, Justin T.; Cormack, Robert; Weir, Richard; Bright, Victor M.; Gopinath, Juliet T.; Restrepo, Diego; Gibson, Emily A.

    2015-01-01

    We report a miniature, lightweight fiber-coupled confocal fluorescence microscope that incorporates an electrowetting variable focus lens to provide axial scanning for full three-dimensional (3D) imaging. Lateral scanning is accomplished by coupling our device to a laser-scanning confocal microscope through a coherent imaging fiber-bundle. The optical components of the device are combined in a custom 3D-printed adapter with an assembled weight of <2 g that can be mounted onto the head of a mouse. Confocal sectioning provides an axial resolution of ~12 µm and an axial scan range of ~80 µm. The lateral field-of-view is 300 µm, and the lateral resolution is 1.8 µm. We determined these parameters by imaging fixed sections of mouse neuronal tissue labeled with green fluorescent protein (GFP) and fluorescent bead samples in agarose gel. To demonstrate viability for imaging intact tissue, we resolved multiple optical sections of ex vivo mouse olfactory nerve fibers expressing yellow fluorescent protein (YFP). PMID:26030555

  17. Microscopy image segmentation tool: Robust image data analysis

    NASA Astrophysics Data System (ADS)

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-03-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  18. Confocal Retinal Imaging Using a Digital Light Projector with a Near Infrared VCSEL Source

    PubMed Central

    Muller, Matthew S.; Elsner, Ann E.

    2018-01-01

    A custom near infrared VCSEL source has been implemented in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). The use of near infrared light improves patient comfort, avoids pupil constriction, penetrates the deeper retina, and does not mask visual stimuli. The DLO performs confocal imaging by synchronizing a sequence of lines displayed with a digital micromirror device to the rolling shutter exposure of a 2D CMOS camera. Real-time software adjustments enable multiply scattered light imaging, which rapidly and cost-effectively emphasizes drusen and other scattering disruptions in the deeper retina. A separate 5.1″ LCD display provides customizable visible stimuli for vision experiments with simultaneous near infrared imaging. PMID:29899586

  19. Use of digital micromirror devices as dynamic pinhole arrays for adaptive confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Pozzi, Paolo; Wilding, Dean; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel

    2018-02-01

    In this work, we present a new confocal laser scanning microscope capable to perform sensorless wavefront optimization in real time. The device is a parallelized laser scanning microscope in which the excitation light is structured in a lattice of spots by a spatial light modulator, while a deformable mirror provides aberration correction and scanning. A binary DMD is positioned in an image plane of the detection optical path, acting as a dynamic array of reflective confocal pinholes, images by a high performance cmos camera. A second camera detects images of the light rejected by the pinholes for sensorless aberration correction.

  20. Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance

    NASA Astrophysics Data System (ADS)

    Bini, Jason; Spain, James; Nehal, Kishwer; Hazelwood, Vikki; Dimarzio, Charles; Rajadhyaksha, Milind

    2011-07-01

    Confocal mosaicing microscopy enables rapid imaging of large areas of fresh tissue, without the processing that is necessary for conventional histology. Mosaicing may offer a means to perform rapid histology at the bedside. A possible barrier toward clinical acceptance is that the mosaics are based on a single mode of grayscale contrast and appear black and white, whereas histology is based on two stains (hematoxylin for nuclei, eosin for cellular cytoplasm and dermis) and appears purple and pink. Toward addressing this barrier, we report advances in digital staining: fluorescence mosaics that show only nuclei, are digitally stained purple and overlaid on reflectance mosaics, which show only cellular cytoplasm and dermis, and are digitally stained pink. With digital staining, the appearance of confocal mosaics mimics the appearance of histology. Using multispectral analysis and color matching functions, red, green, and blue (RGB) components of hematoxylin and eosin stains in tissue were determined. The resulting RGB components were then applied in a linear algorithm to transform fluorescence and reflectance contrast in confocal mosaics to the absorbance contrast seen in pathology. Optimization of staining with acridine orange showed improved quality of digitally stained mosaics, with good correlation to the corresponding histology.

  1. Fluorescence intensity and bright spot analyses using a confocal microscope for photodynamic diagnosis of brain tumors.

    PubMed

    Yoneyama, Takeshi; Watanabe, Tetsuyo; Kagawa, Hiroyuki; Hayashi, Yutaka; Nakada, Mitsutoshi

    2017-03-01

    In photodynamic diagnosis using 5-aminolevulinic acid (5-ALA), discrimination between the tumor and normal tissue is very important for a precise resection. However, it is difficult to distinguish between infiltrating tumor and normal regions in the boundary area. In this study, fluorescent intensity and bright spot analyses using a confocal microscope is proposed for the precise discrimination between infiltrating tumor and normal regions. From the 5-ALA-resected brain tumor tissue, the red fluorescent and marginal regions were sliced for observation under a confocal microscope. Hematoxylin and eosin (H&E) staining were performed on serial slices of the same tissue. According to the pathological inspection of the H&E slides, the tumor and infiltrating and normal regions on confocal microscopy images were investigated. From the fluorescent intensity of the image pixels, a histogram of pixel number with the same fluorescent intensity was obtained. The fluorescent bright spot sizes and total number were compared between the marginal and normal regions. The fluorescence intensity distribution and average intensity in the tumor were different from those in the normal region. The probability of a difference from the dark enhanced the difference between the tumor and the normal region. The bright spot size and number in the infiltrating tumor were different from those in the normal region. Fluorescence intensity analysis is useful to distinguish a tumor region, and a bright spot analysis is useful to distinguish between infiltrating tumor and normal regions. These methods will be important for the precise resection or photodynamic therapy of brain tumors. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A surgical confocal microlaparoscope for real-time optical biopsies

    NASA Astrophysics Data System (ADS)

    Tanbakuchi, Anthony Amir

    The first real-time fluorescence confocal microlaparoscope has been developed that provides instant in vivo cellular images, comparable to those provided by histology, through a nondestructive procedure. The device includes an integrated contrast agent delivery mechanism and a computerized depth scan system. The instrument uses a fiber bundle to relay the image plane of a slit-scan confocal microlaparoscope into tissue. The confocal laparoscope was used to image the ovaries of twenty-one patients in vivo using fluorescein sodium and acridine orange as the fluorescent contrast agents. The results indicate that the device is safe and functions as designed. A Monte Carlo model was developed to characterize the system performance in a scattering media representative of human tissues. The results indicate that a slit aperture has limited ability to image below the surface of tissue. In contrast, the results show that multi-pinhole apertures such as a Nipkow disk or a linear pinhole array can achieve nearly the same depth performance as a single pinhole aperture. The model was used to determine the optimal aperture spacing for the multi-pinhole apertures. The confocal microlaparoscope represents a new type of in vivo imaging device. With its ability to image cellular details in real time, it has the potential to aid in the early diagnosis of cancer. Initially, the device may be used to locate unusual regions for guided biopsies. In the long term, the device may be able to supplant traditional biopsies and allow the surgeon to identify early stage cancer in vivo.

  3. Improving utility of brain tumor confocal laser endomicroscopy: objective value assessment and diagnostic frame detection with convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Izadyyazdanabadi, Mohammadhassan; Belykh, Evgenii; Martirosyan, Nikolay; Eschbacher, Jennifer; Nakaji, Peter; Yang, Yezhou; Preul, Mark C.

    2017-03-01

    Confocal laser endomicroscopy (CLE), although capable of obtaining images at cellular resolution during surgery of brain tumors in real time, creates as many non-diagnostic as diagnostic images. Non-useful images are often distorted due to relative motion between probe and brain or blood artifacts. Many images, however, simply lack diagnostic features immediately informative to the physician. Examining all the hundreds or thousands of images from a single case to discriminate diagnostic images from nondiagnostic ones can be tedious. Providing a real time diagnostic value assessment of images (fast enough to be used during the surgical acquisition process and accurate enough for the pathologist to rely on) to automatically detect diagnostic frames would streamline the analysis of images and filter useful images for the pathologist/surgeon. We sought to automatically classify images as diagnostic or non-diagnostic. AlexNet, a deep-learning architecture, was used in a 4-fold cross validation manner. Our dataset includes 16,795 images (8572 nondiagnostic and 8223 diagnostic) from 74 CLE-aided brain tumor surgery patients. The ground truth for all the images is provided by the pathologist. Average model accuracy on test data was 91% overall (90.79 % accuracy, 90.94 % sensitivity and 90.87 % specificity). To evaluate the model reliability we also performed receiver operating characteristic (ROC) analysis yielding 0.958 average for area under ROC curve (AUC). These results demonstrate that a deeply trained AlexNet network can achieve a model that reliably and quickly recognizes diagnostic CLE images.

  4. Discovery of a New Cellular Motion and Its Relevance to Breast Cancer and Involution

    DTIC Science & Technology

    2014-02-01

    motion (CAMo), live cell imaging , confocal microscopy Overall Project Summary: During this first year of funding we have concentrated our work to...cell types in 3D cultures and in vivo. Subtask 1.1a: Real time live cell imaging using confocal microscopy will be used to image cellular movement...exciting as they are important steps in understanding behavior of normal myoepithelial cells using live cell imaging in physiologically

  5. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    PubMed Central

    Sun, Tianxi; MacDonald, C. A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens. PMID:23460760

  6. Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology

    PubMed Central

    Sandell, Lisa L.; Kurosaka, Hiroshi; Trainor, Paul A.

    2012-01-01

    Here we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional widefield fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images of similar specimens produced by Scanning Electron Microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. PMID:22930523

  7. Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology.

    PubMed

    Sandell, Lisa L; Kurosaka, Hiroshi; Trainor, Paul A

    2012-11-01

    Here, we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional wide field fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images produced by scanning electron microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. Copyright © 2012 Wiley Periodicals, Inc.

  8. Fast imaging with inelastically scattered electrons by off-axis chromatic confocal electron microscopy.

    PubMed

    Zheng, Changlin; Zhu, Ye; Lazar, Sorin; Etheridge, Joanne

    2014-04-25

    We introduce off-axis chromatic scanning confocal electron microscopy, a technique for fast mapping of inelastically scattered electrons in a scanning transmission electron microscope without a spectrometer. The off-axis confocal mode enables the inelastically scattered electrons to be chromatically dispersed both parallel and perpendicular to the optic axis. This enables electrons with different energy losses to be separated and detected in the image plane, enabling efficient energy filtering in a confocal mode with an integrating detector. We describe the experimental configuration and demonstrate the method with nanoscale core-loss chemical mapping of silver (M4,5) in an aluminium-silver alloy and atomic scale imaging of the low intensity core-loss La (M4,5@840  eV) signal in LaB6. Scan rates up to 2 orders of magnitude faster than conventional methods were used, enabling a corresponding reduction in radiation dose and increase in the field of view. If coupled with the enhanced depth and lateral resolution of the incoherent confocal configuration, this offers an approach for nanoscale three-dimensional chemical mapping.

  9. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    PubMed Central

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2015-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy. PMID:26413560

  10. A portable confocal hyperspectral microscope without any scan or tube lens and its application in fluorescence and Raman spectral imaging

    NASA Astrophysics Data System (ADS)

    Li, Jingwei; Cai, Fuhong; Dong, Yongjiang; Zhu, Zhenfeng; Sun, Xianhe; Zhang, Hequn; He, Sailing

    2017-06-01

    In this study, a portable confocal hyperspectral microscope is developed. In traditional confocal laser scanning microscopes, scan lens and tube lens are utilized to achieve a conjugate relationship between the galvanometer and the back focal plane of the objective, in order to achieve a better resolution. However, these lenses make it difficult to scale down the volume of the system. In our portable confocal hyperspectral microscope (PCHM), the objective is placed directly next to the galvomirror. Thus, scan lens and tube lens are not included in our system and the size of this system is greatly reduced. Furthermore, the resolution is also acceptable in many biomedical and food-safety applications. Through reducing the optical length of the system, the signal detection efficiency is enhanced. This is conducive to realizing both the fluorescence and Raman hyperspectral imaging. With a multimode fiber as a pinhole, an improved image contrast is also achieved. Fluorescent spectral images for HeLa cells/fingers and Raman spectral images of kumquat pericarp are present. The spectral resolution and spatial resolutions are about 0.4 nm and 2.19 μm, respectively. These results demonstrate that this portable hyperspectral microscope can be used in in-vivo fluorescence imaging and in situ Raman spectral imaging.

  11. Confocal Imaging of the Embryonic Heart: How Deep?

    NASA Astrophysics Data System (ADS)

    Miller, Christine E.; Thompson, Robert P.; Bigelow, Michael R.; Gittinger, George; Trusk, Thomas C.; Sedmera, David

    2005-06-01

    Confocal microscopy allows for optical sectioning of tissues, thus obviating the need for physical sectioning and subsequent registration to obtain a three-dimensional representation of tissue architecture. However, practicalities such as tissue opacity, light penetration, and detector sensitivity have usually limited the available depth of imaging to 200 [mu]m. With the emergence of newer, more powerful systems, we attempted to push these limits to those dictated by the working distance of the objective. We used whole-mount immunohistochemical staining followed by clearing with benzyl alcohol-benzyl benzoate (BABB) to visualize three-dimensional myocardial architecture. Confocal imaging of entire chick embryonic hearts up to a depth of 1.5 mm with voxel dimensions of 3 [mu]m was achieved with a 10× dry objective. For the purpose of screening for congenital heart defects, we used endocardial painting with fluorescently labeled poly-L-lysine and imaged BABB-cleared hearts with a 5× objective up to a depth of 2 mm. Two-photon imaging of whole-mount specimens stained with Hoechst nuclear dye produced clear images all the way through stage 29 hearts without significant signal attenuation. Thus, currently available systems allow confocal imaging of fixed samples to previously unattainable depths, the current limiting factors being objective working distance, antibody penetration, specimen autofluorescence, and incomplete clearing.

  12. Chromatic confocal microscopy for multi-depth imaging of epithelial tissue

    PubMed Central

    Olsovsky, Cory; Shelton, Ryan; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.

    2013-01-01

    We present a novel chromatic confocal microscope capable of volumetric reflectance imaging of microstructure in non-transparent tissue. Our design takes advantage of the chromatic aberration of aspheric lenses that are otherwise well corrected. Strong chromatic aberration, generated by multiple aspheres, longitudinally disperses supercontinuum light onto the sample. The backscattered light detected with a spectrometer is therefore wavelength encoded and each spectrum corresponds to a line image. This approach obviates the need for traditional axial mechanical scanning techniques that are difficult to implement for endoscopy and susceptible to motion artifact. A wavelength range of 590-775 nm yielded a >150 µm imaging depth with ~3 µm axial resolution. The system was further demonstrated by capturing volumetric images of buccal mucosa. We believe these represent the first microstructural images in non-transparent biological tissue using chromatic confocal microscopy that exhibit long imaging depth while maintaining acceptable resolution for resolving cell morphology. Miniaturization of this optical system could bring enhanced speed and accuracy to endomicroscopic in vivo volumetric imaging of epithelial tissue. PMID:23667789

  13. Two-Photon Fluorescence Microscopy Developed for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2004-01-01

    Recent research efforts within the Microgravity Fluid Physics Branch of the NASA Glenn Research Center have necessitated the development of a microscope capable of high-resolution, three-dimensional imaging of intracellular structure and tissue morphology. Standard optical microscopy works well for thin samples, but it does not allow the imaging of thick samples because of severe degradation caused by out-of-focus object structure. Confocal microscopy, which is a laser-based scanning microscopy, provides improved three-dimensional imaging and true optical sectioning by excluding the out-of-focus light. However, in confocal microscopy, out-of-focus object structure is still illuminated by the incoming beam, which can lead to substantial photo-bleaching. In addition, confocal microscopy is plagued by limited penetration depth, signal loss due to the presence of a confocal pinhole, and the possibility of live-cell damage. Two-photon microscopy is a novel form of laser-based scanning microscopy that allows three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon microscopy, it utilizes the nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption because of the nonlinear (i.e., quadratic) electric field dependence, so an ultrafast pulsed laser source must typically be employed. On the other hand, this stringent energy density requirement effectively localizes fluorophore excitation to the focal volume. Consequently, two-photon microscopy provides optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction in photo-damage because of the longer excitation wavelength, a reduction in background fluorescence, and a 4 increase in penetration depth over confocal methods because of the reduction in Rayleigh scattering.

  14. Quantitative Immunofluorescence Analysis of Nucleolus-Associated Chromatin.

    PubMed

    Dillinger, Stefan; Németh, Attila

    2016-01-01

    The nuclear distribution of eu- and heterochromatin is nonrandom, heterogeneous, and dynamic, which is mirrored by specific spatiotemporal arrangements of histone posttranslational modifications (PTMs). Here we describe a semiautomated method for the analysis of histone PTM localization patterns within the mammalian nucleus using confocal laser scanning microscope images of fixed, immunofluorescence stained cells as data source. The ImageJ-based process includes the segmentation of the nucleus, furthermore measurements of total fluorescence intensities, the heterogeneity of the staining, and the frequency of the brightest pixels in the region of interest (ROI). In the presented image analysis pipeline, the perinucleolar chromatin is selected as primary ROI, and the nuclear periphery as secondary ROI.

  15. High temporal and spatial resolution studies of bone cells using real-time confocal reflection microscopy.

    PubMed

    Boyde, A; Vesely, P; Gray, C; Jones, S J

    1994-01-01

    Chick and rat bone-derived cells were mounted in sealed coverslip-covered chambers; individual osteoclasts (but also osteoblasts) were selected and studied at 37 degrees C using three different types of high-speed scanning confocal microscopes: (1) A Noran Tandem Scanning Microscope (TSM) was used with a low light level, cooled CCD camera for image transfer to a Noran TN8502 frame store-based image analysing computer to make time lapse movie sequences using 0.1 s exposure periods, thus losing some of the advantage of the high frame rate of the TSM. Rapid focus adjustment using computer controlled piezo drivers permitted two or more focus planes to be imaged sequentially: thus (with additional light-source shuttering) the reflection confocal image could be alternated with the phase contrast image at a different focus. Individual cells were followed for up to 5 days, suggesting no significant irradiation problem. (2) Exceptional temporal and spatial resolution is available in video rate laser confocal scanning microscopes (VRCSLMs). We used the Noran Odyssey unitary beam VRCSLM with an argon ion laser at 488 nm and acousto-optic deflection (AOD) on the line axis: this instrument is truly and adjustably confocal in the reflection mode. (3) We also used the Lasertec 1LM11 line scan instrument, with an He-Ne laser at 633 nm, and AOD for the frame scan. We discuss the technical problems and merits of the different approaches. The VRCSLMs documented rapid, real-time oscillatory motion: all the methods used show rapid net movement of organelles within bone cells. The interference reflection mode gives particularly strong contrasts in confocal instruments. Phase contrast and other interference methods used in the microscopy of living cells can be used simultaneously in the TSM.

  16. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo.

    PubMed

    Xia, Jun; Chatni, Muhammad R; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6  s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  17. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  18. Design and demonstration of multimodal optical scanning microscopy for confocal and two-photon imaging

    NASA Astrophysics Data System (ADS)

    Chun, Wanhee; Do, Dukho; Gweon, Dae-Gab

    2013-01-01

    We developed a multimodal microscopy based on an optical scanning system in order to obtain diverse optical information of the same area of a sample. Multimodal imaging researches have mostly depended on a commercial microscope platform, easy to use but restrictive to extend imaging modalities. In this work, the beam scanning optics, especially including a relay lens, was customized to transfer broadband (400-1000 nm) lights to a sample without any optical error or loss. The customized scanning optics guarantees the best performances of imaging techniques utilizing the lights within the design wavelength. Confocal reflection, confocal fluorescence, and two-photon excitation fluorescence images were obtained, through respective implemented imaging channels, to demonstrate imaging feasibility for near-UV, visible, near-IR continuous light, and pulsed light in the scanning optics. The imaging performances for spatial resolution and image contrast were verified experimentally; the results were satisfactory in comparison with theoretical results. The advantages of customization, containing low cost, outstanding combining ability and diverse applications, will contribute to vitalize multimodal imaging researches.

  19. Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging.

    PubMed

    Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul

    2012-10-17

    There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Seltzer, Emily; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2013-06-01

    Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in freshly excised tissue, without the processing required for conventional pathology. Previously, mosaicing on 12-×-12 mm2 of excised skin tissue from Mohs surgery and detection of basal cell carcinoma margins was demonstrated in 9 min. Last year, we reported the feasibility of a faster approach called "strip mosaicing," which was demonstrated on a 10-×-10 mm2 of tissue in 3 min. Here we describe further advances in instrumentation, software, and speed. A mechanism was also developed to flatten tissue in order to enable consistent and repeatable acquisition of images over large areas. We demonstrate mosaicing on 10-×-10 mm2 of skin tissue with 1-μm lateral resolution in 90 s. A 2.5-×-3.5 cm2 piece of breast tissue was scanned with 0.8-μm lateral resolution in 13 min. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Imaging of tumor margins with strip mosaicing confocal microscopy may serve as an adjunct to conventional (frozen or fixed) pathology for guiding surgery.

  1. Real-time restoration of white-light confocal microscope optical sections

    PubMed Central

    Balasubramanian, Madhusudhanan; Iyengar, S. Sitharama; Beuerman, Roger W.; Reynaud, Juan; Wolenski, Peter

    2009-01-01

    Confocal microscopes (CM) are routinely used for building 3-D images of microscopic structures. Nonideal imaging conditions in a white-light CM introduce additive noise and blur. The optical section images need to be restored prior to quantitative analysis. We present an adaptive noise filtering technique using Karhunen–Loéve expansion (KLE) by the method of snapshots and a ringing metric to quantify the ringing artifacts introduced in the images restored at various iterations of iterative Lucy–Richardson deconvolution algorithm. The KLE provides a set of basis functions that comprise the optimal linear basis for an ensemble of empirical observations. We show that most of the noise in the scene can be removed by reconstructing the images using the KLE basis vector with the largest eigenvalue. The prefiltering scheme presented is faster and does not require prior knowledge about image noise. Optical sections processed using the KLE prefilter can be restored using a simple inverse restoration algorithm; thus, the methodology is suitable for real-time image restoration applications. The KLE image prefilter outperforms the temporal-average prefilter in restoring CM optical sections. The ringing metric developed uses simple binary morphological operations to quantify the ringing artifacts and confirms with the visual observation of ringing artifacts in the restored images. PMID:20186290

  2. Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning

    PubMed Central

    Wang, Thomas D.; Contag, Christopher H.; Mandella, Michael J.; Chan, Ning Y.; Kino, Gordon S.

    2007-01-01

    We present a novel confocal microscope that has dual-axis architecture and biaxial postobjective scanning for the collection of fluorescence images from biological specimens. This design uses two low-numerical-aperture lenses to achieve high axial resolution and long working distance, and the scanning mirror located distal to the lenses rotates along the orthogonal axes to produce arc-surface images over a large field of view (FOV). With fiber optic coupling, this microscope can potentially be scaled down to millimeter dimensions via microelectromechanical systems (MEMS) technology. We demonstrate a benchtop prototype with a spatial resolution ≤4.4 μm that collects fluorescence images with a high SNR and a good contrast ratio from specimens expressing GFP. Furthermore, the scanning mechanism produces only small differences in aberrations over the image FOV. These results demonstrate proof of concept of the dual-axis confocal architecture for in vivo molecular and cellular imaging. PMID:15250760

  3. Advanced imaging as a novel approach to the characterization of membranes for microfiltration applications

    NASA Astrophysics Data System (ADS)

    Marroquin, Milagro

    The primary objectives of my dissertation were to design, develop and implement novel confocal microscopy imaging protocols for the characterization of membranes and highlight opportunities to obtain reliable and cutting-edge information of microfiltration membrane morphology and fouling processes. After a comprehensive introduction and review of confocal microscopy in membrane applications (Chapter 1), the first part of this dissertation (Chapter 2) details my work on membrane morphology characterization by confocal laser scanning microscopy (CLSM) and the implementation of my newly developed CLSM cross-sectional imaging protocol. Depth-of-penetration limits were identified to be approximately 24 microns and 7-8 microns for mixed cellulose ester and polyethersulfone membranes, respectively, making it impossible to image about 70% of the membrane bulk. The development and implementation of my cross-sectional CLSM method enabled the imaging of the entire membrane cross-section. Porosities of symmetric and asymmetric membranes with nominal pore sizes in the range 0.65-8.0 microns were quantified at different depths and yielded porosity values in the 50-60% range. It is my hope and expectation that the characterization strategy developed in this part of the work will enable future studies of different membrane materials and applications by confocal microscopy. After demonstrating how cross-sectional CLSM could be used to fully characterize membrane morphologies and porosities, I applied it to the characterization of fouling occurring in polyethersulfone microfiltration membranes during the processing of solutions containing proteins and polysaccharides (Chapter 3). Through CLSM imaging, it was determined where proteins and polysaccharides deposit throughout polymeric microfiltration membranes when a fluid containing these materials is filtered. CLSM enabled evaluation of the location and extent of fouling by individual components (protein: casein and polysaccharide: dextran) within wet, asymmetric polyethersulfone microfiltration membranes. Information from filtration flux profiles and cross-sectional CLSM images of the membranes that processed single-component solutions and mixtures agreed with each other. Concentration profiles versus depth for each individual component present in the feed solution were developed from the analysis of the CLSM images at different levels of fouling for single-component solutions and mixtures. CLSM provided visual information that helped elucidate the role of each component on membrane fouling and provided a better understanding of how component interactions impact the fouling profiles. Finally, Chapter 4 extends the application of my cross-sectional CLSM imaging protocol to study the fouling of asymmetric polyethersulfone membranes during the microfiltration of protein, polyphenol, and polysaccharide mixtures to better understand the solute-solute and solute-membrane interactions leading to fouling in beverage clarification processes. Again, cross-sectional CLSM imaging provided information on the location and extent of fouling throughout the entire thickness of the PES membrane. Quantitative analysis of the cross-sectional CLSM images provided a measurement of the masses of foulants deposited throughout the membrane. Moreover, flux decline data collected for different mixtures of casein, tannic acid and beta-cyclodextrin were analyzed with standard fouling models to determine the fouling mechanisms at play when processing different combinations of foulants. Results from model analysis of flux data were compared with the quantitative visual analysis of the correspondent CLSM images. This approach, which couples visual and performance measurements, is expected to provide a better understanding of the causes of fouling that, in turn, is expected to aid in the design of new membranes with tailored structure or surface chemistry that prevents the deposition of the foulants in "prone to foul" regions. (Abstract shortened by UMI.)

  4. Single-cell resolution fluorescence imaging of circadian rhythms detected with a Nipkow spinning disk confocal system.

    PubMed

    Enoki, Ryosuke; Ono, Daisuke; Hasan, Mazahir T; Honma, Sato; Honma, Ken-Ichi

    2012-05-30

    Single-point laser scanning confocal imaging produces signals with high spatial resolution in living organisms. However, photo-induced toxicity, bleaching, and focus drift remain challenges, especially when recording over several days for monitoring circadian rhythms. Bioluminescence imaging is a tool widely used for this purpose, and does not cause photo-induced difficulties. However, bioluminescence signals are dimmer than fluorescence signals, and are potentially affected by levels of cofactors, including ATP, O(2), and the substrate, luciferin. Here we describe a novel time-lapse confocal imaging technique to monitor circadian rhythms in living tissues. The imaging system comprises a multipoint scanning Nipkow spinning disk confocal unit and a high-sensitivity EM-CCD camera mounted on an inverted microscope with auto-focusing function. Brain slices of the suprachiasmatic nucleus (SCN), the central circadian clock, were prepared from transgenic mice expressing a clock gene, Period 1 (Per1), and fluorescence reporter protein (Per1::d2EGFP). The SCN slices were cut out together with membrane, flipped over, and transferred to the collagen-coated glass dishes to obtain signals with a high signal-to-noise ratio and to minimize focus drift. The imaging technique and improved culture method enabled us to monitor the circadian rhythm of Per1::d2EGFP from optically confirmed single SCN neurons without noticeable photo-induced effects or focus drift. Using recombinant adeno-associated virus carrying a genetically encoded calcium indicator, we also monitored calcium circadian rhythms at a single-cell level in a large population of SCN neurons. Thus, the Nipkow spinning disk confocal imaging system developed here facilitates long-term visualization of circadian rhythms in living cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas.

    PubMed

    Sanai, Nader; Snyder, Laura A; Honea, Norissa J; Coons, Stephen W; Eschbacher, Jennifer M; Smith, Kris A; Spetzler, Robert F

    2011-10-01

    Greater extent of resection (EOR) for patients with low-grade glioma (LGG) corresponds with improved clinical outcome, yet remains a central challenge to the neurosurgical oncologist. Although 5-aminolevulinic acid (5-ALA)-induced tumor fluorescence is a strategy that can improve EOR in gliomas, only glioblastomas routinely fluoresce following 5-ALA administration. Intraoperative confocal microscopy adapts conventional confocal technology to a handheld probe that provides real-time fluorescent imaging at up to 1000× magnification. The authors report a combined approach in which intraoperative confocal microscopy is used to visualize 5-ALA tumor fluorescence in LGGs during the course of microsurgical resection. Following 5-ALA administration, patients with newly diagnosed LGG underwent microsurgical resection. Intraoperative confocal microscopy was conducted at the following points: 1) initial encounter with the tumor; 2) the midpoint of tumor resection; and 3) the presumed brain-tumor interface. Histopathological analysis of these sites correlated tumor infiltration with intraoperative cellular tumor fluorescence. Ten consecutive patients with WHO Grades I and II gliomas underwent microsurgical resection with 5-ALA and intraoperative confocal microscopy. Macroscopic tumor fluorescence was not evident in any patient. However, in each case, intraoperative confocal microscopy identified tumor fluorescence at a cellular level, a finding that corresponded to tumor infiltration on matched histological analyses. Intraoperative confocal microscopy can visualize cellular 5-ALA-induced tumor fluorescence within LGGs and at the brain-tumor interface. To assess the clinical value of 5-ALA for high-grade gliomas in conjunction with neuronavigation, and for LGGs in combination with intraoperative confocal microscopy and neuronavigation, a Phase IIIa randomized placebo-controlled trial (BALANCE) is underway at the authors' institution.

  6. Near-Infrared Confocal Laser Reflectance Cytoarchitectural Imaging of the Substantia Nigra and Cerebellum in the Fresh Human Cadaver.

    PubMed

    Cheyuo, Cletus; Grand, Walter; Balos, Lucia L

    2017-01-01

    Cytoarchitectural neuroimaging remains critical for diagnosis of many brain diseases. Fluorescent dye-enhanced, near-infrared confocal in situ cellular imaging of the brain has been reported. However, impermeability of the blood-brain barrier to most fluorescent dyes limits clinical utility of this modality. The differential degree of reflectance from brain tissue with unenhanced near-infrared imaging may represent an alternative technique for in situ cytoarchitectural neuroimaging. We assessed the utility of unenhanced near-infrared confocal laser reflectance imaging of the cytoarchitecture of the cerebellum and substantia nigra in 2 fresh human cadaver brains using a confocal near-infrared laser probe. Cellular images based on near-infrared differential reflectance were captured at depths of 20-180 μm from the brain surface. Parts of the cerebellum and substantia nigra imaged using the probe were subsequently excised and stained with hematoxylin and eosin for histologic correlation. Near-infrared reflectance imaging revealed the 3-layered cytoarchitecture of the cerebellum, with Purkinje cells appearing hyperreflectant. In the substantia nigra, neurons appeared hyporeflectant with hyperreflectant neuromelanin cytoplasmic inclusions. Cytoarchitecture of the cerebellum and substantia nigra revealed on near-infrared imaging closely correlated with the histology on hematoxylin-eosin staining. We showed that unenhanced near-infrared reflectance imaging of fresh human cadaver brain can reliably identify and distinguish neurons and detailed cytoarchitecture of the cerebellum and substantia nigra. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Use of Digitally Stained Multimodal Confocal Mosaic Images to Screen for Nonmelanoma Skin Cancer

    PubMed Central

    Mu, Euphemia W.; Lewin, Jesse M.; Stevenson, Mary L.; Meehan, Shane A.; Carucci, John A.; Gareau, Daniel S.

    2017-01-01

    IMPORTANCE Confocal microscopy has the potential to provide rapid bedside pathologic analysis, but clinical adoption has been limited in part by the need for physician retraining to interpret grayscale images. Digitally stained confocal mosaics (DSCMs) mimic the colors of routine histologic specimens and may increase adaptability of this technology. OBJECTIVE To evaluate the accuracy and precision of 3 physicians using DSCMs before and after training to detect basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) in Mohs micrographic surgery fresh-tissue specimens. DESIGN This retrospective study used 133 DSCMs from 64 Mohs tissue excisions, which included clear margins, residual BCC, or residual SCC. Discarded tissue from Mohs surgical excisions from the dermatologic surgery units at Memorial Sloan Kettering Cancer Center and Oregon Health & Science University were collected for confocal imaging from 2006 to 2011. Final data analysis and interpretation took place between 2014 and 2016. Two Mohs surgeons and a Mohs fellow, who were blinded to the correlating gold standard frozen section diagnoses, independently reviewed the DSCMs for residual nonmelanoma skin cancer (NMSC) before and after a brief training session (about 5 minutes). The 2 assessments were separated by a 6-month washout period. MAIN OUTCOMES AND MEASURES Diagnostic accuracy was characterized by sensitivity and specificity of detecting NMSC using DSCMs vs standard frozen histopathologic specimens. The diagnostic precision was calculated based on interobserver agreement and κ scores. Paired 2-sample t tests were used for comparative means analyses before and after training. RESULTS The average respective sensitivities and specificities of detecting NMSC were 90% (95% CI, 89%-91%) and 79% (95% CI, 52%-100%) before training and 99% (95% CI, 99%-99%) (P = .001) and 93% (95% CI, 90%-96%) (P = .18) after training; for BCC, they were 83% (95% CI, 59%-100%) and 92% (95% CI, 81%-100%) before training and 98% (95% CI, 98%-98%) (P = .18) and 97% (95% CI, 95%-100%) (P = .15) after training; for SCC, they were 73% (95% CI, 65%-81%) and 89% (95% CI, 72%-100%) before training and 100% (P = .004) and 98% (95% CI, 95%-100%) (P = .21) after training. The pretraining interobserver agreement was 72% (κ = 0.58), and the posttraining interobserver agreement was 98% (κ = 0.97) (P = .04). CONCLUSIONS AND RELEVANCE Diagnostic use of DSCMs shows promising correlation to frozen histologic analysis, but image quality was affected by variations in image contrast and mosaic-stitching artifact. With training, physicians were able to read DSCMs with significantly improved accuracy and precision to detect NMSC. PMID:27603676

  8. Re-scan confocal microscopy: scanning twice for better resolution.

    PubMed

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  9. Two-photon confocal microscopy in wound healing

    NASA Astrophysics Data System (ADS)

    Navarro, Fernando A.; So, Peter T. C.; Driessen, Antoine; Kropf, Nina; Park, Christine S.; Huertas, Juan C.; Lee, Hoon B.; Orgill, Dennis P.

    2001-04-01

    Advances in histopathology and immunohistochemistry have allowed for precise microanatomic detail of tissues. Two Photon Confocal Microscopy (TPCM) is a new technology useful in non-destructive analysis of tissue. Laser light excites the natural florophores, NAD(P)H and NADP+ and the scattering patterns of the emitted light are analyzed to reconstruct microanatomic features. Guinea pig skin was studied using TPCM and skin preparation methods including chemical depilation and tape striping. Results of TPCM were compared with conventional hematoxylin and eosin microscopy. Two-dimensional images were rendered from the three dimensional reconstructions. Images of deeper layers including basal cells and the dermo-epidermal junction improved after removing the stratum corneum with chemical depilation or tape stripping. TCPM allows good resolution of corneocytes, basal cells and collagen fibers and shows promise as a non-destructive method to study wound healing.

  10. Evaluating performance in three-dimensional fluorescence microscopy

    PubMed Central

    MURRAY, JOHN M; APPLETON, PAUL L; SWEDLOW, JASON R; WATERS, JENNIFER C

    2007-01-01

    In biological fluorescence microscopy, image contrast is often degraded by a high background arising from out of focus regions of the specimen. This background can be greatly reduced or eliminated by several modes of thick specimen microscopy, including techniques such as 3-D deconvolution and confocal. There has been a great deal of interest and some confusion about which of these methods is ‘better’, in principle or in practice. The motivation for the experiments reported here is to establish some rough guidelines for choosing the most appropriate method of microscopy for a given biological specimen. The approach is to compare the efficiency of photon collection, the image contrast and the signal-to-noise ratio achieved by the different methods at equivalent illumination, using a specimen in which the amount of out of focus background is adjustable over the range encountered with biological samples. We compared spot scanning confocal, spinning disk confocal and wide-field/deconvolution (WFD) microscopes and find that the ratio of out of focus background to in-focus signal can be used to predict which method of microscopy will provide the most useful image. We also find that the precision of measurements of net fluorescence yield is very much lower than expected for all modes of microscopy. Our analysis enabled a clear, quantitative delineation of the appropriate use of different imaging modes relative to the ratio of out-of-focus background to in-focus signal, and defines an upper limit to the useful range of the three most common modes of imaging. PMID:18045334

  11. Confocal filtering in cathodoluminescence microscopy of nanostructures

    NASA Astrophysics Data System (ADS)

    Narváez, Angela C.; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P.; Kruit, Pieter

    2014-06-01

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  12. A data processing method based on tracking light spot for the laser differential confocal component parameters measurement system

    NASA Astrophysics Data System (ADS)

    Shao, Rongjun; Qiu, Lirong; Yang, Jiamiao; Zhao, Weiqian; Zhang, Xin

    2013-12-01

    We have proposed the component parameters measuring method based on the differential confocal focusing theory. In order to improve the positioning precision of the laser differential confocal component parameters measurement system (LDDCPMS), the paper provides a data processing method based on tracking light spot. To reduce the error caused by the light point moving in collecting the axial intensity signal, the image centroiding algorithm is used to find and track the center of Airy disk of the images collected by the laser differential confocal system. For weakening the influence of higher harmonic noises during the measurement, Gaussian filter is used to process the axial intensity signal. Ultimately the zero point corresponding to the focus of the objective in a differential confocal system is achieved by linear fitting for the differential confocal axial intensity data. Preliminary experiments indicate that the method based on tracking light spot can accurately collect the axial intensity response signal of the virtual pinhole, and improve the anti-interference ability of system. Thus it improves the system positioning accuracy.

  13. Wide-Field Imaging Using Nitrogen Vacancies

    NASA Technical Reports Server (NTRS)

    Englund, Dirk Robert (Inventor); Trusheim, Matthew Edwin (Inventor)

    2017-01-01

    Nitrogen vacancies in bulk diamonds and nanodiamonds can be used to sense temperature, pressure, electromagnetic fields, and pH. Unfortunately, conventional sensing techniques use gated detection and confocal imaging, limiting the measurement sensitivity and precluding wide-field imaging. Conversely, the present sensing techniques do not require gated detection or confocal imaging and can therefore be used to image temperature, pressure, electromagnetic fields, and pH over wide fields of view. In some cases, wide-field imaging supports spatial localization of the NVs to precisions at or below the diffraction limit. Moreover, the measurement range can extend over extremely wide dynamic range at very high sensitivity.

