Sample records for confocal microscopy quantitative

  1. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: QA TESTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    Confocal Microscopy System Performance: QA tests, Quantitation and Spectroscopy.

    Robert M. Zucker 1 and Jeremy M. Lerner 2,
    1Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research Development, U.S. Environmen...

  2. Quantitative detection of caffeine in human skin by confocal Raman spectroscopy--A systematic in vitro validation study.

    PubMed

    Franzen, Lutz; Anderski, Juliane; Windbergs, Maike

    2015-09-01

    For rational development and evaluation of dermal drug delivery, the knowledge of rate and extent of substance penetration into the human skin is essential. However, current analytical procedures are destructive, labor intense and lack a defined spatial resolution. In this context, confocal Raman microscopy bares the potential to overcome current limitations in drug depth profiling. Confocal Raman microscopy already proved its suitability for the acquisition of qualitative penetration profiles, but a comprehensive investigation regarding its suitability for quantitative measurements inside the human skin is still missing. In this work, we present a systematic validation study to deploy confocal Raman microscopy for quantitative drug depth profiling in human skin. After we validated our Raman microscopic setup, we successfully established an experimental procedure that allows correlating the Raman signal of a model drug with its controlled concentration in human skin. To overcome current drawbacks in drug depth profiling, we evaluated different modes of peak correlation for quantitative Raman measurements and offer a suitable operating procedure for quantitative drug depth profiling in human skin. In conclusion, we successfully demonstrate the potential of confocal Raman microscopy for quantitative drug depth profiling in human skin as valuable alternative to destructive state-of-the-art techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR MEASUREMENTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  4. Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    PubMed Central

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-01-01

    Background Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Methods Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). Results We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. Conclusion The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes. PMID:18627634

  5. Extended Field Laser Confocal Microscopy (EFLCM): combining automated Gigapixel image capture with in silico virtual microscopy.

    PubMed

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-07-16

    Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes.

  6. Evaluation of conjunctival inflammatory status by confocal scanning laser microscopy and conjunctival brush cytology in patients with atopic keratoconjunctivitis (AKC)

    PubMed Central

    Wakamatsu, Tais Hitomi; Okada, Naoko; Kojima, Takashi; Matsumoto, Yukihiro; Ibrahim, Osama M.A.; Adan, Enrique Sato; Fukagawa, Kazumi; Katakami, Chikako; Tsubota, Kazuo; Shimazaki, Jun; Fujishima, Hiroshi

    2009-01-01

    Purpose To elucidate the status of the conjunctival inflammation in atopic keratoconjunctivitis (AKC) using laser scanning confocal microscopy and compare the relevant findings with conjunctival brush cytology in a prospective controlled study. Methods Twenty eyes from 20 AKC patients as well as 16 eyes from 16 age and sex matched normal subjects were studied. The subjects underwent tear film break-up time (BUT), fluorescein and Rose Bengal staining of the ocular surface, conjunctival confocal microscopy, Schirmer test, and brush cytology. Brush cytology specimens and in vivo confocal microscopy scans underwent evaluation for inflammatory cell densities. Results Brush cytology specimens and in vivo confocal microscopy scans from AKC patients revealed significantly higher numbers of inflammatory cells (p<0.05). Conjunctival inflammatory cell density showed a negative correlation with tear stability and a positive correlation with vital staining scores and conjunctival injection grades. The extent of conjunctival inflammation assessed by in vivo confocal microscopy showed a strong positive linear correlation with the inflammation status evaluated by brush cytology. The corneal inflammatory cell density assessed by in vivo confocal microscopy showed a significant negative correlation with tear stability and a positive linear correlation with corneal fluorescein staining. Conclusions Confocal scanning laser microscopy is an efficient, noninvasive, and a promising tool for the quantitative assessment of conjunctival inflammation, a parameter of this new technology which correlated well with subjective and objective ocular surface clinical findings. PMID:19693288

  7. In vivo confocal microscopy of the cornea: New developments in image acquisition, reconstruction and analysis using the HRT-Rostock Corneal Module

    PubMed Central

    Petroll, W. Matthew; Robertson, Danielle M.

    2015-01-01

    The optical sectioning ability of confocal microscopy allows high magnification images to be obtained from different depths within a thick tissue specimen, and is thus ideally suited to the study of intact tissue in living subjects. In vivo confocal microscopy has been used in a variety of corneal research and clinical applications since its development over 25 years ago. In this article we review the latest developments in quantitative corneal imaging with the Heidelberg Retinal Tomograph with Rostock Corneal Module (HRT-RCM). We provide an overview of the unique strengths and weaknesses of the HRT-RCM. We discuss techniques for performing 3-D imaging with the HRT-RCM, including hardware and software modifications that allow full thickness confocal microscopy through focusing (CMTF) of the cornea, which can provide quantitative measurements of corneal sublayer thicknesses, stromal cell and extracellular matrix backscatter, and depth dependent changes in corneal keratocyte density. We also review current approaches for quantitative imaging of the subbasal nerve plexus, which require a combination of advanced image acquisition and analysis procedures, including wide field mapping and 3-D reconstruction of nerve structures. The development of new hardware, software, and acquisition techniques continues to expand the number of applications of the HRT-RCM for quantitative in vivo corneal imaging at the cellular level. Knowledge of these rapidly evolving strategies should benefit corneal clinicians and basic scientists alike. PMID:25998608

  8. Second-harmonic patterned polarization-analyzed reflection confocal microscope

    NASA Astrophysics Data System (ADS)

    Okoro, Chukwuemeka; Toussaint, Kimani C.

    2017-08-01

    We introduce the second-harmonic patterned polarization-analyzed reflection confocal (SPPARC) microscope-a multimodal imaging platform that integrates Mueller matrix polarimetry with reflection confocal and second-harmonic generation (SHG) microscopy. SPPARC microscopy provides label-free three-dimensional (3-D), SHG-patterned confocal images that lend themselves to spatially dependent, linear polarimetric analysis for extraction of rich polarization information based on the Mueller calculus. To demonstrate its capabilities, we use SPPARC microscopy to analyze both porcine tendon and ligament samples and find differences in both circular degree-of-polarization and depolarization parameters. Moreover, using the collagen-generated SHG signal as an endogenous counterstain, we show that the technique can be used to provide 3-D polarimetric information of the surrounding extrafibrillar matrix plus cells or EFMC region. The unique characteristics of SPPARC microscopy holds strong potential for it to more accurately and quantitatively describe microstructural changes in collagen-rich samples in three spatial dimensions.

  9. Determination of the Subcellular Distribution of Liposomes Using Confocal Microscopy.

    PubMed

    Solomon, Melani A

    2017-01-01

    It is being increasingly recognized that therapeutics need to be delivered to specific organelle targets within cells. Liposomes are versatile lipid-based drug delivery vehicles that can be surface-modified to deliver the loaded cargo to specific subcellular locations within the cell. Hence, the development of such technology requires a means of measuring the subcellular distribution possibly by utilizing imaging techniques that can visualize and quantitate the extent of this subcellular localization. The apparent increase of resolution along the Z-axis offered by confocal microscopy makes this technique suitable for such studies. In this chapter, we describe the application of confocal laser scanning microscopy (CLSM) to determine the subcellular distribution of fluorescently labeled mitochondriotropic liposomes.

  10. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY AND FOUNDATIONS FOR QUANTITATION

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The reliability of the CLSM to obtain specific measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. For man...

  11. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR CALIBRATION, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  12. Effects of benoxinate hydrochloride 0.4% on the morphological appearance of the cornea using confocal microscopy.

    PubMed

    Perez-Gomez, Inma; Hollingsworth, Jo; Efron, Nathan

    2004-03-01

    To investigate whether benoxinate hydrochloride 0.4% used to make confocal microscopy more comfortable alters the morphology of the cornea as viewed with the confocal microscope. Confocal microscopy was performed on both eyes of 10 subjects prior to instillation of either topical anaesthetic or non-preserved sterile saline, on two randomly ordered occasions. Images of all corneal layers were analysed quantitatively and qualitatively in a masked fashion. The images were similar in appearance in 5/10 subjects, there was greater clarity when anaesthetic was instilled in 4/10 subjects, and in the remaining subject there was greater clarity when saline was used. Anaesthetic had no influence on anterior keratocyte density (AKD), posterior keratocyte density (PKD) or endothelial cell density (ECD). Local anaesthetic does not affect corneal morphology as imaged using the confocal microscope. However, failure to use anaesthetic may lead to a degradation of image quality due to patient discomfort and excessive eye movements.

  13. Preparation of HIV monoclonal antibody-conjugated pulchellin in order to study its intracellular trafficking pathway in HIV-infected cells by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sadraeian, M.; Tsutae, F. M.; Moreira, H. H. T.; Araujo, A. P. U.; Guimarães, F. E. G.; Pincus, S. H.

    2015-06-01

    Pulchellin is a type 2 of ribosome-inactivating proteins isolated from some seeds significantly growing in Brazil. It is a potent agent to inhibit the protein synthesis in cancer cells and also HIV-infected cells. Pulchellin can be conjugated to HIV monoclonal antibodies to specifically target the HIV-infected cells. To analyze the protein synthesis inhibition by Pulchellin, the intracellular localization of the immunoconjugate should be compared to Pulchellin. In this case, the intracellular trafficking of this protein in cells can be determined by confocal microscopy. In our study, we utilized Pulchellin to construct HIV monoclonal antibody-conjugated Pulchellin A chain in order to target HIV-infected lymphocyte cells. Afterward the conjugation was labeled with the superior Alexa Fluor 488 dye. As a subsequent step, we are interested in studying the intracellular trafficking pathway of this novel conjugation in HIV-infected cells by confocal microscopy. Moreover, possible quantitative methods for fluorescent labeling of the immunoconjugate during confocal microscopy will be investigated.

  14. Reflection imaging of China ink-perfused brain vasculature using confocal laser-scanning microscopy after clarification of brain tissue by the Spalteholz method.

    PubMed

    Gutierre, R C; Vannucci Campos, D; Mortara, R A; Coppi, A A; Arida, R M

    2017-04-01

    Confocal laser-scanning microscopy is a useful tool for visualizing neurons and glia in transparent preparations of brain tissue from laboratory animals. Currently, imaging capillaries and venules in transparent brain tissues requires the use of fluorescent proteins. Here, we show that vessels can be imaged by confocal laser-scanning microscopy in transparent cortical, hippocampal and cerebellar preparations after clarification of China ink-injected specimens by the Spalteholz method. This method may be suitable for global, three-dimensional, quantitative analyses of vessels, including stereological estimations of total volume and length and of surface area of vessels, which constitute indirect approaches to investigate angiogenesis. © 2017 Anatomical Society.

  15. Methods to calibrate and scale axial distances in confocal microscopy as a function of refractive index.

    PubMed

    Besseling, T H; Jose, J; Van Blaaderen, A

    2015-02-01

    Accurate distance measurement in 3D confocal microscopy is important for quantitative analysis, volume visualization and image restoration. However, axial distances can be distorted by both the point spread function (PSF) and by a refractive-index mismatch between the sample and immersion liquid, which are difficult to separate. Additionally, accurate calibration of the axial distances in confocal microscopy remains cumbersome, although several high-end methods exist. In this paper we present two methods to calibrate axial distances in 3D confocal microscopy that are both accurate and easily implemented. With these methods, we measured axial scaling factors as a function of refractive-index mismatch for high-aperture confocal microscopy imaging. We found that our scaling factors are almost completely linearly dependent on refractive index and that they were in good agreement with theoretical predictions that take the full vectorial properties of light into account. There was however a strong deviation with the theoretical predictions using (high-angle) geometrical optics, which predict much lower scaling factors. As an illustration, we measured the PSF of a correctly calibrated point-scanning confocal microscope and showed that a nearly index-matched, micron-sized spherical object is still significantly elongated due to this PSF, which signifies that care has to be taken when determining axial calibration or axial scaling using such particles. © 2014 The Authors Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  16. Confocal Microscopy and Flow Cytometry System Performance: Assessment of QA Parameters that affect data Quanitification

    EPA Science Inventory

    Flow and image cytometers can provide useful quantitative fluorescence data. We have devised QA tests to be used on both a flow cytometer and a confocal microscope to assure that the data is accurate, reproducible and precise. Flow Cytometry: We have provided two simple perform...

  17. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    PubMed

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  18. Confocal microscopy imaging of the biofilm matrix.

    PubMed

    Schlafer, Sebastian; Meyer, Rikke L

    2017-07-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens. Confocal microscopes are held by many research groups, and a number of methods for qualitative and quantitative imaging of the matrix have emerged in recent years. This review provides an overview and a critical discussion of techniques used to visualize different matrix compounds, to determine the concentration of solutes and the diffusive properties of the biofilm matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Next-generation endomyocardial biopsy: the potential of confocal and super-resolution microscopy.

    PubMed

    Crossman, David J; Ruygrok, Peter N; Hou, Yu Feng; Soeller, Christian

    2015-03-01

    Confocal laser scanning microscopy and super-resolution microscopy provide high-contrast and high-resolution fluorescent imaging, which has great potential to increase the diagnostic yield of endomyocardial biopsy (EMB). EMB is currently the gold standard for identification of cardiac allograft rejection, myocarditis, and infiltrative and storage diseases. However, standard analysis is dominated by low-contrast bright-field light and electron microscopy (EM); this lack of contrast makes quantification of pathological features difficult. For example, assessment of cardiac allograft rejection relies on subjective grading of H&E histology, which may lead to diagnostic variability between pathologists. This issue could be solved by utilising the high contrast provided by fluorescence methods such as confocal to quantitatively assess the degree of lymphocytic infiltrate. For infiltrative diseases such as amyloidosis, the nanometre resolution provided by EM can be diagnostic in identifying disease-causing fibrils. The recent advent of super-resolution imaging, particularly direct stochastic optical reconstruction microscopy (dSTORM), provides high-contrast imaging at resolution approaching that of EM. Moreover, dSTORM utilises conventional fluorescence dyes allowing for the same structures to be routinely imaged at the cellular scale and then at the nanoscale. The key benefit of these technologies is that the high contrast facilitates quantitative digital analysis and thereby provides a means to robustly assess critical pathological features. Ultimately, this technology has the ability to provide greater accuracy and precision to EMB assessment, which could result in better outcomes for patients.

  20. Quantification of confocal fluorescence microscopy for the detection of cervical intraepithelial neoplasia.

    PubMed

    Sheikhzadeh, Fahime; Ward, Rabab K; Carraro, Anita; Chen, Zhao Yang; van Niekerk, Dirk; Miller, Dianne; Ehlen, Tom; MacAulay, Calum E; Follen, Michele; Lane, Pierre M; Guillaud, Martial

    2015-10-24

    Cervical cancer remains a major health problem, especially in developing countries. Colposcopic examination is used to detect high-grade lesions in patients with a history of abnormal pap smears. New technologies are needed to improve the sensitivity and specificity of this technique. We propose to test the potential of fluorescence confocal microscopy to identify high-grade lesions. We examined the quantification of ex vivo confocal fluorescence microscopy to differentiate among normal cervical tissue, low-grade Cervical Intraepithelial Neoplasia (CIN), and high-grade CIN. We sought to (1) quantify nuclear morphology and tissue architecture features by analyzing images of cervical biopsies; and (2) determine the accuracy of high-grade CIN detection via confocal microscopy relative to the accuracy of detection by colposcopic impression. Forty-six biopsies obtained from colposcopically normal and abnormal cervical sites were evaluated. Confocal images were acquired at different depths from the epithelial surface and histological images were analyzed using in-house software. The features calculated from the confocal images compared well with those features obtained from the histological images and histopathological reviews of the specimens (obtained by a gynecologic pathologist). The correlations between two of these features (the nuclear-cytoplasmic ratio and the average of three nearest Delaunay-neighbors distance) and the grade of dysplasia were higher than that of colposcopic impression. The sensitivity of detecting high-grade dysplasia by analysing images collected at the surface of the epithelium, and at 15 and 30 μm below the epithelial surface were respectively 100, 100, and 92 %. Quantitative analysis of confocal fluorescence images showed its capacity for discriminating high-grade CIN lesions vs. low-grade CIN lesions and normal tissues, at different depth of imaging. This approach could be used to help clinicians identify high-grade CIN in clinical settings.

  1. Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes.

    PubMed

    Segers-Nolten, G M J; Wyman, C; Wijgers, N; Vermeulen, W; Lenferink, A T M; Hoeijmakers, J H J; Greve, J; Otto, C

    2002-11-01

    We used scanning confocal fluorescence microscopy to observe and analyze individual DNA- protein complexes formed between human nucleotide excision repair (NER) proteins and model DNA substrates. For this purpose human XPA protein was fused to EGFP, purified and shown to be functional. Binding of EGFP-labeled XPA protein to a Cy3.5-labeled DNA substrate, in the presence and absence of RPA, was assessed quantitatively by simultaneous excitation and emission detection of both fluorophores. Co-localization of Cy3.5 and EGFP signals within one diffraction limited spot indicated complexes of XPA with DNA. Measurements were performed on samples in a 1% agarose matrix in conditions that are compatible with protein activity and where reactions can be studied under equilibrium conditions. In these samples DNA alone was freely diffusing and protein-bound DNA was immobile, whereby they could be discriminated resulting in quantitative data on DNA binding. On the single molecule level approximately 10% of XPA co-localized with DNA; this increased to 32% in the presence of RPA. These results, especially the enhanced binding of XPA in the presence of RPA, are similar to those obtained in bulk experiments, validating the utility of scanning confocal fluorescence microscopy for investigating functional interactions at the single molecule level.

  2. Quantitative confocal fluorescence microscopy of dynamic processes by multifocal fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Krmpot, Aleksandar J.; Nikolić, Stanko N.; Vitali, Marco; Papadopoulos, Dimitrios K.; Oasa, Sho; Thyberg, Per; Tisa, Simone; Kinjo, Masataka; Nilsson, Lennart; Gehring, Walter J.; Terenius, Lars; Rigler, Rudolf; Vukojevic, Vladana

    2015-07-01

    Quantitative confocal fluorescence microscopy imaging without scanning is developed for the study of fast dynamical processes. The method relies on the use of massively parallel Fluorescence Correlation Spectroscopy (mpFCS). Simultaneous excitation of fluorescent molecules across the specimen is achieved by passing a single laser beam through a Diffractive Optical Element (DOE) to generate a quadratic illumination matrix of 32×32 light sources. Fluorescence from 1024 illuminated spots is detected in a confocal arrangement by a matching matrix detector consisting of the same number of single-photon avalanche photodiodes (SPADs). Software was developed for data acquisition and fast autoand cross-correlation analysis by parallel signal processing using a Graphic Processing Unit (GPU). Instrumental performance was assessed using a conventional single-beam FCS instrument as a reference. Versatility of the approach for application in biomedical research was evaluated using ex vivo salivary glands from Drosophila third instar larvae expressing a fluorescently-tagged transcription factor Sex Combs Reduced (Scr) and live PC12 cells stably expressing the fluorescently tagged mu-opioid receptor (MOPeGFP). We show that quantitative mapping of local concentration and mobility of transcription factor molecules across the specimen can be achieved using this approach, which paves the way for future quantitative characterization of dynamical reaction-diffusion landscapes across live cells/tissue with a submillisecond temporal resolution (presently 21 μs/frame) and single-molecule sensitivity.

  3. 3D Image Analysis of Geomaterials using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Mulukutla, G.; Proussevitch, A.; Sahagian, D.

    2009-05-01

    Confocal microscopy is one of the most significant advances in optical microscopy of the last century. It is widely used in biological sciences but its application to geomaterials lingers due to a number of technical problems. Potentially the technique can perform non-invasive testing on a laser illuminated sample that fluoresces using a unique optical sectioning capability that rejects out-of-focus light reaching the confocal aperture. Fluorescence in geomaterials is commonly induced using epoxy doped with a fluorochrome that is impregnated into the sample to enable discrimination of various features such as void space or material boundaries. However, for many geomaterials, this method cannot be used because they do not naturally fluoresce and because epoxy cannot be impregnated into inaccessible parts of the sample due to lack of permeability. As a result, the confocal images of most geomaterials that have not been pre-processed with extensive sample preparation techniques are of poor quality and lack the necessary image and edge contrast necessary to apply any commonly used segmentation techniques to conduct any quantitative study of its features such as vesicularity, internal structure, etc. In our present work, we are developing a methodology to conduct a quantitative 3D analysis of images of geomaterials collected using a confocal microscope with minimal amount of prior sample preparation and no addition of fluorescence. Two sample geomaterials, a volcanic melt sample and a crystal chip containing fluid inclusions are used to assess the feasibility of the method. A step-by-step process of image analysis includes application of image filtration to enhance the edges or material interfaces and is based on two segmentation techniques: geodesic active contours and region competition. Both techniques have been applied extensively to the analysis of medical MRI images to segment anatomical structures. Preliminary analysis suggests that there is distortion in the shapes of the segmented vesicles, vapor bubbles, and void spaces due to the optical measurements, so corrective actions are being explored. This will establish a practical and reliable framework for an adaptive 3D image processing technique for the analysis of geomaterials using confocal microscopy.

  4. Corneal confocal microscopy detects small fiber neuropathy in CMT1A patients

    PubMed Central

    Tavakoli, Mitra; Marshall, Andy; Banka, Siddharth; Petropoulos, Ioannis N; Fadavi, Hassan; Kingston, Helen; Malik, Rayaz A

    2012-01-01

    Although unmyelinated nerve fibers are affected in CMT1A, they have not been studied in detail due to the invasive nature of the techniques needed to study them. We established alterations in C-fiber bundles of the cornea in patients with CMT1A using non-invasive corneal confocal microscopy (CCM). Twelve patients with CMT1A and twelve healthy control subjects underwent assessment of neuropathic symptoms and deficits, electrophysiology, quantitative sensory testing, corneal sensitivity and corneal confocal microscopy. Corneal sensitivity, corneal nerve fiber density, corneal nerve branch density, corneal nerve fiber length and corneal nerve fiber tortuosity were significantly reduced in CMT1A patients compared to controls. There was a significant correlation between corneal sensation and CCM parameters with the severity of painful neuropathic symptoms, cold and warm thresholds and median nerve CMAP amplitude. CCM demonstrates significant damage to C-fiber bundles, which relates to some measures of neuropathy in CMT1A patients. PMID:22996176

  5. Childhood lymphoblastic leukemia adverse drug reactions: study of risk factors and therapy prognosis by optical methods

    NASA Astrophysics Data System (ADS)

    Zyubin, A.; Lavrova, A.; Babak, S.; Malaschenko, V.; Borisova, A.; Opryshko, N.

    2016-10-01

    The treatment of acute lymphoblastic leukemia (ALL) can result in the side-effects such as kidney affection, hepatic failure and tissue hypoxia. We study dynamics of special biochemical marker of these pathologies - adenosine triphosphate, that is well-known substance of energy metabolism. We use methods of confocal microscopy for determining the cellular and mitochondrial concentration of adenosine triphosphate (ATP). Quantitative values of adenosine triphosphate were calculated for each patient and correlation with degree of side-effects had been done. The application of confocal microscopy for studying of side-effects and therapy of lymphoblastic leukemia is discussed.

  6. In vivo laser confocal microscopy after non-Descemet's stripping automated endothelial keratoplasty.

    PubMed

    Kobayashi, Akira; Yokogawa, Hideaki; Sugiyama, Kazuhisa

    2009-07-01

    To investigate in vivo corneal changes in patients with bullous keratopathy who underwent non-Descemet's stripping automated endothelial keratoplasty (nDSAEK) with the use of laser confocal microscopy. Single-center, prospective clinical study. Ten eyes (10 patients; 3 men and 7 women; mean age, 73.5+/-6.6 years [mean+/-standard deviation]) with bullous keratopathy were evaluated in this study. In vivo laser confocal microscopy was performed before and 1, 3, and 6 months after nDSAEK. Selected confocal images of corneal layers were evaluated qualitatively and quantitatively for degree of haze and density of deposits. Before surgery, the following were observed in all patients: corneal epithelial edema, subepithelial haze, keratocytes in a honeycomb pattern, and tiny needle-shaped materials in the stroma. After nDSAEK, subepithelial haze, donor-recipient interface haze, and interface particles were observed in all measurable cases; postoperative haze, interface particles, and needle-shaped materials decreased statistically significantly (P<0.05) over the course of follow-up. In addition, hyperreflective giant interface particles were observed after nDSAEK in all patients. In vivo laser confocal microscopy can identify subclinical corneal abnormalities after nDSAEK such as subepithelial haze, host-recipient interface haze, host stromal needle-shaped materials, and host-recipient interface particles with characteristic giant particles. Further studies with this technology in a large number of patients and long-term follow-up are needed to understand fully the long-term corneal stromal changes after nDSAEK.

  7. Confocal microscope is able to detect calcium metabolic in neuronal infection by toxoplasma gondii

    NASA Astrophysics Data System (ADS)

    Sensusiati, A. D.; Priya, T. K. S.; Dachlan, Y. P.

    2017-05-01

    Calcium metabolism plays a very important role in neurons infected by Toxoplasma. Detection of change of calcium metabolism of neuron infected by Toxoplasma and Toxoplasma requires the calculation both quantitative and qualitative method. Confocal microscope has the ability to capture the wave of the fluorescent emission of the fluorescent dyes used in the measurement of cell calcium. The purpose of this study was to prove the difference in calcium changes between infected and uninfected neurons using confocal microscopy. Neuronal culture of human-skin-derived neural stem cell were divided into 6 groups, consisting 3 uninfected groups and 3 infected groups. Among the 3 groups were 2 hours, 24 hours and 48 hours. The neuron Toxoplasma gondii ratio was 1:5. Observation of intracellular calcium of neuron and tachyzoite, evidence of necrosis, apoptosis and the expression of Hsp 70 of neuron were examined by confocal microscope. The normality of the data was analysed by Kolmogorov-Smirnov Test, differentiation test was checked by t2 Test, and ANOVAs, for correlation test was done by Pearson Correlation Test. The calcium intensity of cytosolic neuron and T. gondii was significantly different from control groups (p<0.05). There was also significant correlation between calcium intensity with the evidence of necrosis and Hsp70 expression at 2 hours after infection. Apoptosis and necrosis were simultaneously shown with calcium contribution in this study. Confocal microscopy can be used to measure calcium changes in infected and uninfected neurons both in quantitatively and qualitatively.

  8. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  9. Three-dimensional imaging of porous media using confocal laser scanning microscopy.

    PubMed

    Shah, S M; Crawshaw, J P; Boek, E S

    2017-02-01

    In the last decade, imaging techniques capable of reconstructing three-dimensional (3-D) pore-scale model have played a pivotal role in the study of fluid flow through complex porous media. In this study, we present advances in the application of confocal laser scanning microscopy (CLSM) to image, reconstruct and characterize complex porous geological materials with hydrocarbon reservoir and CO 2 storage potential. CLSM has a unique capability of producing 3-D thin optical sections of a material, with a wide field of view and submicron resolution in the lateral and axial planes. However, CLSM is limited in the depth (z-dimension) that can be imaged in porous materials. In this study, we introduce a 'grind and slice' technique to overcome this limitation. We discuss the practical and technical aspects of the confocal imaging technique with application to complex rock samples including Mt. Gambier and Ketton carbonates. We then describe the complete workflow of image processing to filtering and segmenting the raw 3-D confocal volumetric data into pores and grains. Finally, we use the resulting 3-D pore-scale binarized confocal data obtained to quantitatively determine petrophysical pore-scale properties such as total porosity, macro- and microporosity and single-phase permeability using lattice Boltzmann (LB) simulations, validated by experiments. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  10. Association of Myosin Va and Schwann cells-derived RNA in mammal myelinated axons, analyzed by immunocytochemistry and confocal FRET microscopy.

    PubMed

    Canclini, Lucía; Wallrabe, Horst; Di Paolo, Andrés; Kun, Alejandra; Calliari, Aldo; Sotelo-Silveira, José Roberto; Sotelo, José Roberto

    2014-03-15

    Evidence from multiple sources supports the hypothesis that Schwann cells in the peripheral nervous system transfer messenger RNA and ribosomes to the axons they ensheath. Several technical and methodological difficulties exist for investigators to unravel this process in myelinated axons - a complex two-cell unit. We present an experimental design to demonstrate that newly synthesized RNA is transferred from Schwann cells to axons in association with Myosin Va. The use of quantitative confocal FRET microscopy to track newly-synthesized RNA and determine the molecular association with Myosin Va, is described in detail. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Microscopy and microanalysis 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, G.W.; Corbett, J.M.; Dimlich, R.V.W.

    1996-12-31

    The Proceedings of this Annual Meeting contain paper of members from the three societies. These proceedings emphasizes the common research interests and attempts to eliminate some unwanted overlap. Topics covered are: microscopic analysis of animals with altered gene expression and in-situ gene and antibody localizations, high-resolution elemental mapping of nucleoprofein interactions, plant biology and pathology, quantitative HREM analysis of perfect and defected materials, computational methods for TEM image analysis, high-resolution FESM in materials research, frontiers in polymer microscopy and microanalysis, oxidation and corrosion, micro XRD and XRF, molecular microspectroscopy and spectral imaging, advances in confocal and multidimensional light microscopy, analyticalmore » electron microscopy in biology, correlative microscopy in biological sciences, grain-boundary microengineering, surfaces and interfaces, telepresence microscopy in education and research, MSA educational outreach, quantitative electron probe microanalysis, frontiers of analytical electron microscopy, critical issues in ceramic microstructures, dynamic organization of the cell, pathology, microbiology, high-resolution biological and cryo SEM, and scanning-probe microscopy.« less

  12. Quantitative Confocal Microscopy Analysis as a Basis for Search and Study of Potassium Kv1.x Channel Blockers

    NASA Astrophysics Data System (ADS)

    Feofanov, Alexey V.; Kudryashova, Kseniya S.; Nekrasova, Oksana V.; Vassilevski, Alexander A.; Kuzmenkov, Alexey I.; Korolkova, Yuliya V.; Grishin, Eugene V.; Kirpichnikov, Mikhail P.

    Artificial KcsA-Kv1.x (x = 1, 3) receptors were recently designed by transferring the ligand-binding site from human Kv1.x voltage-gated potassium channels into corresponding domain of the bacterial KscA channel. We found that KcsA-Kv1.x receptors expressed in E. coli cells are embedded into cell membrane and bind ligands when the cells are transformed to spheroplasts. We supposed that E. coli spheroplasts with membrane-embedded KcsA-Kv1.x and fluorescently labeled ligand agitoxin-2 (R-AgTx2) can be used as elements of an advanced analytical system for search and study of Kv1-channel blockers. To realize this idea, special procedures were developed for measurement and quantitative treatment of fluorescence signals obtained from spheroplast membrane using confocal laser scanning microscopy (CLSM). The worked out analytical "mix and read" systems supported by quantitative CLSM analysis were demonstrated to be reliable alternative to radioligand and electrophysiology techniques in the search and study of selective Kv1.x channel blockers of high scientific and medical importance.

  13. Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging.

    PubMed

    Mas, Abraham; Amenós, Montse; Lois, L Maria

    2016-01-01

    Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected.

  14. In vivo Clonal Tracking of Hematopoietic Stem and Progenitor Cells Marked by Five Fluorescent Proteins using Confocal and Multiphoton Microscopy

    PubMed Central

    Malide, Daniela; Métais, Jean-Yves; Dunbar, Cynthia E.

    2014-01-01

    We developed and validated a fluorescent marking methodology for clonal tracking of hematopoietic stem and progenitor cells (HSPCs) with high spatial and temporal resolution to study in vivo hematopoiesis using the murine bone marrow transplant experimental model. Genetic combinatorial marking using lentiviral vectors encoding fluorescent proteins (FPs) enabled cell fate mapping through advanced microscopy imaging. Vectors encoding five different FPs: Cerulean, EGFP, Venus, tdTomato, and mCherry were used to concurrently transduce HSPCs, creating a diverse palette of color marked cells. Imaging using confocal/two-photon hybrid microscopy enables simultaneous high resolution assessment of uniquely marked cells and their progeny in conjunction with structural components of the tissues. Volumetric analyses over large areas reveal that spectrally coded HSPC-derived cells can be detected non-invasively in various intact tissues, including the bone marrow (BM), for extensive periods of time following transplantation. Live studies combining video-rate multiphoton and confocal time-lapse imaging in 4D demonstrate the possibility of dynamic cellular and clonal tracking in a quantitative manner. PMID:25145579

  15. Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy.

    PubMed

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2009-11-26

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ.

  16. Fluorescence (Multiwave) Confocal Microscopy.

    PubMed

    Welzel, J; Kästle, Raphaela; Sattler, Elke C

    2016-10-01

    In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Research and application on imaging technology of line structure light based on confocal microscopy

    NASA Astrophysics Data System (ADS)

    Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen

    2009-11-01

    In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.

  18. Digital differential confocal microscopy based on spatial shift transformation.

    PubMed

    Liu, J; Wang, Y; Liu, C; Wilson, T; Wang, H; Tan, J

    2014-11-01

    Differential confocal microscopy is a particularly powerful surface profilometry technique in industrial metrology due to its high axial sensitivity and insensitivity to noise. However, the practical implementation of the technique requires the accurate positioning of point detectors in three-dimensions. We describe a simple alternative based on spatial transformation of a through-focus series of images obtained from a homemade beam scanning confocal microscope. This digital differential confocal microscopy approach is described and compared with the traditional Differential confocal microscopy approach. The ease of use of the digital differential confocal microscopy system is illustrated by performing measurements on a 3D standard specimen. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  19. Fluorescence confocal microscopy for pathologists.

    PubMed

    Ragazzi, Moira; Piana, Simonetta; Longo, Caterina; Castagnetti, Fabio; Foroni, Monica; Ferrari, Guglielmo; Gardini, Giorgio; Pellacani, Giovanni

    2014-03-01

    Confocal microscopy is a non-invasive method of optical imaging that may provide microscopic images of untreated tissue that correspond almost perfectly to hematoxylin- and eosin-stained slides. Nowadays, following two confocal imaging systems are available: (1) reflectance confocal microscopy, based on the natural differences in refractive indices of subcellular structures within the tissues; (2) fluorescence confocal microscopy, based on the use of fluorochromes, such as acridine orange, to increase the contrast epithelium-stroma. In clinical practice to date, confocal microscopy has been used with the goal of obviating the need for excision biopsies, thereby reducing the need for pathological examination. The aim of our study was to test fluorescence confocal microscopy on different types of surgical specimens, specifically breast, lymph node, thyroid, and colon. The confocal images were correlated to the corresponding histological sections in order to provide a morphologic parallel and to highlight current limitations and possible applications of this technology for surgical pathology practice. As a result, neoplastic tissues were easily distinguishable from normal structures and reactive processes such as fibrosis; the use of fluorescence enhanced contrast and image quality in confocal microscopy without compromising final histologic evaluation. Finally, the fluorescence confocal microscopy images of the adipose tissue were as accurate as those of conventional histology and were devoid of the frozen-section-related artefacts that can compromise intraoperative evaluation. Despite some limitations mainly related to black/white images, which require training in imaging interpretation, this study confirms that fluorescence confocal microscopy may represent an alternative to frozen sections in the assessment of margin status in selected settings or when the conservation of the specimen is crucial. This is the first study to employ fluorescent confocal microscopy on surgical specimens other than the skin and to evaluate the diagnostic capability of this technology from pathologists' viewpoint.

  20. Correlative atomic force microscopy quantitative imaging-laser scanning confocal microscopy quantifies the impact of stressors on live cells in real-time.

    PubMed

    Bhat, Supriya V; Sultana, Taranum; Körnig, André; McGrath, Seamus; Shahina, Zinnat; Dahms, Tanya E S

    2018-05-29

    There is an urgent need to assess the effect of anthropogenic chemicals on model cells prior to their release, helping to predict their potential impact on the environment and human health. Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) have each provided an abundance of information on cell physiology. In addition to determining surface architecture, AFM in quantitative imaging (QI) mode probes surface biochemistry and cellular mechanics using minimal applied force, while LSCM offers a window into the cell for imaging fluorescently tagged macromolecules. Correlative AFM-LSCM produces complimentary information on different cellular characteristics for a comprehensive picture of cellular behaviour. We present a correlative AFM-QI-LSCM assay for the simultaneous real-time imaging of living cells in situ, producing multiplexed data on cell morphology and mechanics, surface adhesion and ultrastructure, and real-time localization of multiple fluorescently tagged macromolecules. To demonstrate the broad applicability of this method for disparate cell types, we show altered surface properties, internal molecular arrangement and oxidative stress in model bacterial, fungal and human cells exposed to 2,4-dichlorophenoxyacetic acid. AFM-QI-LSCM is broadly applicable to a variety of cell types and can be used to assess the impact of any multitude of contaminants, alone or in combination.

  1. SEMI-QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY APPLIED TO MARINE INVERTEBRATE ECOTOXICOLOGY. (R827397)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Nuclear apoptotic volume decrease in individual cells: Confocal microscopy imaging and kinetic modeling.

    PubMed

    Khalo, Irina V; Konokhova, Anastasiya I; Orlova, Darya Y; Trusov, Konstantin V; Yurkin, Maxim A; Bartova, Eva; Kozubek, Stanislav; Maltsev, Valeri P; Chernyshev, Andrei V

    2018-05-30

    The dynamics of nuclear morphology changes during apoptosis remains poorly investigated and understood. Using 3D time-lapse confocal microscopy we performed a study of early-stage apoptotic nuclear morphological changes induced by etoposide in single living HepG2 cells. These observations provide a definitive evidence that nuclear apoptotic volume decrease (AVD) is occurring simultaneously with peripheral chromatin condensation (so called "apoptotic ring"). In order to describe quantitatively the dynamics of nuclear morphological changes in the early stage of apoptosis we suggest a general molecular kinetic model, which fits well the obtained experimental data in our study. Results of this work may clarify molecular mechanisms of nuclear morphology changes during apoptosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Quantification of transendothelial migration using three-dimensional confocal microscopy.

    PubMed

    Cain, Robert J; d'Água, Bárbara Borda; Ridley, Anne J

    2011-01-01

    Migration of cells across endothelial barriers, termed transendothelial migration (TEM), is an important cellular process that underpins the pathology of many disease states including chronic inflammation and cancer metastasis. While this process can be modeled in vitro using cultured cells, many model systems are unable to provide detailed visual information of cell morphologies and distribution of proteins such as junctional markers, as well as quantitative data on the rate of TEM. Improvements in imaging techniques have made microscopy-based assays an invaluable tool for studying this type of detailed cell movement in physiological processes. In this chapter, we describe a confocal microscopy-based method that can be used to assess TEM of both leukocytes and cancer cells across endothelial barriers in response to a chemotactic gradient, as well as providing information on their migration into a subendothelial extracellular matrix, designed to mimic that found in vivo.

  4. Dimensional metrology of lab-on-a-chip internal structures: a comparison of optical coherence tomography with confocal fluorescence microscopy.

    PubMed

    Reyes, D R; Halter, M; Hwang, J

    2015-07-01

    The characterization of internal structures in a polymeric microfluidic device, especially of a final product, will require a different set of optical metrology tools than those traditionally used for microelectronic devices. We demonstrate that optical coherence tomography (OCT) imaging is a promising technique to characterize the internal structures of poly(methyl methacrylate) devices where the subsurface structures often cannot be imaged by conventional wide field optical microscopy. The structural details of channels in the devices were imaged with OCT and analyzed with an in-house written ImageJ macro in an effort to identify the structural details of the channel. The dimensional values obtained with OCT were compared with laser-scanning confocal microscopy images of channels filled with a fluorophore solution. Attempts were also made using confocal reflectance and interferometry microscopy to measure the channel dimensions, but artefacts present in the images precluded quantitative analysis. OCT provided the most accurate estimates for the channel height based on an analysis of optical micrographs obtained after destructively slicing the channel with a microtome. OCT may be a promising technique for the future of three-dimensional metrology of critical internal structures in lab-on-a-chip devices because scans can be performed rapidly and noninvasively prior to their use. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  5. Use of stereo vision and 24-bit false-color imagery to enhance visualization of multimodal confocal images

    NASA Astrophysics Data System (ADS)

    Beltrame, Francesco; Diaspro, Alberto; Fato, Marco; Martin, I.; Ramoino, Paola; Sobel, Irwin E.

    1995-03-01

    Confocal microscopy systems can be linked to 3D data oriented devices for the interactive navigation of the operator through a 3D object space. Sometimes, such environments are named `virtual reality' or `augmented reality' systems. We consider optical confocal laser scanning microscopy images, in fluorescence with various excitations and emissions, and versus time The aim of our study has been the quantitative spatial analysis of confocal data using the false-color composition technique. Starting from three 2D confocal fluorescent images at the same slice location in a given biological specimen, a new single image representation of all three parameters has been generated by the false-color technique on a HP 9000/735 workstation, connected to the confocal microscope. The color composite result of the mapping of the three parameters is displayed using a resolution of 24 bits per pixel. The operator may independently vary the mix of each of the three components in the false-color composite via three (R, G, B) mixing sliders. Furthermore, by using the pixel data in the three fluorescent component images, a 3D space containing the density distribution of these three parameters has been constructed. The histogram has been displayed in stereo: it can be used for clustering purposes from the operator, through an original thresholding algorithm.

  6. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    NASA Astrophysics Data System (ADS)

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.

  7. In vivo confocal microscopy of human cornea covered with human amniotic membrane.

    PubMed

    Mimura, Tatsuya; Yamagami, Satoru; Usui, Tomohiko; Honda, Norihiko; Araki, Fumiyuki; Amano, Shiro

    2008-01-01

    Amniotic membrane transplantation has been widely performed to reconstruct the surface of the eye and treat chemical burns or epithelial defects. However, we have difficulty observing the cornea through the opaque transplanted amniotic membrane by slit-lamp biomicroscopy. We investigated the use of confocal microscopy for observation of human corneas covered with amniotic membrane. Human amniotic membrane was placed onto the normal corneas of five volunteers aged 22-24 years. Then, all layers of the covered corneas were observed by in vivo confocal microscopy. Confocal microscopy displayed the epithelium, basement membrane, and stroma of the amniotic membrane. It also displayed the corneal epithelium. Furthermore, corneal stromal keratocytes and the corneal endothelium were clearly observed through the amniotic membrane by confocal microscopy. We demonstrated that in vivo confocal microscopy enabled us to observe all layers of corneas covered with amniotic membrane in normal human eyes. Our findings suggest that confocal microscopy may have advantages for clinical examination of the ocular surface, including all layers of the cornea.

  8. Fast Two-Dimensional Bubble Analysis of Biopolymer Filamentous Networks Pore Size from Confocal Microscopy Thin Data Stacks

    PubMed Central

    Molteni, Matteo; Magatti, Davide; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-01-01

    The average pore size ξ0 of filamentous networks assembled from biological macromolecules is one of the most important physical parameters affecting their biological functions. Modern optical methods, such as confocal microscopy, can noninvasively image such networks, but extracting a quantitative estimate of ξ0 is a nontrivial task. We present here a fast and simple method based on a two-dimensional bubble approach, which works by analyzing one by one the (thresholded) images of a series of three-dimensional thin data stacks. No skeletonization or reconstruction of the full geometry of the entire network is required. The method was validated by using many isotropic in silico generated networks of different structures, morphologies, and concentrations. For each type of network, the method provides accurate estimates (a few percent) of the average and the standard deviation of the three-dimensional distribution of the pore sizes, defined as the diameters of the largest spheres that can be fit into the pore zones of the entire gel volume. When applied to the analysis of real confocal microscopy images taken on fibrin gels, the method provides an estimate of ξ0 consistent with results from elastic light scattering data. PMID:23473499

  9. QUANTITATIVE FLUORESCENCE OF 5-FU-TREATED FETAL RAT LIMBS USING CONFOCAL LASER SCANNING MICROSCOPY AND LYSOTRACKER RED

    EPA Science Inventory

    Background: LysoTracker Red (LT) is a paraformaldehyde fixable probe that concentrates into acidic compartments of cells and tissues. After cell death a high level of lysosomal activity (acidic enzyme) is expressed resulting from phagocytosis of apoptotic bodies by neighboring ce...

  10. Real-time, non-invasive microscopic confirmation of clinical diagnosis of bullous pemphigoid using in vivo reflectance confocal microscopy.

    PubMed

    Ardigò, M; Agozzino, M; Amorosi, B; Moscarella, E; Cota, C; de Abreu, L; Berardesca, E

    2014-05-01

    Bullous pemphigoid is an autoimmune disease affecting prevalently the elder. In vivo reflectance confocal microscopy is a non-invasive technique for real-time imaging of the skin with cellular-level resolution. No previous data has been reported about confocal microscopy of bullous pemphigoid. Aim of this preliminary study is the evaluation of the potential of in vivo reflectance confocal microscopy for real-time, microscopical confirmation of clinical bullous pemphigoid diagnosis. A total of nine lesions from patients affected by pemphigoid underwent in vivo reflectance confocal microscopy before histological examination. In our preliminary study, confocal microscopy showed high grade of correspondence to histopathology. In particular, presence of sub-epidermal cleft and variable amount of oedema of the upper dermis associated with inflammatory cells infiltration were seen as prevalent confocal features in the bullous lesions considered. Differently, in urticarial lesions, no specific features could be appreciated at confocal analysis beside the presence of signs of spongiosis and perivascular inflammation. Confocal microscopy seems to be useful for in vivo, microscopical confirmation of the clinical suspect of bullous pemphigoid and for biopsy site selection in urticarial lesions to obtain a more significant specimen for histopathological examination. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. 4Pi-confocal microscopy of live cells

    NASA Astrophysics Data System (ADS)

    Bahlmann, Karsten; Jakobs, Stefan; Hell, Stefan W.

    2002-06-01

    By coherently adding the spherical wavefronts of two opposing lenses, two-photon excitation 4Pi-confocal fluorescence microscopy has achieved three-dimensional imaging with an axial resolution 3-7 times better than confocal microscopy. So far this improvement was possible only in glycerol-mounted, fixed cells. Here we report 4Pi-confocal microscopy of watery objects and its application to the imaging of live cells. Water immersion 4Pi-confocal microscopy of membrane stained live Escherichia coli bacteria attains a 4.3 fold better axial resolution as compared to the best water immersion confocal microscope. The resolution enhancement results into a vastly improved three-dimensional representation of the bacteria. The first images of live biological samples with an all-directional resolution in the 190-280 nm range are presented here, thus establishing a new resolution benchmark in live cell microscopy.

  12. Quantitative and Qualitative Aspects of Gas-Metal-Oxide Mass Transfer in High-Temperature Confocal Scanning Laser Microscopy

    NASA Astrophysics Data System (ADS)

    Piva, Stephano P. T.; Pistorius, P. Chris; Webler, Bryan A.

    2018-05-01

    During high-temperature confocal scanning laser microscopy (HT-CSLM) of liquid steel samples, thermal Marangoni flow and rapid mass transfer between the sample and its surroundings occur due to the relatively small sample size (diameter around 5 mm) and large temperature gradients. The resulting evaporation and steel-slag reactions tend to change the chemical composition in the metal. Such mass transfer effects can change observed nonmetallic inclusions. This work quantifies oxide-metal-gas mass transfer of solutes during HT-CSLM experiments using computational simulations and experimental data for (1) dissolution of MgO inclusions in the presence and absence of slag and (2) Ca, Mg-silicate inclusion changes upon exposure of a Si-Mn-killed steel to an oxidizing gas atmosphere.

  13. In Vivo and Ex Vivo Confocal Microscopy for Dermatologic and Mohs Surgeons.

    PubMed

    Longo, Caterina; Ragazzi, Moira; Rajadhyaksha, Milind; Nehal, Kishwer; Bennassar, Antoni; Pellacani, Giovanni; Malvehy Guilera, Josep

    2016-10-01

    Confocal microscopy is a modern imaging device that has been extensively applied in skin oncology. More specifically, for tumor margin assessment, it has been used in two modalities: reflectance mode (in vivo on skin patient) and fluorescence mode (on freshly excised specimen). Although in vivo reflectance confocal microscopy is an add-on tool for lentigo maligna mapping, fluorescence confocal microscopy is far superior for basal cell carcinoma and squamous cell carcinoma margin assessment in the Mohs setting. This article provides a comprehensive overview of the use of confocal microscopy for skin cancer margin evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy.

    PubMed

    Dardikman, Gili; Nygate, Yoav N; Barnea, Itay; Turko, Nir A; Singh, Gyanendra; Javidi, Barham; Shaked, Natan T

    2018-03-01

    We suggest a new multimodal imaging technique for quantitatively measuring the integral (thickness-average) refractive index of the nuclei of live biological cells in suspension. For this aim, we combined quantitative phase microscopy with simultaneous 2-D fluorescence microscopy. We used 2-D fluorescence microscopy to localize the nucleus inside the quantitative phase map of the cell, as well as for measuring the nucleus radii. As verified offline by both 3-D confocal fluorescence microscopy and 2-D fluorescence microscopy while rotating the cells during flow, the nucleus of cells in suspension that are not during division can be assumed to be an ellipsoid. The entire shape of a cell in suspension can be assumed to be a sphere. Then, the cell and nucleus 3-D shapes can be evaluated based on their in-plain radii available from the 2-D phase and fluorescent measurements, respectively. Finally, the nucleus integral refractive index profile is calculated. We demonstrate the new technique on cancer cells, obtaining nucleus refractive index values that are lower than those of the cytoplasm, coinciding with recent findings. We believe that the proposed technique has the potential to be used for flow cytometry, where full 3-D refractive index tomography is too slow to be implemented during flow.

  15. Proposal for an in vivo histopathologic scoring system for skin aging by means of confocal microscopy.

    PubMed

    Longo, Caterina; Casari, Alice; De Pace, Barbara; Simonazzi, Silvia; Mazzaglia, Giovanna; Pellacani, Giovanni

    2013-02-01

    Many instrumental devices have been testing in analysing and quantifying the skin aging signs. However, histopathology still remains the only methods that allow a microscopic assessment of the skin. However, a skin biopsy is not feasible in aesthetically critical areas such as the face. Recently, confocal microscopy has been discovered as a noninvasive tool with a nearly histologic resolution. Distinct morphologic confocal aspects on facial skin have been described and correlated with the histopathologic counterparts. In our study we aim to develop an easy to use confocal aging score to quantify the skin aging related signs. A sample of facial skin of fifty volunteers has been subjected to confocal imaging. Combining the previously identified confocal features, three different semi-quantitative scores were calculated: - epidermal disarray score (irregular honeycombed pattern + epidermal thickness + furrow pattern); - epidermal hyperplasia score (mottled pigmentation + extent of polycyclic papillary + epidermal thickness; - collagen score (curled fibers, 2 for huddles of collagen, 1 for coarse collagen structures, and 0 for thin reticulated collagen) The epidermal disarray score showed a stable trend up to 65 years and a dramatic increase in the elderly subjects epidermal. Hyperplasia score was characterized by an ascending trend from younger subjects to middle age. The total collagen score showed a progressive trend with age with a different proportion of distinct collagen type. RCM is a powerful, noninvasive technique that could permit to microscopically quantify the aging signs and to test cosmetic efficacy. © 2012 John Wiley & Sons A/S.

  16. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities

    PubMed Central

    Zehri, Aqib H.; Ramey, Wyatt; Georges, Joseph F.; Mooney, Michael A.; Martirosyan, Nikolay L.; Preul, Mark C.; Nakaji, Peter

    2014-01-01

    Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery. PMID:24872922

  17. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanathan, Nathan Muruganathan; Darling, Seth B.

    2015-01-01

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  18. Evaluating performance in three-dimensional fluorescence microscopy

    PubMed Central

    MURRAY, JOHN M; APPLETON, PAUL L; SWEDLOW, JASON R; WATERS, JENNIFER C

    2007-01-01

    In biological fluorescence microscopy, image contrast is often degraded by a high background arising from out of focus regions of the specimen. This background can be greatly reduced or eliminated by several modes of thick specimen microscopy, including techniques such as 3-D deconvolution and confocal. There has been a great deal of interest and some confusion about which of these methods is ‘better’, in principle or in practice. The motivation for the experiments reported here is to establish some rough guidelines for choosing the most appropriate method of microscopy for a given biological specimen. The approach is to compare the efficiency of photon collection, the image contrast and the signal-to-noise ratio achieved by the different methods at equivalent illumination, using a specimen in which the amount of out of focus background is adjustable over the range encountered with biological samples. We compared spot scanning confocal, spinning disk confocal and wide-field/deconvolution (WFD) microscopes and find that the ratio of out of focus background to in-focus signal can be used to predict which method of microscopy will provide the most useful image. We also find that the precision of measurements of net fluorescence yield is very much lower than expected for all modes of microscopy. Our analysis enabled a clear, quantitative delineation of the appropriate use of different imaging modes relative to the ratio of out-of-focus background to in-focus signal, and defines an upper limit to the useful range of the three most common modes of imaging. PMID:18045334

  19. High Definition Confocal Imaging Modalities for the Characterization of Tissue-Engineered Substitutes.

    PubMed

    Mayrand, Dominique; Fradette, Julie

    2018-01-01

    Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.

  20. Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy†

    PubMed Central

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ. PMID:19803506

  1. Ex Vivo (Fluorescence) Confocal Microscopy in Surgical Pathology: State of the Art.

    PubMed

    Ragazzi, Moira; Longo, Caterina; Piana, Simonetta

    2016-05-01

    First developed in 1957, confocal microscopy is a powerful imaging tool that can be used to obtain near real-time reflected light images of untreated human tissue with nearly histologic resolution. Besides its research applications, in the last decades, confocal microscopy technology has been proposed as a useful device to improve clinical diagnosis, especially in ophthalmology, dermatology, and endomicroscopy settings, thanks to advances in instrument development. Compared with the wider use of the in vivo tissue assessment, ex vivo applications of confocal microscopy are not fully explored. A comprehensive review of the current literature was performed here, focusing on the reliable applications of ex vivo confocal microscopy in surgical pathology and on some potential evolutions of this new technique from pathologists' viewpoint.

  2. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: PRETTY PICTURES OR CONFOCAL QA

    EPA Science Inventory

    Evaluation of confocal microscopy system performance: Pretty pictures or confocal QA?

    Robert M. Zucker

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, N...

  3. Low-power laser effects at the single-cell level: a confocal microscopy study

    NASA Astrophysics Data System (ADS)

    Alexandratou, Eleni; Yova, Dido M.; Atlamazoglou, Vassilis; Handris, Panagiotis; Kletsas, Dimitris; Loukas, Spyros

    2000-11-01

    Confocal microscopy was used for irradiation and observation of the same area of interest, allowing the imaging of low power laser effects in subcellular components and functions, at the single cell level. Coverslips cultures of human fetal foreskin fibroblasts (HFFF2) were placed in a small incubation chamber for in vivo microscopic observation. Cells were stimulated by the 647 nm line of the Argon- Krypton laser of the confocal microscope (0.1 mW/cm2). Membrane permeability, mitochondrial membrane potential ((delta) Psim), intracellular pHi, calcium alterations and nuclear chromatin accessibility were monitored, at different times after irradiation, using specific fluorescent vital probes. Images were stored to the computer and quantitative evaluation was performed using image- processing software. After irradiation, influx and efflux of the appropriate dyes monitored changes in cell membrane permeability. Laser irradiation caused alkalizatoin of the cytosolic pHi and increase of the mitochondrial membrane potential ((delta) Psim). Temporary global Ca2+ responses were also observed. No such effects were noted in microscopic fields other than the irradiated ones. No toxic effects were observed, during time course of the experiment.

  4. Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network.

    PubMed

    Alves da Rocha, Roney; Paiva, Igor Moura; Anjos, Virgílio; Furtado, Marco Antônio Moreira; Bell, Maria José Valenzuela

    2015-06-01

    In this work, we assessed the use of confocal Raman microscopy and artificial neural network as a practical method to assess and quantify adulteration of fluid milk by addition of whey. Milk samples with added whey (from 0 to 100%) were prepared, simulating different levels of fraudulent adulteration. All analyses were carried out by direct inspection at the light microscope after depositing drops from each sample on a microscope slide and drying them at room temperature. No pre- or posttreatment (e.g., sample preparation or spectral correction) was required in the analyses. Quantitative determination of adulteration was performed through a feed-forward artificial neural network (ANN). Different ANN configurations were evaluated based on their coefficient of determination (R2) and root mean square error values, which were criteria for selecting the best predictor model. In the selected model, we observed that data from both training and validation subsets presented R2>99.99%, indicating that the combination of confocal Raman microscopy and ANN is a rapid, simple, and efficient method to quantify milk adulteration by whey. Because sample preparation and postprocessing of spectra were not required, the method has potential applications in health surveillance and food quality monitoring. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Laser scanning in vivo confocal microscopy of the normal human corneoscleral limbus.

    PubMed

    Patel, Dipika V; Sherwin, Trevor; McGhee, Charles N J

    2006-07-01

    To elucidate the structure of the human corneoscleral limbus by in vivo laser scanning confocal microscopy and to correlate limbal epithelial dimensions and density with the central epithelium and in relation to age. Fifty adult subjects were recruited into one of two age groups: younger (age<45 years) and older (age>or=45 years). Fifty left eyes of these 50 healthy subjects were examined by laser scanning in vivo confocal microscopy, to assess the basal epithelium of the central cornea and inferior limbus. Mean epithelial cell diameter, area, and density were calculated for the central basal epithelium, limbus-corneal basal epithelium, and limbus-palisade epithelium. Data were analyzed in relation to the two age groups, group A, 30+/-6 years (n=25; mean+/-SD), and group B, 60+/-11 years (n=25; P<0.01). Mean epithelial density in the limbus-cornea and limbus-palisade regions decreased significantly with age: limbus-cornea group A=7253+/-1077 cells/mm2 group B=6614+/-987 cells/mm2, P=0.03; limbus palisade group A=5409+/-799 cells/mm2, group B=5055+/-722 cells/mm2, P=0.03). Central corneal epithelial density did not change with age: group A=6162+/-503 cells/mm2, group B=6362+/-614 cells/mm2, P=0.08. Mean epithelial density was greatest at the limbus-cornea (7010+/-1081 cells/mm2) and lowest at the limbus-palisades (5289+/-847 cells/mm2). The mean width of palisade ridges was 25.0+/-6.3 microm. This is the first study to image clearly the living human corneal limbus by laser scanning in vivo confocal microscopy and to demonstrate quantitative changes in the basal epithelium with age.

  6. ConfocalCheck - A Software Tool for the Automated Monitoring of Confocal Microscope Performance

    PubMed Central

    Hng, Keng Imm; Dormann, Dirk

    2013-01-01

    Laser scanning confocal microscopy has become an invaluable tool in biomedical research but regular quality testing is vital to maintain the system’s performance for diagnostic and research purposes. Although many methods have been devised over the years to characterise specific aspects of a confocal microscope like measuring the optical point spread function or the field illumination, only very few analysis tools are available. Our aim was to develop a comprehensive quality assurance framework ranging from image acquisition to automated analysis and documentation. We created standardised test data to assess the performance of the lasers, the objective lenses and other key components required for optimum confocal operation. The ConfocalCheck software presented here analyses the data fully automatically. It creates numerous visual outputs indicating potential issues requiring further investigation. By storing results in a web browser compatible file format the software greatly simplifies record keeping allowing the operator to quickly compare old and new data and to spot developing trends. We demonstrate that the systematic monitoring of confocal performance is essential in a core facility environment and how the quantitative measurements obtained can be used for the detailed characterisation of system components as well as for comparisons across multiple instruments. PMID:24224017

  7. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy.

    PubMed

    Siegel, Nisan; Brooker, Gary

    2014-09-22

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".

