Conformal and projective symmetries in Newtonian cosmology
NASA Astrophysics Data System (ADS)
Duval, C.; Gibbons, G. W.; Horváthy, P. A.
2017-02-01
Definitions of non-relativistic conformal transformations are considered both in the Newton-Cartan and in the Kaluza-Klein-type Eisenhart/Bargmann geometrical frameworks. The symmetry groups that come into play are exemplified by the cosmological, and also the Newton-Hooke solutions of Newton's gravitational field equations. It is shown, in particular, that the maximal symmetry group of the standard cosmological model is isomorphic to the 13-dimensional conformal-Newton-Cartan group whose conformal-Bargmann extension is explicitly worked out. Attention is drawn to the appearance of independent space and time dilations, in contrast with the Schrödinger group or the Conformal Galilei Algebra.
Heerdink, Marc W.; van Kleef, Gerben A.; Homan, Astrid C.; Fischer, Agneta H.
2015-01-01
How many members of a group need to express their anger in order to influence a deviant group member’s behavior? In two studies, we examine whether an increase in number of angry group members affects the extent to which a deviant individual feels rejected, and we investigate downstream effects on conformity. We show that each additional angry reaction linearly increases the extent to which a deviant individual feels rejected, and that this relation is independent of the total number of majority members (Study 1). This felt rejection is then shown to lead to anti-conformity unless two conditions are met: (1) the deviant is motivated to seek reacceptance in the group, and (2) conformity is instrumental in gaining reacceptance because it is observable by the majority (Study 2). These findings show that angry reactions are likely to trigger anti-conformity in a deviant, but they are also consistent with a motivational account of conformity, in which conformity is strategic behavior aimed at gaining reacceptance from the group. PMID:26124742
Heerdink, Marc W; van Kleef, Gerben A; Homan, Astrid C; Fischer, Agneta H
2015-01-01
How many members of a group need to express their anger in order to influence a deviant group member's behavior? In two studies, we examine whether an increase in number of angry group members affects the extent to which a deviant individual feels rejected, and we investigate downstream effects on conformity. We show that each additional angry reaction linearly increases the extent to which a deviant individual feels rejected, and that this relation is independent of the total number of majority members (Study 1). This felt rejection is then shown to lead to anti-conformity unless two conditions are met: (1) the deviant is motivated to seek reacceptance in the group, and (2) conformity is instrumental in gaining reacceptance because it is observable by the majority (Study 2). These findings show that angry reactions are likely to trigger anti-conformity in a deviant, but they are also consistent with a motivational account of conformity, in which conformity is strategic behavior aimed at gaining reacceptance from the group.
Wako, Hiromichi; Ishiuchi, Shun-Ichi; Kato, Daichi; Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe; Fujii, Masaaki
2017-05-03
The conformer-selected ultraviolet (UV) and infrared (IR) spectra of protonated noradrenaline were measured using an electrospray/cryogenic ion trap technique combined with photo-dissociation spectroscopy. By comparing the UV photo dissociation (UVPD) spectra with the UV-UV hole burning (HB) spectra, it was found that five conformers coexist under ultra-cold conditions. Based on the spectral features of the IR dip spectra of each conformer, two different conformations on the amine side chain were identified. Three conformers (group I) were assigned to folded and others (group II) to extended structures by comparing the observed IR spectra with the calculated ones. Observation of the significantly less-stable extended conformers strongly suggests that the extended structures are dominant in solution and are detected in the gas phase by kinetic trapping. The conformers in each group are assignable to rotamers of OH orientations in the catechol ring. By comparing the UV-UV HB spectra and the calculated Franck-Condon spectra obtained by harmonic vibrational analysis of the S 1 state, with the aid of relative stabilization energies of each conformer in the S 0 state, the absolute orientations of catechol OHs of the observed five conformers were successfully determined. It was found that the 0-0 transition of one folded conformer is red-shifted by about 1000 cm -1 from the others. The significant red-shift was explained by a large contribution of the πσ* state to S 1 in the conformer in which an oxygen atom of the meta-OH group is close to the ammonium group.
NASA Astrophysics Data System (ADS)
Wilke, Martin; Brand, Christian; Wilke, Josefin; Schmitt, Michael
2017-07-01
Even though the two possible rotamers of methoxy-substituted indoles only differ in the orientation of a methoxy group, this slight geometry change can have a strong influence on the stabilities and further molecular properties of the conformers. In the present study, we evaluate the effect of the methyl group position on the presence of different conformers in molecular beam studies for the systems 4-, 5-, and 6-methoxyindole. By using rotationally resolved electronic Stark spectroscopy in combination with high level ab initio calculations the structures of the observable conformers have been assigned and reasons for the absence of the missing conformers discussed. Thereby, we could show that the relative ground state energies and isomerization barriers for both conformers strongly depend on the position of the methoxy group and are the main explanation for the absence of the syn conformers of 4-, and 5-methoxyindole.
Yu, Rongjun; Sun, Sai
2013-01-01
When people have different opinions in a group, they often adjust their own attitudes and behaviors to match the group opinion, known as social conformity. The affiliation account of normative conformity states that people conform to norms in order to 'fit in', whereas the accuracy account of informative conformity posits that the motive to learn from others produces herding. Here, we test another possibility that following the crowd reduces the experienced negative emotion when the group decision turns out to be a bad one. Using event related potential (ERP) combined with a novel group gambling task, we found that participants were more likely to choose the option that was predominately chosen by other players in previous trials, although there was little explicit normative pressure at the decision stage and group choices were not informative. When individuals' choices were different from others, the feedback related negativity (FRN), an ERP component sensitive to losses and errors, was enhanced, suggesting that being independent is aversive. At the outcome stage, the losses minus wins FRN effect was significantly reduced following conformity choices than following independent choices. Analyses of the P300 revealed similar patterns both in the response and outcome period. Our study suggests that social conformity serves as an emotional buffer that protects individuals from experiencing strong negative emotion when the outcomes are bad.
Invariant solutions to the conformal Killing-Yano equation on Lie groups
NASA Astrophysics Data System (ADS)
Andrada, A.; Barberis, M. L.; Dotti, I. G.
2015-08-01
We search for invariant solutions of the conformal Killing-Yano equation on Lie groups equipped with left invariant Riemannian metrics, focusing on 2-forms. We show that when the Lie group is compact equipped with a bi-invariant metric or 2-step nilpotent, the only invariant solutions occur on the 3-dimensional sphere or on a Heisenberg group. We classify the 3-dimensional Lie groups with left invariant metrics carrying invariant conformal Killing-Yano 2-forms.
Zhang, Fan; Xu, Hao-Cheng; Yin, Bo; Xia, Xin-Lei; Ma, Xiao-Sheng; Wang, Hong-Li; Yin, Jun; Shao, Ming-Hao; Lyu, Fei-Zhou; Jiang, Jian-Yuan
2016-08-01
To evaluate the biomechanical characteristics of endplate-conformed cervical cages by finite element method (FEM) analysis and cadaver study. Twelve specimens (C2 -C7 ) and a finite element model (C3 -C7 ) were subjected to biomechanical evaluations. In the cadaver study, specimens were randomly assigned to intact (I), endplate-conformed (C) and non-conformed (N) groups with C4-5 discs as the treated segments. The morphologies of the endplate-conformed cages were individualized according to CT images of group C and the cages fabricated with a 3-D printer. The non-conformed cages were wedge-shaped and similar to commercially available grafts. Axial pre-compression loads of 73.6 N and moment of 1.8 Nm were used to simulate flexion (FLE), extension (EXT), lateral bending (LB) and axial rotation (AR). Range of motion (ROM) at C4-5 of each specimen was recorded and film sensors fixed between the cages and C5 superior endplates were used to detect interface stress. A finite element model was built based on the CT data of a healthy male volunteer. The morphologies of the endplate-conformed and wedge-shaped, non-conformed cervical cages were both simulated by a reverse engineering technique and implanted at the segment of C4-5 in the finite element model for biomechanical evaluation. Force loading and grouping were similar to those applied in the cadaver study. ROM of C4-5 in group I were recorded to validate the finite element model. Additionally, maximum cage-endplate interface stresses, stress distribution contours on adjoining endplates, intra-disc stresses and facet loadings at adjacent segments were measured and compared between groups. In the cadaver study, Group C showed a much lower interface stress in all directions of motion (all P < 0.05) and the ROM of C4-5 was smaller in FLE-EXT (P = 0.001) but larger in AR (P = 0.017). FEM analysis produced similar results: the model implanted with an endplate-conformed cage presented a lower interface stress with a more uniform stress distribution than that implanted with a non-conformed cage. Additionally, intra-disc stress and facet loading at the adjacent segments were obviously increased in both groups C and N, especially those at the supra-jacent segments. However, stress increase was milder in group C than in group N for all directions of motion. Endplate-conformed cages can decrease cage-endplate interface stress in all directions of motion and increase cervical stability in FLE-EXT. Additionally, adjacent segments are possibly protected because intra-disc stress and facet loading are smaller after endplate-conformed cage implantation. However, axial stability was reduced in group C, indicating that endplate-conformed cage should not be used alone and an anterior plate system is still important in anterior cervical discectomy and fusion. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Conformational preferences of γ-aminobutyric acid in the gas phase and in water
NASA Astrophysics Data System (ADS)
Song, Il Keun; Kang, Young Kee
2012-09-01
The conformational study of γ-aminobutyric acid (GABA) has been carried out at the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water. In the gas phase, the folded conformation gG1 with gauche- and gauche+ conformations for the Cβsbnd Cα and Cγsbnd Cβ bonds, respectively, is found to be lowest in energy and enthalpy, which can be ascribed to the favored hyperconjugative n → π* interaction between the lone electron pair of the amine nitrogen atom and the Cdbnd O bond of the carboxylic group and the favored antiparallel dipole-dipole interaction between the Nsbnd H bond and the Cdbnd O bond. In addition, the intramolecular hydrogen bonds between the carboxylic group and the amine Nsbnd H group have contributed to stabilize some low-energy conformers. However, the most preferred conformation is found to be tG1 and more stable by 0.4 kcal/mol in ΔG than the conformer gG1, in which the favored entropic term due to the conformational flexibility and the other favored n → σ*, σ → σ*, and π → σ* interactions seem to play a role. The conformational preferences of the neutral GABA calculated by ΔG's are reasonably consistent with the populations deduced from FT microwave spectroscopy in supersonic jets combined with laser ablation. In water, the two folded conformers Gg and gG of the zwitterionic GABA are dominantly populated, each of which has the population of 47%, and the hydrogen bond between the ammonium Nsbnd H group and the lone electron pair of the Csbnd O- group seems to be crucial in stabilizing these conformers. Our calculated result that the folded conformers preferentially exist in water is consistent with the 1H NMR experiments in D2O.
Dimensionality of Social Influence.
ERIC Educational Resources Information Center
Stricker, Lawrence J.; Jackson, Douglas N.
The research reported in this study explores two problematic avenues of conformity research: (1) the widely assumed generality of diverse measures of group pressure, and (2) the dimensionality of conformity, anticonformity, and independence. These two conformity situations, present and nonpresent norm groups, used two tasks (an objective counting…
Sex Differences in Influenceability
ERIC Educational Resources Information Center
Eagly, Alice H.
1978-01-01
Examines the hypothesis that women are more easily influenced than men by reviewing the literature on persuasion and conformity research. Persuasion research and conformity studies not involving group pressure show scant empirical support for sex differences. For group pressure conformity research, a substantial minority of studies support the…
Me, us, or them: who is more conformist? Perception of conformity and political orientation.
Cavazza, Nicoletta; Mucchi-Faina, Angelica
2008-06-01
Research has shown that people perceive others as more vulnerable than themselves to media communication, and their political out-group as more vulnerable than their political in-group. In the present study, the authors predicted that the same two biases would appear with respect to another kind of influence--conformity--but that participants' judgments would display a different pattern according to their political orientations. Right-wing and left-wing university students were asked to evaluate conformity and to estimate how conformist they, their political in-group, their political out-group, and other groups are. As hypothesized, right-wingers expressed more ambivalence toward conformity and viewed it less negatively than did left-wingers. Political orientation had no impact on the discrepancy between self and others, but it did moderate the in-group-out-group discrepancy.
Gas-phase spectroscopy of synephrine by laser desorption supersonic jet technique.
Ishiuchi, Shun-ichi; Asakawa, Toshiro; Mitsuda, Haruhiko; Miyazaki, Mitsuhiko; Chakraborty, Shamik; Fujii, Masaaki
2011-09-22
In our previous work, we found that synephrine has six conformers in the gas phase, while adrenaline, which is a catecholamine and has the same side chain as synephrine, has been reported to have only two conformers. To determine the conformational geometries of synephrine, we measured resonance enhanced multiphoton ionization, ultraviolet-ultraviolet hole burning, and infrared dip spectra by utilizing the laser desorption supersonic jet technique. By comparing the observed infrared spectra with theoretical ones, we assigned geometries except for the orientations of the phenolic OH group. Comparison between the determined structures of synephrine and those of 2-methylaminno-1-phenylethanol, which has the same side chain as synephrine but no phenol OH group, leads to the conclusion that the phenolic OH group in synephrine does not affect the conformational flexibility of the side chain. In the case of adrenaline, which is expected to have 12 conformers if there are no interactions between the catecholic OH groups and the side chain, some interactions possibly exist between them because only two conformations are observed. By estimation of the dipole-dipole interaction energy between partial dipole moments of the catecholic OH groups and the side chain, it was concluded that the dipole-dipole interaction stabilizes specific conformers which are actually observed. © 2011 American Chemical Society
From spinning conformal blocks to matrix Calogero-Sutherland models
NASA Astrophysics Data System (ADS)
Schomerus, Volker; Sobko, Evgeny
2018-04-01
In this paper we develop further the relation between conformal four-point blocks involving external spinning fields and Calogero-Sutherland quantum mechanics with matrix-valued potentials. To this end, the analysis of [1] is extended to arbitrary dimensions and to the case of boundary two-point functions. In particular, we construct the potential for any set of external tensor fields. Some of the resulting Schrödinger equations are mapped explicitly to the known Casimir equations for 4-dimensional seed conformal blocks. Our approach furnishes solutions of Casimir equations for external fields of arbitrary spin and dimension in terms of functions on the conformal group. This allows us to reinterpret standard operations on conformal blocks in terms of group-theoretic objects. In particular, we shall discuss the relation between the construction of spinning blocks in any dimension through differential operators acting on seed blocks and the action of left/right invariant vector fields on the conformal group.