  14. Clinical evaluation of a confocal microendoscope system for imaging the ovary

    NASA Astrophysics Data System (ADS)

    Tanbakuchi, Anthony A.; Rouse, Andrew R.; Hatch, Kenneth D.; Sampliner, Richard E.; Udovich, Josh A.; Gmitro, Arthur F.

    2008-02-01

    We have developed a mobile confocal microendoscope system that provides live cellular imaging during surgery to aid in diagnosing microscopic abnormalities including cancer. We present initial clinical trial results using the device to image ovaries in-vivo using fluorescein and ex-vivo results using acridine orange. The imaging catheter has improved depth control and localized dye delivery mechanisms than previously presented. A manual control now provides a simple way for the surgeon to adjust and optimize imaging depth during the procedure while a tiny piezo valve in the imaging catheter controls the dye delivery.

  15. Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging.

    PubMed

    Mas, Abraham; Amenós, Montse; Lois, L Maria

    2016-01-01

    Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected.

  16. Confocal laser scanning microscopy and area-scale analysis used to quantify enamel surface textural changes from citric acid demineralization and salivary remineralization in vitro.

    PubMed

    Austin, R S; Giusca, C L; Macaulay, G; Moazzez, R; Bartlett, D W

    2016-02-01

    This paper investigates the application of confocal laser scanning microscopy to determine the effect of acid-mediated erosive enamel wear on the micro-texture of polished human enamel in vitro. Twenty polished enamel samples were prepared and subjected to a citric acid erosion and pooled human saliva remineralization model. Enamel surface microhardness was measured using a Knoop hardness tester, which confirmed that an early enamel erosion lesion was formed which was then subsequently completely remineralized. A confocal laser scanning microscope was used to capture high-resolution images of the enamel surfaces undergoing demineralization and remineralization. Area-scale analysis was used to identify the optimal feature size following which the surface texture was determined using the 3D (areal) texture parameter Sa. The Sa successfully characterized the enamel erosion and remineralization for the polished enamel samples (P<0.001). Areal surface texture characterization of the surface events occurring during enamel demineralization and remineralization requires optical imaging instrumentation with lateral resolution <2.5 μm, applied in combination with appropriate filtering in order to remove unwanted waviness and roughness. These techniques will facilitate the development of novel methods for measuring early enamel erosion lesions in natural enamel surfaces in vivo. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Combined FLIM and reflectance confocal microscopy for epithelial imaging

    NASA Astrophysics Data System (ADS)

    Jabbour, Joey M.; Cheng, Shuna; Shrestha, Sebina; Malik, Bilal; Jo, Javier A.; Applegate, Brian; Maitland, Kristen C.

    2012-03-01

    Current methods for detection of oral cancer lack the ability to delineate between normal and precancerous tissue with adequate sensitivity and specificity. The usual diagnostic mechanism involves visual inspection and palpation followed by tissue biopsy and histopathology, a process both invasive and time-intensive. A more sensitive and objective screening method can greatly facilitate the overall process of detection of early cancer. To this end, we present a multimodal imaging system with fluorescence lifetime imaging (FLIM) for wide field of view guidance and reflectance confocal microscopy for sub-cellular resolution imaging of epithelial tissue. Moving from a 12 x 12 mm2 field of view with 157 ìm lateral resolution using FLIM to 275 x 200 μm2 with lateral resolution of 2.2 μm using confocal microscopy, hamster cheek pouch model is imaged both in vivo and ex vivo. The results indicate that our dual modality imaging system can identify and distinguish between different tissue features, and, therefore, can potentially serve as a guide in early oral cancer detection..

  18. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging

    PubMed Central

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K.; Wells, Sam; Wikswo, John P.; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    ABSTRACT We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment. PMID:28243517

  19. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging.

    PubMed

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K; Wells, Sam; Wikswo, John P; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment.

  20. Rapid Screening of Cancer Margins in Tissue with Multimodal Confocal Microscopy

    PubMed Central

    Gareau, Daniel S.; Jeon, Hana; Nehal, Kishwer S.; Rajadhyaksha, Milind

    2012-01-01

    Background Complete and accurate excision of cancer is guided by the examination of histopathology. However, preparation of histopathology is labor intensive and slow, leading to insufficient sampling of tissue and incomplete and/or inaccurate excision of margins. We demonstrate the potential utility of multimodal confocal mosaicing microscopy for rapid screening of cancer margins, directly in fresh surgical excisions, without the need for conventional embedding, sectioning or processing. Materials/Methods A multimodal confocal mosaicing microscope was developed to image basal cell carcinoma margins in surgical skin excisions, with resolution that shows nuclear detail. Multimodal contrast is with fluorescence for imaging nuclei and reflectance for cellular cytoplasm and dermal collagen. Thirtyfive excisions of basal cell carcinomas from Mohs surgery were imaged, and the mosaics analyzed by comparison to the corresponding frozen pathology. Results Confocal mosaics are produced in about 9 minutes, displaying tissue in fields-of-view of 12 mm with 2X magnification. A digital staining algorithm transforms black and white contrast to purple and pink, which simulates the appearance of standard histopathology. Mosaicing enables rapid digital screening, which mimics the examination of histopathology. Conclusions Multimodal confocal mosaicing microscopy offers a technology platform to potentially enable real-time pathology at the bedside. The imaging may serve as an adjunct to conventional histopathology, to expedite screening of margins and guide surgery toward more complete and accurate excision of cancer. PMID:22721570

  1. Experiments on terahertz 3D scanning microscopic imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Qi

    2016-10-01

    Compared with the visible light and infrared, terahertz (THz) radiation can penetrate nonpolar and nonmetallic materials. There are many studies on the THz coaxial transmission confocal microscopy currently. But few researches on the THz dual-axis reflective confocal microscopy were reported. In this paper, we utilized a dual-axis reflective confocal scanning microscope working at 2.52 THz. In contrast with the THz coaxial transmission confocal microscope, the microscope adopted in this paper can attain higher axial resolution at the expense of reduced lateral resolution, revealing more satisfying 3D imaging capability. Objects such as Chinese characters "Zhong-Hua" written in paper with a pencil and a combined sheet metal which has three layers were scanned. The experimental results indicate that the system can extract two Chinese characters "Zhong," "Hua" or three layers of the combined sheet metal. It can be predicted that the microscope can be applied to biology, medicine and other fields in the future due to its favorable 3D imaging capability.

  2. Reflection imaging of China ink-perfused brain vasculature using confocal laser-scanning microscopy after clarification of brain tissue by the Spalteholz method.

    PubMed

    Gutierre, R C; Vannucci Campos, D; Mortara, R A; Coppi, A A; Arida, R M

    2017-04-01

    Confocal laser-scanning microscopy is a useful tool for visualizing neurons and glia in transparent preparations of brain tissue from laboratory animals. Currently, imaging capillaries and venules in transparent brain tissues requires the use of fluorescent proteins. Here, we show that vessels can be imaged by confocal laser-scanning microscopy in transparent cortical, hippocampal and cerebellar preparations after clarification of China ink-injected specimens by the Spalteholz method. This method may be suitable for global, three-dimensional, quantitative analyses of vessels, including stereological estimations of total volume and length and of surface area of vessels, which constitute indirect approaches to investigate angiogenesis. © 2017 Anatomical Society.

  3. Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance

    PubMed Central

    Bini, Jason; Spain, James; Nehal, Kishwer; Hazelwood, Vikki; DiMarzio, Charles; Rajadhyaksha, Milind

    2011-01-01

    Confocal mosaicing microscopy enables rapid imaging of large areas of fresh tissue, without the processing that is necessary for conventional histology. Mosaicing may offer a means to perform rapid histology at the bedside. A possible barrier toward clinical acceptance is that the mosaics are based on a single mode of grayscale contrast and appear black and white, whereas histology is based on two stains (hematoxylin for nuclei, eosin for cellular cytoplasm and dermis) and appears purple and pink. Toward addressing this barrier, we report advances in digital staining: fluorescence mosaics that show only nuclei, are digitally stained purple and overlaid on reflectance mosaics, which show only cellular cytoplasm and dermis, and are digitally stained pink. With digital staining, the appearance of confocal mosaics mimics the appearance of histology. Using multispectral analysis and color matching functions, red, green, and blue (RGB) components of hematoxylin and eosin stains in tissue were determined. The resulting RGB components were then applied in a linear algorithm to transform fluorescence and reflectance contrast in confocal mosaics to the absorbance contrast seen in pathology. Optimization of staining with acridine orange showed improved quality of digitally stained mosaics, with good correlation to the corresponding histology. PMID:21806269

  4. Mobile large area confocal scanner for imaging tumor margins: initial testing in the pathology department

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2013-03-01

    Surgical oncology is guided by examining pathology that is prepared during or after surgery. The preparation time for Mohs surgery in skin is 20-45 minutes, for head-and-neck and breast cancer surgery is hours to days. Often this results in incomplete tumor removal such that positive margins remain. However, high resolution images of excised tissue taken within few minutes can provide a way to assess the margins for residual tumor. Current high resolution imaging methods such as confocal microscopy are limited to small fields of view and require assembling a mosaic of images in two dimensions (2D) to cover a large area, which requires long acquisition times and produces artifacts. To overcome this limitation we developed a confocal microscope that scans strips of images with high aspect ratios and stitches the acquired strip-images in one dimension (1D). Our "Strip Scanner" can image a 10 x 10 mm2 area of excised tissue with sub-cellular detail in about one minute. The strip scanner was tested on 17 Mohs excisions and the mosaics were read by a Mohs surgeon blinded to the pathology. After this initial trial, we built a mobile strip scanner that can be moved into different surgical settings. A tissue fixture capable of scanning up to 6 x 6 cm2 of tissue was also built. Freshly excised breast and head-and-neck tissues were imaged in the pathology lab. The strip-images were registered and displayed simultaneously with image acquisition resulting in large, high-resolution confocal mosaics of fresh surgical tissue in a clinical setting.

  5. Live Cell Imaging and 3D Analysis of Angiotensin Receptor Type 1a Trafficking in Transfected Human Embryonic Kidney Cells Using Confocal Microscopy.

    PubMed

    Kadam, Parnika; McAllister, Ryan; Urbach, Jeffrey S; Sandberg, Kathryn; Mueller, Susette C

    2017-03-27

    Live-cell imaging is used to simultaneously capture time-lapse images of angiotensin type 1a receptors (AT1aR) and intracellular compartments in transfected human embryonic kidney-293 (HEK) cells following stimulation with angiotensin II (Ang II). HEK cells are transiently transfected with plasmid DNA containing AT1aR tagged with enhanced green fluorescent protein (EGFP). Lysosomes are identified with a red fluorescent dye. Live-cell images are captured on a laser scanning confocal microscope after Ang II stimulation and analyzed by software in three dimensions (3D, voxels) over time. Live-cell imaging enables investigations into receptor trafficking and avoids confounds associated with fixation, and in particular, the loss or artefactual displacement of EGFP-tagged membrane receptors. Thus, as individual cells are tracked through time, the subcellular localization of receptors can be imaged and measured. Images must be acquired sufficiently rapidly to capture rapid vesicle movement. Yet, at faster imaging speeds, the number of photons collected is reduced. Compromises must also be made in the selection of imaging parameters like voxel size in order to gain imaging speed. Significant applications of live-cell imaging are to study protein trafficking, migration, proliferation, cell cycle, apoptosis, autophagy and protein-protein interaction and dynamics, to name but a few.

  6. Re-scan confocal microscopy: scanning twice for better resolution

    PubMed Central

    De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422

  7. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  8. Photothermal confocal multicolor microscopy of nanoparticles and nanodrugs in live cells

    PubMed Central

    Nedosekin, Dmitry A.; Foster, Stephen; Nima, Zeid A.; Biris, Alexandru S.; Galanzha, Ekaterina I.; Zharov, Vladimir P.

    2018-01-01

    Growing biomedical applications of non-fluorescent nanoparticles (NPs) for molecular imaging, disease diagnosis, drug delivery, and theranostics require new tools for real-time detection of nanomaterials, drug nano-carriers and NP-drug conjugates (nanodrugs) in complex biological environments without additional labeling. Photothermal (PT) microscopy (PTM) has an enormous potential for absorption-based identification and quantification of non-fluorescent molecules and NPs at a single molecule and 1.4 nm gold NP level. Recently, we have developed confocal PTM providing three-dimensional (3-D) mapping and spectral identification of multiple chromophores and fluorophores in live cells. Here, we summarize recent advances in the application of confocal multicolor PTM for 3-D visualization of single and clustered NPs, alone and in individual cells. In particular, we demonstrate identification of functionalized magnetic and gold-silver NPs, as well as graphene and carbon nanotubes in cancer cells and among blood cells. The potentials to use PTM for super-resolution imaging (down to 50nm), real-time NP tracking, guidance of PT nanotherapy and multiplex cancer markers targeting, as well as analysis of nonlinear PT phenomena and amplification of nanodrug efficacy through NP clustering and nanobubble formation are also discussed. PMID:26133539

  9. Electrophoretic Detection and Confocal Microscopic Imaging of Tyrosine Nitrated Proteins in Plant Tissue.

    PubMed

    Arora, Dhara; Singh, Neha; Bhatla, Satish C

    2018-01-01

    Tyrosine nitrated proteins can be detected in plant cells electrophoretically and their distribution can be monitored by confocal laser scanning microscopy (CLSM) imaging. One-dimensional polyacrylamide gel electrophoresis (1D PAGE) followed by Western blotting using polyclonal antibody against 3-nitrotyrosine residues enables detection of tyrosine nitrated proteins in plant cells. Here we describe detection of tyrosine nitrated proteins in the homogenates derived from sunflower (Helianthus annuus L.) seedling cotyledons. Total soluble proteins obtained from tissue homogenates are resolved using vertical gel electrophoresis followed by their electrophoretic transfer on to a microporous membrane support for immunodetection. Spatial distribution of tyrosine nitrated proteins can be visualized using an antibody against 3-nitrotyrosine residues. Immunofluorescent localization is performed by cutting 7 μm thick wax sections of tissue followed by incubation in primary anti-nitrotyrosine antibody (dilution 1:200) and secondary Cy-3 labeled anti-rabbit IgG antibody (dilution 1:1500). Confocal laser scanning microscopy analysis is undertaken using argon lasers (ex: 530-550 nm and em: 570 nm) at pinhole 1. Modulation in the abundance and spatial localization of tyrosine nitrated proteins in plant tissues can be monitored using these techniques.

  10. A confocal microscopy based method to monitor extracellular pH in fungal biofilms.

    PubMed

    Schlafer, Sebastian; Kamp, Anja; Garcia, Javier E

    2018-04-19

    pH in fungal biofilms is important for a variety of fungal infections and industrial applications involving fungal biofilms, but to date, it has never been measured directly inside the biofilm matrix. In the present study, a new methodology was developed allowing for confocal microscopy based monitoring of extracellular pH inside fungal biofilms. Monospecies biofilms of Aspergillus fumigatus, Candida albicans, Candida dubliniensis and Cryptococcus neoformans were stained with the pH dependent ratiometric probe C-SNARF-4, imaged with a confocal microscope, and a digital image analysis procedure was developed to determine pH in the extracellular matrix. As a proof of concept, pH developments at the biofilm-substratum interface were monitored for one h after exposure to glucose. Observed pH drops differed considerably between the different species and also between replicate biofilms of the same species. C. albicans biofilms showed the highest acidogenicity, with pH drops occurring much faster than in planktonic culture. pH ratiometry with C-SNARF-4 is a valuable tool to get insight into fungal biofilm metabolism and may shed new light on both disease-related and industrially relevant processes in fungal biofilms.

  11. Quantification of Cardiomyocyte Alignment from Three-Dimensional (3D) Confocal Microscopy of Engineered Tissue.

    PubMed

    Kowalski, William J; Yuan, Fangping; Nakane, Takeichiro; Masumoto, Hidetoshi; Dwenger, Marc; Ye, Fei; Tinney, Joseph P; Keller, Bradley B

    2017-08-01

    Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms. We developed an automated method to measure local 3D orientations based on structure tensor analysis and incorporated an adaptive subregion size to account for multiple scales. Our method calculates the statistical concentration parameter, κ, to quantify alignment, as well as the traditional orientational order parameter. We validated our method using synthetic images and accurately measured principal axis and concentration. We then applied our method to confocal stacks of cleared, whole-mount engineered cardiac tissues generated from human-induced pluripotent stem cells or embryonic chick cardiac cells and quantified cardiomyocyte alignment. We found significant differences in alignment based on cellular composition and tissue geometry. These results from our synthetic images and confocal data demonstrate the efficiency and accuracy of our method to measure alignment in 3D tissues.

  12. Dictionary-based image reconstruction for superresolution in integrated circuit imaging.

    PubMed

    Cilingiroglu, T Berkin; Uyar, Aydan; Tuysuzoglu, Ahmet; Karl, W Clem; Konrad, Janusz; Goldberg, Bennett B; Ünlü, M Selim

    2015-06-01

    Resolution improvement through signal processing techniques for integrated circuit imaging is becoming more crucial as the rapid decrease in integrated circuit dimensions continues. Although there is a significant effort to push the limits of optical resolution for backside fault analysis through the use of solid immersion lenses, higher order laser beams, and beam apodization, signal processing techniques are required for additional improvement. In this work, we propose a sparse image reconstruction framework which couples overcomplete dictionary-based representation with a physics-based forward model to improve resolution and localization accuracy in high numerical aperture confocal microscopy systems for backside optical integrated circuit analysis. The effectiveness of the framework is demonstrated on experimental data.

  13. Optimisation approaches for concurrent transmitted light imaging during confocal microscopy.

    PubMed

    Collings, David A

    2015-01-01

    The transmitted light detectors present on most modern confocal microscopes are an under-utilised tool for the live imaging of plant cells. As the light forming the image in this detector is not passed through a pinhole, out-of-focus light is not removed. It is this extended focus that allows the transmitted light image to provide cellular and organismal context for fluorescence optical sections generated confocally. More importantly, the transmitted light detector provides images that have spatial and temporal registration with the fluorescence images, unlike images taken with a separately-mounted camera. Because plants often provide difficulties for taking transmitted light images, with the presence of pigments and air pockets in leaves, this study documents several approaches to improving transmitted light images beginning with ensuring that the light paths through the microscope are correctly aligned (Köhler illumination). Pigmented samples can be imaged in real colour using sequential scanning with red, green and blue lasers. The resulting transmitted light images can be optimised and merged in ImageJ to generate colour images that maintain registration with concurrent fluorescence images. For faster imaging of pigmented samples, transmitted light images can be formed with non-absorbed wavelengths. Transmitted light images of Arabidopsis leaves expressing GFP can be improved by concurrent illumination with green and blue light. If the blue light used for YFP excitation is blocked from the transmitted light detector with a cheap, coloured glass filters, the non-absorbed green light will form an improved transmitted light image. Changes in sample colour can be quantified by transmitted light imaging. This has been documented in red onion epidermal cells where changes in vacuolar pH triggered by the weak base methylamine result in measurable colour changes in the vacuolar anthocyanin. Many plant cells contain visible levels of pigment. The transmitted light detector provides a useful tool for documenting and measuring changes in these pigments while maintaining registration with confocal imaging.

  14. Digital differential confocal microscopy based on spatial shift transformation.

    PubMed

    Liu, J; Wang, Y; Liu, C; Wilson, T; Wang, H; Tan, J

    2014-11-01

    Differential confocal microscopy is a particularly powerful surface profilometry technique in industrial metrology due to its high axial sensitivity and insensitivity to noise. However, the practical implementation of the technique requires the accurate positioning of point detectors in three-dimensions. We describe a simple alternative based on spatial transformation of a through-focus series of images obtained from a homemade beam scanning confocal microscope. This digital differential confocal microscopy approach is described and compared with the traditional Differential confocal microscopy approach. The ease of use of the digital differential confocal microscopy system is illustrated by performing measurements on a 3D standard specimen. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  15. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apedo, K.L., E-mail: apedo@unistra.fr; Munzer, C.; He, H.

    2015-02-15

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are comparedmore » with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.« less

  16. In vivo laser confocal microscopic analysis of murine cornea and lens microstructures.

    PubMed

    Yuasa, Masashi; Kobayashi, Akira; Yokogawa, Hideaki; Sugiyama, Kazuhisa

    2008-01-01

    The purpose of the current study is to investigate in vivo microstructures of anterior segments of normal murine eyes by new-generation in vivo laser confocal microscopy. Twenty-six corneas and lenses from 13 mice were analyzed by in vivo laser confocal microscopy. Murine corneal superficial cells formed a polygonal cell pattern, with a mean cell density of 577 +/- 115 cells/mm2 (mean +/- standard deviation). Corneal basal epithelial cells had dark cytoplasm and were closely organized (9,312 +/- 1,777 cells/mm2). Sub-basal nerve fiber bundles were arranged in a whorl pattern, with both clockwise and counter-clockwise patterns. In the stroma, keratocytes were observed as numerous reflective stellate structures. The endothelial cells were organized in a honeycomb pattern (2,463 +/- 292 cells/mm2). Deeper inside the eye, murine lens epithelial cells were organized in a regular pattern (4,168 +/- 636 cells/mm2) and numerous lens fibers were observed. In vivo laser confocal microscopy can provide high-resolution images of all corneal layers and lens structures of mice without sacrificing animals or tissue preparation.

  17. Managing multiple image stacks from confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Zerbe, Joerg; Goetze, Christian H.; Zuschratter, Werner

    1999-05-01

    A major goal in neuroanatomy is to obtain precise information about the functional organization of neuronal assemblies and their interconnections. Therefore, the analysis of histological sections frequently requires high resolution images in combination with an overview about the structure. To overcome this conflict we have previously introduced a software for the automatic acquisition of multiple image stacks (3D-MISA) in confocal laser scanning microscopy. Here, we describe a Windows NT based software for fast and easy navigation through the multiple images stacks (MIS-browser), the visualization of individual channels and layers and the selection of user defined subregions. In addition, the MIS browser provides useful tools for the visualization and evaluation of the datavolume, as for instance brightness and contrast corrections of individual layers and channels. Moreover, it includes a maximum intensity projection, panning and zoom in/out functions within selected channels or focal planes (x/y) and tracking along the z-axis. The import module accepts any tiff-format and reconstructs the original image arrangement after the user has defined the sequence of images in x/y and z and the number of channels. The implemented export module allows storage of user defined subregions (new single image stacks) for further 3D-reconstruction and evaluation.

  18. Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue

    PubMed Central

    Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Seltzer, Emily; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2013-01-01

    Abstract. Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in freshly excised tissue, without the processing required for conventional pathology. Previously, mosaicing on 12-×-12  mm2 of excised skin tissue from Mohs surgery and detection of basal cell carcinoma margins was demonstrated in 9 min. Last year, we reported the feasibility of a faster approach called “strip mosaicing,” which was demonstrated on a 10-×-10  mm2 of tissue in 3 min. Here we describe further advances in instrumentation, software, and speed. A mechanism was also developed to flatten tissue in order to enable consistent and repeatable acquisition of images over large areas. We demonstrate mosaicing on 10-×-10  mm2 of skin tissue with 1-μm lateral resolution in 90 s. A 2.5-×-3.5  cm2 piece of breast tissue was scanned with 0.8-μm lateral resolution in 13 min. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Imaging of tumor margins with strip mosaicing confocal microscopy may serve as an adjunct to conventional (frozen or fixed) pathology for guiding surgery. PMID:23389736

  19. Programmable Illumination and High-Speed, Multi-Wavelength, Confocal Microscopy Using a Digital Micromirror

    PubMed Central

    Martial, Franck P.; Hartell, Nicholas A.

    2012-01-01

    Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor. PMID:22937130

  20. Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror.

    PubMed

    Martial, Franck P; Hartell, Nicholas A

    2012-01-01

    Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor.

  1. Multi-spectral confocal microendoscope for in-vivo imaging

    NASA Astrophysics Data System (ADS)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  2. Confocal Microscopy Imaging with an Optical Transition Edge Sensor

    NASA Astrophysics Data System (ADS)

    Fukuda, D.; Niwa, K.; Hattori, K.; Inoue, S.; Kobayashi, R.; Numata, T.

    2018-05-01

    Fluorescence color imaging at an extremely low excitation intensity was performed using an optical transition edge sensor (TES) embedded in a confocal microscope for the first time. Optical TES has the ability to resolve incident single photon energy; therefore, the wavelength of each photon can be measured without spectroscopic elements such as diffraction gratings. As target objects, animal cells labeled with two fluorescent dyes were irradiated with an excitation laser at an intensity below 1 μW. In our confocal system, an optical fiber-coupled TES device is used to detect photons instead of the pinhole and photomultiplier tube used in typical confocal microscopes. Photons emitted from the dyes were collected by the objective lens, and sent to the optical TES via the fiber. The TES measures the wavelength of each photon arriving in an exposure time of 70 ms, and a fluorescent photon spectrum is constructed. This measurement is repeated by scanning the target sample, and finally a two-dimensional RGB-color image is obtained. The obtained image showed that the photons emitted from the dyes of mitochondria and cytoskeletons were clearly resolved at a detection intensity level of tens of photons. TES exhibits ideal performance as a photon detector with a low dark count rate (< 1 Hz) and wavelength resolving power. In the single-mode fiber-coupled system, the confocal microscope can be operated in the super-resolution mode. These features are very promising to realize high-sensitivity and high-resolution photon spectral imaging, and would help avoid cell damage and photobleaching of fluorescence dyes.

  3. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    NASA Astrophysics Data System (ADS)

    Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G.

    2014-03-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.

  4. High resolution microendoscopy with structured illumination and Lugol's iodine staining for evaluation of breast cancer architecture

    NASA Astrophysics Data System (ADS)

    Dobbs, Jessica; Kyrish, Matthew; Krishnamurthy, Savitri; Grant, Benjamin; Kuerer, Henry; Yang, Wei; Tkaczyk, Tomasz; Richards-Kortum, Rebecca

    2016-03-01

    Intraoperative margin assessment to evaluate resected tissue margins for neoplastic tissue is performed to prevent reoperations following breast-conserving surgery. High resolution microendoscopy (HRME) can rapidly acquire images of fresh tissue specimens, but is limited by low image contrast in tissues with high optical scattering. In this study we evaluated two techniques to reduce out-of-focus light: HRME image acquisition with structured illumination (SI-HRME) and topical application of Lugol's Iodine. Fresh breast tissue specimens from 19 patients were stained with proflavine alone or Lugol's Iodine and proflavine. Images of tissue specimens were acquired using a confocal microscope and an HRME system with and without structured illumination. Images were evaluated based on visual and quantitative assessment of image contrast. The highest mean contrast was measured in confocal images stained with proflavine. Contrast was significantly lower in HRME images stained with proflavine; however, incorporation of structured illumination significantly increased contrast in HRME images to levels comparable to that in confocal images. The addition of Lugol's Iodine did not increase mean contrast significantly for HRME or SI-HRME images. These findings suggest that structured illumination could potentially be used to increase contrast in HRME images of breast tissue for rapid image acquisition.

  5. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer

    2013-12-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mapping of dendritic lesions in patients with herpes simplex keratitis using in vivo confocal microscopy

    PubMed Central

    Yokogawa, Hideaki; Kobayashi, Akira; Mori, Natsuko; Sugiyama, Kazuhisa

    2015-01-01

    Purpose To produce a two-dimensional reconstruction map of dendritic lesions in patients with herpes simplex keratitis (HSK) using in vivo confocal microscopy. Methods Four eyes of four patients (mean 65.8 years) with HSK presenting with a dendritic lesion were enrolled. Slit-lamp biomicroscopy and in vivo laser confocal microscopy were performed. Acquired confocal images at the level of the epithelium were arranged and mapped into subconfluent montages. Changes in the shape and degree of light reflection of abnormal cells and deposits around dendritic lesions as well as other corneal layers were qualitatively evaluated. Results Mapping of dendritic lesion was successful in all cases, and the subconfluent montages clearly showed the larger image of dendritic lesion. In all cases, the dendritic lesion consisted of hyperreflective irregular epithelial cells, and was surrounded by distorted and elongated epithelial cells. In three cases, hyperreflective deposits were noted at the midline of the lesion. The corneal stroma showed a hyperreflective honeycomb pattern. In two cases, inflammatory cells were observed at the level of endothelial cell layer. Conclusion Mapping of dendritic lesions in patients with HSK was successful in all patients using in vivo confocal microscopy. Cellular level observation of dendritic lesion at a relatively larger magnification may help understand the in vivo morphological change of HSK. Further study in more patients with HSK and nonherpetic dendritic lesion is needed to utilize confocal microscopy images in differential diagnosis and follow-up of the epithelial lesions with dendrite. PMID:26445524

  7. Mapping of dendritic lesions in patients with herpes simplex keratitis using in vivo confocal microscopy.

    PubMed

    Yokogawa, Hideaki; Kobayashi, Akira; Mori, Natsuko; Sugiyama, Kazuhisa

    2015-01-01

    To produce a two-dimensional reconstruction map of dendritic lesions in patients with herpes simplex keratitis (HSK) using in vivo confocal microscopy. Four eyes of four patients (mean 65.8 years) with HSK presenting with a dendritic lesion were enrolled. Slit-lamp biomicroscopy and in vivo laser confocal microscopy were performed. Acquired confocal images at the level of the epithelium were arranged and mapped into subconfluent montages. Changes in the shape and degree of light reflection of abnormal cells and deposits around dendritic lesions as well as other corneal layers were qualitatively evaluated. Mapping of dendritic lesion was successful in all cases, and the subconfluent montages clearly showed the larger image of dendritic lesion. In all cases, the dendritic lesion consisted of hyperreflective irregular epithelial cells, and was surrounded by distorted and elongated epithelial cells. In three cases, hyperreflective deposits were noted at the midline of the lesion. The corneal stroma showed a hyperreflective honeycomb pattern. In two cases, inflammatory cells were observed at the level of endothelial cell layer. Mapping of dendritic lesions in patients with HSK was successful in all patients using in vivo confocal microscopy. Cellular level observation of dendritic lesion at a relatively larger magnification may help understand the in vivo morphological change of HSK. Further study in more patients with HSK and nonherpetic dendritic lesion is needed to utilize confocal microscopy images in differential diagnosis and follow-up of the epithelial lesions with dendrite.

  8. Ultra-widefield retinal imaging through a black intraocular lens.

    PubMed

    Yusuf, Imran H; Fung, Timothy H M; Patel, Chetan K

    2015-09-01

    To evaluate the feasibility of ultra-widefield retinal imaging in patients with near infrared (IR)-transmitting black intraocular lenses (IOLs). Oxford Eye Hospital, Oxford, United Kingdom. Laboratory evaluation of a diagnostic technology with interventional case report. The field of retinal imaging through a Morcher poly(methyl methacrylate) (PMMA) black IOL was determined in a purpose-built adult schematic model eye with the HRA2 Spectralis confocal scanning laser ophthalmoscope using standard imaging, Staurenghi retina lens-assisted imaging, and ultra-widefield noncontact imaging. Retinal imaging using each modality was then performed on a patient implanted with another Morcher PMMA black IOL model. Ultra-widefield noncontact imaging and lens-assisted imaging captured up to 150 degrees of field (versus 40 degrees with a standard confocal scanning laser ophthalmoscope). Ultra-widefield retinal images were successfully acquired in a patient eye with a black IOL. This study has identified the first ultra-widefield retinal imaging modalities for patients with near IR-transmitting black IOLs. Should larger studies confirm this finding, noncontact ultra-widefield confocal scanning laser ophthalmoscopy might be considered the gold standard imaging technique for retinal surveillance in patients with near IR-transmitting black IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Sensitivity and specificity for detecting basal cell carcinomas in Mohs excisions with confocal fluorescence mosaicing microscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel S.; Karen, Julie K.; Dusza, Stephen W.; Tudisco, Marie; Nehal, Kishwer S.; Rajadhyaksha, Milind

    2009-05-01

    Recent studies have demonstrated the ability of confocal fluorescence mosaicing microscopy to rapidly detect basal cell carcinomas (BCCs) directly in thick and fresh Mohs surgical excisions. Mosaics of confocal images display large areas of tissue with high resolution and magnification equivalent to 2×, which is the standard magnification when examining pathology. Comparison of mosaics to Mohs frozen histopathology was shown to be excellent for all types of BCCs. However, comparisons in the previous studies were visual and qualitative. In this work, we report the results of a semiquantitative preclinical study in which 45 confocal mosaics are blindly evaluated for the presence (or absence) of BCC tumor. The evaluations are made by two clinicians: a senior Mohs surgeon with prior expertise in interpreting confocal images, and a novice Mohs fellow with limited experience. The blinded evaluation is compared to the gold standard of frozen histopathology. BCCs are detected with an overall sensitivity of 96.6%, specificity of 89.2%, positive predictive value of 93.0%, and negative predictive value of 94.7%. The results demonstrate the potential clinical utility of confocal mosaicing microscopy toward rapid surgical pathology at the bedside to expedite and guide surgery.

  10. Confocal filtering in cathodoluminescence microscopy of nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narváez, Angela C., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Weppelman, I. Gerward C.; Moerland, Robert J.

    2014-06-23

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effectivemore » for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.« less

  11. Faster tissue interface analysis from Raman microscopy images using compressed factorisation

    NASA Astrophysics Data System (ADS)

    Palmer, Andrew D.; Bannerman, Alistair; Grover, Liam; Styles, Iain B.

    2013-06-01

    The structure of an artificial ligament was examined using Raman microscopy in combination with novel data analysis. Basis approximation and compressed principal component analysis are shown to provide efficient compression of confocal Raman microscopy images, alongside powerful methods for unsupervised analysis. This scheme allows the acceleration of data mining, such as principal component analysis, as they can be performed on the compressed data representation, providing a decrease in the factorisation time of a single image from five minutes to under a second. Using this workflow the interface region between a chemically engineered ligament construct and a bone-mimic anchor was examined. Natural ligament contains a striated interface between the bone and tissue that provides improved mechanical load tolerance, a similar interface was found in the ligament construct.

  12. Capillary Optics Based X-Ray Micro-Imaging Elemental Analysis

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Cappuccio, G.; Longoni, A.; Frizzi, T.; Cibin, G.

    2010-04-01

    A rapidly developed during the last few years micro-X-ray fluorescence spectrometry (μXRF) is a promising multi-elemental technique for non-destructive analysis. Typically it is rather hard to perform laboratory μXRF analysis because of the difficulty of producing an original small-size X-ray beam as well as its focusing. Recently developed for X-ray beam focusing polycapillary optics offers laboratory X-ray micro probes. The combination of polycapillary lens and fine-focused micro X-ray tube can provide high intensity radiation flux on a sample that is necessary in order to perform the elemental analysis. In comparison to a pinhole, an optimized "X-ray source-op tics" system can result in radiation density gain of more than 3 orders by the value. The most advanced way to get that result is to use the confocal configuration based on two X-ray lenses, one for the fluorescence excitation and the other for the detection of secondary emission from a sample studied. In case of X-ray capillary microfocusing a μXRF instrument designed in the confocal scheme allows us to obtain a 3D elemental mapping. In this work we will show preliminary results obtained with our prototype, a portable X-ray microscope for X-ray both imaging and fluorescence analysis; it enables μXRF elemental mapping simultaneously with X-ray imaging. A prototype of compact XRF spectrometer with a spatial resolution less than 100 μm has been designed.

  13. Comparative measurement of collagen bundle orientation by Fourier analysis and semiquantitative evaluation: reliability and agreement in Masson's trichrome, Picrosirius red and confocal microscopy techniques.

    PubMed

    Marcos-Garcés, V; Harvat, M; Molina Aguilar, P; Ferrández Izquierdo, A; Ruiz-Saurí, A

    2017-08-01

    Measurement of collagen bundle orientation in histopathological samples is a widely used and useful technique in many research and clinical scenarios. Fourier analysis is the preferred method for performing this measurement, but the most appropriate staining and microscopy technique remains unclear. Some authors advocate the use of Haematoxylin-Eosin (H&E) and confocal microscopy, but there are no studies comparing this technique with other classical collagen stainings. In our study, 46 human skin samples were collected, processed for histological analysis and stained with Masson's trichrome, Picrosirius red and H&E. Five microphotographs of the reticular dermis were taken with a 200× magnification with light microscopy, polarized microscopy and confocal microscopy, respectively. Two independent observers measured collagen bundle orientation with semiautomated Fourier analysis with the Image-Pro Plus 7.0 software and three independent observers performed a semiquantitative evaluation of the same parameter. The average orientation for each case was calculated with the values of the five pictures. We analyzed the interrater reliability, the consistency between Fourier analysis and average semiquantitative evaluation and the consistency between measurements in Masson's trichrome, Picrosirius red and H&E-confocal. Statistical analysis for reliability and agreement was performed with the SPSS 22.0 software and consisted of intraclass correlation coefficient (ICC), Bland-Altman plots and limits of agreement and coefficient of variation. Interrater reliability was almost perfect (ICC > 0.8) with all three histological and microscopy techniques and always superior in Fourier analysis than in average semiquantitative evaluation. Measurements were consistent between Fourier analysis by one observer and average semiquantitative evaluation by three observers, with an almost perfect agreement with Masson's trichrome and Picrosirius red techniques (ICC > 0.8) and a strong agreement with H&E-confocal (0.7 < ICC < 0.8). Comparison of measurements between the three techniques for the same observer showed an almost perfect agreement (ICC > 0.8), better with Fourier analysis than with semiquantitative evaluation (single and average). These results in nonpathological skin samples were also confirmed in a preliminary analysis in eight scleroderma skin samples. Our results show that Masson's trichrome and Picrosirius red are consistent with H&E-confocal for measuring collagen bundle orientation in histological samples and could thus be used indistinctly for this purpose. Fourier analysis is superior to average semiquantitative evaluation and should keep being used as the preferred method. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  14. Confocal Microscopy and Molecular-Specific Optical Contrast Agents for the Detection of Oral Neoplasia

    PubMed Central

    Carlson, Alicia L.; Gillenwater, Ann M.; Williams, Michelle D.; El-Naggar, Adel K.; Richards-Kortum, R. R.