  8. Reflectance confocal microscopy of cutaneous melanoma. Correlation with dermoscopy and histopathology*

    PubMed Central

    Rstom, Silvia Arroyo; Libório, Lorena Silva; Paschoal, Francisco Macedo

    2015-01-01

    In vivo Confocal Microscopy is a method for non-invasive, real-time visualization of microscopic structures and cellular details of the epidermis and dermis, which has a degree of resolution similar to that obtained with histology. We present a case of cutaneous melanoma in which diagnosis was aided by confocal microscopy examination. We also correlate the observed features with the dermoscopic and histopathological findings. Confocal microscopy proved to be an useful adjunct to dermoscopy, playing an important role as a method 'between clinical evaluation and histopathology'. PMID:26131877

  9. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas.

    PubMed

    Sanai, Nader; Snyder, Laura A; Honea, Norissa J; Coons, Stephen W; Eschbacher, Jennifer M; Smith, Kris A; Spetzler, Robert F

    2011-10-01

    Greater extent of resection (EOR) for patients with low-grade glioma (LGG) corresponds with improved clinical outcome, yet remains a central challenge to the neurosurgical oncologist. Although 5-aminolevulinic acid (5-ALA)-induced tumor fluorescence is a strategy that can improve EOR in gliomas, only glioblastomas routinely fluoresce following 5-ALA administration. Intraoperative confocal microscopy adapts conventional confocal technology to a handheld probe that provides real-time fluorescent imaging at up to 1000× magnification. The authors report a combined approach in which intraoperative confocal microscopy is used to visualize 5-ALA tumor fluorescence in LGGs during the course of microsurgical resection. Following 5-ALA administration, patients with newly diagnosed LGG underwent microsurgical resection. Intraoperative confocal microscopy was conducted at the following points: 1) initial encounter with the tumor; 2) the midpoint of tumor resection; and 3) the presumed brain-tumor interface. Histopathological analysis of these sites correlated tumor infiltration with intraoperative cellular tumor fluorescence. Ten consecutive patients with WHO Grades I and II gliomas underwent microsurgical resection with 5-ALA and intraoperative confocal microscopy. Macroscopic tumor fluorescence was not evident in any patient. However, in each case, intraoperative confocal microscopy identified tumor fluorescence at a cellular level, a finding that corresponded to tumor infiltration on matched histological analyses. Intraoperative confocal microscopy can visualize cellular 5-ALA-induced tumor fluorescence within LGGs and at the brain-tumor interface. To assess the clinical value of 5-ALA for high-grade gliomas in conjunction with neuronavigation, and for LGGs in combination with intraoperative confocal microscopy and neuronavigation, a Phase IIIa randomized placebo-controlled trial (BALANCE) is underway at the authors' institution.

  10. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores.

    PubMed

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2013-09-01

    Risks associated with pediatric reconstructive heart surgery include injury of the sinoatrial node (SAN) and atrioventricular node (AVN), requiring cardiac rhythm management using implantable pacemakers. These injuries are the result of difficulties in identifying nodal tissues intraoperatively. Here we describe an approach based on confocal microscopy and extracellular fluorophores to quantify tissue microstructure and identify nodal tissue. Using conventional 3-dimensional confocal microscopy we investigated the microstructural arrangement of SAN, AVN, and atrial working myocardium (AWM) in fixed rat heart. AWM exhibited a regular striated arrangement of the extracellular space. In contrast, SAN and AVN had an irregular, reticulated arrangement. AWM, SAN, and AVN tissues were beneath a thin surface layer of tissue that did not obstruct confocal microscopic imaging. Subsequently, we imaged tissues in living rat hearts with real-time fiber-optics confocal microscopy. Fiber-optics confocal microscopy images resembled images acquired with conventional confocal microscopy. We investigated spatial regularity of tissue microstructure from Fourier analysis and second-order image moments. Fourier analysis of fiber-optics confocal microscopy images showed that the spatial regularity of AWM was greater than that of nodal tissues (37.5 ± 5.0% versus 24.3 ± 3.9% for SAN and 23.8 ± 3.7% for AVN; P<0.05). Similar differences of spatial regularities were revealed from second-order image moments (50.0 ± 7.3% for AWM versus 29.3 ± 6.7% for SAN and 27.3 ± 5.5% for AVN; P<0.05). The study demonstrates feasibility of identifying nodal tissue in living heart using extracellular fluorophores and fiber-optics confocal microscopy. Application of the approach in pediatric reconstructive heart surgery may reduce risks of injuring nodal tissues.

  11. Super-resolved linear fluorescence localization microscopy using photostable fluorophores: A virtual microscopy study

    NASA Astrophysics Data System (ADS)

    Birk, Udo; Szczurek, Aleksander; Cremer, Christoph

    2017-12-01

    Current approaches to overcome the conventional limit of the resolution potential of light microscopy (of about 200 nm for visible light), often suffer from non-linear effects, which render the quantification of the image intensities in the reconstructions difficult, and also affect the quantification of the biological structure under investigation. As an attempt to face these difficulties, we discuss a particular method of localization microscopy which is based on photostable fluorescent dyes. The proposed method can potentially be implemented as a fast alternative for quantitative localization microscopy, circumventing the need for the acquisition of thousands of image frames and complex, highly dye-specific imaging buffers. Although the need for calibration remains in order to extract quantitative data (such as the number of emitters), multispectral approaches are largely facilitated due to the much less stringent requirements on imaging buffers. Furthermore, multispectral acquisitions can be readily obtained using commercial instrumentation such as e.g. the conventional confocal laser scanning microscope.

  12. Re-scan confocal microscopy: scanning twice for better resolution.

    PubMed

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  13. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy

    PubMed Central

    Siegel, Nisan; Brooker, Gary

    2014-01-01

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called “CINCH”. PMID:25321701

  14. Clinical usefulness of reflectance confocal microscopy in the management of facial lentigo maligna melanoma.

    PubMed

    Alarcón, I; Carrera, C; Puig, S; Malvehy, J

    2014-04-01

    Facial lentigo maligna melanoma can be a diagnostic challenge in daily clinical practice as it has similar clinical and morphological features to other lesions such as solar lentigines and pigmented actinic keratoses. Confocal microscopy is a noninvasive technique that provides real-time images of the epidermis and superficial dermis with cellular-level resolution. We describe 3 cases of suspected facial lentigo maligna that were assessed using dermoscopy and confocal microscopy before histopathology study. In the first case, diagnosed as lentigo maligna melanoma, presurgical mapping by confocal microscopy was performed to define the margins more accurately. In the second and third cases, with a clinical and dermoscopic suspicion of lentigo maligna melanoma, confocal microscopy was used to identify the optimal site for biopsy. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  15. Two-Photon Fluorescence Microscopy Developed for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2004-01-01

    Recent research efforts within the Microgravity Fluid Physics Branch of the NASA Glenn Research Center have necessitated the development of a microscope capable of high-resolution, three-dimensional imaging of intracellular structure and tissue morphology. Standard optical microscopy works well for thin samples, but it does not allow the imaging of thick samples because of severe degradation caused by out-of-focus object structure. Confocal microscopy, which is a laser-based scanning microscopy, provides improved three-dimensional imaging and true optical sectioning by excluding the out-of-focus light. However, in confocal microscopy, out-of-focus object structure is still illuminated by the incoming beam, which can lead to substantial photo-bleaching. In addition, confocal microscopy is plagued by limited penetration depth, signal loss due to the presence of a confocal pinhole, and the possibility of live-cell damage. Two-photon microscopy is a novel form of laser-based scanning microscopy that allows three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon microscopy, it utilizes the nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption because of the nonlinear (i.e., quadratic) electric field dependence, so an ultrafast pulsed laser source must typically be employed. On the other hand, this stringent energy density requirement effectively localizes fluorophore excitation to the focal volume. Consequently, two-photon microscopy provides optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction in photo-damage because of the longer excitation wavelength, a reduction in background fluorescence, and a 4 increase in penetration depth over confocal methods because of the reduction in Rayleigh scattering.

  16. Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy.

    PubMed

    González Bardeci, Nicolás; Angiolini, Juan Francisco; De Rossi, María Cecilia; Bruno, Luciana; Levi, Valeria

    2017-01-01

    Fluorescence fluctuation-based methods are non-invasive microscopy tools especially suited for the study of dynamical aspects of biological processes. These methods examine spontaneous intensity fluctuations produced by fluorescent molecules moving through the small, femtoliter-sized observation volume defined in confocal and multiphoton microscopes. The quantitative analysis of the intensity trace provides information on the processes producing the fluctuations that include diffusion, binding interactions, chemical reactions and photophysical phenomena. In this review, we present the basic principles of the most widespread fluctuation-based methods, discuss their implementation in standard confocal microscopes and briefly revise some examples of their applications to address relevant questions in living cells. The ultimate goal of these methods in the Cell Biology field is to observe biomolecules as they move, interact with targets and perform their biological action in the natural context. © 2016 IUBMB Life, 69(1):8-15, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  17. Signal and noise modeling in confocal laser scanning fluorescence microscopy.

    PubMed

    Herberich, Gerlind; Windoffer, Reinhard; Leube, Rudolf E; Aach, Til

    2012-01-01

    Fluorescence confocal laser scanning microscopy (CLSM) has revolutionized imaging of subcellular structures in biomedical research by enabling the acquisition of 3D time-series of fluorescently-tagged proteins in living cells, hence forming the basis for an automated quantification of their morphological and dynamic characteristics. Due to the inherently weak fluorescence, CLSM images exhibit a low SNR. We present a novel model for the transfer of signal and noise in CLSM that is both theoretically sound as well as corroborated by a rigorous analysis of the pixel intensity statistics via measurement of the 3D noise power spectra, signal-dependence and distribution. Our model provides a better fit to the data than previously proposed models. Further, it forms the basis for (i) the simulation of the CLSM imaging process indispensable for the quantitative evaluation of CLSM image analysis algorithms, (ii) the application of Poisson denoising algorithms and (iii) the reconstruction of the fluorescence signal.

  18. Re-scan confocal microscopy: scanning twice for better resolution

    PubMed Central

    De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422

  19. Anti-translational research: from the bedside back to the bench for reflectance confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel

    2014-03-01

    The reflectance confocal microscope has made translational progress in dermatology. 0.5 micrometer lateral resolution, 0.75mm field-of-view and excellent temporal resolution at ~15 frames/second serve the VivaScope well in the clinic, but it may be overlooked in basic research. This work reviews high spatiotemporal confocal microscopy and presents images acquired of various samples: zebra fish embryo where melanocytes with excellent contrast overly the spinal column, chicken embryo, where myocardium is seen moving at 15 frames/ second, calcium spikes in dendrites (fluorescence mode) just beyond the temporal resolution, and human skin where blood cells race through the artereovenous microvasculature. For an introduction to confocal microscopy, see: http://dangareau.net.s69818.gridserver.com/science/confocal-microscopy

  20. HeLa cells response to photodynamic treatment with Radachlorin at various irradiation parameters

    NASA Astrophysics Data System (ADS)

    Belashov, A. V.; Zhikhoreva, A. A.; Belyaeva, T. N.; Kornilova, E. S.; Petrov, N. V.; Salova, A. V.; Semenova, I. V.; Vasyutinskii, O. S.

    2017-07-01

    Measurements of average phase shifts introduced by living HeLa cells to probe wave front were carried out. Variations of this value were monitored in the course of morphological changes caused by photodynamic treatment at various irradiation doses. Observations of changes in living cells were also performed by means of far field optical microscopy and confocal fluorescent microscopy. Quantitative analysis of the data obtained shows that average phase shift introduced by the cells may either increase or decrease depending upon major parameters of the treatment.

  1. Immunolocalization of Delta-Giardin within the Ventral Disc in of Trophozoites and in cysts of Giardia duodenalis using the Multiplex Laser Scanning Confocal Microscopy

    USDA-ARS?s Scientific Manuscript database

    Immunolocalization of alpha2-, beta- and delta-giardin in Giardia showed that in the trophozoites and cysts delta-giardin it strictly associated with the ventral disc. Optical sectioning of the ventral discs, together with quantitative colocalization of the immunoreactivity for delta- and beta-giard...

  2. Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope.

    PubMed

    Mathew, Manoj; Santos, Susana I C O; Zalvidea, Dobryna; Loza-Alvarez, Pablo

    2009-07-01

    In this work we propose and build a multimodal optical workstation that extends a commercially available confocal microscope (Nikon Confocal C1-Si) to include nonlinear/multiphoton microscopy and optical manipulation/stimulation tools such as nanosurgery. The setup allows both subsystems (confocal and nonlinear) to work independently and simultaneously. The workstation enables, for instance, nanosurgery along with simultaneous confocal and brightfield imaging. The nonlinear microscopy capabilities are added around the commercial confocal microscope by exploiting all the flexibility offered by this microscope and without need for any mechanical or electronic modification of the confocal microscope systems. As an example, the standard differential interference contrast condenser and diascopic detector in the confocal microscope are readily used as a forward detection mount for second harmonic generation imaging. The various capabilities of this workstation, as applied directly to biology, are demonstrated using the model organism Caenorhabditis elegans.

  3. Molecular and Cellular Quantitative Microscopy: theoretical investigations, technological developments and applications to neurobiology

    NASA Astrophysics Data System (ADS)

    Esposito, Alessandro

    2006-05-01

    This PhD project aims at the development and evaluation of microscopy techniques for the quantitative detection of molecular interactions and cellular features. The primarily investigated techniques are Fαrster Resonance Energy Transfer imaging and Fluorescence Lifetime Imaging Microscopy. These techniques have the capability to quantitatively probe the biochemical environment of fluorophores. An automated microscope capable of unsupervised operation has been developed that enables the investigation of molecular and cellular properties at high throughput levels and the analysis of cellular heterogeneity. State-of-the-art Förster Resonance Energy Transfer imaging, Fluorescence Lifetime Imaging Microscopy, Confocal Laser Scanning Microscopy and the newly developed tools have been combined with cellular and molecular biology techniques for the investigation of protein-protein interactions, oligomerization and post-translational modifications of α-Synuclein and Tau, two proteins involved in Parkinson’s and Alzheimer’s disease, respectively. The high inter-disciplinarity of this project required the merging of the expertise of both the Molecular Biophysics Group at the Debye Institute - Utrecht University and the Cell Biophysics Group at the European Neuroscience Institute - Gαttingen University. This project was conducted also with the support and the collaboration of the Center for the Molecular Physiology of the Brain (Göttingen), particularly with the groups associated with the Molecular Quantitative Microscopy and Parkinson’s Disease and Aggregopathies areas. This work demonstrates that molecular and cellular quantitative microscopy can be used in combination with high-throughput screening as a powerful tool for the investigation of the molecular mechanisms of complex biological phenomena like those occurring in neurodegenerative diseases.

  4. Superresolution upgrade for confocal spinning disk systems using image scanning microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg

    2017-02-01

    Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).

  5. The potential role of in vivo reflectance confocal microscopy for evaluating oral cavity lesions: a systematic review.

    PubMed

    Lucchese, Alberta; Gentile, Enrica; Romano, Antonio; Maio, Claudio; Laino, Luigi; Serpico, Rosario

    2016-11-01

    Since the early 2000s, several studies have examined the application of reflectance confocal microscopy (RCM) to the oral cavity. This review gives an overview of the literature on reflectance confocal microscopy analysis of the oral cavity in vivo and identifies flaws in the studies, providing guidance to improve reflectance confocal microscopy applications and inform the design of future studies. The PubMed, ISI, Scopus, and Cochrane Library databases were searched for publications on RCM using the terms 'reflectance confocal microscopy' in combination with 'mouth' and other terms related to the topic of interest. The search gave 617 results. Seventeen studies were included in our final analysis. We decided to organize the selected articles according to four topics: healthy mucosa, autoimmune diseases, cancer and precancerous lesions, and hard dental tissues. Although reflectance confocal microscopy is promising for diagnosing and monitoring oral pathology, it has shortcomings and there are still too few publications on this topic. Further studies are needed to increase the quantity and quality of the results, to translate research into clinical practice. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Candida tropicalis biofilm and human epithelium invasion is highly influenced by environmental pH.

    PubMed

    Ferreira, Carina; Gonçalves, Bruna; Vilas Boas, Diana; Oliveira, Hugo; Henriques, Mariana; Azeredo, Joana; Silva, Sónia

    2016-11-01

    The main goal of this study was to investigate the role of pH on Candida tropicalis virulence determinants, namely the ability to form biofilms and to colonize/invade reconstituted human vaginal epithelia. Biofilm formation was evaluated by enumeration of cultivable cells, total biomass quantification and structural analysis by scanning electron microscopy and confocal laser scanning microscopy. Candida tropicalis human vaginal epithelium colonization and invasiveness were examined qualitatively by epifluorescence microscopy and quantitatively by a novel quantitative real-time PCR protocol for Candida quantification in tissues. The results revealed that environmental pH influences C. tropicalis biofilm formation as well as the colonization and potential to invade human epithelium with intensification at neutral and alkaline conditions compared to acidic conditions. For the first time, we have demonstrated that C. tropicalis biofilm formation and invasion is highly influenced by environmental pH. © Crown copyright 2016.

  7. Semiautomated confocal imaging of fungal pathogenesis on plants: Microscopic analysis of macroscopic specimens.

    PubMed

    Minker, Katharine R; Biedrzycki, Meredith L; Kolagunda, Abhishek; Rhein, Stephen; Perina, Fabiano J; Jacobs, Samuel S; Moore, Michael; Jamann, Tiffany M; Yang, Qin; Nelson, Rebecca; Balint-Kurti, Peter; Kambhamettu, Chandra; Wisser, Randall J; Caplan, Jeffrey L

    2018-02-01

    The study of phenotypic variation in plant pathogenesis provides fundamental information about the nature of disease resistance. Cellular mechanisms that alter pathogenesis can be elucidated with confocal microscopy; however, systematic phenotyping platforms-from sample processing to image analysis-to investigate this do not exist. We have developed a platform for 3D phenotyping of cellular features underlying variation in disease development by fluorescence-specific resolution of host and pathogen interactions across time (4D). A confocal microscopy phenotyping platform compatible with different maize-fungal pathosystems (fungi: Setosphaeria turcica, Cochliobolus heterostrophus, and Cercospora zeae-maydis) was developed. Protocols and techniques were standardized for sample fixation, optical clearing, species-specific combinatorial fluorescence staining, multisample imaging, and image processing for investigation at the macroscale. The sample preparation methods presented here overcome challenges to fluorescence imaging such as specimen thickness and topography as well as physiological characteristics of the samples such as tissue autofluorescence and presence of cuticle. The resulting imaging techniques provide interesting qualitative and quantitative information not possible with conventional light or electron 2D imaging. Microsc. Res. Tech., 81:141-152, 2018. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Confocal Rheology Probes the Structure and Mechanics of Collagen through the Sol-Gel Transition.

    PubMed

    Tran-Ba, Khanh-Hoa; Lee, Daniel J; Zhu, Jieling; Paeng, Keewook; Kaufman, Laura J

    2017-10-17

    Fibrillar type I collagen-based hydrogels are commonly used in tissue engineering and as matrices for biophysical studies. Mechanical and structural properties of these gels are known to be governed by the conditions under which fibrillogenesis occurs, exhibiting variation as a function of protein concentration, temperature, pH, and ionic strength. Deeper understanding of how macroscopic structure affects viscoelastic properties of collagen gels over the course of fibrillogenesis provides fundamental insight into biopolymer gel properties and promises enhanced control over the properties of such gels. Here, we investigate type I collagen fibrillogenesis using confocal rheology-simultaneous confocal reflectance microscopy, confocal fluorescence microscopy, and rheology. The multimodal approach allows direct comparison of how viscoelastic properties track the structural evolution of the gel on fiber and network length scales. Quantitative assessment and comparison of each imaging modality and the simultaneously collected rheological measurements show that the presence of a system-spanning structure occurs at a time similar to rheological determinants of gelation. Although this and some rheological measures are consistent with critical gelation through percolation, additional rheological and structural properties of the gel are found to be inconsistent with this theory. This study clarifies how structure sets viscoelasticity during collagen fibrillogenesis and more broadly highlights the utility of multimodal measurements as critical test-beds for theoretical descriptions of complex systems. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Confocal fluorescence microscopy to evaluate changes in adipocytes in the tumor microenvironment associated with invasive ductal carcinoma and ductal carcinoma in situ.

    PubMed

    Dobbs, Jessica L; Shin, Dongsuk; Krishnamurthy, Savitri; Kuerer, Henry; Yang, Wei; Richards-Kortum, Rebecca

    2016-09-01

    Adipose tissue is a dynamic organ that provides endocrine, inflammatory and angiogenic factors, which can assist breast carcinoma cells with invasion and metastasis. Previous studies have shown that adipocytes adjacent to carcinoma, known as cancer-associated adipocytes, undergo extensive changes that correspond to an "activated phenotype," such as reduced size relative to adipocytes in non-neoplastic breast tissue. Optical imaging provides a tool that can be used to characterize adipocyte morphology and other features of the tumor microenvironment. In this study, we used confocal fluorescence microscopy to acquire images of freshly excised breast tissue stained topically with proflavine. We developed a computerized algorithm to identify and quantitatively measure phenotypic properties of adipocytes located adjacent to and far from normal collagen, ductal carcinoma in situ and invasive ductal carcinoma. Adipocytes were measured in confocal fluorescence images of fresh breast tissue collected from 22 patients. Results show that adipocytes adjacent to neoplastic tissue margins have significantly smaller area compared to adipocytes far from the margins of neoplastic lesions and compared to adipocytes adjacent to non-neoplastic collagenous stroma. These findings suggest that confocal microscopic images can be utilized to evaluate phenotypic properties of adipocytes in breast stroma which may be useful in defining alterations in microenvironment that may aid in the development and progression of neoplastic lesions. © 2016 UICC.

  10. The design and construction of a cost-efficient confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Xi, Peng; Rajwa, Bartlomiej; Jones, James T.; Robinson, J. Paul

    2007-03-01

    The optical dissection ability of confocal microscopy makes it a powerful tool for biological materials. However, the cost and complexity of confocal scanning laser microscopy hinders its wide application in education. We describe the construction of a simplified confocal scanning laser microscope and demonstrate three-dimensional projection based on cost-efficient commercial hardware, together with available open source software.

  11. CONFOCAL LASER SCANNING MICROSCOPY OF RAT FOLLICLE DEVELOPMENT

    EPA Science Inventory

    This study used confocal laser scanning microscopy (CLSM) to study follicular development in millimeter pieces of rat ovary. To use this technology, it is essential to stain the tissue before laser excitation with the confocal microscope. Various fluorescent stains (Yo-Pro, Bo-Pr...

  12. Aggregation and Disaggregation of Senile Plaques in Alzheimer Disease

    NASA Astrophysics Data System (ADS)

    Cruz, L.; Urbanc, B.; Buldyrev, S. V.; Christie, R.; Gomez-Isla, T.; Havlin, S.; McNamara, M.; Stanley, H. E.; Hyman, B. T.

    1997-07-01

    We quantitatively analyzed, using laser scanning confocal microscopy, the three-dimensional structure of individual senile plaques in Alzheimer disease. We carried out the quantitative analysis using statistical methods to gain insights about the processes that govern Aβ peptide deposition. Our results show that plaques are complex porous structures with characteristic pore sizes. We interpret plaque morphology in the context of a new dynamical model based on competing aggregation and disaggregation processes in kinetic steady-state equilibrium with an additional diffusion process allowing Aβ deposits to diffuse over the surface of plaques.

  13. Laser scanning confocal microscopy: history, applications, and related optical sectioning techniques.

    PubMed

    Paddock, Stephen W; Eliceiri, Kevin W

    2014-01-01

    Confocal microscopy is an established light microscopical technique for imaging fluorescently labeled specimens with significant three-dimensional structure. Applications of confocal microscopy in the biomedical sciences include the imaging of the spatial distribution of macromolecules in either fixed or living cells, the automated collection of 3D data, the imaging of multiple labeled specimens and the measurement of physiological events in living cells. The laser scanning confocal microscope continues to be chosen for most routine work although a number of instruments have been developed for more specific applications. Significant improvements have been made to all areas of the confocal approach, not only to the instruments themselves, but also to the protocols of specimen preparation, to the analysis, the display, the reproduction, sharing and management of confocal images using bioinformatics techniques.

  14. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM).

    PubMed

    Schaudinn, C; Carr, G; Gorur, A; Jaramillo, D; Costerton, J W; Webster, P

    2009-08-01

    Scanning electron microscopy is a useful imaging approach for the visualization of bacterial biofilms in their natural environments including their medical and dental habitats, because it allows for the exploration of large surfaces with excellent resolution of topographic features. Most biofilms in nature, however, are embedded in a thick layer of extracellular matrix that prevents a clear identification of individual bacteria by scanning electron microscopy. The use of confocal laser scanning microscopy on the other hand in combination with fluorescence in situ hybridization enables the visualization of matrix embedded bacteria in multi-layered biofilms. In our study, fluorescence in situ hybridization/confocal laser scanning microscopy and scanning electron microscopy were applied to visualize bacterial biofilm in endodontic root canals. The resulting fluorescence in situ hybridization /confocal laser scanning microscopy and scanning electron microscopy and pictures were subsequently combined into one single image to provide high-resolution information on the location of hidden bacteria. The combined use of scanning electron microscopy and fluorescence in situ hybridization / confocal laser scanning microscopy has the potential to overcome the limits of each single technique.

  15. Evaluation of the therapeutic results of actinic keratosis treated with topical 5% fluorouracil by reflectance confocal laser microscopy: preliminary study*

    PubMed Central

    Ishioka, Priscila; Maia, Marcus; Rodrigues, Sarita Bartholomei; Marta, Alessandra Cristina; Hirata, Sérgio Henrique

    2015-01-01

    Topical treatment for actinic keratosis with 5% fluorouracil has a recurrence rate of 54% in 12 months of follow-up. This study analyzed thirteen actinic keratoses on the upper limbs through confocal microscopy, at the time of clinical diagnosis and after 4 weeks of treatment with fluorouracil. After the treatment was established and evidence of clinical cure was achieved, in two of the nine actinic keratoses, confocal microscopy enabled visualization of focal areas of atypical honeycomb pattern in the epidermis indicating therapeutic failure. Preliminary data suggest the use of confocal microscopy as a tool for diagnosis and therapeutic control of actinic keratosis. PMID:26131881

  16. Simple fiber-optic confocal microscopy with nanoscale depth resolution beyond the diffraction barrier.

    PubMed

    Ilev, Ilko; Waynant, Ronald; Gannot, Israel; Gandjbakhche, Amir

    2007-09-01

    A novel fiber-optic confocal approach for ultrahigh depth-resolution (

  17. Ophthalmic applications of confocal microscopy: diagnostics, refractive surgery, and eye banking

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1990-11-01

    Confocal microscopy of ocular tissue provides two advantages over traditional imaging techniques: increased range and transverse resolution and increased contrast. The semitransparent cornea and ocular lens in the living eye can be optically sectioned and observed by reflected light confocal microscopy. Within the cornea we observed various cell components nerve fibers nerve cell bodies and fibrous networks. The confocal microscopic images from the in-situ ocular lens show the lens capsule the lens epithelium and the individual lens fibrils. All of the reflected light confocal microscopic images have high contrast and high resolution. Some of the applications of confocal imaging in ophthalmology include: diagnostics of the cornea and the ocular lens examination prior to and after refractive surgery examination of intraocular lenses (IOL) and examination of eye bank material. Other ophthalmic uses of confocal imaging include: studies of wound healing therapeutics and the effects of contact lenses on the cornea. The proposed features of a clinical confocal microscope are reviewed. 2.

  18. Confocal Imaging of Confined Quiescent and Flowing Colloid-polymer Mixtures

    PubMed Central

    Conrad, Jacinta C.

    2014-01-01

    The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly1-3, drug delivery4, improved hydrocarbon recovery5-7, and flowable electrodes for energy storage8. Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained9. Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems10. Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions11-16,37. In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol for imaging colloid-polymer mixtures during microchannel flow. PMID:24894062

  19. Localizing Proteins in Fixed Giardia lamblia and Live Cultured Mammalian Cells by Confocal Fluorescence Microscopy.

    PubMed

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E

    2016-01-01

    Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes.

  20. Corneal wound healing after photorefractive keratectomy: a 3-year confocal microscopy study.

    PubMed Central

    Erie, Jay C

    2003-01-01

    PURPOSE: To perform a sequential quantitative analysis of corneal wound healing after photorefractive keratectomy (PRK) by using confocal microscopy in vivo. METHODS: In a prospective, nonrandomized, comparative trial performed in an institutional setting, 24 eyes of 14 patients received PRK to correct refractive errors between -1.25 and -5.75 D. Central corneas were examined preoperatively and at 1 day, 5 days, and 1, 3, 6, 12, 24, and 36 months after PRK by using confocal microscopy. A masked observer randomly examined 3 to 6 confocal scans per eye per visit to determine epithelial and stromal thickness, keratocyte density in 5 anterior-posterior stromal layers, corneal nerve density in the subbasal region and the stroma, and corneal light backscattering (corneal haze). RESULTS: Epithelial thickness increased 21% (P < .001) by 12 months after PRK and thereafter remained unchanged to 36 months after PRK. There was no change in stromal thickness between 1 and 36 months after PRK (P = .35). The dense keratocyte population in the preoperative anterior 10% of the stroma (32,380 +/- 5,848 cells/mm3) that was partially or completely removed during photoablation was not reconstituted at 36 months in the anterior 10% of the post-PRK stroma (17,720 +/- 4,308 cells/mm3, P < .001). Subbasal nerve fiber bundle density was decreased 60% at 12 months after PRK (P < .001) before returning to densities at 24 and 36 months after PRK that were not significantly different from preoperative values (P = 1.0). Activated keratocytes and corneal haze peaked at 3 months after PRK. CONCLUSIONS: Wounding of the cornea by PRK alters the normal structure, cellularity, and innervation of the cornea for up to 36 months. PMID:14971584

  1. Visualizing and quantifying the in vivo structure and dynamics of the Arabidopsis cortical cytoskeleton using CLSM and VAEM.

    PubMed

    Rosero, Amparo; Zárský, Viktor; Cvrčková, Fatima

    2014-01-01

    The cortical microtubules, and to some extent also the actin meshwork, play a central role in the shaping of plant cells. Transgenic plants expressing fluorescent protein markers specifically tagging the two main cytoskeletal systems are available, allowing noninvasive in vivo studies. Advanced microscopy techniques, in particular confocal laser scanning microscopy (CLSM) and variable angle epifluorescence microscopy (VAEM), can be nowadays used for imaging the cortical cytoskeleton of living cells with unprecedented spatial and temporal resolution. With the aid of suitable computing techniques, quantitative information can be extracted from microscopic images and video sequences, providing insight into both architecture and dynamics of the cortical cytoskeleton.

  2. Confocal reflectance quantitative phase microscope system for cellular membranes dynamics study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; Yaqoob, Zahid; So, Peter T. C.

    2017-02-01

    Quantitative phase microscopy (QPM) techniques developed so far primarily belongs to high speed transmitted light based systems that has enough sensitivity to resolve membrane fluctuations and dynamics, but has no depth resolution. Therefore, most biomechanics studies using QPM today is confined to simple cells, such as RBCs, without internal organelles. An important instrument that will greatly extend the biomedical applications of QPM is to develop next generation microscope with 3D capability and sufficient temporal resolution to study biomechanics of complex eukaryotic cells including the mechanics of their internal compartments. For eukaryotic cells, the depth sectioning capability is critical and should be sufficient to distinguish nucleic membrane fluctuations from plasma membrane fluctuations. Further, this microscope must provide high temporal resolution since typical eukaryotes membranes are substantially stiffer than RBCs. A confocal reflectance quantitative phase microscope is presented based on multi-pinhole scanning, with the capabilities of higher temporal resolution and sensitivity for nucleic and plasma membranes of eukaryotic cells. System hardware is developed based on an array of confocal pinhole generated by using the `ON' state of subset of micro-mirrors of digital micro-mirror device (DMD, from Texas Instruments) and high-speed raster scanning provides 14ms imaging speed in wide-field mode. A common path interferometer is integrated at the imaging arm for detection of specimens' quantitative phase information. Theoretical investigation of quantitative phase reconstructed from system is investigated and application of system is presented for dimensional fluctuations measurements of both cellular plasma and nucleic membranes of embryonic stem cells.

  3. 78 FR 33098 - Prospective Grant of Co-Exclusive Licenses: Multi-Focal Structured Illumination Microscopy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ...-Exclusive Licenses: Multi-Focal Structured Illumination Microscopy Systems and Methods AGENCY: National... pertains to a system and method for digital confocal microscopy that rapidly processes enhanced images. In particular, the invention is a method for digital confocal microscopy that includes a digital mirror device...

  4. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.

    PubMed

    Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki

    2013-07-29

    We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

  5. Doxorubicin-loaded Zein in situ gel for interstitial chemotherapy.

    PubMed

    Cao, Xiaoying; Geng, Jianning; Su, Suwen; Zhang, Linan; Xu, Qian; Zhang, Li; Xie, Yinghua; Wu, Shaomei; Sun, Yongjun; Gao, Zibin

    2012-01-01

    A novel drug delivery system of doxorubicin (DOX)-loaded Zein in situ gel for interstitial chemotherapy was investigated in this study. The possible mechanisms of drug release were described according to morphological analysis by optical microscopy and scanning electronic microscope (SEM). In vitro and in vivo anti-tumor activity studies showed that DOX-loaded Zein in situ gel was superior to DOX solution. Local pharmacokinetics in tumor tissue was studied by quantitative analysis with confocal laser scanning microscopy (CLSM) combined with microdialysis technology. A pharmacokinetics mathematical model of DOX-loaded Zein in situ gel in tumors was then built.

  6. Application of Laser Scanning Confocal Microscopy to Heat and Mass Transport Modeling in Porous Microstructures

    NASA Technical Reports Server (NTRS)

    Marshall, Jochen; Milos, Frank; Fredrich, Joanne; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Laser Scanning Confocal Microscopy (LSCM) has been used to obtain digital images of the complicated 3-D (three-dimensional) microstructures of rigid, fibrous thermal protection system (TPS) materials. These orthotropic materials are comprised of refractory ceramic fibers with diameters in the range of 1 to 10 microns and have open porosities of 0.8 or more. Algorithms are being constructed to extract quantitative microstructural information from the digital data so that it may be applied to specific heat and mass transport modeling efforts; such information includes, for example, the solid and pore volume fractions, the internal surface area per volume, fiber diameter distributions, and fiber orientation distributions. This type of information is difficult to obtain in general, yet it is directly relevant to many computational efforts which seek to model macroscopic thermophysical phenomena in terms of microscopic mechanisms or interactions. Two such computational efforts for fibrous TPS materials are: i) the calculation of radiative transport properties; ii) the modeling of gas permeabilities.

  7. Surface roughness analysis of fiber post conditioning processes.

    PubMed

    Mazzitelli, C; Ferrari, M; Toledano, M; Osorio, E; Monticelli, F; Osorio, R

    2008-02-01

    The chemo-mechanical surface treatment of fiber posts increases their bonding properties. The combined use of atomic force and confocal microscopy allows for the assessment and quantification of the changes on surface roughness that justify this behavior. Quartz fiber posts were conditioned with different chemicals, as well as by sandblasting, and by an industrial silicate/silane coating. We analyzed post surfaces by atomic force microscopy, recording average roughness (R(a)) measurements of fibers and resin matrix. A confocal image profiler allowed for the quantitative assessment of the average superficial roughness (R(a)). Hydrofluoric acid, potassium permanganate, sodium ethoxide, and sandblasting increased post surface roughness. Modifications of the epoxy resin matrix occurred after the surface pre-treatments. Hydrofluoric acid affected the superficial texture of quartz fibers. Surface-conditioning procedures that selectively react with the epoxy-resin matrix of the fiber post enhance roughness and improve the surface area available for adhesion by creating micro-retentive spaces without affecting the post's inner structure.

  8. Mapping owl's eye cells of patients with cytomegalovirus corneal endotheliitis using in vivo laser confocal microscopy.

    PubMed

    Yokogawa, Hideaki; Kobayashi, Akira; Sugiyama, Kazuhisa

    2013-01-01

    To produce a two-dimensional reconstruction map of owl's eye cells using in vivo laser confocal microscopy in patients with cytomegalovirus (CMV) corneal endotheliitis, and to demonstrate any association between owl's eye cells and coin-shaped lesions observed with slit-lamp biomicroscopy. Two patients (75- and 77-year-old men) with polymerase chain reaction-proven CMV corneal endotheliitis were evaluated in this study. Slit-lamp biomicroscopy and in vivo laser confocal microscopy were performed. Images of owl's eye cells in the endothelial cell layer were arranged and mapped into subconfluent montages. Montage images of owl's eye cells were then superimposed on a slit-lamp photo of the corresponding coin-shaped lesion. Degree of concordance between the confocal microscopic images and slit-lamp photos was evaluated. In both eyes, a two-dimensional reconstruction map of the owl's eye cells was created by computer software using acquired confocal images; the maps showed circular patterns. Superimposing montage images of owl's eye cells onto the photos of a coin-shaped lesion showed good concordance in the two eyes. This study suggests that there is an association between owl's eye cells observed by confocal microscopy and coin-shaped lesions observed by slit-lamp biomicroscopy in patients with CMV corneal endotheliitis. The use of in vivo laser confocal microscopy may provide clues as to the underlying causes of CMV corneal endotheliitis.

  9. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions

    PubMed Central

    Sachse, F. B.

    2015-01-01

    Microstructural characterization of cardiac tissue and its remodeling in disease is a crucial step in many basic research projects. We present a comprehensive approach for three-dimensional characterization of cardiac tissue at the submicrometer scale. We developed a compression-free mounting method as well as labeling and imaging protocols that facilitate acquisition of three-dimensional image stacks with scanning confocal microscopy. We evaluated the approach with normal and infarcted ventricular tissue. We used the acquired image stacks for segmentation, quantitative analysis and visualization of important tissue components. In contrast to conventional mounting, compression-free mounting preserved cell shapes, capillary lumens and extracellular laminas. Furthermore, the new approach and imaging protocols resulted in high signal-to-noise ratios at depths up to 60 μm. This allowed extensive analyses revealing major differences in volume fractions and distribution of cardiomyocytes, blood vessels, fibroblasts, myofibroblasts and extracellular space in control versus infarct border zone. Our results show that the developed approach yields comprehensive data on microstructure of cardiac tissue and its remodeling in disease. In contrast to other approaches, it allows quantitative assessment of all major tissue components. Furthermore, we suggest that the approach will provide important data for physiological models of cardiac tissue at the submicrometer scale. PMID:26399990

  10. Three-dimensional biofilm structure quantification.

    PubMed

    Beyenal, Haluk; Donovan, Conrad; Lewandowski, Zbigniew; Harkin, Gary

    2004-12-01

    Quantitative parameters describing biofilm physical structure have been extracted from three-dimensional confocal laser scanning microscopy images and used to compare biofilm structures, monitor biofilm development, and quantify environmental factors affecting biofilm structure. Researchers have previously used biovolume, volume to surface ratio, roughness coefficient, and mean and maximum thicknesses to compare biofilm structures. The selection of these parameters is dependent on the availability of software to perform calculations. We believe it is necessary to develop more comprehensive parameters to describe heterogeneous biofilm morphology in three dimensions. This research presents parameters describing three-dimensional biofilm heterogeneity, size, and morphology of biomass calculated from confocal laser scanning microscopy images. This study extends previous work which extracted quantitative parameters regarding morphological features from two-dimensional biofilm images to three-dimensional biofilm images. We describe two types of parameters: (1) textural parameters showing microscale heterogeneity of biofilms and (2) volumetric parameters describing size and morphology of biomass. The three-dimensional features presented are average (ADD) and maximum diffusion distances (MDD), fractal dimension, average run lengths (in X, Y and Z directions), aspect ratio, textural entropy, energy and homogeneity. We discuss the meaning of each parameter and present the calculations in detail. The developed algorithms, including automatic thresholding, are implemented in software as MATLAB programs which will be available at site prior to publication of the paper.

  11. Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies.

    PubMed

    Belsey, Natalie A; Garrett, Natalie L; Contreras-Rojas, L Rodrigo; Pickup-Gerlaugh, Adam J; Price, Gareth J; Moger, Julian; Guy, Richard H

    2014-01-28

    Stimulated Raman scattering microscopy was used to assess the permeation of topically applied drugs and formulation excipients into porcine skin. This chemically selective technique generates high-resolution 3D images, from which semi-quantitative information may be elucidated. Ibuprofen, applied as a close-to-saturated solution in propylene glycol, was directly observed to crystallise in/on the skin, as the co-solvent permeated more rapidly, resulting in precipitation of the drug. Coherent Raman scattering microscopy is also an excellent tool, in conjunction with more conventional confocal fluorescence microscopy, with which to image micro/nanoparticle-based formulations. Specifically, the uptake of particles into thermal ablation transport pathways in the skin has been examined. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Deep Tissue Fluorescent Imaging in Scattering Specimens Using Confocal Microscopy

    PubMed Central

    Clendenon, Sherry G.; Young, Pamela A.; Ferkowicz, Michael; Phillips, Carrie; Dunn, Kenneth W.

    2015-01-01

    In scattering specimens, multiphoton excitation and nondescanned detection improve imaging depth by a factor of 2 or more over confocal microscopy; however, imaging depth is still limited by scattering. We applied the concept of clearing to deep tissue imaging of highly scattering specimens. Clearing is a remarkably effective approach to improving image quality at depth using either confocal or multiphoton microscopy. Tissue clearing appears to eliminate the need for multiphoton excitation for deep tissue imaging. PMID:21729357

  13. Multidepth imaging by chromatic dispersion confocal microscopy

    NASA Astrophysics Data System (ADS)

    Olsovsky, Cory A.; Shelton, Ryan L.; Saldua, Meagan A.; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.

    2012-03-01

    Confocal microscopy has shown potential as an imaging technique to detect precancer. Imaging cellular features throughout the depth of epithelial tissue may provide useful information for diagnosis. However, the current in vivo axial scanning techniques for confocal microscopy are cumbersome, time-consuming, and restrictive when attempting to reconstruct volumetric images acquired in breathing patients. Chromatic dispersion confocal microscopy (CDCM) exploits severe longitudinal chromatic aberration in the system to axially disperse light from a broadband source and, ultimately, spectrally encode high resolution images along the depth of the object. Hyperchromat lenses are designed to have severe and linear longitudinal chromatic aberration, but have not yet been used in confocal microscopy. We use a hyperchromat lens in a stage scanning confocal microscope to demonstrate the capability to simultaneously capture information at multiple depths without mechanical scanning. A photonic crystal fiber pumped with a 830nm wavelength Ti:Sapphire laser was used as a supercontinuum source, and a spectrometer was used as the detector. The chromatic aberration and magnification in the system give a focal shift of 140μm after the objective lens and an axial resolution of 5.2-7.6μm over the wavelength range from 585nm to 830nm. A 400x400x140μm3 volume of pig cheek epithelium was imaged in a single X-Y scan. Nuclei can be seen at several depths within the epithelium. The capability of this technique to achieve simultaneous high resolution confocal imaging at multiple depths may reduce imaging time and motion artifacts and enable volumetric reconstruction of in vivo confocal images of the epithelium.

  14. Confocal Raman Microscopy: new perspective on the weathering of anhydrous cement

    NASA Astrophysics Data System (ADS)

    Torres-Carrasco, M.; del Campo, A.; de la Rubia, MA; Reyes, E.; Moragues, A.; Fernández, JF

    2017-10-01

    Raman spectroscopy when is combined with Confocal microscopy is a non-destructive technique that allow us to obtain information in cementitious materials. In this study, we present non-destructive image and structural analysis of anhydrous cement with carbonation evidences by Confocal Raman Microscopy (CRM). The results obtained by CRM show a direct relationship between the presence of the weathering processes of an anhydrous cement with the presence of sulphates and surprisingly, with the existence of amorphous carbon in the medium.

  15. Reflectance confocal microscopy of tinea nigra: comparing images with dermoscopy and mycological examination results.

    PubMed

    Veasey, John Verrinder; Avila, Ricardo Bertozzi de; Ferreira, Marcus Antônio Maia de Olivas; Lazzarini, Rosana

    2017-01-01

    Tinea nigra is a superficial mycosis whose diagnosis is confirmed by isolating the infectious agent Hortae werneckii through mycological examinations. In vivo reflectance confocal microscopy, initially used in melanocytic dermatosis, has been used with skin infectious diseases to identify the parasite at the cellular level. We report, for the first time in the scientific literature, the use of reflectance confocal microscopy in a case of tinea nigra and compare its findings to dermoscopy and mycological examination results.

  16. Reflectance confocal microscopy of tinea nigra: comparing images with dermoscopy and mycological examination results*

    PubMed Central

    Veasey, John Verrinder; de Avila, Ricardo Bertozzi; Ferreira, Marcus Antônio Maia de Olivas; Lazzarini, Rosana

    2017-01-01

    Tinea nigra is a superficial mycosis whose diagnosis is confirmed by isolating the infectious agent Hortae werneckii through mycological examinations. In vivo reflectance confocal microscopy, initially used in melanocytic dermatosis, has been used with skin infectious diseases to identify the parasite at the cellular level. We report, for the first time in the scientific literature, the use of reflectance confocal microscopy in a case of tinea nigra and compare its findings to dermoscopy and mycological examination results. PMID:28954116

  17. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue.

    PubMed

    Yoshitake, Tadayuki; Giacomelli, Michael G; Cahill, Lucas C; Schmolze, Daniel B; Vardeh, Hilde; Faulkner-Jones, Beverly E; Connolly, James L; Fujimoto, James G

    2016-12-01

    Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.

  18. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue

    PubMed Central

    Yoshitake, Tadayuki; Giacomelli, Michael G.; Cahill, Lucas C.; Schmolze, Daniel B.; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Connolly, James L.; Fujimoto, James G.

    2016-01-01

    Abstract. Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue. PMID:28032121

  19. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue

    NASA Astrophysics Data System (ADS)

    Yoshitake, Tadayuki; Giacomelli, Michael G.; Cahill, Lucas C.; Schmolze, Daniel B.; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Connolly, James L.; Fujimoto, James G.

    2016-12-01

    Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.

  20. 3D Filament Network Segmentation with Multiple Active Contours

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  1. Confocal fluorescence microscopy in a murine model of microdissection testicular sperm extraction to improve sperm retrieval.

    PubMed

    Smith, Ryan P; Lowe, Greg J; Kavoussi, Parviz K; Steers, William D; Costabile, Raymond A; Herr, John C; Shetty, Jagathpala; Lysiak, Jeffrey J

    2012-05-01

    Microdissection testicular sperm extraction markedly improves the sperm retrieval rates in men with nonobstructive azoospermia. However, localizing sperm foci can be time-consuming and it is not always successful. Fiberoptic confocal fluorescent microscopy offers the advantage of rapid in vivo detection of fluorescently labeled sperm in the seminiferous tubules. After establishing the feasibility of fiberoptic confocal fluorescent microscopy to identify antibody labeled sperm in vivo C57/B6 mice underwent intraperitoneal injection of busulfan to induce azoospermia. During spermatogenesis reestablishment at approximately 16 weeks the mice were anesthetized and the testes were delivered through a low midline incision. Fluorescein isothiocyanate labeled antibody to intra-acrosomal protein Hs-14 was injected retrograde into a single murine rete testis. The testes were imaged in vivo with fiberoptic confocal fluorescent microscopy and sperm foci were detected. The respective seminiferous tubules were excised and squash prepared for immunofluorescence microscopy. Sperm foci were identified in the testis injected with fluorescently tagged antibody by in vivo fiberoptic confocal fluorescence microscopy. The contralateral control testis of each mouse showed no specific signal. Immunofluorescence microscopy of the excised tubules provided morphological confirmation of the presence of labeled sperm with an absence in controls. Findings were consistent in the feasibility portion of the study and in the busulfan model of nonobstructive azoospermia. Fiberoptic confocal fluorescent microscopy was feasible during microdissection testicular sperm extraction in an azoospermic mouse model to identify fluorescently labeled sperm in vivo. Translation to the clinical setting could decrease operative time and improve the sperm harvest rate. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Live-cell confocal microscopy and quantitative 4D image analysis of anchor cell invasion through the basement membrane in C. elegans

    PubMed Central

    Kelley, Laura C.; Wang, Zheng; Hagedorn, Elliott J.; Wang, Lin; Shen, Wanqing; Lei, Shijun; Johnson, Sam A.; Sherwood, David R.

    2018-01-01

    Cell invasion through basement membrane (BM) barriers is crucial during development, leukocyte trafficking, and for the spread of cancer. Despite its importance in normal and diseased states, the mechanisms that direct invasion are poorly understood, in large part because of the inability to visualize dynamic cell-basement membrane interactions in vivo. This protocol describes multi-channel time-lapse confocal imaging of anchor cell invasion in live C. elegans. Methods presented include outline slide preparation and worm growth synchronization (15 min), mounting (20 min), image acquisition (20-180 min), image processing (20 min), and quantitative analysis (variable timing). Images acquired enable direct measurement of invasive dynamics including invadopodia formation, cell membrane protrusions, and BM removal. This protocol can be combined with genetic analysis, molecular activity probes, and optogenetic approaches to uncover molecular mechanisms underlying cell invasion. These methods can also be readily adapted for real-time analysis of cell migration, basement membrane turnover, and cell membrane dynamics by any worm laboratory. PMID:28880279

  3. Strip mosaicing confocal microscopy for rapid imaging over large areas of excised tissue

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2012-03-01

    Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in fresh tissue, without the processing that is required for conventional pathology. Previously, basal cell carcinoma margins were detected by mosaicing of confocal images of 12 x 12 mm2 of excised tissue from Mohs surgery. This mosaicing took 9 minutes. Recently we reported the initial feasibility of a faster approach called "strip mosaicing" on 10 x 10 mm2 of tissue that was demonstrated in 3 minutes. In this paper we report further advances in instrumentation and software. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Thus, strip mosaicing confocal microscopy may serve as an adjunct to pathology for imaging tumor margins to guide surgery.

  4. Confocal Raman Microscopy for In-situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitt, Jay P.; Bryce, David A.; Minteer, Shelley D.

    The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this paper, we employ in-situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayersmore » deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically-trapped phospholipid vesicle membranes. Finally and additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.« less

  5. Confocal Raman Microscopy for In-situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles

    DOE PAGES

    Kitt, Jay P.; Bryce, David A.; Minteer, Shelley D.; ...

    2018-05-14

    The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this paper, we employ in-situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayersmore » deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically-trapped phospholipid vesicle membranes. Finally and additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.« less

  6. Confocal Raman Microscopy for in Situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles.

    PubMed

    Kitt, Jay P; Bryce, David A; Minteer, Shelley D; Harris, Joel M

    2018-06-05

    The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this work, we employ in situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayers deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically trapped phospholipid vesicle membranes. Additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.

  7. High-resolution confocal imaging of wall ingrowth deposition in plant transfer cells: Semi-quantitative analysis of phloem parenchyma transfer cell development in leaf minor veins of Arabidopsis.

    PubMed

    Nguyen, Suong T T; McCurdy, David W

    2015-04-23

    Transfer cells (TCs) are trans-differentiated versions of existing cell types designed to facilitate enhanced membrane transport of nutrients at symplasmic/apoplasmic interfaces. This transport capacity is conferred by intricate wall ingrowths deposited secondarily on the inner face of the primary cell wall, hence promoting the potential trans-membrane flux of solutes and consequently assigning TCs as having key roles in plant growth and productivity. However, TCs are typically positioned deep within tissues and have been studied mostly by electron microscopy. Recent advances in fluorophore labelling of plant cell walls using a modified pseudo-Schiff-propidium iodide (mPS-PI) staining procedure in combination with high-resolution confocal microscopy have allowed visualization of cellular details of individual tissue layers in whole mounts, hence enabling study of tissue and cellular architecture without the need for tissue sectioning. Here we apply a simplified version of the mPS-PI procedure for confocal imaging of cellulose-enriched wall ingrowths in vascular TCs at the whole tissue level. The simplified mPS-PI staining procedure produced high-resolution three-dimensional images of individual cell types in vascular bundles and, importantly, wall ingrowths in phloem parenchyma (PP) TCs in minor veins of Arabidopsis leaves and companion cell TCs in pea. More efficient staining of tissues was obtained by replacing complex clearing procedures with a simple post-fixation bleaching step. We used this modified procedure to survey the presence of PP TCs in other tissues of Arabidopsis including cotyledons, cauline leaves and sepals. This high-resolution imaging enabled us to classify different stages of wall ingrowth development in Arabidopsis leaves, hence enabling semi-quantitative assessment of the extent of wall ingrowth deposition in PP TCs at the whole leaf level. Finally, we conducted a defoliation experiment as an example of using this approach to statistically analyze responses of PP TC development to leaf ablation. Use of a modified mPS-PI staining technique resulted in high-resolution confocal imaging of polarized wall ingrowth deposition in TCs. This technique can be used in place of conventional electron microscopy and opens new possibilities to study mechanisms determining polarized deposition of wall ingrowths and use reverse genetics to identify regulatory genes controlling TC trans-differentiation.

  8. Confocal mosaicing microscopy of basal-cell carcinomas ex vivo: progress in digital staining to simulate histology-like appearance

    NASA Astrophysics Data System (ADS)

    Bini, Jason; Spain, James; Nehal, Kishwer; Hazelwood, Vikki; DiMarzio, Charles; Rajadhyaksha, Milind

    2011-03-01

    Confocal mosaicing microscopy enables rapid imaging of large areas of fresh tissue, without the processing that is necessary for conventional histology. Using acridine orange (1 milliMolar, 20 seconds) to stain nuclei, basal cell carcinomas were detected in fluorescence confocal mosaics of Mohs surgical excisions with sensitivity of 96.6% and specificity of 89.2%. A possible barrier toward clinical acceptance is that confocal mosaics are based on a single mode of contrast and appear in grayscale, whereas histology is based on two (hematoxylin for nuclei, eosin for cellular cytoplasm and dermis) and appears purple-and-pink. Toward addressing this barrier, we report progress in developing a multispectral analytical model for digital staining: fluorescence confocal mosaics, which show only nuclei, are digitally stained purple and overlaid on reflectance confocal mosaics, which show only cellular cytoplasm and dermis, and digitally stained pink, to mimic the appearance of histology. Comparison of digitally stained confocal mosaics by our Mohs surgeon to the corresponding Mohs histology shows good correlation for normal and tumor detail. Digitally stained confocal mosaicing microscopy may allow direct examination of freshly excised tissue and serve as an adjunct for rapid pathology at-the-bedside.

  9. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apedo, K.L., E-mail: apedo@unistra.fr; Munzer, C.; He, H.

    2015-02-15

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are comparedmore » with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.« less

  10. Intracellular Protein Delivery for Treating Breast Cancer

    DTIC Science & Technology

    2012-06-01

    characterized by confocal microscopy, and rhodamine-labeled apoptin can be observed in the nuclei of cancer cells only. Released apoptin induced tumor...acquired on a Yokogawa spinning-disk confocal scanner system (Solamere Technology Group, Salt Lake City, UT) using a Nikon eclipse Ti-E microscope...protein localization using confocal microscopy, two cancer cell lines HeLa and MCF-7, together with the noncancerous human foreskin fibroblast (HFF), were

  11. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: AXIAL RESOLUTION

    EPA Science Inventory

    Abstract

    Confocal Microscopy System Performance: Axial resolution.
    Robert M. Zucker, PhD

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Re...

  12. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    NASA Astrophysics Data System (ADS)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  13. Confocal raman microscopy as a non-invasive tool to investigate the phase composition of frozen complex cryopreservation media.

    PubMed

    Kreiner-Møller, A; Stracke, F; Zimmermann, H

    2013-01-01

    Various cryoprotective agents (CPA) are added to cell media in order to avoid cell injury during cryo preservation. The resulting complex environment of the preserved cell, consisting of crystalline and liquid phases can however not be investigated non-invasively by established methods in cryobiology. This study shows how scanning confocal Raman microscopy can non-invasively extract information on chemical composition, phase domain and distribution at cryogenic temperatures. The formation of the salt hydrate, hydrohalite NaCl∙H2O, in solutions comprised of phosphate buffered saline (PBS) and dimethyl sulphoxide (DMSO) is studied in particular. Scanning confocal Raman microscopy can be used to unambiguously identify hydrohalite in a medium containing DMSO and saline. The confocal Raman microscopy imaging along with differential scanning calorimetric measurements further show that the hydrohalite is formed without eutectic formation. This method also allows for discrimination between closely packed hydrohalite crystals that are oriented differently.

  14. Fluorescence microscopy.

    PubMed

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  15. Fluorescence Microscopy

    PubMed Central

    Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.

    2016-01-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114

  16. Skin aging: in vivo microscopic assessment of epidermal and dermal changes by means of confocal microscopy.

    PubMed

    Longo, Caterina; Casari, Alice; Beretti, Francesca; Cesinaro, Anna Maria; Pellacani, Giovanni

    2013-03-01

    Skin aging is thought to be a complex biological process that is traditionally classified as intrinsic and extrinsic aging. Several clinical score and instrumental devices have been applied to obtain a precise assessment of skin aging. Among them, confocal microscopy has emerged as a new technique capable of assessing cytoarchitectural changes with a nearly histopathologic resolution. We sought to determine the microscopic skin changes occurring on the face in different age groups by means of confocal microscopy. The skin of the cheek in 63 volunteers belonging to distinct age groups was analyzed by confocal microscopy. In 4 cases, routine histopathology was performed on site-matched surplus areas from routine excisions for obtaining a better comparison with confocal findings. Young skin was characterized by regular polygonal keratinocytes and thin reticulated collagen fibers. With aging, more irregularly shaped keratinocytes and areas with unevenly distributed pigmentation and increased compactness of collagen fibers were observed. In the elderly, thinning of the epidermis, marked keratinocyte alterations, and huddles of collagen and curled fibers, corresponding to elastosis, were present. A side-by-side correlation between confocal descriptors and histopathologic aspects has been provided in a few cases. Reticular dermal changes cannot be assessed because of the limited depth laser penetration. Confocal microscopy was successfully applied to identify in vivo skin changes occurring in aged skin at both the epidermal and dermal levels at histopathologic resolution. This offers the possibility to test cosmetic product efficacy and to identify early signs of sun damage. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  17. Correlative Single-Molecule Localization Microscopy and Confocal Microscopy.

    PubMed

    Soeller, Christian; Hou, Yufeng; Jayasinghe, Isuru D; Baddeley, David; Crossman, David

    2017-01-01

    Single-molecule localization microscopy allows the ability to image fluorescence labeled molecular targets at nanoscale resolution. However, for many biological questions the ability to provide tissue and cellular context in addition to these high resolution data is eminently informative. Here, we describe a procedure to achieve this aim by correlatively imaging human cardiac tissue first at the nanoscale with direct stochastic optical reconstruction microscopy (dSTORM) and then at the diffraction limit with conventional confocal microscopy.

  18. A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miquel Guennoc, Cora; Rose, Christophe; Guinnet, Frédéric

    Bacterial biofilms frequently form on fungal surfaces and can be involved in numerous bacterial-fungal interaction processes, such as metabolic cooperation, competition, or predation. The study of biofilms is important in many biological fields, including environmental science, food production, and medicine. However, few studies have focused on such bacterial biofilms, partially due to the difficulty of investigating them. Most of the methods for qualitative and quantitative biofilm analyses described in the literature are only suitable for biofilms forming on abiotic surfaces or on homogeneous and thin biotic surfaces, such as a monolayer of epithelial cells. While laser scanning confocal microscopy (LSCM)more » is often used to analyze in situ and in vivo biofilms, this technology becomes very challenging when applied to bacterial biofilms on fungal hyphae, due to the thickness and the three dimensions of the hyphal networks. To overcome this shortcoming, we developed a protocol combining microscopy with a method to limit the accumulation of hyphal layers in fungal colonies. Using this method, we were able to investigate the development of bacterial biofilms on fungal hyphae at multiple scales using both LSCM and scanning electron microscopy (SEM). Furthermore, this report describes the protocol, including microorganism cultures, bacterial biofilm formation conditions, biofilm staining, and LSCM and SEM visualizations.« less

  19. A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy

    DOE PAGES

    Miquel Guennoc, Cora; Rose, Christophe; Guinnet, Frédéric; ...