Characteristic conformation of Mosher's amide elucidated using the cambridge structural database.
Ichikawa, Akio; Ono, Hiroshi; Mikata, Yuji
2015-07-16
Conformations of the crystalline 3,3,3-trifluoro-2-methoxy-2-phenylpropanamide derivatives (MTPA amides) deposited in the Cambridge Structural Database (CSD) were examined statistically as Racid-enantiomers. The majority of dihedral angles (48/58, ca. 83%) of the amide carbonyl groups and the trifluoromethyl groups ranged from -30° to 0° with an average angle θ1 of -13°. The other conformational properties were also clarified: (1) one of the fluorine atoms was antiperiplanar (ap) to the amide carbonyl group, forming a staggered conformation; (2) the MTPA amides prepared from primary amines showed a Z form in amide moieties; (3) in the case of the MTPA amide prepared from a primary amine possessing secondary alkyl groups (i.e., Mosher-type MTPA amide), the dihedral angles between the methine groups and the carbonyl groups were syn and indicative of a moderate conformational flexibility; (4) the phenyl plane was inclined from the O-Cchiral bond of the methoxy moiety with an average dihedral angle θ2 of +21°; (5) the methyl group of the methoxy moiety was ap to the ipso-carbon atom of the phenyl group.
The Neuropeptide Oxytocin Enhances Information Sharing and Group Decision Making Quality.
De Wilde, Tim R W; Ten Velden, Femke S; De Dreu, Carsten K W
2017-01-11
Groups can make better decisions than individuals when members cooperatively exchange and integrate their uniquely held information and insights. However, under conformity pressures group members are biased towards exchanging commonly known information, and away from exchanging unique information, thus undermining group decision-making quality. At the neurobiological level, conformity associates with the neuropeptide oxytocin. A double-blind placebo controlled study found no evidence for oxytocin induced conformity. Compared to placebo groups, three-person groups whose members received intranasal oxytocin, focused more on unique information (i) and repeated this information more often (ii). These findings reveal oxytocin as a neurobiological driver of group decision-making processes.
The Neuropeptide Oxytocin Enhances Information Sharing and Group Decision Making Quality
De Wilde, Tim R. W.; Ten Velden, Femke S.; De Dreu, Carsten K. W.
2017-01-01
Groups can make better decisions than individuals when members cooperatively exchange and integrate their uniquely held information and insights. However, under conformity pressures group members are biased towards exchanging commonly known information, and away from exchanging unique information, thus undermining group decision-making quality. At the neurobiological level, conformity associates with the neuropeptide oxytocin. A double-blind placebo controlled study found no evidence for oxytocin induced conformity. Compared to placebo groups, three-person groups whose members received intranasal oxytocin, focused more on unique information (i) and repeated this information more often (ii). These findings reveal oxytocin as a neurobiological driver of group decision-making processes. PMID:28074896
Nowak, Zbigniew; Laudanski, Krzysztof
2016-01-01
Background Conformity is a psychological variable related to the propensity of an individual to match his or her behavior and opinion to the perceived social and cultural norm, even if these do not represent the true beliefs of the person. The aim of the present study was to investigate whether the psychological variable of conformity is different in two distinct modes of renal replacement therapy (RRT) in end-stage renal disease (ESRD). Material/Methods A total of 56 hemodialyzed patients (HD group), 45 continuous ambulatory peritoneal dialysis patients (CAPD group) and 62 healthy volunteers (CONTR group) were enrolled in the study. The Social Appraisal Questionnaire (SAQ) was employed, and chart review was performed to collect clinical data. Results When age was not a factor, the conformity measure was significantly higher in the HD group compared with the CAPD and CONTR groups. The lowest conformity was found in healthy participants who were asked to imagine an acute medical problem. The highest conformity was found in older HD and CAPD patients. Conclusions Being chronically ill and having adaptable views may be more favorable traits for coping with ESRD in dialyzed patients, especially in elderly HD patients. On the other hand, conformity can be deleterious if CAPD patients decide to overlook certain facts or not confront the medical aspects of their condition. PMID:27886156
Effects of Achievement Motivation, Social Identity, and Peer Group Norms on Academic Conformity
ERIC Educational Resources Information Center
Masland, Lindsay C.; Lease, A. Michele
2013-01-01
This study investigated whether academic achievement motivation and social identity explain variation in children's conformity to positive academic behaviors (n = 455 children in grades three through five). Structural equation modeling suggested that academic value and peer group academic norms were positively related to academic conformity.…
Invariant classification of second-order conformally flat superintegrable systems
NASA Astrophysics Data System (ADS)
Capel, J. J.; Kress, J. M.
2014-12-01
In this paper we continue the work of Kalnins et al in classifying all second-order conformally-superintegrable (Laplace-type) systems over conformally flat spaces, using tools from algebraic geometry and classical invariant theory. The results obtained show, through Stäckel equivalence, that the list of known nondegenerate superintegrable systems over three-dimensional conformally flat spaces is complete. In particular, a seven-dimensional manifold is determined such that each point corresponds to a conformal class of superintegrable systems. This manifold is foliated by the nonlinear action of the conformal group in three dimensions. Two systems lie in the same conformal class if and only if they lie in the same leaf of the foliation. This foliation is explicitly described using algebraic varieties formed from representations of the conformal group. The proof of these results rely heavily on Gröbner basis calculations using the computer algebra software packages Maple and Singular.
Conformational studies of the capsular polysaccharide produced by Neisseria meningitidis group A.
Foschiatti, Michela; Hearshaw, Meredith; Cescutti, Paola; Ravenscroft, Neil; Rizzo, R
2009-05-12
The effect of different cations on the conformational and morphological properties of the capsular polysaccharide produced by Neisseria meningitidis group A was investigated. Circular dichroism studies showed that the presence of Na(+), NH4+ or Ca(2+) ions induced different local conformations of the polysaccharide chain through interactions with the phosphodiester group bridging the saccharide residues in the polymer chain. Atomic force microscopy experiments confirmed that the morphology of the polysaccharide chains was different depending on the nature of the counterion. Ammonium ions were associated with the presence of single polymer chains in an elongated conformation, whereas sodium ions favored the folding of the chains into a globular conformation. The addition of calcium ions produced the aggregation of a limited number of globular polysaccharide chains to form a 'toroidal-like' structure.
Najbauer, Eszter E.; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György
2018-01-01
The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, 6 conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-live of (3.7±0.5)·103 s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser induced conversions revealed that the excitation of the stretching overtone of both the side-chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050
Analytical halo model of galactic conformity
NASA Astrophysics Data System (ADS)
Pahwa, Isha; Paranjape, Aseem
2017-09-01
We present a fully analytical halo model of colour-dependent clustering that incorporates the effects of galactic conformity in a halo occupation distribution framework. The model, based on our previous numerical work, describes conformity through a correlation between the colour of a galaxy and the concentration of its parent halo, leading to a correlation between central and satellite galaxy colours at fixed halo mass. The strength of the correlation is set by a tunable 'group quenching efficiency', and the model can separately describe group-level correlations between galaxy colour (1-halo conformity) and large-scale correlations induced by assembly bias (2-halo conformity). We validate our analytical results using clustering measurements in mock galaxy catalogues, finding that the model is accurate at the 10-20 per cent level for a wide range of luminosities and length-scales. We apply the formalism to interpret the colour-dependent clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We find good overall agreement between the data and a model that has 1-halo conformity at a level consistent with previous results based on an SDSS group catalogue, although the clustering data require satellites to be redder than suggested by the group catalogue. Within our modelling uncertainties, however, we do not find strong evidence of 2-halo conformity driven by assembly bias in SDSS clustering.
Conformity to Peer Pressure in Preschool Children
ERIC Educational Resources Information Center
Haun, Daniel B. M.; Tomasello, Michael
2011-01-01
Both adults and adolescents often conform their behavior and opinions to peer groups, even when they themselves know better. The current study investigated this phenomenon in 24 groups of 4 children between 4;2 and 4;9 years of age. Children often made their judgments conform to those of 3 peers, who had made obviously erroneous but unanimous…
NASA Astrophysics Data System (ADS)
DaBell, Ryan S.; Suenram, Richard D.; Lavrich, Richard J.; Lochner, J. Michael; Ellzy, Michael W.; Sumpter, Kenneth; Jensen, James O.; Samuels, Alan C.
2004-12-01
The rotational spectra of diethyl methylphosphonate (DEMP), diethyl ethylphosphonate (DEEP), and diisopropyl methylphosphonate (DIMP) in supersonic expansions have been acquired using Fourier-transform microwave spectroscopy. Spectroscopic constants have been determined for five distinct conformers of the three molecules. Experimental data have been compared to ab initio calculations performed for each species. For both DEMP and DEEP, the calculations indicate the presence of several low-energy conformers (i.e., ⩽˜400 cm -1 above the ground state) may be present at room temperature (300 K) for both DEMP and DEEP. When entrained in a supersonic expansion, the rotational temperatures of the samples are much colder (˜2 K); nonetheless, spectra from three conformers of DEEP are still observed experimentally, whereas only one conformer of DEMP is observed. In contrast, only a single low-energy conformer of DIMP is predicted by theory, and is present in the molecular beam. The relative abundance of low-energy conformers of DEMP and DEEP is attributed to the flexibility of the ethoxy groups within each molecule. The presence of multiple DEEP conformers in the supersonic beam indicates a more complex potential energy surface for this molecule that is directly related to conformational shifts of the PCH 2CH 3 group. Conversely, the absence of low-energy conformers of DIMP is attributed to steric hindrance between isopropoxy groups in the molecule. The internal rotation barrier for the PCH 3 group in DEMP and DIMP is compared to that found in DMMP and several phosphonate-based chemical weapon agents.
Improving Group Processes in Transdisciplinary Case Studies for Sustainability Learning
ERIC Educational Resources Information Center
Hansmann, Ralf; Crott, Helmut W.; Mieg, Harald A.; Scholz, Roland W.
2009-01-01
Purpose: Deficient group processes such as conformity pressure can lead to inadequate group decisions with negative social, economic, or environmental consequences. The study aims to investigate how a group technique (called INFO) improves students' handling of conformity pressure and their collective judgments in the context of a…
Thermal coefficients of the methyl groups within ubiquitin
Sabo, T Michael; Bakhtiari, Davood; Walter, Korvin F A; McFeeters, Robert L; Giller, Karin; Becker, Stefan; Griesinger, Christian; Lee, Donghan
2012-01-01
Physiological processes such as protein folding and molecular recognition are intricately linked to their dynamic signature, which is reflected in their thermal coefficient. In addition, the local conformational entropy is directly related to the degrees of freedom, which each residue possesses within its conformational space. Therefore, the temperature dependence of the local conformational entropy may provide insight into understanding how local dynamics may affect the stability of proteins. Here, we analyze the temperature dependence of internal methyl group dynamics derived from the cross-correlated relaxation between dipolar couplings of two CH bonds within ubiquitin. Spanning a temperature range from 275 to 308 K, internal methyl group dynamics tend to increase with increasing temperature, which translates to a general increase in local conformational entropy. With this data measured over multiple temperatures, the thermal coefficient of the methyl group order parameter, the characteristic thermal coefficient, and the local heat capacity were obtained. By analyzing the distribution of methyl group thermal coefficients within ubiquitin, we found that the N-terminal region has relatively high thermostability. These results indicate that methyl groups contribute quite appreciably to the total heat capacity of ubiquitin through the regulation of local conformational entropy. PMID:22334336
NMR and X-ray studies of isomeric 22,23-dihydroxy stigmastanes
NASA Astrophysics Data System (ADS)
Khripach, Vladimir A.; Zhabinskii, Vladimir N.; Ivanova, Galina V.; Fando, Galina P.; Tsavlovskii, Dmitrii V.; Khripach, Natalya B.; Lyakhov, Alexander S.; Misharin, Alexander Yu.
2010-06-01
A comparative conformational study of steroidal side chain of (22 R,23 R)- and (22 S,23 S)-dihydroxy stigmastane derivatives was performed using single crystal X-ray diffraction and NMR spectroscopy. The preferred conformation in solution was shown to be close to that in the crystal. (22 R,23 R)-Isomers typical for natural plant steroid hormones brassinosteroids adopt a conformation in which both hydroxyl groups are pointed toward unhindered α-side of the steroidal plane and can thus participate in biochemical processes. Unnatural (22 S,23 S)-counterparts exhibit a conformation with the two hydroxyl groups oriented in the opposite direction and sterically hindered by 21-methyl group and terminal side chain fragment.
Conformity, Anticonformity, andIndependence: Their Dimensionality and Generality
ERIC Educational Resources Information Center
Stricker, Lawrence J.; And Others
1970-01-01
Examines response to group pressure involving different judgments and social situations. One bipolar dimension included conformity and anticonformity, the other, conformity and independence. Tables, graphs, and bibliography. (RW)
IR low-temperature matrix, X-ray and ab initio study on L-isoserine conformations.