    2009-01-01

    Using current clinical diagnostic techniques, it is difficult to visualize tumor morphology and architecture at the cellular level, which is necessary for diagnostic localization of pathologic lesions. Optical imaging techniques have the potential to address this clinical need by providing real-time, sub-cellular resolution images. This paper describes the use of dual mode confocal microscopy and optical molecular-specific contrast agents to image tissue architecture, cellular morphology, and sub-cellular molecular features of normal and neoplastic oral tissues. Fresh tissue slices were prepared from 33 biopsies of clinically normal and abnormal oral mucosa obtained from 14 patients. Reflectance confocal images were acquired after the application of 6% acetic acid, and fluorescence confocal images were acquired after the application of a fluorescence contrast agent targeting the epidermal growth factor receptor (EGFR). The dual imaging modes provided images similar to light microscopy of hematoxylin and eosin and immunohistochemistry staining, but from thick fresh tissue slices. Reflectance images provided information on the architecture of the tissue and the cellular morphology. The nuclear-to-cytoplasmic (N/C) ratio from the reflectance images was at least 7.5 times greater for the carcinoma than the corresponding normal samples, except for one case of highly keratinized carcinoma. Separation of carcinoma from normal and mild dysplasia was achieved using this ratio (p<0.01). Fluorescence images of EGFR expression yielded a mean fluorescence labeling intensity (FLI) that was at least 2.7 times higher for severe dysplasia and carcinoma samples than for the corresponding normal sample, and could be used to distinguish carcinoma from normal and mild dysplasia (p<0.01). Analyzed together, the N/C ratio and the mean FLI may improve the ability to distinguish carcinoma from normal squamous epithelium. PMID:17877424

  15. ADAPTIVE OPTICS IMAGING OF FOVEAL SPARING IN GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION.

    PubMed

    Querques, Giuseppe; Kamami-Levy, Cynthia; Georges, Anouk; Pedinielli, Alexandre; Capuano, Vittorio; Blanco-Garavito, Rocio; Poulon, Fanny; Souied, Eric H

    2016-02-01

    To describe adaptive optics (AO) imaging of foveal sparing in geographic atrophy (GA) secondary to age-related macular degeneration. Flood-illumination AO infrared (IR) fundus images were obtained in four consecutive patients with GA using an AO retinal camera (rtx1; Imagine Eyes). Adaptive optics IR images were overlaid with confocal scanning laser ophthalmoscope near-IR autofluorescence images to allow direct correlation of en face AO features with areas of foveal sparing. Adaptive optics appearance of GA and foveal sparing, preservation of functional photoreceptors, and cone densities in areas of foveal sparing were investigated. In 5 eyes of 4 patients (all female; mean age 74.2 ± 11.9 years), a total of 5 images, sized 4° × 4°, of foveal sparing visualized on confocal scanning laser ophthalmoscope near-IR autofluorescence were investigated by AO imaging. En face AO images revealed GA as regions of inhomogeneous hyperreflectivity with irregularly dispersed hyporeflective clumps. By direct comparison with adjacent regions of GA, foveal sparing appeared as well-demarcated areas of reduced reflectivity with less hyporeflective clumps (mean 14.2 vs. 3.2; P = 0.03). Of note, in these areas, en face AO IR images revealed cone photoreceptors as hyperreflective dots over the background reflectivity (mean cone density 3,271 ± 1,109 cones per square millimeter). Microperimetry demonstrated residual function in areas of foveal sparing detected by confocal scanning laser ophthalmoscope near-IR autofluorescence. Adaptive optics allows the appreciation of differences in reflectivity between regions of GA and foveal sparing. Preservation of functional cone photoreceptors was demonstrated on en face AO IR images in areas of foveal sparing detected by confocal scanning laser ophthalmoscope near-IR autofluorescence.

  16. Reliability and Repeatability of Cone Density Measurements in Patients With Stargardt Disease and RPGR-Associated Retinopathy.

    PubMed

    Tanna, Preena; Kasilian, Melissa; Strauss, Rupert; Tee, James; Kalitzeos, Angelos; Tarima, Sergey; Visotcky, Alexis; Dubra, Alfredo; Carroll, Joseph; Michaelides, Michel

    2017-07-01

    To assess reliability and repeatability of cone density measurements by using confocal and (nonconfocal) split-detector adaptive optics scanning light ophthalmoscopy (AOSLO) imaging. It will be determined whether cone density values are significantly different between modalities in Stargardt disease (STGD) and retinitis pigmentosa GTPase regulator (RPGR)-associated retinopathy. Twelve patients with STGD (aged 9-52 years) and eight with RPGR-associated retinopathy (aged 11-31 years) were imaged using both confocal and split-detector AOSLO simultaneously. Four graders manually identified cone locations in each image that were used to calculate local densities. Each imaging modality was evaluated independently. The data set consisted of 1584 assessments of 99 STGD images (each image in two modalities and four graders who graded each image twice) and 928 RPGR assessments of 58 images (each image in two modalities and four graders who graded each image twice). For STGD assessments the reliability for confocal and split-detector AOSLO was 67.9% and 95.9%, respectively, and the repeatability was 71.2% and 97.3%, respectively. The differences in the measured cone density values between modalities were statistically significant for one grader. For RPGR assessments the reliability for confocal and split-detector AOSLO was 22.1% and 88.5%, respectively, and repeatability was 63.2% and 94.5%, respectively. The differences in cone density between modalities were statistically significant for all graders. Split-detector AOSLO greatly improved the reliability and repeatability of cone density measurements in both disorders and will be valuable for natural history studies and clinical trials using AOSLO. However, it appears that these indices may be disease dependent, implying the need for similar investigations in other conditions.

  17. Reliability and Repeatability of Cone Density Measurements in Patients With Stargardt Disease and RPGR-Associated Retinopathy

    PubMed Central

    Tanna, Preena; Kasilian, Melissa; Strauss, Rupert; Tee, James; Kalitzeos, Angelos; Tarima, Sergey; Visotcky, Alexis; Dubra, Alfredo; Carroll, Joseph; Michaelides, Michel

    2017-01-01

    Purpose To assess reliability and repeatability of cone density measurements by using confocal and (nonconfocal) split-detector adaptive optics scanning light ophthalmoscopy (AOSLO) imaging. It will be determined whether cone density values are significantly different between modalities in Stargardt disease (STGD) and retinitis pigmentosa GTPase regulator (RPGR)–associated retinopathy. Methods Twelve patients with STGD (aged 9–52 years) and eight with RPGR-associated retinopathy (aged 11–31 years) were imaged using both confocal and split-detector AOSLO simultaneously. Four graders manually identified cone locations in each image that were used to calculate local densities. Each imaging modality was evaluated independently. The data set consisted of 1584 assessments of 99 STGD images (each image in two modalities and four graders who graded each image twice) and 928 RPGR assessments of 58 images (each image in two modalities and four graders who graded each image twice). Results For STGD assessments the reliability for confocal and split-detector AOSLO was 67.9% and 95.9%, respectively, and the repeatability was 71.2% and 97.3%, respectively. The differences in the measured cone density values between modalities were statistically significant for one grader. For RPGR assessments the reliability for confocal and split-detector AOSLO was 22.1% and 88.5%, respectively, and repeatability was 63.2% and 94.5%, respectively. The differences in cone density between modalities were statistically significant for all graders. Conclusions Split-detector AOSLO greatly improved the reliability and repeatability of cone density measurements in both disorders and will be valuable for natural history studies and clinical trials using AOSLO. However, it appears that these indices may be disease dependent, implying the need for similar investigations in other conditions. PMID:28738413

  18. Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries

    DTIC Science & Technology

    2014-09-01

    the drug molecular transport into the cornea. Intravital laser confocal imaging of the live mouse cornea demonstrating the presence of drug in the...vivo drug release in the mouse cornea by laser confocal fluorescence imaging study revealed that the nanowafers upon instillation on mouse eye were...C) 500nm; (D) 1µm; (E) 1.5µm; and (F) 3µm A B C D E F microscopy (SEM) for the feature integrity and uniformity. The SEM images revealed the presence

  19. Double-clad fiber with a tapered end for confocal endomicroscopy.

    PubMed

    Lemire-Renaud, Simon; Strupler, Mathias; Benboujja, Fouzi; Godbout, Nicolas; Boudoux, Caroline

    2011-11-01

    We present a double-clad fiber coupler (DCFC) for use in confocal endomicroscopy to reduce speckle contrast, increase signal collection while preserving optical sectioning. The DCFC is made by incorporating a double-clad tapered fiber (DCTF) to a fused-tapered DCFC for achromatic transmission (from 1265 nm to 1325 nm) of > 95% illumination light trough the single mode (SM) core and collection of > 40% diffuse light through inner cladding modes. Its potential for confocal endomicroscopy is demonstrated in a spectrally-encoded imaging setup which shows a 3 times reduction in speckle contrast as well as 5.5 × increase in signal collection compared to imaging with a SM fiber.

  20. Confocal Raman imaging and chemometrics applied to solve forensic document examination involving crossed lines and obliteration cases by a depth profiling study.

    PubMed

    Borba, Flávia de Souza Lins; Jawhari, Tariq; Saldanha Honorato, Ricardo; de Juan, Anna

    2017-03-27

    This article describes a non-destructive analytical method developed to solve forensic document examination problems involving crossed lines and obliteration. Different strategies combining confocal Raman imaging and multivariate curve resolution-alternating least squares (MCR-ALS) are presented. Multilayer images were acquired at subsequent depth layers into the samples. It is the first time that MCR-ALS is applied to multilayer images for forensic purposes. In this context, this method provides a single set of pure spectral ink signatures and related distribution maps for all layers examined from the sole information in the raw measurement. Four cases were investigated, namely, two concerning crossed lines with different degrees of ink similarity and two related to obliteration, where previous or no knowledge about the identity of the obliterated ink was available. In the crossing line scenario, MCR-ALS analysis revealed the ink nature and the chronological order in which strokes were drawn. For obliteration cases, results making active use of information about the identity of the obliterated ink in the chemometric analysis were of similar quality as those where the identity of the obliterated ink was unknown. In all obliteration scenarios, the identity of inks and the obliterated text were satisfactorily recovered. The analytical methodology proposed is of general use for analytical forensic document examination problems, and considers different degrees of complexity and prior available information. Besides, the strategies of data analysis proposed can be applicable to any other kind of problem in which multilayer Raman images from multicomponent systems have to be interpreted.

  1. FPGA-based multi-channel fluorescence lifetime analysis of Fourier multiplexed frequency-sweeping lifetime imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [ Opt. Express22, 10221 ( 2014)24921725]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system’s FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging. PMID:25321778

  2. In Vivo and Ex Vivo Confocal Microscopy for Dermatologic and Mohs Surgeons.

    PubMed

    Longo, Caterina; Ragazzi, Moira; Rajadhyaksha, Milind; Nehal, Kishwer; Bennassar, Antoni; Pellacani, Giovanni; Malvehy Guilera, Josep

    2016-10-01

    Confocal microscopy is a modern imaging device that has been extensively applied in skin oncology. More specifically, for tumor margin assessment, it has been used in two modalities: reflectance mode (in vivo on skin patient) and fluorescence mode (on freshly excised specimen). Although in vivo reflectance confocal microscopy is an add-on tool for lentigo maligna mapping, fluorescence confocal microscopy is far superior for basal cell carcinoma and squamous cell carcinoma margin assessment in the Mohs setting. This article provides a comprehensive overview of the use of confocal microscopy for skin cancer margin evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Image scanning fluorescence emission difference microscopy based on a detector array.

    PubMed

    Li, Y; Liu, S; Liu, D; Sun, S; Kuang, C; Ding, Z; Liu, X

    2017-06-01

    We propose a novel imaging method that enables the enhancement of three-dimensional resolution of confocal microscopy significantly and achieve experimentally a new fluorescence emission difference method for the first time, based on the parallel detection with a detector array. Following the principles of photon reassignment in image scanning microscopy, images captured by the detector array were arranged. And by selecting appropriate reassign patterns, the imaging result with enhanced resolution can be achieved with the method of fluorescence emission difference. Two specific methods are proposed in this paper, showing that the difference between an image scanning microscopy image and a confocal image will achieve an improvement of transverse resolution by approximately 43% compared with that in confocal microscopy, and the axial resolution can also be enhanced by at least 22% experimentally and 35% theoretically. Moreover, the methods presented in this paper can improve the lateral resolution by around 10% than fluorescence emission difference and 15% than Airyscan. The mechanism of our methods is verified by numerical simulations and experimental results, and it has significant potential in biomedical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  4. In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract

    NASA Astrophysics Data System (ADS)

    Piyawattanametha, Wibool; Ra, Hyejun; Qiu, Zhen; Friedland, Shai; Liu, Jonathan T. C.; Loewke, Kevin; Kino, Gordon S.; Solgaard, Olav; Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.

    2012-02-01

    Near-infrared confocal microendoscopy is a promising technique for deep in vivo imaging of tissues and can generate high-resolution cross-sectional images at the micron-scale. We demonstrate the use of a dual-axis confocal (DAC) near-infrared fluorescence microendoscope with a 5.5-mm outer diameter for obtaining clinical images of human colorectal mucosa. High-speed two-dimensional en face scanning was achieved through a microelectromechanical systems (MEMS) scanner while a micromotor was used for adjusting the axial focus. In vivo images of human patients are collected at 5 frames/sec with a field of view of 362×212 μm2 and a maximum imaging depth of 140 μm. During routine endoscopy, indocyanine green (ICG) was topically applied a nonspecific optical contrasting agent to regions of the human colon. The DAC microendoscope was then used to obtain microanatomic images of the mucosa by detecting near-infrared fluorescence from ICG. These results suggest that DAC microendoscopy may have utility for visualizing the anatomical and, perhaps, functional changes associated with colorectal pathology for the early detection of colorectal cancer.

  5. In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract.

    PubMed

    Piyawattanametha, Wibool; Ra, Hyejun; Qiu, Zhen; Friedland, Shai; Liu, Jonathan T C; Loewke, Kevin; Kino, Gordon S; Solgaard, Olav; Wang, Thomas D; Mandella, Michael J; Contag, Christopher H

    2012-02-01

    Near-infrared confocal microendoscopy is a promising technique for deep in vivo imaging of tissues and can generate high-resolution cross-sectional images at the micron-scale. We demonstrate the use of a dual-axis confocal (DAC) near-infrared fluorescence microendoscope with a 5.5-mm outer diameter for obtaining clinical images of human colorectal mucosa. High-speed two-dimensional en face scanning was achieved through a microelectromechanical systems (MEMS) scanner while a micromotor was used for adjusting the axial focus. In vivo images of human patients are collected at 5 frames/sec with a field of view of 362×212 μm(2) and a maximum imaging depth of 140 μm. During routine endoscopy, indocyanine green (ICG) was topically applied a nonspecific optical contrasting agent to regions of the human colon. The DAC microendoscope was then used to obtain microanatomic images of the mucosa by detecting near-infrared fluorescence from ICG. These results suggest that DAC microendoscopy may have utility for visualizing the anatomical and, perhaps, functional changes associated with colorectal pathology for the early detection of colorectal cancer.

  6. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM).

    PubMed

    Schaudinn, C; Carr, G; Gorur, A; Jaramillo, D; Costerton, J W; Webster, P

    2009-08-01

    Scanning electron microscopy is a useful imaging approach for the visualization of bacterial biofilms in their natural environments including their medical and dental habitats, because it allows for the exploration of large surfaces with excellent resolution of topographic features. Most biofilms in nature, however, are embedded in a thick layer of extracellular matrix that prevents a clear identification of individual bacteria by scanning electron microscopy. The use of confocal laser scanning microscopy on the other hand in combination with fluorescence in situ hybridization enables the visualization of matrix embedded bacteria in multi-layered biofilms. In our study, fluorescence in situ hybridization/confocal laser scanning microscopy and scanning electron microscopy were applied to visualize bacterial biofilm in endodontic root canals. The resulting fluorescence in situ hybridization /confocal laser scanning microscopy and scanning electron microscopy and pictures were subsequently combined into one single image to provide high-resolution information on the location of hidden bacteria. The combined use of scanning electron microscopy and fluorescence in situ hybridization / confocal laser scanning microscopy has the potential to overcome the limits of each single technique.

  7. A laser scanning confocal imaging-surface plasmon resonance system application in real time detection of antibody-antigen interaction

    NASA Astrophysics Data System (ADS)

    Zhang, H. Y.; Yang, L. Q.; Liu, W. M.

    2011-12-01

    The laser scanning confocal microscope (LSCM) offers several advantages over conventional optical microscopy, but most LSCM work is qualitative analysis and it is very hard to achieve quantitative detection directly with the changing of the fluorescent intensity. A new real time sensor system for the antibody-antigen interaction detection was built integrating with a LSCM and a wavelength-dependent surface plasmon resonance (SPR) sensor. The system was applied to detect the bonding process of human IgG and fluorescent-labeled affinity purified antibody in real time. The fluorescence images changing is well with that of SPR wavelengths in real time, and the trend of the resonance wavelength shift with the concentrations of antibody is similar to that of the fluorescent intensity changing. The results show that SPR makes up the short of quantificational analysis with LSCM with the high spatial resolution. The sensor system shows the merits of the of the LSCM and SPR synergetic application, which are of great importance for practical application in biosensor and life science for interesting local interaction.

  8. Investigating the impact of blood pressure increase to the brain using high resolution serial histology and image processing

    NASA Astrophysics Data System (ADS)

    Lesage, F.; Castonguay, A.; Tardif, P. L.; Lefebvre, J.; Li, B.

    2015-09-01

    A combined serial OCT/confocal scanner was designed to image large sections of biological tissues at microscopic resolution. Serial imaging of organs embedded in agarose blocks is performed by cutting through tissue using a vibratome which sequentially cuts slices in order to reveal new tissue to image, overcoming limited light penetration encountered in microscopy. Two linear stages allow moving the tissue with respect to the microscope objective, acquiring a 2D grid of volumes (1x1x0.3 mm) with OCT and a 2D grid of images (1x1mm) with the confocal arm. This process is repeated automatically, until the entire sample is imaged. Raw data is then post-processed to re-stitch each individual acquisition and obtain a reconstructed volume of the imaged tissue. This design is being used to investigate correlations between white matter and microvasculature changes with aging and with increase in pulse pressure following transaortic constriction in mice. The dual imaging capability of the system allowed to reveal different contrast information: OCT imaging reveals changes in refractive indices giving contrast between white and grey matter in the mouse brain, while transcardial perfusion of FITC or pre-sacrifice injection of Evans Blue shows microsvasculature properties in the brain with confocal imaging.

  9. Peri-operative imaging of cancer margins with reflectance confocal microscopy during Mohs micrographic surgery: feasibility of a video-mosaicing algorithm

    NASA Astrophysics Data System (ADS)

    Flores, Eileen; Yelamos, Oriol; Cordova, Miguel; Kose, Kivanc; Phillips, William; Rossi, Anthony; Nehal, Kishwer; Rajadhyaksha, Milind

    2017-02-01

    Reflectance confocal microscopy (RCM) imaging shows promise for guiding surgical treatment of skin cancers. Recent technological advancements such as the introduction of the handheld version of the reflectance confocal microscope, video acquisition and video-mosaicing have improved RCM as an emerging tool to evaluate cancer margins during routine surgical skin procedures such as Mohs micrographic surgery (MMS). Detection of residual non-melanoma skin cancer (NMSC) tumor during MMS is feasible, as demonstrated by the introduction of real-time perioperative imaging on patients in the surgical setting. Our study is currently testing the feasibility of a new mosaicing algorithm for perioperative RCM imaging of NMSC cancer margins on patients during MMS. We report progress toward imaging and image analysis on forty-five patients, who presented for MMS at the MSKCC Dermatology service. The first 10 patients were used as a training set to establish an RCM imaging algorithm, which was implemented on the remaining test set of 35 patients. RCM imaging, using 35% AlCl3 for nuclear contrast, was performed pre- and intra-operatively with the Vivascope 3000 (Caliber ID). Imaging was performed in quadrants in the wound, to simulate the Mohs surgeon's examination of pathology. Videos were taken at the epidermal and deep dermal margins. Our Mohs surgeons assessed all videos and video-mosaics for quality and correlation to histology. Overall, our RCM video-mosaicing algorithm is feasible. RCM videos and video-mosaics of the epidermal and dermal margins were found to be of clinically acceptable quality. Assessment of cancer margins was affected by type of NMSC, size and location. Among the test set of 35 patients, 83% showed acceptable imaging quality, resolution and contrast. Visualization of nuclear and cellular morphology of residual BCC/SCC tumor and normal skin features could be detected in the peripheral and deep dermal margins. We observed correlation between the RCM videos/video-mosaics and the corresponding histology in 32 lesions. Peri-operative RCM imaging shows promise for improved and faster detection of cancer margins and guiding MMS in the surgical setting.

  10. Reflectance confocal microscope for imaging oral tissues in vivo, potentially with line scanning as a low-cost approach for clinical use

    NASA Astrophysics Data System (ADS)

    Peterson, Gary; Abeytunge, Sanjeewa; Eastman, Zachary; Rajadhyaksha, Milind

    2012-02-01

    Reflectance confocal microscopy with a line scanning approach potentially offers a smaller, simpler and less expensive approach than traditional methods of point scanning for imaging in living tissues. With one moving mechanical element (galvanometric scanner), a linear array detector and off-the-shelf optics, we designed a compact (102x102x76mm) line scanning confocal reflectance microscope (LSCRM) for imaging human tissues in vivo in a clinical setting. Custom-designed electronics, based on field programmable gate array (FPGA) logic has been developed. With 405 nm illumination and a custom objective lens of numerical aperture 0.5, lateral resolution was measured to be 0.8 um (calculated 0.64 um). The calculated optical sectioning is 3.2 um. Preliminary imaging shows nuclear and cellular detail in human skin and oral epithelium in vivo. Blood flow is also visualized in the deeper connective tissue (lamina propria) in oral mucosa. Since a line is confocal only in one dimension (parallel) but not in the other, the detection is more sensitive to multiply scattered out of focus background noise than in the traditional point scanning configuration. Based on the results of our translational studies thus far, a simpler, smaller and lower-cost approach based on a LSCRM appears to be promising for clinical imaging.

  11. Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques

    NASA Astrophysics Data System (ADS)

    Lu, Ying-Ying; Chen, Tong-Sheng; Wang, Xiao-Ping; Li, Li

    2010-07-01

    Dihydroartemisinin (DHA), a front-line antimalarial herbal compound, has been shown to possess promising anticancer activity with low toxicity. We have previously reported that DHA induced caspase-3-dependent apoptosis in human lung adenocarcinoma cells. However, the cellular target and molecular mechanism of DHA-induced apoptosis is still poorly defined. We use confocal fluorescence microscopy imaging, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching techniques to explore the roles of DHA-elicited reactive oxygen species (ROS) in the DHA-induced Bcl-2 family proteins activation, mitochondrial dysfunction, caspase cascade, and cell death. Cell Counting Kit-8 assay and flow cytometry analysis showed that DHA induced ROS-mediated apoptosis. Confocal imaging analysis in a single living cell and Western blot assay showed that DHA triggered ROS-dependent Bax translocation, mitochondrial membrane depolarization, alteration of mitochondrial morphology, cytochrome c release, caspase-9, caspase-8, and caspase-3 activation, indicating the coexistence of ROS-mediated mitochondrial and death receptor pathway. Collectively, our findings demonstrate for the first time that DHA induces cell apoptosis by triggering ROS-mediated caspase-8/Bid activation and the mitochondrial pathway, which provides some novel insights into the application of DHA as a potential anticancer drug and a new therapeutic strategy by targeting ROS signaling in lung adenocarcinoma therapy in the future.

  12. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    NASA Astrophysics Data System (ADS)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  13. Multiple beam interference confocal microscopy: a tool for morphological investigation of living cells and tissues

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Medina, Honorio

    2000-05-01

    Multiple beam interference system is used in conjunction with a conventional scanning confocal microscope to examine the morphology and construction of 3D images of Histolytic Ameba and parasite Candida Albicans. The present combination permits to adjoin advantages of both systems, namely the vertical high contrast and optical sectioning. The interference pattern obtained from a multiple internal reflection of a simple, sandwiched between the glass plate and the cover plate, was focussed on an objective of a scanning confocal microscope. According to optical path differences, morphological details were revealed. The combined features, namely improved resolution in z axis, originated from the interference pattern and the optical sectioning of the confocal scanning system, enhance the resolution and contrast dramatically. These features permitted to obtain unprecedented images of Histolytic Ameba and parasite Candida Albicans. Because of the improved contrast, several details like double wall structure of candida, internal structure of ameba are clearly visible.

  14. 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Jeong, Ki-Hun

    2018-02-19

    We report a 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner. Lissajous scanning was implemented by the electrothermal MEMS fiber scanner. The Lissajous scanned MEMS fiber scanner was precisely fabricated to facilitate flip-chip connection, and bonded with a printed circuit board. The scanner was successfully combined with a fiber-based confocal imaging system. A two-dimensional reflectance image of the metal pattern 'OPTICS' was successfully obtained with the scanner. The flip-chip bonded scanner minimizes electrical packaging dimensions. The inner diameter of the flip-chip bonded MEMS fiber scanner is 1.3 mm. The flip-chip bonded MEMS fiber scanner is fully packaged with a 1.65 mm diameter housing tube, 1 mm diameter GRIN lens, and a single mode optical fiber. The packaged confocal endomicroscopic catheter can provide a new breakthrough for diverse in-vivo endomicroscopic applications.

  15. CIAN - Cell Imaging and Analysis Network at the Biology Department of McGill University

    PubMed Central

    Lacoste, J.; Lesage, G.; Bunnell, S.; Han, H.; Küster-Schöck, E.

    2010-01-01

    CF-31 The Cell Imaging and Analysis Network (CIAN) provides services and tools to researchers in the field of cell biology from within or outside Montreal's McGill University community. CIAN is composed of six scientific platforms: Cell Imaging (confocal and fluorescence microscopy), Proteomics (2-D protein gel electrophoresis and DiGE, fluorescent protein analysis), Automation and High throughput screening (Pinning robot and liquid handler), Protein Expression for Antibody Production, Genomics (real-time PCR), and Data storage and analysis (cluster, server, and workstations). Users submit project proposals, and can obtain training and consultation in any aspect of the facility, or initiate projects with the full-service platforms. CIAN is designed to facilitate training, enhance interactions, as well as share and maintain resources and expertise.

  16. Comparison of Fundus Autofluorescence Between Fundus Camera and Confocal Scanning Laser Ophthalmoscope–based Systems

    PubMed Central

    Park, Sung Pyo; Siringo, Frank S.; Pensec, Noelle; Hong, In Hwan; Sparrow, Janet; Barile, Gaetano; Tsang, Stephen H.; Chang, Stanley

    2015-01-01

    BACKGROUND AND OBJECTIVE To compare fundus autofluorescence (FAF) imaging via fundus camera (FC) and confocal scanning laser ophthalmoscope (cSLO). PATIENTS AND METHODS FAF images were obtained with a digital FC (530 to 580 nm excitation) and a cSLO (488 nm excitation). Two authors evaluated correlation of autofluorescence pattern, atrophic lesion size, and image quality between the two devices. RESULTS In 120 eyes, the autofluorescence pattern correlated in 86% of lesions. By lesion subtype, correlation rates were 100% in hemorrhage, 97% in geographic atrophy, 82% in flecks, 75% in drusen, 70% in exudates, 67% in pigment epithelial detachment, 50% in fibrous scars, and 33% in macular hole. The mean lesion size in geographic atrophy was 4.57 ± 2.3 mm2 via cSLO and 3.81 ± 1.94 mm2 via FC (P < .0001). Image quality favored cSLO in 71 eyes. CONCLUSION FAF images were highly correlated between the FC and cSLO. Differences between the two devices revealed contrasts. Multiple image capture and confocal optics yielded higher image contrast with the cSLO, although acquisition and exposure time was longer. PMID:24221461

  17. Diagnostic support for glaucoma using retinal images: a hybrid image analysis and data mining approach.

    PubMed

    Yu, Jin; Abidi, Syed Sibte Raza; Artes, Paul; McIntyre, Andy; Heywood, Malcolm

    2005-01-01

    The availability of modern imaging techniques such as Confocal Scanning Laser Tomography (CSLT) for capturing high-quality optic nerve images offer the potential for developing automatic and objective methods for diagnosing glaucoma. We present a hybrid approach that features the analysis of CSLT images using moment methods to derive abstract image defining features. The features are then used to train classifers for automatically distinguishing CSLT images of normal and glaucoma patient. As a first, in this paper, we present investigations in feature subset selction methods for reducing the relatively large input space produced by the moment methods. We use neural networks and support vector machines to determine a sub-set of moments that offer high classification accuracy. We demonstratee the efficacy of our methods to discriminate between healthy and glaucomatous optic disks based on shape information automatically derived from optic disk topography and reflectance images.

  18. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    PubMed

    Wouterlood, Floris G

    2014-04-10

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible. Copyright © 2014 John Wiley & Sons, Inc.

  19. Fluorescence spectroscopy and confocal microscopy of the mycotoxin citrinin in condensed phase and hydrogel films.

    PubMed

    Lauer, Milena H; Gehlen, Marcelo H; de Jesus, Karen; Berlinck, Roberto G S

    2014-05-01

    The emission spectra, quantum yields and fluorescence lifetimes of citrinin in organic solvents and hydrogel films have been determined. Citrinin shows complex fluorescence decays due to the presence of two tautomers in solution and interconversion from excited-state double proton transfer (ESDPT) process. The fluorescence decay times associated with the two tautomers have values near 1 and 5 ns depending on the medium. In hydrogel films of agarose and alginate, fluorescence imaging showed that citrinin is not homogeneously dispersed and highly emissive micrometer spots may be formed. Fluorescence spectrum and decay analysis are used to recognize the presence of citrinin in hydrogel films using confocal fluorescence microscopy and spectroscopy.

  20. MultiMap: A Tool to Automatically Extract and Analyse Spatial Microscopic Data From Large Stacks of Confocal Microscopy Images

    PubMed Central

    Varando, Gherardo; Benavides-Piccione, Ruth; Muñoz, Alberto; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2018-01-01

    The development of 3D visualization and reconstruction methods to analyse microscopic structures at different levels of resolutions is of great importance to define brain microorganization and connectivity. MultiMap is a new tool that allows the visualization, 3D segmentation and quantification of fluorescent structures selectively in the neuropil from large stacks of confocal microscopy images. The major contribution of this tool is the posibility to easily navigate and create regions of interest of any shape and size within a large brain area that will be automatically 3D segmented and quantified to determine the density of puncta in the neuropil. As a proof of concept, we focused on the analysis of glutamatergic and GABAergic presynaptic axon terminals in the mouse hippocampal region to demonstrate its use as a tool to provide putative excitatory and inhibitory synaptic maps. The segmentation and quantification method has been validated over expert labeled images of the mouse hippocampus and over two benchmark datasets, obtaining comparable results to the expert detections. PMID:29875639

  1. MultiMap: A Tool to Automatically Extract and Analyse Spatial Microscopic Data From Large Stacks of Confocal Microscopy Images.

    PubMed

    Varando, Gherardo; Benavides-Piccione, Ruth; Muñoz, Alberto; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2018-01-01

    The development of 3D visualization and reconstruction methods to analyse microscopic structures at different levels of resolutions is of great importance to define brain microorganization and connectivity. MultiMap is a new tool that allows the visualization, 3D segmentation and quantification of fluorescent structures selectively in the neuropil from large stacks of confocal microscopy images. The major contribution of this tool is the posibility to easily navigate and create regions of interest of any shape and size within a large brain area that will be automatically 3D segmented and quantified to determine the density of puncta in the neuropil. As a proof of concept, we focused on the analysis of glutamatergic and GABAergic presynaptic axon terminals in the mouse hippocampal region to demonstrate its use as a tool to provide putative excitatory and inhibitory synaptic maps. The segmentation and quantification method has been validated over expert labeled images of the mouse hippocampus and over two benchmark datasets, obtaining comparable results to the expert detections.

  2. Upright Imaging of Drosophila Egg Chambers

    PubMed Central

    Manning, Lathiena; Starz-Gaiano, Michelle

    2015-01-01

    Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective. PMID:25867882

  3. Note: A three-dimensional calibration device for the confocal microscope.

    PubMed

    Jensen, K E; Weitz, D A; Spaepen, F

    2013-01-01

    Modern confocal microscopes enable high-precision measurement in three dimensions by collecting stacks of 2D (x-y) images that can be assembled digitally into a 3D image. It is difficult, however, to ensure position accuracy, particularly along the optical (z) axis where scanning is performed by a different physical mechanism than in x-y. We describe a simple device to calibrate simultaneously the x, y, and z pixel-to-micrometer conversion factors for a confocal microscope. By taking a known 2D pattern and positioning it at a precise angle with respect to the microscope axes, we created a 3D reference standard. The device is straightforward to construct and easy to use.

  4. Confocal microscopy imaging of the biofilm matrix.

    PubMed

    Schlafer, Sebastian; Meyer, Rikke L

    2017-07-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens. Confocal microscopes are held by many research groups, and a number of methods for qualitative and quantitative imaging of the matrix have emerged in recent years. This review provides an overview and a critical discussion of techniques used to visualize different matrix compounds, to determine the concentration of solutes and the diffusive properties of the biofilm matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Double-clad fiber with a tapered end for confocal endomicroscopy

    PubMed Central

    Lemire-Renaud, Simon; Strupler, Mathias; Benboujja, Fouzi; Godbout, Nicolas; Boudoux, Caroline

    2011-01-01

    We present a double-clad fiber coupler (DCFC) for use in confocal endomicroscopy to reduce speckle contrast, increase signal collection while preserving optical sectioning. The DCFC is made by incorporating a double-clad tapered fiber (DCTF) to a fused-tapered DCFC for achromatic transmission (from 1265 nm to 1325 nm) of > 95% illumination light trough the single mode (SM) core and collection of > 40% diffuse light through inner cladding modes. Its potential for confocal endomicroscopy is demonstrated in a spectrally-encoded imaging setup which shows a 3 times reduction in speckle contrast as well as 5.5 × increase in signal collection compared to imaging with a SM fiber. PMID:22076259

  6. Superresolution imaging of Drosophila tissues using expansion microscopy.

    PubMed

    Jiang, Nan; Kim, Hyeon-Jin; Chozinski, Tyler J; Azpurua, Jorge E; Eaton, Benjamin A; Vaughan, Joshua C; Parrish, Jay Z

    2018-06-15

    The limited resolving power of conventional diffraction-limited microscopy hinders analysis of small, densely packed structural elements in cells. Expansion microscopy (ExM) provides an elegant solution to this problem, allowing for increased resolution with standard microscopes via physical expansion of the specimen in a swellable polymer hydrogel. Here, we apply, validate, and optimize ExM protocols that enable the study of Drosophila embryos, larval brains, and larval and adult body walls. We achieve a lateral resolution of ∼70 nm in Drosophila tissues using a standard confocal microscope, and we use ExM to analyze fine intracellular structures and intercellular interactions. First, we find that ExM reveals features of presynaptic active zone (AZ) structure that are observable with other superresolution imaging techniques but not with standard confocal microscopy. We further show that synapses known to exhibit age-dependent changes in activity also exhibit age-dependent changes in AZ structure. Finally, we use the significantly improved axial resolution of ExM to show that dendrites of somatosensory neurons are inserted into epithelial cells at a higher frequency than previously reported in confocal microscopy studies. Altogether, our study provides a foundation for the application of ExM to Drosophila tissues and underscores the importance of tissue-specific optimization of ExM procedures.

  7. Epiphany sealer penetration into dentinal tubules: Confocal laser scanning microscopic study.

    PubMed

    Ravi, S V; Nageswar, Rao; Swapna, Honwad; Sreekant, Puthalath; Ranjith, Madhavan; Mahidhar, Surabhi

    2014-03-01

    The aim of the following study was to evaluate the percentage and average depth of epiphany sealer penetration into dentinal tubules among the coronal, middle and apical thirds of the root using the confocal laser scanning microscopy (CLSM). A total of 10 maxillary central incisors were prepared and obturated with Resilon-Epiphany system. Sealer was mixed with fluorescent rhodamine B isothiyocyanate dye for visibility under confocal microscope. Teeth were cross-sectioned into coronal, middle and apical sections-2 mm thick. Sections were observed under CLSM. Images were analyzed for percentage and average depth of sealer penetration into dentinal tubules using the lasso tool in Adobe Photoshop CS3 (Adobe systems incorporated, San jose, CA) and laser scanning microscopy (LSM 5) image analyzer. One-way analysis of variance with Student Neuman Keuls post hoc tests, Kruskal-Wallis test and Wilcoxon signed-rank post hoc tests. The results showed that a higher percentage of sealer penetration in coronal section-89.23%, followed by middle section-84.19% and the apical section-64.9%. Average depth of sealer penetration for coronal section was 526.02 μm, middle-385.26 μm and apical-193.49 μm. Study concluded that there was higher epiphany sealer penetration seen in coronal followed by middle and least at apical third of the roots.

  8. Assessing Photoreceptor Structure in Retinitis Pigmentosa and Usher Syndrome.

    PubMed

    Sun, Lynn W; Johnson, Ryan D; Langlo, Christopher S; Cooper, Robert F; Razeen, Moataz M; Russillo, Madia C; Dubra, Alfredo; Connor, Thomas B; Han, Dennis P; Pennesi, Mark E; Kay, Christine N; Weinberg, David V; Stepien, Kimberly E; Carroll, Joseph

    2016-05-01

    The purpose of this study was to examine cone photoreceptor structure in retinitis pigmentosa (RP) and Usher syndrome using confocal and nonconfocal split-detector adaptive optics scanning light ophthalmoscopy (AOSLO). Nineteen subjects (11 RP, 8 Usher syndrome) underwent ophthalmic and genetic testing, spectral-domain optical coherence tomography (SD-OCT), and AOSLO imaging. Split-detector images obtained in 11 subjects (7 RP, 4 Usher syndrome) were used to assess remnant cone structure in areas of altered cone reflectivity on confocal AOSLO. Despite normal interdigitation zone and ellipsoid zone appearance on OCT, foveal and parafoveal cone densities derived from confocal AOSLO images were significantly lower in Usher syndrome compared with RP. This was due in large part to an increased prevalence of non-waveguiding cones in the Usher syndrome retina. Although significantly correlated to best-corrected visual acuity and foveal sensitivity, cone density can decrease by nearly 38% before visual acuity becomes abnormal. Aberrantly waveguiding cones were noted within the transition zone of all eyes and corresponded to intact inner segment structures. These remnant cones decreased in density and increased in diameter across the transition zone and disappeared with external limiting membrane collapse. Foveal cone density can be decreased in RP and Usher syndrome before visible changes on OCT or a decline in visual function. Thus, AOSLO imaging may allow more sensitive monitoring of disease than current methods. However, confocal AOSLO is limited by dependence on cone waveguiding, whereas split-detector AOSLO offers unambiguous and quantifiable visualization of remnant cone inner segment structure. Confocal and split-detector thus offer complementary insights into retinal pathology.