    2017-01-01

    Bacterial biofilms frequently form on fungal surfaces and can be involved in numerous bacterial-fungal interaction processes, such as metabolic cooperation, competition, or predation. The study of biofilms is important in many biological fields, including environmental science, food production, and medicine. However, few studies have focused on such bacterial biofilms, partially due to the difficulty of investigating them. Most of the methods for qualitative and quantitative biofilm analyses described in the literature are only suitable for biofilms forming on abiotic surfaces or on homogeneous and thin biotic surfaces, such as a monolayer of epithelial cells. While laser scanning confocal microscopy (LSCM)more » is often used to analyze in situ and in vivo biofilms, this technology becomes very challenging when applied to bacterial biofilms on fungal hyphae, due to the thickness and the three dimensions of the hyphal networks. To overcome this shortcoming, we developed a protocol combining microscopy with a method to limit the accumulation of hyphal layers in fungal colonies. Using this method, we were able to investigate the development of bacterial biofilms on fungal hyphae at multiple scales using both LSCM and scanning electron microscopy (SEM). Furthermore, this report describes the protocol, including microorganism cultures, bacterial biofilm formation conditions, biofilm staining, and LSCM and SEM visualizations.« less

  20. 'En face' ex vivo reflectance confocal microscopy to help the surgery of basal cell carcinoma of the eyelid.

    PubMed

    Espinasse, Marine; Cinotti, Elisa; Grivet, Damien; Labeille, Bruno; Prade, Virginie; Douchet, Catherine; Cambazard, Frédéric; Thuret, Gilles; Gain, Philippe; Perrot, Jean Luc

    2017-07-01

    Ex vivo confocal microscopy is a recent imaging technique for the perioperative control of skin tumour margins. Up to date, it has been used in the fluorescence mode and with vertical sections of the specimen margins. The aim of this study was to evaluate its use in the reflectance mode and with a horizontal ('en face') scanning of the surgical specimen in a series of basal cell carcinoma of the eyelid. Prospective consecutive cohort study was performed at the University Hospital of Saint-Etienne, France. Forty-one patients with 42 basal cell carcinoma of the eyelid participated in this study. Basal cell carcinomas were excised with a 2-mm-wide clinically safe margin. The surgical specimens were analysed under ex vivo confocal microscopy in the reflectance mode and with an en face scanning in order to control at a microscopic level if the margins were free from tumour invasion. Histopathogical examination was later performed in order to compare the results. Sensitivity and specificity of ex vivo confocal microscopy for the presence of tumour-free margins. Ex vivo confocal microscopy results were consistent with histopathology in all cases (tumour-free margins in 40 out of 42 samples; sensitivity and specificity of 100%). Ex vivo confocal microscopy in the reflectance mode with an 'en face' scanning can control tumour margins of eyelid basal cell carcinomas and optimize their surgical management. This procedure has the advantage on the fluorescent mode of not needing any contrast agent to examine the samples. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  1. Frequency domain phase-shifted confocal microscopy (FDPCM) with array detection

    NASA Astrophysics Data System (ADS)

    Ge, Baoliang; Huang, Yujia; Fang, Yue; Kuang, Cuifang; Xiu, Peng; Liu, Xu

    2017-09-01

    We proposed a novel method to reconstruct images taken by array detected confocal microscopy without prior knowledge about its detector distribution. The proposed frequency domain phase-shifted confocal microscopy (FDPCM) shifts the image from each detection channel to its corresponding place by substituting the phase information in Fourier domain. Theoretical analysis shows that our method could approach the resolution nearly twofold of wide-field microscopy. Simulation and experiment results are also shown to verify the applicability and effectiveness of our method. Compared to Airyscan, our method holds the advantage of simplicity and convenience to be applied to array detectors with different structure, which makes FDPCM have great potential in the application of biomedical observation in the future.

  2. The Intracellular Trafficking Pathway of Transferrin

    PubMed Central

    Mayle, Kristine M.; Le, Alexander M.; Kamei, Daniel T.

    2011-01-01

    Background Transferrin (Tf) is an iron-binding protein that facilitates iron-uptake in cells. Iron-loaded Tf first binds to the Tf receptor (TfR) and enters the cell through clathrin-mediated endocytosis. Inside the cell, Tf is trafficked to early endosomes, delivers iron, and then is subsequently directed to recycling endosomes to be taken back to the cell surface. Scope of Review We aim to review the various methods and techniques that researchers have employed for elucidating the Tf trafficking pathway and the cell-machinery components involved. These experimental methods can be categorized as microscopy, radioactivity, and surface plasmon resonance (SPR). Major Conclusions Qualitative experiments, such as total internal reflectance fluorescence (TIRF), electron, laser-scanning confocal, and spinning-disk confocal microscopy, have been utilized to determine the roles of key components in the Tf trafficking pathway. These techniques allow temporal resolution and are useful for imaging Tf endocytosis and recycling, which occur on the order of seconds to minutes. Additionally, radiolabeling and SPR methods, when combined with mathematical modeling, have enabled researchers to estimate quantitative kinetic parameters and equilibrium constants associated with Tf binding and trafficking. General Significance Both qualitative and quantitative data can be used to analyze the Tf trafficking pathway. The valuable information that is obtained about the Tf trafficking pathway can then be combined with mathematical models to identify design criteria to improve the ability of Tf to deliver anticancer drugs. PMID:21968002

  3. CONFOCAL LASER SCANNING MICROSCOPY OF APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Confocal Laser Scanning Microscopy of Apoptosis in Whole Mouse Ovaries. Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle...

  4. Quantitative clarification of inactivation mechanism of Penicillium digitatum spores treated with neutral oxygen radicals

    NASA Astrophysics Data System (ADS)

    Hashizume, Hiroshi; Ohta, Takayuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi

    2015-01-01

    We have quantitatively investigated the oxidative inactivation process of Penicillium digitatum spores including intracellular nanostructural changes through neutral oxygen species with a flux-defined atmospheric-pressure oxygen radical source, using fluorescent confocal-laser microscopy and transmission electron microscopy (TEM). The results suggest that neutral oxygen species, particularly ground-state atomic oxygen [O(3Pj)], which is an effective species for inactivating P. digitatum spores, inhibit the function of the cell membrane of spores without causing major superficial morphological changes at a low O(3Pj) dose of ˜2.1 × 1019 cm-2 under an O(3Pj) flux of 2.3 × 1017 cm-2 s-1, following the oxidation of intracellular organelles up to an O(3Pj) dose of ˜1.0 × 1020 cm-2. Finally, intracellular nanostructures are degraded by excess oxygen radicals over an O(3Pj) dose of ˜1.0 × 1020 cm-2.

  5. Quantitative Microscopic Analysis of Plasma Membrane Receptor Dynamics in Living Plant Cells.

    PubMed

    Luo, Yu; Russinova, Eugenia

    2017-01-01

    Plasma membrane-localized receptors are essential for cellular communication and signal transduction. In Arabidopsis thaliana, BRASSINOSTEROID INSENSITIVE1 (BRI1) is one of the receptors that is activated by binding to its ligand, the brassinosteroid (BR) hormone, at the cell surface to regulate diverse plant developmental processes. The availability of BRI1 in the plasma membrane is related to its signaling output and is known to be controlled by the dynamic endomembrane trafficking. Advances in fluorescence labeling and confocal microscopy techniques enabled us to gain a better understanding of plasma membrane receptor dynamics in living cells. Here we describe different quantitative microscopy methods to monitor the relative steady-state levels of the BRI1 protein in the plasma membrane of root epidermal cells and its relative exocytosis and recycling rates. The methods can be applied also to analyze similar dynamics of other plasma membrane-localized receptors.

  6. Cell Uptake and Validation of Novel PECs for Biomedical Applications.

    PubMed

    Palamà, Ilaria E; Musarò, Mariarosaria; Coluccia, Addolorata M L; D'Amone, Stefania; Gigli, Giuseppe

    2011-01-01

    This pilot study provides the proof of principle for biomedical application of novel polyelectrolyte complexes (PECs) obtained via electrostatic interactions between dextran sulphate (DXS) and poly(allylamine hydrochloride) (PAH). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that DXS/PAH polyelectrolyte complexes were Monodispersed with regular rounded-shape features and average diameters of 250 nm at 2 : 1 weight ratios of DXS/PAH. Fluorescently labelled DXS and fluorescein-isothiocyanate- (FITC-)conjugate DXS were used to follow cell uptake efficiency of PECs and biodegradability of their enzymatically degradable DXS-layers by using confocal laser scanning microscopy (CLSM). Moreover, quantitative MTT and Trypan Blue assays were employed to validate PECs as feasible and safe nanoscaled carriers at single-cell level without adverse effects on metabolism and viability.

  7. Cell Uptake and Validation of Novel PECs for Biomedical Applications

    PubMed Central

    Palamà, Ilaria E.; Musarò, Mariarosaria; Coluccia, Addolorata M. L.; D'Amone, Stefania; Gigli, Giuseppe

    2011-01-01

    This pilot study provides the proof of principle for biomedical application of novel polyelectrolyte complexes (PECs) obtained via electrostatic interactions between dextran sulphate (DXS) and poly(allylamine hydrochloride) (PAH). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that DXS/PAH polyelectrolyte complexes were Monodispersed with regular rounded-shape features and average diameters of 250 nm at 2 : 1 weight ratios of DXS/PAH. Fluorescently labelled DXS and fluorescein-isothiocyanate- (FITC-)conjugate DXS were used to follow cell uptake efficiency of PECs and biodegradability of their enzymatically degradable DXS-layers by using confocal laser scanning microscopy (CLSM). Moreover, quantitative MTT and Trypan Blue assays were employed to validate PECs as feasible and safe nanoscaled carriers at single-cell level without adverse effects on metabolism and viability. PMID:21876815

  8. Classifying distinct basal cell carcinoma subtype by means of dermatoscopy and reflectance confocal microscopy.

    PubMed

    Longo, Caterina; Lallas, Aimilios; Kyrgidis, Athanassios; Rabinovitz, Harold; Moscarella, Elvira; Ciardo, Silvana; Zalaudek, Iris; Oliviero, Margaret; Losi, Amanda; Gonzalez, Salvador; Guitera, Pascale; Piana, Simonetta; Argenziano, Giuseppe; Pellacani, Giovanni

    2014-10-01

    The current guidelines for the management of basal cell carcinoma (BCC) suggest a different therapeutic approach according to histopathologic subtype. Although dermatoscopic and confocal criteria of BCC have been investigated, no specific studies were performed to evaluate the distinct reflectance confocal microscopy (RCM) aspects of BCC subtypes. To define the specific dermatoscopic and confocal criteria for delineating different BCC subtypes. Dermatoscopic and confocal images of histopathologically confirmed BCCs were retrospectively evaluated for the presence of predefined criteria. Frequencies of dermatoscopic and confocal parameters are provided. Univariate and adjusted odds ratios were calculated. Discriminant analyses were performed to define the independent confocal criteria for distinct BCC subtypes. Eighty-eight BCCs were included. Dermatoscopically, superficial BCCs (n=44) were primarily typified by the presence of fine telangiectasia, multiple erosions, leaf-like structures, and revealed cords connected to the epidermis and epidermal streaming upon RCM. Nodular BCCs (n=22) featured the classic dermatoscopic features and well outlined large basaloid islands upon RCM. Infiltrative BCCs (n=22) featured structureless, shiny red areas, fine telangiectasia, and arborizing vessels on dermatoscopy and dark silhouettes upon RCM. The retrospective design. Dermatoscopy and confocal microscopy can reliably classify different BCC subtypes. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Swept Field Laser Confocal Microscopy for Enhanced Spatial and Temporal Resolution in Live-Cell Imaging

    PubMed Central

    Castellano-Muñoz, Manuel; Peng, Anthony Wei; Salles, Felipe T.; Ricci, Anthony J.

    2013-01-01

    Confocal fluorescence microscopy is a broadly used imaging technique that enhances the signal-to-noise ratio by removing out of focal plane fluorescence. Confocal microscopes come with a variety of modifications depending on the particular experimental goals. Microscopes, illumination pathways, and light collection were originally focused upon obtaining the highest resolution image possible, typically on fixed tissue. More recently, live-cell confocal imaging has gained importance. Since measured signals are often rapid or transient, thus requiring higher sampling rates, specializations are included to enhance spatial and temporal resolution while maintaining tissue viability. Thus, a balance between image quality, temporal resolution, and tissue viability is needed. A subtype of confocal imaging, termed swept field confocal (SFC) microscopy, can image live cells at high rates while maintaining confocality. SFC systems can use a pinhole array to obtain high spatial resolution, similar to spinning disc systems. In addition, SFC imaging can achieve faster rates by using a slit to sweep the light across the entire image plane, thus requiring a single scan to generate an image. Coupled to a high-speed charge-coupled device camera and a laser illumination source, images can be obtained at greater than 1,000 frames per second while maintaining confocality. PMID:22831554

  10. Confocal fluorescence microscopy for rapid evaluation of invasive tumor cellularity of inflammatory breast carcinoma core needle biopsies.

    PubMed

    Dobbs, Jessica; Krishnamurthy, Savitri; Kyrish, Matthew; Benveniste, Ana Paula; Yang, Wei; Richards-Kortum, Rebecca

    2015-01-01

    Tissue sampling is a problematic issue for inflammatory breast carcinoma, and immediate evaluation following core needle biopsy is needed to evaluate specimen adequacy. We sought to determine if confocal fluorescence microscopy provides sufficient resolution to evaluate specimen adequacy by comparing invasive tumor cellularity estimated from standard histologic images to invasive tumor cellularity estimated from confocal images of breast core needle biopsy specimens. Grayscale confocal fluorescence images of breast core needle biopsy specimens were acquired following proflavine application. A breast-dedicated pathologist evaluated invasive tumor cellularity in histologic images with hematoxylin and eosin staining and in grayscale and false-colored confocal images of cores. Agreement between cellularity estimates was quantified using a kappa coefficient. 23 cores from 23 patients with suspected inflammatory breast carcinoma were imaged. Confocal images were acquired in an average of less than 2 min per core. Invasive tumor cellularity estimated from histologic and grayscale confocal images showed moderate agreement by kappa coefficient: κ = 0.48 ± 0.09 (p < 0.001). Grayscale confocal images require less than 2 min for acquisition and allow for evaluation of invasive tumor cellularity in breast core needle biopsy specimens with moderate agreement to histologic images. We show that confocal fluorescence microscopy can be performed immediately following specimen acquisition and could indicate the need for additional biopsies at the initial visit.

  11. Vascular smooth muscle cells exhibit a progressive loss of rigidity with serial culture passaging.

    PubMed

    Dinardo, Carla Luana; Venturini, Gabriela; Omae, Samantha Vieira; Zhou, Enhua H; da Motta-Leal-Filho, Joaquim Maurício; Dariolli, Rafael; Krieger, José Eduardo; Alencar, Adriano Mesquita; Costa Pereira, Alexandre

    2012-01-01

    One drawback of in vitro cell culturing is the dedifferentiation process that cells experience. Smooth muscle cells (SMC) also change molecularly and morphologically with long term culture. The main objective of this study was to evaluate if culture passages interfere in vascular SMC mechanical behavior. SMC were obtained from five different porcine arterial beds. Optical magnetic twisting cytometry (OMTC) was used to characterize mechanically vascular SMC from different cultures in distinct passages and confocal microscopy/western blotting, to evaluate cytoskeleton and extracellular matrix proteins. We found that vascular SMC rigidity or viscoelastic complex modulus (G) decreases with progression of passages. A statistically significant negative correlation between G and passage was found in four of our five cultures studied. Phalloidin-stained SMC from higher passages exhibited lower mean signal intensity per cell (confocal microscopy) and quantitative western blotting analysis showed a decrease in collagen I content throughout passages. We concluded that vascular SMC progressively lose their stiffness with serial culture passaging. Thus, limiting the number of passages is essential for any experiment measuring viscoelastic properties of SMC in culture.

  12. Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging.

    PubMed

    Dabbah, M A; Graham, J; Petropoulos, I N; Tavakoli, M; Malik, R A

    2011-10-01

    Diabetic peripheral neuropathy (DPN) is one of the most common long term complications of diabetes. Corneal confocal microscopy (CCM) image analysis is a novel non-invasive technique which quantifies corneal nerve fibre damage and enables diagnosis of DPN. This paper presents an automatic analysis and classification system for detecting nerve fibres in CCM images based on a multi-scale adaptive dual-model detection algorithm. The algorithm exploits the curvilinear structure of the nerve fibres and adapts itself to the local image information. Detected nerve fibres are then quantified and used as feature vectors for classification using random forest (RF) and neural networks (NNT) classifiers. We show, in a comparative study with other well known curvilinear detectors, that the best performance is achieved by the multi-scale dual model in conjunction with the NNT classifier. An evaluation of clinical effectiveness shows that the performance of the automated system matches that of ground-truth defined by expert manual annotation. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy

    PubMed Central

    2016-01-01

    Ice crystals nucleate and grow when a water solution is cooled below its freezing point. The growth velocities and morphologies of the ice crystals depend on many parameters, such as the temperature of ice growth, the melting temperature, and the interactions of solutes with the growing crystals. Three types of morphologies may appear: dendritic, cellular (or fingerlike), or the faceted equilibrium form. Understanding and controlling which type of morphology is formed is essential in several domains, from biology to geophysics and materials science. Obtaining, in situ, three dimensional observations without introducing artifacts due to the experimental technique is nevertheless challenging. Here we show how we can use laser scanning confocal microscopy to follow in real-time the growth of smoothed and faceted ice crystals in zirconium acetate solutions. Both qualitative and quantitative observations can be made. In particular, we can precisely measure the lateral growth velocity of the crystals, a measure otherwise difficult to obtain. Such observations should help us understand the influence of the parameters that control the growth of ice crystals in various systems. PMID:27917410

  14. Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy.

    PubMed

    Marcellini, Moreno; Noirjean, Cecile; Dedovets, Dmytro; Maria, Juliette; Deville, Sylvain

    2016-11-30

    Ice crystals nucleate and grow when a water solution is cooled below its freezing point. The growth velocities and morphologies of the ice crystals depend on many parameters, such as the temperature of ice growth, the melting temperature, and the interactions of solutes with the growing crystals. Three types of morphologies may appear: dendritic, cellular (or fingerlike), or the faceted equilibrium form. Understanding and controlling which type of morphology is formed is essential in several domains, from biology to geophysics and materials science. Obtaining, in situ, three dimensional observations without introducing artifacts due to the experimental technique is nevertheless challenging. Here we show how we can use laser scanning confocal microscopy to follow in real-time the growth of smoothed and faceted ice crystals in zirconium acetate solutions. Both qualitative and quantitative observations can be made. In particular, we can precisely measure the lateral growth velocity of the crystals, a measure otherwise difficult to obtain. Such observations should help us understand the influence of the parameters that control the growth of ice crystals in various systems.

  15. Multispectral confocal microscopy images and artificial neural nets to monitor the photosensitizer uptake and degradation in Candida albicans cells

    NASA Astrophysics Data System (ADS)

    Romano, Renan A.; Pratavieira, Sebastião.; da Silva, Ana P.; Kurachi, Cristina; Guimarães, Francisco E. G.

    2017-07-01

    This study clearly demonstrates that multispectral confocal microscopy images analyzed by artificial neural networks provides a powerful tool to real-time monitoring photosensitizer uptake, as well as photochemical transformations occurred.

  16. Confocal microscopy imaging of solid tissue

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer acquired images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ...

  17. Mapping of dendritic lesions in patients with herpes simplex keratitis using in vivo confocal microscopy

    PubMed Central

    Yokogawa, Hideaki; Kobayashi, Akira; Mori, Natsuko; Sugiyama, Kazuhisa

    2015-01-01

    Purpose To produce a two-dimensional reconstruction map of dendritic lesions in patients with herpes simplex keratitis (HSK) using in vivo confocal microscopy. Methods Four eyes of four patients (mean 65.8 years) with HSK presenting with a dendritic lesion were enrolled. Slit-lamp biomicroscopy and in vivo laser confocal microscopy were performed. Acquired confocal images at the level of the epithelium were arranged and mapped into subconfluent montages. Changes in the shape and degree of light reflection of abnormal cells and deposits around dendritic lesions as well as other corneal layers were qualitatively evaluated. Results Mapping of dendritic lesion was successful in all cases, and the subconfluent montages clearly showed the larger image of dendritic lesion. In all cases, the dendritic lesion consisted of hyperreflective irregular epithelial cells, and was surrounded by distorted and elongated epithelial cells. In three cases, hyperreflective deposits were noted at the midline of the lesion. The corneal stroma showed a hyperreflective honeycomb pattern. In two cases, inflammatory cells were observed at the level of endothelial cell layer. Conclusion Mapping of dendritic lesions in patients with HSK was successful in all patients using in vivo confocal microscopy. Cellular level observation of dendritic lesion at a relatively larger magnification may help understand the in vivo morphological change of HSK. Further study in more patients with HSK and nonherpetic dendritic lesion is needed to utilize confocal microscopy images in differential diagnosis and follow-up of the epithelial lesions with dendrite. PMID:26445524

  18. Mapping of dendritic lesions in patients with herpes simplex keratitis using in vivo confocal microscopy.

    PubMed

    Yokogawa, Hideaki; Kobayashi, Akira; Mori, Natsuko; Sugiyama, Kazuhisa

    2015-01-01

    To produce a two-dimensional reconstruction map of dendritic lesions in patients with herpes simplex keratitis (HSK) using in vivo confocal microscopy. Four eyes of four patients (mean 65.8 years) with HSK presenting with a dendritic lesion were enrolled. Slit-lamp biomicroscopy and in vivo laser confocal microscopy were performed. Acquired confocal images at the level of the epithelium were arranged and mapped into subconfluent montages. Changes in the shape and degree of light reflection of abnormal cells and deposits around dendritic lesions as well as other corneal layers were qualitatively evaluated. Mapping of dendritic lesion was successful in all cases, and the subconfluent montages clearly showed the larger image of dendritic lesion. In all cases, the dendritic lesion consisted of hyperreflective irregular epithelial cells, and was surrounded by distorted and elongated epithelial cells. In three cases, hyperreflective deposits were noted at the midline of the lesion. The corneal stroma showed a hyperreflective honeycomb pattern. In two cases, inflammatory cells were observed at the level of endothelial cell layer. Mapping of dendritic lesions in patients with HSK was successful in all patients using in vivo confocal microscopy. Cellular level observation of dendritic lesion at a relatively larger magnification may help understand the in vivo morphological change of HSK. Further study in more patients with HSK and nonherpetic dendritic lesion is needed to utilize confocal microscopy images in differential diagnosis and follow-up of the epithelial lesions with dendrite.

  19. Saturated virtual fluorescence emission difference microscopy based on detector array

    NASA Astrophysics Data System (ADS)

    Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu

    2017-07-01

    Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.

  20. Spinning-disk confocal microscopy: present technology and future trends.

    PubMed

    Oreopoulos, John; Berman, Richard; Browne, Mark

    2014-01-01

    Live-cell imaging requires not only high temporal resolution but also illumination powers low enough to minimize photodamage. Traditional single-point laser scanning confocal microscopy (LSCM) is generally limited by both the relatively slow speed at which it can acquire optical sections by serial raster scanning (a few Hz) and the higher potential for phototoxicity. These limitations have driven the development of rapid, parallel forms of confocal microscopy, the most popular of which is the spinning-disk confocal microscope (SDCM). Here, we briefly introduce the SDCM technique, discuss its strengths and weaknesses against LSCM, and update the reader on some recent developments in SDCM technology that improve its performance and expand its utility for life science research now and in the future. © 2014 Elsevier Inc. All rights reserved.

  1. Confocal filtering in cathodoluminescence microscopy of nanostructures

    NASA Astrophysics Data System (ADS)

    Narváez, Angela C.; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P.; Kruit, Pieter

    2014-06-01

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  2. Visualization and identification of the structures formed during early stages of fibrin polymerization

    PubMed Central

    Chernysh, Irina N.; Nagaswami, Chandrasekaran

    2011-01-01

    We determined the sequence of events and identified and quantitatively characterized the mobility of moving structures present during the early stages of fibrin-clot formation from the beginning of polymerization to the gel point. Three complementary techniques were used in parallel: spinning-disk confocal microscopy, transmission electron microscopy, and turbidity measurements. At the beginning of polymerization the major structures were monomers, whereas at the middle of the lag period there were monomers, oligomers, protofibrils (defined as structures that consisted of more than 8 monomers), and fibers. At the end of the lag period, there were primarily monomers and fibers, giving way to mainly fibers at the gel point. Diffusion rates were calculated from 2 different results, one based on sizes and another on the velocity of the observed structures, with similar results in the range of 3.8-0.1 μm2/s. At the gel point, the diffusion coefficients corresponded to very large, slow-moving structures and individual protofibrils. The smallest moving structures visible by confocal microscopy during fibrin polymerization were identified as protofibrils with a length of approximately 0.5 μm. The sequence of early events of clotting and the structures present are important for understanding hemostasis and thrombosis. PMID:21248064

  3. Cytocompatibility and uptake of halloysite clay nanotubes.

    PubMed

    Vergaro, Viviana; Abdullayev, Elshad; Lvov, Yuri M; Zeitoun, Andre; Cingolani, Roberto; Rinaldi, Ross; Leporatti, Stefano

    2010-03-08

    Halloysite is aluminosilicate clay with hollow tubular structure of 50 nm external diameter and 15 nm diameter lumen. Halloysite biocompatibility study is important for its potential applications in polymer composites, bone implants, controlled drug delivery, and for protective coating (e.g., anticorrosion or antimolding). Halloysite nanotubes were added to different cell cultures for toxicity tests. Its fluorescence functionalization by aminopropyltriethosilane (APTES) and with fluorescently labeled polyelectrolyte layers allowed following halloysite uptake by the cells with confocal laser scanning microscopy (CLSM). Quantitative Trypan blue and MTT measurements performed with two neoplastic cell lines model systems as a function of the nanotubes concentration and incubation time indicate that halloysite exhibits a high level of biocompatibility and very low cytotoxicity, rendering it a good candidate for household materials and medicine. A combination of transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning force microscopy (SFM) imaging techniques have been employed to elucidate the structure of halloysite nanotubes.

  4. Clinical significance of owl eye morphologic features by in vivo laser confocal microscopy in patients with cytomegalovirus corneal endotheliitis.

    PubMed

    Kobayashi, Akira; Yokogawa, Hideaki; Higashide, Tomomi; Nitta, Koji; Sugiyama, Kazuhisa

    2012-03-01

    To demonstrate the clinical significance of owl eye morphologic features observed by in vivo laser confocal microscopy in patients with cytomegalovirus (CMV) corneal endotheliitis. Observational case series. participants: Six eyes of 6 patients (6 men; mean age, 73.3 years) with cytomegalovirus corneal endotheliitis diagnosed by clinical manifestations together with polymerase chain reaction from aqueous humor samples. intervention: All patients were examined by slit-lamp biomicroscopy and in vivo laser confocal microscopy. main outcome measures: Clinical manifestations were summarized by reviewing medical records. Selected confocal images of corneal layers were evaluated qualitatively for shape and degree of light reflection of abnormal cells and deposits. All patients had long histories of anterior uveitis with intraocular pressure elevation, corneal edema with keratic precipitates, and decrease of endothelial cell densities. Coin-shaped lesions were observed by slit lamp only in 1 patient at the first visit and in 2 additional patients at subsequent follow-up. In all patients, confocal microscopy demonstrated reduced subepithelial nerves, subepithelial opacity, increased reflectivity of keratocytes, highly reflective dots, and needle-shaped bodies. Owl eye morphologic features were observed consistently in all patients at the initial visit, and highly reflective round bodies were detected in 5 patients; most notably, these confocal features were reversible after resolution of endotheliitis. Owl eye morphologic features and highly reflective round bodies observed by confocal microscopy may be useful as an adjunct for the noninvasive diagnosis of cytomegalovirus corneal endotheliitis. Reversibility of these features after resolution of endotheliitis may be useful for monitoring the therapeutic effects without multiple anterior chamber tap. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    PubMed Central

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish. PMID:21280920

  6. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy.

    PubMed

    Lim, Daryl; Ford, Tim N; Chu, Kengyeh K; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  7. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    NASA Astrophysics Data System (ADS)

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  8. MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES USING CONFOCAL LASER SCANNING MICROSCOPY

    EPA Science Inventory

    MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES USING CONFOCAL LASER SCANNING MICROSCOPY

    Robert M. Zucker Susan C. Jeffery and Sally D. Perreault

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Prot...

  9. CONFOCAL LASER SCANNING MICROSCOPY OF APOPTOSIS IN WHOLE MOUSE AND RAT OVARIES

    EPA Science Inventory

    Confocal Laser Scanning Microscopy of Apoptosis in Whole Mouse and Rat Ovaries. Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research ...

  10. WHOLE INSECT AND MAMMALIAN EMBRYO IMAGING WITH CONFOCAL MICROSCOPY: MORPHOLOGY AND APOPTOSIS

    EPA Science Inventory

    Background: After fluorochromes are incorporated into cells, tissues, and organisms, confocal microscopy can be used to observe three-dimensional structures. LysoTracker Red (LT) is a paraformaldehyde fixable probe that concentrates into acidic compartments of cells and indicates...

  11. Using corneal confocal microscopy to track changes in the corneal layers of dry eye patients after autologous serum treatment.

    PubMed

    Mahelkova, Gabriela; Jirsova, Katerina; Seidler Stangova, Petra; Palos, Michalis; Vesela, Viera; Fales, Ivan; Jiraskova, Nada; Dotrelova, Dagmar

    2017-05-01

    In vivo corneal confocal microscopy allows the examination of each layer of the cornea in detail and the identification of pathological changes at the cellular level. The purpose of this study was to identify the possible effects of a three-month treatment with autologous serum eye-drops in different corneal layers of patients with severe dry eye disease using corneal confocal microscopy. Twenty-six patients with dry eye disease were included in the study. Corneal fluorescein staining was performed. The corneas of the right eyes were examined using in vivo corneal confocal microscopy before and after a three-month treatment with autologous serum drops. The densities of superficial and basal epithelial cells, Langerhans cells, the keratocytes and activated keratocytes, the density of endothelial cells and the status of the sub-basal nerve plexus fibres were evaluated. A significant decrease in corneal fluorescein staining was found after the three-month autologous serum treatment (p = 0.0006). The basal epithelial cell density decreased significantly (p = 0.001), while the density of superficial epithelial cells did not change significantly (p = 0.473) nor did the number of Langerhans cells or activated keratocytes (p = 0.223; p = 0.307, respectively). There were no differences in the other corneal cell layers or in the status of the nerve fibres. The results demonstrate the ability of corneal confocal microscopy to evaluate an improvement in the basal epithelial cell layer of the cornea after autologous serum treatment in patients with dry eye disease. More studies with longer follow-up periods are needed to elucidate the suitability of corneal confocal microscopy to follow the effect of autologous serum treatment on nerve fibres or other corneal layers in dry eye disease patients. © 2016 Optometry Australia.

  12. Evaluation of the Surface Characteristics of Various Implant Abutment Materials Using Confocal Microscopy and White Light Interferometry.

    PubMed

    Park, Jun-Beom; Yang, Seung-Min; Ko, Youngkyung

    2015-12-01

    The purpose of this study was to evaluate the surface characteristics of various implant abutment materials, such as of titanium alloy (Ti6Al4V; Ma), machined cobalt-chrome-molybdenum alloy (CCM), titanium nitride coating on a titanium alloy disc (TiN), anodic oxidized titanium alloy disc (AO), composite resin coating on a titanium alloy disc (Res), and zirconia disc (Zr), using confocal microscopy and white light interferometry. Measurements from the 2 methods were evaluated to see if these methods would give equivalent results. The precision of measurements were evaluated by the coefficient of variation. Five discs each of Ma, CCM, TiN, AO, Res, and Zr were used. The surface roughness was evaluated by confocal laser microscopy and white light interferometry. Confocal microscopy showed that the Res group showed significantly greater Ra, Rq, Rz, Sa, Sq, and Sz values compared with those of the Ma group (P < 0.05). The white light interferometry results showed that the Res group had significantly higher Ra, Rq, Rz, Rt, Sa, Sq, Sz, and Sdr values compared with the Ma group (P < 0.05). All the roughness parameters obtained from the 2 methods differed, and the Sa values of the Zr group from confocal microscopy were greater by 0.163 μm than those obtained by white light interferometry. Least difference was seen in the TiN group where the difference was 0.058 μm. Roughness parameters of different abutment materials varied significantly. Precision of measurement differed according to the characteristics of the material used. White light interferometry could be recommended for measurement of TiN and AO. Confocal microscopy gave more precise measurements for Ma and CCM groups. The optical characteristics of the surface should be considered before choosing the examination method.

  13. Visualization and quantitation of abundant macroautophagy in virus-infected cells by confocal three-dimensional fluorescence imaging.

    PubMed

    Jackson, Wallen; Yamada, Masaki; Moninger, Thomas; Grose, Charles

    2013-10-01

    Varicella-zoster virus (VZV) is a human herpesvirus. Primary infection causes varicella (chickenpox), a viremic illness typified by an exanthem consisting of several hundred vesicles. When VZV reactivates from latency in the spinal ganglia during late adulthood, the emerging virus causes a vesicular dermatomal rash (herpes zoster or shingles). To expand investigations of autophagy during varicella and zoster, newer 3D imaging technology was combined with laser scanning confocal microscopy to provide animations of autophagosomes in the vesicular rash. First, the cells were immunolabeled with antibodies against VZV proteins and the LC3 protein, an integral autophagosomal protein. Antibody reagents lacking activity against the human blood group A1 antigen were selected. After laser excitation of the samples, optimized emission detection bandwidths were configured by Zeiss Zen control software. Confocal Z-stacks comprising up to 40 optical slices were reconstructed into 3D animations with the aid of Imaris software. With this imaging technology, individual autophagosomes were clearly detectable as spheres within each vesicular cell. To enumerate the number of autophagosomes, data sets from 50 cells were reconstructed as 3D fluorescence images and analyzed with MeasurementPro software. The mean number of autophagosomes per infected vesicular cell was >100, although over 200 autophagosomes were seen in a few cells. In summary, macroautophagy was easily quantitated within VZV-infected cells after immunolabeling and imaging by 3D confocal animation technology. These same 3D imaging techniques will be applicable for investigations of autophagy in other virus-infected cells. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. A Case of Bilateral Descemet's Membrane and Subepithelial Opacity: In vivo Laser Confocal Microscopic Study.

    PubMed

    Hatta, Yukiko; Yokogawa, Hideaki; Kobayashi, Akira; Torisaki, Makoto; Sugiyama, Kazuhisa

    2013-01-01

    To report the in vivo laser confocal microscopy findings from a patient with Descemet's membrane and subepithelial opacity OU. A healthy 41-year-old male with Descemet's membrane and subepithelial opacity OU was studied. Routine ophthalmic examination, standard slit-lamp biomicroscopy, and in vivo laser confocal microscopic analysis of the entire corneal layer were performed. Slit-lamp biomicroscopy revealed subepithelial opacity in the mid-peripheral to peripheral cornea and numerous opacities located at the level of Descemet's membrane. It was difficult to distinguish the precise histological location of the opacity. In vivo laser confocal microscopy showed numerous hyperreflective particles in the subepithelium to superficial stroma and hyperreflectivity of Descemet's membrane. No abnormalities could be detected in the epithelial cell layer, midstromal layer, deep stromal layer, or endothelial cell layer. Although the origin of the corneal opacities was unclear, in vivo laser confocal microscopy was useful for observing microstructural abnormalities in a case of Descemet's membrane and subepithelial opacity.

  15. A Case of Bilateral Descemet's Membrane and Subepithelial Opacity: In vivo Laser Confocal Microscopic Study

    PubMed Central

    Hatta, Yukiko; Yokogawa, Hideaki; Kobayashi, Akira; Torisaki, Makoto; Sugiyama, Kazuhisa

    2013-01-01

    Purpose To report the in vivo laser confocal microscopy findings from a patient with Descemet's membrane and subepithelial opacity OU. Case Report A healthy 41-year-old male with Descemet's membrane and subepithelial opacity OU was studied. Routine ophthalmic examination, standard slit-lamp biomicroscopy, and in vivo laser confocal microscopic analysis of the entire corneal layer were performed. Slit-lamp biomicroscopy revealed subepithelial opacity in the mid-peripheral to peripheral cornea and numerous opacities located at the level of Descemet's membrane. It was difficult to distinguish the precise histological location of the opacity. In vivo laser confocal microscopy showed numerous hyperreflective particles in the subepithelium to superficial stroma and hyperreflectivity of Descemet's membrane. No abnormalities could be detected in the epithelial cell layer, midstromal layer, deep stromal layer, or endothelial cell layer. Conclusion Although the origin of the corneal opacities was unclear, in vivo laser confocal microscopy was useful for observing microstructural abnormalities in a case of Descemet's membrane and subepithelial opacity. PMID:23626574

  16. A novel method for enhancing the lateral resolution and image SNR in confocal microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Youhua; Zhu, Dazhao; Fang, Yue; Kuang, Cuifang; Liu, Xu

    2017-12-01

    There is always a tradeoff between the resolution and the signal-to-noise ratio (SNR) in confocal microscopy. In particular, the pinhole size is very important for maintaining a balance between them. In this paper, we propose a method for improving the lateral resolution and image SNR in confocal microscopy without making any changes to the hardware. By using the fluorescence emission difference (FED) approach, we divide the images acquired by different pinhole sizes into one image acquired by the central pinhole and several images acquired by ring-shaped pinholes. Then, they are added together with the deconvolution method. Simulation and experimental results for fluorescent particles and cells show that our method can achieve a far better resolution than a large pinhole and a higher SNR than a small pinhole. Moreover, our method can improve the performance of classic confocal laser scanning microscopy (CLSM) to a certain extent, especially CLSM with a continuously variable pinhole.

  17. The application of laser scanning confocal microscopy to the examination of hairs and textile fibers: an initial investigation.

    PubMed

    Kirkbride, K Paul; Tridico, Silvana R

    2010-02-25

    An initial investigation of the application of laser scanning confocal microscopy to the examination of hairs and fibers has been conducted. This technique allows the production of virtual transverse and longitudinal cross-sectional images of a wide range of hairs and fibers. Special mounting techniques are not required; specimens that have been mounted for conventional microscopy require no further treatment. Unlike physical cross-sectioning, in which it is difficult to produce multiple cross-sections from a single hair or fiber and the process is destructive, confocal microscopy allows the examiner to image the cross-section at any point in the field of view along the hair or fiber and it is non-destructive. Confocal microscopy is a fluorescence-based technique. The images described in this article were collected using only the autofluorescence exhibited by the specimen (i.e. fluorescence staining was not necessary). Colorless fibers generally and hairs required excitation at 405 nm in order to stimulate useful autofluorescence; longer wavelength excitation was suitable for dyed fibers. Although confocal microscopy was found to be generally applicable to the generation virtual transverse cross-sections from a wide range of hairs and fibers, on some occasions the autofluorescence signal was attenuated by heavy pigmentation or the presence of an opaque medulla in hairs, and by heavy delustering or the presence of air-filled voids in the case of fibers. In these situations only partial cross-sections were obtained. 2009 Elsevier Ireland Ltd. All rights reserved.

  18. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films of the various lipid constituents of lung surfactant. Confocal microscopy allows us to use a water-soluble, cationic fluorophore that partitions into the disordered phases of lipid monolayers. By exploiting the properties of this water-soluble fluorophore, we investigate both the phase behavior and electrostatics of the interfacial lipid systems. Overall, we believe the work presented in this dissertation provides the building blocks for establishing confocal microscopy as a ubiquitous characterization technique in the interfacial and surface sciences.

  19. A combined confocal and magnetic resonance microscope for biological studies

    NASA Astrophysics Data System (ADS)

    Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Holtom, Gary R.; Hopkins, Derek F.; Parkinson, Christopher I.; Weber, Thomas J.; Wind, Robert A.

    2002-12-01

    Complementary data acquired with different microscopy techniques provide a basis for establishing a more comprehensive understanding of cell function in health and disease, particularly when results acquired with different methodologies can be correlated in time and space. In this article, a novel microscope is described for studying live cells simultaneously with both confocal scanning laser fluorescence optical microscopy and magnetic resonance microscopy. The various design considerations necessary for integrating these two complementary techniques are discussed, the layout and specifications of the instrument are given, and examples of confocal and magnetic resonance images of large frog cells and model tumor spheroids obtained with the compound microscope are presented.

  20. Confocal microscopy to guide laser ablation of basal cell carinoma: a preliminary feasibility study

    NASA Astrophysics Data System (ADS)

    Larson, Bjorg A.; Sierra, Heidy; Chen, Jason; Rajadhyaksha, Milind

    2013-03-01

    Laser ablation may be a promising method for removal of skin lesions, with the potential for better cosmetic outcomes and reduced scarring and infection. An obstacle to implementing laser ablation is that the treatment leaves no tissue for histopathological analysis. Pre-operative and intra-operative mapping of BCCs using confocal microscopy may guide the ablation of the tumor until all tumor is removed. We demonstrate preliminary feasibility of confocal microscopy to guide laser ablation of BCCs in freshly excised tissue from Mohs surgery. A 2940 nm Er:YAG laser provides efficient ablation of tumor with reduced thermal damage to the surrounding tissue.

  1. Measuring skin penetration by confocal Raman microscopy (CRM): correlation to results from conventional experiments

    NASA Astrophysics Data System (ADS)

    Lunter, Dominique; Daniels, Rolf

    2016-03-01

    Confocal Raman microscopy has become an advancing technique in the characterization of drug transport into the skin. In this study the skin penetration of a local anesthetic from a semisolid preparation was investigated. Furthermore, the effect of the chemical enhancers propylene glycol and POE-23-lauryl ether on its penetration was investigated. The results show that confocal Raman microscopy may provide detailed information on the penetration of APIs into the skin and may elucidate their distribution within the skin with high resolution. The results of the CRM analysis are fully in line with those of conventional permeation and penetration experiments.

  2. MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES, EMBRYOS AND FETAL LIMBS USING CONFOCAL MICROSCOPY

    EPA Science Inventory

    The emergence of confocal laser scanning microscopy (CLSM) as a technique capable of optically generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure offers a viable alternative to traditional section...

  3. Confocal microscopy studies of morphology and apoptosis: ovaries, limbs, embryos and insects

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ap...

  4. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR QUANTIFYING CYTOMETRIC APPLICATIONS WITH SPECTROSCOPIC INSTRUMENTS

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  5. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  6. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  7. Confocal laser scanning microscopy of apoptosis in organogenesis-stage mouse embryos

    EPA Science Inventory

    Confocal laser scanning microscopy combined with a vital stain has been used to study apoptosis in organogenesis-stage mouse embryos. In order to achieve optical sectioning through embryos, it was necessary to use low power objectives and to prepare the sample appropriately. Mous...

  8. Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging

    PubMed Central

    Shimozawa, Togo; Yamagata, Kazuo; Kondo, Takefumi; Hayashi, Shigeo; Shitamukai, Atsunori; Konno, Daijiro; Matsuzaki, Fumio; Takayama, Jun; Onami, Shuichi; Nakayama, Hiroshi; Kosugi, Yasuhito; Watanabe, Tomonobu M.; Fujita, Katsumasa; Mimori-Kiyosue, Yuko

    2013-01-01

    A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to “pinhole cross-talk,” which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals, these strategies dramatically improve higher-resolution intravital imaging. PMID:23401517

  9. Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging.

    PubMed

    Shimozawa, Togo; Yamagata, Kazuo; Kondo, Takefumi; Hayashi, Shigeo; Shitamukai, Atsunori; Konno, Daijiro; Matsuzaki, Fumio; Takayama, Jun; Onami, Shuichi; Nakayama, Hiroshi; Kosugi, Yasuhito; Watanabe, Tomonobu M; Fujita, Katsumasa; Mimori-Kiyosue, Yuko

    2013-02-26

    A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to "pinhole cross-talk," which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals, these strategies dramatically improve higher-resolution intravital imaging.

  10. Three-Dimensional Reflectance Traction Microscopy

    PubMed Central

    Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo

    2016-01-01

    Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456

  11. Modeling of Fibrin Gels Based on Confocal Microscopy and Light-Scattering Data

    PubMed Central

    Magatti, Davide; Molteni, Matteo; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-01-01

    Fibrin gels are biological networks that play a fundamental role in blood coagulation and other patho/physiological processes, such as thrombosis and cancer. Electron and confocal microscopies show a collection of fibers that are relatively monodisperse in diameter, not uniformly distributed, and connected at nodal points with a branching order of ∼3–4. Although in the confocal images the hydrated fibers appear to be quite straight (mass fractal dimension Dm = 1), for the overall system 1

  12. Cornea and ocular lens visualized with three-dimensional confocal microscopy

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1992-08-01

    This paper demonstrates the advantages of three-dimensional reconstruction of the cornea and the ocular crystalline lens by confocal microscopy and volume rendering computer techniques. The advantages of noninvasive observation of ocular structures in living, unstained, unfixed tissue include the following: the tissue is in a natural living state without the artifacts of fixation, mechanical sectioning, and staining; the three-dimensional structure can be observed from any view point and quantitatively analyzed; the dynamics of morphological changes can be studied; and the use of confocal microscopic observation results in a reduction of the number of animals required for ocular morphometric studies. The main advantage is that the dynamic morphology of ocular structures can be investigated in living ocular tissue. A laser scanning confocal microscope was used in the reflected light mode to obtain the two- dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with 488 nm wavelength. The microscope objective was a Leitz 25X, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133, three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The under sampling resulted in a three-dimensional visualization rendering in which the corneal thickness (z-axis) is compressed. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their `beaded' cell borders, basal lamina, nerve plexus, nerve fibers, free nerve endings in the basal epithelial cells, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in-situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers.

  13. Improving high resolution retinal image quality using speckle illumination HiLo imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-01-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis. PMID:25136486

  14. Improving high resolution retinal image quality using speckle illumination HiLo imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-08-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis.

  15. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart.

    PubMed

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  16. Association between dermoscopic and reflectance confocal microscopy features of cutaneous melanoma with BRAF mutational status.

    PubMed

    Bombonato, C; Ribero, S; Pozzobon, F C; Puig-Butille, J A; Badenas, C; Carrera, C; Malvehy, J; Moscarella, E; Lallas, A; Piana, S; Puig, S; Argenziano, G; Longo, C

    2017-04-01

    Melanomas harbouring common genetic mutations might share certain morphological features detectable with dermoscopy and reflectance confocal microscopy. BRAF mutational status is crucial for the management of metastatic melanoma. To correlate the dermoscopic characteristics of primary cutaneous melanomas with BRAF mutational status. Furthermore, a subset of tumours has also been analysed for the presence of possible confocal features that might be linked with BRAF status. Retrospectively acquired dermoscopic and confocal images of patients with melanoma in tertiary referral academic centres: Skin Cancer Unit in Reggio Emilia and at the Melanoma Unit in Barcelona. Kruskal-Wallis test, logistic regressions, univariate and multivariate analyses have been performed to find dermoscopic and confocal features significantly correlated with BRAF mutational status. Dermoscopically, the presence of irregular peripheral streaks and ulceration were positive predictors of BRAF-mutated melanomas with a statistically significance value, while dotted vessels were more represented in wild-type melanomas. None of the evaluated reflectance confocal microscopy features were correlated with genetic profiling. Ulceration and irregular peripheral streaks represent dermoscopic feature indicative for BRAF-mutated melanoma, while dotted vessels are suggestive for wild-type melanoma. © 2016 European Academy of Dermatology and Venereology.

  17. Sensitivity and specificity for detecting basal cell carcinomas in Mohs excisions with confocal fluorescence mosaicing microscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel S.; Karen, Julie K.; Dusza, Stephen W.; Tudisco, Marie; Nehal, Kishwer S.; Rajadhyaksha, Milind

    2009-05-01

    Recent studies have demonstrated the ability of confocal fluorescence mosaicing microscopy to rapidly detect basal cell carcinomas (BCCs) directly in thick and fresh Mohs surgical excisions. Mosaics of confocal images display large areas of tissue with high resolution and magnification equivalent to 2×, which is the standard magnification when examining pathology. Comparison of mosaics to Mohs frozen histopathology was shown to be excellent for all types of BCCs. However, comparisons in the previous studies were visual and qualitative. In this work, we report the results of a semiquantitative preclinical study in which 45 confocal mosaics are blindly evaluated for the presence (or absence) of BCC tumor. The evaluations are made by two clinicians: a senior Mohs surgeon with prior expertise in interpreting confocal images, and a novice Mohs fellow with limited experience. The blinded evaluation is compared to the gold standard of frozen histopathology. BCCs are detected with an overall sensitivity of 96.6%, specificity of 89.2%, positive predictive value of 93.0%, and negative predictive value of 94.7%. The results demonstrate the potential clinical utility of confocal mosaicing microscopy toward rapid surgical pathology at the bedside to expedite and guide surgery.

  18. Confocal filtering in cathodoluminescence microscopy of nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narváez, Angela C., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Weppelman, I. Gerward C.; Moerland, Robert J.

    2014-06-23

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effectivemore » for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.« less

  19. Femtosecond laser subsurface scleral treatment in cadaver human sclera and evaluation using two-photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yan, Ying; Lian, Fuqiang; Kurtz, Ron; Juhasz, Tibor

    2016-03-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial-thickness drainage channels can be created with femtosecond laser in the translucent sclera for the potential treatment of glaucoma. We demonstrate the creation of partial-thickness subsurface drainage channels with the femtosecond laser in the cadaver human eyeballs and describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. A femtosecond laser operating at a wavelength of 1700 nm was scanned along a rectangular raster pattern to create the partial thickness subsurface drainage channels in the sclera of cadaver human eyes. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such partial thickness subsurface scleral channels. Our studies suggest that the confocal and two-photon microscopy can be used to investigate femtosecond-laser created partial-thickness drainage channels in the sclera of cadaver human eyes.

  20. Analysis of interphase node proteins in fission yeast by quantitative and superresolution fluorescence microscopy

    PubMed Central

    Akamatsu, Matthew; Lin, Yu; Bewersdorf, Joerg; Pollard, Thomas D.

    2017-01-01

    We used quantitative confocal microscopy and FPALM superresolution microscopy of live fission yeast to investigate the structures and assembly of two types of interphase nodes—multiprotein complexes associated with the plasma membrane that merge together and mature into the precursors of the cytokinetic contractile ring. During the long G2 phase of the cell cycle, seven different interphase node proteins maintain constant concentrations as they accumulate in proportion to cell volume. During mitosis, the total numbers of type 1 node proteins (cell cycle kinases Cdr1p, Cdr2p, Wee1p, and anillin Mid1p) are constant even when the nodes disassemble. Quantitative measurements provide strong evidence that both types of nodes have defined sizes and numbers of constituent proteins, as observed for cytokinesis nodes. Type 1 nodes assemble in two phases—a burst at the end of mitosis, followed by steady increase during interphase to double the initial number. Type 2 nodes containing Blt1p, Rho-GEF Gef2p, and kinesin Klp8p remain intact throughout the cell cycle and are constituents of the contractile ring. They are released from the contractile ring as it disassembles and then associate with type 1 nodes around the equator of the cell during interphase. PMID:28539404

  1. A Quantitative Approach to Scar Analysis

    PubMed Central

    Khorasani, Hooman; Zheng, Zhong; Nguyen, Calvin; Zara, Janette; Zhang, Xinli; Wang, Joyce; Ting, Kang; Soo, Chia

    2011-01-01

    Analysis of collagen architecture is essential to wound healing research. However, to date no consistent methodologies exist for quantitatively assessing dermal collagen architecture in scars. In this study, we developed a standardized approach for quantitative analysis of scar collagen morphology by confocal microscopy using fractal dimension and lacunarity analysis. Full-thickness wounds were created on adult mice, closed by primary intention, and harvested at 14 days after wounding for morphometrics and standard Fourier transform-based scar analysis as well as fractal dimension and lacunarity analysis. In addition, transmission electron microscopy was used to evaluate collagen ultrastructure. We demonstrated that fractal dimension and lacunarity analysis were superior to Fourier transform analysis in discriminating scar versus unwounded tissue in a wild-type mouse model. To fully test the robustness of this scar analysis approach, a fibromodulin-null mouse model that heals with increased scar was also used. Fractal dimension and lacunarity analysis effectively discriminated unwounded fibromodulin-null versus wild-type skin as well as healing fibromodulin-null versus wild-type wounds, whereas Fourier transform analysis failed to do so. Furthermore, fractal dimension and lacunarity data also correlated well with transmission electron microscopy collagen ultrastructure analysis, adding to their validity. These results demonstrate that fractal dimension and lacunarity are more sensitive than Fourier transform analysis for quantification of scar morphology. PMID:21281794

  2. Micro-anatomical quantitative optical imaging: toward automated assessment of breast tissues.

    PubMed

    Dobbs, Jessica L; Mueller, Jenna L; Krishnamurthy, Savitri; Shin, Dongsuk; Kuerer, Henry; Yang, Wei; Ramanujam, Nirmala; Richards-Kortum, Rebecca

    2015-08-20

    Pathologists currently diagnose breast lesions through histologic assessment, which requires fixation and tissue preparation. The diagnostic criteria used to classify breast lesions are qualitative and subjective, and inter-observer discordance has been shown to be a significant challenge in the diagnosis of selected breast lesions, particularly for borderline proliferative lesions. Thus, there is an opportunity to develop tools to rapidly visualize and quantitatively interpret breast tissue morphology for a variety of clinical applications. Toward this end, we acquired images of freshly excised breast tissue specimens from a total of 34 patients using confocal fluorescence microscopy and proflavine as a topical stain. We developed computerized algorithms to segment and quantify nuclear and ductal parameters that characterize breast architectural features. A total of 33 parameters were evaluated and used as input to develop a decision tree model to classify benign and malignant breast tissue. Benign features were classified in tissue specimens acquired from 30 patients and malignant features were classified in specimens from 22 patients. The decision tree model that achieved the highest accuracy for distinguishing between benign and malignant breast features used the following parameters: standard deviation of inter-nuclear distance and number of duct lumens. The model achieved 81 % sensitivity and 93 % specificity, corresponding to an area under the curve of 0.93 and an overall accuracy of 90 %. The model classified IDC and DCIS with 92 % and 96 % accuracy, respectively. The cross-validated model achieved 75 % sensitivity and 93 % specificity and an overall accuracy of 88 %. These results suggest that proflavine staining and confocal fluorescence microscopy combined with image analysis strategies to segment morphological features could potentially be used to quantitatively diagnose freshly obtained breast tissue at the point of care without the need for tissue preparation.

  3. Comparative quantitative assessment of the human corneal sub-basal nerve plexus by in vivo confocal microscopy and histological staining.

    PubMed

    Kowtharapu, B S; Winter, K; Marfurt, C; Allgeier, S; Köhler, B; Hovakimyan, M; Stahnke, T; Wree, A; Stachs, O; Guthoff, R F

    2017-03-01

    PurposeThis study was designed to compare and contrast quantitative data of the human corneal sub-basal nerve plexus (SBP) evaluated by two different methods: in vivo confocal microscopy (IVCM), and immunohistochemical staining of ex vivo donor corneas.MethodsSeven parameters of the SBP in large-scale IVCM mosaicking images from healthy subjects were compared with the identical parameters in ex vivo donor corneas stained by β-III-tubulin immunohistochemistry. Corneal nerve fiber length (CNFL), corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), average weighted corneal nerve fiber tortuosity (CNFTo), corneal nerve connection points (CNCP), average corneal nerve single-fiber length (CNSFL), and average weighted corneal nerve fiber thickness (CNFTh) were calculated using a dedicated, published algorithm and compared.ResultsOur experiments showed significantly higher values for CNFL (50.2 vs 21.4 mm/mm 2 ), CNFD (1358.8 vs 277.3 nerve fibers/mm 2 ), CNBD (847.6 vs 163.5 branches/mm 2 ), CNFTo (0.095 vs 0.081 μm -1 ), and CNCP (49.4 vs 21.6 connections/mm 2 ) in histologically staining specimens compared with IVCM images. In contrast, CNSFL values were higher in IVCM images than in histological specimens (32.1 vs 74.1 μm). No significant difference was observed in CNFTh (2.22 vs 2.20 μm) between the two groups.ConclusionsThe results of this study have shown that IVCM has an inherently lower resolution compared with ex vivo immunohistochemical staining of the corneal SBP and that this limitation leads to a systematic underestimation of several SBP parameters. Despite this shortcoming, IVCM is a vital clinical tool for in vivo characterization, quantitative clinical imaging, and evaluation of the human corneal SBP.

  4. Modulated-alignment dual-axis (MAD) confocal microscopy for deep optical sectioning in tissues

    PubMed Central

    Leigh, Steven Y.; Chen, Ye; Liu, Jonathan T.C.

    2014-01-01

    A strategy is presented to enable optical-sectioning microscopy with improved contrast and imaging depth using low-power (0.5 - 1 mW) diode laser illumination. This technology combines the inherent strengths of focal-modulation microscopy and dual-axis confocal (DAC) microscopy for rejecting out-of-focus and multiply scattered background light in tissues. The DAC architecture is unique in that it utilizes an intersecting pair of illumination and collection beams to improve the spatial-filtering and optical-sectioning performance of confocal microscopy while focal modulation selectively ‘labels’ in-focus signals via amplitude modulation. Simulations indicate that modulating the spatial alignment of dual-axis beams at a frequency f generates signals from the focal volume of the microscope that are modulated at 2f with minimal modulation of background signals, thus providing nearly an order-of-magnitude improvement in optical-sectioning contrast compared to DAC microscopy alone. Experiments show that 2f lock-in detection enhances contrast and imaging depth within scattering phantoms and fresh tissues. PMID:24940534

  5. Evaluation of breast tissue with confocal strip-mosaicking microscopy: a test approach emulating pathology-like examination

    PubMed Central

    Abeytunge, Sanjee; Larson, Bjorg; Peterson, Gary; Morrow, Monica; Rajadhyaksha, Milind

    2017-01-01

    Abstract. Confocal microscopy is an emerging technology for rapid imaging of freshly excised tissue without the need for frozen- or fixed-section processing. Initial studies have described imaging of breast tissue using fluorescence confocal microscopy with small regions of interest, typically 750×750  μm2. We present exploration with a microscope, termed confocal strip-mosaicking microscope (CSM microscope), which images an area of 2×2  cm2 of tissue with cellular-level resolution in 10 min of excision. Using the CSM microscope, we imaged 34 fresh, human, large breast tissue specimens from 18 patients, blindly analyzed by a board-certified pathologist and subsequently correlated with the corresponding standard fixed histopathology. Invasive tumors and benign tissue were clearly identified in CSM strip-mosaic images. Thirty specimens were concordant for image-to-histopathology correlation while four were discordant. PMID:28327961

  6. Calibration of Wide-Field Deconvolution Microscopy for Quantitative Fluorescence Imaging

    PubMed Central

    Lee, Ji-Sook; Wee, Tse-Luen (Erika); Brown, Claire M.