Dobrowolski, Jan Cz; Jamróz, Michał H; Kołos, Robert; Rode, Joanna E; Cyrański, Michał K; Sadlej, Joanna
2010-09-28
The IR low-temperature Ar and Kr matrix spectra of l-isoserine were registered for the first time and interpreted by means of the anharmonic DFT frequencies calculated at the B3LYP/aug-cc-pVTZ and B3LYP/aug-cc-pVDZ levels. 54 l-isoserine conformers were predicted to be stable at the B3LYP/aug-cc-pVDZ level. Population of the 8 most stable conformers was based on the QCISD/aug-cc-pVDZ energies, corrected for thermal anharmonic factors obtained at the B3LYP/aug-cc-pVDZ level. We found several conformers to be present in the measured matrices and conformer 1 to be dominating. Presence of the conformer 2 is well confirmed by the nu(C=O) band at 1790 cm(-1) and two bands at 1380 and 1350 cm(-1). Presence of the conformer 4 is quite well confirmed by the nu(C-O) bands at 1120 and 1095 cm(-1). Slightly weaker arguments are found for the observation of conformers 6 and 3. Calculations on 54 neutral and 5 zwitterionic conformers in water at the IEF-PCM/B3LYP/aug-cc-pVDZ level suggest that one neutral and one zwitterionic conformer co-exist in the aqueous environment. The crystal structure of l-isoserine was solved by X-ray diffraction analysis. The compound crystallizes without solvent in the chiral P2(1)2(1)2 space group. The asymmetric unit contains a single molecule. The molecule is in its zwitterionic form with the CH(2)-NH(3) side chain in the gauche conformation with respect to the hydroxyl group and in the anti conformation with respect to the carboxylate group. The structure of l-isoserine is dominated by a set of intermolecular hydrogen bonds. The strongest one appears between the OH and COOH groups of two neighbouring molecules: the O...H contact is of 1.66(2) A, which is amongst the shortest H-bonds of this kind observed in amino acid crystal structures.
Genshaft, Alexander; Moser, Joe-Ann S.; D'Antonio, Edward L.; Bowman, Christine M.; Christianson, David W.
2013-01-01
The reversible acetylation of lysine to form N6-acetyllysine in the regulation of protein function is a hallmark of epigenetics. Acetylation of the positively charged amino group of the lysine side chain generates a neutral N-alkylacetamide moiety that serves as a molecular “switch” for the modulation of protein function and protein-protein interactions. We now report the analysis of 381 N6-acetyllysine side chain amide conformations as found in 79 protein crystal structures and 11 protein NMR structures deposited in the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics. We find that only 74.3% of N6-acetyllysine residues in protein crystal structures and 46.5% in protein NMR structures contain amide groups with energetically preferred trans or generously trans conformations. Surprisingly, 17.6% of N6-acetyllysine residues in protein crystal structures and 5.3% in protein NMR structures contain amide groups with energetically unfavorable cis or generously cis conformations. Even more surprisingly, 8.1% of N6-acetyllysine residues in protein crystal structures and 48.2% in NMR structures contain amide groups with energetically prohibitive twisted conformations that approach the transition state structure for cis-trans isomerization. In contrast, 109 unique N-alkylacetamide groups contained in 84 highly-accurate small molecule crystal structures retrieved from the Cambridge Structural Database exclusively adopt energetically preferred trans conformations. Therefore, we conclude that cis and twisted N6-acetyllysine amides in protein structures deposited in the PDB are erroneously modeled due to their energetically unfavorable or prohibitive conformations. PMID:23401043
Bailey, William F; Lambert, Kyle M; Stempel, Zachary D; Wiberg, Kenneth B; Mercado, Brandon Q
2016-12-16
Anancomeric 5-phenyl-1,3-dioxanes provide a unique opportunity to study factors that control conformation. Whereas one might expect an axial phenyl group at C(5) of 1,3-dioxane to adopt a conformation similar to that in axial phenylcyclohexane, a series of studies including X-ray crystallography, NOE measurements, and DFT calculations demonstrate that the phenyl prefers to lie over the dioxane ring in order to position an ortho-hydrogen to participate in a stabilizing, nonclassical CH···O hydrogen bond with a ring oxygen of the dioxane. Acid-catalyzed equilibration of a series of anancomeric 2-tert-butyl-5-aryl-1,3-dioxane isomers demonstrates that remote substituents on the phenyl ring affect the conformational energy of a 5-aryl-1,3-dioxane: electron-withdrawing substituents decrease the conformational energy of the aryl group, while electron-donating substituents increase the conformational energy of the group. This effect is correlated in a very linear way to Hammett substituent parameters. In short, the strength of the CH···O hydrogen bond may be tuned in a predictable way in response to the electron-withdrawing or electron-donating ability of substituents positioned remotely on the aryl ring. This effect may be profound: a 3,5-bis-CF 3 phenyl group at C(5) in 1,3-dioxane displays a pronounced preference for the axial orientation. The results are relevant to broader conformational issues involving heterocyclic systems bearing aryl substituents.
Conformational isomerism of pyridoxal. Infrared matrix isolation and theoretical studies.
Kwiatek, Anna; Mielke, Zofia
2015-01-25
A combined matrix isolation FTIR and theoretical DFT/B3LYP/6-311++G(2p,2d) study of pyridoxal was performed. The calculations resulted in five stable PLHB conformers stabilized by intramolecular O-H⋯O bonding between phenolic OH and carbonyl C=O groups and another thirteen conformers in which OH or/and aldehyde groups are rotated by 180° around CO or/and CC bonds leading, respectively, to formation of PLO, PLA and PLOA conformers. The analysis of the spectra of the as-deposited matrix indicated that two most stable PLHB1 and PLHB2 conformers with intramolecular hydrogen bond are present in the matrix. The exposure of the PL/Ar matrix to mercury lamp radiation (λ>345 nm) induced conformational change of PLHB isomers to PLOA ones. Copyright © 2014 Elsevier B.V. All rights reserved.
Quantum chemical calculations in the structural analysis of phloretin
NASA Astrophysics Data System (ADS)
Gómez-Zavaglia, Andrea
2009-07-01
In this work, a conformational search on the molecule of phloretin [2',4',6'-Trihydroxy-3-(4-hydroxyphenyl)-propiophenone] has been performed. The molecule of phloretin has eight dihedral angles, four of them taking part in the carbon backbone and the other four, related with the orientation of the hydroxyl groups. A systematic search involving a random variation of the dihedral angles has been used to generate input structures for the quantum chemical calculations. Calculations at the DFT(B3LYP)/6-311++G(d,p) level of theory permitted the identification of 58 local minima belonging to the C 1 symmetry point group. The molecular structures of the conformers have been analyzed using hierarchical cluster analysis. This method allowed us to group conformers according to their similarities, and thus, to correlate the conformers' stability with structural parameters. The dendrogram obtained from the hierarchical cluster analysis depicted two main clusters. Cluster I included all the conformers with relative energies lower than 25 kJ mol -1 and cluster II, the remaining conformers. The possibility of forming intramolecular hydrogen bonds resulted the main factor contributing for the stability. Accordingly, all conformers depicting intramolecular H-bonds belong to cluster I. These conformations are clearly favored when the carbon backbone is as planar as possible. The values of the νC dbnd O and νOH vibrational modes were compared among all the conformers of phloretin. The redshifts associated with intramolecular H-bonds were correlated with the H-bonds distances and energies.
Wei, Feng; Xiong, Wei; Li, Wenhui; Lu, Wangting; Allen, Heather C; Zheng, Wanquan
2015-10-14
The assembly conformation and kinetics of phosphatidylethanolamine (PE) lipids are the key to their membrane curvatures and activities, such as exocytosis, endocytosis and Golgi membrane fusion. In the current study, a polarization and frequency resolved (bandwidth ≈ 1 cm(-1)) picosecond sum frequency generation (SFG) system was developed to characterize phosphatidylethanolamine monolayers. In addition to obtaining π-A isotherms and Brewster angle microscopy (BAM) images, the conformational changes and assembly behaviors of phosphatidylethanolamine molecules are investigated by analyzing the SFG spectra collected at various surface pressures (SPs). The compression kinetics and relaxation kinetics of phosphatidylethanolamine monolayers are also reported. The conformational changes of PE molecules during the monolayer compression are separated into several stages: reorientation of the head group PO2(-) in the beginning of the liquid-expanded (LE) phase, conformational changes of head group alkyl chains in the LE phase, and conformational changes of tail group alkyl chains in the LE-liquid condensed (LE-LC) phase. Such an understanding may help researchers to effectively control the lipid molecular conformation and membrane curvatures during the exocytosis/endocytosis processes.
Downregulation of the posterior medial frontal cortex prevents social conformity.
Klucharev, Vasily; Munneke, Moniek A M; Smidts, Ale; Fernández, Guillén
2011-08-17
We often change our behavior to conform to real or imagined group pressure. Social influence on our behavior has been extensively studied in social psychology, but its neural mechanisms have remained largely unknown. Here we demonstrate that the transient downregulation of the posterior medial frontal cortex by theta-burst transcranial magnetic stimulation reduces conformity, as indicated by reduced conformal adjustments in line with group opinion. Both the extent and probability of conformal behavioral adjustments decreased significantly relative to a sham and a control stimulation over another brain area. The posterior part of the medial frontal cortex has previously been implicated in behavioral and attitudinal adjustments. Here, we provide the first interventional evidence of its critical role in social influence on human behavior.
Standing in the Hallway Improves Students' Understanding of Conformity
ERIC Educational Resources Information Center
Lawson, Timothy J.; Haubner, Richard R.; Bodle, James H.
2013-01-01
To help beginning psychology students understand how they are influenced by social pressures to conform, we developed a demonstration designed to elicit their conformity to a small group of students standing in the hallway before class. Results showed the demonstration increased students' recognition of their own tendency to conform, knowledge of…
NASA Astrophysics Data System (ADS)
Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; Gross, Michael L.
2016-01-01
We report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded "heavy" and "light" GEE are used to label separately the two states of the orange carotenoid protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the "heavy" and "light" peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting.
Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; Gross, Michael L.
2015-01-01
We report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded “heavy” and “light” GEE are used to label separately the two states of the Orange Carotenoid Protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the “heavy” and “light” peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting. PMID:26384685
Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; ...
2015-09-18
Here, we report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded “heavy” and “light” GEE are used to label separately the two states of the orange carotenoid protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the “heavy”more » and “light” peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting.« less
Kuttel, Michelle M; Timol, Zaheer; Ravenscroft, Neil
2017-06-29
The capsular polysaccharide is the main virulence factor in meningococcus. The capsular polysaccharides for meningococcal serogroups Y and W are almost identical polymers of hexose-sialic acid, suggesting the possibility of cross-protection between group Y and W vaccines. However, early studies indicated that they elicit different levels of cross-protection. Here we explore the conformations of the meningococcal Y and W polysaccharides with molecular dynamics simulations of three repeating unit oligosaccharide strands. We find differences in Y and W antigen conformation: the Y polysaccharide has a single dominant conformation, whereas W exhibits a family of conformations including the Y conformation. This result is supported by our NMR NOESY analysis, which indicates key close contacts for W that are not present in Y. These conformational differences provide an explanation for the different levels of cross-protection measured for the Y and W monovalent vaccines and the high group W responses observed in HibMenCY-TT vaccinees. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Hongxia; Liu, Jiaping; Ran, Qianping; Yang, Yong; Shu, Xin
2017-03-01
Comb-like polycarboxylate ether (PCE) molecules with different content of methyl groups substituted on backbone and different location of methyl groups substituted on the side chains, respectively, were designed and were studied in explicit salt solutions by all-atom molecular dynamics simulations. Methyl groups substituted on the backbone of PCE have a great effect on the conformation of PCE. Stiffness of charged backbone was not only affected by the rotational freedom but also the electrostatic repulsion between the charged COO - groups. The interaction of counterions (Na + ) with COO - groups for PCE3 (with part of AA substituted by MAA on the backbone) was stronger and the screen effect was great, which decided the smaller size of PCE3. The interaction between water and COO - groups was strong regardless of the content of AA substituted by MAA on the backbone. The effect of methyl groups substituted on the different location of side chains on the conformation of PCE was less than that of methyl groups substituted on the backbone. The equilibrium sizes of the four PCE molecules with methyl groups substituted on the side chains were similar. Graphical Abstract Effect of methyl groups on conformational properties of small ionized comb-like polyelectrolytes at the atomic level.
NASA Astrophysics Data System (ADS)
Yadav, P. N. S.; Rai, D. K.; Yadav, J. S.
1989-03-01
The energies of various conformations of N-acetyl-β- D-glucosamine (NAG) and its 3-O- D-lactic acid derivative N-acetyl-β- D-muramic acid (NAM) have been calculated by geometry optimization using the molecular mechanics program MM2. The geometries of these systems have been analyzed in the light of ring torsion, bond lengths, bond angles and conformational states of side groups of the pyranosyl ring and compared with available experimental data of similar pyranose derivatives. The present study indicates the presence of hydrogen bonds to stabilize the side group conformations. Discrepancies with experimental data that are seen in a few cases are ascribed to the nature of the side groups and their geometry.
Wu, Haiyan; Luo, Yi; Feng, Chunliang
2016-12-01
People often align their behaviors with group opinions, known as social conformity. Many neuroscience studies have explored the neuropsychological mechanisms underlying social conformity. Here we employed a coordinate-based meta-analysis on neuroimaging studies of social conformity with the purpose to reveal the convergence of the underlying neural architecture. We identified a convergence of reported activation foci in regions associated with normative decision-making, including ventral striatum (VS), dorsal posterior medial frontal cortex (dorsal pMFC), and anterior insula (AI). Specifically, consistent deactivation of VS and activation of dorsal pMFC and AI are identified when people's responses deviate from group opinions. In addition, the deviation-related responses in dorsal pMFC predict people's conforming behavioral adjustments. These are consistent with current models that disagreement with others might evoke "error" signals, cognitive imbalance, and/or aversive feelings, which are plausibly detected in these brain regions as control signals to facilitate subsequent conforming behaviors. Finally, group opinions result in altered neural correlates of valuation, manifested as stronger responses of VS to stimuli endorsed than disliked by others. Copyright © 2016 Elsevier Ltd. All rights reserved.