  9. Assessing Photoreceptor Structure in Retinitis Pigmentosa and Usher Syndrome

    PubMed Central

    Sun, Lynn W.; Johnson, Ryan D.; Langlo, Christopher S.; Cooper, Robert F.; Razeen, Moataz M.; Russillo, Madia C.; Dubra, Alfredo; Connor, Thomas B.; Han, Dennis P.; Pennesi, Mark E.; Kay, Christine N.; Weinberg, David V.; Stepien, Kimberly E.; Carroll, Joseph

    2016-01-01

    Purpose The purpose of this study was to examine cone photoreceptor structure in retinitis pigmentosa (RP) and Usher syndrome using confocal and nonconfocal split-detector adaptive optics scanning light ophthalmoscopy (AOSLO). Methods Nineteen subjects (11 RP, 8 Usher syndrome) underwent ophthalmic and genetic testing, spectral-domain optical coherence tomography (SD-OCT), and AOSLO imaging. Split-detector images obtained in 11 subjects (7 RP, 4 Usher syndrome) were used to assess remnant cone structure in areas of altered cone reflectivity on confocal AOSLO. Results Despite normal interdigitation zone and ellipsoid zone appearance on OCT, foveal and parafoveal cone densities derived from confocal AOSLO images were significantly lower in Usher syndrome compared with RP. This was due in large part to an increased prevalence of non-waveguiding cones in the Usher syndrome retina. Although significantly correlated to best-corrected visual acuity and foveal sensitivity, cone density can decrease by nearly 38% before visual acuity becomes abnormal. Aberrantly waveguiding cones were noted within the transition zone of all eyes and corresponded to intact inner segment structures. These remnant cones decreased in density and increased in diameter across the transition zone and disappeared with external limiting membrane collapse. Conclusions Foveal cone density can be decreased in RP and Usher syndrome before visible changes on OCT or a decline in visual function. Thus, AOSLO imaging may allow more sensitive monitoring of disease than current methods. However, confocal AOSLO is limited by dependence on cone waveguiding, whereas split-detector AOSLO offers unambiguous and quantifiable visualization of remnant cone inner segment structure. Confocal and split-detector thus offer complementary insights into retinal pathology. PMID:27145477

  10. The development of confocal arthroscopy as optical histology for rotator cuff tendinopathy.

    PubMed

    Wu, J-P; Walton, M; Wang, A; Anderson, P; Wang, T; Kirk, T B; Zheng, M H

    2015-09-01

    MRI, ultrasound and video arthroscopy are traditional imaging technologies for noninvasive or minimal invasive assessment of the rotator cuff tendon pathology. However, these imaging modalities do not have sufficient resolution to demonstrate the pathology of rotator cuff tendons at a microstructural level. Therefore, they are insensitive to low-level tendon diseases. Although traditional histology can be used to analyze the physiology of rotator cuff tendons, it requires biopsy that traumatizes the rotator cuff, thus, potentially comprising the mechanical properties of tendons. Besides, it cannot offer real-time histological information. Confocal endoscopy offers a way to assess the microstructural disorder in tissues without biopsy. However, the application of this useful technique for detecting low-level tendon diseases has been restricted by using clinical grade fluorescent contrast agent to acquire high-resolution microstructural images of tendons. In this study, using a clinical grade sodium fluorescein contrast agent, we have reported the development of confocal arthroscopy for optical histological assessment without biopsy. The confocal arthroscopic technique was able to demonstrate rotator cuff tendinopathy in human cadavers, which appeared macroscopically normal under video arthroscopic examinations. The tendinopathy status of the rotator cuff tendons was confirmed by corresponding traditional histology. The development of confocal arthroscopy may provide a minimally invasive imaging technique for real-time histology of rotator cuff without the need for tissue biopsy. This technique has the potential for surgeons to gain in real time the histological information of rotator cuff tendons, which may assist planning repair strategies and potentially improve intervention outcomes. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  11. Improved axial point spread function in a two-frequency laser scanning confocal fluorescence microscope

    NASA Astrophysics Data System (ADS)

    Wu, Jheng-Syong; Chung, Yung-Chin; Chien, Jun-Jei; Chou, Chien

    2018-01-01

    A two-frequency laser scanning confocal fluorescence microscope (TF-LSCFM) based on intensity modulated fluorescence signal detection was proposed. The specimen-induced spherical aberration and scattering effect were suppressed intrinsically, and high image contrast was presented due to heterodyne interference. An improved axial point spread function in a TF-LSCFM compared with a conventional laser scanning confocal fluorescence microscope was demonstrated and discussed.

  12. UNC Pembroke Laser Scanning Confocal Microscopy Facility

    DTIC Science & Technology

    2016-04-29

    cultures. INVASIVE FIRE ANTS Professor Lisa Kelly of UNC Pembroke has been trained on the new confocal system. Dr. Kelly’s research...interest in the trophic ecology of the invasive fire ant has begun to benefit from the wide field view and long working distances of a confocal imaging...of protein clearance pathways in living brain tissue cultures. INVASIVE FIRE ANTS Professor Lisa Kelly of UNC Pembroke has been trained on

  13. A new diagnostic technique for tinea incognito: in vivo reflectance confocal microscopy. Report of five cases.

    PubMed

    Turan, Enver; Erdemir, Asli Turgut; Gurel, Mehmet Salih; Yurt, Nurdan

    2013-02-01

    In vivo confocal laser scanning microscopy (CLSM) is a modern non-invasive method for investigation of the skin that allows real-time visualization of individual cells and subcellular structures with the highest resolution imaging comparable to the routine histopathology. Our aim was to demonstrate the potential of CLSM for non-invasive diagnosis of difficult tinea incognito cases. Clinically atypical lesions in five cases of tinea incognito due to dermatophyte spp. were demonstrated using reflectance confocal laser scanning microscopy (RCM), parallel to KOH preparation and fungal culture of skin scrapings performed in the same patients. The morphological features characteristic for tinea incognito, namely linear branched hyphae in the intercellular area of the stratum corneum, were readily detectable by means of CLSM. In vivo tissue imaging were performed at three different wavelengths (785, 658, 445 nm) and the best images of fungal elements were obtained at 445 nm. All of our five cases had similar reflectance confocal microscopical findings. Our findings suggest the potential of CLSM as a non-invasive tool for the diagnosis of tinea incognito having atypical clinical appearance. Although at present the reflectance confocal microscopy cannot replace the current diagnostic standards for tinea incognito, it may be successfully used as in vivo non-invasive screening tool to facilitate the diagnosis and point to the need for further investigation of the patient. © 2012 John Wiley & Sons A/S.

  14. Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Savateeva, Elena V.; Karabutov, Alexander A.; Motamedi, Massoud; Bell, Brent A.; Johnigan, Richard M.; Oraevsky, Alexander A.

    2000-05-01

    Confocal opto-acoustic transducer (COAT) was developed and applied for detection of early stages of squamous cell carcinoma in hamster model of oral cancer. COAT is a novel imaging modality with optical and acoustic lens utilized for detecting in-depth opto-acoustic front surface transducer is an improved lateral resolution of 60-micrometers . The bandwidth of the confocal opto-acoustic transducer is more than 100 MHz. Therefore, in-depth axial resolution defined by the laser pulse duration and detection system equals 15-micrometers . Imaging was performed at the wavelength of the Nd:YAG laser second harmonic, which provided sufficient depth of monitoring and significant tissue contrast. Correlation of the opto- acoustic images with H and E histology sections in control animals and in animals treated with carcinogenic agent, DMBA, confirmed previous findings that early cancer lesions invisible by the naked eye may be detected with the opto- acoustic tomography. Compact design of COAT allows, in principle, application of the opto-acoustic imaging in any organ of the human digestive system.

  15. 3D imaging of cement-based materials at submicron resolution by combining laser scanning confocal microscopy with serial sectioning.

    PubMed

    Yio, M H N; Mac, M J; Wong, H S; Buenfeld, N R

    2015-05-01

    In this paper, we present a new method to reconstruct large volumes of nontransparent porous materials at submicron resolution. The proposed method combines fluorescence laser scanning confocal microscopy with serial sectioning to produce a series of overlapping confocal z-stacks, which are then aligned and stitched based on phase correlation. The method can be extended in the XY plane to further increase the overall image volume. Resolution of the reconstructed image volume does not degrade with increase in sample size. We have used the method to image cementitious materials, hardened cement paste and concrete and the results obtained show that the method is reliable. Possible applications of the method such as three-dimensional characterization of the pores and microcracks in hardened concrete, three-dimensional particle shape characterization of cementitious materials and three-dimensional characterization of other porous materials such as rocks and bioceramics are discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  16. Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner

    PubMed Central

    Liu, Jonathan T. C.; Mandella, Michael J.; Ra, Hyejun; Wong, Larry K.; Solgaard, Olav; Kino, Gordon S.; Piyawattanametha, Wibool; Contag, Christopher H.; Wang, Thomas D.

    2007-01-01

    The first, to our knowledge, miniature dual-axes confocal microscope has been developed, with an outer diameter of 10 mm, for subsurface imaging of biological tissues with 5–7 μm resolution. Depth-resolved en face images are obtained at 30 frames per second, with a field of view of 800 × 100 μm, by employing a two-dimensional scanning microelectromechanical systems mirror. Reflectance and fluorescence images are obtained with a laser source at 785 nm, demonstrating the ability to perform real-time optical biopsy. PMID:17215937

  17. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  18. Confocal non-line-of-sight imaging based on the light-cone transform

    NASA Astrophysics Data System (ADS)

    O’Toole, Matthew; Lindell, David B.; Wetzstein, Gordon

    2018-03-01

    How to image objects that are hidden from a camera’s view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.

  19. Confocal non-line-of-sight imaging based on the light-cone transform.

    PubMed

    O'Toole, Matthew; Lindell, David B; Wetzstein, Gordon

    2018-03-15

    How to image objects that are hidden from a camera's view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.

  20. Hyper-spectral imaging in scanning-confocal-fluorescence microscopy using a novel broadband diffractive optic

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Ebeling, Carl G.; Gerton, Jordan; Menon, Rajesh

    In this paper, we demonstrate hyper-spectral imaging of fluorescent microspheres in a scanning-confocal-fluorescence microscope by spatially dispersing the spectra using a novel broadband diffractive optic, and applying a nonlinear optimization technique to extract the full-incident spectra. This broadband diffractive optic has a designed optical efficiency of over 90% across the entire visible spectrum. We used this technique to create two-color images of two fluorophores and also extracted their emission spectra with good fidelity. This method can be extended to image both spatially and spectrally overlapping fluorescent samples. Full control in the number of emission spectra and the feasibility of enhanced imaging speed are demonstrated as well.

  1. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  2. Probe-based confocal laser endomicroscopy (pCLE) - a new imaging technique for in situ localization of spermatozoa.

    PubMed

    Trottmann, Matthias; Stepp, Herbert; Sroka, Ronald; Heide, Michael; Liedl, Bernhard; Reese, Sven; Becker, Armin J; Stief, Christian G; Kölle, Sabine

    2015-05-01

    In azoospermic patients, spermatozoa are routinely obtained by testicular sperm extraction (TESE). However, success rates of this technique are moderate, because the site of excision of testicular tissue is determined arbitrarily. Therefore the aim of this study was to establish probe-based laser endomicroscopy (pCLE) a noval biomedical imaging technique, which provides the opportunity of non-invasive, real-time visualisation of tissue at histological resolution. Using pCLE we clearly visualized longitudinal and horizontal views of the tubuli seminiferi contorti and localized vital spermatozoa. Obtained images and real-time videos were subsequently compared with confocal laser scanning microscopy (CLSM) of spermatozoa and tissues, respectively. Comparative visualization of single native Confocal laser scanning microscopy (CLSM, left) and probe-based laser endomicroscopy (pCLE, right) using Pro Flex(TM) UltraMini O after staining with acriflavine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy.

    PubMed

    Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D

    2015-01-27

    Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.

  4. Multiple microscopic approaches demonstrate linkage between chromoplast architecture and carotenoid composition in diverse Capsicum annuum fruit.

    PubMed

    Kilcrease, James; Collins, Aaron M; Richins, Richard D; Timlin, Jerilyn A; O'Connell, Mary A

    2013-12-01

    Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub-organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live-cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid-based phenotypes. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  5. Effect of chitosan nanoparticle, QMix, and EDTA on TotalFill BC sealers' dentinal tubule penetration: a confocal laser scanning microscopy study.

    PubMed

    Aydın, Zeliha Uğur; Özyürek, Taha; Keskin, Büşra; Baran, Talat

    2018-04-12

    The aim of the present study was to compare the effect of chitosan nanoparticle, QMix, and 17% EDTA on the penetrability of a calcium silicate-based sealer into dentinal tubules using a confocal laser scanning microscope (CLSM). Sixty mandibular premolar teeth were selected and randomly divided into three groups (n = 20) before root canal preparation according to the solution used in the final rinse protocol: chitosan, QMix, and EDTA groups. Twenty teeth of each group were filled with a TotalFill BC sealers' single gutta-percha cone and with 0.1% rhodamine B. The specimens were horizontally sectioned at 3 and 5 mm from the apex, and the slices were analyzed in CLSM (4×). Total percentage and maximum depth of sealer penetration were measured using confocal laser scanning microscopy with using Image J analysis software. Dentinal tubule's penetration depth, percentage, and area were measured using imaging software. Kruskal-Wallis test was used for statistical analysis. The level of significance was set at 5%. Results of Kruskal-Wallis analysis showed that there was a significant difference in the percentage and depth of sealer penetration among all groups at 3 and 5 mm level sections (P < 0.05). Within the groups, the minimum sealer penetration depth was recorded for chitosan nanoparticle group. Greater depth of sealer penetration was recorded at 5 mm as compared to 3 mm in all the groups. Within the limitation of the present study, it can be concluded that QMix and EDTA promoted sealer penetration superior to that achieved by chitosan nanoparticle.

  6. High speed line-scan confocal imaging of stimulus-evoked intrinsic optical signals in the retina

    PubMed Central

    Li, Yang-Guo; Liu, Lei; Amthor, Franklin; Yao, Xin-Cheng

    2010-01-01

    A rapid line-scan confocal imager was developed for functional imaging of the retina. In this imager, an acousto-optic deflector (AOD) was employed to produce mechanical vibration- and inertia-free light scanning, and a high-speed (68,000 Hz) linear CCD camera was used to achieve sub-cellular and sub-millisecond spatiotemporal resolution imaging. Two imaging modalities, i.e., frame-by-frame and line-by-line recording, were validated for reflected light detection of intrinsic optical signals (IOSs) in visible light stimulus activated frog retinas. Experimental results indicated that fast IOSs were tightly correlated with retinal stimuli, and could track visible light flicker stimulus frequency up to at least 2 Hz. PMID:20125743

  7. Confocal Fluorescence Imaging Enables Noninvasive Quantitative Assessment of Host Cell Populations In Vivo Following Photodynamic Therapy

    PubMed Central

    Mitra, Soumya; Mironov, Oleg; Foster, Thomas H.

    2012-01-01

    We report the use of optical imaging strategies to noninvasively examine photosensitizer distribution and physiological and host responses to 2-[1-hexyloxyethyl]-2 devinyl pyropheophorbide-a (HPPH)-mediated photodynamic therapy (PDT) of EMT6 tumors established in the ears of BALB/c mice. 24 h following intravenous (IV) administration of 1 μmol kg-1 HPPH, wide-field fluorescence imaging reveals tumor selectivity with an approximately 2-3-fold differential between tumor and adjacent normal tissue. Confocal microscopy demonstrates a relatively homogeneous intratumor HPPH distribution. Labeling of host cells using fluorophore-conjugated antibodies allowed the visualization of Gr1+/CD11b+ leukocytes and major histocompatibility complex class II (MHC-II)+ cells in vivo. Imaging of the treated site at different time-points following irradiation shows significant and rapid increases in Gr1+ cells in response to therapy. The maximum accumulation of Gr1+ cells is found at 24 h post-irradiation, followed by a decrease at the 48 h time-point. Using IV-injected FITC-conjugated dextran as a fluorescent perfusion marker, we imaged tissue perfusion at different times post-irradiation and found that the reduced Gr1+ cell density at 48 h correlated strongly with functional damage to the vasculature as reported via decreased perfusion status. Dual color confocal imaging experiments demonstrates that about 90% of the anti-Gr1 cell population co-localized with anti-CD11b labeling, thus indicating that majority of the Gr1-labeled cells were neutrophils. At 24 h post-PDT, an approximately 2-fold increase in MHC-II+ cells relative to untreated control is also observed. Co-localization analysis reveals an increase in the fraction of Gr1+ cells expressing MHC-II, suggesting that HPPH-PDT is stimulating neutrophils to express an antigen-presenting phenotype. PMID:23082097

  8. Assessment methods for the evaluation of vitiligo.

    PubMed

    Alghamdi, K M; Kumar, A; Taïeb, A; Ezzedine, K

    2012-12-01

    There is no standardized method for assessing vitiligo. In this article, we review the literature from 1981 to 2011 on different vitiligo assessment methods. We aim to classify the techniques available for vitiligo assessment as subjective, semi-objective or objective; microscopic or macroscopic; and as based on morphometry or colorimetry. Macroscopic morphological measurements include visual assessment, photography in natural or ultraviolet light, photography with computerized image analysis and tristimulus colorimetry or spectrophotometry. Non-invasive micromorphological methods include confocal laser microscopy (CLM). Subjective methods include clinical evaluation by a dermatologist and a vitiligo disease activity score. Semi-objective methods include the Vitiligo Area Scoring Index (VASI) and point-counting methods. Objective methods include software-based image analysis, tristimulus colorimetry, spectrophotometry and CLM. Morphometry is the measurement of the vitiliginous surface area, whereas colorimetry quantitatively analyses skin colour changes caused by erythema or pigment. Most methods involve morphometry, except for the chromameter method, which assesses colorimetry. Some image analysis software programs can assess both morphometry and colorimetry. The details of these programs (Corel Draw, Image Pro Plus, AutoCad and Photoshop) are discussed in the review. Reflectance confocal microscopy provides real-time images and has great potential for the non-invasive assessment of pigmentary lesions. In conclusion, there is no single best method for assessing vitiligo. This review revealed that VASI, the rule of nine and Wood's lamp are likely to be the best techniques available for assessing the degree of pigmentary lesions and measuring the extent and progression of vitiligo in the clinic and in clinical trials. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  9. Scanning computed confocal imager

    DOEpatents

    George, John S.

    2000-03-14

    There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

  10. Longitudinal in vivo two-photon fluorescence imaging

    PubMed Central

    Crowe, Sarah E.; Ellis-Davies, Graham C.R.

    2014-01-01

    Fluorescence microscopy is an essential technique for the basic sciences, especially biomedical research. Since the invention of laser scanning confocal microscopy in 1980s, that enabled imaging both fixed and living biological tissue with three-dimensional precision, high-resolution fluorescence imaging has revolutionized biological research. Confocal microscopy, by its very nature, has one fundamental limitation. Due to the confocal pinhole, deep tissue fluorescence imaging is not practical. In contrast (no pun intended), two-photon fluorescence microscopy allows, in principle, the collection of all emitted photons from fluorophores in the imaged voxel, dramatically extending our ability to see deep into living tissue. Since the development of transgenic mice with genetically encoded fluorescent protein in neocortical cells in 2000, two-photon imaging has enabled the dynamics of individual synapses to be followed for up to two years. Since the initial landmark contributions to this field in 2002, the technique has been used to understand how neuronal structure are changed by experience, learning and memory and various diseases. Here we provide a basic summary of the crucial elements that are required for such studies, and discuss many applications of longitudinal two-photon fluorescence microscopy that have appeared since 2002. PMID:24214350

  11. In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract

    PubMed Central

    Ra, Hyejun; Qiu, Zhen; Friedland, Shai; Liu, Jonathan T. C.; Loewke, Kevin; Kino, Gordon S.; Solgaard, Olav; Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.

    2012-01-01

    Abstract. Near-infrared confocal microendoscopy is a promising technique for deep in vivo imaging of tissues and can generate high-resolution cross-sectional images at the micron-scale. We demonstrate the use of a dual-axis confocal (DAC) near-infrared fluorescence microendoscope with a 5.5-mm outer diameter for obtaining clinical images of human colorectal mucosa. High-speed two-dimensional en face scanning was achieved through a microelectromechanical systems (MEMS) scanner while a micromotor was used for adjusting the axial focus. In vivo images of human patients are collected at 5  frames/sec with a field of view of 362×212  μm2 and a maximum imaging depth of 140 μm. During routine endoscopy, indocyanine green (ICG) was topically applied a nonspecific optical contrasting agent to regions of the human colon. The DAC microendoscope was then used to obtain microanatomic images of the mucosa by detecting near-infrared fluorescence from ICG. These results suggest that DAC microendoscopy may have utility for visualizing the anatomical and, perhaps, functional changes associated with colorectal pathology for the early detection of colorectal cancer. PMID:22463020

  12. Tracking of cell nuclei for assessment of in vitro uptake kinetics in ultrasound-mediated drug delivery using fibered confocal fluorescence microscopy.

    PubMed

    Derieppe, Marc; de Senneville, Baudouin Denis; Kuijf, Hugo; Moonen, Chrit; Bos, Clemens

    2014-10-01

    Previously, we demonstrated the feasibility to monitor ultrasound-mediated uptake of a cell-impermeable model drug in real time with fibered confocal fluorescence microscopy. Here, we present a complete post-processing methodology, which corrects for cell displacements, to improve the accuracy of pharmacokinetic parameter estimation. Nucleus detection was performed based on the radial symmetry transform algorithm. Cell tracking used an iterative closest point approach. Pharmacokinetic parameters were calculated by fitting a two-compartment model to the time-intensity curves of individual cells. Cells were tracked successfully, improving time-intensity curve accuracy and pharmacokinetic parameter estimation. With tracking, 93 % of the 370 nuclei showed a fluorescence signal variation that was well-described by a two-compartment model. In addition, parameter distributions were narrower, thus increasing precision. Dedicated image analysis was implemented and enabled studying ultrasound-mediated model drug uptake kinetics in hundreds of cells per experiment, using fiber-based confocal fluorescence microscopy.

  13. Estimation of Tumor Angiogenesis With Contrast Enhanced Subharmonic Ultrasound Imaging

    DTIC Science & Technology

    2005-07-01

    measure the FBV as a function of time (Fig. 1). The setup consists of a pair of confocally positioned broadband focused transducers (diameter: 2.54 cm...signals only come from the microbubbles in the small confocal region of the two transducers (1-4 mm3 for 2 MHz transmission). The sampling frequency...amplified and then supplied to a single-element broadband focused transducer. Another broadband focused transducer ( confocally positioned to the first

  14. Visualization and quantitation of abundant macroautophagy in virus-infected cells by confocal three-dimensional fluorescence imaging.

    PubMed

    Jackson, Wallen; Yamada, Masaki; Moninger, Thomas; Grose, Charles

    2013-10-01

    Varicella-zoster virus (VZV) is a human herpesvirus. Primary infection causes varicella (chickenpox), a viremic illness typified by an exanthem consisting of several hundred vesicles. When VZV reactivates from latency in the spinal ganglia during late adulthood, the emerging virus causes a vesicular dermatomal rash (herpes zoster or shingles). To expand investigations of autophagy during varicella and zoster, newer 3D imaging technology was combined with laser scanning confocal microscopy to provide animations of autophagosomes in the vesicular rash. First, the cells were immunolabeled with antibodies against VZV proteins and the LC3 protein, an integral autophagosomal protein. Antibody reagents lacking activity against the human blood group A1 antigen were selected. After laser excitation of the samples, optimized emission detection bandwidths were configured by Zeiss Zen control software. Confocal Z-stacks comprising up to 40 optical slices were reconstructed into 3D animations with the aid of Imaris software. With this imaging technology, individual autophagosomes were clearly detectable as spheres within each vesicular cell. To enumerate the number of autophagosomes, data sets from 50 cells were reconstructed as 3D fluorescence images and analyzed with MeasurementPro software. The mean number of autophagosomes per infected vesicular cell was >100, although over 200 autophagosomes were seen in a few cells. In summary, macroautophagy was easily quantitated within VZV-infected cells after immunolabeling and imaging by 3D confocal animation technology. These same 3D imaging techniques will be applicable for investigations of autophagy in other virus-infected cells. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Next generation of optical diagnostics for bladder cancer using probe-based confocal laser endomicroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jen-Jane; Chang, Timothy C.; Pan, Ying; Hsiao, Shelly T.; Mach, Kathleen E.; Jensen, Kristin C.; Liao, Joseph C.

    2012-02-01

    Real-time imaging with confocal laser endomicroscopy (CLE) probes that fit in standard endoscopes has emerged as a clinically feasible technology for optical biopsy of bladder cancer. Confocal images of normal, inflammatory, and neoplastic urothelium obtained with intravesical fluorescein can be differentiated by morphologic characteristics. We compiled a confocal atlas of the urinary tract using these diagnostic criteria to be used in a prospective diagnostic accuracy study. Patients scheduled to undergo transurethral resection of bladder tumor underwent white light cystoscopy (WLC), followed by CLE, and histologic confirmation of resected tissue. Areas that appeared normal by WLC were imaged and biopsied as controls. We imaged and prospectively analyzed 135 areas in 57 patients. We show that CLE improves the diagnostic accuracy of WLC for diagnosing benign tissue, low and high grade cancer. Interobserver studies showed a moderate level of agreement by urologists and nonclinical researchers. Despite morphologic differences between inflammation and cancer, real-time differentiation can still be challenging. Identification of bladder cancer-specific contrast agents could provide molecular specificity to CLE. By using fluorescently-labeled antibodies or peptides that bind to proteins expressed in bladder cancer, we have identified putative molecular contrast agents for targeted imaging with CLE. We describe one candidate agent - anti-CD47 - that was instilled into bladder specimens. The tumor and normal urothelium were imaged with CLE, with increased fluorescent signal demonstrated in areas of tumor compared to normal areas. Thus, cancer-specificity can be achieved using molecular contrast agents ex vivo in conjunction with CLE.

  16. Clinical experience using the tethered capsule-based spectrally encoded confocal microendoscopy for diagnosis of eosinophilic esophagitis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Do, Dukho; Alali, Sanaz; Kang, DongKyun; Tabatabaie, Nima; Lu, Weina; Grant, Catriona N.; Soomro, Amna R.; Nishioka, Norman S.; Rosenberg, Mireille; Hesterberg, Paul E.; Yuan, Qian; Garber, John J.; Katz, Aubrey J.; Shreffler, Wayne G.; Tearney, Guillermo J.

    2016-03-01

    Eosinophilic Esophagitis (EoE) is caused by food allergies, and defined by histological presence of eosinophil cells in the esophagus. The current gold standard for EoE diagnosis is endoscopy with pinch biopsy to detect more than 15 eosinophils/ High power field (HPF). Biopsy examinations are expensive, time consuming and are difficult to tolerate for patients. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology capable of imaging individual eosinophils as highly scattering cells (diameter between 8 µm to 15 µm) in the epithelium. Our lab has developed a tethered SECM capsule that can be swallowed by unsedated patients. The capsule acquires large area confocal images, equivalent to more than 30,000 HPFs, as it traverses through the esophagus. In this paper, we present the outcome of a clinical study using the tethered SECM capsule for diagnosing EoE. To date, 32 subjects have been enrolled in this study. 88% of the subjects swallowed the capsules without difficulty and of those who swallowed the capsule, 95% preferred the tethered capsule imaging procedure to sedated endoscopic biopsy. Each imaging session took about 12 ± 2.4 minutes during which 8 images each spanning of 24 ± 5 cm2 of the esophagus were acquired. SECM images acquired from EoE patients showed abundant eosinophils as highly scattering cells in squamous epithelium. Results from this study suggest that the SECM capsule has the potential to become a less-invasive, cost-effective tool for diagnosing EoE and monitoring the response of this disease to therapy.

  17. Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems.

    PubMed

    Wang, E; Babbey, C M; Dunn, K W

    2005-05-01

    Fluorescence microscopy of the dynamics of living cells presents a special challenge to a microscope imaging system, simultaneously requiring both high spatial resolution and high temporal resolution, but with illumination levels low enough to prevent fluorophore damage and cytotoxicity. We have compared the high-speed Yokogawa CSU10 spinning disc confocal system with several conventional single-point scanning confocal (SPSC) microscopes, using the relationship between image signal-to-noise ratio and fluorophore photobleaching as an index of system efficiency. These studies demonstrate that the efficiency of the CSU10 consistently exceeds that of the SPSC systems. The high efficiency of the CSU10 means that quality images can be collected with much lower levels of illumination; the CSU10 was capable of achieving the maximum signal-to-noise of an SPSC system at illumination levels that incur only at 1/15th of the rate of the photobleaching of the SPSC system. Although some of the relative efficiency of the CSU10 system may be attributed to the use of a CCD rather than a photomultiplier detector system, our analyses indicate that high-speed imaging with the SPSC system is limited by fluorescence saturation at the high levels of illumination frequently needed to collect images at high frame rates. The high speed, high efficiency and freedom from fluorescence saturation combine to make the CSU10 effective for extended imaging of living cells at rates capable of capturing the three-dimensional motion of endosomes moving up to several micrometres per second.

  18. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    PubMed

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Towards modeling of cardiac micro-structure with catheter-based confocal microscopy: a novel approach for dye delivery and tissue characterization.

    PubMed

    Lasher, Richard A; Hitchcock, Robert W; Sachse, Frank B

    2009-08-01

    This work presents a methodology for modeling of cardiac tissue micro-structure. The approach is based on catheter-based confocal imaging systems, which are emerging as tools for diagnosis in various clinical disciplines. A limitation of these systems is that a fluorescent marker must be available in sufficient concentration in the imaged region. We introduce a novel method for the local delivery of fluorescent markers to cardiac tissue based on a hydro-gel carrier brought into contact with the tissue surface. The method was tested with living rabbit cardiac tissue and applied to acquire three-dimensional image stacks with a standard inverted confocal microscope and two-dimensional images with a catheter-based confocal microscope. We processed these image stacks to obtain spatial models and quantitative data on tissue microstructure. Volumes of atrial and ventricular myocytes were 4901 +/- 1713 and 10 299 +/-3598 mum (3) (mean+/-sd), respectively. Atrial and ventricular myocyte volume fractions were 72.4 +/-4.7% and 79.7 +/- 2.9% (mean +/-sd), respectively. Atrial and ventricular myocyte density was 165 571 +/- 55 836 and 86 957 +/- 32 280 cells/mm (3) (mean+/-sd), respectively. These statistical data and spatial descriptions of tissue microstructure provide important input for modeling studies of cardiac tissue function. We propose that the described methodology can also be used to characterize diseased tissue and allows for personalized modeling of cardiac tissue.

  20. The Use of Intravital Two-Photon and Thick Section Confocal Imaging to Analyze B Lymphocyte Trafficking in Lymph Nodes and Spleen.

    PubMed

    Park, Chung; Hwang, Il-Young; Kehrl, John H

    2018-01-01

    Intravital two-photon laser scanning microscopy (TP-LSM) has allowed the direct observation of immune cells in intact organs of living animals. In the B cell biology field TP-LSM has detailed the movement of B cells in high endothelial venules and during their transmigration into lymph organs; described the movement and positioning of B cells within lymphoid organs; outlined the mechanisms by which antigen is delivered to B cells; observed B cell interacting with T cells, other cell types, and even with pathogens; and delineated the egress of B cells from the lymph node (LN) parenchyma into the efferent lymphatics. As the quality of TP-LSM improves and as new fluorescent probes become available additional insights into B cell behavior and function await new investigations. Yet intravital TP-LSM has some disadvantages including a lower resolution than standard confocal microscopy, a narrow imaging window, and a shallow depth of imaging. We have found that supplementing intravital TP-LSM with conventional confocal microscopy using thick LN sections helps to overcome some of these shortcomings. Here, we describe procedures for visualizing the behavior and trafficking of fluorescently labeled, adoptively transferred antigen-activated B cells within the inguinal LN of live mice using two-photon microscopy. Also, we introduce procedures for fixed thick section imaging using standard confocal microscopy, which allows imaging of fluorescently labeled cells deep in the LN cortex and in the spleen with high resolution.

  1. Multi-imaging analysis of nascent surface structures generated during femtosecond laser irradiation of silicon in high vacuum

    NASA Astrophysics Data System (ADS)

    Gesuele, F.; JJ Nivas, J.; Fittipaldi, R.; Altucci, C.; Bruzzese, R.; Maddalena, P.; Amoruso, S.

    2018-02-01

    We report a correlative imaging analysis of a crystalline silicon target after irradiation with a low number of 1055 nm, 850 fs laser pulses with several microscopy techniques (e.g., scanning electron microscopy, atomic force microscopy, Raman micro-imaging and confocal optical microscopy). The analysis is carried out on samples irradiated both in high vacuum and at atmospheric pressure conditions, evidencing interesting differences induced by the ambient environment. In high-vacuum conditions, the results evidence the formation of a halo, which is constituted by alternate stripes of amorphous and crystalline silicon, around the nascent ablation crater. In air, such an effect is drastically reduced, due to the significant back-deposition of nanoparticulate material induced by the larger ambient pressure.

  2. WHOLE INSECT AND MAMMALIAN EMBRYO IMAGING WITH CONFOCAL MICROSCOPY: MORPHOLOGY AND APOPTOSIS

    EPA Science Inventory

    Background: After fluorochromes are incorporated into cells, tissues, and organisms, confocal microscopy can be used to observe three-dimensional structures. LysoTracker Red (LT) is a paraformaldehyde fixable probe that concentrates into acidic compartments of cells and indicates...

  3. Using Cell-ID 1.4 with R for Microscope-Based Cytometry

    PubMed Central

    Bush, Alan; Chernomoretz, Ariel; Yu, Richard; Gordon, Andrew

    2012-01-01

    This unit describes a method for quantifying various cellular features (e.g., volume, total and subcellular fluorescence localization) from sets of microscope images of individual cells. It includes procedures for tracking cells over time. One purposefully defocused transmission image (sometimes referred to as bright-field or BF) is acquired to segment the image and locate each cell. Fluorescent images (one for each of the color channels to be analyzed) are then acquired by conventional wide-field epifluorescence or confocal microscopy. This method uses the image processing capabilities of Cell-ID (Gordon et al., 2007, as updated here) and data analysis by the statistical programming framework R (R-Development-Team, 2008), which we have supplemented with a package of routines for analyzing Cell-ID output. Both Cell-ID and the analysis package are open-source. PMID:23026908

  4. Anti-translational research: from the bedside back to the bench for reflectance confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel

    2014-03-01

    The reflectance confocal microscope has made translational progress in dermatology. 0.5 micrometer lateral resolution, 0.75mm field-of-view and excellent temporal resolution at ~15 frames/second serve the VivaScope well in the clinic, but it may be overlooked in basic research. This work reviews high spatiotemporal confocal microscopy and presents images acquired of various samples: zebra fish embryo where melanocytes with excellent contrast overly the spinal column, chicken embryo, where myocardium is seen moving at 15 frames/ second, calcium spikes in dendrites (fluorescence mode) just beyond the temporal resolution, and human skin where blood cells race through the artereovenous microvasculature. For an introduction to confocal microscopy, see: http://dangareau.net.s69818.gridserver.com/science/confocal-microscopy

  5. Diffraction-Unlimited Fluorescence Imaging with an EasySTED Retrofitted Confocal Microscope.

    PubMed

    Klauss, André; Hille, Carsten

    2017-01-01

    The easySTED technology provides the means to retrofit a confocal microscope to a diffraction-unlimited stimulated emission depletion (STED) microscope.Although commercial STED systems are available today, for many users of confocal laser scanning microscopes the option of retrofitting their confocal system to a STED system ready for diffraction-unlimited imaging may present an attractive option. The easySTED principle allowing for a joint beam path of excitation and depletion light promises some advantages concerning technical complexity and alignment effort for such an STED upgrade. In the one beam path design of easySTED the use of a common laser source, either a supercontinuum source or two separate lasers coupled into the same single-mode fiber, becomes feasible. The alignment of the focal light distribution of the STED beam relative to that of the excitation beam in all three spatial dimensions is therefore omitted respectively reduced to coupling the STED laser into the common single-mode fiber. Thus, only minor modifications need to be applied to the beam path in the confocal microscope to be upgraded. Those comprise adding polarization control elements and the easySTED waveplate, and adapting the beamsplitter to the excitation/STED wavelength combination.

  6. Correlative Single-Molecule Localization Microscopy and Confocal Microscopy.

    PubMed

    Soeller, Christian; Hou, Yufeng; Jayasinghe, Isuru D; Baddeley, David; Crossman, David

    2017-01-01

    Single-molecule localization microscopy allows the ability to image fluorescence labeled molecular targets at nanoscale resolution. However, for many biological questions the ability to provide tissue and cellular context in addition to these high resolution data is eminently informative. Here, we describe a procedure to achieve this aim by correlatively imaging human cardiac tissue first at the nanoscale with direct stochastic optical reconstruction microscopy (dSTORM) and then at the diffraction limit with conventional confocal microscopy.

  7. Confocal fluorescence microscopy to evaluate changes in adipocytes in the tumor microenvironment associated with invasive ductal carcinoma and ductal carcinoma in situ.

    PubMed

    Dobbs, Jessica L; Shin, Dongsuk; Krishnamurthy, Savitri; Kuerer, Henry; Yang, Wei; Richards-Kortum, Rebecca

    2016-09-01

    Adipose tissue is a dynamic organ that provides endocrine, inflammatory and angiogenic factors, which can assist breast carcinoma cells with invasion and metastasis. Previous studies have shown that adipocytes adjacent to carcinoma, known as cancer-associated adipocytes, undergo extensive changes that correspond to an "activated phenotype," such as reduced size relative to adipocytes in non-neoplastic breast tissue. Optical imaging provides a tool that can be used to characterize adipocyte morphology and other features of the tumor microenvironment. In this study, we used confocal fluorescence microscopy to acquire images of freshly excised breast tissue stained topically with proflavine. We developed a computerized algorithm to identify and quantitatively measure phenotypic properties of adipocytes located adjacent to and far from normal collagen, ductal carcinoma in situ and invasive ductal carcinoma. Adipocytes were measured in confocal fluorescence images of fresh breast tissue collected from 22 patients. Results show that adipocytes adjacent to neoplastic tissue margins have significantly smaller area compared to adipocytes far from the margins of neoplastic lesions and compared to adipocytes adjacent to non-neoplastic collagenous stroma. These findings suggest that confocal microscopic images can be utilized to evaluate phenotypic properties of adipocytes in breast stroma which may be useful in defining alterations in microenvironment that may aid in the development and progression of neoplastic lesions. © 2016 UICC.