    2014-01-01

    Deconvolution enhances contrast in fluorescence microscopy images, especially in low-contrast, high-background wide-field microscope images, improving characterization of features within the sample. Deconvolution can also be combined with other imaging modalities, such as confocal microscopy, and most software programs seek to improve resolution as well as contrast. Quantitative image analyses require instrument calibration and with deconvolution, necessitate that this process itself preserves the relative quantitative relationships between fluorescence intensities. To ensure that the quantitative nature of the data remains unaltered, deconvolution algorithms need to be tested thoroughly. This study investigated whether the deconvolution algorithms in AutoQuant X3 preserve relative quantitative intensity data. InSpeck Green calibration microspheres were prepared for imaging, z-stacks were collected using a wide-field microscope, and the images were deconvolved using the iterative deconvolution algorithms with default settings. Afterwards, the mean intensities and volumes of microspheres in the original and the deconvolved images were measured. Deconvolved data sets showed higher average microsphere intensities and smaller volumes than the original wide-field data sets. In original and deconvolved data sets, intensity means showed linear relationships with the relative microsphere intensities given by the manufacturer. Importantly, upon normalization, the trend lines were found to have similar slopes. In original and deconvolved images, the volumes of the microspheres were quite uniform for all relative microsphere intensities. We were able to show that AutoQuant X3 deconvolution software data are quantitative. In general, the protocol presented can be used to calibrate any fluorescence microscope or image processing and analysis procedure. PMID:24688321

  7. Fibered Confocal Fluorescence Microscopy for the Noninvasive Imaging of Langerhans Cells in Macaques.

    PubMed

    Todorova, Biliana; Salabert, Nina; Tricot, Sabine; Boisgard, Raphaël; Rathaux, Mélanie; Le Grand, Roger; Chapon, Catherine

    2017-01-01

    We developed a new approach to visualize skin Langerhans cells by in vivo fluorescence imaging in nonhuman primates. Macaques were intradermally injected with a monoclonal, fluorescently labeled antibody against HLA-DR molecule and were imaged for up to 5 days by fibered confocal microscopy (FCFM). The network of skin Langerhans cells was visualized by in vivo fibered confocal fluorescence microscopy. Quantification of Langerhans cells revealed no changes to cell density with time. Ex vivo experiments confirmed that injected fluorescent HLA-DR antibody specifically targeted Langerhans cells in the epidermis. This study demonstrates the feasibility of single-cell, in vivo imaging as a noninvasive technique to track Langerhans cells in nontransgenic animals.

  8. In vivo assessment of cytological changes by means of reflectance confocal microscopy - demonstration of the effect of topical vitamin E on skin irritation caused by sodium lauryl sulfate.

    PubMed

    Casari, Alice; Farnetani, Francesca; De Pace, Barbara; Losi, Amanda; Pittet, Jean-Christophe; Pellacani, Giovanni; Longo, Caterina

    2017-03-01

    Irritant contact dermatitis is caused by skin barrier damage. Vitamin E is an antioxidant that is commonly used in cosmetics to prevent photo-damage. To show the usefulness of reflectance confocal microscopy in the assessment of irritant skin damage caused by sodium lauryl sulfate (SLS) and of the protective action of vitamin E applied prior to skin irritation. Ten healthy volunteers were enrolled. Irritation was induced by the application of a patch test containing SLS 5% aq. for 24 h. Three sites were compared: one site on which a product with vitamin E was applied before SLS treatment, one site on which the same product was applied after SLS treatment, and one control site (SLS only). Each site was evaluated with reflectance confocal microscopy, providing in vivo tissue images at nearly histological resolution. We also performed a computerized analysis of the VivaStack® images. Reflectance confocal microscopy is able to identify signs of skin irritation and the preventive effect of vitamin E application. Reflectance confocal microscopy is useful in the objective assessment of irritative skin damage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Dermoscopic and reflectance confocal microscopic features of exogenous ochronosis.

    PubMed

    Gil, Inmaculada; Segura, Sonia; Martínez-Escala, Estela; Lloreta, Josep; Puig, Susana; Vélez, Mariano; Pujol, Ramón M; Herrero-González, Josep E

    2010-09-01

    Exogenous ochronosis presents as an acquired asymptomatic hyperpigmentation on photoexposed areas, predominantly over bony prominences, and is caused by the topical application of several skin-lightening agents. We describe a 63-year-old Hispanic woman who developed exogenous ochronosis lesions on her face after using topical bleaching creams containing hydroquinone, 2% to 3%, and oxybenzone, 2%, for several years. Dermoscopy revealed irregular brown-gray globular, annular, and arciform structures that corresponded to focal deposition of ochronotic pigment on the dermis. These deposits correlated with multiple banana-shaped nonrefractile structures seen using reflectance confocal microscopy. Histopathologic sections revealed the deposition of a banana-shaped, yellow to brown material in the papillary and middle dermis. Ultrastructural examination revealed an amorphous electron-dense material mostly located in the core of elastic fibers and also in smaller amounts in the interstitium with prominent degenerative changes in the elastic fibers. A good correlation was observed between the results of both noninvasive techniques and the diagnostic histologic features of this condition. We characterized by means of dermoscopy, reflectance confocal microscopy, and electronic microscopy a case of exogenous ochronosis. To our knowledge, this is the first description of reflectance confocal microscopic findings in this condition. Dermoscopy and reflectance confocal microscopy are proved to be useful noninvasive techniques for the diagnosis of this pigmentary disorder.

  10. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE

    EPA Science Inventory

    BACKGROUND. The confocal laser scanning microscope (CLSM) has enormous potential in many biological fields. Currently there is a subjective nature in the assessment of a confocal microscope's performance by primarily evaluating the system with a specific test slide provided by ea...

  11. Effect of Autologous Serum Eye Drops in Patients with Sjögren Syndrome-related Dry Eye: Clinical and In Vivo Confocal Microscopy Evaluation of the Ocular Surface.

    PubMed

    Semeraro, Francesco; Forbice, Eliana; Nascimbeni, Giuseppe; Taglietti, Marco; Romano, Vito; Guerra, Germano; Costagliola, Ciro

    To evaluate in vivo changes after therapy using autologous serum (AS) eye drops in Sjögren's syndrome (SS)-related dry eyes by confocal microscopy. In this study, 24 patients with SS-related dry eyes [12 in AS eye drop therapy and 12 in artificial tear (AT) therapy] and 24 healthy volunteers were recruited. Ocular Surface Disease Index (OSDI), central corneal thickness, tear film, break-up time, corneal and conjunctival staining, Schirmer's test and corneal confocal microscopy were investigated. Tear production, tear stability, corneal staining, inflammation, and central corneal thickness, Langherans cells, activated keratocytes, intermediate epithelial cell density, nerve tortuosity, number of sub-basal nerve branches, and number of bead-like formations differed between patients and controls (p<0.0001). The AT and AS groups differed in the OSDI, number of branches, and number of beadings (p<0.0001). AS eye drops improve symptoms and confocal microscopy findings in SS-related dry eyes. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, M.; Ebel, D.S.

    2009-03-19

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length ofmore » {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.« less

  13. Development of an add-on kit for scanning confocal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guo, Kaikai; Zheng, Guoan

    2017-03-01

    Scanning confocal microscopy is a standard choice for many fluorescence imaging applications in basic biomedical research. It is able to produce optically sectioned images and provide acquisition versatility to address many samples and application demands. However, scanning a focused point across the specimen limits the speed of image acquisition. As a result, scanning confocal microscope only works well with stationary samples. Researchers have performed parallel confocal scanning using digital-micromirror-device (DMD), which was used to project a scanning multi-point pattern across the sample. The DMD based parallel confocal systems increase the imaging speed while maintaining the optical sectioning ability. In this paper, we report the development of an add-on kit for high-speed and low-cost confocal microscopy. By adapting this add-on kit to an existing regular microscope, one can convert it into a confocal microscope without significant hardware modifications. Compared with current DMD-based implementations, the reported approach is able to recover multiple layers along the z axis simultaneously. It may find applications in wafer inspection and 3D metrology of semiconductor circuit. The dissemination of the proposed add-on kit under $1000 budget could also lead to new types of experimental designs for biological research labs, e.g., cytology analysis in cell culture experiments, genetic studies on multicellular organisms, pharmaceutical drug profiling, RNA interference studies, investigation of microbial communities in environmental systems, and etc.

  14. Two-Photon Excitation Microscopy for the Study of Living Cells and Tissues

    PubMed Central

    Benninger, Richard K.P.; Piston, David W.

    2013-01-01

    Two-photon excitation microscopy is an alternative to confocal microscopy that provides advantages for three-dimensional and deep tissue imaging. This unit will describe the basic physical principles behind two-photon excitation and discuss the advantages and limitations of its use in laser-scanning microscopy. The principal advantages of two-photon microscopy are reduced phototoxicity, increased imaging depth, and the ability to initiate highly localized photochemistry in thick samples. Practical considerations for the application of two-photon microscopy will then be discussed, including recent technological advances. This unit will conclude with some recent applications of two-photon microscopy that highlight the key advantages over confocal microscopy and the types of experiments which would benefit most from its application. PMID:23728746

  15. Annexin-V/quantum dot probes for multimodal apoptosis monitoring in living cells: improving bioanalysis using electrochemistry

    NASA Astrophysics Data System (ADS)

    Montón, Helena; Parolo, Claudio; Aranda-Ramos, Antonio; Merkoçi, Arben; Nogués, Carme

    2015-02-01

    There is a great demand to develop novel techniques that allow useful and complete monitoring of apoptosis, which is a key factor of several diseases and a target for drug development. Here, we present the use of a novel dual electrochemical/optical label for the detection and study of apoptosis. We combined the specificity of Annexin-V for phosphatidylserine, a phospholipid expressed in the outer membrane of apoptotic cells, with the optical and electrochemical properties of quantum dots to create a more efficient label. Using this conjugate we addressed three important issues: (i) we made the labeling of apoptotic cells faster (30 min) and easier; (ii) we fully characterized the samples by common cell biological techniques (confocal laser scanning microscopy, scanning electron microscopy and flow cytometry); and (iii) we developed a fast, cheap and quantitative electrochemical detection method for apoptotic cells with results in full agreement with those obtained by flow cytometry.There is a great demand to develop novel techniques that allow useful and complete monitoring of apoptosis, which is a key factor of several diseases and a target for drug development. Here, we present the use of a novel dual electrochemical/optical label for the detection and study of apoptosis. We combined the specificity of Annexin-V for phosphatidylserine, a phospholipid expressed in the outer membrane of apoptotic cells, with the optical and electrochemical properties of quantum dots to create a more efficient label. Using this conjugate we addressed three important issues: (i) we made the labeling of apoptotic cells faster (30 min) and easier; (ii) we fully characterized the samples by common cell biological techniques (confocal laser scanning microscopy, scanning electron microscopy and flow cytometry); and (iii) we developed a fast, cheap and quantitative electrochemical detection method for apoptotic cells with results in full agreement with those obtained by flow cytometry. Electronic supplementary information (ESI) available: Optical microscopy images of apoptotic induced cell cultures at different times and negative control of flow cytometry. See DOI: 10.1039/c4nr07191c

  16. Resonant Scanning with Large Field of View Reduces Photobleaching and Enhances Fluorescence Yield in STED Microscopy.

    PubMed

    Wu, Yong; Wu, Xundong; Lu, Rong; Zhang, Jin; Toro, Ligia; Stefani, Enrico

    2015-10-01

    Photobleaching is a major limitation of superresolution Stimulated Depletion Emission (STED) microscopy. Fast scanning has long been considered an effective means to reduce photobleaching in fluorescence microscopy, but a careful quantitative study of this issue is missing. In this paper, we show that the photobleaching rate in STED microscopy can be slowed down and the fluorescence yield be enhanced by scanning with high speed, enabled by using large field of view in a custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching and fluorescence yield is more remarkable at higher levels of depletion laser irradiance, and virtually disappears in conventional confocal microscopy. With ≥6 GW∙cm(-2) depletion irradiance, we were able to extend the fluorophore survival time of Atto 647N and Abberior STAR 635P by ~80% with 8-fold wider field of view. We confirm that STED Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data agree with a theoretical model. Our results encourage further increasing the linear scanning speed for photobleaching reduction in STED microscopy.

  17. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells.

    PubMed

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L; Han, Jessica H; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H; Bussey, Kimberly J; Meldrum, Deirdre R

    2016-08-09

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an 'epigenetic' drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat's differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action.

  18. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    PubMed

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  19. Discrimination of surface wear on obsidian tools using LSCM and RelA: pilot study results (area-scale analysis of obsidian tool surfaces).

    PubMed

    Stemp, W James; Chung, Steven

    2011-01-01

    This pilot study tests the reliability of laser scanning confocal microscopy (LSCM) to quantitatively measure wear on experimental obsidian tools. To our knowledge, this is the first use of confocal microscopy to study wear on stone flakes made from an amorphous silicate like obsidian. Three-dimensional surface roughness or texture area scans on three obsidian flakes used on different contact materials (hide, shell, wood) were documented using the LSCM to determine whether the worn surfaces could be discriminated using area-scale analysis, specifically relative area (RelA). When coupled with the F-test, this scale-sensitive fractal analysis could not only discriminate the used from unused surfaces on individual tools, but was also capable of discriminating the wear histories of tools used on different contact materials. Results indicate that such discriminations occur at different scales. Confidence levels for the discriminations at different scales were established using the F-test (mean square ratios or MSRs). In instances where discrimination of surface roughness or texture was not possible above the established confidence level based on MSRs, photomicrographs and RelA assisted in hypothesizing why this was so. Copyright © 2011 Wiley Periodicals, Inc.

  20. Quantitative and structural analyses of the in vitro and ex vivo biofilm-forming ability of dermatophytes.

    PubMed

    Brilhante, Raimunda Sâmia Nogueira; Correia, Edmilson Emanuel Monteiro; Guedes, Glaucia Morgana de Melo; Pereira, Vandbergue Santos; Oliveira, Jonathas Sales de; Bandeira, Silviane Praciano; Alencar, Lucas Pereira de; Andrade, Ana Raquel Colares de; Castelo-Branco, Débora de Souza Collares Maia; Cordeiro, Rossana de Aguiar; Pinheiro, Adriana de Queiroz; Chaves, Lúcio Jackson Queiroz; Pereira Neto, Waldemiro de Aquino; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha

    2017-07-01

    The aim of this study was to evaluate the in vitro and ex vivo biofilm-forming ability of dermatophytes on a nail fragment. Initially, four isolates of Trichophyton rubrum, six of Trichophyton tonsurans, three of Trichophyton mentagrophytes, ten of Microsporum canis and three of Microsporum gypseum were tested for production biomass by crystal violet assay. Then, one strain per species presenting the best biofilm production was chosen for further studies by optical microscopy (Congo red staining), confocal laser scanning (LIVE/DEAD staining) and scanning electron (secondary electron) microscopy. Biomass quantification by crystal violet assay, optical microscope images of Congo red staining, confocal microscope and scanning electron microscope images revealed that all species studied are able to form biofilms both in vitro and ex vivo, with variable density and architecture. M. gypseum, T. rubrum and T. tonsurans produced robust biofilms, with abundant matrix and biomass, while M. canis produced the weakest biofilms compared to other species. This study sheds light on biofilms of different dermatophyte species, which will contribute to a better understanding of the pathophysiology of dermatophytosis. Further studies of this type are necessary to investigate the processes involved in the formation and composition of dermatophyte biofilms.

  1. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.

    2014-10-28

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materialsmore » characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.« less

  2. Damage morphology study of high cycle fatigued as-cast Mg–3.0Nd–0.2Zn–Zr (wt.%) alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Haiyan; Fu, Penghuai, E-mail: fph112sjtu@sjtu.edu.cn; Peng, Liming

    Laser scanning confocal microscopy (LSCM) and Electron back-scattered diffraction (EBSD) were applied to the study of surface morphology variation of as-cast Mg–3.0Nd–0.2Zn–Zr (NZ30K) (wt.%) alloy under tension-compression fatigue test at room temperature. Two kinds of typical damage morphologies were observed in fatigued NZ30K alloy: One was parallel lines on basal planes led by the cumulation of basal slips, called persistent slip markings (PSMs), and the other was lens shaped, thicker and in less density, led by the formation of twinning. The surface fatigue damage morphology evolution was analyzed in a statistical way. The influences of stress amplitude and grain orientationmore » on fatigue deformation mechanisms were discussed and the non-uniform deformation among grains and the PSMs, within twinning were described quantitatively. - Highlights: • Fatigue morphology evolution was studied by Laser Scanning Confocal Microscopy. • 3D morphology of persistent slip markings and twins was characterized. • Non-uniform deformation among grains, the PSMs and twins were quantified. • Initiations of fatigue crack were clearly investigated.« less

  3. Three-dimensional visualization and quantitation of fibrin in solid tumors by confocal laser scanning microscopy.

    PubMed

    Biggerstaff, J; Amirkhosravi, A; Francis, J L

    1997-10-01

    Fibrin forms part of the stroma essential for growth of solid tumors. Anticoagulants reduce primary tumor growth and tumor metastasis in murine and some human tumors. These effects may be partly mediated by reduction of intra-tumor fibrin, although there are no quantitative data to support this hypothesis. We therefore evaluated the effect of warfarin on fibrin deposition in a subcutaneously (s.c.) implanted murine tumor using confocal laser scanning microscopy (CLSM). AJ mice received no treatment (n = 6) or sodium warfarin (3.5 mg/L in drinking water, n = 5). All animals received 2 x 10(6) syngeneic Neuro2a neuroblastoma cells s.c. After 14 days, primary tumors were excised and placed in liquid nitrogen. Warfarin treatment resulted in a small, but significant (P < 0.05), decrease in wet tumor weight. Frozen sections (20 microns) were incubated with goat anti-mouse fibrin(ogen) or normal goat serum (isotypic control) and stained with FITC-conjugated rabbit anti-goat antibody. Using a Multiprobe 2001 CLSM (Molecular Dynamics, Sunnyvale, CA), 20 serial optical sections were taken from five, randomly chosen, high power fields (60x objective) for each slide. A threshold excluded all fluorescence except that from structural components within the tumor stroma (fibrin). The volume of fibrin in each section series was determined, and the percentage of tumor volume occupied by fibrin calculated. Intra- and inter-assay variation were assessed on serial frozen tumor sections from an untreated animal. The percentage fibrin volume was not significantly different among or within experiments, indicating that the procedure was reproducible. In controls, the median (range) volume occupied by fibrin was 8.1% (2.4-22.3%), whereas in anticoagulated animals, this was reduced to 3.7% (0.4-14.0%; P < 0.001). This is the first quantitative demonstration that warfarin reduces fibrin deposition in solid tumors. We conclude that three-dimensional CLSM is useful for the quantitation of tissue antigens and that the technique may have clinical value.

  4. Sheet-scanned dual-axis confocal microscopy using Richardson-Lucy deconvolution.

    PubMed

    Wang, D; Meza, D; Wang, Y; Gao, L; Liu, J T C

    2014-09-15

    We have previously developed a line-scanned dual-axis confocal (LS-DAC) microscope with subcellular resolution suitable for high-frame-rate diagnostic imaging at shallow depths. Due to the loss of confocality along one dimension, the contrast (signal-to-background ratio) of a LS-DAC microscope is deteriorated compared to a point-scanned DAC microscope. However, by using a sCMOS camera for detection, a short oblique light-sheet is imaged at each scanned position. Therefore, by scanning the light sheet in only one dimension, a thin 3D volume is imaged. Both sequential two-dimensional deconvolution and three-dimensional deconvolution are performed on the thin image volume to improve the resolution and contrast of one en face confocal image section at the center of the volume, a technique we call sheet-scanned dual-axis confocal (SS-DAC) microscopy.

  5. Interference Confocal Microscope Integrated with Spatial Phase Shifter.

    PubMed

    Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian

    2016-08-24

    We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.

  6. Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy.

    PubMed

    Hartshorn, Christopher M; Lee, Young Jong; Camp, Charles H; Liu, Zhen; Heddleston, John; Canfield, Nicole; Rhodes, Timothy A; Hight Walker, Angela R; Marsac, Patrick J; Cicerone, Marcus T

    2013-09-03

    We compare a coherent Raman imaging modality, broadband coherent anti-Stokes Raman scattering (BCARS) microscopy, with spontaneous Raman microscopy for quantitative and qualitative assessment of multicomponent pharmaceuticals. Indomethacin was used as a model active pharmaceutical ingredient (API) and was analyzed in a tabulated solid dosage form, embedded within commonly used excipients. In comparison with wide-field spontaneous Raman chemical imaging, BCARS acquired images 10× faster, at higher spatiochemical resolution and with spectra of much higher SNR, eliminating the need for multivariate methods to identify chemical components. The significant increase in spatiochemical resolution allowed identification of an unanticipated API phase that was missed by the spontaneous wide-field method and bulk Raman spectroscopy. We confirmed the presence of the unanticipated API phase using confocal spontaneous Raman, which provided spatiochemical resolution similar to BCARS but at 100× slower acquisition times.

  7. In situ mechanical characterization of the cell nucleus by atomic force microscopy.

    PubMed

    Liu, Haijiao; Wen, Jun; Xiao, Yun; Liu, Jun; Hopyan, Sevan; Radisic, Milica; Simmons, Craig A; Sun, Yu

    2014-04-22

    The study of nuclear mechanical properties can provide insights into nuclear dynamics and its role in cellular mechanotransduction. While several methods have been developed to characterize nuclear mechanical properties, direct intracellular probing of the nucleus in situ is challenging. Here, a modified AFM (atomic force microscopy) needle penetration technique is demonstrated to mechanically characterize cell nuclei in situ. Cytoplasmic and nuclear stiffness were determined based on two different segments on the AFM indentation curves and were correlated with simultaneous confocal Z-stack microscopy reconstructions. On the basis of direct intracellular measurement, we show that the isolated nuclei from fibroblast-like cells exhibited significantly lower Young's moduli than intact nuclei in situ. We also show that there is in situ nucleus softening in the highly metastatic bladder cancer cell line T24 when compared to its less metastatic counterpart RT4. This technique has potential to become a reliable quantitative measurement tool for intracellular mechanics studies.

  8. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells.

    PubMed

    Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning

    2017-07-01

    Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.

  9. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells

    PubMed Central

    Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning

    2017-01-01

    Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. Three dimensional-Magnetic Twisting Cytometry (3D-MTC) is a technique for applying local mechanical stresses on living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real time acquisition of a living cell’s mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC – microscopy platform takes around 20 days to construct and the experimental procedures require ~4 days when carried out by a life sciences graduate student. PMID:28686583

  10. A Quantitative Three-Dimensional Image Analysis Tool for Maximal Acquisition of Spatial Heterogeneity Data.

    PubMed

    Allenby, Mark C; Misener, Ruth; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2017-02-01

    Three-dimensional (3D) imaging techniques provide spatial insight into environmental and cellular interactions and are implemented in various fields, including tissue engineering, but have been restricted by limited quantification tools that misrepresent or underutilize the cellular phenomena captured. This study develops image postprocessing algorithms pairing complex Euclidean metrics with Monte Carlo simulations to quantitatively assess cell and microenvironment spatial distributions while utilizing, for the first time, the entire 3D image captured. Although current methods only analyze a central fraction of presented confocal microscopy images, the proposed algorithms can utilize 210% more cells to calculate 3D spatial distributions that can span a 23-fold longer distance. These algorithms seek to leverage the high sample cost of 3D tissue imaging techniques by extracting maximal quantitative data throughout the captured image.

  11. Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology

    PubMed Central

    Sandell, Lisa L.; Kurosaka, Hiroshi; Trainor, Paul A.

    2012-01-01

    Here we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional widefield fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images of similar specimens produced by Scanning Electron Microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. PMID:22930523

  12. Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology.

    PubMed

    Sandell, Lisa L; Kurosaka, Hiroshi; Trainor, Paul A

    2012-11-01

    Here, we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional wide field fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images produced by scanning electron microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. Copyright © 2012 Wiley Periodicals, Inc.

  13. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy.

    PubMed

    Verveer, P. J; Gemkow, M. J; Jovin, T. M

    1999-01-01

    We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented.

  14. A new diagnostic technique for tinea incognito: in vivo reflectance confocal microscopy. Report of five cases.

    PubMed

    Turan, Enver; Erdemir, Asli Turgut; Gurel, Mehmet Salih; Yurt, Nurdan

    2013-02-01

    In vivo confocal laser scanning microscopy (CLSM) is a modern non-invasive method for investigation of the skin that allows real-time visualization of individual cells and subcellular structures with the highest resolution imaging comparable to the routine histopathology. Our aim was to demonstrate the potential of CLSM for non-invasive diagnosis of difficult tinea incognito cases. Clinically atypical lesions in five cases of tinea incognito due to dermatophyte spp. were demonstrated using reflectance confocal laser scanning microscopy (RCM), parallel to KOH preparation and fungal culture of skin scrapings performed in the same patients. The morphological features characteristic for tinea incognito, namely linear branched hyphae in the intercellular area of the stratum corneum, were readily detectable by means of CLSM. In vivo tissue imaging were performed at three different wavelengths (785, 658, 445 nm) and the best images of fungal elements were obtained at 445 nm. All of our five cases had similar reflectance confocal microscopical findings. Our findings suggest the potential of CLSM as a non-invasive tool for the diagnosis of tinea incognito having atypical clinical appearance. Although at present the reflectance confocal microscopy cannot replace the current diagnostic standards for tinea incognito, it may be successfully used as in vivo non-invasive screening tool to facilitate the diagnosis and point to the need for further investigation of the patient. © 2012 John Wiley & Sons A/S.

  15. In vivo laser confocal microscopy findings of Thygeson superficial punctate keratitis.

    PubMed

    Kobayashi, Akira; Yokogawa, Hideaki; Sugiyama, Kazuhisa

    2011-06-01

    We looked for microstructural corneal characteristics of Thygeson superficial punctate keratitis (TSPK) in an in vivo investigation using laser scanning confocal microscopy. Five patients (3 men and 2 women; mean age, 51.8 years) with clinically diagnosed TSPK were enrolled in this study. All patients were examined by slit-lamp biomicroscopy and in vivo laser confocal microscopy. Deposits in selected confocal images of all corneal layers were evaluated qualitatively for shape and degree of light reflection. The most characteristic finding was aggregates of highly reflective deposits with a starburst-like appearance that corresponded with epithelial punctate lesions identified by slit-lamp biomicroscopy; the aggregates were sporadically observed in all cases at the superficial and basal epithelial cell layers. Subepithelial haze was observed in all cases. Langerhans cells were also sporadically observed in all cases at the basal epithelial layer. Bowman layer abnormalities were observed in 3 of 5 cases; all these patients had a long history of TSPK (eg, more than 1 year). In addition, the 3 patients had highly reflective, tiny, needle-shaped materials in the corneal stroma. In vivo laser confocal microscopy is capable of identifying characteristic corneal microstructural changes related to TSPK with a higher resolution than is available with slit-lamp biomicroscopy. It may also be a valuable tool for further research to elucidate both pathogenesis and the natural course of TSPK.

  16. Conjugation of both on-axis and off-axis light in Nipkow disk confocal microscope to increase availability of incoherent light source.

    PubMed

    Saito, Kenta; Arai, Yoshiyuki; Zhang, Jize; Kobayashi, Kentaro; Tani, Tomomi; Nagai, Takeharu

    2011-01-01

    Laser-scanning confocal microscopy has been employed for exploring structures at subcellular, cellular and tissue level in three dimensions. To acquire the confocal image, a coherent light source, such as laser, is generally required in conventional single-point scanning microscopy. The illuminating beam must be focused onto a small spot with diffraction-limited size, and this determines the spatial resolution of the microscopy system. In contrast, multipoint scanning confocal microscopy using a Nipkow disk enables the use of an incoherent light source. We previously demonstrated successful application of a 100 W mercury arc lamp as a light source for the Yokogawa confocal scanner unit in which a microlens array was coupled with a Nipkow disk to focus the collimated incident light onto a pinhole (Saito et al., Cell Struct. Funct., 33: 133-141, 2008). However, transmission efficiency of incident light through the pinhole array was low because off-axis light, the major component of the incident light, was blocked by the non-aperture area of the disk. To improve transmission efficiency, we propose an optical system in which off-axis light is able to be transmitted through pinholes surrounding the pinhole located on the optical axis of the collimator lens. This optical system facilitates the use of not only the on-axis but also the off-axis light such that the available incident light is considerably improved. As a result, we apply the proposed system to high-speed confocal and multicolor imaging both with a satisfactory signal-to-noise ratio.

  17. Validation of a Three-Dimensional Method for Counting and Sizing Podocytes in Whole Glomeruli

    PubMed Central

    van der Wolde, James W.; Schulze, Keith E.; Short, Kieran M.; Wong, Milagros N.; Bensley, Jonathan G.; Cullen-McEwen, Luise A.; Caruana, Georgina; Hokke, Stacey N.; Li, Jinhua; Firth, Stephen D.; Harper, Ian S.; Nikolic-Paterson, David J.; Bertram, John F.

    2016-01-01

    Podocyte depletion is sufficient for the development of numerous glomerular diseases and can be absolute (loss of podocytes) or relative (reduced number of podocytes per volume of glomerulus). Commonly used methods to quantify podocyte depletion introduce bias, whereas gold standard stereologic methodologies are time consuming and impractical. We developed a novel approach for assessing podocyte depletion in whole glomeruli that combines immunofluorescence, optical clearing, confocal microscopy, and three-dimensional analysis. We validated this method in a transgenic mouse model of selective podocyte depletion, in which we determined dose-dependent alterations in several quantitative indices of podocyte depletion. This new approach provides a quantitative tool for the comprehensive and time-efficient analysis of podocyte depletion in whole glomeruli. PMID:26975438

  18. Quantitative image analysis for investigating cell-matrix interactions

    NASA Astrophysics Data System (ADS)

    Burkel, Brian; Notbohm, Jacob

    2017-07-01

    The extracellular matrix provides both chemical and physical cues that control cellular processes such as migration, division, differentiation, and cancer progression. Cells can mechanically alter the matrix by applying forces that result in matrix displacements, which in turn may localize to form dense bands along which cells may migrate. To quantify the displacements, we use confocal microscopy and fluorescent labeling to acquire high-contrast images of the fibrous material. Using a technique for quantitative image analysis called digital volume correlation, we then compute the matrix displacements. Our experimental technology offers a means to quantify matrix mechanics and cell-matrix interactions. We are now using these experimental tools to modulate mechanical properties of the matrix to study cell contraction and migration.

  19. Use of a white light supercontinuum laser for confocal interference-reflection microscopy

    PubMed Central

    Chiu, L-D; Su, L; Reichelt, S; Amos, WB

    2012-01-01

    Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460–700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser. PMID:22432542

  20. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community. PMID:24921725

  1. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography).

    PubMed

    Siegel, Nisan; Storrie, Brian; Bruce, Marc; Brooker, Gary

    2015-02-07

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called "CINCH". An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution.

  2. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    PubMed

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  3. Fibre optic confocal imaging (FOCI) for subsurface microscopy of the colon in vivo.

    PubMed Central

    Delaney, P M; King, R G; Lambert, J R; Harris, M R

    1994-01-01

    Fibre optic confocal imaging (FOCI) is a new type of microscopy which has been recently developed (Delaney et al. 1993). In contrast to conventional light microscopy, FOCI and other confocal techniques allow clear imaging of subsurface structures within translucent objects. However, unlike conventional confocal microscopes which are bulky (because of a need for accurate alignment of large components) FOCI allows the imaging end to be miniaturised and relatively mobile. FOCI is thus particularly suited for clear subsurface imaging of structures within living animals or subjects. The aim of the present study was to assess the suitability of using FOCI for imaging of subsurface structures within the colon, both in vitro (human and rat biopsies) and in vivo (in rats). Images were obtained in fluorescence mode (excitation 488 nm, detection above 515 nm) following topical application of fluorescein. By this technique the glandular structure of the colon was imaged. FOCI is thus suitable for subsurface imaging of the colon in vivo. Images Fig. 2 Fig. 3 PMID:8157487

  4. Corneal Confocal Microscopy Detects Corneal Nerve Damage in Patients Admitted With Acute Ischemic Stroke.

    PubMed

    Khan, Adnan; Akhtar, Naveed; Kamran, Saadat; Ponirakis, Georgios; Petropoulos, Ioannis N; Tunio, Nahel A; Dargham, Soha R; Imam, Yahia; Sartaj, Faheem; Parray, Aijaz; Bourke, Paula; Khan, Rabia; Santos, Mark; Joseph, Sujatha; Shuaib, Ashfaq; Malik, Rayaz A

    2017-11-01

    Corneal confocal microscopy can identify corneal nerve damage in patients with peripheral and central neurodegeneration. However, the use of corneal confocal microscopy in patients presenting with acute ischemic stroke is unknown. One hundred thirty patients (57 without diabetes mellitus [normal glucose tolerance], 32 with impaired glucose tolerance, and 41 with type 2 diabetes mellitus) admitted with acute ischemic stroke, and 28 age-matched healthy control participants underwent corneal confocal microscopy to quantify corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length. There was a significant reduction in corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length in stroke patients with normal glucose tolerance ( P <0.001, P <0.001, P <0.001), impaired glucose tolerance ( P =0.004, P <0.001, P =0.002), and type 2 diabetes mellitus ( P <0.001, P <0.001, P <0.001) compared with controls. HbA1c and triglycerides correlated with corneal nerve fiber density ( r =-0.187, P =0.03; r =-0.229 P =0.01), corneal nerve fiber length ( r =-0.228, P =0.009; r =-0.285; P =0.001), and corneal nerve branch density ( r =-0.187, P =0.033; r =-0.229, P =0.01). Multiple linear regression showed no independent associations between corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length and relevant risk factors for stroke. Corneal confocal microscopy is a rapid noninvasive ophthalmic imaging technique that identifies corneal nerve fiber loss in patients with acute ischemic stroke. © 2017 American Heart Association, Inc.

  5. In-vivo immunofluorescence confocal microscopy of herpes simplex virus type 1 keratitis

    NASA Astrophysics Data System (ADS)

    Kaufman, Stephen C.; Laird, Jeffery A.; Beuerman, Roger W.

    1996-05-01

    The white-light confocal microscope offers an in vivo, cellular-level resolution view of the cornea. This instrument has proven to be a valuable research and diagnostic tool for the study of infectious keratitis. In this study, we investigate the direct visualization of herpes simplex virus type 1 (HSV-1)-infected corneal epithelium, with in vivo confocal microscopy, using HSV-1 immunofluorescent antibodies. New Zealand white rabbits were infected with McKrae strain of HSV-1 in one eye; the other eye of each rabbit was used as an uninfected control. Four days later, the rabbits were anesthetized and a cellulose sponge was applied to each cornea, and a drop of direct HSV fluorescein-tagged antibody was placed on each sponge every 3 to 5 minutes for 1 hour. Fluorescence confocal microscopy was then performed. The HSV-infected corneas showed broad regions of hyperfluorescent epithelial cells. The uninfected corneas revealed no background fluorescence. Thus, using the confocal microscope with a fluorescent cube, we were able to visualize HSV-infected corneal epithelial cells tagged with a direct fluorescent antibody. This process may prove to be a useful clinical tool for the in vivo diagnosis of HSV keratitis.

  6. Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy.

    PubMed

    Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike

    2013-06-01

    Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.

  7. Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike

    2013-06-01

    Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.

  8. Three-dimensional modeling and quantitative analysis of gap junction distributions in cardiac tissue.

    PubMed

    Lackey, Daniel P; Carruth, Eric D; Lasher, Richard A; Boenisch, Jan; Sachse, Frank B; Hitchcock, Robert W

    2011-11-01

    Gap junctions play a fundamental role in intercellular communication in cardiac tissue. Various types of heart disease including hypertrophy and ischemia are associated with alterations of the spatial arrangement of gap junctions. Previous studies applied two-dimensional optical and electron-microscopy to visualize gap junction arrangements. In normal cardiomyocytes, gap junctions were primarily found at cell ends, but can be found also in more central regions. In this study, we extended these approaches toward three-dimensional reconstruction of gap junction distributions based on high-resolution scanning confocal microscopy and image processing. We developed methods for quantitative characterization of gap junction distributions based on analysis of intensity profiles along the principal axes of myocytes. The analyses characterized gap junction polarization at cell ends and higher-order statistical image moments of intensity profiles. The methodology was tested in rat ventricular myocardium. Our analysis yielded novel quantitative data on gap junction distributions. In particular, the analysis demonstrated that the distributions exhibit significant variability with respect to polarization, skewness, and kurtosis. We suggest that this methodology provides a quantitative alternative to current approaches based on visual inspection, with applications in particular in characterization of engineered and diseased myocardium. Furthermore, we propose that these data provide improved input for computational modeling of cardiac conduction.

  9. 3D Actin Network Centerline Extraction with Multiple Active Contours

    PubMed Central

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2013-01-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels. PMID:24316442

  10. Confocal Raman microscopy of morphological changes in poly(ethylene terephthalate) film induced by supercritical CO(2).

    PubMed

    Fleming, Oliver S; Kazarian, Sergei G

    2004-04-01

    Poly(ethylene terephthalate) (PET) film was exposed to supercritical (sc) CO(2) and confocal Raman microscopy was used to investigate the morphological changes induced. The study evaluates the use of oil and dry objectives in confocal mode to obtain depth profiles of PET film. These results were compared with the data obtained by mapping of the film cross-section. A significant gradient of degree of crystallinity normal to the surface of PET film down to 60 microm has been observed. The gradient of the degree of morphological changes are functions of exposure time and pressure.

  11. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    PubMed Central

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2015-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy. PMID:26413560

  12. Confocal microscopy as a useful approach to describe gill rakers of Asian species of carp and native filter-feeding fishes of the upper Mississippi River system

    USGS Publications Warehouse

    Liza R. Walleser,; D.R. Howard,; Sandheinrich, Mark B.; Gaikowski, Mark P.; Amberg, Jon J.

    2014-01-01

    To better understand potential diet overlap among exotic Asian species of carp and native species of filter-feeding fishes of the upper Mississippi River system, microscopy was used to document morphological differences in the gill rakers. Analysing samples first with light microscopy and subsequently with confocal microscopy, the three-dimensional structure of gill rakers in Hypophthalmichthys molitrix,Hypophthalmichthys nobilis and Dorosoma cepedianum was more thoroughly described and illustrated than previous work with traditional microscopy techniques. The three-dimensional structure of gill rakers in Ictiobus cyprinellus was described and illustrated for the first time.

  13. Three-dimensional confocal microscopy of the living cornea and ocular lens

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1991-07-01

    The three-dimensional reconstruction of the optic zone of the cornea and the ocular crystalline lens has been accomplished using confocal microscopy and volume rendering computer techniques. A laser scanning confocal microscope was used in the reflected light mode to obtain the two-dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with a 488 nm wavelength. The microscope objective was a Leitz X25, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133 three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their 'beaded' cell borders, basal lamina, nerve plexus, nerve fibers, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in- situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers. The three-dimensional data sets of the cornea and the ocular lens were reconstructed in the computer using volume rendering techniques. Stereo pairs were also created of the two- dimensional ocular images for visualization. The stack of two-dimensional images was reconstructed into a three-dimensional object using volume rendering techniques. This demonstration of the three-dimensional visualization of the intact, enucleated eye provides an important step toward quantitative three-dimensional morphometry of the eye. The important aspects of three-dimensional reconstruction are discussed.

  14. Real-time PCR to determine transgene copy number and to quantitate the biolocalization of adoptively transferred cells from EGFP-transgenic mice.

    PubMed

    Joshi, Molishree; Keith Pittman, H; Haisch, Carl; Verbanac, Kathryn

    2008-09-01

    Quantitative real-time PCR (qPCR) is a sensitive technique for the detection and quantitation of specific DNA sequences. Here we describe a Taqman qPCR assay for quantification of tissue-localized, adoptively transferred enhanced green fluorescent protein (EGFP)-transgenic cells. A standard curve constructed from serial dilutions of a plasmid containing the EGFP transgene was (i) highly reproducible, (ii) detected as few as two copies, and (iii) was included in each qPCR assay. qPCR analysis of genomic DNA was used to determine transgene copy number in several mouse strains. Fluorescent microscopy of tissue sections showed that adoptively transferred vascular endothelial cells (VEC) from EGFP-transgenic mice specifically localized to tissue with metastatic tumors in syngeneic recipients. VEC microscopic enumeration of liver metastases strongly correlated with qPCR analysis of identical sections (Pearson correlation 0.81). EGFP was undetectable in tissue from control mice by qPCR. In another study using intra-tumor EGFP-VEC delivery to subcutaneous tumors, manual cell count and qPCR analysis of alternating sections also strongly correlated (Pearson correlation 0.82). Confocal microscopy of the subcutaneous tumor sections determined that visual fluorescent signals were frequently tissue artifacts. This qPCR methodology offers specific, objective, and rapid quantitation, uncomplicated by tissue autofluorescence, and should be readily transferable to other in vivo models to quantitate the biolocalization of transplanted cells.

  15. Development of a viability standard curve for microencapsulated probiotic bacteria using confocal microscopy and image analysis software.

    PubMed

    Moore, Sarah; Kailasapathy, Kasipathy; Phillips, Michael; Jones, Mark R

    2015-07-01

    Microencapsulation is proposed to protect probiotic strains from food processing procedures and to maintain probiotic viability. Little research has described the in situ viability of microencapsulated probiotics. This study successfully developed a real-time viability standard curve for microencapsulated bacteria using confocal microscopy, fluorescent dyes and image analysis software. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Evaluation of Characterization Techniques for Carbon-Carbon Composites

    DTIC Science & Technology

    1992-05-01

    Enhancement of Resin (50X) 51 28 Confocal Image of Reticulated , Vitreous Carbon Foam 53 29 Schemmtic Principle of Backscattered Electron Microscopy for...future. 7.2 Confocal Microscopy Both carbon - carbon composites and reticulated vitreous carbon foams were submitted to Sarastro, Inc. to evaluate...indicate 1-micron resolutions are possible; however, the depth penetration is limited even further at these parameters. Six reticulated vitreous carbon

  17. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography)

    PubMed Central

    Siegel, Nisan; Storrie, Brian; Bruce, Marc

    2016-01-01

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called “CINCH”. An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution. PMID:26839443

  18. Spinning Disk Confocal Imaging of Neutrophil Migration in Zebrafish

    PubMed Central

    Lam, Pui-ying; Fischer, Robert S; Shin, William D.; Waterman, Clare M; Huttenlocher, Anna

    2014-01-01

    Live-cell imaging techniques have been substantially improved due to advances in confocal microscopy instrumentation coupled with ultrasensitive detectors. The spinning disk confocal system is capable of generating images of fluorescent live samples with broad dynamic range and high temporal and spatial resolution. The ability to acquire fluorescent images of living cells in vivo on a millisecond timescale allows the dissection of biological processes that have not previously been visualized in a physiologically relevant context. In vivo imaging of rapidly moving cells such as neutrophils can be technically challenging. In this chapter, we describe the practical aspects of imaging neutrophils in zebrafish embryos using spinning disk confocal microscopy. Similar setups can also be applied to image other motile cell types and signaling processes in translucent animals or tissues. PMID:24504955

  19. Quantification of Cardiomyocyte Alignment from Three-Dimensional (3D) Confocal Microscopy of Engineered Tissue.

    PubMed

    Kowalski, William J; Yuan, Fangping; Nakane, Takeichiro; Masumoto, Hidetoshi; Dwenger, Marc; Ye, Fei; Tinney, Joseph P; Keller, Bradley B

    2017-08-01

    Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms. We developed an automated method to measure local 3D orientations based on structure tensor analysis and incorporated an adaptive subregion size to account for multiple scales. Our method calculates the statistical concentration parameter, κ, to quantify alignment, as well as the traditional orientational order parameter. We validated our method using synthetic images and accurately measured principal axis and concentration. We then applied our method to confocal stacks of cleared, whole-mount engineered cardiac tissues generated from human-induced pluripotent stem cells or embryonic chick cardiac cells and quantified cardiomyocyte alignment. We found significant differences in alignment based on cellular composition and tissue geometry. These results from our synthetic images and confocal data demonstrate the efficiency and accuracy of our method to measure alignment in 3D tissues.

  20. Confocal laser scanning microscopy of porcine skin: implications for human wound healing studies

    PubMed Central

    VARDAXIS, N. J.; BRANS, T. A.; BOON, M. E.; KREIS, R. W.; MARRES, L. M.

    1997-01-01

    The structure of porcine skin as examined by light microscopy is reviewed and its similarities to and differences from human skin are highlighted. Special imaging techniques and staining procedures are described and their use in gathering morphological information in porcine skin is discussed. Confocal laser scanning microscopy (CLSM) was employed to examine the structure of porcine skin and the findings are presented as an adjunct to the information already available in the literature. It is concluded that CLSM provides valuable additional morphological information to material examined by conventional microscopy and is useful for wound healing studies in the porcine model. PMID:9183682

  1. Image scanning fluorescence emission difference microscopy based on a detector array.

    PubMed

    Li, Y; Liu, S; Liu, D; Sun, S; Kuang, C; Ding, Z; Liu, X

    2017-06-01

    We propose a novel imaging method that enables the enhancement of three-dimensional resolution of confocal microscopy significantly and achieve experimentally a new fluorescence emission difference method for the first time, based on the parallel detection with a detector array. Following the principles of photon reassignment in image scanning microscopy, images captured by the detector array were arranged. And by selecting appropriate reassign patterns, the imaging result with enhanced resolution can be achieved with the method of fluorescence emission difference. Two specific methods are proposed in this paper, showing that the difference between an image scanning microscopy image and a confocal image will achieve an improvement of transverse resolution by approximately 43% compared with that in confocal microscopy, and the axial resolution can also be enhanced by at least 22% experimentally and 35% theoretically. Moreover, the methods presented in this paper can improve the lateral resolution by around 10% than fluorescence emission difference and 15% than Airyscan. The mechanism of our methods is verified by numerical simulations and experimental results, and it has significant potential in biomedical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  2. Quantitative inactivation-mechanisms of P. digitatum and A. niger spores based on atomic oxygen dose

    NASA Astrophysics Data System (ADS)

    Ito, Masafumi; Hashizume, Hiroshi; Ohta, Takayuki; Hori, Masaru

    2014-10-01

    We have investigated inactivation mechanisms of Penicillium digitatum and Asperguills niger spores using atmospheric-pressure radical source quantitatively. The radical source was specially developed for supplying only neutral radicals without charged species and UV-light emissions. Reactive oxygen radical densities such as grand-state oxygen atoms, excited-state oxygen molecules and ozone were measured using VUV and UV absorption spectroscopies. The measurements and the treatments of spores were carried out in an Ar-purged chamber for eliminating the influences of OH, NOx and so on. The results revealed that the inactivation of spores can be explained by atomic-oxygen dose under the conditions employing neutral ROS irradiations. On the basis of the dose, we have observed the changes of intracellular organelles and membrane functions using TEM, SEM and confocal- laser fluorescent microscopy. From these results, we discuss the detail inactivation-mechanisms quantitatively based on atomic-oxygen dose.

  3. Quantitative imaging of aggregated emulsions.

    PubMed

    Penfold, Robert; Watson, Andrew D; Mackie, Alan R; Hibberd, David J

    2006-02-28

    Noise reduction, restoration, and segmentation methods are developed for the quantitative structural analysis in three dimensions of aggregated oil-in-water emulsion systems imaged by fluorescence confocal laser scanning microscopy. Mindful of typical industrial formulations, the methods are demonstrated for concentrated (30% volume fraction) and polydisperse emulsions. Following a regularized deconvolution step using an analytic optical transfer function and appropriate binary thresholding, novel application of the Euclidean distance map provides effective discrimination of closely clustered emulsion droplets with size variation over at least 1 order of magnitude. The a priori assumption of spherical nonintersecting objects provides crucial information to combat the ill-posed inverse problem presented by locating individual particles. Position coordinates and size estimates are recovered with sufficient precision to permit quantitative study of static geometrical features. In particular, aggregate morphology is characterized by a novel void distribution measure based on the generalized Apollonius problem. This is also compared with conventional Voronoi/Delauney analysis.

  4. Reflectance confocal microscopy for the evaluation of sensitive skin.

    PubMed

    Ma, Y-F; Yuan, C; Jiang, W-C; Wang, X-L; Humbert, P

    2017-05-01

    Nowadays, the diagnosis for sensitive skin relies on subjective assessment or on the combination of subjective and objective evaluation. No quantitative evaluation is available. It could be expected that confocal microscopy imaging could be of interest to better define the condition. Total 166 healthy female subjects were recruited in this study. Firstly, all subjects completed the sensitive questionnaire. Then, the cutaneous structures were measured by the reflectance confocal microscopy (RCM) on the face and fossa cubitalia. The lactic acid sting test was conducted finally. According to the results of self-perception sensitive skin questionnaire and lactic acid stinging test to evaluate facial skin sensitivity the both positive subjects were regarded as sensitive skin group and both negative group as healthy control group. The results of RCM indicating that the proportion of 'disarranged honeycomb pattern' and 'spongiform edema' in the sensitive group and healthy control group were statistically different (P < 0.05), respectively; The following report 'damaged dermal papilla rings' was not a distinctive pattern, with no significant statistical difference (P > 0.05). The epidermal thickness was 38.88 ± 6.81 μm, healthy control group was 40.31 ± 9.37 μm in, respectively, sensitive skin group and healthy control group, there was no significant statistical difference between the two groups (P > 0.05). The honeycomb structure depth of sensitive group was 20.57 ± 4.86 μm. It was for 23.27 ± 6.38 μm, healthy control group the difference being statistically different between the two groups (P < 0.05). Based on the RCM results, 'epidermal honeycomb structure' and 'spongiform edema' may be used as new skin signs of RCM evaluation of sensitive skin effectively. Indeed, sensitive skin honeycomb structure depth was thinner compared with healthy control group. Such a specific pattern has good clinical and monitoring value for the further exploration. RCM could provide new data and patterns for the evaluation of sensitive skin. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Cell Motility Dynamics: A Novel Segmentation Algorithm to Quantify Multi-Cellular Bright Field Microscopy Images

    PubMed Central

    Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2011-01-01

    Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single-cell processing to perform objective, accurate quantitative analyses for various biological applications. PMID:22096600

  6. Cell motility dynamics: a novel segmentation algorithm to quantify multi-cellular bright field microscopy images.

    PubMed

    Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2011-01-01

    Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single-cell processing to perform objective, accurate quantitative analyses for various biological applications.

  7. Confocal laser scanning microscopic photoconversion: a new method to stabilize fluorescently labeled cellular elements for electron microscopic analysis.

    PubMed

    Colello, Raymond J; Tozer, Jordan; Henderson, Scott C

    2012-01-01

    Photoconversion, the method by which a fluorescent dye is transformed into a stable, osmiophilic product that can be visualized by electron microscopy, is the most widely used method to enable the ultrastructural analysis of fluorescently labeled cellular structures. Nevertheless, the conventional method of photoconversion using widefield fluorescence microscopy requires long reaction times and results in low-resolution cell targeting. Accordingly, we have developed a photoconversion method that ameliorates these limitations by adapting confocal laser scanning microscopy to the procedure. We have found that this method greatly reduces photoconversion times, as compared to conventional wide field microscopy. Moreover, region-of-interest scanning capabilities of a confocal microscope facilitate the targeting of the photoconversion process to individual cellular or subcellular elements within a fluorescent field. This reduces the area of the cell exposed to light energy, thereby reducing the ultrastructural damage common to this process when widefield microscopes are employed. © 2012 by John Wiley & Sons, Inc.

  8. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer

    2013-12-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Spatially-controlled illumination with rescan confocal microscopy enhances image quality, resolution and reduces photodamage

    NASA Astrophysics Data System (ADS)

    Krishnaswami, Venkataraman; De Luca, Giulia M. R.; Breedijk, Ronald M. P.; Van Noorden, Cornelis J. F.; Manders, Erik M. M.; Hoebe, Ron A.

    2017-02-01

    Fluorescence microscopy is an important tool in biomedical imaging. An inherent trade-off lies between image quality and photodamage. Recently, we have introduced rescan confocal microscopy (RCM) that improves the lateral resolution of a confocal microscope down to 170 nm. Previously, we have demonstrated that with controlled-light exposure microscopy, spatial control of illumination reduces photodamage without compromising image quality. Here, we show that the combination of these two techniques leads to high resolution imaging with reduced photodamage without compromising image quality. Implementation of spatially-controlled illumination was carried out in RCM using a line scanning-based approach. Illumination is spatially-controlled for every line during imaging with the help of a prediction algorithm that estimates the spatial profile of the fluorescent specimen. The estimation is based on the information available from previously acquired line images. As a proof-of-principle, we show images of N1E-115 neuroblastoma cells, obtained by this new setup with reduced illumination dose, improved resolution and without compromising image quality.

  10. High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy.

    PubMed

    Pozzi, P; Wilding, D; Soloviev, O; Verstraete, H; Bliek, L; Vdovin, G; Verhaegen, M

    2017-01-23

    The quality of fluorescence microscopy images is often impaired by the presence of sample induced optical aberrations. Adaptive optical elements such as deformable mirrors or spatial light modulators can be used to correct aberrations. However, previously reported techniques either require special sample preparation, or time consuming optimization procedures for the correction of static aberrations. This paper reports a technique for optical sectioning fluorescence microscopy capable of correcting dynamic aberrations in any fluorescent sample during the acquisition. This is achieved by implementing adaptive optics in a non conventional confocal microscopy setup, with multiple programmable confocal apertures, in which out of focus light can be separately detected, and used to optimize the correction performance with a sampling frequency an order of magnitude faster than the imaging rate of the system. The paper reports results comparing the correction performances to traditional image optimization algorithms, and demonstrates how the system can compensate for dynamic changes in the aberrations, such as those introduced during a focal stack acquisition though a thick sample.

  11. Assessment of nerve ultrastructure by fibre-optic confocal microscopy.

    PubMed

    Cushway, T R; Lanzetta, M; Cox, G; Trickett, R; Owen, E R

    1996-01-01

    Fibre-optic technology combined with confocality produces a microscope capable of optical thin sectioning. In this original study, tibial nerves have been stained in a rat model with a vital dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide, and analysed by fibre-optic confocal microscopy to produce detailed images of nerve ultrastructure. Schwann cells, nodes of Ranvier and longitudinal myelinated sheaths enclosing axons were clearly visible. Single axons appeared as brightly staining longitudinal structures. This allowed easy tracing of multiple signal axons within the nerve tissue. An accurate measurement of internodal lengths was easily accomplished. This technique is comparable to current histological techniques, but does not require biopsy, thin sectioning or tissue fixing. This study offers a standard for further in vivo microscopy, including the possibility of monitoring the progression of nerve regeneration following microsurgical neurorraphy.

  12. Laser beam shaping for biomedical microscopy techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei

    2016-04-01

    Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to be realized by an imaging optical system which can include microscope objectives and tube lenses. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in microscopy systems. Examples of real implementations and experimental results will be presented as well.

  13. Corneal Confocal Microscopy Detects Early Nerve Regeneration in Diabetic Neuropathy After Simultaneous Pancreas and Kidney Transplantation

    PubMed Central

    Tavakoli, Mitra; Mitu-Pretorian, Maria; Petropoulos, Ioannis N.; Fadavi, Hassan; Asghar, Omar; Alam, Uazman; Ponirakis, Georgios; Jeziorska, Maria; Marshall, Andy; Efron, Nathan; Boulton, Andrew J.; Augustine, Titus; Malik, Rayaz A.

    2013-01-01

    Diabetic neuropathy is associated with increased morbidity and mortality. To date, limited data in subjects with impaired glucose tolerance and diabetes demonstrate nerve fiber repair after intervention. This may reflect a lack of efficacy of the interventions but may also reflect difficulty of the tests currently deployed to adequately assess nerve fiber repair, particularly in short-term studies. Corneal confocal microscopy (CCM) represents a novel noninvasive means to quantify nerve fiber damage and repair. Fifteen type 1 diabetic patients undergoing simultaneous pancreas–kidney transplantation (SPK) underwent detailed assessment of neurologic deficits, quantitative sensory testing (QST), electrophysiology, skin biopsy, corneal sensitivity, and CCM at baseline and at 6 and 12 months after successful SPK. At baseline, diabetic patients had a significant neuropathy compared with control subjects. After successful SPK there was no significant change in neurologic impairment, neurophysiology, QST, corneal sensitivity, and intraepidermal nerve fiber density (IENFD). However, CCM demonstrated significant improvements in corneal nerve fiber density, branch density, and length at 12 months. Normalization of glycemia after SPK shows no significant improvement in neuropathy assessed by the neurologic deficits, QST, electrophysiology, and IENFD. However, CCM shows a significant improvement in nerve morphology, providing a novel noninvasive means to establish early nerve repair that is missed by currently advocated assessment techniques. PMID:23002037

  14. Hematopoiesis in 3 dimensions: human and murine bone marrow architecture visualized by confocal microscopy.

    PubMed

    Takaku, Tomoiku; Malide, Daniela; Chen, Jichun; Calado, Rodrigo T; Kajigaya, Sachiko; Young, Neal S

    2010-10-14

    In many animals, blood cell production occurs in the bone marrow. Hematopoiesis is complex, requiring self-renewing and pluripotent stem cells, differentiated progenitor and precursor cells, and supportive stroma, adipose tissue, vascular structures, and extracellular matrix. Although imaging is a vital tool in hematology research, the 3-dimensional architecture of the bone marrow tissue in situ remains largely uncharacterized. The major hindrance to imaging the intact marrow is the surrounding bone structures are almost impossible to cut/image through. We have overcome these obstacles and describe a method whereby whole-mounts of bone marrow tissue were immunostained and imaged in 3 dimensions by confocal fluorescence and reflection microscopy. We have successfully mapped by multicolor immunofluorescence the localization pattern of as many as 4 cell features simultaneously over large tiled views and to depths of approximately 150 μm. Three-dimensional images can be assessed qualitatively and quantitatively to appreciate the distribution of cell types and their interrelationships, with minimal perturbations of the tissue. We demonstrate its application to normal mouse and human marrow, to murine models of marrow failure, and to patients with aplastic anemia, myeloid, and lymphoid cell malignancies. The technique should be generally adaptable for basic laboratory investigation and for clinical diagnosis of hematologic diseases.

  15. In vivo laser confocal microscopic analysis of murine cornea and lens microstructures.

    PubMed

    Yuasa, Masashi; Kobayashi, Akira; Yokogawa, Hideaki; Sugiyama, Kazuhisa

    2008-01-01

    The purpose of the current study is to investigate in vivo microstructures of anterior segments of normal murine eyes by new-generation in vivo laser confocal microscopy. Twenty-six corneas and lenses from 13 mice were analyzed by in vivo laser confocal microscopy. Murine corneal superficial cells formed a polygonal cell pattern, with a mean cell density of 577 +/- 115 cells/mm2 (mean +/- standard deviation). Corneal basal epithelial cells had dark cytoplasm and were closely organized (9,312 +/- 1,777 cells/mm2). Sub-basal nerve fiber bundles were arranged in a whorl pattern, with both clockwise and counter-clockwise patterns. In the stroma, keratocytes were observed as numerous reflective stellate structures. The endothelial cells were organized in a honeycomb pattern (2,463 +/- 292 cells/mm2). Deeper inside the eye, murine lens epithelial cells were organized in a regular pattern (4,168 +/- 636 cells/mm2) and numerous lens fibers were observed. In vivo laser confocal microscopy can provide high-resolution images of all corneal layers and lens structures of mice without sacrificing animals or tissue preparation.