Conformational polymorphs of a novel TCNQ derivative carrying an acetylene group
NASA Astrophysics Data System (ADS)
Iida, Yuki; Kataoka, Makoto; Okuno, Tsunehisa
2018-01-01
TCNQ is one of the most important organic acceptors and lots of its derivatives have been prepared. However the reports on their crystal polymorphs are limited to their complexes, and simple polymorphs of TCNQ derivatives are uncommon. We succeeded in preparation of a novel TCNQ derivative, 2,2'-(2-(prop-2-yn-1-yloxy)cyclohexa-2,5-diene-1,4-diylidene)dimalononitrile, having a propynyloxy group on a substituent. This compound was found to have two crystal polymorphs depending on a solvent for recrystallization. In polymorph I, dimeric hydrogen bonds are formed between acetylenic hydrogens and cyano nitrogens with the molecule in an inversion symmetry. While, in polymorph II, the molecules make intermolecular hydrogen bonds between acetylenic hydrogens and cyano nitrogens with the molecule in 21 symmetry, forming a hydrogen bonded molecular helix along the b axis. Besides patterns of the intermolecular hydrogen bonds, difference was recognized in conformation of propynyloxy group. The molecule has an anti conformation in polymorph I and a gauche conformation in polymorph II. DFT calculation indicates that the anti conformer is less stable than the gauche one. But a solvation model suggests the anti conformer is estimated to be more stable in a toluene solution.
Kusakiewicz-Dawid, Anna; Porada, Monika; Ochędzan-Siodłak, Wioletta; Broda, Małgorzata A; Bujak, Maciej; Siodłak, Dawid
2017-09-01
A series of model compounds containing 3-amino-1H-pyrazole-5-carboxylic acid residue with N-terminal amide/urethane and C-terminal amide/hydrazide/ester groups were investigated by using NMR, Fourier transform infrared, and single-crystal X-ray diffraction methods, additionally supported by theoretical calculations. The studies demonstrate that the most preferred is the extended conformation with torsion angles ϕ and ψ close to ±180°. The studied 1H-pyrazole with N-terminal amide/urethane and C-terminal amide/hydrazide groups solely adopts this energetically favored conformation confirming rigidity of that structural motif. However, when the C-terminal ester group is present, the second conformation with torsion angles ϕ and ψ close to ±180° and 0°, respectively, is accessible. The conformational equilibrium is observed in NMR and Fourier transform infrared studies in solution in polar environment as well as in the crystal structures of other related compounds. The observed conformational preferences are clearly related to the presence of intramolecular interactions formed within the studied residue. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Weimar, T; Harris, S L; Pitner, J B; Bock, K; Pinto, B M
1995-10-17
Transferred nuclear Overhauser enhancement (TRNOE) experiments have been performed to investigate the bound conformation of the trisaccharide repeating unit of the Streptococcus Group A cell-wall polysaccharide. Thus, the conformations of propyl 3-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-2-O-(alpha-L-rhamnopyran osyl)- alpha-L-rhamnopyranoside [C(A')B] (1) as a free ligand and when complexed to the monoclonal antibody Strep 9 were examined. Improved insights about the conformational preferences of the glycosidic linkages of the trisaccharide ligand showed that the free ligand populates various conformations in aqueous solution, thus displaying relatively flexible behavior. The NOE HNAc-H2A', which was not detected in previous work, accounts for a conformation at the beta-(1-->3) linkage with a phi angle of approximately 180 degrees. Observed TRNOEs for the complex are weak, and their analysis was further complicated by spin diffusion. With the use of transferred rotating-frame Overhauser enhancement (TRROE) experiments, the amount of spin diffusion was assessed experimentally, proving that all of the observed long-range TRNOEs arose through spin diffusion. Four interglycosidic distances, derived from the remaining TRNOEs and TRROEs, together with repulsive constraints, derived from the absence of TRROE effects, were used as input parameters in simulated annealing and molecular mechanics calculations to determine the bound conformation of the trisaccharide. Complexation by the antibody results in the selection of one defined conformation of the carbohydrate hapten. This bound conformation, which is a local energy minimum on the energy maps calculated for the trisaccharide ligand, shows only a change from a +gauche to a -gauche orientation at the psi angle of the alpha-(1-->2) linkage when compared to the global minimum conformation. The results infer that the bound conformation of the Streptococcus Group A cell-wall polysaccharide is different from its previously proposed solution structure (Kreis et al., 1995).
Gluon amplitudes as 2 d conformal correlators
NASA Astrophysics Data System (ADS)
Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew
2017-10-01
Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.
Komarova, Bozhena S; Gerbst, Alexey G; Finogenova, Anastasiia M; Dmitrenok, Andrey S; Tsvetkov, Yury E; Nifantiev, Nikolay E
2017-09-01
The strength of 1,3-syn-diaxial repulsion was evaluated for main types of protecting groups (alkyl, silyl, and acyl) usually used in carbohydrate chemistry. As molecular probes for this study, derivatives of isopropyl 2-O-benzyl-4,6-O-benzylidene-α-d-idopyranoside bearing allyl, acetyl, and tert-butyldiphenylsilyl (TBDPS) protecting groups at O-3 were prepared from p-methoxyphenyl d-galactopyranoside. The equilibrium between O S 2 and 4 C 1 conformations in these compounds was investigated using 3 J H,H and 3 J C,H coupling constants that were determined from 1D 1 H NMR and 2D J-resolved HMBC spectra in various solvents. The analysis of the corresponding coupling constants calculated using DFT/B3LYP/pcJ-1 approximation applied to conformations optimized at DFT/B3LYP/6-311++G** level supported the investigation. Proportions of conformers in the equilibrium revealed the highest repulsion between the 3-allyloxy group and the isopropoxy aglycon and its dependence on the solvent polarity. Differences in the conformational behavior of 3-O-allyl and 3-O-acetyl-α-d-idopyranoside derivatives complied with the notion that higher electron density on O-3 increased 1,3-syn-diaxial repulsion. 3-O-TBDPS derivative existed mainly in 4 C 1 conformation. The attenuation of the 1,3-syn-diaxial repulsive interaction indicates that TBDPS has stereoelectronic properties that may have significance in context of fixing unnatural pyranoside conformation with the help of silyl groups but have been disregarded until now.
Funahashi, Ryunosuke; Okita, Yusuke; Hondo, Hiromasa; Zhao, Mengchen; Saito, Tsuguyuki; Isogai, Akira
2017-11-13
Layer-by-layer peeling of surface molecules of native cellulose microfibrils was performed using a repeated sequential process of 2,2,6,6-tetramethylpiperidine-1-oxyl radical-mediated oxidation followed by hot alkali extraction. Both highly crystalline algal and tunicate celluloses and low-crystalline cotton and wood celluloses were investigated. Initially, the C6-hydroxy groups of the outermost surface molecules of each algal cellulose microfibril facing the exterior had the gauche-gauche (gg) conformation, whereas those facing the interior had the gauche-trans (gt) conformation. All the other C6-hydroxy groups of the cellulose molecules inside the microfibrils contributing to crystalline cellulose I had the trans-gauche (tg) conformation. After surface peeling, the originally second-layer molecules from the microfibril surface became the outermost surface molecules, and the original tg conformation changed to gg and gt conformations. The plant cellulose microfibrils likely had disordered structures for both the outermost surface and second-layer molecules, as demonstrated using the same layer-by-layer peeling technique.
NASA Astrophysics Data System (ADS)
Ferres, Lynn; Stahl, Wolfgang; Nguyen, Ha Vinh Lam
2016-06-01
A pulsed molecular beam Fourier transform microwave spectrometer operating in the frequency range 2 - 26.5 GHz was used to measure the spectrum of phenetole (ethyl phenyl ether or ethoxybenzene, C6H5OC2H5). The conformational landscape is completely determined by the orientations of the phenyl ring and the ethyl group. A two-dimensional potential energy surface was calculated at the MP2/6-311++G(d,p) level of theory. Two conformers were found: The trans conformer has a Cs symmetry, and the gauche conformer has the ethyl group tilted out of the phenyl plane by about 70°. Totally 186 rotational transitions were assigned to the more stable planar trans conformer, and fitted using a semi-rigid rotor model to measurement accuracy of 2 kHz. Highly accurate rotational and centrifugal distortion constants were determined. Several method and basis set combinations were applied to check for convergence and to compare with the experimentally deduced molecular parameters. The inertial defect of the observed conformer Δc = (Ic - Ia - Ib) = -6.718 uÅ2 confirms that the heavy atom skeleton is planar with two pairs of hydrogen atoms out of plane. All lines in the spectrum could be assigned to the trans conformer, which confirms that the gauche conformer cannot be observed under our measurement conditions. In agreement with the rather high torsional barrier of the methyl group (V3 = 1168 wn) calculated by quantum chemical methods, all assigned lines appeared sharp and no signs of splittings were observed for the methyl internal rotation.
Rotational spectroscopy of antipyretics: Conformation, structure, and internal dynamics of phenazone
NASA Astrophysics Data System (ADS)
Écija, Patricia; Cocinero, Emilio J.; Lesarri, Alberto; Fernández, José A.; Caminati, Walther; Castaño, Fernando
2013-03-01
The conformational and structural preferences of phenazone (antipyrine), the prototype of non-opioid pyrazolone antipyretics, have been probed in a supersonic jet expansion using rotational spectroscopy. The conformational landscape of the two-ring assembly was first explored computationally, but only a single conformer was predicted, with the N-phenyl and N-methyl groups on opposite sides of the pyrazolone ring. Consistently, the microwave spectrum evidenced a rotational signature arising from a single molecular structure. The spectrum exhibited very complicated fine and hyperfine patterns (not resolvable with any other spectroscopic technique) originated by the simultaneous coupling of the methyl group internal rotation and the spins of the two 14N nuclei with the overall rotation. The internal rotation tunnelling was ascribed to the C-CH3 group and the barrier height established experimentally (7.13(10) kJ mol-1). The internal rotation of the N-CH3 group has a lower limit of 9.4 kJ mol-1. The structure of the molecule was determined from the rotational parameters, with the phenyl group elevated ca. 25° with respect to the average plane of the pyrazolic moiety and a phenyl torsion of ca. 52°. The origin of the conformational preferences is discussed in terms of the competition between intramolecular C-H⋯N and C-H⋯O weak hydrogen bonds.
Gianni, R; Cescutti, P; Bosco, M; Fett, W F; Rizzo, R
1999-12-01
The influence of pyruvate ketals and acetyl groups on the conformational behaviour of the exopolysaccharide produced by Pseudomonas 'gingeri' strain Pf9 has been investigated experimentally through studies of intrinsic viscosity and circular dichroism experiments. A conformational variation was detected as a function of the ionic strength. Measurements carried out on the native polymer, as well as on both de-pyruvated and de-acetylated samples, suggested a critical role for the acetyl group on the solution conformation of the polysaccharide. Molecular mechanics calculations indicated the possibility of intramolecular hydrogen bonding between acetyl substituents on the mannose and the C(2)OH group of the preceding saccharidic unit. NMR linewidth measurements, carried out as a function of temperature, on the low molecular weight de-pyruvated sample indicated different polymeric backbone dynamics in aqueous solutions with respect to that observed in 0.3 M NaCl solutions.
Lim, Sun Gyo; Kim, Jin Hong; Lee, Kee Myung; Shin, Sung Jae; Kim, Chan Gyoo; Kim, Kyung Ho; Kim, Ho Gak; Yang, Chang Heon
2014-07-01
A conformable self-expandable metallic stent was developed to overcome the limitation of previous self-expandable metallic stents. The aim of this study was to evaluate outcomes after placement of conformable covered and uncovered self-expandable metallic stents for palliation of malignant gastroduodenal obstruction. A single-blind, randomized, parallel-group, prospective study were conducted in 4 medical centres between March 2009 and July 2012. 134 patients with unresectable malignant gastroduodenal obstruction were assigned to a covered double-layered (n=66) or uncovered unfixed-cell braided (n=68) stent placement group. Primary analysis was performed to compare re-intervention rates between two groups. 120 patients were analysed (59 in the covered group and 61 in the uncovered group). Overall rates of re-intervention were not significantly different between the two groups: 13/59 (22.0%) in the covered group vs. 13/61 (21.3%) in the uncovered group, p=0.999. Stent migration was more frequent in the covered group than in the uncovered group (p=0.003). The tumour ingrowth rate was higher in the uncovered group than in the covered group (p=0.016). The rates of re-intervention did not significantly differ between the two stents. Conformable covered double-layered and uncovered unfixed-cell braided stents were associated with different patterns of stent malfunction. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
2014-09-01
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports... remunerations actuating one to conform to group mores.6 4 Institute of Medicine, Building a... remunerations actuating one to conform to group mores. The social support that is elemental among “home” emergency response teams can be viewed and
Conformational Preferences of β– and γ–Aminated Proline Analogues
Flores-Ortega, Alejandra; Casanovas, Jordi; Nussinov, Ruth; Alemán, Carlos
2010-01-01
Quantum mechanical calculations have been used to investigate how the incorporation of an amino group to the Cβ- or Cγ-positions of the pyrrolidine ring affects the intrinsic conformational properties of the proline. Specifically, a conformational study of the N-acetyl-N′-methylamide derivatives of four isomers of aminoproline, which differ not only in the β- or γ-position of the substituent but also in its cis or trans relative disposition, has been performed. In order to further understand the role of the intramolecular hydrogen bonds between the backbone carbonyl groups and the amino side group, a conformational study was also performed on the corresponding four analogues of dimethylaminoproline. In addition, the effects of solvation on aminoproline and dimethylaminoproline dipeptides have been evaluated using a Self Consistent Reaction Field model, and considering four different solvents (carbon tetrachloride, chloroform, methanol and water). Results indicate that the incorporation of the amino substituent into the pyrrolidine ring affects the conformational properties, with backbone⋯side chain intramolecular hydrogen bonds detected when it is incorporated in a cis relative disposition. In general, the incorporation of the amino side group tends to stabilize those structures where the peptide bond involving the pyrrolidine nitrogen is arranged in cis. The aminoproline isomer with the substituent attached to the Cγ-position with a cis relative disposition is the most stable in the gas-phase and in chloroform, methanol and water solutions. Replacement of the amino side group by the dimethylamino substituent produces significant changes in the potential energy surfaces of the four investigated dimethylaminoproline-containing dipeptides. Thus, these changes affect not only the number of minima, which increases considerably, but also the backbone and pseudorotational preferences. In spite of these effects, comparison of the conformational preferences, i.e. the more favored conformers, calculated for different isomers of aminoproline and dimethylaminoproline dipeptides showed a high degree of consistency for the two families of compounds. PMID:18842022
Zhao, Lei; Li, Lin; Liu, Guo-Qin; Liu, Xing-Xun; Li, Bing
2012-06-12
In this study, the effects of frozen (-18 °C) storage time on molecular weight, size distribution, conformation, free amino groups and free sulfhydryl groups of gluten were studied by small-angle X-ray scattering (SAXS), multi-angle laser light scattering (MALLS) in conjunction with a size exclusion chromatography (SEC) and spectrophotometrically. The results showed that the gluten dissolved in 50 mM acetic acid appeared to be similar to quasi-spherical of the chain conformation and the slope of the conformation plot decreased during the storage. Both the molecular weight and radius of gyration of the frozen gluten decreased with the storage time showing a depolymerization in the high molecular weight fraction of gluten (10(5) Da ~ 10(9) Da). Therefore, at constant molecular weight the change of the chain conformation did not show a clear correlation with the storage time. The free amino groups content changed little and the free sulfhydryl groups content of the gluten increased from 9.8 μmol/g for the control to 12.87 μmol/g for 120-day-stored gluten, indicating that the water redistribution and ice recrystallization lead to the breakage of the disulphide bonds and may be one of the reasons for the depolymerization of gluten polymer.