  8. Optical coherence tomography and confocal microscopy investigations of dental prostheses

    NASA Astrophysics Data System (ADS)

    Negrutiu, Meda L.; Sinescu, Cosmin; Hughes, Michael; Bradu, Adrian; Rominu, Mihai; Todea, Carmen; Dobre, George; Podoleanu, Adrian

    2008-09-01

    Dental prostheses are very complex systems, heterogenous in structure, made up from various materials, with different physical properties. An essential question mark is on the physical, chemical and mechanical compatibility between these materials. They have to satisfy high stress requirements as well as esthetic challenges. The masticatory stress may induce fractures of the prostheses, which may be triggered by initial materials defects or by alterations of the technological process. The failures of dental prostheses lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of en-face optical coherence tomography as a possible non-invasive high resolution method in supplying the necessary information on the material defects of dental prostheses and microleakage at prosthetic interfaces. C-scan and B-scan OCT images as well as confocal images are acquired from a large range of samples. Gaps between the dental interfaces and material defects are clearly exposed. We conclude that OCT can successfully be used as a noninvasive analysis method.

  9. Growth and development of the barnacle Amphibalanus amphitrite: time and spatially resolved structure and chemistry of the base plate

    PubMed Central

    Burden, Daniel K.; Spillmann, Christopher M.; Everett, Richard K.; Barlow, Daniel E.; Orihuela, Beatriz; Deschamps, Jeffrey R.; Fears, Kenan P.; Rittschof, Daniel; Wahl, Kathryn J.

    2014-01-01

    The radial growth and advancement of the adhesive interface to the substratum of many species of acorn barnacles occurs underwater and beneath an opaque, calcified shell. Here, the time-dependent growth processes involving various autofluorescent materials within the interface of live barnacles are imaged for the first time using 3D time-lapse confocal microscopy. Key features of the interface development in the striped barnacle, Amphibalanus (= Balanus) amphitrite were resolved in situ and include advancement of the barnacle/substratum interface, epicuticle membrane development, protein secretion, and calcification. Microscopic and spectroscopic techniques provide ex situ material identification of regions imaged by confocal microscopy. In situ and ex situ analysis of the interface support the hypothesis that barnacle interface development is a complex process coupling sequential, timed secretory events and morphological changes. This results in a multi-layered interface that concomitantly fulfills the roles of strongly adhering to a substratum while permitting continuous molting and radial growth at the periphery. PMID:25115515

  10. Growth and development of the barnacle Amphibalanus amphitrite: time and spatially resolved structure and chemistry of the base plate.

    PubMed

    Burden, Daniel K; Spillmann, Christopher M; Everett, Richard K; Barlow, Daniel E; Orihuela, Beatriz; Deschamps, Jeffrey R; Fears, Kenan P; Rittschof, Daniel; Wahl, Kathryn J

    2014-01-01

    The radial growth and advancement of the adhesive interface to the substratum of many species of acorn barnacles occurs underwater and beneath an opaque, calcified shell. Here, the time-dependent growth processes involving various autofluorescent materials within the interface of live barnacles are imaged for the first time using 3D time-lapse confocal microscopy. Key features of the interface development in the striped barnacle, Amphibalanus (= Balanus) amphitrite were resolved in situ and include advancement of the barnacle/substratum interface, epicuticle membrane development, protein secretion, and calcification. Microscopic and spectroscopic techniques provide ex situ material identification of regions imaged by confocal microscopy. In situ and ex situ analysis of the interface support the hypothesis that barnacle interface development is a complex process coupling sequential, timed secretory events and morphological changes. This results in a multi-layered interface that concomitantly fulfills the roles of strongly adhering to a substratum while permitting continuous molting and radial growth at the periphery.

  11. Compact divided-pupil line-scanning confocal microscope for investigation of human tissues

    NASA Astrophysics Data System (ADS)

    Glazowski, Christopher; Peterson, Gary; Rajadhyaksha, Milind

    2013-03-01

    Divided-pupil line-scanning confocal microscopy (DPLSCM) can provide a simple and low-cost approach for imaging of human tissues with pathology-like nuclear and cellular detail. Using results from a multidimensional numerical model of DPLSCM, we found optimal pupil configurations for improved axial sectioning, as well as control of speckle noise in the case of reflectance imaging. The modeling results guided the design and construction of a simple (10 component) microscope, packaged within the footprint of an iPhone, and capable of cellular resolution. We present the optical design with experimental video-images of in-vivo human tissues.

  12. Dual-axis confocal microscope for high-resolution in vivo imaging

    PubMed Central

    Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.; Kino, Gordon S.

    2007-01-01

    We describe a novel confocal microscope that uses separate low-numerical-aperture objectives with the illumination and collection axes crossed at angle θ from the midline. This architecture collects images in scattering media with high transverse and axial resolution, long working distance, large field of view, and reduced noise from scattered light. We measured transverse and axial (FWHM) resolution of 1.3 and 2.1 μm, respectively, in free space, and confirm subcellular resolution in excised esophageal mucosa. The optics may be scaled to millimeter dimensions and fiber coupled for collection of high-resolution images in vivo. PMID:12659264

  13. [In Vivo Study of Chitin in Fungal Hyphae Based on Confocal Raman Microscopy].

    PubMed

    Li, Xiao-li; Luo, Liu-bin; Zhou, Bin-xiong; Hu, Xiao-qian; Sun, Chan-jun; He, Yong

    2016-01-01

    Chitin is an important structural polysaccharide of fungal cell wall. In this paper, aerial hyphae of Colletotrichum camelliae Massee was first studied by confocal Raman microscopy in vivo. Firstly, the optimal experimental parameters of hyphae for collecting the Raman spectra were determined, and the typical Raman spectra of hyphae, chitin standard and background were acquired. By comparing analysis, characteristic peaks of chitin were found in hyphae. Then, a region of interesting on hyphae was selected for Raman scanning. Through principal component analysis, the Raman signal of hyphae and background in the scanning area can be separated clearly. Combined with loading weight plot, two main characteristic peaks of hyphae were obtained, 1 622 cm(-1) was belong to chitin and 1 368 cm(-1) was assigned to pectic polysaccharide. Finally, two and three dimension chemical images of fungal hyphae were realized based on Raman fingerprint spectra of chitin in a nondestructive way.

  14. The application of laser scanning confocal microscopy to the examination of hairs and textile fibers: an initial investigation.

    PubMed

    Kirkbride, K Paul; Tridico, Silvana R

    2010-02-25

    An initial investigation of the application of laser scanning confocal microscopy to the examination of hairs and fibers has been conducted. This technique allows the production of virtual transverse and longitudinal cross-sectional images of a wide range of hairs and fibers. Special mounting techniques are not required; specimens that have been mounted for conventional microscopy require no further treatment. Unlike physical cross-sectioning, in which it is difficult to produce multiple cross-sections from a single hair or fiber and the process is destructive, confocal microscopy allows the examiner to image the cross-section at any point in the field of view along the hair or fiber and it is non-destructive. Confocal microscopy is a fluorescence-based technique. The images described in this article were collected using only the autofluorescence exhibited by the specimen (i.e. fluorescence staining was not necessary). Colorless fibers generally and hairs required excitation at 405 nm in order to stimulate useful autofluorescence; longer wavelength excitation was suitable for dyed fibers. Although confocal microscopy was found to be generally applicable to the generation virtual transverse cross-sections from a wide range of hairs and fibers, on some occasions the autofluorescence signal was attenuated by heavy pigmentation or the presence of an opaque medulla in hairs, and by heavy delustering or the presence of air-filled voids in the case of fibers. In these situations only partial cross-sections were obtained. 2009 Elsevier Ireland Ltd. All rights reserved.

  15. Quantitative image analysis for investigating cell-matrix interactions

    NASA Astrophysics Data System (ADS)

    Burkel, Brian; Notbohm, Jacob

    2017-07-01

    The extracellular matrix provides both chemical and physical cues that control cellular processes such as migration, division, differentiation, and cancer progression. Cells can mechanically alter the matrix by applying forces that result in matrix displacements, which in turn may localize to form dense bands along which cells may migrate. To quantify the displacements, we use confocal microscopy and fluorescent labeling to acquire high-contrast images of the fibrous material. Using a technique for quantitative image analysis called digital volume correlation, we then compute the matrix displacements. Our experimental technology offers a means to quantify matrix mechanics and cell-matrix interactions. We are now using these experimental tools to modulate mechanical properties of the matrix to study cell contraction and migration.

  16. High-resolution confocal imaging of wall ingrowth deposition in plant transfer cells: Semi-quantitative analysis of phloem parenchyma transfer cell development in leaf minor veins of Arabidopsis.

    PubMed

    Nguyen, Suong T T; McCurdy, David W

    2015-04-23

    Transfer cells (TCs) are trans-differentiated versions of existing cell types designed to facilitate enhanced membrane transport of nutrients at symplasmic/apoplasmic interfaces. This transport capacity is conferred by intricate wall ingrowths deposited secondarily on the inner face of the primary cell wall, hence promoting the potential trans-membrane flux of solutes and consequently assigning TCs as having key roles in plant growth and productivity. However, TCs are typically positioned deep within tissues and have been studied mostly by electron microscopy. Recent advances in fluorophore labelling of plant cell walls using a modified pseudo-Schiff-propidium iodide (mPS-PI) staining procedure in combination with high-resolution confocal microscopy have allowed visualization of cellular details of individual tissue layers in whole mounts, hence enabling study of tissue and cellular architecture without the need for tissue sectioning. Here we apply a simplified version of the mPS-PI procedure for confocal imaging of cellulose-enriched wall ingrowths in vascular TCs at the whole tissue level. The simplified mPS-PI staining procedure produced high-resolution three-dimensional images of individual cell types in vascular bundles and, importantly, wall ingrowths in phloem parenchyma (PP) TCs in minor veins of Arabidopsis leaves and companion cell TCs in pea. More efficient staining of tissues was obtained by replacing complex clearing procedures with a simple post-fixation bleaching step. We used this modified procedure to survey the presence of PP TCs in other tissues of Arabidopsis including cotyledons, cauline leaves and sepals. This high-resolution imaging enabled us to classify different stages of wall ingrowth development in Arabidopsis leaves, hence enabling semi-quantitative assessment of the extent of wall ingrowth deposition in PP TCs at the whole leaf level. Finally, we conducted a defoliation experiment as an example of using this approach to statistically analyze responses of PP TC development to leaf ablation. Use of a modified mPS-PI staining technique resulted in high-resolution confocal imaging of polarized wall ingrowth deposition in TCs. This technique can be used in place of conventional electron microscopy and opens new possibilities to study mechanisms determining polarized deposition of wall ingrowths and use reverse genetics to identify regulatory genes controlling TC trans-differentiation.

  17. Segmentation and Morphometric Analysis of Cells from Fluorescence Microscopy Images of Cytoskeletons

    PubMed Central

    Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo

    2013-01-01

    We developed a method to reconstruct cell geometry from confocal fluorescence microscopy images of the cytoskeleton. In the method, region growing was implemented twice. First, it was applied to the extracellular regions to differentiate them from intracellular noncytoskeletal regions, which both appear black in fluorescence microscopy imagery, and then to cell regions for cell identification. Analysis of morphological parameters revealed significant changes in cell shape associated with cytoskeleton disruption, which offered insight into the mechanical role of the cytoskeleton in maintaining cell shape. The proposed segmentation method is promising for investigations on cell morphological changes with respect to internal cytoskeletal structures. PMID:23762186

  18. Segmentation and morphometric analysis of cells from fluorescence microscopy images of cytoskeletons.

    PubMed

    Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo

    2013-01-01

    We developed a method to reconstruct cell geometry from confocal fluorescence microscopy images of the cytoskeleton. In the method, region growing was implemented twice. First, it was applied to the extracellular regions to differentiate them from intracellular noncytoskeletal regions, which both appear black in fluorescence microscopy imagery, and then to cell regions for cell identification. Analysis of morphological parameters revealed significant changes in cell shape associated with cytoskeleton disruption, which offered insight into the mechanical role of the cytoskeleton in maintaining cell shape. The proposed segmentation method is promising for investigations on cell morphological changes with respect to internal cytoskeletal structures.

  19. MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES, EMBRYOS AND FETAL LIMBS USING CONFOCAL MICROSCOPY

    EPA Science Inventory

    The emergence of confocal laser scanning microscopy (CLSM) as a technique capable of optically generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure offers a viable alternative to traditional section...

  20. Confocal microscopy studies of morphology and apoptosis: ovaries, limbs, embryos and insects

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ap...

  1. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  2. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  3. GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method

    PubMed Central

    Kim, Byungyeon; Park, Byungjun; Lee, Seungrag; Won, Youngjae

    2016-01-01

    We demonstrated GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method. Our algorithm was verified for various fluorescence lifetimes and photon numbers. The GPU processing time was faster than the physical scanning time for images up to 800 × 800, and more than 149 times faster than a single core CPU. The frame rate of our system was demonstrated to be 13 fps for a 200 × 200 pixel image when observing maize vascular tissue. This system can be utilized for observing dynamic biological reactions, medical diagnosis, and real-time industrial inspection. PMID:28018724

  4. Assessing delivery and quantifying efficacy of small interfering ribonucleic acid therapeutics in the skin using a dual-axis confocal microscope

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun; Gonzalez-Gonzalez, Emilio; Smith, Bryan R.; Gambhir, Sanjiv S.; Kino, Gordon S.; Solgaard, Olav; Kaspar, Roger L.; Contag, Christopher H.

    2010-05-01

    Transgenic reporter mice and advances in imaging instrumentation are enabling real-time visualization of cellular mechanisms in living subjects and accelerating the development of novel therapies. Innovative confocal microscope designs are improving their utility for microscopic imaging of fluorescent reporters in living animals. We develop dual-axis confocal (DAC) microscopes for such in vivo studies and create mouse models where fluorescent proteins are expressed in the skin for the purpose of advancing skin therapeutics and transdermal delivery tools. Three-dimensional image volumes, through the different skin compartments of the epidermis and dermis, can be acquired in several seconds with the DAC microscope in living mice, and are comparable to histologic analyses of reporter protein expression patterns in skin sections. Intravital imaging with the DAC microscope further enables visualization of green fluorescent protein (GFP) reporter gene expression in the skin over time, and quantification of transdermal delivery of small interfering RNA (siRNA) and therapeutic efficacy. Visualization of transdermal delivery of nucleic acids will play an important role in the development of innovative strategies for treating skin pathologies.

  5. Two improved coherent optical feedback systems for optical information processing

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Bartholomew, B.; Cederquist, J.

    1976-01-01

    Coherent optical feedback systems are Fabry-Perot interferometers modified to perform optical information processing. Two new systems based on plane parallel and confocal Fabry-Perot interferometers are introduced. The plane parallel system can be used for contrast control, intensity level selection, and image thresholding. The confocal system can be used for image restoration and solving partial differential equations. These devices are simpler and less expensive than previous systems. Experimental results are presented to demonstrate their potential for optical information processing.

  6. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions

    PubMed Central

    Sachse, F. B.

    2015-01-01

    Microstructural characterization of cardiac tissue and its remodeling in disease is a crucial step in many basic research projects. We present a comprehensive approach for three-dimensional characterization of cardiac tissue at the submicrometer scale. We developed a compression-free mounting method as well as labeling and imaging protocols that facilitate acquisition of three-dimensional image stacks with scanning confocal microscopy. We evaluated the approach with normal and infarcted ventricular tissue. We used the acquired image stacks for segmentation, quantitative analysis and visualization of important tissue components. In contrast to conventional mounting, compression-free mounting preserved cell shapes, capillary lumens and extracellular laminas. Furthermore, the new approach and imaging protocols resulted in high signal-to-noise ratios at depths up to 60 μm. This allowed extensive analyses revealing major differences in volume fractions and distribution of cardiomyocytes, blood vessels, fibroblasts, myofibroblasts and extracellular space in control versus infarct border zone. Our results show that the developed approach yields comprehensive data on microstructure of cardiac tissue and its remodeling in disease. In contrast to other approaches, it allows quantitative assessment of all major tissue components. Furthermore, we suggest that the approach will provide important data for physiological models of cardiac tissue at the submicrometer scale. PMID:26399990

  7. Phase and Index of Refraction Imaging by Hyperspectral Reflectance Confocal Microscopy.

    PubMed

    Selci, Stefano

    2016-12-16

    A hyperspectral reflectance confocal microscope (HSCM) was realized by CNR-ISC (Consiglio Nazionale delle Ricerche-Istituto dei Sistemi Complessi) a few years ago. The instrument and data have been already presented and discussed. The main activity of this HSCM has been within biology, and reflectance data have shown good matching between spectral signatures and the nature or evolution on many types of cells. Such a relationship has been demonstrated mainly with statistical tools like Principal Component Analysis (PCA), or similar concepts, which represent a very common approach for hyperspectral imaging. However, the point is that reflectance data contains much more useful information and, moreover, there is an obvious interest to go from reflectance, bound to the single experiment, to reflectivity, or other physical quantities, related to the sample alone. To accomplish this aim, we can follow well-established analyses and methods used in reflectance spectroscopy. Therefore, we show methods of calculations for index of refraction n , extinction coefficient k and local thicknesses of frequency starting from phase images by fast Kramers-Kronig (KK) algorithms and the Abeles matrix formalism. Details, limitations and problems of the presented calculations as well as alternative procedures are given for an example of HSCM images of red blood cells (RBC).

  8. Live-cell imaging by confocal Raman and fluorescence microscopy recognizes the crystal structure of calcium carbonate particles in HeLa cells.

    PubMed

    Abalymov, Аnatoly A; Verhovskiy, Roman A; Novoselova, Marina V; Parakhonskiy, Bogdan V; Gorin, Dmitry A; Yashchenok, Alexey M; Sukhorukov, Gleb B

    2018-06-19

    Porous calcium carbonate (CaCO 3 ) vaterite particles are very attractive templates for the encapsulation of pharmaceuticals and for the construction of hollow polyelectrolyte capsules, sensors, and enzyme-catalyzed reactors. Although CaCO 3 is biocompatible and biodegradable, little is known about the intercellular behavior and properties of vaterite particles in the cytoplasm of cells. In this work, we combined confocal Raman and fluorescent microscopy for the imaging of porous CaCO 3 vaterite particles in HeLa cells to study the uptake and status of the particles inside the cells in real time. Analysis of the fluorescence images showed that the particles penetrated the plasma membrane 3 h after being added to the cell culture and that the internalization of the particles continued up to 48 h. The crystal structure of individual vaterite particles in the cytoplasm of HeLa cells did not obviously change for 144 h. For clusters of particles, however, we identified Raman spectroscopic signatures of the stable calcite phase after 72 h of incubation, confirming an ion-exchange mechanism of vaterite transformation to calcite. The results indicate that our imaging approach to examining inorganic particles in living cells may have theranostic applications. This article is protected by copyright. All rights reserved.

  9. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns

    NASA Astrophysics Data System (ADS)

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-09-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  10. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns.

    PubMed

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-01-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  11. Fluorescence multi-scale endoscopy and its applications in the study and diagnosis of gastro-intestinal diseases: set-up design and software implementation

    NASA Astrophysics Data System (ADS)

    Gómez-García, Pablo Aurelio; Arranz, Alicia; Fresno, Manuel; Desco, Manuel; Mahmood, Umar; Vaquero, Juan José; Ripoll, Jorge

    2015-06-01

    Endoscopy is frequently used in the diagnosis of several gastro-intestinal pathologies as Crohn disease, ulcerative colitis or colorectal cancer. It has great potential as a non-invasive screening technique capable of detecting suspicious alterations in the intestinal mucosa, such as inflammatory processes. However, these early lesions usually cannot be detected with conventional endoscopes, due to lack of cellular detail and the absence of specific markers. Due to this lack of specificity, the development of new endoscopy technologies, which are able to show microscopic changes in the mucosa structure, are necessary. We here present a confocal endomicroscope, which in combination with a wide field fluorescence endoscope offers fast and specific macroscopic information through the use of activatable probes and a detailed analysis at cellular level of the possible altered tissue areas. This multi-modal and multi-scale imaging module, compatible with commercial endoscopes, combines near-infrared fluorescence (NIRF) measurements (enabling specific imaging of markers of disease and prognosis) and confocal endomicroscopy making use of a fiber bundle, providing a cellular level resolution. The system will be used in animal models exhibiting gastro-intestinal diseases in order to analyze the use of potential diagnostic markers in colorectal cancer. In this work, we present in detail the set-up design and the software implementation in order to obtain simultaneous RGB/NIRF measurements and short confocal scanning times.

  12. Reflectance confocal microscopy of tinea nigra: comparing images with dermoscopy and mycological examination results.

    PubMed

    Veasey, John Verrinder; Avila, Ricardo Bertozzi de; Ferreira, Marcus Antônio Maia de Olivas; Lazzarini, Rosana

    2017-01-01

    Tinea nigra is a superficial mycosis whose diagnosis is confirmed by isolating the infectious agent Hortae werneckii through mycological examinations. In vivo reflectance confocal microscopy, initially used in melanocytic dermatosis, has been used with skin infectious diseases to identify the parasite at the cellular level. We report, for the first time in the scientific literature, the use of reflectance confocal microscopy in a case of tinea nigra and compare its findings to dermoscopy and mycological examination results.

  13. Reflectance confocal microscopy of tinea nigra: comparing images with dermoscopy and mycological examination results*

    PubMed Central

    Veasey, John Verrinder; de Avila, Ricardo Bertozzi; Ferreira, Marcus Antônio Maia de Olivas; Lazzarini, Rosana

    2017-01-01

    Tinea nigra is a superficial mycosis whose diagnosis is confirmed by isolating the infectious agent Hortae werneckii through mycological examinations. In vivo reflectance confocal microscopy, initially used in melanocytic dermatosis, has been used with skin infectious diseases to identify the parasite at the cellular level. We report, for the first time in the scientific literature, the use of reflectance confocal microscopy in a case of tinea nigra and compare its findings to dermoscopy and mycological examination results. PMID:28954116

  14. Fast Confocal Raman Imaging Using a 2-D Multifocal Array for Parallel Hyperspectral Detection.

    PubMed

    Kong, Lingbo; Navas-Moreno, Maria; Chan, James W

    2016-01-19

    We present the development of a novel confocal hyperspectral Raman microscope capable of imaging at speeds up to 100 times faster than conventional point-scan Raman microscopy under high noise conditions. The microscope utilizes scanning galvomirrors to generate a two-dimensional (2-D) multifocal array at the sample plane, generating Raman signals simultaneously at each focus of the array pattern. The signals are combined into a single beam and delivered through a confocal pinhole before being focused through the slit of a spectrometer. To separate the signals from each row of the array, a synchronized scan mirror placed in front of the spectrometer slit positions the Raman signals onto different pixel rows of the detector. We devised an approach to deconvolve the superimposed signals and retrieve the individual spectra at each focal position within a given row. The galvomirrors were programmed to scan different focal arrays following Hadamard encoding patterns. A key feature of the Hadamard detection is the reconstruction of individual spectra with improved signal-to-noise ratio. Using polystyrene beads as test samples, we demonstrated not only that our system images faster than a conventional point-scan method but that it is especially advantageous under noisy conditions, such as when the CCD detector operates at fast read-out rates and high temperatures. This is the first demonstration of multifocal confocal Raman imaging in which parallel spectral detection is implemented along both axes of the CCD detector chip. We envision this novel 2-D multifocal spectral detection technique can be used to develop faster imaging spontaneous Raman microscopes with lower cost detectors.

  15. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    PubMed

    Huang, Chao; Sachse, Frank B; Hitchcock, Robert W; Kaza, Aditya K

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.

  16. Confocal Imaging of porous media

    NASA Astrophysics Data System (ADS)

    Shah, S.; Crawshaw, D.; Boek, D.

    2012-12-01

    Carbonate rocks, which hold approximately 50% of the world's oil and gas reserves, have a very complicated and heterogeneous structure in comparison with sandstone reservoir rock. We present advances with different techniques to image, reconstruct, and characterize statistically the micro-geometry of carbonate pores. The main goal here is to develop a technique to obtain two dimensional and three dimensional images using Confocal Laser Scanning Microscopy. CLSM is used in epi-fluorescent imaging mode, allowing for the very high optical resolution of features well below 1μm size. Images of pore structures were captured using CLSM imaging where spaces in the carbonate samples were impregnated with a fluorescent, dyed epoxy-resin, and scanned in the x-y plane by a laser probe. We discuss the sample preparation in detail for Confocal Imaging to obtain sub-micron resolution images of heterogeneous carbonate rocks. We also discuss the technical and practical aspects of this imaging technique, including its advantages and limitation. We present several examples of this application, including studying pore geometry in carbonates, characterizing sub-resolution porosity in two dimensional images. We then describe approaches to extract statistical information about porosity using image processing and spatial correlation function. We have managed to obtain very low depth information in z -axis (~ 50μm) to develop three dimensional images of carbonate rocks with the current capabilities and limitation of CLSM technique. Hence, we have planned a novel technique to obtain higher depth information to obtain high three dimensional images with sub-micron resolution possible in the lateral and axial planes.

  17. Unsupervised identification of cone photoreceptors in non-confocal adaptive optics scanning light ophthalmoscope images.

    PubMed

    Bergeles, Christos; Dubis, Adam M; Davidson, Benjamin; Kasilian, Melissa; Kalitzeos, Angelos; Carroll, Joseph; Dubra, Alfredo; Michaelides, Michel; Ourselin, Sebastien

    2017-06-01

    Precise measurements of photoreceptor numerosity and spatial arrangement are promising biomarkers for the early detection of retinal pathologies and may be valuable in the evaluation of retinal therapies. Adaptive optics scanning light ophthalmoscopy (AOSLO) is a method of imaging that corrects for aberrations of the eye to acquire high-resolution images that reveal the photoreceptor mosaic. These images are typically graded manually by experienced observers, obviating the robust, large-scale use of the technology. This paper addresses unsupervised automated detection of cones in non-confocal, split-detection AOSLO images. Our algorithm leverages the appearance of split-detection images to create a cone model that is used for classification. Results show that it compares favorably to the state-of-the-art, both for images of healthy retinas and for images from patients affected by Stargardt disease. The algorithm presented also compares well to manual annotation while excelling in speed.

  18. Light Microscopy at Maximal Precision

    NASA Astrophysics Data System (ADS)

    Bierbaum, Matthew; Leahy, Brian D.; Alemi, Alexander A.; Cohen, Itai; Sethna, James P.

    2017-10-01

    Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy images, extracting all the useful information theoretically contained in a complex microscope image. Using a generic, methodological approach, we extract the information by fitting experimental images with a detailed optical model of the microscope, a method we call parameter extraction from reconstructing images (PERI). As a proof of principle, we demonstrate this approach with a confocal image of colloidal spheres, improving measurements of particle positions and radii by 10-100 times over current methods and attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat. Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where we expect accuracies of 1 nm and 0.1 pm, respectively.

  19. 3D Filament Network Segmentation with Multiple Active Contours

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  20. 78 FR 33098 - Prospective Grant of Co-Exclusive Licenses: Multi-Focal Structured Illumination Microscopy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ...-Exclusive Licenses: Multi-Focal Structured Illumination Microscopy Systems and Methods AGENCY: National... pertains to a system and method for digital confocal microscopy that rapidly processes enhanced images. In particular, the invention is a method for digital confocal microscopy that includes a digital mirror device...

  1. Computational optical palpation: a finite-element approach to micro-scale tactile imaging using a compliant sensor

    PubMed Central

    Sampson, David D.; Kennedy, Brendan F.

    2017-01-01

    High-resolution tactile imaging, superior to the sense of touch, has potential for future biomedical applications such as robotic surgery. In this paper, we propose a tactile imaging method, termed computational optical palpation, based on measuring the change in thickness of a thin, compliant layer with optical coherence tomography and calculating tactile stress using finite-element analysis. We demonstrate our method on test targets and on freshly excised human breast fibroadenoma, demonstrating a resolution of up to 15–25 µm and a field of view of up to 7 mm. Our method is open source and readily adaptable to other imaging modalities, such as ultrasonography and confocal microscopy. PMID:28250098

  2. Tracking protein dynamics with photoconvertible Dendra2 on spinning disk confocal systems.

    PubMed

    Woods, Elena; Courtney, Jane; Scholz, Dimitri; Hall, William W; Gautier, Virginie W

    2014-12-01

    Understanding the dynamic properties of cellular proteins in live cells and in real time is essential to delineate their function. In this context, we introduce the Fluorescence Recovery After Photobleaching-Photoactivation unit (Andor) combined with the Nikon Eclipse Ti E Spinning Disk (Andor) confocal microscope as an advantageous and robust platform to exploit the properties of the Dendra2 photoconvertible fluorescent protein (Evrogen) and analyse protein subcellular trafficking in living cells. A major advantage of the spinning disk confocal is the rapid acquisition speed, enabling high temporal resolution of cellular processes. Furthermore, photoconversion and imaging are less invasive on the spinning disk confocal as the cell exposition to illumination power is reduced, thereby minimizing photobleaching and increasing cell viability. We have tested this commercially available platform using experimental settings adapted to track the migration of fast trafficking proteins such as UBC9, Fibrillarin and have successfully characterized their differential motion between subnuclear structures. We describe here step-by-step procedures, with emphasis on cellular imaging parameters, to successfully perform the dynamic imaging and photoconversion of Dendra2-fused proteins at high spatial and temporal resolutions necessary to characterize the trafficking pathways of proteins. © 2014 The Authors. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of Royal Microscopical Society.

  3. [Watching dance of the molecules - CARS microscopy].

    PubMed

    Korczyński, Jaroslaw; Kubiak, Katarzyna; Węgłowska, Edyta

    2017-01-01

    CARS (Coherent Anti-Stokes Raman Scattering) microscopy is an imaging method for living cells visualization as well as for food or cosmetics material analysis without the need for staining. The near infrared laser source generates the CARS signal - the characteristic intrinsic vibrational contrast of the molecules in a sample which is no longer caused by staining, but by the molecules themselves. It provides the benefit of a non-toxic, non-destructive and almost noninvasive method for sample imaging. CARS can easily be combined with fluorescence confocal microscopy so it is an excellent complementary imaging method. In this article we showed some of the applications for this technology: imaging of lipid droplets inside human HaCaT cells and analysis of the composition of cosmetic products. Moreover we believe, that soon new fields of application become accessible for this rapidly developing branch of microscopy.

  4. Diagnostic PET Imaging of Mammary Microcalcifications Using 64Cu-DOTA-Alendronate in a Rat Model of Breast Cancer.

    PubMed

    Ahrens, Bradley J; Li, Lin; Ciminera, Alexandra K; Chea, Junie; Poku, Erasmus; Bading, James R; Weist, Michael R; Miller, Marcia M; Colcher, David M; Shively, John E

    2017-09-01

    The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64 Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64 Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64 Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague-Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64 Cu-DOTA-alendronate. Results: 64 Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64 Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64 Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64 Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64 Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as well as the differentiation of malignant versus benign tumors based on absolute labeling uptake. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  5. Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer

    NASA Astrophysics Data System (ADS)

    Jabbour, Joey M.; Cheng, Shuna; Malik, Bilal H.; Cuenca, Rodrigo; Jo, Javier A.; Wright, John; Cheng, Yi-Shing Lisa; Maitland, Kristen C.

    2013-04-01

    Optical imaging techniques using a variety of contrast mechanisms are under evaluation for early detection of epithelial precancer; however, tradeoffs in field of view (FOV) and resolution may limit their application. Therefore, we present a multiscale multimodal optical imaging system combining macroscopic biochemical imaging of fluorescence lifetime imaging (FLIM) with subcellular morphologic imaging of reflectance confocal microscopy (RCM). The FLIM module images a 16×16 mm2 tissue area with 62.5 μm lateral and 320 ps temporal resolution to guide cellular imaging of suspicious regions. Subsequently, coregistered RCM images are acquired at 7 Hz with 400 μm diameter FOV, <1 μm lateral and 3.5 μm axial resolution. FLIM-RCM imaging was performed on a tissue phantom, normal porcine buccal mucosa, and a hamster cheek pouch model of oral carcinogenesis. While FLIM is sensitive to biochemical and macroscopic architectural changes in tissue, RCM provides images of cell nuclear morphology, all key indicators of precancer progression.

  6. High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy.

    PubMed

    Pozzi, P; Wilding, D; Soloviev, O; Verstraete, H; Bliek, L; Vdovin, G; Verhaegen, M

    2017-01-23

    The quality of fluorescence microscopy images is often impaired by the presence of sample induced optical aberrations. Adaptive optical elements such as deformable mirrors or spatial light modulators can be used to correct aberrations. However, previously reported techniques either require special sample preparation, or time consuming optimization procedures for the correction of static aberrations. This paper reports a technique for optical sectioning fluorescence microscopy capable of correcting dynamic aberrations in any fluorescent sample during the acquisition. This is achieved by implementing adaptive optics in a non conventional confocal microscopy setup, with multiple programmable confocal apertures, in which out of focus light can be separately detected, and used to optimize the correction performance with a sampling frequency an order of magnitude faster than the imaging rate of the system. The paper reports results comparing the correction performances to traditional image optimization algorithms, and demonstrates how the system can compensate for dynamic changes in the aberrations, such as those introduced during a focal stack acquisition though a thick sample.

  7. Oncologic photodynamic diagnosis and therapy: confocal Raman/fluorescence imaging of metal phthalocyanines in human breast cancer tissue in vitro.

    PubMed

    Abramczyk, Halina; Brozek-Pluska, Beata; Surmacki, Jakub; Musial, Jacek; Kordek, Radzislaw

    2014-11-07

    Raman microspectroscopy and confocal Raman imaging combined with confocal fluorescence were used to study the distribution and aggregation of aluminum tetrasulfonated phthalocyanine (AlPcS4) in noncancerous and cancerous breast tissues. The results demonstrate the ability of Raman spectroscopy to distinguish between noncancerous and cancerous human breast tissue and to identify differences in the distribution and aggregation of aluminum phthalocyanine, which is a potential photosensitizer in photodynamic therapy (PDT), photodynamic diagnosis (PDD) and photoimmunotherapy (PIT) of cancer. We have observed that the distribution of aluminum tetrasulfonated phthalocyanine confined in cancerous tissue is markedly different from that in noncancerous tissue. We have concluded that Raman imaging can be treated as a new and powerful technique useful in cancer photodynamic therapy, increasing our understanding of the mechanisms and efficiency of photosensitizers by better monitoring localization in cancer cells as well as the clinical assessment of the therapeutic effects of PDT and PIT.

  8. Multimodal ophthalmic imaging using swept source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Malone, Joseph D.; El-Haddad, Mohamed T.; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Tao, Yuankai K.

    2016-03-01

    Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) benefit clinical diagnostic imaging in ophthalmology by enabling in vivo noninvasive en face and volumetric visualization of retinal structures, respectively. Spectrally encoding methods enable confocal imaging through fiber optics and reduces system complexity. Previous applications in ophthalmic imaging include spectrally encoded confocal scanning laser ophthalmoscopy (SECSLO) and a combined SECSLO-OCT system for image guidance, tracking, and registration. However, spectrally encoded imaging suffers from speckle noise because each spectrally encoded channel is effectively monochromatic. Here, we demonstrate in vivo human retinal imaging using a swept source spectrally encoded scanning laser ophthalmoscope and OCT (SSSESLO- OCT) at 1060 nm. SS-SESLO-OCT uses a shared 100 kHz Axsun swept source, shared scanner and imaging optics, and are detected simultaneously on a shared, dual channel high-speed digitizer. SESLO illumination and detection was performed using the single mode core and multimode inner cladding of a double clad fiber coupler, respectively, to preserve lateral resolution while improving collection efficiency and reducing speckle contrast at the expense of confocality. Concurrent en face SESLO and cross-sectional OCT images were acquired with 1376 x 500 pixels at 200 frames-per-second. Our system design is compact and uses a shared light source, imaging optics, and digitizer, which reduces overall system complexity and ensures inherent co-registration between SESLO and OCT FOVs. En face SESLO images acquired concurrent with OCT cross-sections enables lateral motion tracking and three-dimensional volume registration with broad applications in multivolume OCT averaging, image mosaicking, and intraoperative instrument tracking.

  9. Biological applications of confocal fluorescence polarization microscopy

    NASA Astrophysics Data System (ADS)

    Bigelow, Chad E.

    Fluorescence polarization microscopy is a powerful modality capable of sensing changes in the physical properties and local environment of fluorophores. In this thesis we present new applications for the technique in cancer diagnosis and treatment and explore the limits of the modality in scattering media. We describe modifications to our custom-built confocal fluorescence microscope that enable dual-color imaging, optical fiber-based confocal spectroscopy and fluorescence polarization imaging. Experiments are presented that indicate the performance of the instrument for all three modalities. The limits of confocal fluorescence polarization imaging in scattering media are explored and the microscope parameters necessary for accurate polarization images in this regime are determined. A Monte Carlo routine is developed to model the effect of scattering on images. Included in it are routines to track the polarization state of light using the Mueller-Stokes formalism and a model for fluorescence generation that includes sampling the excitation light polarization ellipse, Brownian motion of excited-state fluorophores in solution, and dipole fluorophore emission. Results from this model are compared to experiments performed on a fluorophore-embedded polymer rod in a turbid medium consisting of polystyrene microspheres in aqueous suspension. We demonstrate the utility of the fluorescence polarization imaging technique for removal of contaminating autofluorescence and for imaging photodynamic therapy drugs in cell monolayers. Images of cells expressing green fluorescent protein are extracted from contaminating fluorescein emission. The distribution of meta-tetrahydroxypheny1chlorin in an EMT6 cell monolayer is also presented. A new technique for imaging enzyme activity is presented that is based on observing changes in the anisotropy of fluorescently-labeled substrates. Proof-of-principle studies are performed in a model system consisting of fluorescently labeled bovine serum albumin attached to sepharose beads. The action of trypsin and proteinase K on the albumin is monitored to demonstrate validity of the technique. Images of the processing of the albumin in J774 murine macrophages are also presented indicating large intercellular differences in enzyme activity. Future directions for the technique are also presented, including the design of enzyme probes specific for prostate specific antigen based on fluorescently-labeled dendrimers. A technique for enzyme imaging based on extracellular autofluorescence is also proposed.

  10. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2014-09-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.

  11. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    PubMed

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  12. Imaging rat esophagus using combination of reflectance confocal and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Zhuo, S. M.; Chen, J. X.; Jiang, X. S.; Lu, K. C.; Xie, S. S.

    2008-08-01

    We combine reflectance confocal microscopy (RCM) with multiphoton microscopy (MPM) to image rat esophagus. The two imaging modalities allow detection of layered-resolved complementary information from esophagus. In the keratinizing layer, the keratinocytes boundaries can be characterized by RCM, while the keratinocytes cytoplasm (keratin) can be further imaged by multiphoton autofluorescence signal. In the epithelium, the epithelial cellular boundaries and nucleus can be detected by RCM, and MPM can be used for imaging epithelial cell cytoplasm and monitoring metabolic state of epithelium. In the stroma, multiphoton autofluorescence signal is used to image elastin and second harmonic generation signal is utilized to detect collagen, while RCM is used to determine the optical property of stroma. Overall, these results suggest that the combination of RCM and MPM has potential to provide more important and comprehensive information for early diagnosis of esophageal cancer.