  16. Pupil engineering for a confocal reflectance line-scanning microscope

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2011-03-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current confocal point-scanning systems are large, complex, and expensive. A confocal line-scanning microscope, utilizing a of linear array detector can be simpler, smaller, less expensive, and may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A line scanner may be implemented with a divided-pupil, half used for transmission and half for detection, or with a full-pupil using a beamsplitter. The premise is that a confocal line-scanner with either a divided-pupil or a full-pupil will provide high resolution and optical sectioning that would be competitive to that of the standard confocal point-scanner. We have developed a confocal line-scanner that combines both divided-pupil and full-pupil configurations. This combined-pupil prototype is being evaluated to determine the advantages and limitations of each configuration for imaging skin, and comparison of performance to that of commercially available standard confocal point-scanning microscopes. With the combined configuration, experimental evaluation of line spread functions (LSFs), contrast, signal-to-noise ratio, and imaging performance is in progress under identical optical and skin conditions. Experimental comparisons between divided-pupil and full-pupil LSFs will be used to determine imaging performance. Both results will be compared to theoretical calculations using our previously reported Fourier analysis model and to the confocal point spread function (PSF). These results may lead to a simpler class of confocal reflectance scanning microscopes for clinical and surgical dermatology.

  17. Development of fluorescent glucose bioprobes and their application on real-time and quantitative monitoring of glucose uptake in living cells.

    PubMed

    Lee, Hyang Yeon; Lee, Jae Jeong; Park, Jongmin; Park, Seung Bum

    2011-01-03

    We developed a novel fluorescent glucose bioprobe, GB2-Cy3, for the real-time and quantitative monitoring of glucose uptake in living cells. We synthesized a series of fluorescent glucose analogues by adding Cy3 fluorophores to the α-anomeric position of D-glucose through various linkers. Systematic and quantitative analysis of these Cy3-labeled glucose analogues revealed that GB2-Cy3 was the ideal fluorescent glucose bioprobe. The cellular uptake of this probe competed with the cellular uptake of D-glucose in the media and was mediated by a glucose-specific transport system, and not by passive diffusion. Flow cytometry and fluorescence microscopy analyses revealed that GB2-Cy3 is ten times more sensitive than 2-NBDG, a leading fluorescent glucose bioprobe. GB2-Cy3 can also be utilized for the quantitative flow cytometry monitoring of glucose uptake in metabolically active C2C12 myocytes under various treatment conditions. As opposed to a glucose uptake assay performed by using radioisotope-labeled deoxy-D-glucose and a scintillation counter, GB2-Cy3 allows the real-time monitoring of glucose uptake in living cells under various experimental conditions by using fluorescence microscopy or confocal laser scanning microscopy (CLSM). Therefore, we believe that GB2-Cy3 can be utilized in high-content screening (HCS) for the discovery of novel therapeutic agents and for making significant advances in biomedical studies and diagnosis of various diseases, especially metabolic diseases. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparative measurement of collagen bundle orientation by Fourier analysis and semiquantitative evaluation: reliability and agreement in Masson's trichrome, Picrosirius red and confocal microscopy techniques.

    PubMed

    Marcos-Garcés, V; Harvat, M; Molina Aguilar, P; Ferrández Izquierdo, A; Ruiz-Saurí, A

    2017-08-01

    Measurement of collagen bundle orientation in histopathological samples is a widely used and useful technique in many research and clinical scenarios. Fourier analysis is the preferred method for performing this measurement, but the most appropriate staining and microscopy technique remains unclear. Some authors advocate the use of Haematoxylin-Eosin (H&E) and confocal microscopy, but there are no studies comparing this technique with other classical collagen stainings. In our study, 46 human skin samples were collected, processed for histological analysis and stained with Masson's trichrome, Picrosirius red and H&E. Five microphotographs of the reticular dermis were taken with a 200× magnification with light microscopy, polarized microscopy and confocal microscopy, respectively. Two independent observers measured collagen bundle orientation with semiautomated Fourier analysis with the Image-Pro Plus 7.0 software and three independent observers performed a semiquantitative evaluation of the same parameter. The average orientation for each case was calculated with the values of the five pictures. We analyzed the interrater reliability, the consistency between Fourier analysis and average semiquantitative evaluation and the consistency between measurements in Masson's trichrome, Picrosirius red and H&E-confocal. Statistical analysis for reliability and agreement was performed with the SPSS 22.0 software and consisted of intraclass correlation coefficient (ICC), Bland-Altman plots and limits of agreement and coefficient of variation. Interrater reliability was almost perfect (ICC > 0.8) with all three histological and microscopy techniques and always superior in Fourier analysis than in average semiquantitative evaluation. Measurements were consistent between Fourier analysis by one observer and average semiquantitative evaluation by three observers, with an almost perfect agreement with Masson's trichrome and Picrosirius red techniques (ICC > 0.8) and a strong agreement with H&E-confocal (0.7 < ICC < 0.8). Comparison of measurements between the three techniques for the same observer showed an almost perfect agreement (ICC > 0.8), better with Fourier analysis than with semiquantitative evaluation (single and average). These results in nonpathological skin samples were also confirmed in a preliminary analysis in eight scleroderma skin samples. Our results show that Masson's trichrome and Picrosirius red are consistent with H&E-confocal for measuring collagen bundle orientation in histological samples and could thus be used indistinctly for this purpose. Fourier analysis is superior to average semiquantitative evaluation and should keep being used as the preferred method. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  19. Biophotonics of skin: method for correction of deep Raman spectra distorted by elastic scattering

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Gobinet, Cyril; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Confocal Raman microspectroscopy allows in-depth molecular and conformational characterization of biological tissues non-invasively. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering this phenomenon, enabling thus quantitative diagnosis. In this purpose, we developed PDMS phantoms mimicking skin optical properties used as tools for instrument calibration and data processing method validation. An optical system based on a fibers bundle has been previously developed for in vivo skin characterization with Diffuse Reflectance Spectroscopy (DRS). Used on our phantoms, this technique allows checking their optical properties: the targeted ones were retrieved. Raman microspectroscopy was performed using a commercial confocal microscope. Depth profiles were constructed from integrated intensity of some specific PDMS Raman vibrations. Acquired on monolayer phantoms, they display a decline which is increasing with the scattering coefficient. Furthermore, when acquiring Raman spectra on multilayered phantoms, the signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties of any biological sample, obtained with DRS for example, is crucial to correct properly Raman depth profiles. A model, inspired from S.L. Jacques's expression for Confocal Reflectance Microscopy and modified at some points, is proposed and tested to fit the depth profiles obtained on the phantoms as function of the reduced scattering coefficient. Consequently, once the optical properties of a biological sample are known, the intensity of deep Raman spectra distorted by elastic scattering can be corrected with our reliable model, permitting thus to consider quantitative studies for purposes of characterization or diagnosis.

  20. Corneal collagen cross-linking: a confocal, electron, and light microscopy study of eye bank corneas.

    PubMed

    Dhaliwal, Jasmeet S; Kaufman, Stephen C

    2009-01-01

    The purpose of this study was to evaluate morphological changes induced by corneal collagen cross-linking in a human ex vivo cornea, using confocal, electron, and light microscopy. The central epithelium was partially removed from ex vivo human corneal buttons. Riboflavin 0.1% solution was applied before ultraviolet A light treatment and then for every 2 minutes for 30 minutes while the corneas were exposed to ultraviolet A light at a wavelength of 370 nm and intensity of 3 mW/cm(2). Each cornea was evaluated using confocal, electron, and light microscopy. Confocal microscopy demonstrated normal-appearing corneas on their initial pretreatment examination, with reduced stromal detail. After treatment, a superficial layer of highly reflective spherical structures (4-10 microm) was observed. Many of these hyperreflective structures appeared up to a depth of 300 microm. The remainder of the corneal stroma and endothelium appeared normal. Electron microscopy showed keratocyte apoptotic changes to a depth of 300 microm. No observable pathologic changes were seen on histology. Based on clinical studies, corneal cross-linking is a promising treatment that appears to be safe and to halt ectatic corneal disease progression. Initial European studies used animal models to extrapolate human protocols. In conjunction with clinical studies, we believe that human ex vivo corneal studies provide a means to evaluate the structural and morphological changes associated with this procedure, within human corneas, in a manner that cannot be accomplished in vivo.

  1. The Use of Intravital Two-Photon and Thick Section Confocal Imaging to Analyze B Lymphocyte Trafficking in Lymph Nodes and Spleen.

    PubMed

    Park, Chung; Hwang, Il-Young; Kehrl, John H

    2018-01-01

    Intravital two-photon laser scanning microscopy (TP-LSM) has allowed the direct observation of immune cells in intact organs of living animals. In the B cell biology field TP-LSM has detailed the movement of B cells in high endothelial venules and during their transmigration into lymph organs; described the movement and positioning of B cells within lymphoid organs; outlined the mechanisms by which antigen is delivered to B cells; observed B cell interacting with T cells, other cell types, and even with pathogens; and delineated the egress of B cells from the lymph node (LN) parenchyma into the efferent lymphatics. As the quality of TP-LSM improves and as new fluorescent probes become available additional insights into B cell behavior and function await new investigations. Yet intravital TP-LSM has some disadvantages including a lower resolution than standard confocal microscopy, a narrow imaging window, and a shallow depth of imaging. We have found that supplementing intravital TP-LSM with conventional confocal microscopy using thick LN sections helps to overcome some of these shortcomings. Here, we describe procedures for visualizing the behavior and trafficking of fluorescently labeled, adoptively transferred antigen-activated B cells within the inguinal LN of live mice using two-photon microscopy. Also, we introduce procedures for fixed thick section imaging using standard confocal microscopy, which allows imaging of fluorescently labeled cells deep in the LN cortex and in the spleen with high resolution.

  2. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo.

    PubMed

    Freeman, Esther E; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N; Anderson, R Rox; Tearney, Guillermo J; Kang, Dongkyun

    2018-04-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging.

  3. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo

    PubMed Central

    Freeman, Esther E.; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N.; Anderson, R. Rox; Tearney, Guillermo J.; Kang, Dongkyun

    2018-01-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging. PMID:29675328

  4. Quantitative analysis of the local phase transitions induced by the laser heating

    DOE PAGES

    Levlev, Anton V.; Susner, Michael A.; McGuire, Michael A.; ...

    2015-11-04

    Functional imaging enabled by scanning probe microscopy (SPM) allows investigations of nanoscale material properties under a wide range of external conditions, including temperature. However, a number of shortcomings preclude the use of the most common material heating techniques, thereby limiting precise temperature measurements. Here we discuss an approach to local laser heating on the micron scale and its applicability for SPM. We applied local heating coupled with piezoresponse force microscopy and confocal Raman spectroscopy for nanoscale investigations of a ferroelectric-paraelectric phase transition in the copper indium thiophosphate layered ferroelectric. Bayesian linear unmixing applied to experimental results allowed extraction of themore » Raman spectra of different material phases and enabled temperature calibration in the heated region. Lastly, the obtained results enable a systematic approach for studying temperature-dependent material functionalities in heretofore unavailable temperature regimes.« less

  5. Rapid diagnosis of tinea incognito using handheld reflectance confocal microscopy: a paradigm shift in dermatology?

    PubMed

    Navarrete-Dechent, Cristián; Bajaj, Shirin; Marghoob, Ashfaq A; Marchetti, Michael A

    2015-06-01

    Dermatophytoses are common skin infections. Traditional diagnostic tests such as skin scrapings for light microscopy examination, fungal cultures and biopsies remain imperfect due to false-negative test results, cost, time required to perform the procedure, time delays in test results and/or a requirement for an invasive procedure. Herein, we present a case of an 80-year-old female whose tinea incognito was non-invasively diagnosed within seconds using handheld reflectance confocal microscopy (RCM). As non-invasive skin imaging continues to improve, we expect light-based office microscopy to be replaced with technologies such as RCM, which has multiple and continually expanding diagnostic applications. © 2015 Blackwell Verlag GmbH.

  6. Physics of Hard Sphere Experiment: Scattering, Rheology and Microscopy Study of Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Cheng, Z.-D.; Zhu, J.; Phan, S.-E.; Russel, W. B.; Chaikin, P. M.; Meyer, W. V.

    2002-01-01

    The Physics of Hard Sphere Experiment has two incarnations: the first as a scattering and rheology experiment on STS-83 and STS-94 and the second as a microscopy experiment to be performed in the future on LMM on the space station. Here we describe some of the quantitative and qualitative results from previous flights on the dynamics of crystallization in microgravity and especially the observed interaction of growing crystallites in the coexistance regime. To clarify rheological measurements we also present ground based experiments on the low shear rate viscosity and diffusion coefficient of several hard sphere experiments at high volume fraction. We also show how these experiments will be performed with confocal microscopy and laser tweezers in our lab and as preparation for the phAse II experiments on LMM. One of the main aims of the microscopy study will be the control of colloidal samples using an array of applied fields with an eye toward colloidal architectures. Temperature gradients, electric field gradients, laser tweezers and a variety of switchable imposed surface patterns are used toward this control.

  7. Application of confocal laser microscopy for monitoring mesh implants in herniology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharov, V P; Belokonev, V I; Bratchenko, I A

    2011-04-30

    The state of the surface of mesh implants and their encapsulation region in herniology is investigated by laser confocal microscopy. A correlation between the probability of developing relapses and the size and density of implant microdefects is experimentally shown. The applicability limits of differential reverse scattering for monitoring the post-operation state of implant and adjacent tissues are established based on model numerical experiments. (optical technologies in biophysics and medicine)

  8. Discovery of a New Cellular Motion and Its Relevance to Breast Cancer and Involution

    DTIC Science & Technology

    2014-02-01

    motion (CAMo), live cell imaging , confocal microscopy Overall Project Summary: During this first year of funding we have concentrated our work to...cell types in 3D cultures and in vivo. Subtask 1.1a: Real time live cell imaging using confocal microscopy will be used to image cellular movement...exciting as they are important steps in understanding behavior of normal myoepithelial cells using live cell imaging in physiologically

  9. In vivo confocal microscopy in dermatology: from research to clinical application

    NASA Astrophysics Data System (ADS)

    Ulrich, Martina; Lange-Asschenfeldt, Susanne

    2013-06-01

    Confocal laser scanning microscopy (CLSM) represents an emerging technique for the noninvasive histomorphological analysis of skin in vivo and has shown its applicability for dermatological research as well as its value as an adjunct tool in the clinical management of skin cancer patients. Herein, we aim to give an overview on the current clinical indications for CLSM in dermatology and also highlight the diverse applications of CLSM in dermatological research.

  10. Confocal Raman microscopy to monitor extracellular matrix during dental pulp stem cells differentiation

    NASA Astrophysics Data System (ADS)

    Salehi, Hamideh; Collart-Dutilleul, Pierre-Yves; Gergely, Csilla; Cuisinier, Frédéric J. G.

    2015-07-01

    Regenerative medicine brings promising applications for mesenchymal stem cells, such as dental pulp stem cells (DPSCs). Confocal Raman microscopy, a noninvasive technique, is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800 to 3000 cm-1 region (C-H stretching) and the 960 cm-1 peak (ν1 PO43-) were collected (to image cells and phosphate, respectively), and the ratio of two peaks 1660 over 1690 cm-1 (amide I bands) to measure the collagen cross-linking has been calculated. Raman spectra of DPSCs after 21 days differentiation reveal several phosphate peaks: ν1 (first stretching mode) at 960 cm-1, ν2 at 430 cm-1, and ν4 at 585 cm-1 and collagen cross-linking can also be calculated. Confocal Raman microscopy enables monitoring osteogenic differentiation in vitro and can be a credible tool for clinical stem cell based research.

  11. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy.

    PubMed

    Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D

    2015-01-27

    Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.

  12. ATP concentration as possible marker of liver damage at leukaemia treatment: confocal microscopy-based experimental study and numerical simulations

    NASA Astrophysics Data System (ADS)

    Malashchenko, V.; Zyubin, A.; Babak, S.; Lavrova, A.

    2017-04-01

    We consider the method of confocal microscopy as a convenient instrument for determination of chemical compounds in biological tissues and cells. In particular, we study the dynamics of adenosine triphosphate (ATP) concentration that could be used as a bio-marker of energy metabolism pathologies at the treatment of acute lymphoblastic leukaemia (ALL). On the basis of data obtained by the confocal microscopy, the values of ATP concentration have been calculated for each case. Possible correlations with other characteristics of pathology processes obtained from plasma of leukemia patients show that ATP value could be a prognostic factor of the treatment success. The role of ATP in the drug metabolism switching is also discussed within the context of kinetic modelling of metabolism processes leading to the production of 6-Thioguanosine monophosphate, which is a principal acting agent in chemotherapy.

  13. Multiple microscopic approaches demonstrate linkage between chromoplast architecture and carotenoid composition in diverse Capsicum annuum fruit.

    PubMed

    Kilcrease, James; Collins, Aaron M; Richins, Richard D; Timlin, Jerilyn A; O'Connell, Mary A

    2013-12-01

    Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub-organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live-cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid-based phenotypes. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  14. Reflectance Confocal Microscopy in Lentigo Maligna.

    PubMed

    Gamo, R; Pampín, A; Floristán, U

    2016-12-01

    Lentigo maligna is the most common type of facial melanoma. Diagnosis is complicated, however, as it shares clinical and dermoscopic characteristics with other cutaneous lesions of the face. Reflectance confocal microscopy is an imaging technique that permits the visualization of characteristic features of lentigo maligna. These include a disrupted honeycomb pattern and pagetoid cells with a tendency to show folliculotropism. These cells typically have a dendritic morphology, although they may also appear as round cells measuring over 20μm with atypical nuclei. Poorly defined dermal papillae and atypical cells may be seen at the dermal-epidermal junction and can form bridges resembling mitochondrial structures. Other characteristic findings include junctional swelling with atypical cells located around the follicles, resembling caput medusae. Reflectance confocal microscopy is a very useful tool for diagnosing lentigo maligna. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Evaluation of human sclera after femtosecond laser ablation using two photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Kurtz, Ronald; Juhasz, Tibor

    2012-08-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial thickness intrascleral channels can be created with a femtosecond laser operating at a wavelength of 1700 nm. Such channels have the potential to increase outflow facility and reduce elevated IOP. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in human cadaver eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such channels. This demonstrates that concept of integrating femtosecond laser surgery, and two-photon and confocal imaging has the future potential for image-guided high-precision surgery in transparent and translucent tissue.

  16. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management.

    PubMed

    Palmqvist, N G M; Bejai, S; Meijer, J; Seisenbaeva, G A; Kessler, V G

    2015-05-13

    A novel use of Titania nanoparticles as agents in the nano interface interaction between a beneficial plant growth promoting bacterium (Bacillus amyloliquefaciens UCMB5113) and oilseed rape plants (Brassica napus) for protection against the fungal pathogen Alternaria brassicae is presented. Two different TiO2 nanoparticle material were produced by the Sol-Gel approach, one using the patented Captigel method and the other one applying TiBALDH precursor. The particles were characterized by transmission electron microscopy, thermogravimetric analysis, X-ray diffraction, dynamic light scattering and nano particle tracking analysis. Scanning electron microscopy showed that the bacterium was living in clusters on the roots and the combined energy-dispersive X-ray spectroscopy analysis revealed that titanium was present in these cluster formations. Confocal laser scanning microscopy further demonstrated an increased bacterial colonization of Arabidopsis thaliana roots and a semi-quantitative microscopic assay confirmed an increased bacterial adhesion to the roots. An increased amount of adhered bacteria was further confirmed by quantitative fluorescence measurements. The degree of infection by the fungus was measured and quantified by real-time-qPCR. Results showed that Titania nanoparticles increased adhesion of beneficial bacteria on to the roots of oilseed rape and protected the plants against infection.

  17. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management

    NASA Astrophysics Data System (ADS)

    Palmqvist, N. G. M.; Bejai, S.; Meijer, J.; Seisenbaeva, G. A.; Kessler, V. G.

    2015-05-01

    A novel use of Titania nanoparticles as agents in the nano interface interaction between a beneficial plant growth promoting bacterium (Bacillus amyloliquefaciens UCMB5113) and oilseed rape plants (Brassica napus) for protection against the fungal pathogen Alternaria brassicae is presented. Two different TiO2 nanoparticle material were produced by the Sol-Gel approach, one using the patented Captigel method and the other one applying TiBALDH precursor. The particles were characterized by transmission electron microscopy, thermogravimetric analysis, X-ray diffraction, dynamic light scattering and nano particle tracking analysis. Scanning electron microscopy showed that the bacterium was living in clusters on the roots and the combined energy-dispersive X-ray spectroscopy analysis revealed that titanium was present in these cluster formations. Confocal laser scanning microscopy further demonstrated an increased bacterial colonization of Arabidopsis thaliana roots and a semi-quantitative microscopic assay confirmed an increased bacterial adhesion to the roots. An increased amount of adhered bacteria was further confirmed by quantitative fluorescence measurements. The degree of infection by the fungus was measured and quantified by real-time-qPCR. Results showed that Titania nanoparticles increased adhesion of beneficial bacteria on to the roots of oilseed rape and protected the plants against infection.

  18. Quantitative imaging for discovery and assembly of the metabo-regulome

    PubMed Central

    Okumoto, Sakiko; Takanaga, Hitomi; Frommer, Wolf B.

    2009-01-01

    Summary Little is known about regulatory networks that control metabolic flux in plant cells. Detailed understanding of regulation is crucial for synthetic biology. The difficulty of measuring metabolites with cellular and subcellular precision is a major roadblock. New tools have been developed for monitoring extracellular, cytosolic, organellar and vacuolar ion and metabolite concentrations with a time resolution of milliseconds to hours. Genetically encoded sensors allow quantitative measurement of steady-state concentrations of ions, signaling molecules and metabolites and their respective changes over time. Fluorescence resonance energy transfer (FRET) sensors exploit conformational changes in polypeptides as a proxy for analyte concentrations. Subtle effects of analyte binding on the conformation of the recognition element are translated into a FRET change between two fused green fluorescent protein (GFP) variants, enabling simple monitoring of analyte concentrations using fluorimetry or fluorescence microscopy. Fluorimetry provides information averaged over cell populations, while microscopy detects differences between cells or populations of cells. The genetically encoded sensors can be targeted to subcellular compartments or the cell surface. Confocal microscopy ultimately permits observation of gradients or local differences within a compartment. The FRET assays can be adapted to high-throughput analysis to screen mutant populations in order to systematically identify signaling networks that control individual steps in metabolic flux. PMID:19138219

  19. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management

    PubMed Central

    Palmqvist, N. G. M.; Bejai, S.; Meijer, J.; Seisenbaeva, G. A.; Kessler, V. G.

    2015-01-01

    A novel use of Titania nanoparticles as agents in the nano interface interaction between a beneficial plant growth promoting bacterium (Bacillus amyloliquefaciens UCMB5113) and oilseed rape plants (Brassica napus) for protection against the fungal pathogen Alternaria brassicae is presented. Two different TiO2 nanoparticle material were produced by the Sol-Gel approach, one using the patented Captigel method and the other one applying TiBALDH precursor. The particles were characterized by transmission electron microscopy, thermogravimetric analysis, X-ray diffraction, dynamic light scattering and nano particle tracking analysis. Scanning electron microscopy showed that the bacterium was living in clusters on the roots and the combined energy-dispersive X-ray spectroscopy analysis revealed that titanium was present in these cluster formations. Confocal laser scanning microscopy further demonstrated an increased bacterial colonization of Arabidopsis thaliana roots and a semi-quantitative microscopic assay confirmed an increased bacterial adhesion to the roots. An increased amount of adhered bacteria was further confirmed by quantitative fluorescence measurements. The degree of infection by the fungus was measured and quantified by real-time-qPCR. Results showed that Titania nanoparticles increased adhesion of beneficial bacteria on to the roots of oilseed rape and protected the plants against infection. PMID:25970693

  20. Calcium oxalate crystal growth modification; investigations with confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    McMulkin, Calum J.; Massi, Massimiliano; Jones, Franca

    2017-06-01

    Confocal Raman Microscopy (CRM) in combination with a photophysical investigation has been employed to give insight into the interaction between calcium oxalate monohydrate (COM) and a series of tetrazole containing crystal growth modifier's (CGM's), in conjunction with characterisation of morphological changes using scanning electron and optical microscopy. The tetrazole CGM's were found to interact by surface adsorption with minimal morphological changes to the COM crystals however, significant interactions via chemisorption were observed; it was discovered that the chemisorption is sufficiently strong for aggregation of the tetrazole species to occur within the crystal during crystallisation.

  1. Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract

    PubMed Central

    CORON, E.; AUKSORIUS, E.; PIERETTI, A.; MAHÉ, M. M.; LIU, L.; STEIGER, C.; BROMBERG, Y.; BOUMA, B.; TEARNEY, G.; NEUNLIST, M.; GOLDSTEIN, A. M.

    2013-01-01

    Background Noninvasive methods are needed to improve the diagnosis of enteric neuropathies. Full-field optical coherence microscopy (FFOCM) is a novel optical microscopy modality that can acquire 1 μm resolution images of tissue. The objective of this research was to demonstrate FFOCM imaging for the characterization of the enteric nervous system (ENS). Methods Normal mice and EdnrB−/− mice, a model of Hirschsprung’s disease (HD), were imaged in three-dimensions ex vivo using FFOCM through the entire thickness and length of the gut. Quantitative analysis of myenteric ganglia was performed on FFOCM images obtained from whole-mount tissues and compared with immunohistochemistry imaged by confocal microscopy. Key Results Full-field optical coherence microscopy enabled visualization of the full thickness gut wall from serosa to mucosa. Images of the myenteric plexus were successfully acquired from the stomach, duodenum, colon, and rectum. Quantification of ganglionic neuronal counts on FFOCM images revealed strong interobserver agreement and identical values to those obtained by immunofluorescence microscopy. In EdnrB−/− mice, FFOCM analysis revealed a significant decrease in ganglia density along the colorectum and a significantly lower density of ganglia in all colorectal segments compared with normal mice. Conclusions & Inferences Full-field optical coherence microscopy enables optical microscopic imaging of the ENS within the bowel wall along the entire intestine. FFOCM is able to differentiate ganglionic from aganglionic colon in a mouse model of HD, and can provide quantitative assessment of ganglionic density. With further refinements that enable bowel wall imaging in vivo, this technology has the potential to revolutionize the characterization of the ENS and the diagnosis of enteric neuropathies. PMID:23106847

  2. Multiphoton versus confocal high resolution z-sectioning of enhanced green fluorescent microtubules: increased multiphoton photobleaching within the focal plane can be compensated using a Pockels cell and dual widefield detectors.

    PubMed

    Drummond, D R; Carter, N; Cross, R A

    2002-05-01

    Multiphoton excitation was originally projected to improve live cell fluorescence imaging by minimizing photobleaching effects outside the focal plane, yet reports suggest that photobleaching within the focal plane is actually worse than with one photon excitation. We confirm that when imaging enhanced green fluorescent protein, photobleaching is indeed more acute within the multiphoton excitation volume, so that whilst fluorescence increases as predicted with the square of the excitation power, photobleaching rates increase with a higher order relationship. Crucially however, multiphoton excitation also affords unique opportunities for substantial improvements to fluorescence detection. By using a Pockels cell to minimize exposure of the specimen together with multiple nondescanned detectors we show quantitatively that for any particular bleach rate multiphoton excitation produces significantly more signal than one photon excitation confocal microscopy in high resolution Z-axis sectioning of thin samples. Both modifications are readily implemented on a commercial multiphoton microscope system.

  3. A STED-FLIM microscope applied to imaging the natural killer cell immune synapse

    NASA Astrophysics Data System (ADS)

    Lenz, M. O.; Brown, A. C. N.; Auksorius, E.; Davis, D. M.; Dunsby, C.; Neil, M. A. A.; French, P. M. W.

    2011-03-01

    We present a stimulated emission depletion (STED) fluorescence lifetime imaging (FLIM) microscope, excited by a microstructured optical fibre supercontinuum source that is pumped by a femtosecond Ti:Sapphire-laser, which is also used for depletion. Implemented using a piezo-scanning stage on a laser scanning confocal fluorescence microscope system with FLIM realised using time correlated single photon counting (TCSPC), this provides convenient switching between confocal and STED-FLIM with spatial resolution down to below 60 nm. We will present our design considerations to make a robust instrument for biological applications including a comparison between fixed phase plate and spatial light modulator (SLM) approaches to shape the STED beam and the correlation of STED and confocal FLIM microscopy. Following our previous application of FLIM-FRET to study intercellular signalling at the immunological synapse (IS), we are employing STED microscopy to characterize the spatial distribution of cellular molecules with subdiffraction resolution at the IS. In particular, we are imaging cytoskeletal structure at the Natural Killer cell activated immune synapse. We will also present our progress towards multilabel STED microscopy to determine how relative spatial molecular organization, previously undetectable by conventional microscopy techniques, is important for NK cell cytotoxic function. Keywords: STED, Stimulated Emission Depletion Microscopy, Natural Killer (NK) cell, Fluorescence lifetime imaging, FLIM, Super resolution microscopy.

  4. Longitudinal in vivo two-photon fluorescence imaging

    PubMed Central

    Crowe, Sarah E.; Ellis-Davies, Graham C.R.

    2014-01-01

    Fluorescence microscopy is an essential technique for the basic sciences, especially biomedical research. Since the invention of laser scanning confocal microscopy in 1980s, that enabled imaging both fixed and living biological tissue with three-dimensional precision, high-resolution fluorescence imaging has revolutionized biological research. Confocal microscopy, by its very nature, has one fundamental limitation. Due to the confocal pinhole, deep tissue fluorescence imaging is not practical. In contrast (no pun intended), two-photon fluorescence microscopy allows, in principle, the collection of all emitted photons from fluorophores in the imaged voxel, dramatically extending our ability to see deep into living tissue. Since the development of transgenic mice with genetically encoded fluorescent protein in neocortical cells in 2000, two-photon imaging has enabled the dynamics of individual synapses to be followed for up to two years. Since the initial landmark contributions to this field in 2002, the technique has been used to understand how neuronal structure are changed by experience, learning and memory and various diseases. Here we provide a basic summary of the crucial elements that are required for such studies, and discuss many applications of longitudinal two-photon fluorescence microscopy that have appeared since 2002. PMID:24214350

  5. In vivo confocal microscopy, an inner vision of the cornea - a major review.

    PubMed

    Guthoff, Rudolf F; Zhivov, Andrey; Stachs, Oliver

    2009-01-01

    The demands of modern ophthalmology have evolved from descriptive findings from the slit lamp to in vivo assessment of cellular level changes. Nowadays, the latter can be provided by in vivo confocal microscopy. This article gives an overview of confocal principles using tandem scanning, scanning slit and laser scanning techniques used in ophthalmology. The main part of the paper describes the clinical applications emphasizing the anatomy of the normal and pathological cornea, and illustrates side-effects of topical medication, contact lens wear, cross-linking and refractive surgery. Finally, a summary about experimental applications, including animal studies, surface characterization and volume rendering as well as future developments, is given.

  6. A Pulse Coupled Neural Network Segmentation Algorithm for Reflectance Confocal Images of Epithelial Tissue

    PubMed Central

    Malik, Bilal H.; Jabbour, Joey M.; Maitland, Kristen C.

    2015-01-01

    Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard. PMID:25816131

  7. ConfocalGN: A minimalistic confocal image generator

    NASA Astrophysics Data System (ADS)

    Dmitrieff, Serge; Nédélec, François

    Validating image analysis pipelines and training machine-learning segmentation algorithms require images with known features. Synthetic images can be used for this purpose, with the advantage that large reference sets can be produced easily. It is however essential to obtain images that are as realistic as possible in terms of noise and resolution, which is challenging in the field of microscopy. We describe ConfocalGN, a user-friendly software that can generate synthetic microscopy stacks from a ground truth (i.e. the observed object) specified as a 3D bitmap or a list of fluorophore coordinates. This software can analyze a real microscope image stack to set the noise parameters and directly generate new images of the object with noise characteristics similar to that of the sample image. With a minimal input from the user and a modular architecture, ConfocalGN is easily integrated with existing image analysis solutions.

  8. Fast evaluation of 69 basal cell carcinomas with ex vivo fluorescence confocal microscopy: criteria description, histopathological correlation, and interobserver agreement.

    PubMed

    Bennàssar, Antoni; Carrera, Cristina; Puig, Susana; Vilalta, Antoni; Malvehy, Josep

    2013-07-01

    Fluorescence confocal microscopy (FCM) represents a first step toward a rapid "bedside pathology" in the Mohs surgery setting and in other fields of general pathology. To describe and validate FCM criteria for the main basal cell carcinoma (BCC) subtypes and to demonstrate the overall agreement with classic pathologic analysis of hematoxylin-eosin-stained samples. DESIGN A total of 69 BCCs from 66 patients were prospectively imaged using ex vivo FCM. Confocal mosaics were evaluated in real time and compared with classic pathologic analysis. Department of Dermatology, Hospital Clínic of Barcelona, Barcelona, Spain, between November 2010 and July 2011. Patients with BCC attending the Mohs Surgery Unit. Presence or absence of BCC and histological subtype (superficial, nodular, and infiltrating) in the confocal mosaics. Eight criteria for BCC were described, evaluated, and validated. Although there were minor differences among BCC subtypes, the most BCC-defining criteria were peripheral palisading, clefting, nuclear pleomorphism, and presence of stroma. These criteria were validated with independent observers (κ values >0.7 [corrected] for most criteria). We herein propose, describe, and validate FCM criteria for BCC diagnosis. Fluorescence confocal microscopy is an attractive alternative to histopathologic analysis of frozen sections during Mohs surgery because large areas of freshly excised tissue can be assessed in real time without the need for tissue processing while minimizing labor and costs.

  9. Rapid Screening of Cancer Margins in Tissue with Multimodal Confocal Microscopy

    PubMed Central

    Gareau, Daniel S.; Jeon, Hana; Nehal, Kishwer S.; Rajadhyaksha, Milind

    2012-01-01

    Background Complete and accurate excision of cancer is guided by the examination of histopathology. However, preparation of histopathology is labor intensive and slow, leading to insufficient sampling of tissue and incomplete and/or inaccurate excision of margins. We demonstrate the potential utility of multimodal confocal mosaicing microscopy for rapid screening of cancer margins, directly in fresh surgical excisions, without the need for conventional embedding, sectioning or processing. Materials/Methods A multimodal confocal mosaicing microscope was developed to image basal cell carcinoma margins in surgical skin excisions, with resolution that shows nuclear detail. Multimodal contrast is with fluorescence for imaging nuclei and reflectance for cellular cytoplasm and dermal collagen. Thirtyfive excisions of basal cell carcinomas from Mohs surgery were imaged, and the mosaics analyzed by comparison to the corresponding frozen pathology. Results Confocal mosaics are produced in about 9 minutes, displaying tissue in fields-of-view of 12 mm with 2X magnification. A digital staining algorithm transforms black and white contrast to purple and pink, which simulates the appearance of standard histopathology. Mosaicing enables rapid digital screening, which mimics the examination of histopathology. Conclusions Multimodal confocal mosaicing microscopy offers a technology platform to potentially enable real-time pathology at the bedside. The imaging may serve as an adjunct to conventional histopathology, to expedite screening of margins and guide surgery toward more complete and accurate excision of cancer. PMID:22721570

  10. In vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta.

    PubMed

    Kobayashi, Akira; Higashide, Tomomi; Yokogawa, Hideaki; Yamazaki, Natsuko; Masaki, Toshinori; Sugiyama, Kazuhisa

    2014-01-01

    To report the in vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta (OI) with special attention to the abnormality of Bowman's layer and sub-Bowman's fibrous structures (K-structures). Two patients (67-year-old male and his 26-year-old son) with OI type I were included in this study. Slit lamp biomicroscopic and in vivo laser confocal microscopic examinations were performed for both patients. Central corneal thickness and central endothelial cell density were also measured. Although the corneas looked clear with normal endothelial density for both eyes in both patients, they were quite thin (386 μm oculus dexter (OD) (the right eye) and 384 μm oculus sinister (OS) (the left eye) in the father and 430 μm OD and 425 μm OS in the son). In both patients, slit lamp biomicroscopic and in vivo laser confocal microscopic examination showed similar results. Anterior corneal mosaics produced by rubbing the eyelid under fluorescein were completely absent in both eyes. In vivo laser confocal microscopy revealed an absent or atrophic Bowman's layer; a trace of a presumed Bowman's layer and/or basement membrane was barely visible with high intensity. Additionally, K-structures were completely absent in both eyes. The absence of K-structures and fluorescein anterior corneal mosaics strongly suggested an abnormality of Bowman's layer in these OI patients.

  11. Increased numbers of Demodex in contact lens wearers.

    PubMed

    Jalbert, Isabelle; Rejab, Shazana

    2015-06-01

    The aim of this study was to determine if Demodex infestation is more frequent in contact lens wearers than in nonwearers. Secondary aims were to evaluate the effects of Demodex on the ocular surface (symptoms and signs) and to evaluate the ability of confocal laser scanning microscopy to detect and quantify the Demodex infestation compared with the conventional light microscopic technique. Forty Asian female participants (20 nonwearers, 20 lens wearers) with a mean (± SD) age of 27 (± 9) years were recruited. Ocular comfort scores (Ocular Surface Disease Index, Ocular Comfort Index, and Dry Eye Questionnaire), vital staining (corneal, conjunctival, and lid wiper), tear osmolarity, tear breakup time, and meibomian gland evaluation were evaluated. Demodex was detected using in vivo confocal microscopy and conventional light microscopy. The number of Demodex was higher in lens wearers than in nonwearers (7.6 [± 5.8] vs. 5.0 [± 3.1]; p = 0.02). Demodex was observed in a large majority (90%) of lens wearers and in 65% of nonwearers using confocal microscopy (p = 0.06). The detection rate was lower in both groups using conventional light microscopy (p = 0.003) where Demodex could only be confirmed in 70% and 60% of lens wearers and nonwearers, respectively. The number of Demodex tended to increase with age (ρ = 0.28, p = 0.08), but Demodex did not appear to affect ocular comfort or any clinical signs (p > 0.05). Contact lens wearers harbor Demodex as frequently as nonwearers and in higher numbers, which is best detected using in vivo confocal microscopy. The significance of these findings is uncertain because no associations were found with any symptoms and signs of dry eye disease.

  12. Chondrocytes provide a model for in-situ confocal microscopy and 3D reconstructions

    NASA Astrophysics Data System (ADS)

    Hirsch, Michelle S.; Svoboda, Kathy K. H.

    1994-04-01

    Hyaline cartilage is composed of chondrocytes that reside in lacunae surrounded by extracellular matrix molecules. Microscopic and histochemical features of cartilage have been studied with many techniques. Many of these techniques can be time consuming and may alter natural cartilage characteristics. In addition, the orientation and order of sectioned tissue must be maintained to create 3D reconstructions. We show that confocal laser scanning microscopy may replace traditional methods for studying cartilage.

  13. The challenge of diagnosing seborrheic keratosis by reflectance confocal microscopy.

    PubMed

    Guo, A; Chen, J; Yang, C; Ding, Y; Zeng, Q; Tan, L

    2018-05-24

    Seborrheic keratosis (SK) is one of the most common skin tumors seen by dermatologists. It should be differentiated with many diseases, especially skin tumors. Reflectance confocal microscopy (RCM) has been applied for evaluation of SK. There are a few studies that describe the RCM of SK. The aim of the study was to find the challenge of diagnosing seborrheic keratosis by reflectance confocal microscopy. A total of 390 patients with a clinical suspicious diagnosis of seborrheic keratosis were enrolled in this study, and lesions from each patient were imaged with RCM. Thirty-seven of these patients performed a biopsy in order to be given a histological diagnosis. We retrospectively analyzed the outcomes of RCM diagnosis and histological diagnosis, and then found the RCM characteristics of biopsy-proven lesions. According to RCM images, 258 of 390 (66.2%) patients were diagnosed with SK, 97 of 390 (24.9%) patients could not be diagnosed by the dermatologist according to RCM. Of all 37 biopsied lesions, 23 were SK, 6 were actinic keratosis, 2 were basal cell carcinoma, and 2 were squamous cell carcinoma. It is challenge to diagnose seborrheic keratosis by reflectance confocal microscopy. It may due to the variable clinical and RCM appearances of SK, and limited depth of RCM. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  15. Towards modeling of cardiac micro-structure with catheter-based confocal microscopy: a novel approach for dye delivery and tissue characterization.

    PubMed

    Lasher, Richard A; Hitchcock, Robert W; Sachse, Frank B

    2009-08-01

    This work presents a methodology for modeling of cardiac tissue micro-structure. The approach is based on catheter-based confocal imaging systems, which are emerging as tools for diagnosis in various clinical disciplines. A limitation of these systems is that a fluorescent marker must be available in sufficient concentration in the imaged region. We introduce a novel method for the local delivery of fluorescent markers to cardiac tissue based on a hydro-gel carrier brought into contact with the tissue surface. The method was tested with living rabbit cardiac tissue and applied to acquire three-dimensional image stacks with a standard inverted confocal microscope and two-dimensional images with a catheter-based confocal microscope. We processed these image stacks to obtain spatial models and quantitative data on tissue microstructure. Volumes of atrial and ventricular myocytes were 4901 +/- 1713 and 10 299 +/-3598 mum (3) (mean+/-sd), respectively. Atrial and ventricular myocyte volume fractions were 72.4 +/-4.7% and 79.7 +/- 2.9% (mean +/-sd), respectively. Atrial and ventricular myocyte density was 165 571 +/- 55 836 and 86 957 +/- 32 280 cells/mm (3) (mean+/-sd), respectively. These statistical data and spatial descriptions of tissue microstructure provide important input for modeling studies of cardiac tissue function. We propose that the described methodology can also be used to characterize diseased tissue and allows for personalized modeling of cardiac tissue.

  16. Optimal pupil design for confocal microscopy

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2010-02-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current instruments are large, complex, and expensive. A simpler, confocal line-scanning microscope may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A confocal reflectance microscope may use a beamsplitter, transmitting and detecting through the pupil, or a divided pupil, or theta configuration, with half used for transmission and half for detection. The divided pupil may offer better sectioning and contrast. We present a Fourier optics model and compare the on-axis irradiance of a confocal point-scanning microscope in both pupil configurations, optimizing the profile of a Gaussian beam in a circular or semicircular aperture. We repeat both calculations with a cylindrical lens which focuses the source to a line. The variable parameter is the fillfactor, h, the ratio of the 1/e2 diameter of the Gaussian beam to the diameter of the full aperture. The optimal values of h, for point scanning are 0.90 (full) and 0.66 for the half-aperture. For line-scanning, the fill-factors are 1.02 (full) and 0.52 (half). Additional parameters to consider are the optimal location of the point-source beam in the divided-pupil configuration, the optimal line width for the line-source, and the width of the aperture in the divided-pupil configuration. Additional figures of merit are field-of-view and sectioning. Use of optimal designs is critical in comparing the experimental performance of the different configurations.

  17. In vivo confocal microscopy for the oral cavity: Current state of the field and future potential.

    PubMed

    Maher, N G; Collgros, H; Uribe, P; Ch'ng, S; Rajadhyaksha, M; Guitera, P

    2016-03-01

    Confocal microscopy (CM) has been shown to correlate with oral mucosal histopathology in vivo. The purposes of this review are to summarize what we know so far about in vivo CM applications for oral mucosal pathologies, to highlight some current developments with CM devices relevant for oral applications, and to formulate where in vivo CM could hold further application for oral mucosal diagnosis and management. Ovid Medline® and/or Google® searches were performed using the terms 'microscopy, confocal', 'mouth neoplasms', 'mouth mucosa', 'leukoplakia, oral', 'oral lichen planus', 'gingiva', 'cheilitis', 'taste', 'inflammatory oral confocal', 'mucosal confocal' and 'confocal squamous cell oral'. In summary, inclusion criteria were in vivo use of any type of CM for the human oral mucosa and studies on normal or pathological oral mucosa. Experimental studies attempting to identify proteins of interest and microorganisms were excluded. In total 25 relevant articles were found, covering 8 main topics, including normal oral mucosal features (n=15), oral dysplasia or neoplasia (n=7), inflamed oral mucosa (n=3), taste impairment (n=3), oral autoimmune conditions (n=2), pigmented oral pathology/melanoma (n=1), delayed type hypersensitivity (n=1), and cheilitis glandularis (n=1). The evidence for using in vivo CM in these conditions is poor, as it is limited to mainly small descriptive studies. Current device developments for oral CM include improved probe design. The authors propose that future applications for in vivo oral CM may include burning mouth syndrome, intra-operative mapping for cancer surgery, and monitoring and targeted biopsies within field cancerization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Learning reflectance confocal microscopy of melanocytic skin lesions through histopathologic transversal sections.

    PubMed

    Braga, Juliana Casagrande Tavoloni; Macedo, Mariana Petaccia; Pinto, Clovis; Duprat, João; Begnami, Maria Dirlei; Pellacani, Giovanni; Rezze, Gisele Gargantini

    2013-01-01

    Histopathologic interpretation of dermoscopic and reflectance confocal microscopy (RCM) features of cutaneous melanoma was timidly carried out using perpendicular histologic sections, which does not mimic the same plane of the image achieved at both techniques (horizontal plane). The aim of this study was to describe the transverse histologic sections research technique and correlate main dermoscopic features characteristic of cutaneous melanoma (atypical network, irregular globules and pseudopods) with RCM and histopathology in perpendicular and transverse sections in order to offer a more precise interpretation of in vivo detectable features. Four melanomas and 2 nevi with different dermoscopic clues have been studied. Lesion areas that showed characteristic dermoscopic features were imaged by dermoscopy and confocal microscopy and directly correlated with histopathology in perpendicular and transverse sections. We presented the possibility to perform transverse sections as a new approach to understand RCM features. Atypical network showed different aspects in the 2 melanomas: in one case it was characterized by pleomorphic malignant melanocytes with tendency to form aggregates, whereas in the other elongated dendritic cells crowded around dermal papillae, some of them forming bridges that resembled the mitochondrial aspect at confocal and histopathology transversal sections. Pigment globules in melanomas and nevi differed for the presence of large atypical cells in the former, and pseudopods showed up as elongated nests protruded toward the periphery of the lesion. Transverse histologic research sections have a consistent dermoscopic and confocal correlate, and it may represent an help in confocal feature interpretation and an advance in improving melanoma diagnosis and knowledge of the biology of melanocytic lesions.

  19. Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Seltzer, Emily; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2013-06-01

    Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in freshly excised tissue, without the processing required for conventional pathology. Previously, mosaicing on 12-×-12 mm2 of excised skin tissue from Mohs surgery and detection of basal cell carcinoma margins was demonstrated in 9 min. Last year, we reported the feasibility of a faster approach called "strip mosaicing," which was demonstrated on a 10-×-10 mm2 of tissue in 3 min. Here we describe further advances in instrumentation, software, and speed. A mechanism was also developed to flatten tissue in order to enable consistent and repeatable acquisition of images over large areas. We demonstrate mosaicing on 10-×-10 mm2 of skin tissue with 1-μm lateral resolution in 90 s. A 2.5-×-3.5 cm2 piece of breast tissue was scanned with 0.8-μm lateral resolution in 13 min. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Imaging of tumor margins with strip mosaicing confocal microscopy may serve as an adjunct to conventional (frozen or fixed) pathology for guiding surgery.

  20. High resolution 3D confocal microscope imaging of volcanic ash particles.

    PubMed

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM 10 s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. In vivo laser confocal microscopy findings in patients with map-dot-fingerprint (epithelial basement membrane) dystrophy.

    PubMed

    Kobayashi, Akira; Yokogawa, Hideaki; Sugiyama, Kazuhisa

    2012-01-01

    The purpose of this study was to investigate pathological changes of the corneal cell layer in patients with map-dot-fingerprint (epithelial basement membrane) dystrophy by in vivo laser corneal confocal microscopy. Two patients were evaluated using a cornea-specific in vivo laser scanning confocal microscope (Heidelberg Retina Tomograph 2 Rostock Cornea Module, HRT 2-RCM). The affected corneal areas of both patients were examined. Image analysis was performed to identify corneal epithelial and stromal deposits correlated with this dystrophy. Variously shaped (linear, multilaminar, curvilinear, ring-shape, geographic) highly reflective materials were observed in the "map" area, mainly in the basal epithelial cell layer. In "fingerprint" lesions, multiple linear and curvilinear hyporeflective lines were observed. Additionally, in the affected corneas, infiltration of possible Langerhans cells and other inflammatory cells was observed as highly reflective Langerhans cell-like or dot images. Finally, needle-shaped materials were observed in one patient. HRT 2-RCM laser confocal microscopy is capable of identifying corneal microstructural changes related to map-dot-fingerprint corneal dystrophy in vivo. The technique may be useful in elucidating the pathogenesis and natural course of map-dot-fingerprint corneal dystrophy and other similar basement membrane abnormalities.

  2. Microstructure of milk

    USDA-ARS?s Scientific Manuscript database

    The fat and protein in milk may be examined by scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy, and any bacteria present may be viewed by light microscopy. The fat exists as globules, the bulk of the protein is in the form of casein micelles, a...

  3. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  4. Metal Free Graphene Oxide (GO) Nanosheets and Pristine-Single Wall Carbon Nanotubes (p-SWCNTs) Biocompatibility Investigation: A Comparative Study in Different Human Cell Lines.

    PubMed

    Valentini, Federica; Mari, Emanuela; Zicari, Alessandra; Calcaterra, Andrea; Talamo, Maurizio; Scioli, Maria Giovanna; Orlandi, Augusto; Mardente, Stefania

    2018-04-28

    The in vitro biocompatibility of Graphene Oxide (GO) nanosheets, which were obtained by the electrochemical exfoliation of graphite electrodes in an electrolytic bath containing salts, was compared with the pristine Single Wall Carbon Nanotubes (p-SWCNTs) under the same experimental conditions in different human cell lines. The cells were treated with different concentrations of GO and SWCNTs for up to 48 h. GO did not induce any significant morphological or functional modifications (demonstrating a high biocompatibility), while SWNCTs were toxic at any concentration used after a few hours of treatment. The cell viability or cytotoxicity were detected by the trypan blue assay and the lactate dehydrogenase LDH quantitative enzymatic test. The Confocal Laser Scanning Microscopy (CLSM) and transmission electron microscopy (TEM) analysis demonstrated the uptake and internalization of GO sheets into cells, which was localized mainly in the cytoplasm. Different results were observed in the same cell lines treated with p-SWCNTs. TEM and CLSM (Confocal Laser Scanning Microscopy) showed that the p-SWCNTs induced vacuolization in the cytoplasm, disruption of cellular architecture and damage to the nuclei. The most important result of this study is our finding of a higher GO biocompatibility compared to the p-SWCNTs in the same cell lines. This means that GO nanosheets, which are obtained by the electrochemical exfoliation of a graphite-based electrode (carried out in saline solutions or other physiological working media) could represent an eligible nanocarrier for drug delivery, gene transfection and molecular cell imaging tests.

  5. Dye-enhanced reflectance and fluorescence confocal microscopy as an optical pathology tool

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Anna N.; Salomatina, Elena; Novak, John; Amat-Roldan, Ivan; Castano, Ana; Hamblin, Michael

    2006-02-01

    Early detection and precise excision of neoplasms are imperative requirements for successful cancer treatment. In this study we evaluated the use of dye-enhanced confocal microscopy as an optical pathology tool in the ex vivo trial with fresh thick non-melanoma skin cancer excisions and in vivo trial with B16F10 melanoma cancer in mice. For the experiments the tumors were rapidly stained using aqueous solutions of either toluidine blue or methylene blue and imaged using multimodal confocal microscope. Reflectance images were acquired at the wavelengths of 630nm and 650 nm. Fluorescence was excited at 630 nm and 650 nm. Fluorescence emission was registered in the range between 680 nm and 710 nm. The images were compared to the corresponding en face frozen H&E sections. The results of the study indicate confocal images of stained cancerous tissue closely resemble corresponding H&E sections both in vivo and in vitro. This remarkable similarity enables interpretation of confocal images in a manner similar to that of histopathology. The developed technique may provide an efficient real-time optical tool for detecting skin pathology.

  6. Confocal microscopy patterns in nonmelanoma skin cancer and clinical applications.

    PubMed

    González, S; Sánchez, V; González-Rodríguez, A; Parrado, C; Ullrich, M

    2014-06-01

    Reflectance confocal microscopy is currently the most promising noninvasive diagnostic tool for studying cutaneous structures between the stratum corneum and the superficial reticular dermis. This tool gives real-time images parallel to the skin surface; the microscopic resolution is similar to that of conventional histology. Numerous studies have identified the main confocal features of various inflammatory skin diseases and tumors, demonstrating the good correlation of these features with certain dermatoscopic patterns and histologic findings. Confocal patterns and diagnostic algorithms have been shown to have high sensitivity and specificity in melanoma and nonmelanoma skin cancer. Possible present and future applications of this noninvasive technology are wide ranging and reach beyond its use in noninvasive diagnosis. This tool can also be used, for example, to evaluate dynamic skin processes that occur after UV exposure or to assess tumor response to noninvasive treatments such as photodynamic therapy. We explain the characteristic confocal features found in the main nonmelanoma skin tumors and discuss possible applications for this novel diagnostic technique in routine dermatology practice. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  7. Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish

    PubMed Central

    Yang, Zhe; Mei, Li; Xia, Fei; Luo, Qingming; Fu, Ling; Gong, Hui

    2015-01-01

    In vivo functional imaging at single-neuron resolution is an important approach to visualize biological processes in neuroscience. Light sheet microscopy (LSM) is a cutting edge in vivo imaging technique that provides micron-scale spatial resolution at high frame rate. Due to the scattering and absorption of tissue, however, conventional LSM is inadequate to resolve cells because of the attenuated signal to noise ratio (SNR). Using dual-beam illumination and confocal dual-slit detection, here a dual-slit confocal LSM is demonstrated to obtain the SNR enhanced images with frame rate twice as high as line confocal LSM method. Through theoretical calculations and experiments, the correlation between the slit’s width and SNR was determined to optimize the image quality. In vivo whole brain structural imaging stacks and the functional imaging sequences of single slice were obtained for analysis of calcium activities at single-cell resolution. A two-fold increase in imaging speed of conventional confocal LSM makes it possible to capture the sequence of the neurons’ activities and help reveal the potential functional connections in the whole zebrafish’s brain. PMID:26137381

  8. Fast imaging with inelastically scattered electrons by off-axis chromatic confocal electron microscopy.

    PubMed

    Zheng, Changlin; Zhu, Ye; Lazar, Sorin; Etheridge, Joanne

    2014-04-25

    We introduce off-axis chromatic scanning confocal electron microscopy, a technique for fast mapping of inelastically scattered electrons in a scanning transmission electron microscope without a spectrometer. The off-axis confocal mode enables the inelastically scattered electrons to be chromatically dispersed both parallel and perpendicular to the optic axis. This enables electrons with different energy losses to be separated and detected in the image plane, enabling efficient energy filtering in a confocal mode with an integrating detector. We describe the experimental configuration and demonstrate the method with nanoscale core-loss chemical mapping of silver (M4,5) in an aluminium-silver alloy and atomic scale imaging of the low intensity core-loss La (M4,5@840  eV) signal in LaB6. Scan rates up to 2 orders of magnitude faster than conventional methods were used, enabling a corresponding reduction in radiation dose and increase in the field of view. If coupled with the enhanced depth and lateral resolution of the incoherent confocal configuration, this offers an approach for nanoscale three-dimensional chemical mapping.

  9. Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments.

    PubMed

    Merdan, Thomas; Kunath, Klaus; Fischer, Dagmar; Kopecek, Jindrich; Kissel, Thomas

    2002-02-01

    Critical steps in the subcellular processing of poly(ethylene imine)/nucleic acid complexes, especially endosomal/lysosomal escape, were visualized by using living cell confocal laser scanning microscopy (CSLM) to obtain an insight into their mechanism. Living cell confocal microscopy was used to examine the intracellular fate of poly(ethylene imine)/ribozyme and poly(L-lysine)/ribozyme complexes over time, in the presence of and without bafilomycin Al, a selective inhibitor of endosomal/lysosomal acidification. The compartment of complex accumulation was identified by confocal microscopy with a fluorescent acidotropic dye. To confirm microscopic data, luciferase reporter gene expression was determined under similar experimental conditions. Poly(ethylene imine)/ribozyme complexes accumulate in acidic vesicles, most probably lysosomes. Release of complexes occurs in a sudden event, very likely due to bursting of these organelles. After release, poly(ethylene imine) and ribozyme spread throughout the cell, during which slight differences in distribution between cytosol and nucleus are visible. No lysosomal escape was observed with poly(L-lysine)/ribozyme complexes or when poly(ethylene imine)/ ribozyme complexes were applied together with bafilomycin A1. Poly(ethylene imine)/plasmid complexes exhibited a high luciferase expression, which was reduced approximately 200-fold when lysosomal acidification was suppressed with bafilomycin A1. Our data provide, for the first time, direct experimental evidence for the escape of poly(ethylene imine)/nucleic acid complexes from the endosomal/lysosomal compartment. CLSM, in conjunction with living cell microscopy, is a promising tool for studying the subcellular fate of polyplexes in nucleic acid/gene delivery.

  10. Non-invasive diagnosis and monitoring of actinic cheilitis with reflectance confocal microscopy.

    PubMed

    Ulrich, M; González, S; Lange-Asschenfeldt, B; Roewert-Huber, J; Sterry, W; Stockfleth, E; Astner, S

    2011-03-01

    Actinic cheilitis (AC) represents the equivalent of actinic keratosis on the lip. Various treatment modalities are available and the efficacy of diclofenac in hyaluronic acid has recently been described. Reflectance confocal microscopy (RCM) is a non-invasive imaging technique which has recently been applied for the diagnosis of actinic keratoses. Herein, we describe the applicability of RCM for the diagnosis of AC and for monitoring of treatment response of AC to diclofenac in hyaluronic acid. Ten Caucasian patients with clinical suspicion for AC were included in this study. To obtain a non-invasive diagnosis, RCM was performed at baseline, followed by biopsy and respective confocal-histopathological correlation. Six patients with a histological diagnosis of AC were treated with diclofenac in hyaluronic acid, whereby monitoring was performed by RCM. Reflectance confocal microscopy was able to correctly identify 6/7 cases of AC and 3/3 cases of benign lesions. The most important RCM criteria for diagnosis of AC were cellular atypia at the stratum spinosum and granulosum with atypical honeycomb pattern. One patient with AC was misclassified as inflammatory cheilitis by RCM as it showed marked inflammatory response and lacked clear signs of cellular atypia on RCM imaging. Following topical treatment with diclofenac gel, 5/6 patients (83%) showed a good treatment response with regression of dysplasia on consecutive RCM examination. Reflectance confocal microscopy is a promising tool for the non-invasive diagnosis and monitoring of actinic cheilitis. However, marked inflammation represents a potential diagnostic pitfall. In this regard, biopsy should be performed in doubtful cases. © 2010 The Authors. Journal of the European Academy of Dermatology and Venereology © 2010 European Academy of Dermatology and Venereology.

  11. Rotary-scanning optical resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Qi, Weizhi; Xi, Lei

    2016-10-01

    Optical resolution photoacoustic microscopy (ORPAM) is currently one of the fastest evolving photoacoustic imaging modalities. It has a comparable spatial resolution to pure optical microscopic techniques such as epifluorescence microscopy, confocal microscopy, and two-photon microscopy, but also owns a deeper penetration depth. In this paper, we report a rotary-scanning (RS)-ORPAM that utilizes a galvanometer scanner integrated with objective to achieve rotary laser scanning. A 15 MHz cylindrically focused ultrasonic transducer is mounted onto a motorized rotation stage to follow optical scanning traces synchronously. To minimize the loss of signal to noise ratio, the acoustic focus is precisely adjusted to reach confocal with optical focus. Black tapes and carbon fibers are firstly imaged to evaluate the performance of the system, and then in vivo imaging of vasculature networks inside the ears and brains of mice is demonstrated using this system.