Very special conformal field theories and their holographic duals
NASA Astrophysics Data System (ADS)
Nakayama, Yu
2018-03-01
Cohen and Glashow introduced the notion of very special relativity as viable space-time symmetry of elementary particle physics. As a natural generalization of their idea, we study the subgroup of the conformal group, dubbed very special conformal symmetry, which is an extension of the very special relativity. We classify all of them and construct field theory examples as well as holographic realization of the very special conformal field theories.
Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Millán, Judith; Basterretxea, Francisco; Fernández, José A; Castaño, Fernando
2011-04-28
The intrinsic conformational and structural properties of the bicycle exo-2-aminonorbornane have been probed in a supersonic jet expansion using Fourier-transform microwave (FT-MW) spectroscopy and quantum chemical calculations. The rotational spectrum revealed two different conformers arising from the internal rotation of the amino group, exhibiting small (MHz) hyperfine patterns originated by the (14)N nuclear quadrupole coupling interaction. Complementary ab initio (MP2) and DFT (B3LYP and M05-2X) calculations provided comparative predictions for the structural properties, rotational and centrifugal distortion data, hyperfine parameters, and isomerization barriers. Due to the similarity of the rotational constants, the structural assignment of the observed rotamers and the calculation of the torsion angles of the amino group were based on the conformational dependence of the (14)N nuclear quadrupole coupling hyperfine tensor. In the most stable conformation (ss), the two amino N-H bonds are staggered with respect to the adjacent C-H bond. In the second conformer (st), only one of the N-H bonds is staggered and the other is trans. A third predicted conformer (ts) was not detected, consistent with a predicted conformational relaxation to conformer ss through a low barrier of 5.2 kJ mol(-1).
Group quenching and galactic conformity at low redshift
NASA Astrophysics Data System (ADS)
Treyer, M.; Kraljic, K.; Arnouts, S.; de la Torre, S.; Pichon, C.; Dubois, Y.; Vibert, D.; Milliard, B.; Laigle, C.; Seibert, M.; Brown, M. J. I.; Grootes, M. W.; Wright, A. H.; Liske, J.; Lara-Lopez, M. A.; Bland-Hawthorn, J.
2018-06-01
We quantify the quenching impact of the group environment using the spectroscopic survey Galaxy and Mass Assembly to z ˜ 0.2. The fraction of red (quiescent) galaxies, whether in groups or isolated, increases with both stellar mass and large-scale (5 Mpc) density. At fixed stellar mass, the red fraction is on average higher for satellites of red centrals than of blue (star-forming) centrals, a galactic conformity effect that increases with density. Most of the signal originates from groups that have the highest stellar mass, reside in the densest environments, and have massive, red only centrals. Assuming a colour-dependent halo-to-stellar-mass ratio, whereby red central galaxies inhabit significantly more massive haloes than blue ones of the same stellar mass, two regimes emerge more distinctly: at log (Mhalo/M⊙) ≲ 13, central quenching is still ongoing, conformity is no longer existent, and satellites and group centrals exhibit the same quenching excess over field galaxies at all mass and density, in agreement with the concept of `group quenching'; at log (Mh/M⊙) ≳ 13, a cut-off that sets apart massive (log (M⋆/M⊙) > 11), fully quenched group centrals, conformity is meaningless, and satellites undergo significantly more quenching than their counterparts in smaller haloes. The latter effect strongly increases with density, giving rise to the density-dependent conformity signal when both regimes are mixed. The star formation of blue satellites in massive haloes is also suppressed compared to blue field galaxies, while blue group centrals and the majority of blue satellites, which reside in low-mass haloes, show no deviation from the colour-stellar mass relation of blue field galaxies.
The Detrimental Effects of Oxytocin-Induced Conformity on Dishonesty in Competition.
Aydogan, Gökhan; Jobst, Andrea; D'Ardenne, Kimberlee; Müller, Norbert; Kocher, Martin G
2017-06-01
Justifications may promote unethical behavior because they constitute a convenient loophole through which people can gain from immoral behavior and preserve a positive self-image at the same time. A justification that is widely used is rooted in conformity: Unethical choices become more permissible because one's peers are expected to make the same unethical choices. In the current study, we tested whether an exogenous alteration of conformity led to a lower inclination to adhere to a widely accepted norm (i.e., honesty) under the pressure of competition. We took advantage of the well-known effects of intranasally applied oxytocin on affiliation, in-group conformity, and in-group favoritism in humans. We found that conformity was enhanced by oxytocin, and this enhancement had a detrimental effect on honesty in a competitive environment but not in a noncompetitive environment. Our findings contribute to recent evidence showing that competition may lead to unethical behavior and erode moral values.
Ishiuchi, Shun-ichi; Mitsuda, Haruhiko; Asakawa, Toshiro; Miyazaki, Mitsuhiko; Fujii, Masaaki
2011-05-07
The conformational reduction in catecholamine neurotransmitters was studied by resonance enhanced multi photon ionization (REMPI), ultraviolet-ultraviolet (UV-UV) hole burning and infrared (IR) dip spectroscopy with applying a laser desorption supersonic jet technique to DOPA, which is one of the catecholamine neurotransmitters and has one more phenolic OH group than tyrosine. It is concluded that DOPA has a single observable conformer in the gas phase at low temperature. Quantum chemical calculations at several levels with or without the dispersion correction were also carried out to study stable conformations. From the comparison between the computational IR spectra and the experimental ones, the most stable structure was determined. It is strongly suggested that the conformational reduction is caused by electrostatic interactions, such as a dipole-dipole interaction, between the chain and OH groups. This journal is © the Owner Societies 2011
NASA Astrophysics Data System (ADS)
Long, B. E.; Dechirico, F.; Cooke, S. A.
2012-06-01
The conformational preferences of the O-C-C-C unit are important in many biological systems with the unit generally preferring a gauche configuration compared to an anti configuration. Butyl methyl ether and propyl methyl ether provide very simple systems for this phenomenom to manifest. Pure rotational spectra of the title molecules have been recorded using chirped pulse Fourier transform microwave spectroscopy (CP-FTMW). In the case of butyl methyl ether, only one conformer has been observed. This conformer has torsional angles of COCC = 180°, OCCC = 62° and CCCC = 180° (anti-gauche-anti) and rotational constants of A = 10259.4591(33) MHz, B = 1445.6470(13) MHz, and C = 1356.2944(14) MHz. The rotational spectrum was doubled and has been analyzed to produce an effective barrier to methyl group internal rotation of 780(35) cm-1. A prior rotational spectroscopic study on propyl methyl ether had focused only on the high energy anti-anti conformer. We have analyzed spectra from the lowest energy anti-gauche conformer and the spectroscopic constants will be presented. A summary of the differences in conformational energies and methyl group internal rotation barriers for the class of aliphatic asymmetric ethers will be presented. K. N. Houk, J. E. Eksterowicz, Y.-D. Wu, C. D. Fuglesang, D. B. Mitchell. J. Am. Chem. Soc. 115 (4170), 1993. Hiroshi Kato, Jun Nakagawa, Michiro Hayashi. J. Mol. Spectrosc. 80 (272), 1980.
Infrared modification of gravity from conformal symmetry
NASA Astrophysics Data System (ADS)
Gegenberg, Jack; Rahmati, Shohreh; Seahra, Sanjeev S.
2016-03-01
We reconsider a gauge theory of gravity in which the gauge group is the conformal group SO(4,2), and the action is of the Yang-Mills form, quadratic in the curvature. The resulting gravitational theory exhibits local conformal symmetry and reduces to Weyl-squared gravity under certain conditions. When the theory is linearized about flat spacetime, we find that matter which couples to the generators of special conformal transformations reproduces Newton's inverse square law. Conversely, matter which couples to generators of translations induces a constant and possibly repulsive force far from the source, which may be relevant for explaining the late-time acceleration of the Universe. The coupling constant of the theory is dimensionless, which means that it is potentially renormalizable.
Preferred Conformers of Non-Proteinogenic Amino Acids Homoserine and Homocysteine
NASA Astrophysics Data System (ADS)
Díez, Verónica; Rodríguez, Miguel A.; Mata, Santiago; Alonso, E. R.; Cabezas, Carlos; Alonso, José L.
2016-06-01
Vaporization of solid homoserine and homocysteine by laser ablation in combination with Fourier transform microwave spectroscopy techniques made possible the detection of their most stable structures in a supersonic expansion. All detected conformers have been identified through their rotational and 14N quadrupole coupling constants. They show hydrogen bonds linking the amino and carboxylic group through N-H\\cdot\\cdot\\cdotO=C (type I) or N\\cdot\\cdot\\cdotH-O (type II) interactions. In some of them there are additional hydrogen bonds established between the amino group and the hydroxyl/thiol groups in the gamma position. Entropic effects related to the side chain have been found to be significant in determining the most populated conformations.
NASA Astrophysics Data System (ADS)
Szyczewski, A.; Hołderna-Natkaniec, K.
2005-01-01
For the two steroid compounds 17αOH-progesterone and 21OH-progesterone, the activation energies of reorientations of the methyl groups have been determined. Their values together with results of the quantum chemical calculations permitted establishment of the sequence of the onset of the methyl group reorientations about the three-fold symmetry axis of the C-C bond. On the basis of the asymmetry parameters, the conformations of the hitherto studied pregnane derivatives and testosterone have been determined. It has been found that the conformation of ring A has dominant effect on the activation energies of the reorientation of C(19)H 3. The reorientation of the methyl group C(18)H 3 significantly depends on the conformation of the side chain 17β (torsional angle C(13)-C(17)-C(20)-O(20)) and the distance between C18 and O20. The study has proved that the 1H NMR method in combination with the quantum chemistry calculations and inelastic incoherent neutron scattering (IINS) are effective for prediction of the sequence of the methyl group reorientations about the three-fold symmetry axis.
Wilson loops on Riemann surfaces, Liouville theory and covariantization of the conformal group
NASA Astrophysics Data System (ADS)
Matone, Marco; Pasti, Paolo
2015-06-01
The covariantization procedure is usually referred to the translation operator, that is the derivative. Here we introduce a general method to covariantize arbitrary differential operators, such as the ones defining the fundamental group of a given manifold. We focus on the differential operators representing the sl2(ℝ) generators, which in turn, generate, by exponentiation, the two-dimensional conformal transformations. A key point of our construction is the recent result on the closed forms of the Baker-Campbell-Hausdorff formula. In particular, our covariantization receipt is quite general. This has a deep consequence since it means that the covariantization of the conformal group is always definite. Our covariantization receipt is quite general and apply in general situations, including AdS/CFT. Here we focus on the projective unitary representations of the fundamental group of a Riemann surface, which may include elliptic points and punctures, introduced in the framework of noncommutative Riemann surfaces. It turns out that the covariantized conformal operators are built in terms of Wilson loops around Poincaré geodesics, implying a deep relationship between gauge theories on Riemann surfaces and Liouville theory.
Conformation-dependent chemical reaction of formic acid with an oxygen atom.
Khriachtchev, Leonid; Domanskaya, Alexandra; Marushkevich, Kseniya; Räsänen, Markku; Grigorenko, Bella; Ermilov, Alexander; Andrijchenko, Natalya; Nemukhin, Alexander
2009-07-23
Conformation dictates many physical and chemical properties of molecules. The importance of conformation in the selectivity and function of biologically active molecules is widely accepted. However, clear examples of conformation-dependent bimolecular chemical reactions are lacking. Here we consider a case of formic acid (HCOOH) that is a valuable model system containing the -COOH carboxyl functional group, similar to many biomolecules including the standard amino acids. We have found a strong case of conformation-dependent reaction between formic acid and atomic oxygen obtained in cryogenic matrices. The reaction surprisingly leads to peroxyformic acid only from the ground-state trans conformer of formic acid, and it results in the hydrogen-bonded complex for the higher-energy cis conformer.