  13. Confocal imaging of benign and malignant proliferative skin lesions in vivo

    NASA Astrophysics Data System (ADS)

    Gonzalez, Salvador; Rajadhyaksha, Milind M.; Anderson, R. Rox

    1999-06-01

    Near-infrared confocal reflectance microscopy (CM) provides non- invasive real-time images of thin en-face tissue sections with high resolution and contrast. Imaging of cells, nuclei, other organelles, microvessels, and hair follicles has been possible at resolution comparable to standard histology, to a maximum depth of 250-300 μm in human skin in vivo. We have characterized psoriasis as a prototype of benign proliferative skin conditions, and non-pigmented skin malignancies in vivo based on their unstained, native histologic features using CM. Our data shows that reflectance CM may potentially diagnose and morphometrically evaluate proliferative skin lesions in vivo.

  14. Characterisation of a resolution enhancing image inversion interferometer.

    PubMed

    Wicker, Kai; Sindbert, Simon; Heintzmann, Rainer

    2009-08-31

    Image inversion interferometers have the potential to significantly enhance the lateral resolution and light efficiency of scanning fluorescence microscopes. Self-interference of a point source's coherent point spread function with its inverted copy leads to a reduction in the integrated signal for off-axis sources compared to sources on the inversion axis. This can be used to enhance the resolution in a confocal laser scanning microscope. We present a simple image inversion interferometer relying solely on reflections off planar surfaces. Measurements of the detection point spread function for several types of light sources confirm the predicted performance and suggest its usability for scanning confocal fluorescence microscopy.

  15. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    PubMed Central

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  16. Miniature objective lens with variable focus for confocal endomicroscopy

    PubMed Central

    Kim, Minkyu; Kang, DongKyun; Wu, Tao; Tabatabaei, Nima; Carruth, Robert W.; Martinez, Ramses V; Whitesides, George M.; Nakajima, Yoshikazu; Tearney, Guillermo J.

    2014-01-01

    Spectrally encoded confocal microscopy (SECM) is a reflectance confocal microscopy technology that can rapidly image large areas of luminal organs at microscopic resolution. One of the main challenges for large-area SECM imaging in vivo is maintaining the same imaging depth within the tissue when patient motion and tissue surface irregularity are present. In this paper, we report the development of a miniature vari-focal objective lens that can be used in an SECM endoscopic probe to conduct adaptive focusing and to maintain the same imaging depth during in vivo imaging. The vari-focal objective lens is composed of an aspheric singlet with an NA of 0.5, a miniature water chamber, and a thin elastic membrane. The water volume within the chamber was changed to control curvature of the elastic membrane, which subsequently altered the position of the SECM focus. The vari-focal objective lens has a diameter of 5 mm and thickness of 4 mm. A vari-focal range of 240 μm was achieved while maintaining lateral resolution better than 2.6 μm and axial resolution better than 26 μm. Volumetric SECM images of swine esophageal tissues were obtained over the vari-focal range of 260 μm. SECM images clearly visualized cellular features of the swine esophagus at all focal depths, including basal cell nuclei, papillae, and lamina propria. PMID:25574443

  17. Ex-vivo imaging of excised tissue using vital dyes and confocal microscopy

    PubMed Central

    Johnson, Simon; Rabinovitch, Peter

    2012-01-01

    Vital dyes routinely used for staining cultured cells can also be used to stain and image live tissue slices ex-vivo. Staining tissue with vital dyes allows researchers to collect structural and functional data simultaneously and can be used for qualitative or quantitative fluorescent image collection. The protocols presented here are useful for structural and functional analysis of viable properties of cells in intact tissue slices, allowing for the collection of data in a structurally relevant environment. With these protocols, vital dyes can be applied as a research tool to disease processes and properties of tissue not amenable to cell culture based studies. PMID:22752953

  18. A high-level 3D visualization API for Java and ImageJ.

    PubMed

    Schmid, Benjamin; Schindelin, Johannes; Cardona, Albert; Longair, Mark; Heisenberg, Martin

    2010-05-21

    Current imaging methods such as Magnetic Resonance Imaging (MRI), Confocal microscopy, Electron Microscopy (EM) or Selective Plane Illumination Microscopy (SPIM) yield three-dimensional (3D) data sets in need of appropriate computational methods for their analysis. The reconstruction, segmentation and registration are best approached from the 3D representation of the data set. Here we present a platform-independent framework based on Java and Java 3D for accelerated rendering of biological images. Our framework is seamlessly integrated into ImageJ, a free image processing package with a vast collection of community-developed biological image analysis tools. Our framework enriches the ImageJ software libraries with methods that greatly reduce the complexity of developing image analysis tools in an interactive 3D visualization environment. In particular, we provide high-level access to volume rendering, volume editing, surface extraction, and image annotation. The ability to rely on a library that removes the low-level details enables concentrating software development efforts on the algorithm implementation parts. Our framework enables biomedical image software development to be built with 3D visualization capabilities with very little effort. We offer the source code and convenient binary packages along with extensive documentation at http://3dviewer.neurofly.de.

  19. Confocal mosaicing microscopy of basal-cell carcinomas ex vivo: progress in digital staining to simulate histology-like appearance

    NASA Astrophysics Data System (ADS)

    Bini, Jason; Spain, James; Nehal, Kishwer; Hazelwood, Vikki; DiMarzio, Charles; Rajadhyaksha, Milind

    2011-03-01

    Confocal mosaicing microscopy enables rapid imaging of large areas of fresh tissue, without the processing that is necessary for conventional histology. Using acridine orange (1 milliMolar, 20 seconds) to stain nuclei, basal cell carcinomas were detected in fluorescence confocal mosaics of Mohs surgical excisions with sensitivity of 96.6% and specificity of 89.2%. A possible barrier toward clinical acceptance is that confocal mosaics are based on a single mode of contrast and appear in grayscale, whereas histology is based on two (hematoxylin for nuclei, eosin for cellular cytoplasm and dermis) and appears purple-and-pink. Toward addressing this barrier, we report progress in developing a multispectral analytical model for digital staining: fluorescence confocal mosaics, which show only nuclei, are digitally stained purple and overlaid on reflectance confocal mosaics, which show only cellular cytoplasm and dermis, and digitally stained pink, to mimic the appearance of histology. Comparison of digitally stained confocal mosaics by our Mohs surgeon to the corresponding Mohs histology shows good correlation for normal and tumor detail. Digitally stained confocal mosaicing microscopy may allow direct examination of freshly excised tissue and serve as an adjunct for rapid pathology at-the-bedside.

  20. In vivo reflectance confocal microscopy imaging of melanocytic skin lesions: consensus terminology glossary and illustrative images.

    PubMed

    Scope, Alon; Benvenuto-Andrade, Cristiane; Agero, Anna-Liza C; Malvehy, Josep; Puig, Susana; Rajadhyaksha, Milind; Busam, Klaus J; Marra, Diego E; Torres, Abel; Propperova, Iva; Langley, Richard G; Marghoob, Ashfaq A; Pellacani, Giovanni; Seidenari, Stefania; Halpern, Allan C; Gonzalez, Salvador

    2007-10-01

    Reflectance confocal microscopy (RCM) has been used for over 10 years for in vivo skin imaging. However, to date no standard RCM terminology has been published. To establish a glossary of terms for RCM evaluation of melanocytic lesions. Prominent RCM researchers were presented with RCM images of melanocytic lesions. Reviewers evaluated RCM images for image quality, lesion architecture, and cellular details. Reviewers could utilize published descriptors or contribute unpublished terminology to describe lesion attributes. An online meeting was conducted to reach consensus that integrates and defines existing and new RCM descriptive terms. We present a glossary with descriptors of image quality, normal skin morphology, lesion architecture, and cellular details for RCM evaluation of melanocytic lesions. Usefulness of the glossary in RCM diagnosis of melanocytic lesions needs to be assessed. Standardization of terminology is important toward implementation of RCM in the clinical setting.

  1. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen

    2007-01-01

    A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  2. Confocal laser endomicroscopy in the "in vivo" histological diagnosis of the gastrointestinal tract.

    PubMed

    De Palma, Giovanni D

    2009-12-14

    Recent technological advances in miniaturization have allowed for a confocal scanning microscope to be integrated into a conventional flexible endoscope, or into trans-endoscopic probes, a technique now known as confocal endomicroscopy or confocal laser endomicroscopy. This newly-developed technology has enabled endoscopists to collect real-time in vivo histological images or "virtual biopsies" of the gastrointestinal mucosa during endoscopy, and has stimulated significant interest in the application of this technique in clinical gastroenterology. This review aims to evaluate the current data on the technical aspects and the utility of this new technology in clinical gastroenterology and its potential impact in the future, particularly in the screening or surveillance of gastrointestinal neoplasia.

  3. Clinical usefulness of reflectance confocal microscopy in the management of facial lentigo maligna melanoma.

    PubMed

    Alarcón, I; Carrera, C; Puig, S; Malvehy, J

    2014-04-01

    Facial lentigo maligna melanoma can be a diagnostic challenge in daily clinical practice as it has similar clinical and morphological features to other lesions such as solar lentigines and pigmented actinic keratoses. Confocal microscopy is a noninvasive technique that provides real-time images of the epidermis and superficial dermis with cellular-level resolution. We describe 3 cases of suspected facial lentigo maligna that were assessed using dermoscopy and confocal microscopy before histopathology study. In the first case, diagnosed as lentigo maligna melanoma, presurgical mapping by confocal microscopy was performed to define the margins more accurately. In the second and third cases, with a clinical and dermoscopic suspicion of lentigo maligna melanoma, confocal microscopy was used to identify the optimal site for biopsy. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  4. Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis.

    PubMed

    Bertani, Francesca R; Mozetic, Pamela; Fioramonti, Marco; Iuliani, Michele; Ribelli, Giulia; Pantano, Francesco; Santini, Daniele; Tonini, Giuseppe; Trombetta, Marcella; Businaro, Luca; Selci, Stefano; Rainer, Alberto

    2017-08-21

    The possibility of detecting and classifying living cells in a label-free and non-invasive manner holds significant theranostic potential. In this work, Hyperspectral Imaging (HSI) has been successfully applied to the analysis of macrophagic polarization, given its central role in several pathological settings, including the regulation of tumour microenvironment. Human monocyte derived macrophages have been investigated using hyperspectral reflectance confocal microscopy, and hyperspectral datasets have been analysed in terms of M1 vs. M2 polarization by Principal Components Analysis (PCA). Following PCA, Linear Discriminant Analysis has been implemented for semi-automatic classification of macrophagic polarization from HSI data. Our results confirm the possibility to perform single-cell-level in vitro classification of M1 vs. M2 macrophages in a non-invasive and label-free manner with a high accuracy (above 98% for cells deriving from the same donor), supporting the idea of applying the technique to the study of complex interacting cellular systems, such in the case of tumour-immunity in vitro models.

  5. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: APPLICATIONS FOR IMAGING MORPHOLOGY AND DEATH IN EMBRYOS AND REPRODUCTIVE TISSUE/ORGANS

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. It is remarkable that procedures to test the performance of these machines are not done routinely by most investigators and thus many of the machines in the field are working at level...

  6. Confocal Microscopy and Flow Cytometry System Performance: Assessment of QA Parameters that affect data Quanitification

    EPA Science Inventory

    Flow and image cytometers can provide useful quantitative fluorescence data. We have devised QA tests to be used on both a flow cytometer and a confocal microscope to assure that the data is accurate, reproducible and precise. Flow Cytometry: We have provided two simple perform...

  7. Study of optically trapped living Trypanosoma cruzi/Trypanosoma rangeli - Rhodnius prolixus interactions by real time confocal images using CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Almeida, D. B.; Faustino, W. M.; Jacob, G. J.; Fontes, A.; Barbosa, L. C.; Cesar, C. L.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.

    2008-08-01

    One of the fundamental goals in biology is to understand the interplay between biomolecules of different cells. This happen, for example, in the first moments of the infection of a vector by a parasite that results in the adherence to the cell walls. To observe this kind of event we used an integrated Optical Tweezers and Confocal Microscopy tool. This tool allow us to use the Optical Tweezers to trigger the adhesion of the Trypanosoma cruzi and Trypanosoma rangeli parasite to the intestine wall cells and salivary gland of the Rhodnius prolixus vector and to, subsequently observe the sequence of events by confocal fluorescence microscopy under optical forces stresses. We kept the microorganism and vector cells alive using CdSe quantum dot staining. Besides the fact that Quantum Dots are bright vital fluorescent markers, the absence of photobleaching allow us to follow the events in time for an extended period. By zooming to the region of interested we have been able to acquire confocal images at the 2 to 3 frames per second rate.

  8. Diagnostic PET Imaging of Mammary Microcalcifications Using 64Cu-DOTA-Alendronate in a Rat Model of Breast Cancer

    PubMed Central

    Ahrens, Bradley J.; Li, Lin; Ciminera, Alexandra K.; Chea, Junie; Poku, Erasmus; Bading, James R.; Weist, Michael R.; Miller, Marcia M.; Colcher, David M.

    2017-01-01

    The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague–Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64Cu-DOTA-alendronate. Results: 64Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as well as the differentiation of malignant versus benign tumors based on absolute labeling uptake. PMID:28450564

  9. Effects of amino acids enriched tears substitutes on the cornea of patients with dysfunctional tear syndrome.

    PubMed

    Aragona, Pasquale; Rania, Laura; Roszkowska, Anna M; Spinella, Rosaria; Postorino, Elisa; Puzzolo, Domenico; Micali, Antonio

    2013-09-01

    To evaluate the effect of aminoacid enriched artificial tears on the ocular surface of patients with dysfunctional tear syndrome (DTS). Forty patients were divided into two groups: group 1 treated for 90 days with sodium hyaluronate (SH) 0.15% 1 drop × 5 times/day; group 2 treated for 90 days with SH 0.15% + aminoacids mixture 1 drop × 5 times/day. Symptom score questionnaire, tear break-up time (TBUT), corneal fluorescein stain, Shirmer's I test and confocal microscopy were performed at baseline and after 30 and 90 days. Confocal images underwent morphometric analysis. Both treatments improved symptoms after 1 month. Group 2 patients showed at 1 month an improvement of TBUT and corneal stain, maintained throughout the study. Also Shirmer's I test improved after 3 months. In group 1, an improvement of TBUT and corneal stain was observed after 3 months. The morphometric analysis of confocal images demonstrated at month 1 an improvement of nerve tortuosity in group 2; after 3 months both groups showed a significant improvement versus baseline. The epithelium showed, in both groups, a reduction in hyperreflective large cells starting from 1 month; the area of the cells was significantly reduced after 3 months, with a significant higher reduction in group 2. The perineural stromal opacity was significantly increased after 3 months, particularly in group 2. This is the first study addressing corneal changes after amino acids administration in a DTS population. The treatment with amino acids enriched SH can be considered a useful tool in the treatment of DTS. © 2013 The Authors Acta Ophthalmologica © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by Blackwell Publishing Ltd.

  10. Statistical performance of image cytometry for DNA, lipids, cytokeratin, & CD45 in a model system for circulation tumor cell detection.

    PubMed

    Futia, Gregory L; Schlaepfer, Isabel R; Qamar, Lubna; Behbakht, Kian; Gibson, Emily A

    2017-07-01

    Detection of circulating tumor cells (CTCs) in a blood sample is limited by the sensitivity and specificity of the biomarker panel used to identify CTCs over other blood cells. In this work, we present Bayesian theory that shows how test sensitivity and specificity set the rarity of cell that a test can detect. We perform our calculation of sensitivity and specificity on our image cytometry biomarker panel by testing on pure disease positive (D + ) populations (MCF7 cells) and pure disease negative populations (D - ) (leukocytes). In this system, we performed multi-channel confocal fluorescence microscopy to image biomarkers of DNA, lipids, CD45, and Cytokeratin. Using custom software, we segmented our confocal images into regions of interest consisting of individual cells and computed the image metrics of total signal, second spatial moment, spatial frequency second moment, and the product of the spatial-spatial frequency moments. We present our analysis of these 16 features. The best performing of the 16 features produced an average separation of three standard deviations between D + and D - and an average detectable rarity of ∼1 in 200. We performed multivariable regression and feature selection to combine multiple features for increased performance and showed an average separation of seven standard deviations between the D + and D - populations making our average detectable rarity of ∼1 in 480. Histograms and receiver operating characteristics (ROC) curves for these features and regressions are presented. We conclude that simple regression analysis holds promise to further improve the separation of rare cells in cytometry applications. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  11. Fluorescence microscopy.

    PubMed

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  12. Fluorescence Microscopy

    PubMed Central

    Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.

    2016-01-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114

  13. Retained structural integrity of collagen and elastin within cryopreserved human heart valve tissue as detected by two-photon laser scanning confocal microscopy.

    PubMed

    Gerson, Cindy J; Goldstein, Steven; Heacox, Albert E

    2009-10-01

    Cryopreservation is commonly used for the long-term storage of heart valve allografts. Despite the excellent hemodynamic performance and durability of cryopreserved allografts, reports have questioned whether cryopreservation affects the valvular structural proteins, collagen and elastin. This study uses two-photon laser scanning confocal microscopy (LSCM) to evaluate the effect of cryopreservation on collagen and elastin integrity within the leaflet and conduit of aortic and pulmonary human heart valves. To permit pairwise comparisons of fresh and cryopreserved tissue, test valves were bisected longitudinally with one segment imaged fresh and the other imaged after cryopreservation and brief storage in liquid nitrogen. Collagen was detected by second harmonic generation (SHG) stimulation and elastin by autofluorescence excitation. Qualitative analysis of all resultant images indicated the maintenance of collagen and elastin structure within leaflet and conduit post-cryopreservation. Analysis of the optimized percent laser transmission (OPLT) required for full dynamic range imaging of collagen and elastin showed that OPLT observations were highly variable among both fresh and cryopreserved samples. Changes in donor-specific average OPLT in response to cryopreservation exhibited no consistent directional trend. The donor-aggregated results predominantly showed no statistically significant change in collagen and elastin average OPLT due to cryopreservation. Since OPLT has an inverse relationship with structural signal intensity, these results indicate that there was largely no statistical difference in collagen and elastin signal strength between fresh and cryopreserved tissue. Overall, this study indicates that the conventional cryopreservation of human heart valve allografts does not detrimentally affect their collagen and elastin structural integrity.

  14. In vivo cellular imaging with microscopes enabled by MEMS scanners

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  15. Note: development of high speed confocal 3D profilometer.

    PubMed

    Ang, Kar Tien; Fang, Zhong Ping; Tay, Arthur

    2014-11-01

    A high-speed confocal 3D profilometer based on the chromatic confocal technology and spinning Nipkow disk technique has been developed and tested. It can measure a whole surface topography by taking only one image that requires less than 0.3 s. Surface height information is retrieved based on the ratios of red, green, and blue color information. A new vector projection technique has developed to enhance the vertical resolution of the measurement. The measurement accuracy of the prototype system has been verified via different test samples.

  16. Reflectance confocal microscopy of oral epithelial tissue using an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Jabbour, Joey M.; Malik, Bilal H.; Cuenca, Rodrigo; Cheng, Shuna; Jo, Javier A.; Cheng, Yi-Shing L.; Wright, John M.; Maitland, Kristen C.

    2014-02-01

    We present the use of a commercially available electrically tunable lens to achieve axial scanning in a reflectance confocal microscope. Over a 255 μm axial scan range, the lateral and axial resolutions varied from 1-2 μm and 4-14 μm, respectively, dependent on the variable focal length of the tunable lens. Confocal imaging was performed on normal human biopsies from the oral cavity ex vivo. Sub-cellular morphologic features were seen throughout the depth of the epithelium while axially scanning using the focus tunable lens.

  17. Model wavefront sensor for adaptive confocal microscopy

    NASA Astrophysics Data System (ADS)

    Booth, Martin J.; Neil, Mark A. A.; Wilson, Tony

    2000-05-01

    A confocal microscope permits 3D imaging of volume objects by the inclusion of a pinhole in the detector path which eliminates out of focus light. This configuration is however very sensitive to aberrations induced by the specimen or the optical system and would therefore benefit from an adaptive optics approach. We present a wavefront sensor capable of measuring directly the Zernike components of an aberrated wavefront and show that it is particularly applicable to the confocal microscope since only those wavefronts originating in the focal region contribute to the measured aberration.

  18. Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications

    PubMed Central

    Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James

    2016-01-01

    Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts. PMID:27758134

  19. Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications.

    PubMed

    Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James; Khmaladze, Alexander

    2016-11-01

    Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts.

  20. Emerging enhanced imaging technologies of the esophagus: spectroscopy, confocal laser endomicroscopy, and optical coherence tomography.

    PubMed

    Robles, Lourdes Y; Singh, Satish; Fisichella, Piero Marco

    2015-05-15

    Despite advances in diagnoses and therapy, esophageal adenocarcinoma remains a highly lethal neoplasm. Hence, a great interest has been placed in detecting early lesions and in the detection of Barrett esophagus (BE). Advanced imaging technologies of the esophagus have then been developed with the aim of improving biopsy sensitivity and detection of preplastic and neoplastic cells. The purpose of this article was to review emerging imaging technologies for esophageal pathology, spectroscopy, confocal laser endomicroscopy (CLE), and optical coherence tomography (OCT). We conducted a PubMed search using the search string "esophagus or esophageal or oesophageal or oesophagus" and "Barrett or esophageal neoplasm" and "spectroscopy or optical spectroscopy" and "confocal laser endomicroscopy" and "confocal microscopy" and "optical coherence tomography." The first and senior author separately reviewed all articles. Our search identified: 19 in vivo studies with spectroscopy that accounted for 1021 patients and 4 ex vivo studies; 14 clinical CLE in vivo studies that accounted for 941 patients and 1 ex vivo study with 13 patients; and 17 clinical OCT in vivo studies that accounted for 773 patients and 2 ex vivo studies. Human studies using spectroscopy had a very high sensitivity and specificity for the detection of BE. CLE showed a high interobserver agreement in diagnosing esophageal pathology and an accuracy of predicting neoplasia. We also found several clinical studies that reported excellent diagnostic sensitivity and specificity for the detection of BE using OCT. Advanced imaging technology for the detection of esophageal lesions is a promising field that aims to improve the detection of early esophageal lesions. Although advancing imaging techniques improve diagnostic sensitivities and specificities, their integration into diagnostic protocols has yet to be perfected. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Carbon Dioxide Laser Ablation of Basal Cell Carcinoma with Visual Guidance by Reflectance Confocal Microscopy: A Proof of Principle Pilot Study

    PubMed Central

    Hibler, B.P.; Sierra, H.; Cordova, M.; Phillips, W.; Rajadhyaksha, M.; Nehal, K.S.; Rossi, A.M.

    2016-01-01

    Background Laser ablation is an alternative, non-surgical treatment modality for low-risk basal cell carcinoma (BCC); however, lack of confirmative tumour destruction or residual tumour presence has been a limiting factor to adoption. Reflectance confocal microscopy (RCM) provides non-invasive, cellular-level resolution imaging of the skin and is capable of identifying tumour. Objective To evaluate the use of RCM to guide carbon dioxide (CO2) laser ablation of BCC, confirm destruction, and correlate findings with histology. Methods RCM was used pre-ablation to evaluate for features of BCC. Ablation was performed with a CO2 laser, and the response rapidly assessed using handheld RCM to evaluate for residual tumour. Confirmative pathology was used to verify confocal imaging. Results RCM imaging identified tumour pre-ablation with features not identified on normal, surrounding skin. Post-ablation, RCM documented complete removal of tumour in six cases and residual tumour in two. Histologic examination identified the ablated area and confirmed clearance of tumour in the six aforementioned cases and corroborated confocal findings for residual tumour in the other two cases. Conclusions We report successful treatment of superficial and nodular BCC using CO2 laser ablation augmented by RCM imaging for pre-ablation guidance and verification of tumour removal post-ablation. Akin to complete circumferential and deep margin control techniques, using RCM helps to map peripheral and deep BCC margins to hone in on areas exhibiting persistent tumour after ablation. CO2 laser ablation visually guided by RCM can help circumvent previously cited limiting factors of laser ablation for tumour destruction by providing cellular-level resolution imaging of tumour and margin assessment in between each laser pass and post-ablation. PMID:26800657

  2. Carbon dioxide laser ablation of basal cell carcinoma with visual guidance by reflectance confocal microscopy: a proof-of-principle pilot study.

    PubMed

    Hibler, B P; Sierra, H; Cordova, M; Phillips, W; Rajadhyaksha, M; Nehal, K S; Rossi, A M

    2016-06-01

    Laser ablation is an alternative, nonsurgical treatment modality for low-risk basal cell carcinoma (BCC). However, lack of confirmative tumour destruction or residual tumour presence has been a limiting factor to its adoption. Reflectance confocal microscopy (RCM) provides noninvasive, cellular-level resolution imaging of the skin and is capable of identifying tumour. To evaluate the use of RCM to guide carbon dioxide (CO2 ) laser ablation of BCC, confirm destruction and correlate findings with histology. RCM was used preablation to evaluate for features of BCC. Ablation was performed with a CO2 laser, and the response rapidly assessed using handheld RCM to evaluate for residual tumour. Confirmative pathology was used to verify confocal imaging. Preablation RCM imaging identified tumour with features not identified on normal, surrounding skin. Postablation, RCM documented complete removal of tumour in six cases and residual tumour in two. Histological examination identified the ablated area and confirmed clearance of tumour in the six aforementioned cases and corroborated confocal findings for residual tumour in the other two cases. We report successful treatment of superficial and nodular BCC using CO2 laser ablation augmented by RCM imaging for preablation guidance and verification of tumour removal postablation. Akin to complete circumferential and deep margin control techniques, using RCM helps to map peripheral and deep BCC margins to hone in on areas exhibiting persistent tumour after ablation. CO2 laser ablation visually guided by RCM can help circumvent previously cited limiting factors of laser ablation for tumour destruction by providing cellular-level resolution imaging of tumour and margin assessment in between each laser pass and postablation. © 2016 British Association of Dermatologists.

  3. Measuring spatial and temporal Ca2+ signals in Arabidopsis plants.

    PubMed

    Zhu, Xiaohong; Taylor, Aaron; Zhang, Shenyu; Zhang, Dayong; Feng, Ying; Liang, Gaimei; Zhu, Jian-Kang

    2014-09-02

    Developmental and environmental cues induce Ca(2+) fluctuations in plant cells. Stimulus-specific spatial-temporal Ca(2+) patterns are sensed by cellular Ca(2+) binding proteins that initiate Ca(2+) signaling cascades. However, we still know little about how stimulus specific Ca(2+) signals are generated. The specificity of a Ca(2+) signal may be attributed to the sophisticated regulation of the activities of Ca(2+) channels and/or transporters in response to a given stimulus. To identify these cellular components and understand their functions, it is crucial to use systems that allow a sensitive and robust recording of Ca(2+) signals at both the tissue and cellular levels. Genetically encoded Ca(2+) indicators that are targeted to different cellular compartments have provided a platform for live cell confocal imaging of cellular Ca(2+) signals. Here we describe instructions for the use of two Ca(2+) detection systems: aequorin based FAS (film adhesive seedlings) luminescence Ca(2+) imaging and case12 based live cell confocal fluorescence Ca(2+) imaging. Luminescence imaging using the FAS system provides a simple, robust and sensitive detection of spatial and temporal Ca(2+) signals at the tissue level, while live cell confocal imaging using Case12 provides simultaneous detection of cytosolic and nuclear Ca(2+) signals at a high resolution.

  4. In Vivo Confocal Microscopy of the Ocular Surface: From Bench to Bedside

    PubMed Central

    Villani, Edoardo; Baudouin, Christophe; Efron, Nathan; Hamrah, Pedram; Kojima, Takashi; Patel, Sanjay V.; Pflugfelder, Stephen C.; Zhivov, Andrey; Dogru, Murat

    2014-01-01

    In vivo confocal microscopy (IVCM) is an emerging technology that provides minimally invasive, high resolution, steady-state assessment of the ocular surface at the cellular level. Several challenges still remain but, at present, IVCM may be considered a promising technique for clinical diagnosis and management. This mini-review summarizes some key findings in IVCM of the ocular surface, focusing on recent and promising attempts to move “from bench to bedside”. IVCM allows prompt diagnosis, disease course follow-up, and management of potentially blinding atypical forms of infectious processes, such as acanthamoeba and fungal keratitis. This technology has improved our knowledge of corneal alterations and some of the processes that affect the visual outcome after lamellar keratoplasty and excimer keratorefractive surgery. In dry eye disease, IVCM has provided new information on the whole-ocular surface morphofunctional unit. It has also improved understanding of pathophysiologic mechanisms and helped in the assessment of prognosis and treatment. IVCM is particularly useful in the study of corneal nerves, enabling description of the morphology, density, and disease- or surgically induced alterations of nerves, particularly the subbasal nerve plexus. In glaucoma, IVCM constitutes an important aid to evaluate filtering blebs, to better understand the conjunctival wound healing process, and to assess corneal changes induced by topical antiglaucoma medications and their preservatives. IVCM has significantly enhanced our understanding of the ocular response to contact lens wear. It has provided new perspectives at a cellular level on a wide range of contact lens complications, revealing findings that were not previously possible to image in the living human eye. The final section of this mini-review provides a focus on advances in confocal microscopy imaging. These include 2D wide-field mapping, 3D reconstruction of the cornea and automated image analysis. PMID:24215436

  5. Clinical confocal microlaparoscope for real-time in vivo optical biopsies

    NASA Astrophysics Data System (ADS)

    Tanbakuchi, Anthony A.; Rouse, Andrew R.; Udovich, Joshua A.; Hatch, Kenneth D.; Gmitro, Arthur F.

    2009-07-01

    Successful treatment of cancer is highly dependent on the stage at which it is diagnosed. Early diagnosis, when the disease is still localized at its origin, results in very high cure rates-even for cancers that typically have poor prognosis. Biopsies are often used for diagnosis of disease. However, because biopsies are destructive, only a limited number can be taken. This leads to reduced sensitivity for detection due to sampling error. A real-time fluorescence confocal microlaparoscope has been developed that provides instant in vivo cellular images, comparable to those provided by histology, through a nondestructive procedure. The device includes an integrated contrast agent delivery mechanism and a computerized depth scan system. The instrument uses a fiber bundle to relay the image plane of a slit-scan confocal microlaparoscope into tissue. It has a 3-μm lateral resolution and a 25-μm axial resolution. Initial in vivo clinical testing using the device to image human ovaries has been done in 21 patients. Results indicate that the device can successfully image organs in vivo without complications. Results with excised tissue demonstrate that the instrument can resolve sufficient cellular detail to visualize the cellular changes associated with the onset of cancer.

  6. Imaging resolution and properties analysis of super resolution microscopy with parallel detection under different noise, detector and image restoration conditions

    NASA Astrophysics Data System (ADS)

    Yu, Zhongzhi; Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Liu, Xu

    2018-06-01

    Parallel detection, which can use the additional information of a pinhole plane image taken at every excitation scan position, could be an efficient method to enhance the resolution of a confocal laser scanning microscope. In this paper, we discuss images obtained under different conditions and using different image restoration methods with parallel detection to quantitatively compare the imaging quality. The conditions include different noise levels and different detector array settings. The image restoration methods include linear deconvolution and pixel reassignment with Richard-Lucy deconvolution and with maximum-likelihood estimation deconvolution. The results show that the linear deconvolution share properties such as high-efficiency and the best performance under all different conditions, and is therefore expected to be of use for future biomedical routine research.

  7. A Quantitative Three-Dimensional Image Analysis Tool for Maximal Acquisition of Spatial Heterogeneity Data.

    PubMed

    Allenby, Mark C; Misener, Ruth; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2017-02-01

    Three-dimensional (3D) imaging techniques provide spatial insight into environmental and cellular interactions and are implemented in various fields, including tissue engineering, but have been restricted by limited quantification tools that misrepresent or underutilize the cellular phenomena captured. This study develops image postprocessing algorithms pairing complex Euclidean metrics with Monte Carlo simulations to quantitatively assess cell and microenvironment spatial distributions while utilizing, for the first time, the entire 3D image captured. Although current methods only analyze a central fraction of presented confocal microscopy images, the proposed algorithms can utilize 210% more cells to calculate 3D spatial distributions that can span a 23-fold longer distance. These algorithms seek to leverage the high sample cost of 3D tissue imaging techniques by extracting maximal quantitative data throughout the captured image.

  8. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope

    PubMed Central

    Sulai, Yusufu N.; Dubra, Alfredo

    2014-01-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth. PMID:25401020

  9. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope.

    PubMed

    Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2011-06-01

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Characterization of X-linked Hypohidrotic Ectodermal Dysplasia (XL-HED) Hair and Sweat Gland Phenotypes Using Phototrichogram Analysis and Live Confocal Imaging

    PubMed Central

    Jones, Kyle B.; Goodwin, Alice F.; Landan, Maya; Seidel, Kerstin; Tran, Dong-Kha; Hogue, Jacob; Chavez, Miquella; Fete, Mary; Yu, Wenli; Hussein, Tarek; Johnson, Ramsey; Huttner, Kenneth; Jheon, Andrew H.; Klein, Ophir D.

    2015-01-01

    Hypohidrotic ectodermal dysplasia (HED) is the most common type of ectodermal dysplasia (ED), which encompasses a large group of syndromes that share several phenotypic features such as missing or malformed ectodermal structures, including skin, hair, sweat glands, and teeth. X-linked hypohidrotic ectodermal dysplasia (XL-HED) is associated with mutations in ectodysplasin (EDA1). Hypohidrosis due to hypoplastic sweat glands and thin, sparse hair are phenotypic features that significantly affect the daily lives of XL-HED individuals and therefore require systematic analysis. We sought to determine the quality of life of individuals with XL-HED and to quantify sweat duct and hair phenotypes using confocal imaging, pilocarpine iontophoresis, and phototrichogram analysis. Using these highly sensitive and non-invasive techniques, we demonstrated that 11/12 XL-HED individuals presented with a complete absence of sweat ducts and that none produced sweat. We determined that the thin hair phenotype observed in XL-HED was due to multiple factors, such as fewer terminal hairs with decreased thickness and slower growth rate, as well as fewer follicular units and fewer hairs per unit. The precise characterization of XL-HED phenotypes using sensitive and non-invasive techniques presented in our study will improve upon larger genotype-phenotype studies and in the assessment of future therapies in XL-HED. PMID:23687000

  11. Paired comparison of the sensitivity and specificity of multispectral digital skin lesion analysis and reflectance confocal microscopy in the detection of melanoma in vivo: A cross-sectional study.

    PubMed

    Song, Eunice; Grant-Kels, Jane M; Swede, Helen; D'Antonio, Jody L; Lachance, Avery; Dadras, Soheil S; Kristjansson, Arni K; Ferenczi, Katalin; Makkar, Hanspaul S; Rothe, Marti J

    2016-12-01

    Several technologies have been developed to aid dermatologists in the detection of melanoma in vivo including dermoscopy, multispectral digital skin lesion analysis (MDSLA), and reflectance confocal microscopy (RCM). To our knowledge, there have been no studies directly comparing MDSLA and RCM. We conducted a repeated measures analysis comparing the sensitivity and specificity of MDSLA and RCM in the detection of melanoma (n = 55 lesions from 36 patients). Study patients (n = 36) with atypical-appearing pigmented lesions (n = 55) underwent imaging by both RCM and MDSLA. Lesions were biopsied and analyzed by histopathology. RCM exhibited superior test metrics (P = .001, McNemar test) compared with MDSLA. Respectively, sensitivity measures were 85.7% and 71.4%, and specificity rates were 66.7% and 25.0%. The sample size was relatively small and was collected from only one dermatologist's patient base; there was some degree of dermatopathologist interobserver variability; and only one confocalist performed the RCM image evaluations. RCM is a useful adjunct during clinical assessment of in vivo lesions suspicious for melanoma or those requiring re-excision because of high level of dysplasia or having features consistent with an atypical melanocytic nevus with severe cytologic atypia. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  12. Structure and chemical composition of the dentin-enamel junction analyzed by Confocal Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Desoutter, A.; Salehi, H.; Slimani, A.; Marquet, P.; Jacquot, B.; Tassery, H.; Cuisinier, F. J. G.

    2014-02-01

    The structure and chemical composition of the human dentin-enamel junction (DEJ) was studied using confocal Raman microscopy - a chemical imaging technique. Slices of non-fixed, sound teeth were prepared with an Isomet diamond saw and scanned with Witec Alpha300R system. The combination of different characteristics peaks of phosphate, carbonate and organic matrix (respectively 960, 1072 and 1545 cm-1), generates images representing the chemical composition of the DEJ area. Images are also calculated using peak ratios enabling precise determination of the chemical composition across the DEJ. Then, with two characterized peaks, different pictures are calculated to show the ratio of two components. The images of the spatial distribution of mineral phosphate (960cm-1) to organic matrix (1545 cm-1) ratios, mineral carbonates (1072cm-1) to mineral phosphate ratios; and mineral carbonates to organic matrix ratios were reconstructed. Cross sectional and calculated graphic profile show the variations of the different chemical component ratios through the enamel and the dentin. Phosphate to organic ratio shows an accumulation of organic material under the enamel surface. The cross sectional profile of these pictures shows a high phosphate content compared to enamel in the vicinity of the DEJ. The Confocal Raman imaging technique can be used to further provide full chemical imaging of tooth, particularly of the whole DEJ and to study enamel and dentin decay.

  13. A multi-phenotypic imaging screen to identify bacterial effectors by exogenous expression in a HeLa cell line.

    PubMed

    Collins, Adam; Huett, Alan

    2018-05-15

    We present a high-content screen (HCS) for the simultaneous analysis of multiple phenotypes in HeLa cells expressing an autophagy reporter (mcherry-LC3) and one of 224 GFP-fused proteins from the Crohn's Disease (CD)-associated bacterium, Adherent Invasive E. coli (AIEC) strain LF82. Using automated confocal microscopy and image analysis (CellProfiler), we localised GFP fusions within cells, and monitored their effects upon autophagy (an important innate cellular defence mechanism), cellular and nuclear morphology, and the actin cytoskeleton. This data will provide an atlas for the localisation of 224 AIEC proteins within human cells, as well as a dataset to analyse their effects upon many aspects of host cell morphology. We also describe an open-source, automated, image-analysis workflow to identify bacterial effectors and their roles via the perturbations induced in reporter cell lines when candidate effectors are exogenously expressed.

  14. Multimodal confocal mosaics enable high sensitivity and specificity in screening of in situ squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Grados Luyando, Maria del Carmen; Bar, Anna; Snavely, Nicholas; Jacques, Steven; Gareau, Daniel S.