  12. Ex-vivo imaging of excised tissue using vital dyes and confocal microscopy

    PubMed Central

    Johnson, Simon; Rabinovitch, Peter

    2012-01-01

    Vital dyes routinely used for staining cultured cells can also be used to stain and image live tissue slices ex-vivo. Staining tissue with vital dyes allows researchers to collect structural and functional data simultaneously and can be used for qualitative or quantitative fluorescent image collection. The protocols presented here are useful for structural and functional analysis of viable properties of cells in intact tissue slices, allowing for the collection of data in a structurally relevant environment. With these protocols, vital dyes can be applied as a research tool to disease processes and properties of tissue not amenable to cell culture based studies. PMID:22752953

  13. Confocal Raman and electronic microscopy studies on the topotactic conversion of calcium carbonate from Pomacea lineate shells into hydroxyapatite bioceramic materials in phosphate media.

    PubMed

    dePaula, S M; Huila, M F G; Araki, K; Toma, H E

    2010-12-01

    Conversion of Pomacea lineate shells into hydroxyapatite (HA) bioceramic materials was investigated by their in vitro treatment with phosphate solutions, at room temperature. Confocal Raman microscopy revealed that the conversion proceeds at distinct rates through the nacreous or periostracum sides of the shell. The conversion can be accelerated using powdered samples, yielding biocompatible materials of great interest in biomedicine. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Template confined synthesis of amorphous carbon nanotubes and its confocal Raman microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maity, Supratim; Roychowdhury, Tuhin; Chattopadhyay, Kalyan Kumar, E-mail: kalyan-chattopadhyay@yahoo.com

    2014-04-24

    Amorphous carbon nanotubes (aCNTs) were synthesized by AAO (anodic aluminum oxide) template at a temperature 500 °C in nitrogen atmosphere using the citric acid as a carbon source without the help of any catalyst particles. Morphological analysis of the as prepared samples was carried out by field emission scanning electron microscopy (FESEM). Confocal Raman imaging has been studied and an attempt has been made to find out the graphitic (sp{sup 2}) and disordered phase of the CNTs.

  15. Confocal Raman spectroscopy and AFM for evaluation of sidewalls in type II superlattice FPAs

    NASA Astrophysics Data System (ADS)

    Rotter, T. J.; Busani, T.; Rathi, P.; Jaeckel, F.; Reyes, P. A.; Malloy, K. J.; Ukhanov, A. A.; Plis, E.; Krishna, S.; Jaime-Vasquez, M.; Baril, N. F.; Benson, J. D.; Tenne, D. A.

    2015-06-01

    We propose to utilize confocal Raman spectroscopy combined with high resolution atomic force microscopy (AFM) for nondestructive characterisation of the sidewalls of etched and passivated small pixel (24 μm×24 μm) focal plane arrays (FPA) fabricated using LW/LWIR InAs/GaSb type-II strained layer superlattice (T2SL) detector material. Special high aspect ratio Si and GaAs AFM probes, with tip length of 13 μm and tip aperture less than 7°, allow characterisation of the sidewall morphology. Confocal microscopy enables imaging of the sidewall profile through optical sectioning. Raman spectra measured on etched T2SL FPA single pixels enable us to quantify the non-uniformity of the mesa delineation process.

  16. Development of imaging techniques to study the pathogenesis of biosafety level 2/3 infectious agents

    PubMed Central

    Rella, Courtney E.; Ruel, Nancy; Eugenin, Eliseo A.

    2015-01-01

    Despite significant advances in microbiology and molecular biology over the last decades, several infectious diseases remain global concerns, resulting in the death of millions of people worldwide each year. According to the Center for Disease Control (CDC) in 2012, there were 34 million people infected with HIV, 8.7 million new cases of tuberculosis, 500 million cases of hepatitis, and 50–100 million people infected with dengue. Several of these pathogens, despite high incidence, do not have reliable clinical detection methods. New or improved protocols have been generated to enhance detection and quantitation of several pathogens using high-end microscopy (light, confocal, and STORM microscopy) and imaging software. In the current manuscript, we discuss these approaches and the theories behind these methodologies. Thus, advances in imaging techniques will open new possibilities to discover therapeutic interventions to reduce or eliminate the devastating consequences of infectious diseases. PMID:24990818

  17. Quantitative Live-Cell Confocal Imaging of 3D Spheroids in a High-Throughput Format.

    PubMed

    Leary, Elizabeth; Rhee, Claire; Wilks, Benjamin T; Morgan, Jeffrey R

    2018-06-01

    Accurately predicting the human response to new compounds is critical to a wide variety of industries. Standard screening pipelines (including both in vitro and in vivo models) often lack predictive power. Three-dimensional (3D) culture systems of human cells, a more physiologically relevant platform, could provide a high-throughput, automated means to test the efficacy and/or toxicity of novel substances. However, the challenge of obtaining high-magnification, confocal z stacks of 3D spheroids and understanding their respective quantitative limitations must be overcome first. To address this challenge, we developed a method to form spheroids of reproducible size at precise spatial locations across a 96-well plate. Spheroids of variable radii were labeled with four different fluorescent dyes and imaged with a high-throughput confocal microscope. 3D renderings of the spheroid had a complex bowl-like appearance. We systematically analyzed these confocal z stacks to determine the depth of imaging and the effect of spheroid size and dyes on quantitation. Furthermore, we have shown that this loss of fluorescence can be addressed through the use of ratio imaging. Overall, understanding both the limitations of confocal imaging and the tools to correct for these limits is critical for developing accurate quantitative assays using 3D spheroids.

  18. Quantifying receptor trafficking and colocalization with confocal microscopy.

    PubMed

    Pike, Jeremy A; Styles, Iain B; Rappoport, Joshua Z; Heath, John K

    2017-02-15

    Confocal microscopy is a powerful tool for the study of cellular receptor trafficking and endocytosis. Unbiased and robust image analysis workflows are required for the identification, and study, of aberrant trafficking. After a brief review of related strategies, identifying both good and bad practice, custom workflows for the analysis of live cell 3D time-lapse data are presented. Strategies for data pre-processing, including denoising and background subtraction are considered. We use a 3D level set protocol to accurately segment cells using only the signal from fluorescently labelled receptor. A protocol for the quantification of changes to subcellular receptor distribution over time is then presented. As an example, ligand stimulated trafficking of epidermal growth factor receptor (EGFR) is shown to be significantly reduced in both AG1478 and Dynasore treated cells. Protocols for the quantitative analysis of colocalization between receptor and endosomes are also introduced, including strategies for signal isolation and statistical testing. By calculating the Manders and Pearson coefficients, both co-occurrence and correlation can be assessed. A statistically significant decrease in the level of ligand induced co-occurrence between EGFR and rab5 positive endosomes is demonstrated for both the AG1478 and Dynasore treated cells relative to a control. Finally, a strategy for the visualisation of co-occurrence is presented, which provides an unbiased alternative to colour overlays. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Disease-Causing Mutations in BEST1 Gene Are Associated with Altered Sorting of Bestrophin-1 Protein

    PubMed Central

    Doumanov, Jordan A.; Zeitz, Christina; Gimenez, Paloma Dominguez; Audo, Isabelle; Krishna, Abhay; Alfano, Giovanna; Diaz, Maria Luz Bellido; Moskova-Doumanova, Veselina; Lancelot, Marie-Elise; Sahel, José-Alain; Nandrot, Emeline F.; Bhattacharya, Shomi S.

    2013-01-01

    Mutations in BEST1 gene, encoding the bestrophin-1 (Best1) protein are associated with macular dystrophies. Best1 is predominantly expressed in the retinal pigment epithelium (RPE), and is inserted in its basolateral membrane. We investigated the cellular localization in polarized MDCKII cells of disease-associated Best1 mutant proteins to study specific sorting motifs of Best1. Real-time PCR and western blots for endogenous expression of BEST1 in MDCK cells were performed. Best1 mutant constructs were generated using site-directed mutagenesis and transfected in MDCK cells. For protein sorting, confocal microscopy studies, biotinylation assays and statistical methods for quantification of mislocalization were used. Analysis of endogenous expression of BEST1 in MDCK cells revealed the presence of BEST1 transcript but no protein. Confocal microscopy and quantitative analyses indicate that transfected normal human Best1 displays a basolateral localization in MDCK cells, while cell sorting of several Best1 mutants (Y85H, Q96R, L100R, Y227N, Y227E) was altered. In contrast to constitutively active Y227E, constitutively inactive Y227F Best1 mutant localized basolaterally similar to the normal Best1 protein. Our data suggest that at least three basolateral sorting motifs might be implicated in proper Best1 basolateral localization. In addition, non-phosphorylated tyrosine 227 could play a role for basolateral delivery. PMID:23880862

  20. Attachment, proliferation and collagen type I mRNA expression of human gingival fibroblasts on different biodegradable membranes.

    PubMed

    Hakki, Sema S; Korkusuz, Petek; Purali, Nuhan; Bozkurt, Buket; Kus, Mahmut; Duran, Ismet

    2013-01-01

    The purpose of this study was to investigate adhesion, proliferation and type I collagen (COL I) mRNA expression of gingival fibroblasts on different membranes used in periodontal applications. Collagen (C), acellular dermal matrix (ADM) and polylactic acid; polyglycolic acid; lactide/glycolide copolymer (PLGA) biodegradable membranes were combined with gingival fibroblasts in culture and incubated for 48 h. Cell adhesion was examined with scanning electron and confocal microscopy. MTT assay was used to measure proliferation. COL I mRNA expression was assessed using quantitative-polymerase chain reaction (QPCR). The PLGA group exhibited the lowest cell survival on day 5 and 10, and lowest cell proliferation on days 5, 10 and 14. While cell proliferation was similar in C and ADM groups, the C membrane showed a slightly greater increase in viable cells to day 10. Confocal and scanning electron microscopy confirmed the results of proliferation and MTT assays. The highest COL I mRNA expression was noted in the PLGA membrane group when compared to the C (p < 0.01) and ADM (p < 0.05) membrane groups. These data revealed that adherence and proliferation of primary gingival fibroblasts on collagen-based C and ADM membranes is better than that seen with PLGA membranes, and thus may be preferable in the treatment of gingival recession defects.

  1. Superresolution imaging of Drosophila tissues using expansion microscopy.

    PubMed

    Jiang, Nan; Kim, Hyeon-Jin; Chozinski, Tyler J; Azpurua, Jorge E; Eaton, Benjamin A; Vaughan, Joshua C; Parrish, Jay Z

    2018-06-15

    The limited resolving power of conventional diffraction-limited microscopy hinders analysis of small, densely packed structural elements in cells. Expansion microscopy (ExM) provides an elegant solution to this problem, allowing for increased resolution with standard microscopes via physical expansion of the specimen in a swellable polymer hydrogel. Here, we apply, validate, and optimize ExM protocols that enable the study of Drosophila embryos, larval brains, and larval and adult body walls. We achieve a lateral resolution of ∼70 nm in Drosophila tissues using a standard confocal microscope, and we use ExM to analyze fine intracellular structures and intercellular interactions. First, we find that ExM reveals features of presynaptic active zone (AZ) structure that are observable with other superresolution imaging techniques but not with standard confocal microscopy. We further show that synapses known to exhibit age-dependent changes in activity also exhibit age-dependent changes in AZ structure. Finally, we use the significantly improved axial resolution of ExM to show that dendrites of somatosensory neurons are inserted into epithelial cells at a higher frequency than previously reported in confocal microscopy studies. Altogether, our study provides a foundation for the application of ExM to Drosophila tissues and underscores the importance of tissue-specific optimization of ExM procedures.

  2. Diving under a microscope--a new simple and versatile in vitro diving device for fluorescence and confocal microscopy allowing the controls of hydrostatic pressure, gas pressures, and kinetics of gas saturation.

    PubMed

    Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël

    2013-06-01

    How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.

  3. In vitro excystation of Echinostoma paraensei (Digenea: Echinostomatidae) metacercariae assessed by light microscopy, morphometry and confocal laser scanning microscopy.

    PubMed

    Souza, Joyce; Garcia, Juberlan; Neves, Renata H; Machado-Silva, José Roberto; Maldonado, Arnaldo

    2013-12-01

    Trypsin and bile salts have been identified as important triggers for excystation of Echinostoma metacercariae. Although excystation in trematodes is a well-known phenomenon, some morphological developmental changes remain to be elucidated. In order to gain further insight into the in vitro development of metacercariae, we assayed different cultivating conditions: 0.5% trypsin and 0.5% bile salts; 1% trypsin and 1% bile salts; 1% trypsin and 0.5% bile salts; 0.5% bile salts; or 0.5% trypsin. By means of light microscopy and confocal microscopy, we characterized each encysted, activated, breached and excysted stage based on the morphological features. However, breached and excysted stages were not revealed in both bile salts and trypsin-free medium. Excretory concretions (25 ± 3.9) were visualized within excretory tubules, close to the ventral sucker and genital anlage. The oral sucker armed with spines and digestive system was similar to those of adult worms. The reproductive system is composed of a genital anlage and the cirrus sac primordium. In short, trypsin and bile salts associated were fundamental for the in vitro metacercariae excystation of Echinostoma paraensei. This article presents the first detailed information of all stages of metacercariae excystation obtained through light and confocal microscopy. Copyright © 2013. Published by Elsevier Inc.

  4. Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Zelenovskiy, P. S.; Nebogatikov, M. S.; Alikin, D. O.; Sarmanova, M. F.; Ievlev, A. V.; Mingaliev, E. A.; Kuznetsov, D. K.

    2011-09-01

    Piezoelectric force microscopy (PFM) and Raman confocal microscopy have been used for studying the nanodomain structures in congruent LiNbO3 and LiTaO3 crystals. The high-resolution nanodomain images at the surface were observed via PFM. Raman confocal microscopy has been used for the visualization of the nanodomain structures in the bulk via layer-by-layer scanning at various depths. It has been shown experimentally that the nanodomain images obtained at different depths correspond to domain images at the polar surface obtained at different moments: the deeper the nanodomain, the earlier the moment. Such a correlation was applied for the reconstruction of the evolution of the domain structures with charged domain walls. The studied domain structures were obtained in highly non-equilibrium switching conditions realized in LiNbO3 and LiTaO3 via pulse laser irradiation and the electric field poling of LiNbO3, with the surface layer modified by ion implantation. The revealed main stages of the domain structure evolution allow the authors to demonstrate that all geometrically different nanodomain structures observed in LiNbO3 and LiTaO3 appeared as a result of discrete switching.

  5. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    EPA Science Inventory

    Laser power abstract
    The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  6. RELIABILITY OF CONFOCAL MICROSCOPY SPECTRAL IMAGING SYSTEMS: USE OF MULTISPECTRAL BEADS

    EPA Science Inventory

    Background: There is a need for a standardized, impartial calibration, and validation protocol on confocal spectral imaging (CSI) microscope systems. To achieve this goal, it is necessary to have testing tools to provide a reproducible way to evaluate instrument performance. ...

  7. Multi-modal Registration for Correlative Microscopy using Image Analogies

    PubMed Central

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943

  8. Tracking of cell nuclei for assessment of in vitro uptake kinetics in ultrasound-mediated drug delivery using fibered confocal fluorescence microscopy.

    PubMed

    Derieppe, Marc; de Senneville, Baudouin Denis; Kuijf, Hugo; Moonen, Chrit; Bos, Clemens

    2014-10-01

    Previously, we demonstrated the feasibility to monitor ultrasound-mediated uptake of a cell-impermeable model drug in real time with fibered confocal fluorescence microscopy. Here, we present a complete post-processing methodology, which corrects for cell displacements, to improve the accuracy of pharmacokinetic parameter estimation. Nucleus detection was performed based on the radial symmetry transform algorithm. Cell tracking used an iterative closest point approach. Pharmacokinetic parameters were calculated by fitting a two-compartment model to the time-intensity curves of individual cells. Cells were tracked successfully, improving time-intensity curve accuracy and pharmacokinetic parameter estimation. With tracking, 93 % of the 370 nuclei showed a fluorescence signal variation that was well-described by a two-compartment model. In addition, parameter distributions were narrower, thus increasing precision. Dedicated image analysis was implemented and enabled studying ultrasound-mediated model drug uptake kinetics in hundreds of cells per experiment, using fiber-based confocal fluorescence microscopy.

  9. Use of direct fluorescence labeling and confocal microscopy to determine the biodistribution of two protein therapeutics, Cerezyme and Ceredase.

    PubMed

    Piepenhagen, Peter A; Vanpatten, Scott; Hughes, Heather; Waire, James; Murray, James; Andrews, Laura; Edmunds, Tim; O'Callaghan, Michael; Thurberg, Beth L

    2010-07-01

    Efficient targeting of therapeutic reagents to tissues and cell types of interest is critical to achieving therapeutic efficacy and avoiding unwanted side effects due to offtarget uptake. To increase assay efficiency and reduce the number of animals used per experiment during preclinical development, we used a combination of direct fluorescence labeling and confocal microscopy to simultaneously examine the biodistribution of two therapeutic proteins, Cerezyme and Ceredase, in the same animals. We show that the fluorescent tags do not interfere with protein uptake and localization. We are able to detect Cerezyme and Ceredase in intact cells and organs and demonstrate colocalization within target cells using confocal microscopy. In addition, the relative amount of protein internalized by different cell types can be quantified using cell type-specific markers and morphometric analysis. This approach provides an easy and straightforward means of assessing the tissue and cell type-specific biodistribution of multiple protein therapeutics in target organs using a minimal number of animals. (c) 2009 Wiley-Liss, Inc.

  10. Usefulness of confocal microscopy in distinguishing between basal cell carcinoma and intradermal melanocytic nevus on the face.

    PubMed

    Gamo, R; Floristan, U; Pampín, A; Caro, D; Pinedo, F; López-Estebaranz, J L

    2015-10-01

    The clinical distinction between basal cell carcinoma (BCC) and intradermal melanocytic nevus lesions on the face can be difficult, particularly in young patients or patients with multiple nevi. Dermoscopy is a useful tool for analyzing characteristic dermoscopic features of BCC, such as cartwheel structures, maple leaf-like areas, blue-gray nests and dots, and ulceration. It also reveals arborizing telangiectatic vessels and prominent curved vessels, which are typical of BCC, and comma vessels, which are typical of intradermal melanocytic nevi. It is, however, not always easy to distinguish between these 2 conditions, even when dermoscopy is used. We describe 2 facial lesions that posed a clinical and dermoscopic challenge in two 38-year-old patients; confocal microscopy showed separation between tumor nests and stroma and polarized nuclei, which are confocal microscopy features of basal cell carcinoma. Copyright © 2014 Elsevier España, S.L.U. y AEDV. All rights reserved.

  11. High throughput, detailed, cell-specific neuroanatomy of dendritic spines using microinjection and confocal microscopy

    PubMed Central

    Dumitriu, Dani; Rodriguez, Alfredo; Morrison, John H.

    2012-01-01

    Morphological features such as size, shape and density of dendritic spines have been shown to reflect important synaptic functional attributes and potential for plasticity. Here we describe in detail a protocol for obtaining detailed morphometric analysis of spines using microinjection of fluorescent dyes, high resolution confocal microscopy, deconvolution and image analysis using NeuronStudio. Recent technical advancements include better preservation of tissue resulting in prolonged ability to microinject, and algorithmic improvements that compensate for the residual Z-smear inherent in all optical imaging. Confocal imaging parameters were probed systematically for the identification of both optimal resolution as well as highest efficiency. When combined, our methods yield size and density measurements comparable to serial section transmission electron microscopy in a fraction of the time. An experiment containing 3 experimental groups with 8 subjects in each can take as little as one month if optimized for speed, or approximately 4 to 5 months if the highest resolution and morphometric detail is sought. PMID:21886104

  12. Combined FLIM and reflectance confocal microscopy for epithelial imaging

    NASA Astrophysics Data System (ADS)

    Jabbour, Joey M.; Cheng, Shuna; Shrestha, Sebina; Malik, Bilal; Jo, Javier A.; Applegate, Brian; Maitland, Kristen C.

    2012-03-01

    Current methods for detection of oral cancer lack the ability to delineate between normal and precancerous tissue with adequate sensitivity and specificity. The usual diagnostic mechanism involves visual inspection and palpation followed by tissue biopsy and histopathology, a process both invasive and time-intensive. A more sensitive and objective screening method can greatly facilitate the overall process of detection of early cancer. To this end, we present a multimodal imaging system with fluorescence lifetime imaging (FLIM) for wide field of view guidance and reflectance confocal microscopy for sub-cellular resolution imaging of epithelial tissue. Moving from a 12 x 12 mm2 field of view with 157 ìm lateral resolution using FLIM to 275 x 200 μm2 with lateral resolution of 2.2 μm using confocal microscopy, hamster cheek pouch model is imaged both in vivo and ex vivo. The results indicate that our dual modality imaging system can identify and distinguish between different tissue features, and, therefore, can potentially serve as a guide in early oral cancer detection..

  13. 3D imaging of cement-based materials at submicron resolution by combining laser scanning confocal microscopy with serial sectioning.

    PubMed

    Yio, M H N; Mac, M J; Wong, H S; Buenfeld, N R

    2015-05-01

    In this paper, we present a new method to reconstruct large volumes of nontransparent porous materials at submicron resolution. The proposed method combines fluorescence laser scanning confocal microscopy with serial sectioning to produce a series of overlapping confocal z-stacks, which are then aligned and stitched based on phase correlation. The method can be extended in the XY plane to further increase the overall image volume. Resolution of the reconstructed image volume does not degrade with increase in sample size. We have used the method to image cementitious materials, hardened cement paste and concrete and the results obtained show that the method is reliable. Possible applications of the method such as three-dimensional characterization of the pores and microcracks in hardened concrete, three-dimensional particle shape characterization of cementitious materials and three-dimensional characterization of other porous materials such as rocks and bioceramics are discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  14. Enhanced Bioactivity of Internally Functionalized Cationic Dendrimers with PEG Cores

    DTIC Science & Technology

    2012-11-09

    Miltenyi) by counting 10 000 events. Cell Culture and Confocal Imaging. HeLa (CCL-2) were purchased from ATCC and cultured following manufacturer’s...concentration of PI before confocal imaging. Internalization Assay and Colocalization Studies. To monitor dendrimer internalization, cells were incubated...calcein. After 2 h of incubation at 37 °C, cells were washed three times with PBS and then analyzed by confocal microscopy. Ethidium Bromide Intercalation

  15. Intracellular Protein Delivery for Treating Breast Cancer

    DTIC Science & Technology

    2012-06-01

    are efficiently internalized by mammalian cells lines as characterized by confocal microscopy, and rhodamine-labeled apoptin can be observed in the...To determine the cellular localization of delivered proteins, confocal images were taken with HeLa, MCF-7, or HEF cells incubated with 20 nM of S-S...and analyzed by Nikon NIS Element software. Fluorescence images were acquired on a Yokogawa spinning-disk confocal scanner system using a Nikon

  16. UNC Pembroke Laser Scanning Confocal Microscopy Facility

    DTIC Science & Technology

    2016-04-29

    cultures. INVASIVE FIRE ANTS Professor Lisa Kelly of UNC Pembroke has been trained on the new confocal system. Dr. Kelly’s research...interest in the trophic ecology of the invasive fire ant has begun to benefit from the wide field view and long working distances of a confocal imaging...of protein clearance pathways in living brain tissue cultures. INVASIVE FIRE ANTS Professor Lisa Kelly of UNC Pembroke has been trained on

  17. In vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta

    PubMed Central

    Kobayashi, Akira; Higashide, Tomomi; Yokogawa, Hideaki; Yamazaki, Natsuko; Masaki, Toshinori; Sugiyama, Kazuhisa

    2014-01-01

    Objective To report the in vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta (OI) with special attention to the abnormality of Bowman’s layer and sub-Bowman’s fibrous structures (K-structures). Patients and methods Two patients (67-year-old male and his 26-year-old son) with OI type I were included in this study. Slit lamp biomicroscopic and in vivo laser confocal microscopic examinations were performed for both patients. Central corneal thickness and central endothelial cell density were also measured. Results Although the corneas looked clear with normal endothelial density for both eyes in both patients, they were quite thin (386 μm oculus dexter (OD) (the right eye) and 384 μm oculus sinister (OS) (the left eye) in the father and 430 μm OD and 425 μm OS in the son). In both patients, slit lamp biomicroscopic and in vivo laser confocal microscopic examination showed similar results. Anterior corneal mosaics produced by rubbing the eyelid under fluorescein were completely absent in both eyes. In vivo laser confocal microscopy revealed an absent or atrophic Bowman’s layer; a trace of a presumed Bowman’s layer and/or basement membrane was barely visible with high intensity. Additionally, K-structures were completely absent in both eyes. Conclusion The absence of K-structures and fluorescein anterior corneal mosaics strongly suggested an abnormality of Bowman’s layer in these OI patients. PMID:24591812

  18. Bessel light sheet structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Noshirvani Allahabadi, Golchehr

    Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in confocal quality images in thick tissue. The technique was applied to live transgenic zebra fish tg(kdrl:GFP), and the sub-cellular structure of fish vasculature genetically labeled with GFP was captured in 3D. The superior speed of the microscope enables us to acquire signal from 200 layers of a thick sample in 4 minutes. The compact microscope uses exclusively off-the-shelf components and offers a low-cost imaging solution for studying small animal models or tissue samples.

  19. In vivo subsurface morphological and functional cellular and subcellular imaging of the gastrointestinal tract with confocal mini-microscopy

    PubMed Central

    Goetz, Martin; Memadathil, Beena; Biesterfeld, Stefan; Schneider, Constantin; Gregor, Sebastian; Galle, Peter R; Neurath, Markus F; Kiesslich, Ralf

    2007-01-01

    AIM: To evaluate a newly developed hand-held confocal probe for in vivo microscopic imaging of the complete gastrointestinal tract in rodents. METHODS: A novel rigid confocal probe (diameter 7 mm) was designed with optical features similar to the flexible endomicroscopy system for use in humans using a 488 nm single line laser for fluorophore excitation. Light emission was detected at 505 to 750 nm. The field of view was 475 μm × 475 μm. Optical slice thickness was 7 μm with a lateral resolution of 0.7 μm. Subsurface serial images at different depths (surface to 250 μm) were generated in real time at 1024 × 1024 pixels (0.8 frames/s) by placing the probe onto the tissue in gentle, stable contact. Tissue specimens were sampled for histopathological correlation. RESULTS: The esophagus, stomach, small and large intestine and meso, liver, pancreas and gall bladder were visualised in vivo at high resolution in n = 48 mice. Real time microscopic imaging with the confocal mini-microscopy probe was easy to achieve. The different staining protocols (fluorescein, acriflavine, FITC-labelled dextran and L. esculentum lectin) each highlighted specific aspects of the tissue, and in vivo imaging correlated excellently with conventional histology. In vivo blood flow monitoring added a functional quality to morphologic imaging. CONCLUSION: Confocal microscopy is feasible in vivo allowing the visualisation of the complete GI tract at high resolution even of subsurface tissue structures. The new confocal probe design evaluated in this study is compatible with laparoscopy and significantly expands the field of possible applications to intra-abdominal organs. It allows immediate testing of new in vivo staining and application options and therefore permits rapid transfer from animal studies to clinical use in patients. PMID:17465494

  20. [Revealing the chemical changes of tea cell wall induced by anthracnose with confocal Raman microscopy].

    PubMed

    Li, Xiao-li; Luo, Liu-bin; Hu, Xiao-qian; Lou, Bing-gan; He, Yong

    2014-06-01

    Healthy tea and tea infected by anthracnose were first studied by confocal Raman microscopy to illustrate chemical changes of cell wall in the present paper. Firstly, Raman spectra of both healthy and infected sample tissues were collected with spatial resolution at micron-level, and ultrastructure of healthy and infected tea cells was got from scanning electron microscope. These results showed that there were significant changes in Raman shift and Raman intensity between healthy and infected cell walls, indicating that great differences occurred in chemical compositions of cell walls between healthy and infected samples. In details, intensities at many Raman bands which were closely associated with cellulose, pectin, esters were reduced after infection, revealing that the content of chemical compounds such as cellulose, pectin, esters was decreased after infection. Subsequently, chemical imaging of both healthy and infected tea cell walls were realized based on Raman fingerprint spectra of cellulose and microscopic spatial structure. It was found that not only the content of cellulose was reduced greatly after infection, but also the ordered structure of cellulose was destroyed by anthracnose infection. Thus, confocal Raman microscopy was shown to be a powerful tool to detect the chemical changes in cell wall of tea caused by anthracnose without any chemical treatment or staining. This research firstly applied confocal Raman microscopy in phytopathology for the study of interactive relationship between host and pathogen, and it will also open a new way for intensive study of host-pathogen at cellular level.

  1. In vitro studies of Rickettsia-host cell interactions: Confocal laser scanning microscopy of Rickettsia helvetica-infected eukaryotic cell lines.

    PubMed

    Speck, Stephanie; Kern, Tanja; Aistleitner, Karin; Dilcher, Meik; Dobler, Gerhard; Essbauer, Sandra

    2018-02-01

    Rickettsia (R.) helvetica is the most prevalent rickettsia found in Ixodes ricinus ticks in Germany. Several studies reported antibodies against R. helvetica up to 12.5% in humans investigated, however, fulminant clinical cases are rare indicating a rather low pathogenicity compared to other rickettsiae. We investigated growth characteristics of R. helvetica isolate AS819 in two different eukaryotic cell lines with focus on ultra-structural changes of host cells during infection determined by confocal laser scanning microscopy. Further investigations included partially sequencing of rickA, sca4 and sca2 genes, which have been reported to encode proteins involved in cell-to-cell spread and virulence in some rickettsiae. R. helvetica grew constantly but slowly in both cell lines used. Confocal laser scanning microscopy revealed that the dissemination of R. helvetica AS819 in both cell lines was rather mediated by cell break-down and bacterial release than cell-to-cell spread. The cytoskeleton of both investigated eukaryotic cell lines was not altered. R. helvetica possesses rickA, but its expression is not sufficient to promote actin-based motility as demonstrated by confocal laser scanning microscopy. Hypothetical Sca2 and Sca4 proteins were deduced from nucleotide gene sequences but the predicted amino acid sequences were disrupted or truncated compared to other rickettsiae most likely resulting in non-functional proteins. Taken together, these results might give a first hint to the underlying causes of the reduced virulence and pathogenicity of R. helvetica.

  2. Towards real-time image deconvolution: application to confocal and STED microscopy

    PubMed Central

    Zanella, R.; Zanghirati, G.; Cavicchioli, R.; Zanni, L.; Boccacci, P.; Bertero, M.; Vicidomini, G.

    2013-01-01

    Although deconvolution can improve the quality of any type of microscope, the high computational time required has so far limited its massive spreading. Here we demonstrate the ability of the scaled-gradient-projection (SGP) method to provide accelerated versions of the most used algorithms in microscopy. To achieve further increases in efficiency, we also consider implementations on graphic processing units (GPUs). We test the proposed algorithms both on synthetic and real data of confocal and STED microscopy. Combining the SGP method with the GPU implementation we achieve a speed-up factor from about a factor 25 to 690 (with respect the conventional algorithm). The excellent results obtained on STED microscopy images demonstrate the synergy between super-resolution techniques and image-deconvolution. Further, the real-time processing allows conserving one of the most important property of STED microscopy, i.e the ability to provide fast sub-diffraction resolution recordings. PMID:23982127

  3. Advanced imaging as a novel approach to the characterization of membranes for microfiltration applications

    NASA Astrophysics Data System (ADS)

    Marroquin, Milagro

    The primary objectives of my dissertation were to design, develop and implement novel confocal microscopy imaging protocols for the characterization of membranes and highlight opportunities to obtain reliable and cutting-edge information of microfiltration membrane morphology and fouling processes. After a comprehensive introduction and review of confocal microscopy in membrane applications (Chapter 1), the first part of this dissertation (Chapter 2) details my work on membrane morphology characterization by confocal laser scanning microscopy (CLSM) and the implementation of my newly developed CLSM cross-sectional imaging protocol. Depth-of-penetration limits were identified to be approximately 24 microns and 7-8 microns for mixed cellulose ester and polyethersulfone membranes, respectively, making it impossible to image about 70% of the membrane bulk. The development and implementation of my cross-sectional CLSM method enabled the imaging of the entire membrane cross-section. Porosities of symmetric and asymmetric membranes with nominal pore sizes in the range 0.65-8.0 microns were quantified at different depths and yielded porosity values in the 50-60% range. It is my hope and expectation that the characterization strategy developed in this part of the work will enable future studies of different membrane materials and applications by confocal microscopy. After demonstrating how cross-sectional CLSM could be used to fully characterize membrane morphologies and porosities, I applied it to the characterization of fouling occurring in polyethersulfone microfiltration membranes during the processing of solutions containing proteins and polysaccharides (Chapter 3). Through CLSM imaging, it was determined where proteins and polysaccharides deposit throughout polymeric microfiltration membranes when a fluid containing these materials is filtered. CLSM enabled evaluation of the location and extent of fouling by individual components (protein: casein and polysaccharide: dextran) within wet, asymmetric polyethersulfone microfiltration membranes. Information from filtration flux profiles and cross-sectional CLSM images of the membranes that processed single-component solutions and mixtures agreed with each other. Concentration profiles versus depth for each individual component present in the feed solution were developed from the analysis of the CLSM images at different levels of fouling for single-component solutions and mixtures. CLSM provided visual information that helped elucidate the role of each component on membrane fouling and provided a better understanding of how component interactions impact the fouling profiles. Finally, Chapter 4 extends the application of my cross-sectional CLSM imaging protocol to study the fouling of asymmetric polyethersulfone membranes during the microfiltration of protein, polyphenol, and polysaccharide mixtures to better understand the solute-solute and solute-membrane interactions leading to fouling in beverage clarification processes. Again, cross-sectional CLSM imaging provided information on the location and extent of fouling throughout the entire thickness of the PES membrane. Quantitative analysis of the cross-sectional CLSM images provided a measurement of the masses of foulants deposited throughout the membrane. Moreover, flux decline data collected for different mixtures of casein, tannic acid and beta-cyclodextrin were analyzed with standard fouling models to determine the fouling mechanisms at play when processing different combinations of foulants. Results from model analysis of flux data were compared with the quantitative visual analysis of the correspondent CLSM images. This approach, which couples visual and performance measurements, is expected to provide a better understanding of the causes of fouling that, in turn, is expected to aid in the design of new membranes with tailored structure or surface chemistry that prevents the deposition of the foulants in "prone to foul" regions. (Abstract shortened by UMI.)

  4. Any Way You Slice It—A Comparison of Confocal Microscopy Techniques

    PubMed Central

    Jonkman, James

    2015-01-01

    The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research. PMID:25802490

  5. Semi-automated confocal imaging of fungal pathogenesis on plants: microscopic analysis of macroscopic specimens

    USDA-ARS?s Scientific Manuscript database

    Contextualizing natural genetic variation in plant disease resistance in terms of pathogenesis can provide information about the function of causal genes. Cellular mechanisms associated with pathogenesis can be elucidated with confocal microscopy, but systematic phenotyping platforms—from sample pro...

  6. Target-locking acquisition with real-time confocal (TARC) microscopy.

    PubMed

    Lu, Peter J; Sims, Peter A; Oki, Hidekazu; Macarthur, James B; Weitz, David A

    2007-07-09

    We present a real-time target-locking confocal microscope that follows an object moving along an arbitrary path, even as it simultaneously changes its shape, size and orientation. This Target-locking Acquisition with Realtime Confocal (TARC) microscopy system integrates fast image processing and rapid image acquisition using a Nipkow spinning-disk confocal microscope. The system acquires a 3D stack of images, performs a full structural analysis to locate a feature of interest, moves the sample in response, and then collects the next 3D image stack. In this way, data collection is dynamically adjusted to keep a moving object centered in the field of view. We demonstrate the system's capabilities by target-locking freely-diffusing clusters of attractive colloidal particles, and activelytransported quantum dots (QDs) endocytosed into live cells free to move in three dimensions, for several hours. During this time, both the colloidal clusters and live cells move distances several times the length of the imaging volume.

  7. Experiments on terahertz 3D scanning microscopic imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Qi

    2016-10-01

    Compared with the visible light and infrared, terahertz (THz) radiation can penetrate nonpolar and nonmetallic materials. There are many studies on the THz coaxial transmission confocal microscopy currently. But few researches on the THz dual-axis reflective confocal microscopy were reported. In this paper, we utilized a dual-axis reflective confocal scanning microscope working at 2.52 THz. In contrast with the THz coaxial transmission confocal microscope, the microscope adopted in this paper can attain higher axial resolution at the expense of reduced lateral resolution, revealing more satisfying 3D imaging capability. Objects such as Chinese characters "Zhong-Hua" written in paper with a pencil and a combined sheet metal which has three layers were scanned. The experimental results indicate that the system can extract two Chinese characters "Zhong," "Hua" or three layers of the combined sheet metal. It can be predicted that the microscope can be applied to biology, medicine and other fields in the future due to its favorable 3D imaging capability.

  8. Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM, confocal microscopy and Raman imaging

    PubMed Central

    Moro, Daniele; Valdrè, Giovanni; Mesto, Ernesto; Scordari, Fernando; Lacalamita, Maria; Ventura, Giancarlo Della; Bellatreccia, Fabio; Scirè, Salvatore; Schingaro, Emanuela

    2017-01-01

    This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several μm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000–2800 cm−1, associated with weaker bands at 1655, 1438 and 1297 cm−1, indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons. PMID:28098185

  9. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure.

    PubMed

    Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V

    2011-04-01

    We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.

  10. Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue

    PubMed Central

    Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Seltzer, Emily; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2013-01-01

    Abstract. Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in freshly excised tissue, without the processing required for conventional pathology. Previously, mosaicing on 12-×-12  mm2 of excised skin tissue from Mohs surgery and detection of basal cell carcinoma margins was demonstrated in 9 min. Last year, we reported the feasibility of a faster approach called “strip mosaicing,” which was demonstrated on a 10-×-10  mm2 of tissue in 3 min. Here we describe further advances in instrumentation, software, and speed. A mechanism was also developed to flatten tissue in order to enable consistent and repeatable acquisition of images over large areas. We demonstrate mosaicing on 10-×-10  mm2 of skin tissue with 1-μm lateral resolution in 90 s. A 2.5-×-3.5  cm2 piece of breast tissue was scanned with 0.8-μm lateral resolution in 13 min. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Imaging of tumor margins with strip mosaicing confocal microscopy may serve as an adjunct to conventional (frozen or fixed) pathology for guiding surgery. PMID:23389736

  11. In vivo laser confocal microscopy findings in patients with map-dot-fingerprint (epithelial basement membrane) dystrophy

    PubMed Central

    Kobayashi, Akira; Yokogawa, Hideaki; Sugiyama, Kazuhisa

    2012-01-01

    Background: The purpose of this study was to investigate pathological changes of the corneal cell layer in patients with map-dot-fingerprint (epithelial basement membrane) dystrophy by in vivo laser corneal confocal microscopy. Methods: Two patients were evaluated using a cornea-specific in vivo laser scanning confocal microscope (Heidelberg Retina Tomograph 2 Rostock Cornea Module, HRT 2-RCM). The affected corneal areas of both patients were examined. Image analysis was performed to identify corneal epithelial and stromal deposits correlated with this dystrophy. Results: Variously shaped (linear, multilaminar, curvilinear, ring-shape, geographic) highly reflective materials were observed in the “map” area, mainly in the basal epithelial cell layer. In “fingerprint” lesions, multiple linear and curvilinear hyporeflective lines were observed. Additionally, in the affected corneas, infiltration of possible Langerhans cells and other inflammatory cells was observed as highly reflective Langerhans cell-like or dot images. Finally, needle-shaped materials were observed in one patient. Conclusion: HRT 2-RCM laser confocal microscopy is capable of identifying corneal microstructural changes related to map-dot-fingerprint corneal dystrophy in vivo. The technique may be useful in elucidating the pathogenesis and natural course of map-dot-fingerprint corneal dystrophy and other similar basement membrane abnormalities. PMID:22888214

  12. Confocal Raman Microscopy for the Determination of Protein and Quaternary Ammonium Ion Loadings in Biocatalytic Membranes for Electrochemical Energy Conversion and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Rong; Abdellaoui, Sofiene; Kitt, Jay P.

    Here, the need to immobilize active enzyme, while ensuring high rates of substrate turnover and electronic charge transfer with an electrode, is a centrally important challenge in the field of bioelectrocatalysis. In this work, we demonstrate the use of confocal Raman microscopy as a tool for quantitation and molecular-scale structural characterization of ionomers and proteins within biocatalytic membranes to aid in the development of energy efficient biofuel cells. A set of recently available short side chain Aquivion ionomers spanning a range of equivalent weight (EW) suitable for enzyme immobilization was investigated. Aquivion ionomers (790 EW, 830 EW and 980 EW)more » received in the proton-exchanged (SO 3H) form were treated with tetra-n-butylammonium bromide (TBAB) to neutralize the ionomer and expand the size of ionic domains for enzyme incorporation. Through the use of confocal Raman microscopy, membrane TBA+ ion content was predicted in calibration studies to within a few percent of the conventional titrimetric method across the full range of TBA + : SO 3 - ratios of practical interest (0.1 to 1.7). Protein incorporation into membranes was quantified at the levels expected in biofuel cell electrodes. Furthermore, features associated with the catalytically active, enzyme-coordinated copper center were evident between 400 cm -1 - 500 cm -1 in spectra of laccase catalytic membranes, demonstrating the potential to interrogate mechanistic chemistry at the enzyme active site of biocathodes under fuel cell reaction conditions. When benchmarked against the 1100 EW Nafion ionomer in glucose/air enzymatic fuel cells (EFCs), EFCs with laccase air-breathing cathodes prepared from TBA + modified Aquivion ionomers were able to reach maximum power densities (P max) up to 1.5 times higher than EFCs constructed with cathodes prepared from TBA + modified Nafion. The improved performance of EFCs containing the short side chain Aquivion ionomers relative to Nafion is traced to effects of ionomer ion-exchange capacity (IEC, where IEC = EW -1), where the greater density of SO 3 - moieties in the Aquivion materials produces an environment more favourable to mass transport and higher TBA + concentrations.« less

  13. Confocal Raman Microscopy for the Determination of Protein and Quaternary Ammonium Ion Loadings in Biocatalytic Membranes for Electrochemical Energy Conversion and Storage

    DOE PAGES

    Cai, Rong; Abdellaoui, Sofiene; Kitt, Jay P.; ...

    2017-11-14

    Here, the need to immobilize active enzyme, while ensuring high rates of substrate turnover and electronic charge transfer with an electrode, is a centrally important challenge in the field of bioelectrocatalysis. In this work, we demonstrate the use of confocal Raman microscopy as a tool for quantitation and molecular-scale structural characterization of ionomers and proteins within biocatalytic membranes to aid in the development of energy efficient biofuel cells. A set of recently available short side chain Aquivion ionomers spanning a range of equivalent weight (EW) suitable for enzyme immobilization was investigated. Aquivion ionomers (790 EW, 830 EW and 980 EW)more » received in the proton-exchanged (SO 3H) form were treated with tetra-n-butylammonium bromide (TBAB) to neutralize the ionomer and expand the size of ionic domains for enzyme incorporation. Through the use of confocal Raman microscopy, membrane TBA+ ion content was predicted in calibration studies to within a few percent of the conventional titrimetric method across the full range of TBA + : SO 3 - ratios of practical interest (0.1 to 1.7). Protein incorporation into membranes was quantified at the levels expected in biofuel cell electrodes. Furthermore, features associated with the catalytically active, enzyme-coordinated copper center were evident between 400 cm -1 - 500 cm -1 in spectra of laccase catalytic membranes, demonstrating the potential to interrogate mechanistic chemistry at the enzyme active site of biocathodes under fuel cell reaction conditions. When benchmarked against the 1100 EW Nafion ionomer in glucose/air enzymatic fuel cells (EFCs), EFCs with laccase air-breathing cathodes prepared from TBA + modified Aquivion ionomers were able to reach maximum power densities (P max) up to 1.5 times higher than EFCs constructed with cathodes prepared from TBA + modified Nafion. The improved performance of EFCs containing the short side chain Aquivion ionomers relative to Nafion is traced to effects of ionomer ion-exchange capacity (IEC, where IEC = EW -1), where the greater density of SO 3 - moieties in the Aquivion materials produces an environment more favourable to mass transport and higher TBA + concentrations.« less

  14. Evaluation of agave fiber delignification by means of microscopy techniques and image analysis.

    PubMed

    Hernández-Hernández, Hilda M; Chanona-Pérez, Jorge J; Calderón-Domínguez, Georgina; Perea-Flores, María J; Mendoza-Pérez, Jorge A; Vega, Alberto; Ligero, Pablo; Palacios-González, Eduardo; Farrera-Rebollo, Reynold R

    2014-10-01

    Recently, the use of different types of natural fibers to produce paper and textiles from agave plants has been proposed. Agave atrovirens can be a good source of cellulose and lignin; nevertheless, the microstructural changes that happen during delignification have scarcely been studied. The aim of this work was to study the microstructural changes that occur during the delignification of agave fibers by means of microscopy techniques and image analysis. The fibers of A. atrovirens were obtained from leaves using convective drying, milling, and sieving. Fibers were processed using the Acetosolv pulping method at different concentrations of acetic acid; increasing acid concentration promoted higher levels of delignification, structural damage, and the breakdown of fiber clumps. Delignification followed by spectrometric analysis and microstructural studies were carried out by light, confocal laser scanning and scanning electron microscopy and showed that the delignification process follows three stages: initial, bulk, and residual. Microscopy techniques and image analysis were efficient tools for microstructural characterization during delignification of agave fibers, allowing quantitative evaluation of the process and the development of linear prediction models. The data obtained integrated numerical and microstructural information that could be valuable for the study of pulping of lignocellulosic materials.

  15. Analysis of multi-channel microscopy: Spectral self-interference, multi-detector confocal and 4Pi systems

    NASA Astrophysics Data System (ADS)

    Davis, Brynmor J.

    Fluorescence microscopy is an important and ubiquitous tool in biological imaging due to the high specificity with which fluorescent molecules can be attached to an organism and the subsequent nondestructive in-vivo imaging allowed. Focused-light microscopies allow three-dimensional fluorescence imaging but their resolution is restricted by diffraction. This effect is particularly limiting in the axial dimension as the diffraction-limited focal volume produced by a lens is more extensive along the optical axis than perpendicular to it. Approaches such as confocal microscopy and 4Pi microscopy have been developed to improve the axial resolution. Spectral Self-Interference Fluorescence Microscopy (SSFM) is another high-axial-resolution technique and is the principal subject of this dissertation. Nanometer-precision localization of a single fluorescent layer has been demonstrated using SSFM. This accuracy compares favorably with the axial resolutions given by confocal and 4Pi systems at similar operating parameters (these resolutions are approximately 350nm and 80nm respectively). This theoretical work analyzes the expected performance of the SSFM system when imaging a general object, i.e. an arbitrary fluorophore density function rather than a single layer. An existing model of SSFM is used in simulations to characterize the system's resolution. Several statistically-based reconstruction methods are applied to show that the expected resolution for SSFM is similar to 4Pi microscopy for a general object but does give very high localization accuracy when the object is known to consist of a limited number of layers. SSFM is then analyzed in a linear systems framework and shown to have strong connections, both physically and mathematically, to a multi-channel 4Pi microscope. Fourier-domain analysis confirms that SSFM cannot be expected to outperform this multi-channel 4Pi instrument. Differences between the channels in spatial-scanning, multi-channel microscopies are then exploited to show that such instruments can operate at a sub-Nyquist scanning rate but still produce images largely free of aliasing effects. Multi-channel analysis is also used to show how light typically discarded in confocal and 4Pi systems can be collected and usefully incorporated into the measured image.

  16. Preconditioning with Gua Lou Gui Zhi decoction enhances H2O2-induced Nrf2/HO-1 activation in PC12 cells

    PubMed Central

    MAO, JINGJIE; LI, ZUANFANG; LIN, RUHUI; ZHU, XIAOQIN; LIN, JIUMAO; PENG, JUN; CHEN, LIDIAN

    2015-01-01

    Spasticity is common in various central neurological conditions, including after a stroke. Such spasticity may cause additional problems, and often becomes a primary concern for afflicted individuals. A number of studies have identified nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as a key regulator in the adaptive survival response to oxidative stress. Elevated expression of Nrf2, combined with heme oxygenase 1 (HO-1) resistance, in the central nervous system is known to elicit key internal and external oxidation protection. Gua Lou Gui Zhi decoction (GLGZD) is a popular traditional Chinese formula with a long history of clinical use in China for the treatment of muscular spasticity following a stroke, epilepsy or a spinal cord injury. However, the mechanism underlying the efficacy of the medicine remains unclear. In the present study, the antioxidative effects of GLGZD were evaluated and the underlying molecular mechanisms were investigated, using hydrogen peroxide (H2O2)-induced rat pheochromocytoma cells (PC12 cells) as an in vitro oxidative stress model of neural cells. Upon application of different concentrations of GLGZD, a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay and ATP measurement were conducted to assess the impact on PC12 cell proliferation. In addition, inverted microscopy observations, and the MTT and ATP assessments, revealed that GLGZD attenuated H2O2-induced oxidative damage and signaling repression in PC12 cells. Furthermore, the mRNA and protein expression levels of Nrf2 and HO-1, which are associated with oxidative stress, were analyzed using reverse transcription quantitative polymerase chain reaction (PCR) and confocal microscopy. Confocal microscopy observations, as well as the quantitative PCR assay, revealed that GLGZD exerted a neuroprotective function against H2O2-induced oxidative damage in PC12 cells. Therefore, the results demonstrated that GLGZD protected PC12 cells injured by H2O2, which may be associated with the upregulation of Nrf2 and HO-1 mRNA and protein expression levels in PC12 cells. PMID:26622408

  17. Through the looking glass: Basics and principles of reflectance confocal microscopy.

    PubMed

    Que, Syril Keena T; Fraga-Braghiroli, Naiara; Grant-Kels, Jane M; Rabinovitz, Harold S; Oliviero, Margaret; Scope, Alon

    2015-08-01

    Reflectance confocal microscopy (RCM) offers high-resolution, noninvasive skin imaging and can help avoid obtaining unnecessary biopsy specimens. It can also increase efficiency in the surgical setting by helping to delineate tumor margins. Diagnostic criteria and several RCM algorithms have been published for the differentiation of benign and malignant neoplasms. We provide an overview of the basic principles of RCM, characteristic RCM features of normal skin and cutaneous neoplasms, and the limitations and future directions of RCM. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  18. Quantitative visualization of passive transport across bilayer lipid membranes

    PubMed Central

    Grime, John M. A.; Edwards, Martin A.; Rudd, Nicola C.; Unwin, Patrick R.

    2008-01-01

    The ability to predict and interpret membrane permeation coefficients is of critical importance, particularly because passive transport is crucial for the effective delivery of many pharmaceutical agents to intracellular targets. We present a method for the quantitative measurement of the permeation coefficients of protonophores by using laser confocal scanning microscopy coupled to microelectrochemistry, which is amenable to precise modeling with the finite element method. The technique delivers well defined and high mass transport rates and allows rapid visualization of the entire pH distribution on both the cis and trans side of model bilayer lipid membranes (BLMs). A homologous series of carboxylic acids was investigated as probe molecules for BLMs composed of soybean phosphatidylcholine. Significantly, the permeation coefficient decreased with acyl tail length contrary to previous work and to Overton's rule. The reasons for this difference are considered, and we suggest that the applicability of Overton's rule requires re-evaluation. PMID:18787114

  19. Signal improvement in multiphoton microscopy by reflection with simple mirrors near the sample

    NASA Astrophysics Data System (ADS)

    Rehberg, Markus; Krombach, Fritz; Pohl, Ulrich; Dietzel, Steffen

    2010-03-01

    In conventional fluorescence or confocal microscopy, emitted light is generated not only in the focal plane but also above and below. The situation is different in multiphoton-induced fluorescence and multiphoton-induced higher harmonic generation. Here, restriction of signal generation to a single focal point permits that all emitted photons can contribute to image formation if collected, regardless of their path through the specimen. Often, the intensity of the emitted light is rather low in biological specimens. We present a method to significantly increase the fraction of photons collected by an epi (backward) detector by placing a simple mirror, an aluminum-coated coverslip, directly under the sample. Samples investigated include fluorescent test slides, collagen gels, and thin-layered, intact mouse skeletal muscles. Quantitative analysis revealed an intensity increase of second- and third-harmonic generated signal in skeletal muscle of nine- and sevenfold respectively, and of fluorescent signal in test slides of up to twofold. Our approach thus allows significant signal improvement also for situations were a forward detection is impossible, e.g., due to the anatomy of animals in intravital microscopy.

  20. Novel Activity of a Synthetic Decapeptide Against Toxoplasma gondii Tachyzoites.

    PubMed

    Giovati, Laura; Santinoli, Claudia; Mangia, Carlo; Vismarra, Alice; Belletti, Silvana; D'Adda, Tiziana; Fumarola, Claudia; Ciociola, Tecla; Bacci, Cristina; Magliani, Walter; Polonelli, Luciano; Conti, Stefania; Kramer, Laura H

    2018-01-01

    The killer peptide KP is a synthetic decapeptide derived from the sequence of the variable region of a recombinant yeast killer toxin-like microbicidal single-chain antibody. KP proved to exert significant activities against diverse microbial and viral pathogens through different mechanisms of action, but little is known of its effect on apicomplexan protozoa. The aim of the present study was to evaluate the in vitro activity of KP against Toxoplasma gondii , a globally widespread protozoan parasite of great medical interest. The effect of KP treatment and its potential mechanism of action on T. gondii were evaluated by various methods, including light microscopy, quantitative PCR, flow cytometry, confocal microscopy, and transmission electron microscopy. In the presence of KP, the number of T. gondii tachyzoites able to invade Vero cells and the parasite intracellular proliferation were significantly reduced. Morphological observation and analysis of apoptotic markers suggested that KP is able to trigger an apoptosis-like cell death in T. gondii . Overall, our results indicate that KP could be a promising candidate for the development of new anti- Toxoplasma drugs with a novel mechanism of action.

  1. A laser scanning confocal imaging-surface plasmon resonance system application in real time detection of antibody-antigen interaction

    NASA Astrophysics Data System (ADS)

    Zhang, H. Y.; Yang, L. Q.; Liu, W. M.

    2011-12-01

    The laser scanning confocal microscope (LSCM) offers several advantages over conventional optical microscopy, but most LSCM work is qualitative analysis and it is very hard to achieve quantitative detection directly with the changing of the fluorescent intensity. A new real time sensor system for the antibody-antigen interaction detection was built integrating with a LSCM and a wavelength-dependent surface plasmon resonance (SPR) sensor. The system was applied to detect the bonding process of human IgG and fluorescent-labeled affinity purified antibody in real time. The fluorescence images changing is well with that of SPR wavelengths in real time, and the trend of the resonance wavelength shift with the concentrations of antibody is similar to that of the fluorescent intensity changing. The results show that SPR makes up the short of quantificational analysis with LSCM with the high spatial resolution. The sensor system shows the merits of the of the LSCM and SPR synergetic application, which are of great importance for practical application in biosensor and life science for interesting local interaction.

  2. Quantitative spatial distribution of sirolimus and polymers in drug-eluting stents using confocal Raman microscopy.

    PubMed

    Balss, K M; Llanos, G; Papandreou, G; Maryanoff, C A

    2008-04-01

    Raman spectroscopy was used to differentiate each component found in the CYPHER Sirolimus-eluting Coronary Stent. The unique spectral features identified for each component were then used to develop three separate calibration curves to describe the solid phase distribution found on drug-polymer coated stents. The calibration curves were obtained by analyzing confocal Raman spectral depth profiles from a set of 16 unique formulations of drug-polymer coatings sprayed onto stents and planar substrates. The sirolimus model was linear from 0 to 100 wt % of drug. The individual polymer calibration curves for poly(ethylene-co-vinyl acetate) [PEVA] and poly(n-butyl methacrylate) [PBMA] were also linear from 0 to 100 wt %. The calibration curves were tested on three independent drug-polymer coated stents. The sirolimus calibration predicted the drug content within 1 wt % of the laboratory assay value. The polymer calibrations predicted the content within 7 wt % of the formulation solution content. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra from five formulations confirmed a linear response to changes in sirolimus and polymer content. Copyright 2007 Wiley Periodicals, Inc.

  3. Varifocal MOEMS fiber scanner for confocal endomicroscopy.

    PubMed

    Meinert, Tobias; Weber, Niklas; Zappe, Hans; Seifert, Andreas

    2014-12-15

    Based on an advanced silicon optical bench technology with integrated MOEMS (Micro-Opto-Electro-Mechanical-System) components, a piezo-driven fiber scanner for confocal microscopy has been developed. This highly-miniaturized technology allows integration into an endoscope with a total outer probe diameter of 2.5 mm. The system features a hydraulically-driven varifocal lens providing axial confocal scanning without any translational movement of components. The demonstrated resolutions are 1.7 μm laterally and 19 μm axially.

  4. Hemodynamic flow visualization of early embryonic great vessels using μPIV.

    PubMed

    Goktas, Selda; Chen, Chia-Yuan; Kowalski, William J; Pekkan, Kerem

    2015-01-01

    Microparticle image velocimetry (μPIV) is an evolving quantitative methodology to closely and accurately monitor the cardiac flow dynamics and mechanotransduction during vascular morphogenesis. While PIV technique has a long history, contemporary developments in advanced microscopy have significantly expanded its power. This chapter includes three new methods for μPIV acquisition in selected embryonic structures achieved through advanced optical imaging: (1) high-speed confocal scanning of transgenic zebrafish embryos, where the transgenic erythrocytes act as the tracing particles; (2) microinjection of artificial seeding particles in chick embryos visualized with stereomicroscopy; and (3) real-time, time-resolved optical coherence tomography acquisition of vitelline vessel flow profiles in chick embryos, tracking the erythrocytes.

  5. Gene cloning, expression and functional characterization of a proliferation-inducing ligand (APRIL) from hedgehog (Erinaceus europaeus).

    PubMed

    Cui, Xian-Wei; Xiao, Wen; Ji, Chen-Bo; Tian, Ai-Ying; Zhang, Jie; Zhang, Shuang-Quan

    2012-05-01

    Here we describe the identification of the hedgehog Erinaceus europaeus homologue of a proliferation-inducing ligand (APRIL) of the TNF family (designated heAPRIL). Hedgehog APRIL contains two cysteine residues (Cys(196) and Cys(211)), a furin protease cleavage site and a conserved putative N-glycosylation site (Asn(124)). Real-time quantitative PCR (qPCR) analysis revealed that heAPRIL could be detected in various tissues. MTT assays and flow cytometric analysis revealed that Nus-hesAPRIL and hesAPRIL could promote the survival/proliferation of splenic B cells. Laser scanning confocal microscopy analysis showed GFP-hesAPRIL could successfully bind to the APRIL receptors of lymphocytes.

  6. Early Corneal Cellular and Nerve Fiber Pathology in Young Patients With Type 1 Diabetes Mellitus Identified Using Corneal Confocal Microscopy.

    PubMed

    Szalai, Eszter; Deák, Eszter; Módis, László; Németh, Gábor; Berta, András; Nagy, Annamária; Felszeghy, Eniko; Káposzta, Rita; Malik, Rayaz A; Csutak, Adrienne

    2016-03-01

    The aim of this study was to quantify epithelial, stromal, and endothelial cell density, and subbasal nerve morphology in young patients with type 1 diabetes mellitus with and without diabetic retinopathy. A total of 28 young patients (mean age, 22.86 ± 9.05 years) with type 1 diabetes, with (n = 18) and without (n = 10) retinopathy, and 17 age-matched healthy control subjects (mean age, 26.53 ± 2.43 years) underwent corneal confocal microscopy (CCM). We found significantly lower epithelial (P < 0.0001) and endothelial (P = 0.001) cell densities and higher keratocyte cell density (P = 0.024) in patients with type 1 diabetes compared to controls. Significantly lower corneal nerve fiber density (P = 0.004), nerve branch density (P = 0.004), total nerve branch density (P = 0.04), and nerve fiber length (P = 0.001), and greater nerve fiber width (P = 0.04) were observed in patients with type 1 diabetes compared to control subjects. Significantly lower epithelial (P < 0.001) and endothelial (P = 0.02) cell densities, nerve branch density (P = 0.02), and nerve fiber length (P = 0.04), and significantly higher keratocyte cell density (P = 0.02) were found in patients with type 1 diabetes without retinopathy compared to control subjects. Corneal confocal microscopy identifies corneal cellular and small nerve fiber pathology in young patients with type 1 diabetes without retinopathy, which increases in severity in those with retinopathy. Corneal confocal microscopy appears to have considerable use as an imaging biomarker for early subclinical pathology in young patients with type 1 diabetes mellitus.