León, I; Alonso, E R; Mata, S; Cabezas, C; Rodríguez, M A; Grabow, J-U; Alonso, J L
2017-09-20
The steric effects imposed by the isopropyl group of valine in the conformational stabilization of the capped dipeptide N-acetyl-l-valinamide (Ac-Val-NH 2 ) have been studied by laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectroscopy. The rotational and quadrupole coupling constants of the two 14 N nuclei determined in this work show that this dipeptide exists as a mixture of C 7 and C 5 conformers in the supersonic expansion. The conformers are stabilized by a C[double bond, length as m-dash]OH-N intramolecular hydrogen bond closing a seven- or a five-membered ring, respectively. The observation of both conformers is in good agreement with previous results on the related dipeptides containing different residues, confirming that the polarity/non-polarity of the side chains of the amino acid is responsible for the conformational locking/unlocking. The voluminous isopropyl group is not able to prevent the less stable C 5 conformer from forming but it destabilizes the C[double bond, length as m-dash]OH-N interaction.
Operator product expansion for conformal defects
NASA Astrophysics Data System (ADS)
Fukuda, Masayuki; Kobayashi, Nozomu; Nishioka, Tatsuma
2018-01-01
We study the operator product expansion (OPE) for scalar conformal defects of any codimension in CFT. The OPE for defects is decomposed into "defect OPE blocks", the irreducible representations of the conformal group, each of which packages the contribution from a primary operator and its descendants. We use the shadow formalism to deduce an integral representation of the defect OPE blocks. They are shown to obey a set of constraint equations that can be regarded as equations of motion for a scalar field propagating on the moduli space of the defects. By employing the Radon transform between the AdS space and the moduli space, we obtain a formula of constructing an AdS scalar field from the defect OPE block for a conformal defect of any codimension in a scalar representation of the conformal group, which turns out to be the Euclidean version of the HKLL formula. We also introduce a duality between conformal defects of different codimensions and prove the equivalence between the defect OPE block for codimension-two defects and the OPE block for a pair of local operators.
So it is, so it shall be: Group regularities license children’s prescriptive judgments
Roberts, Steven O.; Gelman, Susan A.; Ho, Arnold K.
2016-01-01
When do descriptive regularities (what characteristics individuals have) become prescriptive norms (what characteristics individuals should have)? We examined children’s (4–13 years) and adults’ use of group regularities to make prescriptive judgments, employing novel groups (Hibbles and Glerks) that engaged in morally neutral behaviors (e.g., eating different kinds of berries). Participants were introduced to conforming or non-conforming individuals (e.g., a Hibble who ate berries more typical of a Glerk). Children negatively evaluated non-conformity, with negative evaluations declining with age (Study 1). These effects were replicable across competitive and cooperative intergroup contexts (Study 2), and stemmed from reasoning about group regularities rather than reasoning about individual regularities (Study 3). These data provide new insights into children’s group concepts and have important implications for understanding the development of stereotyping and norm enforcement. PMID:27914116
NASA Astrophysics Data System (ADS)
Chashmniam, Saeed; Tafazzoli, Mohsen
2017-11-01
Structure and conformational properties of valsartan were studied by advanced NMR techniques and quantum calculation methods. Potential energy scanning using B3LYP/6-311++g** and B3LYP-D3/6-311++g** methods were performed and four conformers (V1-V4) at minimum points of PES diagram were observed. According to the NMR spectra in acetone-d6, there are two conformers (M and m) with m/M = 0.52 ratio simultaneously and energy barriers of the two conformers were predicted from chemical shifts and multiplicities. While, intramolecular hydrogen bond at tetrazole ring and carboxylic groups prevent the free rotation on N6sbnd C11 bond in M-conformer, this bond rotates freely in m-conformer. On the other hand, intramolecular hydrogen bond at carbonyl and carboxylic acid can be observed at m-conformer. So, different intramolecular hydrogen bond is the reason for the stability of both M and m structures. Quite interestingly, 1H NMR spectra in CDCl3 show two distinct conformers (N and n) with unequal ratio which are differ from M-m conformers. Also, intramolecular hydrogen bond seven-member ring involving five-membered tetrazole ring and carboxylic acid group observed in both N and n-conformers Solvent effect, by using a set of polar and non-polar solvents including DMSO-d6, methanol-d4, benzene-d6, THF-d8, nitromethane-d3, methylene chloride-d2 and acetonitrile-d3 were investigated. NMR parameters include chemical shifts and spin-spin coupling constants were obtained from a set of 2D NMR spectra (H-H COSY, HMQC and HMBC). For this purpose, several DFT functionals from LDA, GGA and hybrid categories were used which the hybrid method showed better agreement with experiment values.
Petrov, Vjacheslav M; Girichev, Georgiy V; Oberhammer, Heinz; Petrova, Valentina N; Giricheva, Nina I; Bardina, Anna V; Ivanov, Sergey N
2008-04-03
The molecular structure and conformational properties of para-methylbenzene sulfonamide (4-MBSA) and ortho-methylbenzene sulfonamide (2-MBSA) have been studied by gas electron diffraction (GED) and quantum chemical methods (B3LYP/6-311+G** and MP2/6-31G**). Quantum chemical calculations predict the existence of two conformers for 4-MBSA with the S-N bond perpendicular to the benzene plane and the NH2 group either eclipsing or staggering the S-O bonds of the SO2 group. Both conformers possess CS symmetry. The eclipsed form is predicted to be favored by DeltaE = 0.63 kcal/mol (B3LYP) or 1.00 kcal/mol (MP2). According to the calculations, the S-N bond in 2-MBSA can possess planar direction opposite the methyl group (phi(C2C1SN) = 180 degrees ) or nonplanar direction (phi(C2C1SN) approximately 60 degrees ). In both cases, the NH2 group can adopt eclipsed or staggered orientation, resulting in a total of four stable conformers. The nonplanar eclipsed conformer (C1 symmetry) and the planar eclipsed form (CS symmetry) are predicted to be favored. According to the GED analysis, the saturated vapor over solid 4-MBSA at T = 151(3) degrees C consists as mixture of the eclipsed (78(19) %) and staggered (22(19) %) forms. The saturated vapor over solid 2-MBSA at T = 157(3) degrees C consists as a mixture of the nonplanar eclipsed (69(11) %) and planar eclipsed (31(11) %) forms.
Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried
2013-01-01
Humans are social beings and often have to perceive and perform within groups. In conflict situations, this puts them under pressure to either adhere to the group opinion or to risk controversy with the group. Psychological experiments have demonstrated that study participants adapt to erroneous group opinions in visual perception tasks, which they can easily solve correctly when performing on their own. Until this point, however, it is unclear whether this phenomenon of social conformity influences early stages of perception that might not even reach awareness or later stages of conscious decision-making. Using electroencephalography, this study has revealed that social conformity to the wrong group opinion resulted in a decrease of the posterior-lateral P1 in line with a decrease of the later centro-parietal P3. These results suggest that group pressure situations impact early unconscious visual perceptual processing, which results in a later diminished stimulus discrimination and an adaptation even to the wrong group opinion. These findings might have important implications for understanding social behavior in group settings and are discussed within the framework of social influence on eyewitness testimony.
Conformity to peer pressure in preschool children.
Haun, Daniel B M; Tomasello, Michael
2011-01-01
Both adults and adolescents often conform their behavior and opinions to peer groups, even when they themselves know better. The current study investigated this phenomenon in 24 groups of 4 children between 4;2 and 4;9 years of age. Children often made their judgments conform to those of 3 peers, who had made obviously erroneous but unanimous public judgments right before them. A follow-up study with 18 groups of 4 children between 4;0 and 4;6 years of age revealed that children did not change their "real" judgment of the situation, but only their public expression of it. Preschool children are subject to peer pressure, indicating sensitivity to peers as a primary social reference group already during the preschool years. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.
NASA Astrophysics Data System (ADS)
Yamaguchi, Atsushi; Shibata, Kouji; Tanaka, Ichiro; Niimura, Nobuo
2009-02-01
Using 'Hydrogen and Hydration in Proteins Data Base' (HHDB) that catalogs all H atom positions in biological macromolecules and in hydration water molecules that have been determined thus far by neutron macromolecular crystallography, methyl group conformation and hydrogen bonds (H.B.) in proteins are explored. It is found that most of the methyl groups belong to the stable staggered conformation but 11% of them seemed to be close to the eclipsed conformation. And geometrical consideration has been done for H.B. involved in α-helices. 125 H.B. were identified as donors for acceptor C dbnd O in the main chain α-helix. For these H.B., it is found that co-linear H.B. were rare, that hydrogen atoms seen from acceptors C dbnd O can localize upon certain arrangements, that H.B. are not parallel to the helix axis but rather inclined to C-terminal direction, and that hydrogen atoms except water are located inside, not outside of cylinders which the backbones of α-helices form.
The two conformers of acetanilide unraveled using LA-MB-FTMW spectroscopy
NASA Astrophysics Data System (ADS)
Cabezas, C.; Varela, M.; Caminati, W.; Mata, S.; López, J. C.; Alonso, J. L.
2011-07-01
Acetanilide has been investigated by laser ablation molecular beam Fourier transform microwave LA-MB-FTMW spectroscopy. The rotational spectrum of both trans and cis conformers have been analyzed to determine the rotational and 14N quadrupole coupling the constants. The spectrum of the less abundant cis conformer has been assigned for the first time. The doublets observed for this conformer have been interpreted in terms of the tunneling motion between two equivalent non-planar conformations through a small barrier in which the acetamide group and phenyl ring plane are perpendicular. The results are compared with those of the related formanilide.
Loru, Donatella; Peña, Isabel; Alonso, José L.
2016-01-01
The intramolecular interactions in the lipid sphingosine have been elucidated through the investigation of the amino alcohol serinol which mimics its polar headgroup. Intricate networks of intramolecular hydrogen bonds involving the hydroxyl groups and the amino group contribute to the stabilisation of five different conformations observed in the broadband rotational spectrum. PMID:26727395
Weight shifting operators and conformal blocks
NASA Astrophysics Data System (ADS)
Karateev, Denis; Kravchuk, Petr; Simmons-Duffin, David
2018-02-01
We introduce a large class of conformally-covariant differential operators and a crossing equation that they obey. Together, these tools dramatically simplify calculations involving operators with spin in conformal field theories. As an application, we derive a formula for a general conformal block (with arbitrary internal and external representations) in terms of derivatives of blocks for external scalars. In particular, our formula gives new expressions for "seed conformal blocks" in 3d and 4d CFTs. We also find simple derivations of identities between external-scalar blocks with different dimensions and internal spins. We comment on additional applications, including deriving recursion relations for general conformal blocks, reducing inversion formulae for spinning operators to inversion formulae for scalars, and deriving identities between general 6 j symbols (Racah-Wigner coefficients/"crossing kernels") of the conformal group.
Intrinsic Conformational Preferences of Cα,α-Dibenzylglycine
Casanovas, Jordi; Nussinov, Ruth; Alemán, Carlos
2009-01-01
The intrinsic conformational preferences of Cα,α-dibenzylglycine, a symmetric α,α-dialkylated amino acid bearing two benzyl substituents on the α-carbon atom, have been determined using quantum chemical calculations at the B3LYP/6-31+G(d,p) level. A total of 46 minimum energy conformations were found for the N-acetyl-N'-methylamide derivative, even though only 9 of them showed a relative energy lower than 5.0 kcal/mol. The latter involves C7, C5 and α' backbone conformations stabilized by intramolecular hydrogen bonds and/or N-H…π interactions. Calculation of the conformational free energies in different environments (gas-phase, carbon tetrachloride, chloroform, methanol and water solutions) indicates that four different minima (two C5 and two C7) are energetically accessible at room temperature in the gas-phase, while in methanol and aqueous solutions one such minimum (C5) becomes the only significant conformation. Comparison with results recently reported for Cα,α-diphenylglycine indicates that substitution of phenyl side groups by benzyl enhances the conformational flexibility leading to (i) a reduction of the strain of the peptide backbone; and (ii) alleviating the repulsive interactions between the π electron density of the phenyl groups and the lone pairs of the carbonyl oxygen atoms. PMID:18465898
Roberts, Steven O; Ho, Arnold K; Gelman, Susan A
2017-06-01
Children use descriptive regularities of social groups (what is) to generate prescriptive judgments (what should be). We examined whether this tendency held when the regularities were introduced through group presence, category labels, or generic statements. Children (ages 4-9years, N=203) were randomly assigned to one of four conditions that manipulated how descriptive group regularities were presented: group presence (e.g., "These ones [a group of three individuals] eat this kind of berry"), category labels (e.g., "This [individual] Hibble eats this kind of berry"), generic statements (e.g., [showing an individual] "Hibbles eat this kind of berry"), or control (e.g., "This one [individual] eats this kind of berry"). Then, children saw conforming and non-conforming individuals and were asked to evaluate their behavior. As predicted, children evaluated non-conformity negatively in all conditions except the control condition. Together, these results suggest that minimal perceptual and linguistic cues provoke children to treat social groups as having normative force. Copyright © 2016 Elsevier Inc. All rights reserved.
Prosocial Conformity: Prosocial Norms Generalize Across Behavior and Empathy.