    2014-02-01

    Screening cancer in excision margins with confocal microscopy may potentially save time and cost over the gold standard histopathology (H and E). However, diagnostic accuracy requires sufficient contrast and resolution to reveal pathological traits in a growing set of tumor types. Reflectance mode images structural details due to microscopic refractive index variation. Nuclear contrast with acridine orange fluorescence provides enhanced diagnostic value, but fails for in situ squamous cell carcinoma (SCC), where the cytoplasm is important to visualize. Combination of three modes [eosin (Eo) fluorescence, reflectance (R) and acridine orange (AO) fluorescence] enable imaging of cytoplasm, collagen and nuclei respectively. Toward rapid intra-operative pathological margin assessment to guide staged cancer excisions, multimodal confocal mosaics can image wide surgical margins (~1cm) with sub-cellular resolution and mimic the appearance of conventional H and E. Absorption contrast is achieved by alternating the excitation wavelength: 488nm (AO fluorescence) and 532nm (Eo fluorescence). Superposition and false-coloring of these modes mimics H and E, enabling detection of the carcinoma in situ in the epidermal layer The sum mosaic Eo+R is false-colored pink to mimic eosins' appearance in H and E, while the AO mosaic is false-colored purple to mimic hematoxylins' appearance in H and E. In this study, mosaics of 10 Mohs surgical excisions containing SCC in situ and 5 containing only normal tissue were subdivided for digital presentation equivalent to 4X histology. Of the total 16 SCC in situ multimodal mosaics and 16 normal cases presented, two reviewers made 1 and 2 (respectively) type-2 errors (false positives) but otherwise scored perfectly when using the confocal images to screen for the presence of SCC in situ as compared to the gold standard histopathology. Limitations to precisely mimic H and E included occasional elastin staining by AO. These results suggest that confocal mosaics may effectively guide staged SCC excisions in skin and other tissues.

  15. Solar Confocal Interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines, Terence C.

    2006-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. Methods: We have constructed and tested two confocal interferometers. Conclusions: In this paper we compare the confocal interferometer with other spectral imaging filters, provide initial design parameters, show construction details for two designs, and report on the laboratory test results for these interferometers, and propose a multiple etalon system for future testing of these units and to obtain sub-picometer spectral resolution information on the photosphere in both the visible and near-infrared.

  16. Improved sampling and analysis of images in corneal confocal microscopy.

    PubMed

    Schaldemose, E L; Fontain, F I; Karlsson, P; Nyengaard, J R

    2017-10-01

    Corneal confocal microscopy (CCM) is a noninvasive clinical method to analyse and quantify corneal nerve fibres in vivo. Although the CCM technique is in constant progress, there are methodological limitations in terms of sampling of images and objectivity of the nerve quantification. The aim of this study was to present a randomized sampling method of the CCM images and to develop an adjusted area-dependent image analysis. Furthermore, a manual nerve fibre analysis method was compared to a fully automated method. 23 idiopathic small-fibre neuropathy patients were investigated using CCM. Corneal nerve fibre length density (CNFL) and corneal nerve fibre branch density (CNBD) were determined in both a manual and automatic manner. Differences in CNFL and CNBD between (1) the randomized and the most common sampling method, (2) the adjusted and the unadjusted area and (3) the manual and automated quantification method were investigated. The CNFL values were significantly lower when using the randomized sampling method compared to the most common method (p = 0.01). There was not a statistical significant difference in the CNBD values between the randomized and the most common sampling method (p = 0.85). CNFL and CNBD values were increased when using the adjusted area compared to the standard area. Additionally, the study found a significant increase in the CNFL and CNBD values when using the manual method compared to the automatic method (p ≤ 0.001). The study demonstrated a significant difference in the CNFL values between the randomized and common sampling method indicating the importance of clear guidelines for the image sampling. The increase in CNFL and CNBD values when using the adjusted cornea area is not surprising. The observed increases in both CNFL and CNBD values when using the manual method of nerve quantification compared to the automatic method are consistent with earlier findings. This study underlines the importance of improving the analysis of the CCM images in order to obtain more objective corneal nerve fibre measurements. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  17. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure.

    PubMed

    Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V

    2011-04-01

    We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.

  18. Live Cell Imaging Confocal Microscopy Analysis of HBV Myr-PreS1 Peptide Binding and Uptake in NTCP-GFP Expressing HepG2 Cells.

    PubMed

    König, Alexander; Glebe, Dieter

    2017-01-01

    To obtain basic knowledge about specific molecular mechanisms involved in the entry of pathogens into cells is the basis for establishing pharmacologic substances blocking initial viral binding, infection, and subsequent viral spread. Lack of information about key cellular factors involved in the initial steps of HBV infection has hampered the characterization of HBV binding and entry for decades. However, recently, the liver-specific sodium-dependent taurocholate cotransporting polypeptide (NTCP) has been discovered as a functional receptor for HBV and HDV, thus opening the field for new concepts of basic binding and entry of HBV and HDV. Here, we describe practical issues of a basic in vitro assay system to examine kinetics and mechanisms of receptor-dependent HBV binding, uptake, and intracellular trafficking by live-cell imaging confocal microscopy. The assay system is comprised of HepG2 cells expressing a NTCP-GFP fusion-protein and chemically synthesized, fluorophore-labeled part of HBV surface protein, spanning the first N-terminal 48 amino acids of preS1 of the large hepatitis B virus surface protein.

  19. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2.

    PubMed

    Dhakal, Krishna P; Duong, Dinh Loc; Lee, Jubok; Nam, Honggi; Kim, Minsu; Kan, Min; Lee, Young Hee; Kim, Jeongyong

    2014-11-07

    We performed a nanoscale confocal absorption spectral imaging to obtain the full absorption spectra (over the range 1.5-3.2 eV) within regions having different numbers of layers and studied the variation of optical transition depending on the atomic thickness of the MoS2 film. Three distinct absorption bands corresponding to A and B excitons and a high-energy background (BG) peak at 2.84 eV displayed a gradual redshift as the MoS2 film thickness increased from the monolayer, to the bilayer, to the bulk MoS2 and this shift was attributed to the reduction of the gap energy in the Brillouin zone at the K-point as the atomic thickness increased. We also performed n-type chemical doping of MoS2 films using reduced benzyl viologen (BV) and the confocal absorption spectra modified by the doping showed a strong dependence on the atomic thickness: A and B exciton peaks were greatly quenched in the monolayer MoS2 while much less effect was shown in larger thickness and the BG peak either showed very small quenching for 1 L MoS2 or remained constant for larger thicknesses. Our results indicate that confocal absorption spectral imaging can provide comprehensive information on optical transitions of microscopic size intrinsic and doped two-dimensional layered materials.

  20. Histopathological confirmation of similar intramucosal distribution of fluorescein in both intravenous administration and local mucosal application for probe-based confocal laser endomicroscopy of the normal stomach.

    PubMed

    Nonaka, Kouichi; Ohata, Ken; Ban, Shinichi; Ichihara, Shin; Takasugi, Rumi; Minato, Yohei; Tashima, Tomoaki; Matsuyama, Yasushi; Takita, Maiko; Matsuhashi, Nobuyuki; Neumann, Helmut

    2015-12-16

    Probe-based confocal laser endomicroscopy (pCLE) is capable of acquiring in vivo magnified cross-section images of the gastric mucosa. Intravenous injection of fluorescein sodium is used for confocal imaging. However, it is still under debate if local administration of the dye to the mucosa is also effective for confocal imaging as it is not yet clear if topical application also reveals the intramucosal distribution of fluorescein. The objective of this study was to evaluate the intramucosal distribution of fluorescein sodium after topical application and to compare the distribution to the conventional intravenous injection used for confocal imaging. pCLE of the stomach uninfected with Helicobacter pylori was performed in a healthy male employing intravenous administration and local mucosal application of fluorescein. The mucosa of the lower gastric body was biopsied 1 min and 5 min after intravenous administration or local mucosal application of fluorescein, and the distribution of fluorescein in the biopsy samples was examined histologically. Green fluorescence was already observed in the cytoplasm of fundic glandular cells in the biopsied deep mucosa 1 min after local mucosal application of fluorescein. It was also observed in the foveolar lumen and inter-foveolar lamina propria, although it was noted at only a few sites. In the tissue biopsied 5 min after the local mucosal application of fluorescein, green fluorescence was more frequently noted in the cytoplasm of fundic glandular cells than in that 1 min after the local mucosal application of fluorescein, although obvious green fluorescence was not identified in the foveolar lumen or inter-foveolar lamina propria. The distribution of intravenously administered fluorescein in the cytoplasm of fundic glandular cells was also clearly observed similarly to that after local mucosal application of fluorescein. Green fluorescence in more cells was observed in many cells 5 min after intravenous administration compared with that after 1 min. The presence of fluorescein in the mucosa was observed within a short time after local mucosal application of fluorescein, suggesting that pCLE images similarly to those after intravenous fluorescein administration can be acquired by local mucosal application of fluorescein.

  1. SU-F-T-665: Confocal Microscopy Imaging of Cell Cycle Distribution in Cells Treated with Pegylated Gold Nanoshells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadetaporn, D; The University of Texas MD Anderson Cancer Center, Houston, TX; Flint, D

    Purpose: To use confocal microscopy to distinguish cells in different phases of the cell cycle before and after treatment with pegylated gold nanoshells (PEG-AuNSs). Methods: Transfected fibrosarcoma cells (HT1080-EYFP-53BP1-FUCCI) were cultured in T-25 flasks and seeded in glass bottom dishes. These cells express the fluorescent probe AmCyan during the G2/S phases of the cell cycle, mCherry during the G1 phase, and EYFP tagged to the DNA repair protein 53BP1. After allowing cells 4 h to adhere to dishes, PEG-AuNS (Nanospectra Biosciences, Houston, TX) at a concentration of 0.15 OD were administered. At time points of 8, 16 and 24 hmore » following treatment, the PEG-AuNS-treated and control samples were washed with phosphate buffered saline (PBS) and fixed using 4% paraformaldehyde in PBS. Samples were imaged with an Olympus FV1200 confocal microscope using 473, 543, and 641 nm excitation lasers. We used band-pass filters to select AmCyan and mCherry fluorescence. Reflection from the 641 nm laser was used to detect PEG-AuNSs. Z-stack images were analyzed to assess cell cycle distribution through fluorescent probe expression. Live cells were imaged after PEG-AuNS treatment using a confocal microscope with a stage top CO2 incubator. Results: We were able to obtain high-resolution images of cells with internalized AuNSs. We were also able to distinguish cells in different phases of the cell cycle. Conclusion: This work demonstrates a new assay to investigate the effect of AuNSs on the cell cycle phase in live cells. Future work will employ confocal microscopy and flow cytometry to focus on effects of AuNS treatment on cell cycle distribution. This research was supported by the Sister Institution Network Fund and the Center for Radiation Oncology Research at The University of Texas MD Anderson Cancer Center and Cancer Prevention and Research Institute of Texas. Gabriel Sawakuchi has research support from Elekta Inc.« less

  2. Confocal Light Absorption and Scattering Spectroscopic (CLASS) imaging: From cancer detection to sub-cellular function

    NASA Astrophysics Data System (ADS)

    Qiu, Le

    Light scattering spectroscopy (LSS), an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index and shape, has been recently successfully employed for sensing morphological and biochemical properties of epithelial tissues and cells in vivo. LSS does not require exogenous markers, is non-invasive, and, due to its multispectral nature, can sense biological structures well beyond the diffraction limit. All that makes LSS be a very good candidate to be used both in clinical medicine for in vivo detection of disease and in cell biology to monitor cell function on the organelle scale. Recently we developed two LSS-based imaging modalities: clinical Polarized LSS (PLSS) Endoscopic Technique for locating early pre-cancerous changes in GI tract and Confocal Light Absorption and Scattering Spectroscopic (CLASS) Microscopy for studying cells in vivo without exogenous markers. One important application of the clinical PLSS endoscopic instrument, a noncontact scanning imaging device compatible with the standard clinical endoscopes and capable of detecting dysplastic changes, is to serve as a guide for biopsy in Barrett's esophagus (BE). The instrument detects parallel and perpendicular components of the polarized light, backscattered from epithelial tissues, and determines characteristics of epithelial nuclei from the residual spectra. It also can find tissue oxygenation, hemoglobin content and other properties from the diffuse light component. By rapidly scanning esophagus the PLSS endoscopic instrument makes sure the entire BE portion is scanned and examined for the presence of dysplasia. CLASS microscopy, on the other hand, combines principles of light scattering spectroscopy (LSS) with confocal microscopy. Its main purpose is to image cells on organelle scale in vivo without the use of exogenous labels which may affect the cell function. The confocal geometry selects specific region and images are obtained by scanning the confocal volume across the sample. The new beam scanning CLASS microscope is a significant improvement over the previous proof-of-principle device. With this new device we have already performed experiments to monitor morphological changes in cells during apoptosis, differentiated fetal from maternal nucleated red blood cells, and detected plasmon scattering spectra of single gold nanorod.

  3. Long-depth imaging of specific gene expressions in whole-mount mouse embryos with single-photon excitation confocal fluorescence microscopy and FISH.

    PubMed

    Palmes-Saloma, C; Saloma, C

    2000-07-01

    Long-depth imaging of specific gene expression in the midgestation whole-mount mouse embryo (WME) is demonstrated with single-photon excitation (1PE) confocal fluorescence microscopy and fluorescence in situ hybridization. Expression domains of Pax-6 mRNA transcripts were labeled with an in situ hybridization probe that is a RNA sequence complementary to the cloned gene fragment and were rendered visible using two fluorochrome-conjugated antibodies that fluoresce at peak wavelengths of lambda(F) = 0.525 microm and lambda(F) = 0. 580 microm, respectively. Distributions of Pax-6 mRNA domains as deep as 1000 microm in the day 9.5 WME were imaged with a long-working-distance (13.6 mm) objective lens (magnification 5x). The scattering problem posed by the optically thick WME sample is alleviated by careful control of the detector pinhole size and the application of simple but fast postdetection image enhancement techniques, such as space and wavelength averaging to produce high-quality fluorescence images. A three-dimensional reconstruction that clearly shows the Pax-6 mRNA expression domains in the forebrain, diencephalon, optic cup, and spinal cord of the day 9.5 WME is obtained. The advantages of 1PE confocal fluorescence imaging over two-photon excitation fluorescence imaging are discussed for the case of long-depth imaging in highly scattering media. Imaging in midgestation WMEs at optical depths of more than 350 microm has not yet been realized with two-photon fluorescence excitation. Copyright 2000 Academic Press.

  4. Analysis of doxorubicin distribution in MCF-7 cells treated with drug-loaded nanoparticles by combination of two fluorescence-based techniques, confocal spectral imaging and capillary electrophoresis.

    PubMed

    Gautier, Juliette; Munnier, Emilie; Soucé, Martin; Chourpa, Igor; Douziech Eyrolles, Laurence

    2015-05-01

    The intracellular distribution of the antiancer drug doxorubicin (DOX) was followed qualitatively by fluorescence confocal spectral imaging (FCSI) and quantitatively by capillary electrophoresis (CE). FCSI permits the localization of the major fluorescent species in cell compartments, with spectral shifts indicating the polarity of the respective environment. However, distinction between drug and metabolites by FCSI is difficult due to their similar fluorochromes, and direct quantification of their fluorescence is complicated by quantum yield variation between different subcellular environments. On the other hand, capillary electrophoresis with fluorescence detection (CE-LIF) is a quantitative method capable of separating doxorubicin and its metabolites. In this paper, we propose a method for determining drug and metabolite concentration in enriched nuclear and cytosolic fractions of cancer cells by CE-LIF, and we compare these data with those of FCSI. Significant differences in the subcellular distribution of DOX are observed between the drug administered as a molecular solution or as a suspension of drug-loaded iron oxide nanoparticles coated with polyethylene glycol. Comparative analysis of the CE-LIF vs FCSI data may lead to a tentative calibration of this latter method in terms of DOX fluorescence quantum yields in the nucleus and more or less polar regions of the cytosol.

  5. Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm

    PubMed Central

    Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong

    2010-01-01

    With the use of adaptive optics (AO), high-resolution microscopic imaging of living human retina in the single cell level has been achieved. In an adaptive optics confocal scanning laser ophthalmoscope (AOSLO) system, with a small field size (about 1 degree, 280 μm), the motion of the eye severely affects the stabilization of the real-time video images and results in significant distortions of the retina images. In this paper, Scale-Invariant Feature Transform (SIFT) is used to abstract stable point features from the retina images. Kanade-Lucas-Tomasi(KLT) algorithm is applied to track the features. With the tracked features, the image distortion in each frame is removed by the second-order polynomial transformation, and 10 successive frames are co-added to enhance the image quality. Features of special interest in an image can also be selected manually and tracked by KLT. A point on a cone is selected manually, and the cone is tracked from frame to frame. PMID:21258443

  6. Classifying distinct basal cell carcinoma subtype by means of dermatoscopy and reflectance confocal microscopy.

    PubMed

    Longo, Caterina; Lallas, Aimilios; Kyrgidis, Athanassios; Rabinovitz, Harold; Moscarella, Elvira; Ciardo, Silvana; Zalaudek, Iris; Oliviero, Margaret; Losi, Amanda; Gonzalez, Salvador; Guitera, Pascale; Piana, Simonetta; Argenziano, Giuseppe; Pellacani, Giovanni

    2014-10-01

    The current guidelines for the management of basal cell carcinoma (BCC) suggest a different therapeutic approach according to histopathologic subtype. Although dermatoscopic and confocal criteria of BCC have been investigated, no specific studies were performed to evaluate the distinct reflectance confocal microscopy (RCM) aspects of BCC subtypes. To define the specific dermatoscopic and confocal criteria for delineating different BCC subtypes. Dermatoscopic and confocal images of histopathologically confirmed BCCs were retrospectively evaluated for the presence of predefined criteria. Frequencies of dermatoscopic and confocal parameters are provided. Univariate and adjusted odds ratios were calculated. Discriminant analyses were performed to define the independent confocal criteria for distinct BCC subtypes. Eighty-eight BCCs were included. Dermatoscopically, superficial BCCs (n=44) were primarily typified by the presence of fine telangiectasia, multiple erosions, leaf-like structures, and revealed cords connected to the epidermis and epidermal streaming upon RCM. Nodular BCCs (n=22) featured the classic dermatoscopic features and well outlined large basaloid islands upon RCM. Infiltrative BCCs (n=22) featured structureless, shiny red areas, fine telangiectasia, and arborizing vessels on dermatoscopy and dark silhouettes upon RCM. The retrospective design. Dermatoscopy and confocal microscopy can reliably classify different BCC subtypes. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  7. Multimodal in vivo imaging reveals limited allograft survival, intrapulmonary cell trapping and minimal evidence for ischemia-directed BMSC homing

    PubMed Central

    2012-01-01

    Background Despite positive reports on the efficacy of stem cell therapy for the treatment of cardiovascular disease, the nature of stem cell homing to ischemic tissues remains elusive. Results We used a mouse model of peripheral tissue ischemia to study the survival and homing capacity of dual reporter gene (eGFP/Luciferase) expressing bone marrow-derived stromal cells (BMSC). Cell homing and survival were studied in the presence and absence of ciclosporin A (CsA) immunosuppression using bioluminescence imaging (BLI) together with confocal endomicroscopy. Different injection strategies were applied: central venous (CV), intra-arterial (IA) and intramuscular (IM). BLI and confocal endomicroscopy evidenced complete rejection of the IM injected allogeneic BMSC transplant within 5 to 10 days. Immunosuppression with CsA could only marginally prolong graft survival. IM injected BMSC did not migrate to the site of the arterial ligation. CV injection of BMSC resulted in massive pulmonary infarction, leading to respiratory failure and death. Intrapulmonary cell trapping was evidenced by confocal endomicroscopy, BLI and fluorescence microscopy. IA injection of BMSC proved to be a feasible and safe strategy to bypass the lung circulation. During the follow-up period, neither BLI nor confocal endomicroscopy revealed any convincing ischemia-directed homing of BMSC. Conclusions BLI and confocal endomicroscopy are complementary imaging techniques for studying the in vivo biology of dual reporter gene-expressing BMSC. Allogeneic BMSC survival is limited in an immunocompetent host and cannot be preserved by CsA immunosuppression alone. We did not find substantial evidence for ischemia-directed BMSC homing and caution against CV injection of BMSC, which can lead to massive pulmonary infarction. PMID:23206380

  8. Multi-modal Registration for Correlative Microscopy using Image Analogies

    PubMed Central

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943

  9. Learning reflectance confocal microscopy of melanocytic skin lesions through histopathologic transversal sections.

    PubMed

    Braga, Juliana Casagrande Tavoloni; Macedo, Mariana Petaccia; Pinto, Clovis; Duprat, João; Begnami, Maria Dirlei; Pellacani, Giovanni; Rezze, Gisele Gargantini

    2013-01-01

    Histopathologic interpretation of dermoscopic and reflectance confocal microscopy (RCM) features of cutaneous melanoma was timidly carried out using perpendicular histologic sections, which does not mimic the same plane of the image achieved at both techniques (horizontal plane). The aim of this study was to describe the transverse histologic sections research technique and correlate main dermoscopic features characteristic of cutaneous melanoma (atypical network, irregular globules and pseudopods) with RCM and histopathology in perpendicular and transverse sections in order to offer a more precise interpretation of in vivo detectable features. Four melanomas and 2 nevi with different dermoscopic clues have been studied. Lesion areas that showed characteristic dermoscopic features were imaged by dermoscopy and confocal microscopy and directly correlated with histopathology in perpendicular and transverse sections. We presented the possibility to perform transverse sections as a new approach to understand RCM features. Atypical network showed different aspects in the 2 melanomas: in one case it was characterized by pleomorphic malignant melanocytes with tendency to form aggregates, whereas in the other elongated dendritic cells crowded around dermal papillae, some of them forming bridges that resembled the mitochondrial aspect at confocal and histopathology transversal sections. Pigment globules in melanomas and nevi differed for the presence of large atypical cells in the former, and pseudopods showed up as elongated nests protruded toward the periphery of the lesion. Transverse histologic research sections have a consistent dermoscopic and confocal correlate, and it may represent an help in confocal feature interpretation and an advance in improving melanoma diagnosis and knowledge of the biology of melanocytic lesions.

  10. Conjugation of both on-axis and off-axis light in Nipkow disk confocal microscope to increase availability of incoherent light source.

    PubMed

    Saito, Kenta; Arai, Yoshiyuki; Zhang, Jize; Kobayashi, Kentaro; Tani, Tomomi; Nagai, Takeharu

    2011-01-01

    Laser-scanning confocal microscopy has been employed for exploring structures at subcellular, cellular and tissue level in three dimensions. To acquire the confocal image, a coherent light source, such as laser, is generally required in conventional single-point scanning microscopy. The illuminating beam must be focused onto a small spot with diffraction-limited size, and this determines the spatial resolution of the microscopy system. In contrast, multipoint scanning confocal microscopy using a Nipkow disk enables the use of an incoherent light source. We previously demonstrated successful application of a 100 W mercury arc lamp as a light source for the Yokogawa confocal scanner unit in which a microlens array was coupled with a Nipkow disk to focus the collimated incident light onto a pinhole (Saito et al., Cell Struct. Funct., 33: 133-141, 2008). However, transmission efficiency of incident light through the pinhole array was low because off-axis light, the major component of the incident light, was blocked by the non-aperture area of the disk. To improve transmission efficiency, we propose an optical system in which off-axis light is able to be transmitted through pinholes surrounding the pinhole located on the optical axis of the collimator lens. This optical system facilitates the use of not only the on-axis but also the off-axis light such that the available incident light is considerably improved. As a result, we apply the proposed system to high-speed confocal and multicolor imaging both with a satisfactory signal-to-noise ratio.

  11. Impaired Intracellular Ca2+ Dynamics in Live Cardiomyocytes Revealed by Rapid Line Scan Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Plank, David M.; Sussman, Mark A.

    2005-06-01

    Altered intracellular Ca2+ dynamics are characteristically observed in cardiomyocytes from failing hearts. Studies of Ca2+ handling in myocytes predominantly use Fluo-3 AM, a visible light excitable Ca2+ chelating fluorescent dye in conjunction with rapid line-scanning confocal microscopy. However, Fluo-3 AM does not allow for traditional ratiometric determination of intracellular Ca2+ concentration and has required the use of mathematic correction factors with values obtained from separate procedures to convert Fluo-3 AM fluorescence to appropriate Ca2+ concentrations. This study describes methodology to directly measure intracellular Ca2+ levels using inactivated, Fluo-3-AM-loaded cardiomyocytes equilibrated with Ca2+ concentration standards. Titration of Ca2+ concentration exhibits a linear relationship to increasing Fluo-3 AM fluorescence intensity. Images obtained from individual myocyte confocal scans were recorded, average pixel intensity values were calculated, and a plot is generated relating the average pixel intensity to known Ca2+ concentrations. These standard plots can be used to convert transient Ca2+ fluorescence obtained with experimental cells to Ca2+ concentrations by linear regression analysis. Standards are determined on the same microscope used for acquisition of unknown Ca2+ concentrations, simplifying data interpretation and assuring accuracy of conversion values. This procedure eliminates additional equipment, ratiometric imaging, and mathematic correction factors and should be useful to investigators requiring a straightforward method for measuring Ca2+ concentrations in live cells using Ca2+-chelating dyes exhibiting variable fluorescence intensity.

  12. Assessment of skin pigmentation by confocal microscopy: Influence of solar exposure and protection habits on cutaneous hyperchromias.

    PubMed

    Martini, Ana Paula M; Mercurio, Daiane G; Maia Campos, Patrícia M B G

    2017-09-01

    Cutaneous hyperchromias are disorders of skin pigmentation involving an increase of melanin production and its irregular accumulation in skin cells. It is known that the use of sunscreens helps to prevent changes in the skin pigmentation pattern, but the structural and morphological alterations that occur in the different types of hyperpigmentations need better elucidation. To assess the influence of solar exposure and protection habits on the pattern of skin pigmentation using reflectance confocal microscopy (RCM). Forty volunteers aged 18-39 years with skin hyperpigmentation participated in the study. Skin characterization was performed by imaging techniques and by assessing the habits of solar exposure and protection by applying questionnaires to the volunteers. RCM was used to record sequences of confocal sections at areas of interest and to examine cell shape and brightness in the basal cell layer of the lesion and in normal perilesional skin. Furthermore, high-resolution images were obtained for analysis of the spots. Sunlight influences the number and location of spots as the face of volunteers with higher solar exposure was covered with spots, whereas volunteers with less exposure had fewer spots located in the nose and cheeks region due to greater exposure of these areas to the sun. The data showed the importance of sun protection for preventing changes in the pattern of skin pigmentation, and RCM proved to be an important tool for skin characterization. © 2017 Wiley Periodicals, Inc.

  13. Analysis of protein and lipid dynamics using confocal fluorescence recovery after photobleaching (FRAP)

    PubMed Central

    Day, Charles A.; Kraft, Lewis J.; Kang, Minchul; Kenworthy, Anne K.

    2012-01-01

    Fluorescence recovery after photobleaching (FRAP) is a powerful, versatile and widely accessible tool to monitor molecular dynamics in living cells that can be performed using modern confocal microscopes. Although the basic principles of FRAP are simple, quantitative FRAP analysis requires careful experimental design, data collection and analysis. In this review we discuss the theoretical basis for confocal FRAP, followed by step-by-step protocols for FRAP data acquisition using a laser scanning confocal microscope for (1) measuring the diffusion of a membrane protein, (2) measuring the diffusion of a soluble protein, and (3) analysis of intracellular trafficking. Finally, data analysis procedures are discussed and an equation for determining the diffusion coefficient of a molecular species undergoing pure diffusion is presented. PMID:23042527

  14. Quantification of confocal images of biofilms grown on irregular surfaces

    PubMed Central

    Ross, Stacy Sommerfeld; Tu, Mai Han; Falsetta, Megan L.; Ketterer, Margaret R.; Kiedrowski, Megan R.; Horswill, Alexander R.; Apicella, Michael A.; Reinhardt, Joseph M.; Fiegel, Jennifer

    2014-01-01

    Bacterial biofilms grow on many types of surfaces, including flat surfaces such as glass and metal and irregular surfaces such as rocks, biological tissues and polymers. While laser scanning confocal microscopy can provide high-resolution images of biofilms grown on any surface, quantification of biofilm-associated bacteria is currently limited to bacteria grown on flat surfaces. This can limit researchers studying irregular surfaces to qualitative analysis or quantification of only the total bacteria in an image. In this work, we introduce a new algorithm called modified connected volume filtration (MCVF) to quantify bacteria grown on top of an irregular surface that is fluorescently labeled or reflective. Using the MCVF algorithm, two new quantification parameters are introduced. The modified substratum coverage parameter enables quantification of the connected-biofilm bacteria on top of the surface and on the imaging substratum. The utility of MCVF and the modified substratum coverage parameter were shown with Pseudomonas aeruginosa and Staphylococcus aureus biofilms grown on human airway epithelial cells. A second parameter, the percent association, provides quantified data on the colocalization of the bacteria with a labeled component, including bacteria within a labeled tissue. The utility of quantifying the bacteria associated with the cell cytoplasm was demonstrated with Neisseria gonorrhoeae biofilms grown on cervical epithelial cells. This algorithm provides more flexibility and quantitative ability to researchers studying biofilms grown on a variety of irregular substrata. PMID:24632515

  15. In vivo cell tracking and quantification method in adult zebrafish

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Alt, Clemens; Li, Pulin; White, Richard M.; Zon, Leonard I.; Wei, Xunbin; Lin, Charles P.

    2012-03-01

    Zebrafish have become a powerful vertebrate model organism for drug discovery, cancer and stem cell research. A recently developed transparent adult zebrafish using double pigmentation mutant, called casper, provide unparalleled imaging power in in vivo longitudinal analysis of biological processes at an anatomic resolution not readily achievable in murine or other systems. In this paper we introduce an optical method for simultaneous visualization and cell quantification, which combines the laser scanning confocal microscopy (LSCM) and the in vivo flow cytometry (IVFC). The system is designed specifically for non-invasive tracking of both stationary and circulating cells in adult zebrafish casper, under physiological conditions in the same fish over time. The confocal imaging part in this system serves the dual purposes of imaging fish tissue microstructure and a 3D navigation tool to locate a suitable vessel for circulating cell counting. The multi-color, multi-channel instrument allows the detection of multiple cell populations or different tissues or organs simultaneously. We demonstrate initial testing of this novel instrument by imaging vasculature and tracking circulating cells in CD41: GFP/Gata1: DsRed transgenic casper fish whose thrombocytes/erythrocytes express the green and red fluorescent proteins. Circulating fluorescent cell incidents were recorded and counted repeatedly over time and in different types of vessels. Great application opportunities in cancer and stem cell researches are discussed.

  16. Confocal laser endomicroscopy for in vivo diagnosis of Barrett's oesophagus and associated neoplasia: a pilot study conducted in a single Italian centre.

    PubMed

    Trovato, Cristina; Sonzogni, Angelica; Ravizza, Davide; Fiori, Giancarla; Tamayo, Darina; De Roberto, Giuseppe; de Leone, Annalisa; De Lisi, Stefania; Crosta, Cristiano

    2013-05-01

    Diagnosis and management of Barrett's oesophagus are controversial. Technical improvements in real-time recognition of intestinal metaplasia and neoplastic foci provide the chance for more effective target biopsies. Confocal laser endomicroscopy allows to analyze living cells during endoscopy. To assess the diagnostic accuracy, inter- and intra-observer variability of endomicroscopy for detecting in vivo neoplasia (dysplasia and/or early neoplasia) in Barrett's oesophagus. Prospective pilot study. Patients referred for known Barrett's oesophagus were screened. Endomicroscopy was carried out in a circular fashion, every 1-2 cm, on the whole columnar-lined distal oesophagus. Visible lesions, when present, were analyzed first. Targeted biopsies were taken. Confocal images were classified according to confocal Barrett classification. Endomicroscopic and histological findings were compared. Forty-eight out of 50 screened patients underwent endomicroscopy. Visible lesions were observed in 3 patients. In a per-biopsy analysis, Barrett's-oesophagus-associated neoplasia could be predicted with an accuracy of 98.1%. The agreement between endomicroscopic and histological results was substantial (κ=0.76). This study suggests that endomicroscopy can provide in vivo diagnosis of Barrett's oesophagus-associated neoplasia. Because it allows for the study of larger surface areas of the mucosa, endomicroscopy may lead to significant improvements in the in vivo screening and surveillance of Barrett's oesophagus. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  17. Design considerations of a real-time clinical confocal microscope

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1991-06-01

    A real-time clinical confocal light microscope provides the ophthalmologist with a new tool for the observation of the cornea and the ocular lens. In addition, the ciliary body, the iris, and the sclera can be observed. The real-time light microscopic images have high contrast and resolution. The transverse resolution is about one half micron and the range resolution is one micron. The following observations were made with visible light: corneal epithelial cells, wing cells, basal cells, Bowman's membrane, nerve fibers, basal lamina, fibroblast nuclei, Descemet's membrane, endothelial cells. Observation of the in situ ocular lens showed lens capsule, lens epithelium, lens fibrils, the interior of lens fibrils. The applications of the confocal microscope include: eye banking, laser refractive surgery, observation of wound healing, observation of the iris, the sciera, the ciliary body, the ocular lens, and the intraocular lens. Digital image processing can produce three-dimensional reconstructions of the cornea and the ocular lens.

  18. Plasmon resonance and the imaging of metal-impregnated neurons with the laser scanning confocal microscope

    PubMed Central

    Thompson, Karen J; Harley, Cynthia M; Barthel, Grant M; Sanders, Mark A; Mesce, Karen A

    2015-01-01

    The staining of neurons with silver began in the 1800s, but until now the great resolving power of the laser scanning confocal microscope has not been utilized to capture the in-focus and three-dimensional cytoarchitecture of metal-impregnated cells. Here, we demonstrate how spectral confocal microscopy, typically reserved for fluorescent imaging, can be used to visualize metal-labeled tissues. This imaging does not involve the reflectance of metal particles, but rather the excitation of silver (or gold) nanoparticles and their putative surface plasmon resonance. To induce such resonance, silver or gold particles were excited with visible-wavelength laser lines (561 or 640 nm), and the maximal emission signal was collected at a shorter wavelength (i.e., higher energy state). Because the surface plasmon resonances of noble metal nanoparticles offer a superior optical signal and do not photobleach, our novel protocol holds enormous promise of a rebirth and further development of silver- and gold-based cell labeling protocols. DOI: http://dx.doi.org/10.7554/eLife.09388.001 PMID:26670545

  19. Remote focusing in confocal microscopy by means of a modified Alvarez lens.

    PubMed

    Bawart, M; Jesacher, A; Bernet, S; Ritsch-Marte, M

    2018-06-22

    Alvarez lenses are actuated lens-pairs which allow one to tune the optical power by mechanical displacement of subelements. Here, we show that a recently realized modified Alvarez lens design which does not require mechanical actuation can be integrated into a confocal microscope. Instead of mechanically moving them, the sublenses are imaged onto each other in a 4f-configuration, where the lateral image shift leading to a change in optical power is created by a galvo-mirror. The avoidance of mechanical lens shifts leads to a large speed gain for axial (and hence also 3D) image scans compared to classical Alvarez lenses. We demonstrate that the suggested operation principle is compatible with confocal microscopy. In order to optimize the system, we have drawn advantage of the flexibility a liquid-crystal spatial light modulator offers for the implementation. For given specifications, dedicated diffractive optical elements or freeform elements can be used in combination with resonant galvo-scanners or acousto-optic beam deflectors, to achieve even faster z-scans than reported here, reaching video rate. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  20. Low-power laser effects at the single-cell level: a confocal microscopy study

    NASA Astrophysics Data System (ADS)

    Alexandratou, Eleni; Yova, Dido M.; Atlamazoglou, Vassilis; Handris, Panagiotis; Kletsas, Dimitris; Loukas, Spyros

    2000-11-01

    Confocal microscopy was used for irradiation and observation of the same area of interest, allowing the imaging of low power laser effects in subcellular components and functions, at the single cell level. Coverslips cultures of human fetal foreskin fibroblasts (HFFF2) were placed in a small incubation chamber for in vivo microscopic observation. Cells were stimulated by the 647 nm line of the Argon- Krypton laser of the confocal microscope (0.1 mW/cm2). Membrane permeability, mitochondrial membrane potential ((delta) Psim), intracellular pHi, calcium alterations and nuclear chromatin accessibility were monitored, at different times after irradiation, using specific fluorescent vital probes. Images were stored to the computer and quantitative evaluation was performed using image- processing software. After irradiation, influx and efflux of the appropriate dyes monitored changes in cell membrane permeability. Laser irradiation caused alkalizatoin of the cytosolic pHi and increase of the mitochondrial membrane potential ((delta) Psim). Temporary global Ca2+ responses were also observed. No such effects were noted in microscopic fields other than the irradiated ones. No toxic effects were observed, during time course of the experiment.

  1. Reflectance confocal microscopy of red blood cells: simulation and experiment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zeidan, Adel; Yeheskely-Hayon, Daniella; Minai, Limor; Yelin, Dvir

    2016-03-01

    The properties of red blood cells are a remarkable indicator of the body's physiological condition; their density could indicate anemia or polycythemia, their absorption spectrum correlates with blood oxygenation, and their morphology is highly sensitive to various pathologic states including iron deficiency, ovalocytosis, and sickle cell disease. Therefore, measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient's health. In this work, we simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the cells' morphological parameters and the resulting characteristic interference patterns. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry (SEFC) that imaged the cells during linear flow and without artificial staining. By matching the simulated patterns to the SEFC images of the cells, the cells' three-dimensional shapes were evaluated and their volumes were calculated. Potential applications include measurement of the mean corpuscular volume, cell morphological abnormalities, cell stiffness under mechanical stimuli, and the detection of various hematological diseases.

  2. In vivo Clonal Tracking of Hematopoietic Stem and Progenitor Cells Marked by Five Fluorescent Proteins using Confocal and Multiphoton Microscopy

    PubMed Central

    Malide, Daniela; Métais, Jean-Yves; Dunbar, Cynthia E.

    2014-01-01

    We developed and validated a fluorescent marking methodology for clonal tracking of hematopoietic stem and progenitor cells (HSPCs) with high spatial and temporal resolution to study in vivo hematopoiesis using the murine bone marrow transplant experimental model. Genetic combinatorial marking using lentiviral vectors encoding fluorescent proteins (FPs) enabled cell fate mapping through advanced microscopy imaging. Vectors encoding five different FPs: Cerulean, EGFP, Venus, tdTomato, and mCherry were used to concurrently transduce HSPCs, creating a diverse palette of color marked cells. Imaging using confocal/two-photon hybrid microscopy enables simultaneous high resolution assessment of uniquely marked cells and their progeny in conjunction with structural components of the tissues. Volumetric analyses over large areas reveal that spectrally coded HSPC-derived cells can be detected non-invasively in various intact tissues, including the bone marrow (BM), for extensive periods of time following transplantation. Live studies combining video-rate multiphoton and confocal time-lapse imaging in 4D demonstrate the possibility of dynamic cellular and clonal tracking in a quantitative manner. PMID:25145579

  3. In- and ex-vivo molecular imaging of apoptosis to assess sensitivity of non-small cell lung cancer to EGFR inhibitors using probe-based confocal laser endomicroscopy.