  7. Investigation of phosphatidylcholine enhancing FITC-insulin across buccal mucosa by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tian, Weiqun; Su, Li; Zeng, Shaoqun; Luo, Qingming; Gao, Qiuhua; Xu, Huibi

    2002-04-01

    The aim was to characterize the transport of fluorescein isothiocyanate (FITC)-labeled dextran and insulin with different resoluble compounds for peptides and proteins through buccal mucosa. The penetration rate of insulin molecules through porcine buccal mucosa (a nonkeratinized epithelium, comparable to human buccal mucosa) was investigated by measuring transbuccal fluxes and by analyzing the distribution of the fluorescent probe in the rabbit buccal mucosa epithelium, using confocal laser scanning microscopy for visualizing permeation pathways. The confocal images of the distribution pattern of FITC-dextran and FITC-insulin showed that the paracellular route is the major pathway of FITC-dextran through buccal mucosa epithelium, the intra-cellular route is the major pathway of FITC-insulin through buccal mucosa epithelium. The permeation rate can be increased by co-administration of soybean phosphatidylcholine (SPC).

  8. Spontaneous confocal Raman microscopy--a tool to study the uptake of nanoparticles and carbon nanotubes into cells

    NASA Astrophysics Data System (ADS)

    Romero, Gabriela; Rojas, Elena; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio Enrique

    2011-06-01

    Confocal Raman microscopy as a label-free technique was applied to study the uptake and internalization of poly(lactide- co-glycolide) (PLGA) nanoparticles (NPs) and carbon nanotubes (CNTs) into hepatocarcinoma human HepG2 cells. Spontaneous confocal Raman spectra was recorded from the cells exposed to oxidized CNTs and to PLGA NPs. The Raman spectra showed bands arising from the cellular environment: lipids, proteins, nucleic acids, as well as bands characteristic for either PLGA NPs or CNTs. The simultaneous generation of Raman bands from the cell and nanomaterials from the same spot proves internalization, and also indicates the cellular region, where the nanomaterial is located. For PLGA NPs, it was found that they preferentially co-localized with lipid bodies, while the oxidized CNTs are located in the cytoplasm.

  9. Phase sensitive optical coherence microscopy for photothermal imaging of gold nanorods

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Podoleanu, Adrian G.; Dobre, George

    2018-03-01

    We describe a swept source based phase sensitive optical coherence microscopy (OCM) system for photothermal imaging of gold nanorods (GNR). The phase sensitive OCM system employed in the study has a displacement sensitivity of 0.17 nm to vibrations at single frequencies below 250 Hz. We demonstrate the generation of phase maps and confocal phase images. By displaying the difference between successive confocal phase images, we perform the confocal photothermal imaging of accumulated GNRs behind a glass coverslip and behind the scattering media separately. Compared with two-photon luminescence (TPL) detection techniques reported in literature, the technique in this study has the advantage of a simplified experimental setup and provides a more efficient method for imaging the aggregation of GNR. However, the repeatability performance of this technique suffers due to jitter noise from the swept laser source.

  10. Multiple excitation nano-spot generation and confocal detection for far-field microscopy.

    PubMed

    Mondal, Partha Pratim

    2010-03-01

    An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.

  11. Multiple excitation nano-spot generation and confocal detection for far-field microscopy

    NASA Astrophysics Data System (ADS)

    Mondal, Partha Pratim

    2010-03-01

    An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.

  12. Detection of living Sarcoptes scabiei larvae by reflectance mode confocal microscopy in the skin of a patient with crusted scabies

    NASA Astrophysics Data System (ADS)

    Levi, Assi; Mumcuoglu, Kosta Y.; Ingber, Arieh; Enk, Claes D.

    2012-06-01

    Scabies is an intensely pruritic disorder induced by a delayed type hypersensitivity reaction to infestation of the skin by the mite Sarcoptes scabiei. The diagnosis of scabies is established clinically and confirmed by identifying mites or eggs by microscopic examination of scrapings from the skin or by surface microscopy using a dermatoscope. Reflectance-mode confocal microscopy is a novel technique used for noninvasive imaging of skin structures and lesions at a resolution compatible to that of conventional histology. Recently, the technique was employed for the confirmation of the clinical diagnosis of scabies. We demonstrate the first ever documentation of a larva moving freely inside the skin of a patient infected with scabies.

  13. In vivo laser confocal microscopy findings of radial keratoneuritis in patients with early stage Acanthamoeba keratitis.

    PubMed

    Kobayashi, Akira; Yokogawa, Hideaki; Yamazaki, Natsuko; Ishibashi, Yasuhisa; Oikawa, Yosaburo; Tokoro, Masaharu; Sugiyama, Kazuhisa

    2013-07-01

    To investigate in vivo corneal changes of keratoneuritis in early stage Acanthamoeba keratitis (AK) using in vivo laser confocal microscopy. Single-center, prospective, clinical study. Thirteen eyes (12 patients; 5 men and 7 women; mean age ± standard deviation, 22.3 ± 4.2 years) with keratoneuritis resulting from early stage AK were included in this study. In vivo laser confocal microscopy was performed, paying special attention to keratoneuritis. Selected confocal images of corneal layers were evaluated qualitatively for shape and degree of light reflection of abnormal cells and deposits. In all patients, Acanthamoeba cysts were observed clearly in the basal epithelial cell layer as highly reflective round particles with a diameter of 10 to 20 μm. Bowman's layer infiltration of Acanthamoeba cysts was observed in only 1 case, and no cases showed stromal or nerve infiltration of Acanthamoeba cysts. In the stroma, all cases showed highly reflective activated keratocytes forming a honeycomb pattern; these changes were significant around the keratoneuritis. Infiltration of inflammatory cells, possibly polymorphonuclear cells, was observed along with keratocyte bodies in all cases. Numerous highly reflective spindle-shaped materials were observed around the keratoneuritis. Most notably, highly reflective patchy lesions were observed around the keratoneuritis in 11 cases (84.6%). Inflammatory cells also were observed in the endothelial cell layer in 4 cases (30.8%). In vivo laser confocal microscopy identified consistent corneal abnormalities around keratoneuritis in early stage AK patients, of which highly reflective patchy lesions may be characteristic of keratoneuritis. Further morphologic studies of corneas with early stage AK in a larger number of patients may elucidate the clinical significance of radial keratoneuritis and may help us to understand the interaction between Acanthamoeba organisms and host corneal cells or nerves. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  14. Investigation of the confocal wavefront sensor and its application to biological microscopy.

    PubMed

    Shaw, Michael; O'Holleran, Kevin; Paterson, Carl

    2013-08-12

    Wavefront sensing in the presence of background light sources is complicated by the need to restrict the effective depth of field of the wavefront sensor. This problem is particularly significant in direct wavefront sensing adaptive optic (AO) schemes for correcting imaging aberrations in biological microscopy. In this paper we investigate how a confocal pinhole can be used to reject out of focus light whilst still allowing effective wavefront sensing. Using a scaled set of phase screens with statistical properties derived from measurements of wavefront aberrations induced by C. elegans specimens, we investigate and quantify how the size of the pinhole and the aberration amplitude affect the transmitted wavefront. We suggest a lower bound for the pinhole size for a given aberration strength and quantify the optical sectioning provided by the system. For our measured aberration data we find that a pinhole of size approximately 3 Airy units represents a good compromise, allowing effective transmission of the wavefront and thin optical sections. Finally, we discuss some of the practical implications of confocal wavefront sensing for AO systems in microscopy.

  15. Remote focusing in confocal microscopy by means of a modified Alvarez lens.

    PubMed

    Bawart, M; Jesacher, A; Bernet, S; Ritsch-Marte, M

    2018-06-22

    Alvarez lenses are actuated lens-pairs which allow one to tune the optical power by mechanical displacement of subelements. Here, we show that a recently realized modified Alvarez lens design which does not require mechanical actuation can be integrated into a confocal microscope. Instead of mechanically moving them, the sublenses are imaged onto each other in a 4f-configuration, where the lateral image shift leading to a change in optical power is created by a galvo-mirror. The avoidance of mechanical lens shifts leads to a large speed gain for axial (and hence also 3D) image scans compared to classical Alvarez lenses. We demonstrate that the suggested operation principle is compatible with confocal microscopy. In order to optimize the system, we have drawn advantage of the flexibility a liquid-crystal spatial light modulator offers for the implementation. For given specifications, dedicated diffractive optical elements or freeform elements can be used in combination with resonant galvo-scanners or acousto-optic beam deflectors, to achieve even faster z-scans than reported here, reaching video rate. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  16. Confocal laser scanning microscopy to estimate nanoparticles' human skin penetration in vitro.

    PubMed

    Zou, Ying; Celli, Anna; Zhu, Hanjiang; Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human "viable" epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested.

  17. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  18. Determination of nitric oxide mediating intracellular Ca2+ release on neurons based on confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Wang, Yuhua; He, Yipeng; Zeng, Yixiu; Zhang, Yanding; Xie, Shusen

    2014-09-01

    The gas NO is a ubiquitous intercellular messenger that modulates a wide range of physiological and pathophysiological functions. But few studies were made to study the role of NO in the Ca2+ release in dorsal root ganglion (DRG) neurons by confocal microscopy. Thus the objective of this study was to assess if NO has a role in Ca2+ signaling in DRG neurons using confocal microscopy combined with special fluorescence probe Fluo-3/AM. A 100 μM concentration of the NO donors (Sodium Nitroprusside, Dihydrate, SNP) and NO synthase inhibitor (NG-Monomethyl-L-arginine, Monoacetate salt, L-NMMA) was used in the study. Results showed that the fluorescence intensity increased rapidly after injecting SNP, which indicated that SNP could enhance intracellular Ca2+ release. And the fluorescence intensity shrank gradually with time and kept at a low level for quite a long period after loading with L-NMMA which indicated that L-NMMA could block intracellular Ca2+ release. All these results demonstrated that NO was involved in the regulation of intracellular Ca2+ release in the DRG neurons.

  19. Monosynaptic convergence of chorda tympani and glossopharyngeal afferents onto ascending relay neurons in the nucleus of the solitary tract: A high-resolution confocal and correlative electron microscopy approach

    PubMed Central

    Corson, James A.; Erisir, Alev

    2014-01-01

    While physiological studies suggested convergence of chorda tympani and glossopharyngeal afferent axons onto single neurons of the rostral nucleus of the solitary tract (rNTS), anatomical evidence has been elusive. The current study uses high-magnification confocal microscopy to identify putative synaptic contacts from afferent fibers of the two nerves onto individual projection neurons. Imaged tissue is re-visualized with electron microscopy, confirming that overlapping fluorescent signals in confocal z-stacks accurately identify appositions between labeled terminal and dendrite pairs. Monte Carlo modeling reveals that the probability of overlapping fluorophores is stochastically unrelated to the density of afferent label suggesting that convergent innervation in the rNTS is selective rather than opportunistic. Putative synaptic contacts from each nerve are often compartmentalized onto dendrite segments of convergently innervated neurons. These results have important implications for orosensory processing in the rNTS, and the techniques presented here have applications in investigations of neural microcircuitry with an emphasis on innervation patterning. PMID:23640852

  20. [Confocal microscopy findings after endothelial transplant by DSAEK].

    PubMed

    Ramírez, Manuel; Ortiz, Claudia; Dewit-Carter, Guillermo; Hernández-Quintela, Everardo

    2018-01-01

    To evaluate early in vivo corneal wound healing findings after Descemet's Stripping Automated Endothelial Keratoplasty (DSAEK) by using in vivo confocal microscopy. A total of 15 eyes of 15 patients were included. In vivo confocal microscopy (Confoscan 4, Fortune Technologies, Italy) was performed from 4 to 7 weeks after DSAEK. Measurements were scanned from the corneal endothelium to the corneal surface with a Navis® software (NIDEK, Multi-Instrument Diagnostic System, Japan). Donor-receptor interface was found in an average of 114 ± 12.4 microns. Corneal stromal folds were observed from 111.1 ± 3.5 microns from the endothelium to 286 ± 94 microns (mean 175 ± 90.5 microns of the corneal stroma). Keratocites were activated in the donor tissue from 12 ± 1.4 microns from the endothelium to 105 ± 38.2 microns (mean 93 ± 36.9 microns of the corneal stroma). Donor keratocites are activated up to 7 weeks after DSAEK. Several corneal folds are present in proximity to the donor-receptor interface after DSAEK. Further evaluation of these findings is justified to determine its clinical significance. Copyright: © 2018 Permanyer.

  1. Biomimetic Coating on Porous Alumina for Tissue Engineering: Characterisation by Cell Culture and Confocal Microscopy

    PubMed Central

    Kolos, Elizabeth; Ruys, Andrew J

    2015-01-01

    In this study porous alumina samples were prepared and then coated using the biomimetic coating technique using a five times Simulated Body Fluid (5.0SBF) as the growth solution. A coating was achieved after pre-treatment with concentrated acid. From elemental analysis, the coating contained calcium and phosphorous, but also sodium and chlorine. Halite was identified by XRD, a sodium chloride phase. Sintering was done to remove the halite phase. Once halite was burnt off, the calcium phosphate crystals were not covered with halite and, therefore, the apatite phases can be clearly observed. Cell culturing showed sufficient cell attachment to the less porous alumina, Sample B, that has more calcium phosphate growth, while the porous alumina, Sample A, with minimal calcium phosphate growth attained very little cell attachment. This is likely due to the contribution that calcium phosphate plays in the attachment of bone-like cells to a bioinert ceramic such as alumina. These results were repeated on both SEM and confocal microscopy analysis. Confocal microscopy was a novel characterisation approach which gave useful information and was a visual aid.

  2. Ex vivo confocal microscopy: a new diagnostic technique for mucormycosis.

    PubMed

    Leclercq, A; Cinotti, E; Labeille, B; Perrot, J L; Cambazard, F

    2016-05-01

    Skin-dedicated ex vivo confocal microscopy (EVCM) has so far mainly been employed to identify cutaneous tumours on freshly excised samples. We present two cases where EVCM has been used to diagnose cutaneous mucormycosis. The skin biopsies were evaluated by the skin-dedicated ex vivo confocal microscope VivaScope 2500(®) (MAVIG GmbH, Munich Germany) under both reflectance and fluorescence mode. Conventional direct optical examination on skin scraping and histological examination were later performed. Mucormycetes observed by EVCM presented as hyper-reflective elongated 20 μm in diameter structures with perpendicular ramifications. Fungi were found both under reflectance and fluorescence mode and were better visible with acridine orange under fluorescence EVCM. Conventional direct optical examination on skin scraping and histological examination found the same elongated and branching structures confirming the presence of Mucormycetes. Ex vivo confocal microscopy has both the advantages of being fast as the direct optical examination, and to be able to show the localisation of the fungi in the tissue like the histological examination. In our cases, EVCM allowed to rapidly confirm the clinical diagnosis of mucormycosis, which is essential for the treatment of this fungal infection. Further studies are needed to compare the performance of EVCM with the findings of conventional histological and mycological examinations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy

    NASA Astrophysics Data System (ADS)

    Krause, Marina; te Riet, Joost; Wolf, Katarina

    2013-12-01

    The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m-1, force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.

  4. STED microscopy visualizes energy deposition of single ions in a solid-state detector beyond diffraction limit

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Henrich, M.; Jäkel, O.; Engelhardt, J.; Abdollahi, A.; Greilich, S.

    2017-05-01

    Fluorescent nuclear track detectors (FNTDs) allow for visualization of single-particle traversal in clinical ion beams. The point spread function of the confocal readout has so far hindered a more detailed characterization of the track spots—the ion’s characteristic signature left in the FNTD. Here we report on the readout of the FNTD by optical nanoscopy, namely stimulated emission depletion microscopy. It was firstly possible to visualize the track spots of carbon ions and protons beyond the diffraction limit of conventional light microscopy with a resolving power of approximately 80 nm (confocal: 320 nm). A clear discrimination of the spatial width, defined by the full width half maximum of track spots from particles (proton and carbon ions), with a linear energy transfer (LET) ranging from approximately 2-1016 keV µm-1 was possible. Results suggest that the width depends on LET but not on particle charge within the uncertainties. A discrimination of particle type by width thus does not seem possible (as well as with confocal microscopy). The increased resolution, however, could allow for refined determination of the cross-sectional area facing substantial energy deposition. This work could pave the way towards development of optical nanoscopy-based analysis of radiation-induced cellular response using cell-fluorescent ion track hybrid detectors.

  5. Doxorubicin-mediated radiosensitivity in multicellular spheroids from a lung cancer cell line is enhanced by composite micelle encapsulation

    PubMed Central

    Xu, Wen-Hong; Han, Min; Dong, Qi; Fu, Zhi-Xuan; Diao, Yuan-Yuan; Liu, Hai; Xu, Jing; Jiang, Hong-Liang; Zhang, Su-Zhan; Zheng, Shu; Gao, Jian-Qing; Wei, Qi-Chun

    2012-01-01

    Background The purpose of this study is to evaluate the efficacy of composite doxorubicinloaded micelles for enhancing doxorubicin radiosensitivity in multicellular spheroids from a non-small cell lung cancer cell line. Methods A novel composite doxorubicin-loaded micelle consisting of polyethylene glycolpolycaprolactone/Pluronic P105 was developed, and carrier-mediated doxorubicin accumulation and release from multicellular spheroids was evaluated. We used confocal laser scanning microscopy and flow cytometry to study the accumulation and efflux of doxorubicin from A549 multicellular spheroids. Doxorubicin radiosensitization and the combined effects of irradiation and doxorubicin on cell migration and proliferation were compared for the different doxorubicin delivery systems. Results Confocal laser scanning microscopy and quantitative flow cytometry studies both verified that, for equivalent doxorubicin concentrations, composite doxorubicin-loaded micelles significantly enhanced cellular doxorubicin accumulation and inhibited doxorubicin release. Colony-forming assays demonstrated that composite doxorubicin-loaded micelles are radiosensitive, as shown by significantly reduced survival of cells treated by radiation + composite micelles compared with those treated with radiation + free doxorubicin or radiation alone. The multicellular spheroid migration area and growth ability verified higher radiosensitivity for the composite micelles loaded with doxorubicin than for free doxorubicin. Conclusion Our composite doxorubicin-loaded micelle was demonstrated to have radiosensitization. Doxorubicin loading in the composite micelles significantly increased its cellular uptake, improved drug retention, and enhanced its antitumor effect relative to free doxorubicin, thereby providing a novel approach for treatment of cancer. PMID:22679376

  6. Two-Photon Fluorescence Microscopy for Biomedical Research

    NASA Technical Reports Server (NTRS)

    Fischer, David; Zimmerli, Greg; Asipauskas, Marius

    2007-01-01

    This viewgraph presentation gives an overview of two-photon microscopy as it applies to biomedical research. The topics include: 1) Overview; 2) Background; 3) Principles of Operation; 4) Advantages Over Confocal; 5) Modes of Operation; and 6) Applications.

  7. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: APPLICATIONS FOR IMAGING MORPHOLOGY AND DEATH IN EMBRYOS AND REPRODUCTIVE TISSUE/ORGANS

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. It is remarkable that procedures to test the performance of these machines are not done routinely by most investigators and thus many of the machines in the field are working at level...

  8. Physicochemical composition of osteoporotic bone in the trichothiodystrophy premature aging mouse determined by confocal Raman microscopy.

    PubMed

    van Apeldoorn, Aart A; de Boer, Jan; van Steeg, Harry; Hoeijmakers, Jan H J; Otto, Cees; van Blitterswijk, Clemens A

    2007-01-01

    Although it has been established that premature aging trichothiodystrophy (TTD) mice display typical signs of osteoporosis, exact changes in physicochemical properties of these mice have not been elucidated. We used confocal Raman microscopy and histology to study femora of TTD mice. We measured femora isolated from xeroderma pigmentosum group A (XPA)/TTD double mutant mice to establish that Raman microscopy can be applied to measure differences in bone composition. Raman data from XPA/TTD mice showed remarkable changes in bone mineral composition. Moreover, we observed a severe form of osteoporosis, with strongly reduced cortical bone thickness. We used Raman microscopy to analyze bone composition in eight wild-type and eight TTD animals, and observed decreased levels of phosphate and carbonate in the cortex of femora isolated from TTD mice. In contrast, the bands representing the bone protein matrix were not affected in these mice.

  9. Microscopy based studies on the interaction of bio-based silver nanoparticles with Bombyx mori Nuclear Polyhedrosis virus.

    PubMed

    Tamilselvan, Selvaraj; Ashokkumar, Thirunavukkarasu; Govindaraju, Kasivelu

    2017-04-01

    In the present investigation, silver nanoparticles (AgNPs) interactions with Bombyx mori Nuclear Polyhedrosis virus (BmNPV) were characterized using High-Resolution Scanning Electron Microscopy (HR-SEM), Energy Dispersive X-ray Analysis (EDAX), Transmission Electron Microscopy (TEM), Atomic Force Microcopy (AFM) and Confocal Microscope (CM). HR-SEM study reveals that the biosynthesized AgNPs have interacted with BmNPV and were found on the surface. TEM micrographs of normal and viral polyhedra treated with AgNPs showed that the nanoparticles were accumulated in the membrane and it was noted that some of the AgNPs successfully penetrated the membrane by reaching the capsid of BmNPV. AFM and confocal microscopy studies reveal that the disruption in the shell membrane tends to lose its stability due to exposure of AgNPs to BmNPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Study of optically trapped living Trypanosoma cruzi/Trypanosoma rangeli - Rhodnius prolixus interactions by real time confocal images using CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Almeida, D. B.; Faustino, W. M.; Jacob, G. J.; Fontes, A.; Barbosa, L. C.; Cesar, C. L.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.

    2008-08-01

    One of the fundamental goals in biology is to understand the interplay between biomolecules of different cells. This happen, for example, in the first moments of the infection of a vector by a parasite that results in the adherence to the cell walls. To observe this kind of event we used an integrated Optical Tweezers and Confocal Microscopy tool. This tool allow us to use the Optical Tweezers to trigger the adhesion of the Trypanosoma cruzi and Trypanosoma rangeli parasite to the intestine wall cells and salivary gland of the Rhodnius prolixus vector and to, subsequently observe the sequence of events by confocal fluorescence microscopy under optical forces stresses. We kept the microorganism and vector cells alive using CdSe quantum dot staining. Besides the fact that Quantum Dots are bright vital fluorescent markers, the absence of photobleaching allow us to follow the events in time for an extended period. By zooming to the region of interested we have been able to acquire confocal images at the 2 to 3 frames per second rate.

  11. [Cornea imagery and keratitis caused by processionary caterpillar hairs].

    PubMed

    Fournier, I; Saleh, M; Beynat, J; Creuzot-Garcher, C; Bourcier, T; Speeg-Schatz, C

    2011-03-01

    With their ability to migrate into the cornea and release toxins, caterpillar hairs can induce different clinical presentations such as conjunctivitis, keratoconjunctivitis, uveitis, and less frequently vitreoretinal inflammation (hyalitis, papillitis, macular edema). We report a case that occurred in Alsace (France) in a 13-years-old boy presenting with keratitis caused by caterpillar hairs. We localized them in the cornea, for the first time, using confocal microscopy and anterior segment spectral optical coherence tomography. Confocal microscopy and spectral optical coherence tomography can be useful for diagnosis and follow-up of this disease. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  12. Exploiting chromatic aberration to spectrally encode depth in reflectance confocal microscopy

    NASA Astrophysics Data System (ADS)

    Carrasco-Zevallos, Oscar; Shelton, Ryan L.; Olsovsky, Cory; Saldua, Meagan; Applegate, Brian E.; Maitland, Kristen C.

    2011-06-01

    We present chromatic confocal microscopy as a technique to axially scan the sample by spectrally encoding depth information to avoid mechanical scanning of the lens or sample. We have achieved an 800 μm focal shift over a range of 680-1080 nm using a hyperchromat lens as the imaging lens. A more complex system that incorporates a water immersion objective to improve axial resolution was built and tested. We determined that increasing objective magnification decreases chromatic shift while improving axial resolution. Furthermore, collimating after the hyperchromat at longer wavelengths yields an increase in focal shift.

  13. Re-description of Craspodema reflectans (Nematoda, Cyatholaimidae) using confocal laser scanning microscopy.

    PubMed

    Semprucci, Federica; Burattini, Sabrina

    2015-06-12

    Craspodema reflectans, erected by Gerlach 1964, is here re-described from some specimens recently found in the Maldivian archipelago and the implication of the new findings for the taxonomy of the Craspodema genus is discussed. Accordingly, an emended diagnosis of Craspodema genus and C. reflectans species are proposed. New data are also provided with the aid of the confocal laser scanning microscopy, using the natural fluorescence of the nematodes. The approach described here lays new foundations for the study of Museum collection material and it may be decisive for capture of new morphological details.

  14. Confocal Fluorescence Microscopy of Mung Beanleaves

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Liu, Dongwu

    Recently, confocal microscope has become a routine technique and indispensable tool for cell biological studies and molecular investigations. The light emitted from the point out-of-focus is blocked by the pinhole and can not reach the detector, which is one of the critical features of the confocal microscope. In present studies, the probes acridine orange (AO) and rhodamine-123 were used to research stoma and mitochondria of mung bean leaves, respectively. The results indicated that the stomatal guard cells and mitochondria were clearly seen in epidermic tissue of mung bean leaves. Taken together, it is a good method to research plant cells with confocal microscope and fluorescence probes.

  15. Confocal Raman Microscopy for pH-Gradient Preconcentration and Quantitative Analyte Detection in Optically Trapped Phospholipid Vesicles.

    PubMed

    Hardcastle, Chris D; Harris, Joel M

    2015-08-04

    The ability of a vesicle membrane to preserve a pH gradient, while allowing for diffusion of neutral molecules across the phospholipid bilayer, can provide the isolation and preconcentration of ionizable compounds within the vesicle interior. In this work, confocal Raman microscopy is used to observe (in situ) the pH-gradient preconcentration of compounds into individual optically trapped vesicles that provide sub-femtoliter collectors for small-volume samples. The concentration of analyte accumulated in the vesicle interior is determined relative to a perchlorate-ion internal standard, preloaded into the vesicle along with a high-concentration buffer. As a guide to the experiments, a model for the transfer of analyte into the vesicle based on acid-base equilibria is developed to predict the concentration enrichment as a function of source-phase pH and analyte concentration. To test the concept, the accumulation of benzyldimethylamine (BDMA) was measured within individual 1 μm phospholipid vesicles having a stable initial pH that is 7 units lower than the source phase. For low analyte concentrations in the source phase (100 nM), a concentration enrichment into the vesicle interior of (5.2 ± 0.4) × 10(5) was observed, in agreement with the model predictions. Detection of BDMA from a 25 nM source-phase sample was demonstrated, a noteworthy result for an unenhanced Raman scattering measurement. The developed model accurately predicts the falloff of enrichment (and measurement sensitivity) at higher analyte concentrations, where the transfer of greater amounts of BDMA into the vesicle titrates the internal buffer and decreases the pH gradient. The predictable calibration response over 4 orders of magnitude in source-phase concentration makes it suitable for quantitative analysis of ionizable compounds from small-volume samples. The kinetics of analyte accumulation are relatively fast (∼15 min) and are consistent with the rate of transfer of a polar aromatic molecule across a gel-phase phospholipid membrane.

  16. Lipids in cheese

    USDA-ARS?s Scientific Manuscript database

    Lipids are present in cheese at levels above 20 percent and are analyzed by several techniques. Scanning electron microscopy and confocal laser scanning microscopy are used to examine the microstructure, gas chromatography is employed to look at fatty acid composition, and differential scanning cal...

  17. Probe-based confocal laser endomicroscopy (pCLE) - a new imaging technique for in situ localization of spermatozoa.

    PubMed

    Trottmann, Matthias; Stepp, Herbert; Sroka, Ronald; Heide, Michael; Liedl, Bernhard; Reese, Sven; Becker, Armin J; Stief, Christian G; Kölle, Sabine

    2015-05-01

    In azoospermic patients, spermatozoa are routinely obtained by testicular sperm extraction (TESE). However, success rates of this technique are moderate, because the site of excision of testicular tissue is determined arbitrarily. Therefore the aim of this study was to establish probe-based laser endomicroscopy (pCLE) a noval biomedical imaging technique, which provides the opportunity of non-invasive, real-time visualisation of tissue at histological resolution. Using pCLE we clearly visualized longitudinal and horizontal views of the tubuli seminiferi contorti and localized vital spermatozoa. Obtained images and real-time videos were subsequently compared with confocal laser scanning microscopy (CLSM) of spermatozoa and tissues, respectively. Comparative visualization of single native Confocal laser scanning microscopy (CLSM, left) and probe-based laser endomicroscopy (pCLE, right) using Pro Flex(TM) UltraMini O after staining with acriflavine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Multimodal confocal mosaicing microscopy: an emphasis on squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Chen, Nathaniel W.; Sensibaugh, Jordan; Ardeshiri, Ardaland; Blanchard, Adam; Jacques, Steven; Gareau, Daniel

    2010-02-01

    Our previous study reported a sensitivity of 96.6% and a specificity of 89.2% in rapidly detecting Basal Cell Carcinomas (BCCs) when nuclei were stained with acridine orange. Squamous Cell Carcinomas (SCCs) and infiltrative BCCs remain difficult to detect. More complete screening can be achieved utilizing both acridine orange for nuclei staining and eosin for cytoplasmic contrast, using two lasers to excite the two stains independently. Nuclear fluorescence is achieved by staining with acridine orange (0.5mM, 60 s), and cytoplasmic fluorescence is achieved by staining with eosin working solution (30 s). This work shows good morphological contrast of SCC and infiltrative BCC with eosin, acridine orange, and reflectance, and presents a means for rapid SCC and infiltrative BCC detection in fresh skin excisions using multimodal confocal microscopy. In addition, digital staining is shown to effectively simulate hematoxylin and eosin (H&E) histology with confocal mosaics.

  19. Inverted follicular keratosis: dermoscopic and reflectance confocal microscopic features.

    PubMed

    Armengot-Carbo, M; Abrego, A; Gonzalez, T; Alarcon, I; Alos, L; Carrera, C; Malvehy, J; Puig, S

    2013-01-01

    Inverted follicular keratosis (IFK) is a rare benign tumor which usually appears as a firm papule on the face. The diagnosis is generally made by histopathology because the clinical appearance is difficult to differentiate from other lesions. Dermoscopic features of IFK have not been established to date. Herein we describe the dermoscopic findings of 4 cases of IFK. Radial peripheral hairpin vessels surrounded by a whitish halo arranged around a central white-yellowish amorphous area were observed in 3 cases, and glomerular vessels were present in the central area of one of them. The fourth case also presented a central white amorphous area but showed arborizing vessels. Reflectance confocal microscopy (available in 1 case) revealed a broadened honeycomb pattern, epidermal projections and hairpin and glomerular vessels. To our knowledge this is the first case series describing the dermoscopic features of inverted follicular keratosis and the first confocal microscopy description of this entity.

  20. Reflectance confocal microscopy features of thin versus thick melanomas.

    PubMed

    Kardynal, Agnieszka; Olszewska, Małgorzata; de Carvalho, Nathalie; Walecka, Irena; Pellacani, Giovanni; Rudnicka, Lidia

    2018-01-24

    In vivo reflectance confocal microscopy (RCM) plays an increasingly important role in differential diagnosis of melanoma. The aim of the study was to assess typical confocal features of thin (≤1mm according to Breslow index) versus thick (>1mm) melanomas. 30 patients with histopathologically confirmed cutaneous melanoma were included in the study. Reflectance confocal microscopy was performed with Vivascope equipment prior to excision. Fifteen melanomas were thin (Breslow thickness ≤ 1mm) and 15 were thick melanomas (Breslow thickness >1mm). In the RCM examination, the following features were more frequently observed in thin compared to thick melanomas: edged papillae (26.7% vs 0%, p=0.032) and areas with honeycomb or cobblestone pattern (33.3% vs 6.7%, p=0.068). Both features are present in benign melanocytic lesions, so in melanoma are good prognostic factors. The group of thick melanomas compared to the group of thin melanomas in the RCM images presented with greater frequency of roundish cells (100% vs 40%, p=0.001), non-edged papillae (100% vs 60%, p=0.006), numerous pagetoid cells (73.3% vs 33.3%, p=0.028), numerous atypical cells at dermal-epidermal junction (53.3% vs 20%, p=0.058) and epidermal disarray (93.3% vs 66.7%, p=0.068). Non-invasive imaging methods helps in deepening of knowledge about the evolution and biology of melanoma. The most characteristic features for thin melanomas in confocal examination are: fragments of cobblestone or honeycomb pattern and edged papillae (as good prognostic factors). The features of thick melanomas in RCM examination are: roundish cells, non-edged papillae, numerous pagetoid cells at dermal-epidermal junction and epidermal disarray.

  1. Chlorophyll and its degradation products in the two-spotted spider mite, Tetranychus urticae: observations using epifluorescence and confocal laser scanning microscopy.

    PubMed

    Occhipinti, Andrea; Maffei, Massimo E

    2013-10-01

    Chlorophyll and chlorophyll degradation products were observed in the two-spotted spider mite (Tetranychus urticae) using epifluorescence microscopy (EFM) and confocal laser scanning microscopy (CLSM). A clear red fluorescence (EFM) and a fluorescence induced by a laser wavelength of 650 nm (CLSM) were observed. In the lateral caeca, in the ventriculus and in the excretory organ, a bright light blue fluorescence was observed in close association with chlorophyll by using EFM. The same material can be localized with CLSM by using a laser with a wavelength of 488 nm. By comparison with synthetic guanine, this bright fluorescence is supposed to be guanine. The presence of guanine fluorescence in the mite pellets confirms this hypothesis. A possible mechanism for guanine formation is discussed.

  2. Gold nanorods for cell imaging with confocal reflectance microscopy and two-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Ji-Yao; Wang, Pei-Nan

    2010-02-01

    Gold nanorods have unique optical properties as their two photon absorption cross sections are very high and their spectral positions of extinction bands can be controlled by their aspect ratio only, so that gold nanorods have been considered as agents for cell imaging. Two-photon photoluminescence imaging could be used to detect the cellular gold nanorods with the high power femto-second (fs) infrared laser, but may cause the photothermal effect melting the rods. The 3-D distribution of gold nanorods in living cells also can be measured by confocal reflectance microscopy with a very low laser power, and thus the cell damaging can be avoided. In this work, these two methods were comparatively studied in living rat basophilic leukemia (RBL-2H3) cells.

  3. Functionalization of titanium surface with chitosan via silanation: 3D CLSM imaging of cell biocompatibility behaviour.

    PubMed

    Attik, G N; D'Almeida, M; Toury, B; Grosgogeat, B

    2013-09-16

    Biocompatibility ranks as one of the most important properties of dental materials. One of the criteria for biocompatibility is the absence of material toxicity to cells, according to the ISO 7405 and 10993 recommendations. Among numerous available methods for toxicity assessment; 3-dimensional Confocal Laser Scanning Microscopy (3D CLSM) imaging was chosen because it provides an accurate and sensitive index of living cell behavior in contact with chitosan coated tested implants. The purpose of this study was to investigate the in vitro biocompatibility of functionalized titanium with chitosan via a silanation using sensitive and innovative 3D CLSM imaging as an investigation method for cytotoxicity assessment. The biocompatibility of four samples (controls cells, TA6V, TA6V-TESBA and TA6V-TESBAChitosan) was compared in vitro after 24h of exposure. Confocal imaging was performed on cultured human gingival fibroblast (HGF1) like cells using Live/Dead® staining. Image series were obtained with a FV10i confocal biological inverted system and analyzed with FV10-ASW 3.1 Software (Olympus France). Image analysis showed no cytotoxicity in the presence of the three tested substrates after 24 h of contact. A slight decrease of cell viability was found in contact with TA6V-TESBA with and without chitosan compared to negative control cells. Our findings highlighted the use of 3D CLSM confocal imaging as a sensitive method to evaluate qualitatively and quantitatively the biocompatibility behavior of functionalized titanium with chitosan via a silanation. The biocompatibility of the new functionalized coating to HGF1 cells is as good as the reference in biomedical device implantation TA6V.

  4. Insulin-producing cells could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells

    PubMed Central

    2013-01-01

    Objective The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. Methods The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. Results IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. Conclusions Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. PMID:23421382

  5. In vitro activity of chlorogenic acid against Aspergillus fumigatus biofilm and gliotoxin production.

    PubMed

    Kong, Jin-Liang; Luo, Jing; Li, Bing; Dong, Bi-Ying; Huang, Hong; Wang, Ke; Wu, Li-Hong; Chen, Yi-Qiang

    2017-06-01

    Aspergillus ( A .) fumigatus , one of the most common causes of life-threatening fungal infections in immunocompromised patients, shows resistance to antifungal agents as has a high propensity to forming a biofilm. The present study aimed to investigate the effects of chlorogenic acid (CRA) on A. fumigatus biofilm formation and integrity. Confocal laser scanning microscopy was performed to determine the inhibitory effects of CRA against A. fumigatus biofilm formation. Transmission electron microscopy was performed to investigate the ultrastructural changes of A. fumigatus biofilm after CRA exposure. High-performance liquid chromatography and reverse-transcription quantitative PCR were performed to determine the expression of gliotoxin production in biofilm culture. The results showed that CRA at sub-minimum inhibitory concentrations inhibited A. fumigatus biofilm formation. In addition, CRA could decreased the gliotoxin production in the biofilm culture supernatant through inhibiting the expression of master genes involved in gliotoxin biosynthesis. The present study provided useful information for the development of novel strategies to reduce the incidence of A. fumigatus biofilm-associated diseases.

  6. Multicell migration tracking within angiogenic networks by deep learning-based segmentation and augmented Bayesian filtering.

    PubMed

    Wang, Mengmeng; Ong, Lee-Ling Sharon; Dauwels, Justin; Asada, H Harry

    2018-04-01

    Cell migration is a key feature for living organisms. Image analysis tools are useful in studying cell migration in three-dimensional (3-D) in vitro environments. We consider angiogenic vessels formed in 3-D microfluidic devices (MFDs) and develop an image analysis system to extract cell behaviors from experimental phase-contrast microscopy image sequences. The proposed system initializes tracks with the end-point confocal nuclei coordinates. We apply convolutional neural networks to detect cell candidates and combine backward Kalman filtering with multiple hypothesis tracking to link the cell candidates at each time step. These hypotheses incorporate prior knowledge on vessel formation and cell proliferation rates. The association accuracy reaches 86.4% for the proposed algorithm, indicating that the proposed system is able to associate cells more accurately than existing approaches. Cell culture experiments in 3-D MFDs have shown considerable promise for improving biology research. The proposed system is expected to be a useful quantitative tool for potential microscopy problems of MFDs.

  7. Development of imaging techniques to study the pathogenesis of biosafety level 2/3 infectious agents.

    PubMed

    Rella, Courtney E; Ruel, Nancy; Eugenin, Eliseo A

    2014-12-01

    Despite significant advances in microbiology and molecular biology over the last decades, several infectious diseases remain global concerns, resulting in the death of millions of people worldwide each year. According to the Center for Disease Control (CDC) in 2012, there were 34 million people infected with HIV, 8.7 million new cases of tuberculosis, 500 million cases of hepatitis, and 50-100 million people infected with dengue. Several of these pathogens, despite high incidence, do not have reliable clinical detection methods. New or improved protocols have been generated to enhance detection and quantitation of several pathogens using high-end microscopy (light, confocal, and STORM microscopy) and imaging software. In the current manuscript, we discuss these approaches and the theories behind these methodologies. Thus, advances in imaging techniques will open new possibilities to discover therapeutic interventions to reduce or eliminate the devastating consequences of infectious diseases. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging

    NASA Astrophysics Data System (ADS)

    Fan, Shunping; Peng, Xiao; Liu, Lixin; Liu, Shaoxiong; Lu, Yuan; Qu, Junle

    2014-02-01

    Basal cell carcinoma (BCC) is the most common type of human skin cancer. The traditional diagnostic procedure of BCC is histological examination with haematoxylin and eosin staining of the tissue biopsy. In order to reduce complexity of the diagnosis procedure, a number of noninvasive optical methods have been applied in skin examination, for example, multiphoton tomography (MPT) and fluorescence lifetime imaging microscopy (FLIM). In this study, we explored two-photon optical tomography of human skin specimens using two-photon excited autofluorescence imaging and FLIM. There are a number of naturally endogenous fluorophores in skin sample, such as keratin, melanin, collagen, elastin, flavin and porphyrin. Confocal microscopy was used to obtain structures of the sample. Properties of epidermic and cancer cells were characterized by fluorescence emission spectra, as well as fluorescence lifetime imaging. Our results show that two-photon autofluorescence lifetime imaging can provide accurate optical biopsies with subcellular resolution and is potentially a quantitative optical diagnostic method in skin cancer diagnosis.

  9. Real-time intravital microscopy of individual nanoparticle dynamics in liver and tumors of live mice

    PubMed Central

    van de Ven, Anne L; Kim, Pilhan; Ferrari, Mauro; Yun, Seok Hyun

    2013-01-01

    Intravital microscopy is emerging as an important experimental tool for the research and development of multi-functional therapeutic nanoconstructs. The direct visualization of nanoparticle dynamics within live animals provides invaluable insights into the mechanisms that regulate nanotherapeutics transport and cell-particle interactions. Here we present a protocol to image the dynamics of nanoparticles within the liver and tumors of live mice immediately following systemic injection using a high-speed (30-400 fps) confocal or multi-photon laser-scanning fluorescence microscope. Techniques for quantifying the real-time accumulation and cellular association of individual particles with a size ranging from several tens of nanometers to micrometers are described, as well as an experimental strategy for labeling Kupffer cells in the liver in vivo. Experimental design considerations and controls are provided, as well as minimum equipment requirements. The entire protocol takes approximately 4-8 hours and yields quantitative information. These techniques can serve to study a wide range of kinetic parameters that drive nanotherapeutics delivery, uptake, and treatment response. PMID:25383179

  10. Latest advances in confocal microscopy of skin cancers toward guiding patient care: a Mohs surgeon's review and perspective (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nehal, Kishwer S.; Rajadhyaksha, Milind

    2016-02-01

    Latest advances in confocal microscopy of skin cancers toward guiding patient care: a Mohs surgeon's review and perspective About 350 publications worldwide have reported the ability of reflectance confocal microscopy (RCM) imaging to detect melanocytic skin lesions in vivo with specificity of 84-88% and sensitivity of 71-92%, and non-melanocytic skin lesions with specificity of 85-97% and sensitivity 100-92%. Lentigo maligna melanoma can be detected with sensitivity of 93% and specificity 82%. While the sensitivity is comparable to that of dermoscopy, the specificity is 2X superior, especially for lightly- and non-pigmented lesions. Dermoscopy combined with RCM imaging is proving to be both highly sensitive and highly specific. Recent studies have reported that the ratio of equivocal (i.e., would have been biopsied) lesions to detected melanomas dropped by ~2X when guided by dermoscopy and RCM imaging, compared to that with dermoscopy alone. Dermoscopy combined with RCM imaging is now being implemented to guide noninvasive diagnosis (to rule out malignancy and biopsy) and to also guide treatment, with promising initial impact: thus far, about 3,000 patients have been saved from biopsies of benign lesions. These are currently under follow-up monitoring. With fluorescence confocal microscopy (FCM) mosaicing, residual basal cell carcinomas can be detected in Mohs surgically excised fresh tissue ex vivo, with sensitivity of 94-97% and specificity 89-94%. FCM mosaicing is now being implemented for guiding Mohs surgery. To date, about 600 Mohs procedures have been performed, guided with mosaicing, and with pathology being performed in parallel to confirm the final outcome. These latest advances demonstrate the promising ability of RCM and FCM to guide patient care.

  11. Rhodotorula Keratitis: A Rarely Encountered Ocular Pathogen

    PubMed Central

    Giovannini, Joseph; Lee, Rick; Zhang, Sean X.; Jun, Albert S.; Bower, Kraig S.

    2014-01-01

    Purpose To describe a case of fungal keratitis involving an atypical organism with confirmatory in vivo confocal microscopy and to review the literature on Rhodotorula keratitis. Methods Case report and review of the medical literature. Results A 22-year-old college student was struck in the left eye with a tree branch and subsequently developed pain, redness and photophobia. Upon presentation, visual acuity was 20/200 and there was a large epithelial defect with diffuse stromal inflammation involving the anterior one-third of the cornea. Cultures of the infiltrate were performed for bacterial, viral and fungal organisms that resulted in a positive culture for Rhodotorula mucilaginosa. Fungal elements were confirmed in vivo by confocal microscopy. The patient was treated with voriconazole initially and had amphotericin added once Rhodotorula infection was confirmed. The patient responded well clinically, and one month after therapy was initiated, the corneal infiltrate had resolved leaving mild anterior stromal haze. Upon completion of therapy at three months, the patient was asymptomatic, had a clear cornea and had a best corrected visual acuity of 20/20 in the involved eye. There was no measurable change in his manifest refraction. Conclusions Prior cases of Rhodotorula keratitis most often required surgical intervention and were associated with poor outcomes. This case shows that Rhodotorula keratitis can be successfully treated with topical antifungal agents if diagnosed early and appropriate treatment is initiated promptly. We report the first case of Rhodotorula keratitis confirmed by in vivo confocal microscopy. This is also the first description of pseudomycelium formation that has not been previously described in vivo, a morphological structure that this organism rarely demonstrates. Finally, this case shows that confocal microscopy may aid in the early diagnosis and management of fungal keratitis involving this rare but potentially damaging organism. PMID:25408670

  12. Geometrical characterization of fluorescently labelled surfaces from noisy 3D microscopy data.

    PubMed

    Shelton, Elijah; Serwane, Friedhelm; Campàs, Otger

    2018-03-01

    Modern fluorescence microscopy enables fast 3D imaging of biological and inert systems alike. In many studies, it is important to detect the surface of objects and quantitatively characterize its local geometry, including its mean curvature. We present a fully automated algorithm to determine the location and curvatures of an object from 3D fluorescence images, such as those obtained using confocal or light-sheet microscopy. The algorithm aims at reconstructing surface labelled objects with spherical topology and mild deformations from the spherical geometry with high accuracy, rather than reconstructing arbitrarily deformed objects with lower fidelity. Using both synthetic data with known geometrical characteristics and experimental data of spherical objects, we characterize the algorithm's accuracy over the range of conditions and parameters typically encountered in 3D fluorescence imaging. We show that the algorithm can detect the location of the surface and obtain a map of local mean curvatures with relative errors typically below 2% and 20%, respectively, even in the presence of substantial levels of noise. Finally, we apply this algorithm to analyse the shape and curvature map of fluorescently labelled oil droplets embedded within multicellular aggregates and deformed by cellular forces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  13. Intracellular degradation of microspheres based on cross-linked dextran hydrogels or amphiphilic block copolymers: A comparative Raman microscopy study

    PubMed Central

    van Manen, Henk-Jan; van Apeldoorn, Aart A; Verrijk, Ruud; van Blitterswijk, Clemens A; Otto, Cees

    2007-01-01

    Micro- and nanospheres composed of biodegradable polymers show promise as versatile devices for the controlled delivery of biopharmaceuticals. Whereas important properties such as drug release profiles, biocompatibility, and (bio)degradability have been determined for many types of biodegradable particles, information about particle degradation inside phagocytic cells is usually lacking. Here, we report the use of confocal Raman microscopy to obtain chemical information about cross-linked dextran hydrogel microspheres and amphiphilic poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) microspheres inside RAW 264.7 macrophage phagosomes. Using quantitative Raman microspectroscopy, we show that the dextran concentration inside phagocytosed dextran microspheres decreases with cell incubation time. In contrast to dextran microspheres, we did not observe PEGT/PBT microsphere degradation after 1 week of internalization by macrophages, confirming previous studies showing that dextran microsphere degradation proceeds faster than PEGT/PBT degradation. Raman microscopy further showed the conversion of macrophages to lipid-laden foam cells upon prolonged incubation with both types of microspheres, suggesting that a cellular inflammatory response is induced by these biomaterials in cell culture. Our results exemplify the power of Raman microscopy to characterize microsphere degradation in cells and offer exciting prospects for this technique as a noninvasive, label-free optical tool in biomaterials histology and tissue engineering. PMID:17722552

  14. Quantitative analysis of pre-and postsynaptic sex differences in the nucleus accumbens

    PubMed Central

    Forlano, Paul M.; Woolley, Catherine S.

    2010-01-01

    The nucleus accumbens (NAc) plays a central role in motivation and reward. While there is ample evidence for sex differences in addiction-related behaviors, little is known about the neuroanatomical substrates that underlie these sexual dimorphisms. We investigated sex differences in synaptic connectivity of the NAc by evaluating pre- and postsynaptic measures in gonadally intact male and proestrous female rats. We used DiI labeling and confocal microscopy to measure dendritic spine density, spine head size, dendritic length and branching of medium spiny neurons (MSNs) in the NAc, and quantitative immunofluorescence to measure glutamatergic innervation using pre- (vesicular glutamate transporter 1 and 2) and postsynaptic (post synaptic density 95) markers, as well as dopaminergic innervation of the NAc. We also utilized electron microscopy to complement the above measures. Clear but subtle sex differences were identified, namely in distal dendritic spine density and the proportion of large spines on MSNs, both of which are greater in females. Sex differences in spine density and spine head size are evident in both the core and shell subregions, but are stronger in the core. This study is the first demonstration of neuroanatomical sex differences in the NAc and provides evidence that structural differences in synaptic connectivity and glutamatergic input may contribute to behavioral sex differences in reward and addiction. PMID:20151363

  15. 3D quantitative phase imaging of neural networks using WDT

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  16. Quantitative three-dimensional confocal imaging of the cornea in situ and in vivo: system design and calibration.

    PubMed

    Petroll, W M; Jester, J V; Cavanagh, H D

    1996-01-01

    A new depth encoding system (DES) is presented, which makes it possible to calculate, display, and record the z-axis position continuously during in vivo imaging using tandem scanning confocal microscopy (TSCM). In order to verify the accuracy of the DES for calculating the position of the focal plane in the cornea both in vitro and in vivo, we compared TSCM measurements of corneal thickness to measurements made using an ultrasonic pachymeter (UP, a standard clinical instrument) in both enucleated rabbit, cat, and human eyes (n = 15), and in both human patients (n = 7). Very close agreement was found between the UP and TSCM measurements in enucleated eyes; the mean percent difference was 0.50 +/- 2.58% (mean +/- SD, not significant). A significant correlation (R = 0.995, n = 15, p < 0.01) was found between UP and TSCM measurements. These results verify that the theoretical equation for calculating focal depth provided by the TSCM manufacturer is accurate for corneal imaging. Similarly, close agreement was found between the in vivo UP and TSCM measurements; the mean percent differences was 1.67 +/- 1.38% (not significant), confirming that z-axis drift can be minimized with proper applanation of the objective. These results confirm the accuracy of the DES for imaging of the cornea both ex vivo and in vivo. This system should be of great utility for applications where quantitation of the three-dimensional location of cellular structures is needed.

  17. Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming.

    PubMed

    Chiu, Stephanie J; Toth, Cynthia A; Bowes Rickman, Catherine; Izatt, Joseph A; Farsiu, Sina

    2012-05-01

    This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique.

  18. Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming

    PubMed Central

    Chiu, Stephanie J.; Toth, Cynthia A.; Bowes Rickman, Catherine; Izatt, Joseph A.; Farsiu, Sina

    2012-01-01

    This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique. PMID:22567602

  19. Applications of microscopy to genetic therapy of cystic fibrosis and other human diseases.

    PubMed

    Moninger, Thomas O; Nessler, Randy A; Moore, Kenneth C

    2006-01-01

    Gene therapy has become an extremely important and active field of biomedical research. Microscopy is an integral component of this effort. This chapter presents an overview of imaging techniques used in our facility in support of cystic fibrosis gene therapy research. Instrumentation used in these studies includes light and confocal microscopy, transmission electron microscopy, and scanning electron microscopy. Techniques outlined include negative staining, cryo-electron microscopy, three-dimentional reconstruction, enzyme cytochemistry, immunocytochemistry, and fluorescence imaging.

  20. Upconversion fiber-optic confocal microscopy under near-infrared pumping.

    PubMed

    Kim, Do-Hyun; Kang, Jin U; Ilev, Ilko K

    2008-03-01

    We present a simple upconversion fiber-optic confocal microscope design using a near-infrared laser for pumping of a rare-earth-doped glass powder. The nonlinear optical frequency conversion process is highly efficient with more than 2% upconversion fluorescence efficiency at a near-infrared pumping wavelength of 1.55 microm. The upconversion confocal design allows the use of conventional Si detectors and 1.55 microm near-infrared pump light. The lateral and axial resolutions of the system were equal to or better than 1.10 and 13.11 microm, respectively.

  1. En-face Flying Spot OCT/Ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Rosen, Richard B.; Garcia, Patricia; Podoleanu, Adrian Gh.; Cucu, Radu; Dobre, George; Trifanov, Irina; van Velthoven, Mirjam E. J.; de Smet, Marc D.; Rogers, John A.; Hathaway, Mark; Pedro, Justin; Weitz, Rishard

    This is a review of a technique for high-resolution imaging of the eye that allows multiple sample sectioning perspectives with different axial resolutions. The technique involves the flying spot approach employed in confocal scanning laser ophthalmoscopy which is extended to OCT imaging via time domain en face fast lateral scanning. The ability of imaging with multiple axial resolutions stimulated the development of the dual en face OCT-confocal imaging technology. Dual imaging also allows various other imaging combinations, such as OCT with confocal microscopy for imaging the eye anterior segment and OCT with fluorescence angiography imaging.

  2. Reflectance confocal microscopy of oral epithelial tissue using an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Jabbour, Joey M.; Malik, Bilal H.; Cuenca, Rodrigo; Cheng, Shuna; Jo, Javier A.; Cheng, Yi-Shing L.; Wright, John M.; Maitland, Kristen C.

    2014-02-01

    We present the use of a commercially available electrically tunable lens to achieve axial scanning in a reflectance confocal microscope. Over a 255 μm axial scan range, the lateral and axial resolutions varied from 1-2 μm and 4-14 μm, respectively, dependent on the variable focal length of the tunable lens. Confocal imaging was performed on normal human biopsies from the oral cavity ex vivo. Sub-cellular morphologic features were seen throughout the depth of the epithelium while axially scanning using the focus tunable lens.

  3. Model wavefront sensor for adaptive confocal microscopy

    NASA Astrophysics Data System (ADS)

    Booth, Martin J.; Neil, Mark A. A.; Wilson, Tony

    2000-05-01

    A confocal microscope permits 3D imaging of volume objects by the inclusion of a pinhole in the detector path which eliminates out of focus light. This configuration is however very sensitive to aberrations induced by the specimen or the optical system and would therefore benefit from an adaptive optics approach. We present a wavefront sensor capable of measuring directly the Zernike components of an aberrated wavefront and show that it is particularly applicable to the confocal microscope since only those wavefronts originating in the focal region contribute to the measured aberration.

  4. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen

    2007-01-01

    A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  5. Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: an ex vivo study

    NASA Astrophysics Data System (ADS)

    Iftimia, Nicusor; Peterson, Gary; Chang, Ernest W.; Maguluri, Gopi; Fox, William; Rajadhyaksha, Milind

    2016-01-01

    We present a combined reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) approach, integrated within a single optical layout, for diagnosis of basal cell carcinomas (BCCs) and delineation of margins. While RCM imaging detects BCC presence (diagnoses) and its lateral spreading (margins) with measured resolution of ˜1 μm, OCT imaging delineates BCC depth spreading (margins) with resolution of ˜7 μm. When delineating margins in 20 specimens of superficial and nodular BCCs, depth could be reliably determined down to ˜600 μm, and agreement with histology was within about ±50 μm.

  6. High-speed bioimaging with frequency-division-multiplexed fluorescence confocal microscopy

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Harmon, Jeffrey; Ozeki, Yasuyuki; Goda, Keisuke

    2017-04-01

    We present methods of fluorescence confocal microscopy that enable unprecedentedly high frame rate of > 10,000 fps. The methods are based on a frequency-division multiplexing technique, which was originally developed in the field of communication engineering. Specifically, we achieved a broad bandwidth ( 400 MHz) of detection signals using a dual- AOD method and overcame limitations in frame rate, due to a scanning device, by using a multi-line focusing method, resulting in a significant increase in frame rate. The methods have potential biomedical applications such as observation of sub-millisecond dynamics in biological tissues, in-vivo three-dimensional imaging, and fluorescence imaging flow cytometry.

  7. Ray tracing matrix approach for refractive index mismatch aberrations in confocal microscopy.

    PubMed

    Nastyshyn, S Yu; Bolesta, I M; Lychkovskyy, E; Vankevych, P I; Yakovlev, M Yu; Pansu, B; Nastishin, Yu A

    2017-03-20

    The 2×2 ray tracing matrix (RTM) method is employed for the description of optical aberrations caused by the refractive index mismatch (RIM) in fluorescent confocal polarization microscopy. We predict and experimentally confirm that due to the RIM a liquid crystal layer with highly non-uniform director distribution appears to be imaged as a layer with non-uniform thickness, which shows up in the roughness of the rear surface. For the off-axial focusing of the probing beam in a droplet dispersed in an immiscible liquid, we have developed an extended method still keeping the 2×2 dimensionality of the RTM.

  8. Systematic study of alginate-based microcapsules by micropipette aspiration and confocal fluorescence microscopy.

    PubMed

    Kleinberger, Rachelle M; Burke, Nicholas A D; Dalnoki-Veress, Kari; Stöver, Harald D H

    2013-10-01

    Micropipette aspiration and confocal fluorescence microscopy were used to study the structure and mechanical properties of calcium alginate hydrogel beads (A beads), as well as A beads that were additionally coated with poly-L-lysine (P) and sodium alginate (A) to form, respectively, AP and APA hydrogels. A beads were found to continue curing for up to 500 h during storage in saline, due to residual calcium chloride carried over from the gelling bath. In subsequent saline washes, micropipette aspiration proved to be a sensitive indicator of gel weakening and calcium loss. Aspiration tests were used to compare capsule stiffness before and after citrate extraction of calcium. They showed that the initial gel strength is largely due to the calcium alginate gel cores, while the long term strength is solely due to the poly-L-lysine-alginate polyelectrolyte complex (PEC) shells. Confocal fluorescence microscopy showed that calcium chloride exposure after PLL deposition led to PLL redistribution into the hydrogel bead, resulting in thicker but more diffuse and weaker PEC shells. Adding a final alginate coating to form APA capsules did not significantly change the PEC membrane thickness and stiffness, but did speed the loss of calcium from the bead core. © 2013.

  9. Imaging of Scleral Collagen Deformation Using Combined Confocal Raman Microspectroscopy and Polarized Light Microscopy Techniques.