Nook, Erik C; Ong, Desmond C; Morelli, Sylvia A; Mitchell, Jason P; Zaki, Jamil
2016-08-01
Generosity is contagious: People imitate others' prosocial behaviors. However, research on such prosocial conformity focuses on cases in which people merely reproduce others' positive actions. Hence, we know little about the breadth of prosocial conformity. Can prosocial conformity cross behavior types or even jump from behavior to affect? Five studies address these questions. In Studies 1 to 3, participants decided how much to donate to charities before learning that others donated generously or stingily. Participants who observed generous donations donated more than those who observed stingy donations (Studies 1 and 2). Crucially, this generalized across behaviors: Participants who observed generous donations later wrote more supportive notes to another participant (Study 3). In Studies 4 and 5, participants observed empathic or non-empathic group responses to vignettes. Group empathy ratings not only shifted participants' own empathic feelings (Study 4), but they also influenced participants' donations to a homeless shelter (Study 5). These findings reveal the remarkable breadth of prosocial conformity. © 2016 by the Society for Personality and Social Psychology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopes Jesus, A. J.; CQC, Faculty of Pharmacy, University of Coimbra, 3004-295 Coimbra; Reva, I., E-mail: reva@qui.uc.pt
2016-03-28
Conformational changes induced thermally or upon infrared excitation of matrix-isolated 6-methoxyindole were investigated. Narrowband near-infrared excitation of the first overtone of the N–H stretching vibration of each one of the two identified conformers is found to induce a selective large-scale conversion of the pumped conformer into the other one. This easily controllable bidirectional process consists in the intramolecular reorientation of the methoxy group and allowed a full assignment of the infrared spectra of the two conformers. Matrices with different conformational compositions prepared by narrow-band irradiations were subsequently used to investigate the effects of both thermal and broadband infrared excitations onmore » the conformational mixtures. Particular attention is given to the influence of the matrix medium (Ar vs. Xe) and conformational effects of exposition of the sample to the spectrometer light source during the measurements.« less
Cherney, Melisa M; Junior, Carolyn C; Bergquist, Bryan B; Bowler, Bruce E
2013-08-28
Alkaline conformers of cytochrome c may be involved in both its electron transport and apoptotic functions. We use cobalt(II)bis(terpyridine), Co(terpy)2(2+), as a reagent for conformationally gated electron-transfer (gated ET) experiments to study the alkaline conformational transition of K79H variants of yeast iso-1-cytochrome c expressed in Escherichia coli , WT*K79H, with alanine at position 72 and Saccharomyces cerevisiae , yK79H, with trimethyllysine (Tml) at position 72. Co(terpy)2(2+) is well-suited to the 100 ms to 1 s time scale of the His79-mediated alkaline conformational transition of these variants. Reduction of the His79-heme alkaline conformer by Co(terpy)2(2+) occurs primarily by gated ET, which involves conversion to the native state followed by reduction, with a small fraction of the His79-heme alkaline conformer directly reduced by Co(terpy)2(2+). The gated ET experiments show that the mechanism of formation of the His79-heme alkaline conformer involves only two ionizable groups. In previous work, we showed that the mechanism of the His73-mediated alkaline conformational transition requires three ionizable groups. Thus, the mechanism of heme crevice opening depends upon the position of the ligand mediating the process. The microscopic rate constants provided by gated ET studies show that mutation of Tml72 (yK79H variant) in the heme crevice loop to Ala72 (WT*K79H variant) affects the dynamics of heme crevice opening through a small destabilization of both the native conformer and the transition state relative to the His79-heme alkaline conformer. Previous pH jump data had indicated that the Tml72→Ala mutation primarily stabilized the transition state for the His79-mediated alkaline conformational transition.
Cherney, Melisa M.; Junior, Carolyn C.; Bergquist, Bryan B.; Bowler, Bruce E.
2013-01-01
Alkaline conformers of cytochrome c may be involved in both its electron transport and apoptotic functions. We use cobalt(II)bis(terpyridine), Co(terpy)22+, as a reagent for conformationally-gated electron transfer (gated ET) experiments to study the alkaline conformational transition of K79H variants of yeast iso-1-cytochrome c expressed in Escherichia coli, WT*K79H, with alanine at position 72, and Saccharomyces cerevisiae, yK79H, with trimethyllysine (Tml) at position 72. Co(terpy)22+ is well-suited to the 100 ms to 1 s time scale of the His79-mediated alkaline conformational transition of these variants. Reduction of the His79-heme alkaline conformer by Co(terpy)22+ occurs primarily by gated ET, which involves conversion to the native state followed by reduction, with a small fraction of the His79- heme alkaline conformer directly reduced by Co(terpy)22+. The gated ET experiments show that the mechanism of formation of the His79-heme alkaline conformer involves only two ionizable groups. In previous work, we showed that the mechanism of the His73-mediated alkaline conformational transition requires three ionizable groups. Thus, the mechanism of heme crevice opening depends upon the position of the ligand mediating the process. The microscopic rate constants provided by gated ET studies show that mutation of Tml72 (yK79H variant) in the heme crevice loop to Ala72 (WT*K79H variant) affects the dynamics of heme crevice opening through a small destabilization of both the native conformer and the transition state relative to the His79-heme alkaline conformer. Previous pH jump data had indicated that the Tml72→Ala mutation primarily stabilized the transition state for the His79-mediated alkaline conformational transition. PMID:23899348
Pan, Lucy Yan; Salas-Solano, Oscar; Valliere-Douglass, John F
Establishing and maintaining conformational integrity of monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) during development and manufacturing is critical for ensuring their clinical efficacy. As presented here, we applied site-specific carboxyl group footprinting (CGF) for localized conformational interrogation of mAbs. The approach relies on covalent labeling that introduces glycine ethyl ester tags onto solvent-accessible side chains of protein carboxylates. Peptide mapping is used to monitor the labeling kinetics of carboxyl residues and the labeling kinetics reflects the conformation or solvent-accessibility of side chains. Our results for two case studies are shown here. The first study was aimed at defining the conformational changes of mAbs induced by deglycosylation. We found that two residues in C H 2 domain (D268 and E297) show significantly enhanced side chain accessibility upon deglycosylation. This site-specific result highlighted the advantage of monitoring the labeling kinetics at the amino acid level as opposed to the peptide level, which would result in averaging out of highly localized conformational differences. The second study was designed to assess conformational effects brought on by conjugation of mAbs with drug-linkers. All 59 monitored carboxyl residues displayed similar solvent-accessibility between the ADC and mAb under native conditions, which suggests the ADC and mAb share similar side chain conformation. The findings are well correlated and complementary with results from other assays. This work illustrated that site-specific CGF is capable of pinpointing local conformational changes in mAbs or ADCs that might arise during development and manufacturing. The methodology can be readily implemented within the industry to provide comprehensive conformational assessment of these molecules.
Wang, Xue; Zhao, Kun; Kirberger, Michael; Wong, Hing; Chen, Guantao; Yang, Jenny J
2010-01-01
Calcium binding in proteins exhibits a wide range of polygonal geometries that relate directly to an equally diverse set of biological functions. The binding process stabilizes protein structures and typically results in local conformational change and/or global restructuring of the backbone. Previously, we established the MUG program, which utilized multiple geometries in the Ca2+-binding pockets of holoproteins to identify such pockets, ignoring possible Ca2+-induced conformational change. In this article, we first report our progress in the analysis of Ca2+-induced conformational changes followed by improved prediction of Ca2+-binding sites in the large group of Ca2+-binding proteins that exhibit only localized conformational changes. The MUGSR algorithm was devised to incorporate side chain torsional rotation as a predictor. The output from MUGSR presents groups of residues where each group, typically containing two to five residues, is a potential binding pocket. MUGSR was applied to both X-ray apo structures and NMR holo structures, which did not use calcium distance constraints in structure calculations. Predicted pockets were validated by comparison with homologous holo structures. Defining a “correct hit” as a group of residues containing at least two true ligand residues, the sensitivity was at least 90%; whereas for a “correct hit” defined as a group of residues containing at least three true ligand residues, the sensitivity was at least 78%. These data suggest that Ca2+-binding pockets are at least partially prepositioned to chelate the ion in the apo form of the protein. PMID:20512971
NASA Technical Reports Server (NTRS)
Egli, M.; Usman, N.; Rich, A.
1993-01-01
We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.
Galaxy And Mass Assembly (GAMA): the life and times of L★ galaxies
NASA Astrophysics Data System (ADS)
Robotham, A. S. G.; Liske, J.; Driver, S. P.; Sansom, A. E.; Baldry, I. K.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Colless, M.; Christodoulou, L.; Drinkwater, M. J.; Grootes, M. W.; Hopkins, A. M.; Kelvin, L. S.; Norberg, P.; Loveday, J.; Phillipps, S.; Sharp, R.; Taylor, E. N.; Tuffs, R. J.
2013-05-01
In this work, we investigate in detail the effects the local environment (groups and pairs) has on galaxies with stellar mass similar to the Milky Way (L* galaxies). A volume limited sample of 6150 galaxies are visually classified to determine the emission features, morphological type and presence of a disc. This large sample allows for the significant characteristics of galaxies to be isolated (e.g. stellar mass and group halo mass), and their codependencies determined. We observe that galaxy-galaxy interactions play the most important role in shaping the evolution within a group halo; the main role of halo mass is in gathering the galaxies together to encourage such interactions. Dominant pair galaxies find their overall star formation enhanced when the pair's mass ratio is close to 1; otherwise, we observe the same galaxies as we would in an unpaired system. The minor galaxy in a pair is greatly affected by its companion galaxy, and while the star-forming fraction is always suppressed relative to equivalent stellar mass unpaired galaxies, it becomes lower still when the mass ratio of a pair system increases. We find that, in general, the close galaxy-galaxy interaction rate drops as a function of halo mass for a given amount of stellar mass. We find evidence of a local peak of interactions for Milky Way stellar mass galaxies in Milky Way halo mass groups. Low-mass haloes, and in particular Local Group mass haloes, are an important environment for understanding the typical evolutionary path of a unit of stellar mass. We find compelling evidence for galaxy conformity in both groups and pairs, where morphological type conformity is dominant in groups, and emission class conformity is dominant in pairs. This suggests that group scale conformity is the result of many galaxy encounters over an extended period of time, while pair conformity is a fairly instantaneous response to a transitory interaction.
López, Juan C; Cortijo, Vanessa; Blanco, Susana; Alonso, Jose L
2007-08-28
The conformational preferences of the simplest amine neurotransmitter 2-phenylethylamine have been investigated using molecular beam Fourier transform microwave (MB-FTMW) spectroscopy. Two new conformers have been observed together with the two previously reported by Godfrey et al. [J. Am. Chem. Soc., 1995, 117, 8204]. The (14)N nuclear quadrupole hyperfine structure has been resolved for all four conformers. Comparison of the experimental rotational and quadrupole coupling constants with those calculated theoretically provides a conclusive test for the identification of all conformers. The two most stable conformers present a gauche (folded) disposition of the alkyl-amine chain and are stabilised by a weak NH...pi interaction between the amino group and the aromatic ring. The other two conformers show an anti (extended) arrangement of the alkyl-amine chain. Tunnelling splittings have been observed in the spectrum of one of the anti conformers. The post expansion relative abundances in the supersonic jet have been also investigated and related to the conformer energies.
Developing hybrid approaches to predict pKa values of ionizable groups
Witham, Shawn; Talley, Kemper; Wang, Lin; Zhang, Zhe; Sarkar, Subhra; Gao, Daquan; Yang, Wei
2011-01-01
Accurate predictions of pKa values of titratable groups require taking into account all relevant processes associated with the ionization/deionization. Frequently, however, the ionization does not involve significant structural changes and the dominating effects are purely electrostatic in origin allowing accurate predictions to be made based on the electrostatic energy difference between ionized and neutral forms alone using a static structure. On another hand, if the change of the charge state is accompanied by a structural reorganization of the target protein, then the relevant conformational changes have to be taken into account in the pKa calculations. Here we report a hybrid approach that first predicts the titratable groups, which ionization is expected to cause conformational changes, termed “problematic” residues, then applies a special protocol on them, while the rest of the pKa’s are predicted with rigid backbone approach as implemented in multi-conformation continuum electrostatics (MCCE) method. The backbone representative conformations for “problematic” groups are generated with either molecular dynamics simulations with charged and uncharged amino acid or with ab-initio local segment modeling. The corresponding ensembles are then used to calculate the pKa of the “problematic” residues and then the results are averaged. PMID:21744395
Conformational analysis of a modified RGD adhesive sequence.
Triguero, Jordi; Zanuy, David; Alemán, Carlos
2017-02-01
The conformational preferences of the Arg-GlE-Asp sequence, where GlE is an engineered amino acid bearing a 3,4-ethylenedioxythiophene (EDOT) ring as side group, have been determined combining density functional theory calculations with a well-established conformational search strategy. Although the Arg-GlE-Asp sequence was designed to prepare a conducting polymer-peptide conjugate with excellent electrochemical and bioadhesive properties, the behavior of such hybrid material as adhesive biointerface is improvable. Results obtained in this work prove that the bioactive characteristics of the parent Arg-Gly-Asp sequence become unstable in Arg-GlE-Asp because of both the steric hindrance caused by the EDOT side group and the repulsive interactions between the oxygen atoms belonging to the backbone amide groups and the EDOT side group. Detailed analyses of the conformational preferences identified in this work have been used to re-engineer the Arg-GlE-Asp sequence for the future development of a new electroactive conjugate with improved bioadhesive properties. The preparation of this new conjugate is in progress. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Target dose conformity in 3-dimensional conformal radiotherapy and intensity modulated radiotherapy.
Wu, Vincent W C; Kwong, Dora L W; Sham, Jonathan S T
2004-05-01
Dose conformity to the planning target volume is an important criterion in radiotherapy treatment planning, for which the conformity index is a useful assessment tool. The purpose of this study is to compare the differences in CI for the treatment planning of four cancers including the nasopharynx, oesophagus, lung and prostate. Seventy patients with cancers of nasopharynx (30), oesophagus (15), lung (15) and prostate (10) were recruited. Each of these patients was planned with three sets of treatment plans using the FOCUS treatment planning system: the forward and inverse 3DCRT plans and the IMRT plan. The CI was generated for each treatment plan. The mean CI from each cancer patient group was calculated and compared with the other three cancer groups. The mean value of CI was also compared among the three planning methods. The oesophageal and lung cancers demonstrated relatively higher overall mean CI values (0.64 and 0.62, respectively), whereas that of the nasopharynx and prostate were lower (0.54 and 0.50, respectively). With regards to the planning method groups, the IMRT plans produced the highest overall mean CI (0.62), while those for the forward and inverse 3DCRT were similar (0.57 and 0.55, respectively). For the four selected cancers, oesophageal and lung cancers were easier to conform than the nasopharyngeal and prostate cancers. The IMRT plans were more effective in achieving better dose conformity than that of the 3DCRT.
Luminescent tunable polydots: Charge effects in confined geometry
Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...