    PubMed

    Guisier, Florian; Bohn, Pierre; Patout, Maxime; Piton, Nicolas; Farah, Insaf; Vera, Pierre; Thiberville, Luc; Salaün, Mathieu

    2017-01-01

    Prediction of treatment outcome of non-small cell lung cancer (NSCLC) with EGFR inhibitors on the basis of the genetic analysis of the tumor can be incorrect in case of rare or complex mutations, bypass molecular activation pathways, or pharmacodynamic variations. The aim of this study was to develop an ex vivo and in vivo real-time quantitative imaging test for EGFR inhibitors sensitivity assessment. Erlotinib resistant (A549, H460, H1975), insensitive (H1650) and hypersensitive (HCC827) cell lines were injected subcutaneously in Nude mice. Tumor xenografts from mice treated with Erlotinib were imaged ex vivo and in vivo using probe-based confocal laser endomicroscopy (pCLE) and NucView 488 Caspase 3 substrate, a fluorescent probe specific for the activated caspase 3. Assessment of apoptosis at 24h post treatment, both ex vivo in explanted tumor xenografts and in vivo, showed a significant difference between resistant cell lines (A549, H460 and H1975) and insensitive (H1650) or hypersensitive (HCC827) ones (p<0.05 for ex vivo imaging, p≤0.02 for in vivo imaging). There was also a significant difference between insensitive and hypersensitive cell lines, both ex vivo (p<0.05) and in vivo (p = 0.01). Real-time in vivo and ex vivo assessment of apoptosis using pCLE differentiates resistant from sensitive NSCLC xenografts to Erlotinib.

  4. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.

    PubMed

    Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J

    2015-09-01

    Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  5. Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation

    NASA Astrophysics Data System (ADS)

    Schlosser, Colin; Bodenschatz, Nico; Lam, Sylvia; Lee, Marette; McAlpine, Jessica N.; Miller, Dianne M.; Van Niekerk, Dirk J. T.; Follen, Michele; Guillaud, Martial; MacAulay, Calum E.; Lane, Pierre M.

    2016-12-01

    Current diagnostic capabilities and limitations of fluorescence endomicroscopy in the cervix are assessed by qualitative and quantitative image analysis. Four cervical tissue types are investigated: normal columnar epithelium, normal and precancerous squamous epithelium, and stromal tissue. This study focuses on the perceived variability within and the subtle differences between the four tissue groups in the context of endomicroscopic in vivo pathology. Conclusions are drawn on the general ability to distinguish and diagnose tissue types, on the need for imaging depth control to enhance differentiation, and on the possible risks for diagnostic misinterpretations.

  6. Image Quality Analysis of Various Gastrointestinal Endoscopes: Why Image Quality Is a Prerequisite for Proper Diagnostic and Therapeutic Endoscopy

    PubMed Central

    Ko, Weon Jin; An, Pyeong; Ko, Kwang Hyun; Hahm, Ki Baik; Hong, Sung Pyo

    2015-01-01

    Arising from human curiosity in terms of the desire to look within the human body, endoscopy has undergone significant advances in modern medicine. Direct visualization of the gastrointestinal (GI) tract by traditional endoscopy was first introduced over 50 years ago, after which fairly rapid advancement from rigid esophagogastric scopes to flexible scopes and high definition videoscopes has occurred. In an effort towards early detection of precancerous lesions in the GI tract, several high-technology imaging scopes have been developed, including narrow band imaging, autofocus imaging, magnified endoscopy, and confocal microendoscopy. However, these modern developments have resulted in fundamental imaging technology being skewed towards red-green-blue and this technology has obscured the advantages of other endoscope techniques. In this review article, we have described the importance of image quality analysis using a survey to consider the diversity of endoscope system selection in order to better achieve diagnostic and therapeutic goals. The ultimate aims can be achieved through the adoption of modern endoscopy systems that obtain high image quality. PMID:26473119

  7. Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation

    NASA Astrophysics Data System (ADS)

    Nasiri-Avanaki, M. R.; Aber, Ahmed; Hojjatoleslami, S. A.; Sira, Mano; Schofield, John B.; Jones, Carole; Podoleanu, A. Gh.

    2012-03-01

    Basal cell carcinoma (BCC) is the most common form of skin cancer. To improve the diagnostic accuracy, additional non-invasive methods of making a preliminary diagnosis have been sought. We have implemented an En-Face optical coherence tomography (OCT) for this study in which the dynamic focus was integrated into it. With the dynamic focus scheme, the coherence gate moves synchronously with the peak of confocal gate determined by the confocal interface optics. The transversal resolution is then conserved throughout the depth range and an enhanced signal is returned from all depths. The Basal Cell Carcinoma specimens were obtained from the eyelid a patient. The specimens under went analysis by DF-OCT imaging. We searched for remarkable features that were visualized by OCT and compared these findings with features presented in the histology slices.

  8. Automated cellular pathology in noninvasive confocal microscopy

    NASA Astrophysics Data System (ADS)

    Ting, Monica; Krueger, James; Gareau, Daniel

    2014-03-01

    A computer algorithm was developed to automatically identify and count melanocytes and keratinocytes in 3D reflectance confocal microscopy (RCM) images of the skin. Computerized pathology increases our understanding and enables prevention of superficial spreading melanoma (SSM). Machine learning involved looking at the images to measure the size of cells through a 2-D Fourier transform and developing an appropriate mask with the erf() function to model the cells. Implementation involved processing the images to identify cells whose image segments provided the least difference when subtracted from the mask. With further simplification of the algorithm, the program may be directly implemented on the RCM images to indicate the presence of keratinocytes in seconds and to quantify the keratinocytes size in the en face plane as a function of depth. Using this system, the algorithm can identify any irregularities in maturation and differentiation of keratinocytes, thereby signaling the possible presence of cancer.

  9. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy.

    PubMed

    Schulz, Olaf; Pieper, Christoph; Clever, Michaela; Pfaff, Janine; Ruhlandt, Aike; Kehlenbach, Ralph H; Wouters, Fred S; Großhans, Jörg; Bunt, Gertrude; Enderlein, Jörg

    2013-12-24

    We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution. Using conventional fluorophores, we have imaged single nuclear pore complexes in the nuclear membrane and aggregates of GFP-conjugated Tau protein in three dimensions. Multicolor ISM was shown on cytoskeletal-associated structural proteins and on 3D four-color images including MitoTracker and Hoechst staining. The simple adaptation of conventional CSD equipment allows superresolution investigations of a broad variety of cell biological questions.

  10. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy

    PubMed Central

    Schulz, Olaf; Pieper, Christoph; Clever, Michaela; Pfaff, Janine; Ruhlandt, Aike; Kehlenbach, Ralph H.; Wouters, Fred S.; Großhans, Jörg; Bunt, Gertrude; Enderlein, Jörg

    2013-01-01

    We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution. Using conventional fluorophores, we have imaged single nuclear pore complexes in the nuclear membrane and aggregates of GFP-conjugated Tau protein in three dimensions. Multicolor ISM was shown on cytoskeletal-associated structural proteins and on 3D four-color images including MitoTracker and Hoechst staining. The simple adaptation of conventional CSD equipment allows superresolution investigations of a broad variety of cell biological questions. PMID:24324140

  11. Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope.

    PubMed

    Burns, Stephen A; Tumbar, Remy; Elsner, Ann E; Ferguson, Daniel; Hammer, Daniel X

    2007-05-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide-field line scan scanning laser ophthalmoscope (SLO), and a high-resolution microelectromechanical-systems-based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point-spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the psf. The retinal image was stabilized to within 18 microm 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images.

  12. Large Field of View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope

    PubMed Central

    Burns, Stephen A.; Tumbar, Remy; Elsner, Ann E.; Ferguson, Daniel; Hammer, Daniel X.

    2007-01-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide field line scan Scanning Laser Ophthalmocsope (SLO), and a high resolution MEMS based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x, and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the pointspread function. The retinal image was stabilized to within 18 microns 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images. PMID:17429477

  13. Super-Resolution Imaging Strategies for Cell Biologists Using a Spinning Disk Microscope

    PubMed Central

    Hosny, Neveen A.; Song, Mingying; Connelly, John T.; Ameer-Beg, Simon; Knight, Martin M.; Wheeler, Ann P.

    2013-01-01

    In this study we use a spinning disk confocal microscope (SD) to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM)/Stochastic Optical Reconstruction Microscopy (STORM) methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM) and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging. PMID:24130668

  14. Reflectance Confocal Microscopy of Skin In Vivo: From Bench to Bedside

    PubMed Central

    Rajadhyaksha, Milind; Marghoob, Ashfaq; Rossi, Anthony; Halpern, Allan C; Nehal, Kishwer S.

    2017-01-01

    Following more than two decades of effort, reflectance confocal microscopy (RCM) imaging of skin was granted codes for reimbursement by the US Centers for Medicare and Medicaid Services. Dermatologists in the USA have started billing and receiving reimbursement for the imaging procedure and for the reading and interpretation of images. RCM imaging combined with dermoscopic examination is guiding the triage of lesions into those that appear benign, which are being spared from biopsy, against those that appear suspicious, which are then biopsied. Thus far, a few thousand patients have been spared from biopsy of benign lesions. The journey of RCM imaging from bench to bedside is certainly a success story, but still much more work lies ahead toward wider dissemination, acceptance, and adoption. We present a brief review of RCM imaging and highlight key challenges and opportunities. The success of RCM imaging paves the way for other emerging optical technologies, as well—and our bet for the future is on multimodal approaches. PMID:27785781

  15. In vitro confocal imaging of the rabbit cornea.

    PubMed

    Masters, B R; Paddock, S

    1990-05-01

    We were able to observe in vitro the fine structure of the rabbit cornea using a laser scanning confocal microscope, especially in the regions between Descemet's membrane and the epithelial basal lamina. We observed submicrometre filaments throughout the stroma with high concentrations adjacent to Descemet's membrane, and found extensive interconnecting processes between stromal keratocytes. There are numerous regions containing nerve plexuses in the stroma. We found a deeply convoluted basal lamina adjacent to the epithelium, and observed regions containing junctions between endothelial cells in fluorescent images of rabbit corneas stained with the actin-specific compound fluorescein phalloidin.

  16. Unwarping confocal microscopy images of bee brains by nonrigid registration to a magnetic resonance microscopy image.

    PubMed

    Rohlfing, Torsten; Schaupp, Frank; Haddad, Daniel; Brandt, Robert; Haase, Axel; Menzel, Randolf; Maurer, Calvin R

    2005-01-01

    Confocal microscopy (CM) is a powerful image acquisition technique that is well established in many biological applications. It provides 3-D acquisition with high spatial resolution and can acquire several different channels of complementary image information. Due to the specimen extraction and preparation process, however, the shapes of imaged objects may differ considerably from their in vivo appearance. Magnetic resonance microscopy (MRM) is an evolving variant of magnetic resonance imaging, which achieves microscopic resolutions using a high magnetic field and strong magnetic gradients. Compared to CM imaging, MRM allows for in situ imaging and is virtually free of geometrical distortions. We propose to combine the advantages of both methods by unwarping CM images using a MRM reference image. Our method incorporates a sequence of image processing operators applied to the MRM image, followed by a two-stage intensity-based registration to compute a nonrigid coordinate transformation between the CM images and the MRM image. We present results obtained using CM images from the brains of 20 honey bees and a MRM image of an in situ bee brain. Copyright 2005 Society of Photo-Optical Instrumentation Engineers.

  17. Experimental assessment and analysis of super-resolution in fluorescence microscopy based on multiple-point spread function fitting of spectrally demultiplexed images

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun

    2018-06-01

    This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.

  18. Diabetic peripheral neuropathy assessment through texture based analysis of corneal nerve images

    NASA Astrophysics Data System (ADS)

    Silva, Susana F.; Gouveia, Sofia; Gomes, Leonor; Negrão, Luís; João Quadrado, Maria; Domingues, José Paulo; Morgado, António Miguel

    2015-05-01

    Diabetic peripheral neuropathy (DPN) is one common complication of diabetes. Early diagnosis of DPN often fails due to the non-availability of a simple, reliable, non-invasive method. Several published studies show that corneal confocal microscopy (CCM) can identify small nerve fibre damage and quantify the severity of DPN, using nerve morphometric parameters. Here, we used image texture features, extracted from corneal sub-basal nerve plexus images, obtained in vivo by CCM, to identify DPN patients, using classification techniques. A SVM classifier using image texture features was used to identify (DPN vs. No DPN) DPN patients. The accuracies were 80.6%, when excluding diabetic patients without neuropathy, and 73.5%, when including diabetic patients without diabetic neuropathy jointly with healthy controls. The results suggest that texture analysis might be used as a complementing technique for DPN diagnosis, without requiring nerve segmentation in CCM images. The results also suggest that this technique has enough sensitivity to detect early disorders in the corneal nerves of diabetic patients.

  19. Spinning-disk confocal microscopy: present technology and future trends.

    PubMed

    Oreopoulos, John; Berman, Richard; Browne, Mark

    2014-01-01

    Live-cell imaging requires not only high temporal resolution but also illumination powers low enough to minimize photodamage. Traditional single-point laser scanning confocal microscopy (LSCM) is generally limited by both the relatively slow speed at which it can acquire optical sections by serial raster scanning (a few Hz) and the higher potential for phototoxicity. These limitations have driven the development of rapid, parallel forms of confocal microscopy, the most popular of which is the spinning-disk confocal microscope (SDCM). Here, we briefly introduce the SDCM technique, discuss its strengths and weaknesses against LSCM, and update the reader on some recent developments in SDCM technology that improve its performance and expand its utility for life science research now and in the future. © 2014 Elsevier Inc. All rights reserved.

  20. 3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading

    PubMed Central

    Cho, Nam-Hoon; Choi, Heung-Kook

    2014-01-01

    One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system. PMID:25371701

  1. Suitability of holographic beam scanning in high resolution applications

    NASA Astrophysics Data System (ADS)

    Kalita, Ranjan; Goutam Buddha, S. S.; Boruah, Bosanta R.

    2018-02-01

    The high resolution applications of a laser scanning imaging system very much demand the accurate positioning of the illumination beam. The galvanometer scanner based beam scanning imaging systems, on the other hand, suffer from both short term and long term beam instability issues. Fortunately Computer generated holography based beam scanning offers extremely accurate beam steering, which can be very useful for imaging in high-resolution applications in confocal microscopy. The holographic beam scanning can be achieved by writing a sequence of holograms onto a spatial light modulator and utilizing one of the diffracted orders as the illumination beam. This paper highlights relative advantages of such a holographic beam scanning based confocal system and presents some of preliminary experimental results.

  2. Adaptive optics for confocal laser scanning microscopy with adjustable pinhole

    NASA Astrophysics Data System (ADS)

    Yoo, Han Woong; van Royen, Martin E.; van Cappellen, Wiggert A.; Houtsmuller, Adriaan B.; Verhaegen, Michel; Schitter, Georg

    2016-04-01

    The pinhole plays an important role in confocal laser scanning microscopy (CLSM) for adaptive optics (AO) as well as in imaging, where the size of the pinhole denotes a trade-off between out-of-focus rejection and wavefront distortion. This contribution proposes an AO system for a commercial CLSM with an adjustable square pinhole to cope with such a trade-off. The proposed adjustable pinhole enables to calibrate the AO system and to evaluate the imaging performance. Experimental results with fluorescence beads on the coverslip and at a depth of 40 μm in the human hepatocellular carcinoma cell spheroid demonstrate that the proposed AO system can improve the image quality by the proposed calibration method. The proposed pinhole intensity ratio also indicates the image improvement by the AO correction in intensity as well as resolution.

  3. Bessel light sheet structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Noshirvani Allahabadi, Golchehr

    Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in confocal quality images in thick tissue. The technique was applied to live transgenic zebra fish tg(kdrl:GFP), and the sub-cellular structure of fish vasculature genetically labeled with GFP was captured in 3D. The superior speed of the microscope enables us to acquire signal from 200 layers of a thick sample in 4 minutes. The compact microscope uses exclusively off-the-shelf components and offers a low-cost imaging solution for studying small animal models or tissue samples.

  4. Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients.

    PubMed

    Ueda-Arakawa, Naoko; Ooto, Sotaro; Tsujikawa, Akitaka; Yamashiro, Kenji; Oishi, Akio; Yoshimura, Nagahisa

    2013-03-01

    To identify reticular pseudodrusen (RPD) in age-related macular degeneration using multiple imaging modalities, including the blue channel image of fundus photography, infrared reflectance (IR), fundus autofluorescence, near-infrared fundus autofluorescence, confocal blue reflectance, indocyanine green angiography, and spectral-domain optical coherence tomography (SD-OCT), and to compare the sensitivities and specificities of these modalities for detecting RPD. This study included 220 eyes from 114 patients with newly diagnosed age-related macular degeneration. Patients underwent fundus photography, IR, fundus autofluorescence, near-infrared fundus autofluorescence, confocal blue reflectance, indocyanine green angiography, and SD-OCT in both eyes. Eyes were diagnosed with RPD if they showed reticular patterns on at least two of the seven imaging modalities. Thirty-seven eyes were diagnosed with RPD. However, SD-OCT and IR had the highest sensitivity (94.6%), and at the same time, SD-OCT had a high specificity (98.4%). The blue channel of color fundus photography, confocal blue reflectance, and indocyanine green angiography had a specificity of 100% but had lower sensitivity than that of SD-OCT and IR. For detecting RPD, IR and SD-OCT had the highest sensitivity. Although SD-OCT had the highest sensitivity and specificity, RPD detection should be confirmed using more than one modality for increased accuracy.

  5. A STED-FLIM microscope applied to imaging the natural killer cell immune synapse

    NASA Astrophysics Data System (ADS)

    Lenz, M. O.; Brown, A. C. N.; Auksorius, E.; Davis, D. M.; Dunsby, C.; Neil, M. A. A.; French, P. M. W.

    2011-03-01

    We present a stimulated emission depletion (STED) fluorescence lifetime imaging (FLIM) microscope, excited by a microstructured optical fibre supercontinuum source that is pumped by a femtosecond Ti:Sapphire-laser, which is also used for depletion. Implemented using a piezo-scanning stage on a laser scanning confocal fluorescence microscope system with FLIM realised using time correlated single photon counting (TCSPC), this provides convenient switching between confocal and STED-FLIM with spatial resolution down to below 60 nm. We will present our design considerations to make a robust instrument for biological applications including a comparison between fixed phase plate and spatial light modulator (SLM) approaches to shape the STED beam and the correlation of STED and confocal FLIM microscopy. Following our previous application of FLIM-FRET to study intercellular signalling at the immunological synapse (IS), we are employing STED microscopy to characterize the spatial distribution of cellular molecules with subdiffraction resolution at the IS. In particular, we are imaging cytoskeletal structure at the Natural Killer cell activated immune synapse. We will also present our progress towards multilabel STED microscopy to determine how relative spatial molecular organization, previously undetectable by conventional microscopy techniques, is important for NK cell cytotoxic function. Keywords: STED, Stimulated Emission Depletion Microscopy, Natural Killer (NK) cell, Fluorescence lifetime imaging, FLIM, Super resolution microscopy.

  6. Phenotypic Characterization of Toxic Compound Effects on Liver Spheroids Derived from iPSC Using Confocal Imaging and Three-Dimensional Image Analysis.

    PubMed

    Sirenko, Oksana; Hancock, Michael K; Hesley, Jayne; Hong, Dihui; Cohen, Avrum; Gentry, Jason; Carlson, Coby B; Mann, David A

    2016-09-01

    Cell models are becoming more complex to better mimic the in vivo environment and provide greater predictivity for compound efficacy and toxicity. There is an increasing interest in exploring the use of three-dimensional (3D) spheroids for modeling developmental and tissue biology with the goal of accelerating translational research in these areas. Accordingly, the development of high-throughput quantitative assays using 3D cultures is an active area of investigation. In this study, we have developed and optimized methods for the formation of 3D liver spheroids derived from human iPS cells and used those for toxicity assessment. We used confocal imaging and 3D image analysis to characterize cellular information from a 3D matrix to enable a multi-parametric comparison of different spheroid phenotypes. The assay enables characterization of compound toxicities by spheroid size (volume) and shape, cell number and spatial distribution, nuclear characterization, number and distribution of cells expressing viability, apoptosis, mitochondrial potential, and viability marker intensities. In addition, changes in the content of live, dead, and apoptotic cells as a consequence of compound exposure were characterized. We tested 48 compounds and compared induced pluripotent stem cell (iPSC)-derived hepatocytes and HepG2 cells in both two-dimensional (2D) and 3D cultures. We observed significant differences in the pharmacological effects of compounds across the two cell types and between the different culture conditions. Our results indicate that a phenotypic assay using 3D model systems formed with human iPSC-derived hepatocytes is suitable for high-throughput screening and can be used for hepatotoxicity assessment in vitro.

  7. A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology.

    PubMed

    Al-Fahdawi, Shumoos; Qahwaji, Rami; Al-Waisy, Alaa S; Ipson, Stanley; Ferdousi, Maryam; Malik, Rayaz A; Brahma, Arun

    2018-07-01

    Corneal endothelial cell abnormalities may be associated with a number of corneal and systemic diseases. Damage to the endothelial cells can significantly affect corneal transparency by altering hydration of the corneal stroma, which can lead to irreversible endothelial cell pathology requiring corneal transplantation. To date, quantitative analysis of endothelial cell abnormalities has been manually performed by ophthalmologists using time consuming and highly subjective semi-automatic tools, which require an operator interaction. We developed and applied a fully-automated and real-time system, termed the Corneal Endothelium Analysis System (CEAS) for the segmentation and computation of endothelial cells in images of the human cornea obtained by in vivo corneal confocal microscopy. First, a Fast Fourier Transform (FFT) Band-pass filter is applied to reduce noise and enhance the image quality to make the cells more visible. Secondly, endothelial cell boundaries are detected using watershed transformations and Voronoi tessellations to accurately quantify the morphological parameters of the human corneal endothelial cells. The performance of the automated segmentation system was tested against manually traced ground-truth images based on a database consisting of 40 corneal confocal endothelial cell images in terms of segmentation accuracy and obtained clinical features. In addition, the robustness and efficiency of the proposed CEAS system were compared with manually obtained cell densities using a separate database of 40 images from controls (n = 11), obese subjects (n = 16) and patients with diabetes (n = 13). The Pearson correlation coefficient between automated and manual endothelial cell densities is 0.9 (p < 0.0001) and a Bland-Altman plot shows that 95% of the data are between the 2SD agreement lines. We demonstrate the effectiveness and robustness of the CEAS system, and the possibility of utilizing it in a real world clinical setting to enable rapid diagnosis and for patient follow-up, with an execution time of only 6 seconds per image. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Automatic classification of small bowel mucosa alterations in celiac disease for confocal laser endomicroscopy

    NASA Astrophysics Data System (ADS)

    Boschetto, Davide; Di Claudio, Gianluca; Mirzaei, Hadis; Leong, Rupert; Grisan, Enrico

    2016-03-01

    Celiac disease (CD) is an immune-mediated enteropathy triggered by exposure to gluten and similar proteins, affecting genetically susceptible persons, increasing their risk of different complications. Small bowels mucosa damage due to CD involves various degrees of endoscopically relevant lesions, which are not easily recognized: their overall sensitivity and positive predictive values are poor even when zoom-endoscopy is used. Confocal Laser Endomicroscopy (CLE) allows skilled and trained experts to qualitative evaluate mucosa alteration such as a decrease in goblet cells density, presence of villous atrophy or crypt hypertrophy. We present a method for automatically classifying CLE images into three different classes: normal regions, villous atrophy and crypt hypertrophy. This classification is performed after a features selection process, in which four features are extracted from each image, through the application of homomorphic filtering and border identification through Canny and Sobel operators. Three different classifiers have been tested on a dataset of 67 different images labeled by experts in three classes (normal, VA and CH): linear approach, Naive-Bayes quadratic approach and a standard quadratic analysis, all validated with a ten-fold cross validation. Linear classification achieves 82.09% accuracy (class accuracies: 90.32% for normal villi, 82.35% for VA and 68.42% for CH, sensitivity: 0.68, specificity 1.00), Naive Bayes analysis returns 83.58% accuracy (90.32% for normal villi, 70.59% for VA and 84.21% for CH, sensitivity: 0.84 specificity: 0.92), while the quadratic analysis achieves a final accuracy of 94.03% (96.77% accuracy for normal villi, 94.12% for VA and 89.47% for CH, sensitivity: 0.89, specificity: 0.98).

  9. Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy

    NASA Astrophysics Data System (ADS)

    Chidley, Matthew D.; Liang, Chen; Descour, Michael R.; Sung, Kung-Bin; Richards-Kortum, Rebecca R.; Gillenwater, Ann

    2002-12-01

    In collaboration with the Department of Biomedical Engineering at the University of Texas at Austin and the UT MD Anderson Cancer Center, a laser scanning fiber confocal reflectance microscope (FCRM) system has been designed and tested for in vivo detection of cervical and oral pre-cancers. This system along with specially developed diagnosis algorithms and techniques can achieve an unprecedented specificity and sensitivity for the diagnosis of pre-cancers in epithelial tissue. The FCRM imaging system consists of an NdYAG laser (1064 nm), scanning mirrors/optics, precision pinhole, detector, and an endoscopic probe (the objective). The objective is connected to the rest of the imaging system via a fiber bundle. The fiber bundle allows the rest of the system to be remotely positioned in a convenient location. Only the objective comes into contact with the patient. It is our intent that inexpensive mass-produced disposable endoscopic probes would be produced for large clinical trials. This paper touches on the general design process of developing a miniature, high numerical aperture, injection-molded (IM) objective. These IM optical designs are evaluated and modified based on manufacturing and application constraints. Based on these driving criteria, one specific optical design was chosen and a detailed tolerance analysis was conducted. The tolerance analysis was custom built to create a realistic statistical analysis for integrated IM lens elements that can be stacked one on top of another using micro-spheres resting in tiny circular grooves. These configurations allow each lens element to be rotated and possibly help compensate for predicted manufacturing errors. This research was supported by a grant from the National Institutes of Health (RO1 CA82880). Special thanks go to Applied Image Group/Optics for the numerous fabrication meetings concerning the miniature IM objective.

  10. Latest advances in confocal microscopy of skin cancers toward guiding patient care: a Mohs surgeon's review and perspective (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nehal, Kishwer S.; Rajadhyaksha, Milind

    2016-02-01

    Latest advances in confocal microscopy of skin cancers toward guiding patient care: a Mohs surgeon's review and perspective About 350 publications worldwide have reported the ability of reflectance confocal microscopy (RCM) imaging to detect melanocytic skin lesions in vivo with specificity of 84-88% and sensitivity of 71-92%, and non-melanocytic skin lesions with specificity of 85-97% and sensitivity 100-92%. Lentigo maligna melanoma can be detected with sensitivity of 93% and specificity 82%. While the sensitivity is comparable to that of dermoscopy, the specificity is 2X superior, especially for lightly- and non-pigmented lesions. Dermoscopy combined with RCM imaging is proving to be both highly sensitive and highly specific. Recent studies have reported that the ratio of equivocal (i.e., would have been biopsied) lesions to detected melanomas dropped by ~2X when guided by dermoscopy and RCM imaging, compared to that with dermoscopy alone. Dermoscopy combined with RCM imaging is now being implemented to guide noninvasive diagnosis (to rule out malignancy and biopsy) and to also guide treatment, with promising initial impact: thus far, about 3,000 patients have been saved from biopsies of benign lesions. These are currently under follow-up monitoring. With fluorescence confocal microscopy (FCM) mosaicing, residual basal cell carcinomas can be detected in Mohs surgically excised fresh tissue ex vivo, with sensitivity of 94-97% and specificity 89-94%. FCM mosaicing is now being implemented for guiding Mohs surgery. To date, about 600 Mohs procedures have been performed, guided with mosaicing, and with pathology being performed in parallel to confirm the final outcome. These latest advances demonstrate the promising ability of RCM and FCM to guide patient care.

  11. Image-guided intraocular injection using multimodality optical coherence tomography and fluorescence confocal scanning laser ophthalmoscopy in rodent ophthalmological models

    NASA Astrophysics Data System (ADS)

    Terrones, Benjamin D.; Benavides, Oscar R.; Leeburg, Kelsey C.; Mehanathan, Sankarathi B.; Levine, Edward M.; Tao, Yuankai K.

    2018-02-01

    Intraocular injections are routinely performed for delivery of anti-VEGF and anti-inflammatory therapies in humans. While these injections are also performed in mice to develop novel models of ophthalmic diseases and screen novel therapeutics, the injection location and volume are not well-controlled and reproducible. We overcome limitations of conventional injections methods by developing a multimodality, long working distance, non-contact optical coherence tomography (OCT) and fluorescence confocal scanning laser ophthalmoscopy (cSLO) system for retinal imaging before and after injections. Our OCT+cSLO system combines a custom-built spectraldomain OCT engine (875+/-85 nm) with 125 kHz line-rate with a modified commercial cSLO with a maximum frame-rate of 30 fps (512 x 512 pix.). The system was designed for an overlapping OCT+cSLO field-of-view of 1.1 mm with a 7.76 mm working distance to the pupil. cSLO excitation light sources and filters were optimized for simultaneous GFP and tdTomato imaging. Lateral resolution was 3.02 µm for OCT and 2.74 μm for cSLO. Intravitreal injections of 5%, 10%, and 20% intralipid with Alex Fluor 488 were manually injected intraocularly in C57BL/6 mice. Post-injection imaging showed structural changes associated with retinal puncture, including the injection track, a retinal elevation, and detachment of the posterior hyaloid. OCT enables quantitative analysis of injection location and volumes whereas complementary cSLO improves specificity for identifying fluorescently labeled injected compounds and transgenic cells. The long working distance of our non-contact OCT+cSLO system is uniquely-suited for concurrent imaging with intraocular injections and may be applied for imaging of ophthalmic surgical dynamics and real-time image-guided injections.

  12. Spectrally encoded confocal microscopy (SECM) for rapid assessment of breast excision specimens (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Brachtel, Elena F.; Johnson, Nicole B.; Huck, Amelia E.; Rice-Stitt, Travis L.; Vangel, Mark G.; Smith, Barbara L.; Tearney, Guillermo J.; Kang, DongKyun

    2016-03-01

    Unacceptably large percentage (20-40%) of breast cancer lumpectomy patients are required to undergo multiple surgeries when positive margins are found upon post-operative histologic assessment. If the margin status can be determined during surgery, surgeon can resect additional tissues to achieve tumor-free margin, which will reduce the need for additional surgeries. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that has a potential to image the entire surgical margin within a short procedural time. Previously, SECM was shown to rapidly image a large area (10 mm by 10 mm) of human esophageal tissue within a short procedural time (15 seconds). When used in lumpectomy, SECM will be able to image the entire margin surface of ~30 cm2 in around 7.5 minutes. SECM images will then be used to determine margin status intra-operatively. In this paper, we present results from a study of testing accuracy of SECM for diagnosing malignant breast tissues. We have imaged freshly-excised breast specimens (N=46) with SECM. SECM images clearly visualized histomorphologic features associated with normal/benign and malignant breast tissues in a similar manner to histologic images. Diagnostic accuracy was tested by comparing SECM diagnoses made by three junior pathologists with corresponding histologic diagnoses made by a senior pathologist. SECM sensitivity and specificity were high, 0.91 and 0.93, respectively. Intra-observer agreement and inter-observer agreement were also high, 0.87 and 0.84, respectively. Results from this study showed that SECM has a potential to accurately determine margin status during breast cancer lumpectomy.

  13. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots.

    PubMed

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander

    2016-08-24

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection.

  14. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    PubMed Central

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  15. Development of a near-field/confocal polarization microscope for local measurements of anisotropy in organic films

    NASA Astrophysics Data System (ADS)

    Kosterin, Andrey Valentinovich

    2000-10-01

    Polarization microscopy is a powerful technique for imaging structure and stress distributions in many transparent materials, and has been particularly useful in morphology studies of polymer films. Recently the possibility of combining polarization imaging with near-field scanning optical microscopy (NSOM) has been demonstrated, offering new opportunities for studying molecular organization with better than 50 nm resolution. However, there are challenges associated with near-field polarization experiments on organic films: (1) the films are susceptible to damage by the near-field probe; (2) the phase shift or retardation (80) is small, often <0.1 rad; (3) interpretation of near-field images is complicated by topography and probe-sample coupling. To address these challenges, we have developed a new combined near-field/confocal polarization microscope and tested its sensitivity to linear birefringence in thin polymer films. For near-field imaging, the microscope employs a commercially available scanhead with cantilevered (bent) optical fiber probes. To study soft samples (point 1), we have modified the scanhead for tapping mode feedback, which eliminates probe-sample shear forces and prolongs the lifetime of the probe, while minimizing damage to the sample. To achieve sensitivity to small phase shifts (point 2), we have implemented the phase modulation (PM) technique in the optical path. Enhanced sensitivity relative to the standard crossed polarizers scheme is achieved because of the better signal-to-noise discrimination common to lock-in detection and because the detected first harmonic intensity, Io , is linearly proportional to deltatheta instead of (deltatheta) 2. To facilitate interpretation of near-field contrast (point 3), we have incorporated near-field and confocal channels in one instrument. This allows consecutive acquisition of both near-field and far-field images on the same sample area. Since the far-field images do not suffer from the same artifacts, they can be used as a source of independent information on sample optical properties. The combined near-field/confocal polarization microscope is discussed in this thesis as well as some of its applications. Specifically we consider the results of polyethylene oxide (PEO) and crosslinked polybutadiene (PB) thin film imaging.

  16. An image-processing method to detect sub-optical features based on understanding noise in intensity measurements.

    PubMed

    Bhatia, Tripta

    2018-07-01

    Accurate quantitative analysis of image data requires that we distinguish between fluorescence intensity (true signal) and the noise inherent to its measurements to the extent possible. We image multilamellar membrane tubes and beads that grow from defects in the fluid lamellar phase of the lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine dissolved in water and water-glycerol mixtures by using fluorescence confocal polarizing microscope. We quantify image noise and determine the noise statistics. Understanding the nature of image noise also helps in optimizing image processing to detect sub-optical features, which would otherwise remain hidden. We use an image-processing technique "optimum smoothening" to improve the signal-to-noise ratio of features of interest without smearing their structural details. A high SNR renders desired positional accuracy with which it is possible to resolve features of interest with width below optical resolution. Using optimum smoothening, the smallest and the largest core diameter detected is of width [Formula: see text] and [Formula: see text] nm, respectively, discussed in this paper. The image-processing and analysis techniques and the noise modeling discussed in this paper can be used for detailed morphological analysis of features down to sub-optical length scales that are obtained by any kind of fluorescence intensity imaging in the raster mode.

  17. Evaluation of Characterization Techniques for Carbon-Carbon Composites

    DTIC Science & Technology

    1992-05-01

    Enhancement of Resin (50X) 51 28 Confocal Image of Reticulated , Vitreous Carbon Foam 53 29 Schemmtic Principle of Backscattered Electron Microscopy for...future. 7.2 Confocal Microscopy Both carbon - carbon composites and reticulated vitreous carbon foams were submitted to Sarastro, Inc. to evaluate...indicate 1-micron resolutions are possible; however, the depth penetration is limited even further at these parameters. Six reticulated vitreous carbon

  18. Selenium Preferentially Accumulates in the Eye Lens Following Embryonic Exposure: A Confocal X-ray Fluorescence Imaging Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sanjukta; Thomas, Jith; Sylvain, Nicole J.

    Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups. Novel confocal synchrotron-based techniques were used to investigate Se within intact preserved larvae. Confocal X-ray fluorescence imaging was used to comparemore » Se distributions within specific planes of an intact larva from each of the two groups. The elevated Se treatment showed substantially higher Se levels than the control; Se preferentially accumulated to highest levels in the eye lens, with lower levels in the retina, yolk and other tissues. Confocal X-ray absorption spectroscopy was used to determine that the speciation of Se within the eye lens of the intact larva was a selenomethionine-like species. Preferential accumulation of Se in the eye lens may suggest a direct cause-and-effect relationship between exposure to elevated Se and Se-induced ocular impairments reported previously. This study illustrates the effectiveness of confocal X-ray fluorescence methods for investigating trace element distribution and speciation in intact biological specimens« less

  19. Reflectance confocal microscopy and features of melanocytic lesions: an internet-based study of the reproducibility of terminology.

    PubMed

    Pellacani, Giovanni; Vinceti, Marco; Bassoli, Sara; Braun, Ralph; Gonzalez, Salvador; Guitera, Pascale; Longo, Caterina; Marghoob, Ashfaq A; Menzies, Scott W; Puig, Susana; Scope, Alon; Seidenari, Stefania; Malvehy, Josep

    2009-10-01

    To test the interobserver and intraobserver reproducibility of the standard terminology for description and diagnosis of melanocytic lesions in in vivo confocal microscopy. A dedicated Web platform was developed to train the participants and to allow independent distant evaluations of confocal images via the Internet. Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy. The study population was composed of 15 melanomas, 30 nevi, and 5 Spitz/Reed nevi. Six expert centers were invited to participate at the study. Intervention Evaluation of 36 features in 345 confocal microscopic images from melanocytic lesions. Interobserved and intraobserved agreement, by calculating the Cohen kappa statistics measure for each descriptor. High overall levels of reproducibility were shown for most of the evaluated features. In both the training and test sets there was a parallel trend of decreasing kappa values as deeper anatomic skin levels were evaluated. All of the features, except 1, used for melanoma diagnosis, including roundish pagetoid cells, nonedged papillae, atypical cells in basal layer, cerebriform clusters, and nucleated cells infiltrating dermal papillae, showed high overall levels of reproducibility. However, less-than-ideal reproducibility was obtained for some descriptors, such as grainy appearance of the epidermis, junctional thickening, mild atypia in basal layer, plump bright cells, small bright cells, and reticulated fibers in the dermis. Conclusion The standard consensus confocal terminology useful for the evaluation of melanocytic lesions was reproducibly recognized by independent observers.

  20. Multispectral Live-Cell Imaging.

    PubMed

    Cohen, Sarah; Valm, Alex M; Lippincott-Schwartz, Jennifer

    2018-06-01

    Fluorescent proteins and vital dyes are invaluable tools for studying dynamic processes within living cells. However, the ability to distinguish more than a few different fluorescent reporters in a single sample is limited by the spectral overlap of available fluorophores. Here, we present a protocol for imaging live cells labeled with six fluorophores simultaneously. A confocal microscope with a spectral detector is used to acquire images, and linear unmixing algorithms are applied to identify the fluorophores present in each pixel of the image. We describe the application of this method to visualize the dynamics of six different organelles, and to quantify the contacts between organelles. However, this method can be used to image any molecule amenable to tagging with a fluorescent probe. Thus, multispectral live-cell imaging is a powerful tool for systems-level analysis of cellular organization and dynamics. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

Top