    PubMed

    Chakraborty, Nilay; Wang, Mian; Solocinski, Jason; Kim, Wonsuk; Argento, Alan

    2016-01-01

    This work presents an optospectroscopic characterization technique for soft tissue microstructure using site-matched confocal Raman microspectroscopy and polarized light microscopy. Using the technique, the microstructure of soft tissue samples is directly observed by polarized light microscopy during loading while spatially correlated spectroscopic information is extracted from the same plane, verifying the orientation and arrangement of the collagen fibers. Results show the response and orientation of the collagen fiber arrangement in its native state as well as during tensile and compressive loadings in a porcine sclera model. An example is also given showing how the data can be used with a finite element program to estimate the strain in individual collagen fibers. The measurements demonstrate features that indicate microstructural reorganization and damage of the sclera's collagen fiber arrangement under loading. The site-matched confocal Raman microspectroscopic characterization of the tissue provides a qualitative measure to relate the change in fibrillar arrangement with possible chemical damage to the collagen microstructure. Tests and analyses presented here can potentially be used to determine the stress-strain behavior, and fiber reorganization of the collagen microstructure in soft tissue during viscoelastic response.

  10. Precise colloids with tunable interactions for confocal microscopy

    PubMed Central

    Kodger, Thomas E.; Guerra, Rodrigo E.; Sprakel, Joris

    2015-01-01

    Model colloidal systems studied with confocal microscopy have led to numerous insights into the physics of condensed matter. Though confocal microscopy is an extremely powerful tool, it requires a careful choice and preparation of the colloid. Uncontrolled or unknown variations in the size, density, and composition of the individual particles and interactions between particles, often influenced by the synthetic route taken to form them, lead to difficulties in interpreting the behavior of the dispersion. Here we describe the straightforward synthesis of copolymer particles which can be refractive index- and density-matched simultaneously to a non-plasticizing mixture of high dielectric solvents. The interactions between particles are accurately tuned by surface grafting of polymer brushes using Atom Transfer Radical Polymerization (ATRP), from hard-sphere-like to long-ranged electrostatic repulsion or mixed charge attraction. We also modify the buoyant density of the particles by altering the copolymer ratio while maintaining their refractive index match to the suspending solution resulting in well controlled sedimentation. The tunability of the inter-particle interactions, the low volatility of the solvents, and the capacity to simultaneously match both the refractive index and density of the particles to the fluid opens up new possibilities for exploring the physics of colloidal systems. PMID:26420044

  11. The Properties of HPMC:PEO Extended Release Hydrophilic Matrices and their Response to Ionic Environments.

    PubMed

    Hu, Anran; Chen, Chen; Mantle, Michael D; Wolf, Bettina; Gladden, Lynn F; Rajabi-Siahboomi, Ali; Missaghi, Shahrzad; Mason, Laura; Melia, Colin D

    2017-05-01

    Investigate the extended release behaviour of compacts containing mixtures of hydrophilic HPMC and PEO in hydrating media of differing ionic strengths. The extended release behaviour of various HPMC:PEO compacts was investigated using dissolution testing, confocal microscopy and magnetic resonance imaging, with respect to polymer ratio and ionic strength of the hydrating media. Increasing HPMC content gave longer extended release times, but a greater sensitivity to high ionic dissolution environments. Increasing PEO content reduced this sensitivity. The addition of PEO to a predominantly HPMC matrix reduced release rate sensitivity to high ionic environments. Confocal microscopy of early gel layer development showed the two polymers appeared to contribute independently to gel layer structure whilst together forming a coherent and effective diffusion barrier. There was some evidence that poorly swollen HPMC particles added a tortuosity barrier to the gel layer in high ionic strength environments, resulting in prolonged extended release. MRI provides unique, non-invasive spatially resolved information from within the HPMC:PEO compacts that furthers our understanding of USP 1 and USP 4 dissolution data. Confocal microscopy and MRI data show that combinations of HPMC and PEO have advantageous extended release properties, in comparison with matrices containing a single polymer.

  12. Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro

    PubMed Central

    Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    Objective With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Methods Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. Results NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Conclusion Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. PMID:29184403

  13. Design, synthesis, nuclear localization, and biological activity of a fluorescent duocarmycin analog, HxTfA.

    PubMed

    Kiakos, Konstantinos; Englinger, Bernhard; Yanow, Stephanie K; Wernitznig, Debora; Jakupec, Michael A; Berger, Walter; Keppler, Bernhard K; Hartley, John A; Lee, Moses; Patil, Pravin C

    2018-05-01

    HxTfA 4 is a fluorescent analog of a potent cytotoxic and antimalarial agent, TfA 3, which is currently being investigated for the development of an antimalarial vaccine, PlasProtect®. HxTfA contains a p-anisylbenzimidazole or Hx moiety, which is endowed with a blue emission upon excitation at 318 nm; thus enabling it to be used as a surrogate for probing the cellular fate of TfA using confocal microscopy, and addressing the question of nuclear localization. HxTfA exhibits similar selectivity to TfA for A-tract sequences of DNA, alkylating adenine-N3, albeit at 10-fold higher concentrations. It also possesses in vitro cytotoxicity against A549 human lung carcinoma cells and Plasmodium falciparum. Confocal microscopy studies showed for the first time that HxTfA, and by inference TfA, entered A549 cells and localized in the nucleus to exert its biological activity. At biologically relevant concentrations, HxTfA elicits DNA damage response as evidenced by a marked increase in the levels of γH2AX observed by confocal microscopy and immunoblotting studies, and ultimately induces apoptosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Volumetry of human taste buds using laser scanning microscopy.

    PubMed

    Just, T; Srur, E; Stachs, O; Pau, H W

    2009-10-01

    In vivo laser scanning confocal microscopy is a relatively new, non-invasive method for assessment of oral cavity epithelia. The penetration depth of approximately 200-400 microm allows visualisation of fungiform papillae and their taste buds. This paper describes the technique of in vivo volumetry of human taste buds. Confocal laser scanning microscopy used a diode laser at 670 nm for illumination. Digital laser scanning confocal microscopy equipment consisted of the Heidelberg Retina Tomograph HRTII and the Rostock Cornea Module. Volume scans of fungiform papillae were used for three-dimensional reconstruction of the taste bud. This technique supplied information on taste bud structure and enabled measurement and calculation of taste bud volume. Volumetric data from a 23-year-old man over a nine-day period showed only a small deviation in values. After three to four weeks, phenomenological changes in taste bud structures were found (i.e. a significant increase in volume, followed by disappearance of the taste bud and appearance of a new taste bud). The data obtained indicate the potential application of this non-invasive imaging modality: to evaluate variation of taste bud volume in human fungiform papillae with ageing; to study the effects of chorda tympani nerve transection on taste bud volume; and to demonstrate recovery of taste buds in patients with a severed chorda tympani nerve who show recovery of gustatory sensibility after surgery.

  15. Pinhole shifting lifetime imaging microscopy

    PubMed Central

    Ramshesh, Venkat K.; Lemasters, John J.

    2009-01-01

    Lifetime imaging microscopy is a powerful tool to probe biological phenomena independent of luminescence intensity and fluorophore concentration. We describe time-resolved imaging of long-lifetime luminescence with an unmodified commercial laser scanning confocal/multiphoton microscope. The principle of the measurement is displacement of the detection pinhole to collect delayed luminescence from a position lagging the rasting laser beam. As proof of principle, luminescence from microspheres containing europium (Eu3+), a red emitting probe, was compared to that of short-lifetime green-fluorescing microspheres and/or fluorescein and rhodamine in solution. Using 720-nm two-photon excitation and a pinhole diameter of 1 Airy unit, the short-lifetime fluorescence of fluorescein, rhodamine and green microspheres disappeared much more rapidly than the long-lifetime phosphorescence of Eu3+ microspheres as the pinhole was repositioned in the lagging direction. In contrast, repositioning of the pinhole in the leading and orthogonal directions caused equal loss of short- and long-lifetime luminescence. From measurements at different lag pinhole positions, a lifetime of 270 μs was estimated for the Eu3+ microspheres, consistent with independent measurements. This simple adaptation is the basis for quantitative 3-D lifetime imaging microscopy. PMID:19123648

  16. Ultrasonically synthesized organic liquid-filled chitosan microcapsules: part 2: characterization using AFM (atomic force microscopy) and combined AFM-confocal laser scanning fluorescence microscopy.

    PubMed

    Mettu, Srinivas; Ye, Qianyu; Zhou, Meifang; Dagastine, Raymond; Ashokkumar, Muthupandian

    2018-04-25

    Atomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane. The oil filled microcapsules were prepared using a one pot synthesis via ultrasonic emulsification of tetradecane and crosslinking of the chitosan shell in aqueous solutions of acetic acid. The concentration of acetic acid in aqueous solutions of chitosan was varied from 0.2% to 25% v/v. The effect of acetic acid concentration and size of the individual microcapsules on the strength was probed. The deformations and forces required to rupture the microcapsules were also measured. Three dimensional deformations of microcapsules under large applied loads were obtained by the combination of Laser Scanning Confocal Microscopy (LSCM) with Atomic Force Microscopy (AFM). The stiffness, and hence the modulus, of the microcapsules was found to decrease with an increase in size with the average stiffness ranging from 82 to 111 mN m-1 and average Young's modulus ranging from 0.4 to 6.5 MPa. The forces required to rupture the microcapsules varied from 150 to 250 nN with deformations of the microcapsules up to 62 to 110% relative to their radius, respectively. Three dimensional images obtained using laser scanning confocal microscopy showed that the microcapsules retained their structure and shape after being subjected to large deformations and subsequent removal of the loads. Based on the above observations, the oil filled chitosan crosslinked microcapsules are an ideal choice for use in the food and pharmaceutical industries as they would be able to withstand the process conditions encountered.

  17. Upgrade of a Scanning Confocal Microscope to a Single-Beam Path STED Microscope

    PubMed Central

    Klauss, André; König, Marcelle; Hille, Carsten

    2015-01-01

    By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as “easy-STED”, achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating. PMID:26091552

  18. Two-photon confocal microscopy in wound healing

    NASA Astrophysics Data System (ADS)

    Navarro, Fernando A.; So, Peter T. C.; Driessen, Antoine; Kropf, Nina; Park, Christine S.; Huertas, Juan C.; Lee, Hoon B.; Orgill, Dennis P.

    2001-04-01

    Advances in histopathology and immunohistochemistry have allowed for precise microanatomic detail of tissues. Two Photon Confocal Microscopy (TPCM) is a new technology useful in non-destructive analysis of tissue. Laser light excites the natural florophores, NAD(P)H and NADP+ and the scattering patterns of the emitted light are analyzed to reconstruct microanatomic features. Guinea pig skin was studied using TPCM and skin preparation methods including chemical depilation and tape striping. Results of TPCM were compared with conventional hematoxylin and eosin microscopy. Two-dimensional images were rendered from the three dimensional reconstructions. Images of deeper layers including basal cells and the dermo-epidermal junction improved after removing the stratum corneum with chemical depilation or tape stripping. TCPM allows good resolution of corneocytes, basal cells and collagen fibers and shows promise as a non-destructive method to study wound healing.

  19. Imaging rat esophagus using combination of reflectance confocal and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Zhuo, S. M.; Chen, J. X.; Jiang, X. S.; Lu, K. C.; Xie, S. S.

    2008-08-01

    We combine reflectance confocal microscopy (RCM) with multiphoton microscopy (MPM) to image rat esophagus. The two imaging modalities allow detection of layered-resolved complementary information from esophagus. In the keratinizing layer, the keratinocytes boundaries can be characterized by RCM, while the keratinocytes cytoplasm (keratin) can be further imaged by multiphoton autofluorescence signal. In the epithelium, the epithelial cellular boundaries and nucleus can be detected by RCM, and MPM can be used for imaging epithelial cell cytoplasm and monitoring metabolic state of epithelium. In the stroma, multiphoton autofluorescence signal is used to image elastin and second harmonic generation signal is utilized to detect collagen, while RCM is used to determine the optical property of stroma. Overall, these results suggest that the combination of RCM and MPM has potential to provide more important and comprehensive information for early diagnosis of esophageal cancer.

  20. Decorating multi-walled carbon nanotubes with quantum dots for construction of multi-color fluorescent nanoprobes.

    PubMed

    Jia, Nengqin; Lian, Qiong; Tian, Zhong; Duan, Xin; Yin, Min; Jing, Lihong; Chen, Shouhui; Shen, Hebai; Gao, Mingyuan

    2010-01-29

    Novel multi-color fluorescent nanoprobes were prepared by electrostatically assembling differently sized CdTe quantum dots on polyethylenimine (PEI) functionalized multi-walled carbon nanotubes (MWNTs). The structural and optical properties of the nano-assemblies (MWNTs-PEI-CdTe) were characterized by transmission electron microscopy (TEM), electron diffraction spectra (EDS), Raman spectroscopy, confocal microscopy and photoluminescence spectroscopy (PL), respectively. Electrochemical impedance spectroscopy (EIS) was also applied to investigate the electrostatic assembling among oxidized MWNTs, PEI and CdTe. Furthermore, confocal fluorescence microscopy was used to monitor the nano-assemblies' delivery into tumor cells. It was found that the nano-assemblies exhibit efficient intracellular transporting and strong intracellular tracking. These properties would make this luminescent nano-assembly an excellent building block for the construction of intracellular nanoprobes, which could hold great promise for biomedical applications.

  1. 3D image restoration for confocal microscopy: toward a wavelet deconvolution for the study of complex biological structures

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats

    2000-05-01

    Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.

  2. Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance

    NASA Astrophysics Data System (ADS)

    Bini, Jason; Spain, James; Nehal, Kishwer; Hazelwood, Vikki; Dimarzio, Charles; Rajadhyaksha, Milind

    2011-07-01

    Confocal mosaicing microscopy enables rapid imaging of large areas of fresh tissue, without the processing that is necessary for conventional histology. Mosaicing may offer a means to perform rapid histology at the bedside. A possible barrier toward clinical acceptance is that the mosaics are based on a single mode of grayscale contrast and appear black and white, whereas histology is based on two stains (hematoxylin for nuclei, eosin for cellular cytoplasm and dermis) and appears purple and pink. Toward addressing this barrier, we report advances in digital staining: fluorescence mosaics that show only nuclei, are digitally stained purple and overlaid on reflectance mosaics, which show only cellular cytoplasm and dermis, and are digitally stained pink. With digital staining, the appearance of confocal mosaics mimics the appearance of histology. Using multispectral analysis and color matching functions, red, green, and blue (RGB) components of hematoxylin and eosin stains in tissue were determined. The resulting RGB components were then applied in a linear algorithm to transform fluorescence and reflectance contrast in confocal mosaics to the absorbance contrast seen in pathology. Optimization of staining with acridine orange showed improved quality of digitally stained mosaics, with good correlation to the corresponding histology.

  3. Simultaneous confocal fluorescence microscopy and optical coherence tomography for drug distribution and tissue integrity assessment

    NASA Astrophysics Data System (ADS)

    Rinehart, Matthew T.; LaCroix, Jeffrey; Henderson, Marcus; Katz, David; Wax, Adam

    2011-03-01

    The effectiveness of microbicidal gels, topical products developed to prevent infection by sexually transmitted diseases including HIV/AIDS, is governed by extent of gel coverage, pharmacokinetics of active pharmaceutical ingredients (APIs), and integrity of vaginal epithelium. While biopsies provide localized information about drug delivery and tissue structure, in vivo measurements are preferable in providing objective data on API and gel coating distribution as well as tissue integrity. We are developing a system combining confocal fluorescence microscopy with optical coherence tomography (OCT) to simultaneously measure local concentrations and diffusion coefficients of APIs during transport from microbicidal gels into tissue, while assessing tissue integrity. The confocal module acquires 2-D images of fluorescent APIs multiple times per second allowing analysis of lateral diffusion kinetics. The custom Fourier domain OCT module has a maximum a-scan rate of 54 kHz and provides depth-resolved tissue integrity information coregistered with the confocal fluorescence measurements. The combined system is validated by imaging phantoms with a surrogate fluorophore. Time-resolved API concentration measured at fixed depths is analyzed for diffusion kinetics. This multimodal system will eventually be implemented in vivo for objective evaluation of microbicide product performance.

  4. Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy.

    PubMed

    Chidley, Matthew D; Carlson, Kristen D; Richards-Kortum, Rebecca R; Descour, Michael R

    2006-04-10

    The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.

  5. Observation of regenerated fungiform taste buds after severing the chorda tympani nerve using confocal laser scanning microscopy in vivo.

    PubMed

    Saito, Takehisa; Ito, Tetsufumi; Kato, Yuji; Yamada, Takechiyo; Manabe, Yasuhiro; Narita, Norihiko

    2014-03-01

    To evaluate whether regenerated fungiform taste buds after severing the chorda tympani nerve can be detected by confocal laser scanning microscopy in vivo. Retrospective study. University hospital. Six patients with a normal gustatory function (Group 1), 9 patients with taste function recovery after severing the CTN (Group 2), and 5 patients without taste function recovery (Group 3) were included. In Groups 2 and 3, canal wall up (closed) tympanoplasty or canal wall down with canal reconstruction tympanoplasty was performed in all patients. Diagnostic. The severed nerves were readapted or approximated on the temporalis muscle fascia used to reconstruct the eardrum during surgery. Preoperative and postoperative gustatory functions were assessed using electrogustometry. Twelve to 260 months after severing the CTN, the surface of the midlateral region of the tongue was observed with a confocal laser microscope. EGM thresholds showed no response 1 month after surgery in all patients of Groups 2 and 3. In Group 2, EGM thresholds showed recovery 1 to 2 years after surgery and before confocal microscopy (-1.3 ± 6.5 dB). There was a significant difference between Group 1 (-5.7 ± 2.0 dB; p < 0.01) and Group 2. In Group 3, EGM thresholds showed no response for more than 2 years. In the control group (Group 1), 0 to 16 taste buds were observed in each FP, and 55 (79.7%) of 69 FP contained at least 1 taste bud. The mean number of taste bud per papilla was 3.7 ± 3.6. In patients with a recovered taste function (Group 2), 0 to 8 taste buds were observed in each FP. In this group, 54 (56.2%) of 94 FP contained at least 1 taste bud. The mean number of taste bud per papilla was 2.0 ± 2.2 (p < 0.01). In Group 3, without recovery, the FP was atrophied, and no taste bud was observed. Regenerated fungiform taste bud could be observed in vivo using confocal laser scanning microscopy, indicating that regenerated taste bud can be detected without biopsy.

  6. [Quantitative analysis of the corneal subbasal nerves in different degrees of dry eye with AutoCAD].

    PubMed

    Cheng, Y; Wu, J; Zhu, H F; Cheng, Y; Zhu, X P

    2016-03-01

    To evaluate the practical value of AutoCAD in quantitative analysis of corneal subbasal epithelial nerves with different degrees of dry eye. Ninety patients were divided into groups of mild, moderate, and severe dry eye, 30 patients (60 eyes) in each group. And 30 healthy volunteers were recruited as the normal control group. Confocal microscopy was used to observe the length of the subbasal epithelial nerve plexus. The images were analyzed by AutoCAD software to determine the density (mm/mm(2)), the number of branches, and the curvature score of the subbasal epithelial nerves. These data of patients with dry eye and the controls were statistically compared, by analysis of variance(ANOV). By AutoCAD software, quantitative analysis of the corneal subbasal epithelial nerves was successfully performed. The nerve density in the patients with mild dry eye[(16.70±3.43) mm/mm(2)] was not significantly different from the controls[(15.87 ± 2.75) mm/mm(2)] (P=0.880), but the number of nerval branches 13.43±2.46 and the curvature 3.10±0.80 increased significantly (P<0.001). The nerve density in the patients with moderate and severe dry eye was significantly different from that in the normal control group (F=114.739, P<0.001). The neural density was significantly lower in the patients with severe dry eye than the controls, but there was no significant difference in the curvature scores between the two groups (P= 0.557). AutoCAD software is useful in the quantitative analysis of corneal nerve images under a confocal microscope. The corneal subbasal epithelial nerve density, the number of branches, and the curvature of the nerves are related to the degree of dry eye, and may be used as clinical indicators.

  7. Analysis of Peroxisome Biogenesis in Pollen by Confocal Microscopy and Transmission Electron Microscopy.

    PubMed

    Jia, Peng-Fei; Li, Hong-Ju; Yang, Wei-Cai

    2017-01-01

    Peroxisome is an essential single-membrane bound organelle in most eukaryotic cells and functions in diverse cellular processes. De novo formation, division, and turnover of peroxisomes contribute to its biogenesis, morphology, and population regulation. In plants, peroxisome plays multiple roles, including metabolism, development, and stress response. Defective peroxisome biogenesis and development retard plant growth, adaption, and reproduction. Through tracing the subcellular localization of fluorescent reporter tagged matrix protein of peroxisome, fluorescence microscopy is a reliable and fast way to detect peroxisome biogenesis. Further fine-structural observation of peroxisome by TEM enables researchers to observe the detailed ultrastructure of its morphology and spatial contact with other organelles. Pollen grain is a specialized structure where two small sperm cells are enclosed in the cytoplasm of a large vegetative cell. Two features make pollen grain a good system to study peroxisome biogenesis: indispensable requirement of peroxisome for germination on the stigma and homogeneity. Here, we describe the methods of studying peroxisome biogenesis in Arabidopsis pollen grains by fluorescent live-imaging with confocal laser scanning microscopy (CLSM) and by DAB-staining based transmission electron microscopy (TEM).

  8. Applying fluorescence microscopy to the investigation of the behavior of foodborne pathogens on produce

    NASA Astrophysics Data System (ADS)

    Brandl, Maria T.

    2009-05-01

    In the past decade, the development of new tools to better visualize microbes at the cellular scale has spurred a renaissance in the application of microscopy to the study of bacteria in their natural environment. This renewed interest in microscopy may be largely attributable to the advent of the confocal laser scanning microscope (CLSM) and to the discovery of the green fluorescent protein. This article provides information about the use of fluorescence microscopy combined with fluorescent labels such as GFP, DsRed, and DNA stains, with immunofluorescence, and with digital image analysis, to examine the behavior of bacteria and other microbes on plant surfaces. Some of the advantages and pitfalls of these methods will be described using practical examples derived from studies of the ecology of foodborne pathogens, namely Salmonella enterica and E. coli O157:H7, on fresh fruit and vegetables. Confocal microscopy has been a powerful approach to uncover some of the factors involved in the association of produce with epidemics caused by these human pathogens and their interaction with other microbes in their nonhost environment.

  9. Confocal imaging to quantify passive transport across biomimetic lipid membranes.

    PubMed

    Li, Su; Hu, Peichi; Malmstadt, Noah

    2010-09-15

    The ability of a molecule to pass through the plasma membrane without the aid of any active cellular mechanisms is central to that molecule's pharmaceutical characteristics. Passive transport has been understood in the context of Overton's rule, which states that more lipophilic molecules cross membrane lipid bilayers more readily. Existing techniques for measuring passive transport lack reproducibility and are hampered by the presence of an unstirred layer (USL) that dominates transport across the bilayer. This report describes assays based on spinning-disk confocal microscopy (SDCM) of giant unilamellar vesicles (GUVs) that allow for the detailed investigation of passive transport processes and mechanisms. This approach allows the concentration field to be directly observed, allowing membrane permeability to be determined easily from the transient concentration profile data. A series of molecules of increasing hydrophilicity was constructed, and the transport of these molecules into GUVs was observed. The observed permeability trend is consistent with Overton's rule. However, the values measured depart from the simple partition-diffusion proportionality model of passive transport. This technique is easy to implement and has great promise as an approach to measure membrane transport. It is optimally suited to precise quantitative measurements of the dependence of passive transport on membrane properties.

  10. In vivo confirmation of hydration-induced changes in human-skin thickness, roughness and interaction with the environment.

    PubMed

    Dąbrowska, Agnieszka K; Adlhart, Christian; Spano, Fabrizio; Rotaru, Gelu-Marius; Derler, Siegfried; Zhai, Lina; Spencer, Nicholas D; Rossi, René M

    2016-09-15

    The skin properties, structure, and performance can be influenced by many internal and external factors, such as age, gender, lifestyle, skin diseases, and a hydration level that can vary in relation to the environment. The aim of this work was to demonstrate the multifaceted influence of water on human skin through a combination of in vivo confocal Raman spectroscopy and images of volar-forearm skin captured with the laser scanning confocal microscopy. By means of this pilot study, the authors have both qualitatively and quantitatively studied the influence of changing the depth-dependent hydration level of the stratum corneum (SC) on the real contact area, surface roughness, and the dimensions of the primary lines and presented a new method for characterizing the contact area for different states of the skin. The hydration level of the skin and the thickness of the SC increased significantly due to uptake of moisture derived from liquid water or, to a much lesser extent, from humidity present in the environment. Hydrated skin was smoother and exhibited higher real contact area values. The highest rates of water uptake were observed for the upper few micrometers of skin and for short exposure times.

  11. Multivariate analysis applied to the study of spatial distributions found in drug-eluting stent coatings by confocal Raman microscopy.

    PubMed

    Balss, Karin M; Long, Frederick H; Veselov, Vladimir; Orana, Argjenta; Akerman-Revis, Eugena; Papandreou, George; Maryanoff, Cynthia A

    2008-07-01

    Multivariate data analysis was applied to confocal Raman measurements on stents coated with the polymers and drug used in the CYPHER Sirolimus-eluting Coronary Stents. Partial least-squares (PLS) regression was used to establish three independent calibration curves for the coating constituents: sirolimus, poly(n-butyl methacrylate) [PBMA], and poly(ethylene-co-vinyl acetate) [PEVA]. The PLS calibrations were based on average spectra generated from each spatial location profiled. The PLS models were tested on six unknown stent samples to assess accuracy and precision. The wt % difference between PLS predictions and laboratory assay values for sirolimus was less than 1 wt % for the composite of the six unknowns, while the polymer models were estimated to be less than 0.5 wt % difference for the combined samples. The linearity and specificity of the three PLS models were also demonstrated with the three PLS models. In contrast to earlier univariate models, the PLS models achieved mass balance with better accuracy. This analysis was extended to evaluate the spatial distribution of the three constituents. Quantitative bitmap images of drug-eluting stent coatings are presented for the first time to assess the local distribution of components.

  12. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells.

    PubMed

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  13. Imaging samples in silica aerogel using an experimental point spread function.

    PubMed

    White, Amanda J; Ebel, Denton S

    2015-02-01

    Light microscopy is a powerful tool that allows for many types of samples to be examined in a rapid, easy, and nondestructive manner. Subsequent image analysis, however, is compromised by distortion of signal by instrument optics. Deconvolution of images prior to analysis allows for the recovery of lost information by procedures that utilize either a theoretically or experimentally calculated point spread function (PSF). Using a laser scanning confocal microscope (LSCM), we have imaged whole impact tracks of comet particles captured in silica aerogel, a low density, porous SiO2 solid, by the NASA Stardust mission. In order to understand the dynamical interactions between the particles and the aerogel, precise grain location and track volume measurement are required. We report a method for measuring an experimental PSF suitable for three-dimensional deconvolution of imaged particles in aerogel. Using fluorescent beads manufactured into Stardust flight-grade aerogel, we have applied a deconvolution technique standard in the biological sciences to confocal images of whole Stardust tracks. The incorporation of an experimentally measured PSF allows for better quantitative measurements of the size and location of single grains in aerogel and more accurate measurements of track morphology.

  14. Advances in combined endoscopic fluorescence confocal microscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Risi, Matthew D.

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure. Results from an ongoing clinical study to detect ovarian cancer with a novel confocal fluorescent microendoscope are presented. As an imaging modality, confocal fluorescence microendoscopy typically requires exogenous fluorophores, has a relatively limited penetration depth (100 μm), and often employs specialized aperture configurations to achieve real-time imaging in vivo. Two primary research directions designed to overcome these limitations and improve diagnostic capability are presented. Ideal confocal imaging performance is obtained with a scanning point illumination and confocal aperture, but this approach is often unsuitable for real-time, in vivo biomedical imaging. By scanning a slit aperture in one direction, image acquisition speeds are greatly increased, but at the cost of a reduction in image quality. The design, implementation, and experimental verification of a custom multi-point-scanning modification to a slit-scanning multi-spectral confocal microendoscope is presented. This new design improves the axial resolution while maintaining real-time imaging rates. In addition, the multi-point aperture geometry greatly reduces the effects of tissue scatter on imaging performance. Optical coherence tomography (OCT) has seen wide acceptance and FDA approval as a technique for ophthalmic retinal imaging, and has been adapted for endoscopic use. As a minimally invasive imaging technique, it provides morphological characteristics of tissues at a cellular level without requiring the use of exogenous fluorophores. OCT is capable of imaging deeper into biological tissue (˜1-2 mm) than confocal fluorescence microscopy. A theoretical analysis of the use of a fiber-bundle in spectral-domain OCT systems is presented. The fiber-bundle enables a flexible endoscopic design and provides fast, parallelized acquisition of the optical coherence tomography data. However, the multi-mode characteristic of the fibers in the fiber-bundle affects the depth sensitivity of the imaging system. A description of light interference in a multi-mode fiber is presented along with numerical simulations and experimental studies to illustrate the theoretical analysis.

  15. Two-Photon Fluorescence Microscope for Microgravity Research

    NASA Technical Reports Server (NTRS)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2005-01-01

    A two-photon fluorescence microscope has been developed for the study of biophysical phenomena. Two-photon microscopy is a novel form of laser-based scanning microscopy that enables three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon optical microscopy, two-photon microscopy utilizes the simultaneous nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption, so an ultra-fast pulsed laser source is typically employed. On the other hand, the critical energy threshold for two-photon absorption leads to fluorophore excitation that is intrinsically localized to the focal volume. Consequently, two-photon microscopy enables optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction (relative to one-photon optical microscopy) in photon-induced damage because of the longer excitation wavelength. This reduction is especially advantageous for in vivo studies. Relative to confocal microscopy, there is also a reduction in background fluorescence, and, because of a reduction in Rayleigh scattering, there is a 4 increase of penetration depth. The prohibitive cost of a commercial two-photon fluorescence-microscope system, as well as a need for modularity, has led to the construction of a custom-built system (see Figure 1). This system includes a coherent mode-locked titanium: sapphire laser emitting 120-fs-duration pulses at a repetition rate of 80 MHz. The pulsed laser has an average output power of 800 mW and a wavelength tuning range of 700 to 980 nm, enabling the excitation of a variety of targeted fluorophores. The output from the laser is attenuated, spatially filtered, and then directed into a confocal scanning head that has been modified to provide for side entry of the laser beam. The laser output coupler has been replaced with a dichroic filter that reflects the longer-wavelength excitation light and passes the shorter-wavelength fluorescence light. Also, the confocal pinhole has been removed to increase the signal strength. The laser beam is scanned by a twoperpendicular- axis pair of galvanometer mirrors through a pupil transfer lens into the side port of an inverted microscope. Finally, the beam is focused by a 63-magnification, 1.3-numerical- aperture oil-immersion objective lens onto a specimen. The pupil transfer lens serves to match the intermediate image planes of the scanning head and the microscope, and its location is critical. In order to maximize the quality of the image, (that is, the point spread function of the objective lens for all scan positions), the entire system was modeled in optical-design software, and the various free design parameters (the parameters of the spatial-filter components as well as the separations of all of the system components) were determined through an iterative optimization process. A modular design was chosen to facilitate access to the optical train for future fluorescence correlation spectroscopy and fluorescence-lifetime experiments.

  16. A 96-well-plate-based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing.

    PubMed

    Müsken, Mathias; Di Fiore, Stefano; Römling, Ute; Häussler, Susanne

    2010-08-01

    A major reason for bacterial persistence during chronic infections is the survival of bacteria within biofilm structures, which protect cells from environmental stresses, host immune responses and antimicrobial therapy. Thus, there is concern that laboratory methods developed to measure the antibiotic susceptibility of planktonic bacteria may not be relevant to chronic biofilm infections, and it has been suggested that alternative methods should test antibiotic susceptibility within a biofilm. In this paper, we describe a fast and reliable protocol for using 96-well microtiter plates for the formation of Pseudomonas aeruginosa biofilms; the method is easily adaptable for antimicrobial susceptibility testing. This method is based on bacterial viability staining in combination with automated confocal laser scanning microscopy. The procedure simplifies qualitative and quantitative evaluation of biofilms and has proven to be effective for standardized determination of antibiotic efficiency on P. aeruginosa biofilms. The protocol can be performed within approximately 60 h.

  17. Tracking Drug-induced Changes in Receptor Post-internalization Trafficking by Colocalizational Analysis.

    PubMed

    Ong, Edmund; Cahill, Catherine

    2015-07-03

    The intracellular trafficking of receptors is a collection of complex and highly controlled processes. Receptor trafficking modulates signaling and overall cell responsiveness to ligands and is, itself, influenced by intra- and extracellular conditions, including ligand-induced signaling. Optimized for use with monolayer-plated cultured cells, but extendable to free-floating tissue slices, this protocol uses immunolabelling and colocalizational analysis to track changes in intracellular receptor trafficking following both chronic/prolonged and acute interventions, including exogenous drug treatment. After drug treatment, cells are double-immunolabelled for the receptor and for markers for the intracellular compartments of interest. Sequential confocal microscopy is then used to capture two-channel photomicrographs of individual cells, which are subjected to computerized colocalizational analysis to yield quantitative colocalization scores. These scores are normalized to permit pooling of independent replicates prior to statistical analysis. Representative photomicrographs may also be processed to generate illustrative figures. Here, we describe a powerful and flexible technique for quantitatively assessing induced receptor trafficking.

  18. Correlative imaging of biological tissues with apertureless scanning near-field optical microscopy and confocal laser scanning microscopy

    PubMed Central

    Stanciu, Stefan G.; Tranca, Denis E.; Hristu, Radu; Stanciu, George A.

    2017-01-01

    Apertureless scanning near-field optical microscopy (ASNOM) has attracted considerable interest over the past years as a result of its valuable contrast mechanisms and capabilities for optical resolutions in the nanoscale range. However, at this moment the intersections between ASNOM and the realm of bioimaging are scarce, mainly due to data interpretation difficulties linked to the limited body of work performed so far in this field and hence the reduced volume of supporting information. We propose an imaging approach that holds significant potential for alleviating this issue, consisting of correlative imaging of biological specimens using a multimodal system that incorporates ASNOM and confocal laser scanning microscopy (CLSM), which allows placing near-field data into a well understood context of anatomical relevance. We demonstrate this approach on zebrafish retinal tissue. The proposed method holds important implications for the in-depth understanding of biological items through the prism of ASNOM and CLSM data complementarity. PMID:29296474

  19. Image formation of volume holographic microscopy using point spread functions

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Oh, Se Baek; Kou, Shan Shan; Lee, Justin; Sheppard, Colin J. R.; Barbastathis, George

    2010-04-01

    We present a theoretical formulation to quantify the imaging properties of volume holographic microscopy (VHM). Volume holograms are formed by exposure of a photosensitive recording material to the interference of two mutually coherent optical fields. Recently, it has been shown that a volume holographic pupil has spatial and spectral sectioning capability for fluorescent samples. Here, we analyze the point spread function (PSF) to assess the imaging behavior of the VHM with a point source and detector. The coherent PSF of the VHM is derived, and the results are compared with those from conventional microscopy, and confocal microscopy with point and slit apertures. According to our analysis, the PSF of the VHM can be controlled in the lateral direction by adjusting the parameters of the VH. Compared with confocal microscopes, the performance of the VHM is comparable or even potentially better, and the VHM is also able to achieve real-time and three-dimensional (3D) imaging due to its multiplexing ability.

  20. Demonstration of bacterial biofilms in culture-negative silicone stent and jones tube.

    PubMed

    Parsa, Kami; Schaudinn, Christoph; Gorur, Amita; Sedghizadeh, Parish P; Johnson, Thomas; Tse, David T; Costerton, John W

    2010-01-01

    To demonstrate the presence of bacterial biofilms on a dacryocystorhinostomy silicone stent and a Jones tube. One dacryocystorhinostomy silicone stent and one Jones tube were removed from 2 patients who presented with an infection of their respective nasolacrimal system. Cultures were obtained, and the implants were processed for scanning electron microscopy and confocal laser scanning microscopy, advanced microscopic methods that are applicable for detection of uncultivable biofilm organisms. Routine bacterial cultures revealed no growth, but bacterial biofilms on outer and inner surfaces of both implants were confirmed by advanced microscopic techniques. To the authors' knowledge, this is the first article that documents the presence of biofilms on a Crawford stent or a Jones tube on patients who presented with infections involving the nasolacrimal system. Although initial cultures revealed absence of any bacterial growth, confocal laser scanning microscopy and scanning electron microscopy documented bacterial colonization. Clinicians should consider the role of biofilms and the limitation of our standard culturing techniques while treating patients with device- or implant-related infections.

  1. Morphological and ultrastructural characterization of ionoregulatory cells in the teleost Oreochromis niloticus following salinity challenge combining complementary confocal scanning laser microscopy and transmission electron microscopy using a novel prefixation immunogold labeling technique.

    PubMed

    Fridman, Sophie; Rana, Krishen J; Bron, James E

    2013-10-01

    Aspects of ionoregulatory or mitochondria-rich cell (MRC) differentiation and adaptation in Nile tilapia yolk-sac larvae following transfer from freshwater to elevated salinities, that is, 12.5 and 20 ppt are described. Investigations using immunohistochemistry on whole-mount Nile tilapia larvae using anti- Na⁺/K⁺-ATPase as a primary antibody and Fluoronanogold™ (Nanoprobes) as a secondary immunoprobe allowed fluorescent labeling with the high resolution of confocal scanning laser microscopy combined with the detection of immunolabeled target molecules at an ultrastructural level using transmission electron microscopy (TEM). It reports, for the first time, various developmental stages of MRCs within the epithelial layer of the tail of yolk-sac larvae, corresponding to immature, developing, and mature MRCs, identifiable by their own characteristic ultrastructure and form. Following transfer to hyperosmotic salinities the density of immunogold particles and well as the intricacy of the tubular system appeared to increase. In addition, complementary confocal scanning laser microscopy allowed identification of immunopositive ramifying extensions that appeared to emanate from the basolateral portion of the cell that appeared to be correlated with the localization of subsurface tubular areas displaying immunogold labeled Na⁺/K⁺-ATPase. This integrated approach describes a reliable and repeatable prefixation immunogold labeling technique allowing precise visualization of NaK within target cells combined with a 3D imaging that offers valuable insights into MRC dynamics at an ultrastructural level. Copyright © 2013 Wiley Periodicals, Inc.

  2. DURIP: Super-Resolution Module for Confocal Microscopy of Reconfigurable Matter

    DTIC Science & Technology

    2014-09-28

    Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 superresolution microscopy, colloidal particles, self-assembly REPORT...previously have been resolved by optical microscopy. Results of Super Resolution Technique Evaluation Commercially available superresolution imaging...Weaknesses of the method are that is fundamentally a measurement that can only be deployed for fixed samples. Because superresolution is obtained by

  3. Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy.

    PubMed

    Keevil, C W

    2003-01-01

    Knowledge of biofilm structure and function has changed significantly in the last few years due to advances in light microscopy. One pertinent example is the use of scanning confocal laser microscopy (SCLM) to visualise corrosion pits caused by the biofilm mosaic footprint on corroding metal surfaces. Nevertheless, SCLM has some limitations as to its widespread use, including cost, inability to observe motile bacteria and eukaryotic grazers within biofilms, and difficulty to scan a curved surface. By contrast, episcopic differential interference contrast (EDIC) microscopy has provided a rapid, real time analysis of biofilms on opaque, curved, natural or man-made surfaces without the need for cover slips and oil. EDIC, coupled with epi-fluorescence (EDIC/EF), microscopy has been used successfully to visualise the 3-D biofilm structure, physiological niches, protozoal grazing and iron biomineralization, and the location of specific pathogens such as Legionella pneumophila, Campylobacter jejuni and Cryptosporidium parvum. These species were identified using gold nanoparticles or fluorophores coupled to monoclonal antibodies or 16S rRNA probes, respectively. Among its many potential uses, the EDIC technique will provide a rapid procedure to facilitate the calibration of the modern generation of biofilm-sensing electrodes.

  4. A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex.

    PubMed

    Lackey, Chantal A; Press, Oliver W; Hoffman, Allan S; Stayton, Patrick S

    2002-01-01

    Poly(propylacrylic acid) (PPAAc) is a synthetic pH-responsive polymer that has been shown to disrupt cell membranes at low pH values typical of the endosome, but not at physiological pH, suggesting its use as an endosomal-releasing agent [Murthy et al. J. Controlled Release 61, 137-43]. We have constructed an antibody-targeted biotherapeutic model to investigate whether PPAAc can enhance intracellular trafficking of proteins to the cytoplasm. A ternary complex composed of a biotinylated anti-CD3 antibody, streptavidin, and biotinylated PPAAc was fluorescently labeled, and its intracellular fate was analyzed by confocal microscopy, flow cytometry, and quantitative western blotting of cell fractionates. The 64.1 anti-CD3 antibody was previously shown to direct receptor-mediated endocytosis in the Jurkat T-cell lymphoma cell line and was rapidly trafficked from the endosome to the lysosomal compartment. The antibody-streptavidin complex was also rapidly internalized to the endosomal/lysosomal compartment and retained there, as evidenced by punctate regions of fluorescence observed by confocal fluorescence microscopy. In samples containing the ternary complex of antibody, streptavidin, and PPAAc-biotin, diffuse fluorescence in the cytoplasm was observed, indicating that PPAAc enhanced translocation to the cytoplasm. This was confirmed by western blotting analysis of the isolated cytoplasm. Flow cytometry results demonstrated that neither streptavidin nor PPAAc caused nonspecific uptake of the complex, nor did they inhibit antibody-mediated endocytosis. The striking enhancement of protein delivery to the cytoplasm by complexed PPAAc suggests that this polymer could provide a new delivery agent for therapeutic, vaccine, and diagnostics development.

  5. Ultrasound molecular imaging of acute cellular cardiac allograft rejection in rat with T-cell-specific nanobubbles.

    PubMed

    Wu, Wei; Zhang, Zhe; Zhuo, Lisha; Zhou, Lina; Liu, Ping; He, Yun; Gao, Yunhua; Li, Rui; Chen, Qinghai; Hua, Xing

    2013-09-01

    Acute rejection (AR) is one of the main obstacles of cardiac transplantation; however, a noninvasive diagnostic method, which reflects its pathologic nature, has not been developed yet. In this study, we prepared a specific nanobubbles targeting to the activated T cells and applied it in the ultrasound molecular imaging of AR in heart transplantation by myocardial contrast echocardiography (MCE). Nanobubbles loading anti-CD25 antibody (NB(specific)) or isotype control antibody (NB(nonspecific)) were prepared and then applied in the ultrasound molecular imaging by MCE in a rat model. MCE was performed in 24 allografts and 18 isografts that were divided into three groups, including days 2, 4, and 6 after transplantation. Confocal laser scanning microscopy was used to evaluate the binding of nanobubbles and T cells in four allografts and four isografts. MCE with NB(specific) in allograft showed a "delayed enhancement," and the time-intensity curve presented a second peak. The intensity and time of second peak were both positively correlated with the transplant time (P<0.01) and the pathologic grade of AR (P<0.01). Confocal laser scanning microscopy demonstrated the binding of nanobubbles and lymphocytes in myocardium post-MCE with NB(specific). Ultrasound molecular imaging of AR after heart transplantation can be achieved by using MCE with the nanobubbles targeted to T cells. The appearance of delayed enhancement indicates the occurrence of AR, and the intensity and time of the second peak in time-intensity curve provide potential quantitative indications for diagnosis and severity of AR.

  6. The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization.

    PubMed

    Laperchia, Claudia; Imperatore, Roberta; Azeez, Idris A; Del Gallo, Federico; Bertini, Giuseppe; Grassi-Zucconi, Gigliola; Cristino, Luigia; Bentivoglio, Marina

    2017-11-01

    Orexin (OX)/hypocretin-containing neurons are main regulators of wakefulness stability, arousal, and energy homeostasis. Their activity varies in relation to the animal's behavioral state. We here tested whether such variation is subserved by synaptic plasticity phenomena in basal conditions. Mice were sacrificed during day or night, at times when sleep or wake, respectively, predominates, as assessed by electroencephalography in matched mice. Triple immunofluorescence was used to visualize OX-A perikarya and varicosities containing the vesicular glutamate transporter (VGluT)2 or the vesicular GABA transporter (VGAT) combined with synaptophysin (Syn) as a presynaptic marker. Appositions on OX-A + somata were quantitatively analyzed in pairs of sections in epifluorescence and confocal microscopy. The combined total number of glutamatergic (Syn + /VGluT2 + ) and GABAergic (Syn + /VGAT + ) varicosities apposed to OX-A somata was similar during day and night. However, glutamatergic varicosities were significantly more numerous at night, whereas GABAergic varicosities prevailed in the day. Triple immunofluorescence in confocal microscopy was employed to visualize synapse scaffold proteins as postsynaptic markers and confirmed the nighttime prevalence of VGluT2 + together with postsynaptic density protein 95 + excitatory contacts, and daytime prevalence of VGAT + together with gephyrin + inhibitory contacts, while also showing that they formed synapses on OX-A + cell bodies. The findings reveal a daily reorganization of axosomatic synapses in orexinergic neurons, with a switch from a prevalence of excitatory innervation at a time corresponding to wakefulness to a prevalence of inhibitory innervations in the antiphase, at a time corresponding to sleep. This reorganization could represent a key mechanism of plasticity of the orexinergic network in basal conditions.

  7. Role for Dynamin in Late Endosome Dynamics and Trafficking of the Cation-independent Mannose 6-Phosphate Receptor

    PubMed Central

    Nicoziani, Paolo; Vilhardt, Frederik; Llorente, Alicia; Hilout, Leila; Courtoy, Pierre J.; Sandvig, Kirsten; van Deurs, Bo

    2000-01-01

    It is well established that dynamin is involved in clathrin-dependent endocytosis, but relatively little is known about possible intracellular functions of this GTPase. Using confocal imaging, we found that endogenous dynamin was associated with the plasma membrane, the trans-Golgi network, and a perinuclear cluster of cation-independent mannose 6-phosphate receptor (CI-MPR)–containing structures. By electron microscopy (EM), it was shown that these structures were late endosomes and that the endogenous dynamin was preferentially localized to tubulo-vesicular appendices on these late endosomes. Upon induction of the dominant-negative dynK44A mutant, confocal microscopy demonstrated a redistribution of the CI-MPR in mutant-expressing cells. Quantitative EM analysis of the ratio of CI-MPR to lysosome-associated membrane protein-1 in endosome profiles revealed a higher colocalization of the two markers in dynK44A-expressing cells than in control cells. Western blot analysis showed that dynK44A-expressing cells had an increased cellular procathepsin D content. Finally, EM revealed that in dynK44A-expressing cells, endosomal tubules containing CI-MPR were formed. These results are in contrast to recent reports that dynamin-2 is exclusively associated with endocytic structures at the plasma membrane. They suggest instead that endogenous dynamin also plays an important role in the molecular machinery behind the recycling of the CI-MPR from endosomes to the trans-Golgi network, and we propose that dynamin is required for the final scission of vesicles budding from endosome tubules. PMID:10679008

  8. Alveolar epithelial cell processing of nanoparticles activates autophagy and lysosomal exocytosis.

    PubMed

    Sipos, Arnold; Kim, Kwang-Jin; Chow, Robert H; Flodby, Per; Borok, Zea; Crandall, Edward D

    2018-05-03

    Utilizing confocal microscopy, we quantitatively assessed uptake, processing and egress of near infrared (NIR)-labeled carboxylated polystyrene nanoparticles (PNP) in live alveolar epithelial cells (AEC) during interactions with primary rat AEC monolayers (RAECM). PNP fluorescence intensity (content) and colocalization with intracellular vesicles in a cell were determined over the entire cell volume via z-stacking. Isotropic cuvette-based microfluorimetry was used to determine PNP concentration ([PNP]) from anisotropic measurements of PNP content assessed by confocal microscopy. Results showed that PNP uptake kinetics and steady state intracellular content decreased as diameter increased from 20 to 200 nm. For 20 nm PNP, uptake rate and steady state intracellular content increased with increased apical [PNP], but were unaffected by inhibition of endocytic pathways. Intracellular PNP increasingly co-localized with autophagosomes and/or lysosomes over time. PNP egress exhibited fast [Ca2+]-dependent release and a slower diffusion-like process. Inhibition of microtubule polymerization curtailed rapid PNP egress, resulting in elevated vesicular and intracellular PNP content. Interference with autophagosome formation led to slower PNP uptake and markedly decreased steady state intracellular content. At steady state, cytosolic [PNP] was higher than apical [PNP] and vesicular [PNP] (~80% of intracellular PNP content) exceeded both cytosolic [PNP] and intracellular [PNP]. These data are consistent with the hypotheses that (1) autophagic processing of nanoparticles is essential for maintenance of AEC integrity, (2) altered autophagy and/or lysosomal exocytosis may lead to AEC injury and (3) intracellular [PNP] in AEC is regulable, suggesting strategies for enhancement of nanoparticle-driven AEC gene/drug delivery and/or amelioration of AEC nanoparticle-related cellular toxicity.

  9. Necrosis and apoptosis pathways of cell death at photodynamic treatment in vitro as revealed by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Semenova, I. V.; Belashov, A. V.; Belyaeva, T. N.; Kornilova, E. S.; Salova, A. V.; Zhikhoreva, A. A.; Vasyutinskii, O. S.

    2018-02-01

    Monitoring of variations in morphological characteristics of cultured HeLa cells after photodynamic treatment with Radachlorin photosensitizer is performed by means of digital holographic microscopy. The observed dose-dependent post-treatment variations of phase shift evidence threshold effect of photodynamic treatment and allow for distinguishing between necrotic or apoptotic pathways of cell death. Results obtained by holographic microscopy were confirmed by means of far-field optical microscopy and confocal fluorescence microscopy with commonly used test assays.

  10. Fluorescence Microscopy Gets Faster and Clearer: Roles of Photochemistry and Selective Illumination

    PubMed Central

    Wolenski, Joseph S.; Julich, Doerthe

    2014-01-01

    Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophore chemistry have enabled scientists to see beyond the diffraction barrier, image deeper into live specimens, and acquire images at unprecedented speed. Selective plane illumination microscopy has provided significant gains in the spatial and temporal acquisition of fluorescence specimens several mm in thickness. With commercial systems now available, this method promises to expand on recent advances in 2-photon deep-tissue imaging with improved speed and reduced photobleaching compared to laser scanning confocal microscopy. Superresolution microscopes are also available in several modalities and can be coupled with selective plane illumination techniques. The combination of methods to increase resolution, acquisition speed, and depth of collection are now being married to common microscope systems, enabling scientists to make significant advances in live cell and in situ imaging in real time. We show that light sheet microscopy provides significant advantages for imaging live zebrafish embryos compared to laser scanning confocal microscopy. PMID:24600334

  11. Chromatic confocal microscopy for multi-depth imaging of epithelial tissue

    PubMed Central

    Olsovsky, Cory; Shelton, Ryan; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.

    2013-01-01

    We present a novel chromatic confocal microscope capable of volumetric reflectance imaging of microstructure in non-transparent tissue. Our design takes advantage of the chromatic aberration of aspheric lenses that are otherwise well corrected. Strong chromatic aberration, generated by multiple aspheres, longitudinally disperses supercontinuum light onto the sample. The backscattered light detected with a spectrometer is therefore wavelength encoded and each spectrum corresponds to a line image. This approach obviates the need for traditional axial mechanical scanning techniques that are difficult to implement for endoscopy and susceptible to motion artifact. A wavelength range of 590-775 nm yielded a >150 µm imaging depth with ~3 µm axial resolution. The system was further demonstrated by capturing volumetric images of buccal mucosa. We believe these represent the first microstructural images in non-transparent biological tissue using chromatic confocal microscopy that exhibit long imaging depth while maintaining acceptable resolution for resolving cell morphology. Miniaturization of this optical system could bring enhanced speed and accuracy to endomicroscopic in vivo volumetric imaging of epithelial tissue. PMID:23667789

  12. Confocal Raman microscopy for identification of bacterial species in biofilms

    NASA Astrophysics Data System (ADS)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  13. A rapid method for the assessment of bone architecture by confocal microscopy.

    PubMed

    Zheng, M H; Bruining, H G; Cody, S H; Brankov, B; Wood, D J; Papadimitriou, J M

    1997-08-01

    Conventional ways of demonstrating and analysing the components of osseous tissue have always been hampered by the difficulty of physically sectioning bone. In this study, we have used Acridine Orange staining of 100-micron-thick unembedded bone slices and then assessed the cellular and tissue architecture by confocal microscopy. The result showed the Acridine Orange, by differential staining of the cellular nucleic acids, permits ready assessment of cell shape and cell organization as well as variations in growth patterns. Our studies have provided a new and relatively easy way of assessing the morphology of bone specimens by rendering unnecessary the need for embedding, decalcification and thin sectioning of the osseous tissue.

  14. Inserting ex vivo fluorescence confocal microscopy perioperatively in Mohs micrographic surgery expedites bedside assessment of excision margins in recurrent basal cell carcinoma.

    PubMed

    Longo, Caterina; Ragazzi, Moira; Castagnetti, Fabio; Gardini, Stefano; Palmieri, Tamara; Lallas, Aimilios; Moscarella, Elvira; Piana, Simonetta; Pellacani, Giovanni; Zalaudek, Iris; Argenziano, Giuseppe

    2013-01-01

    Mohs micrographic surgery can be employed in recurrent basal cell carcinoma, although it is a time-consuming technique. Recently, ex vivo fluorescence confocal microscopy (FCM) has been employed to obtain a fast assessment of tumor margins at the bedside. In our case we successfully employed ex vivo FCM to assess the tumor margins and we treated the persistent tumor with intensity-modulated radiation therapy. Our case demonstrates that a multidisciplinary approach is very efficient in managing complex and recurrent tumors and highlights the benefits of FCM as a new technique that can be used in the surgical theater to speed up the entire procedure.

  15. GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method

    PubMed Central

    Kim, Byungyeon; Park, Byungjun; Lee, Seungrag; Won, Youngjae

    2016-01-01

    We demonstrated GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method. Our algorithm was verified for various fluorescence lifetimes and photon numbers. The GPU processing time was faster than the physical scanning time for images up to 800 × 800, and more than 149 times faster than a single core CPU. The frame rate of our system was demonstrated to be 13 fps for a 200 × 200 pixel image when observing maize vascular tissue. This system can be utilized for observing dynamic biological reactions, medical diagnosis, and real-time industrial inspection. PMID:28018724

  16. Fluorescence spectroscopy and confocal microscopy of the mycotoxin citrinin in condensed phase and hydrogel films.

    PubMed

    Lauer, Milena H; Gehlen, Marcelo H; de Jesus, Karen; Berlinck, Roberto G S

    2014-05-01

    The emission spectra, quantum yields and fluorescence lifetimes of citrinin in organic solvents and hydrogel films have been determined. Citrinin shows complex fluorescence decays due to the presence of two tautomers in solution and interconversion from excited-state double proton transfer (ESDPT) process. The fluorescence decay times associated with the two tautomers have values near 1 and 5 ns depending on the medium. In hydrogel films of agarose and alginate, fluorescence imaging showed that citrinin is not homogeneously dispersed and highly emissive micrometer spots may be formed. Fluorescence spectrum and decay analysis are used to recognize the presence of citrinin in hydrogel films using confocal fluorescence microscopy and spectroscopy.

  17. Insights into esophagus tissue architecture using two-photon confocal microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Nenrong; Wang, Yue; Feng, Shangyuan; Chen, Rong

    2013-08-01

    In this paper, microstructures of human esophageal mucosa were evaluated using the two-photon laser scanning confocal microscopy (TPLSCM), based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). The distribution of epithelial cells, muscle fibers of muscularis mucosae has been distinctly obtained. Furthermore, esophageal submucosa characteristics with cancer cells invading into were detected. The variation of collagen, elastin and cancer cells is very relevant to the pathology in esophagus, especially early esophageal cancer. Our experimental results indicate that the MPM technique has the much more advantages for label-free imaging, and has the potential application in vivo in the clinical diagnosis and monitoring of early esophageal cancer.

  18. The Role of Reflectance Confocal Microscopy in Clinical Trials for Tumor Monitoring.

    PubMed

    Guilera, Josep Malvehy; Barreiro Capurro, Alicia; Carrera Alvárez, Cristina; Puig Sardá, Susana

    2016-10-01

    Reflectance confocal microscopy (RCM) allows the evaluation with superb accuracy of some skin tumors before, during, and after treatment. In clinical trials RCM has been shown to provide useful information for evaluation of efficacy of topical or systemic medication. With the recent introduction of handheld RCM a fast examination of the tumor can be done in minutes. In patients treated with surgery RCM plays a unique role to precisely map margins of the tumor in the skin surface and for the detection of subclinical recurrences. This article reviews the use of RCM in the research of different skin cancer tumor treatments. Copyright © 2016. Published by Elsevier Inc.

  19. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines

    PubMed Central

    Peterson, Brittni M.; Mermelstein, Paul G.; Meisel, Robert L.

    2015-01-01

    Background Structural plasticity, such as changes in dendritic spine morphology and density, reflect changes in synaptic connectivity and circuitry. Procedural variables used in different methods for labeling dendritic spines have been quantitatively evaluated for their impact on the ability to resolve individual spines in confocal microscopic analyses. In contrast, there have been discussions, though no quantitative analyses, of the potential effects of choosing specific mounting media and immersion oils on dendritic spine resolution. New Method Here we provide quantitative data measuring the impact of these variables on resolving dendritic spines in 3D confocal analyses. Medium spiny neurons from the rat striatum and nucleus accumbens are used as examples. Results Both choice of mounting media and immersion oil affected the visualization of dendritic spines, with choosing the appropriate immersion oil as being more imperative. These biologic data are supported by quantitative measures of the 3D diffraction pattern (i.e. point spread function) of a point source of light under the same mounting medium and immersion oil combinations. Comparison with Existing Method Although not a new method, this manuscript provides quantitative data demonstrating that different mounting media and immersion oils can impact the ability to resolve dendritic spines. These findings highlight the importance of reporting which mounting medium and immersion oil are used in preparations for confocal analyses, especially when comparing published results from different laboratories. Conclusion Collectively, these data suggest that choosing the appropriate immersion oil and mounting media is critical for obtaining the best resolution, and consequently more accurate measures of dendritic spine densities. PMID:25601477

  20. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines.

    PubMed

    Peterson, Brittni M; Mermelstein, Paul G; Meisel, Robert L

    2015-03-15

    Structural plasticity, such as changes in dendritic spine morphology and density, reflect changes in synaptic connectivity and circuitry. Procedural variables used in different methods for labeling dendritic spines have been quantitatively evaluated for their impact on the ability to resolve individual spines in confocal microscopic analyses. In contrast, there have been discussions, though no quantitative analyses, of the potential effects of choosing specific mounting media and immersion oils on dendritic spine resolution. Here we provide quantitative data measuring the impact of these variables on resolving dendritic spines in 3D confocal analyses. Medium spiny neurons from the rat striatum and nucleus accumbens are used as examples. Both choice of mounting media and immersion oil affected the visualization of dendritic spines, with choosing the appropriate immersion oil as being more imperative. These biologic data are supported by quantitative measures of the 3D diffraction pattern (i.e. point spread function) of a point source of light under the same mounting medium and immersion oil combinations. Although not a new method, this manuscript provides quantitative data demonstrating that different mounting media and immersion oils can impact the ability to resolve dendritic spines. These findings highlight the importance of reporting which mounting medium and immersion oil are used in preparations for confocal analyses, especially when comparing published results from different laboratories. Collectively, these data suggest that choosing the appropriate immersion oil and mounting media is critical for obtaining the best resolution, and consequently more accurate measures of dendritic spine densities. Copyright © 2015 Elsevier B.V. All rights reserved.

Top