2017-06-28
Long-lived soft nanoparticles, formed by conjugated polymers, constitute a new class of far-from-equilibrium responsive structures for nano-medicine. Tethering ionizable groups to the polymers enables functionality. However concurrently, the ionic groups perturb the delicate balance of interactions that governs these particles. Using fully atomistic molecular dynamics simulations, this study probed the effects of charged groups tethered to poly para phenylene ethynylene substituted by alkyl groups on the polymer conformation and dynamics in confined geometry. As a result, we find that the ionizable groups affect the entire shape of the polydots and impact the conformation and dynamics of the polymer.
Network visualization of conformational sampling during molecular dynamics simulation.
Ahlstrom, Logan S; Baker, Joseph Lee; Ehrlich, Kent; Campbell, Zachary T; Patel, Sunita; Vorontsov, Ivan I; Tama, Florence; Miyashita, Osamu
2013-11-01
Effective data reduction methods are necessary for uncovering the inherent conformational relationships present in large molecular dynamics (MD) trajectories. Clustering algorithms provide a means to interpret the conformational sampling of molecules during simulation by grouping trajectory snapshots into a few subgroups, or clusters, but the relationships between the individual clusters may not be readily understood. Here we show that network analysis can be used to visualize the dominant conformational states explored during simulation as well as the connectivity between them, providing a more coherent description of conformational space than traditional clustering techniques alone. We compare the results of network visualization against 11 clustering algorithms and principal component conformer plots. Several MD simulations of proteins undergoing different conformational changes demonstrate the effectiveness of networks in reaching functional conclusions. Copyright © 2013 Elsevier Inc. All rights reserved.
A Projective-to-Conformal Fefferman-Type Construction
NASA Astrophysics Data System (ADS)
Hammerl, Matthias; Sagerschnig, Katja; Šilhan, Josef; Taghavi-Chabert, Arman; Zádník, Vojtĕch
2017-10-01
We study a Fefferman-type construction based on the inclusion of Lie groups SL(n+1) into Spin(n+1,n+1). The construction associates a split-signature (n,n)-conformal spin structure to a projective structure of dimension n. We prove the existence of a canonical pure twistor spinor and a light-like conformal Killing field on the constructed conformal space. We obtain a complete characterisation of the constructed conformal spaces in terms of these solutions to overdetermined equations and an integrability condition on the Weyl curvature. The Fefferman-type construction presented here can be understood as an alternative approach to study a conformal version of classical Patterson-Walker metrics as discussed in recent works by Dunajski-Tod and by the authors. The present work therefore gives a complete exposition of conformal Patterson-Walker metrics from the viewpoint of parabolic geometry.
Soulages, Jose L.; Kim, Kangmin; Arrese, Estela L.; Walters, Christina; Cushman, John C.
2003-01-01
Late embryogenesis abundant (LEA) proteins are members of a large group of hydrophilic, glycine-rich proteins found in plants, algae, fungi, and bacteria known collectively as hydrophilins that are preferentially expressed in response to dehydration or hyperosmotic stress. Group 2 LEA (dehydrins or responsive to abscisic acid) proteins are postulated to stabilize macromolecules against damage by freezing, dehydration, ionic, or osmotic stress. However, the structural and physicochemical properties of group 2 LEA proteins that account for such functions remain unknown. We have analyzed the structural properties of a recombinant form of a soybean (Glycine max) group 2 LEA (rGmDHN1). Differential scanning calorimetry of purified rGmDHN1 demonstrated that the protein does not display a cooperative unfolding transition upon heating. Ultraviolet absorption and circular dichroism spectroscopy revealed that the protein is in a largely hydrated and unstructured conformation in solution. However, ultraviolet absorption and circular dichroism measurements collected at different temperatures showed that the protein exists in equilibrium between two extended conformational states: unordered and left-handed extended helical or poly (l-proline)-type II structures. It is estimated that 27% of the residues of rGmDHN1 adopt or poly (l-proline)-type II-like helical conformation at 12°C. The content of extended helix gradually decreases to 15% as the temperature is increased to 80°C. Studies of the conformation of the protein in solution in the presence of liposomes, trifluoroethanol, and sodium dodecyl sulfate indicated that rGmDHN1 has a very low intrinsic ability to adopt α-helical structure and to interact with phospholipid bilayers through amphipathic α-helices. The ability of the protein to remain in a highly extended conformation at low temperatures could constitute the basis of the functional role of GmDHN1 in the prevention of freezing, desiccation, ionic, or osmotic stress-related damage to macromolecular structures. PMID:12644649
Nowacki, Andrzej; Liberek, Beata
2018-06-15
B3LYP and M06-2X optimization and MP2 single point calculations are reported for the 4 H 5 and 5 H 4 conformations of 3,4,6-tri-O-acetyl-D-allal, 3,4,6-tri-O-acetyl-D-galactal, 3,4,6-tri-O-acetyl-D-glucal, and 3,4,6-tri-O-acetyl-D-gulal. Significant discrepancies in predictions of relative energies and conformers' population for B3LYP and M06-2X optimized geometries are observed. Generally, B3LYP overestimates the conformers' energies with respect to MP2, whereas M06-2X slightly underestimates the conformers' energies. B3LYP failed to estimate the 4 H 5 ⇄ 5 H 4 conformational equilibrium for 3,4,6-tri-O-acetyl-D-galactal and 3,4,6-tri-O-acetyl-D-glucal. The M06-2X functional showed good agreement with experimental results for all glycals studied. The 4 H 5 ⇄ 5 H 4 conformational equilibrium for 3,4,6-tri-O-acetyl-D-allal and 3,4,6-tri-O-acetyl-D-gulal is governed by the vinylogous anomeric effect (VAE), whereas competition between the VAE and quasi 1,3-diaxial interactions influence this equilibrium for 3,4,6-tri-O-acetyl-D-galactal and 3,4,6-tri-O-acetyl-D-glucal. The orientation of the 4-OAc group influences the strength of the quasi 1,3-diaxial interactions between the 3-OAc and 5-CH 2 OAc groups. AIM analysis shows weak bonding interaction between the 3-OAc and 5-CH 2 OAc groups. Copyright © 2018 Elsevier Ltd. All rights reserved.
Influence of solvents on the conformation of benzoin
NASA Astrophysics Data System (ADS)
Pawełka, Z.; Czarnik-Matusewicz, B.; Zeegers-Huyskens, Th.
2010-01-01
The conformation of benzoin in several organic solvents is investigated by infrared spectrometry and dipolometry. The frequencies, intensities, and band shapes of the ν(OH), ν(C dbnd O), and aromatic ring vibrations indicate that in solvents of low proton acceptor ability, the cis conformer with intramolecular OH···O hydrogen bonding is preserved. In solvents of large proton acceptor ability there is equilibrium between the cis and trans conformers. The dipole moments are less sensitive to conformational changes, but indicate the same trends. The results are discussed as a function of the specific solvation of the O atoms or OH groups of benzoin.
Influence of solvents on the conformation of benzoin.
Pawełka, Z; Czarnik-Matusewicz, B; Zeegers-Huyskens, Th
2010-01-01
The conformation of benzoin in several organic solvents is investigated by infrared spectrometry and dipolometry. The frequencies, intensities, and band shapes of the nu(OH), nu(C=O), and aromatic ring vibrations indicate that in solvents of low proton acceptor ability, the cis conformer with intramolecular OH...O hydrogen bonding is preserved. In solvents of large proton acceptor ability there is equilibrium between the cis and trans conformers. The dipole moments are less sensitive to conformational changes, but indicate the same trends. The results are discussed as a function of the specific solvation of the O atoms or OH groups of benzoin. Copyright 2009 Elsevier B.V. All rights reserved.
Conformationally resolved spectroscopy of jet-cooled methacetin
NASA Astrophysics Data System (ADS)
Moon, Cheol Joo; Ahn, Ahreum; Min, Ahreum; Seong, Yeon Guk; Kim, Ju Hyun; Choi, Myong Yong
2017-11-01
The excitation spectra of jet-cooled methacetin (MA) have been measured using a combination of mass-selected resonant two-photon ionization and ultraviolet-ultraviolet hole-burning (UV-UV HB) spectroscopy in the gas phase. Four different UV-UV HB spectra originating from two conformers of MA (syn- and anti-MA) with their fundamental and hot transitions have been obtained. IR-dip spectroscopy has conclusively confirmed the coexistence of the two conformers with the aid of theoretical calculations. Vibronic band assignments in the low frequency region caused by internal methyl group rotation in the methyl-capped peptide group, which originate from the 1e rotational level, are presented.
Harmony of spinning conformal blocks
NASA Astrophysics Data System (ADS)
Schomerus, Volker; Sobko, Evgeny; Isachenkov, Mikhail
2017-03-01
Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.
Identification of two conformationally trapped n-propanol-water dimers in a supersonic expansion
NASA Astrophysics Data System (ADS)
Mead, Griffin J.; Alonso, Elena R.; Finneran, Ian A.; Carroll, P. Brandon; Blake, Geoffrey A.
2017-05-01
Two conformers of the n-propanol-water dimer have been observed in a supersonic expansion using chirped-pulse Fourier-transform microwave (CPFTMW) spectroscopy. Structural assignments reveal the n-propanol sub-unit is conformationally trapped, with its methyl group in both Gauche and Trans orientations. Despite different carbon backbone conformations, both dimers display the same water-donor/alcohol-acceptor hydrogen bonding motif. This work builds upon other reported alcohol-water dimers and upon previous work detailing the trapping of small molecules into multiple structural minima in rare gas supersonic expansions.
The Conformational Landscape of Serinol
NASA Astrophysics Data System (ADS)
Sanz, M. Eugenia; Loru, Donatella; Peña, Isabel; Alonso, José L.
2014-06-01
The rotational spectrum of the amino alcohol serinol CH_2OH--CH(NH_2)--CH_2OH, which constitutes the hydrophilic head of the lipid sphingosine, has been investigated using chirped-pulsed Fourier transform microwave spectroscopy in combination with laser ablation Five different forms of serinol have been observed and conclusively identified by the comparison between the experimental values of their rotational and 14N quadrupole coupling constants and those predicted by ab initio calculations. In all observed conformers several hydrogen bonds are established between the two hydroxyl groups and the amino groups in a chain or circular arrangement. The most abundant conformer is stabilised by O--H···N and N--H···O hydrogen bonds forming a chain rather than a cycle. One of the detected conformers presents a tunnelling motion of the hydrogen atoms of the functional groups similar to that observed in glycerol. S. Mata, I. Peña, C. Cabezas, J. C. López, J. L. Alonso, J. Mol. Spectrosc. 2012, 280, 91 V. V. Ilyushin, R. A. Motiyenko, F. J. Lovas, D. F. Plusquellic, J. Mol. Spectrosc. 2008, 251, 129.
Conformal collineations and anisotropic fluids in general relativity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duggal, K.L.; Sharma, R.
1986-10-01
Recently, Herrera et al. (L. Herrera, J. Jimenez, L. Leal, J. Ponce de Leon, M. Esculpi, and V. Galino, J. Math. Phys. 25, 3274 (1984)) studied the consequences of the existence of a one-parameter group of conformal motions for anisotropic matter. They concluded that for special conformal motions, the stiff equation of state (p = ..mu..) is singled out in a unique way, provided the generating conformal vector field is orthogonal to the four-velocity. In this paper, the same problem is studied by using conformal collineations (which include conformal motions as subgroups). It is shown that, for a special conformalmore » collineation, the stiff equation of state is not singled out. Non-Einstein Ricci-recurrent spaces are considered as physical models for the fluid matter.« less
Holography for Schrödinger backgrounds
NASA Astrophysics Data System (ADS)
Guica, Monica; Skenderis, Kostas; Taylor, Marika; van Rees, Balt C.
2011-02-01
We discuss holography for Schrödinger solutions of both topologically massive gravity in three dimensions and massive vector theories in ( d + 1) dimensions. In both cases the dual field theory can be viewed as a d-dimensional conformal field theory (two dimensional in the case of TMG) deformed by certain operators that respect the Schrödinger symmetry. These operators are irrelevant from the viewpoint of the relativistic conformal group but they are exactly marginal with respect to the non-relativistic conformal group. The spectrum of linear fluctuations around the background solutions corresponds to operators that are labeled by their scaling dimension and the lightcone momentum k v . We set up the holographic dictionary and compute 2-point functions of these operators both holographically and in field theory using conformal perturbation theory and find agreement. The counterterms needed for holographic renormalization are non-local in the v lightcone direction.
5-Ethynyl-2'-deoxycytidine: a DNA building block with a 'clickable' side chain.
Seela, Frank; Mei, Hui; Xiong, Hai; Budow, Simone; Eickmeier, Henning; Reuter, Hans
2012-10-01
The title compound [systematic name: 4-amino-1-(2-deoxy-β-D-erythro-pentofuranosyl)-5-ethynylpyrimidin-2(1H)-one], C(11)H(13)N(3)O(4), shows two conformations in the crystalline state. The N-glycosylic bonds of both conformers adopt similar conformations, with χ = -149.2 (1)° for conformer (I-1) and -151.4 (1)° for conformer (I-2), both in the anti range. The sugar residue of (I-1) shows a C2'-endo envelope conformation ((2)E, S-type), with P = 164.7 (1)° and τ(m) = 36.9 (1)°, while (I-2) shows a major C3'-exo sugar pucker (C3'-exo-C2'-endo, (3)T(2), S-type), with P = 189.2 (1)° and τ(m) = 33.3 (1)°. Both conformers participate in the formation of a layered three-dimensional crystal structure with a chain-like arrangement of the conformers. The ethynyl groups do not participate in hydrogen bonding, but are arranged in proximal positions.
Iizuka, Ryo; Yoshida, Takao; Ishii, Noriyuki; Zako, Tamotsu; Takahashi, Kazunobu; Maki, Kosuke; Inobe, Tomonao; Kuwajima, Kunihiro; Yohda, Masafumi
2005-12-02
Group II chaperonins, found in Archaea and in the eukaryotic cytosol, act independently of a cofactor corresponding to GroES of group I chaperonins. Instead, the helical protrusion at the tip of the apical domain forms a built-in lid of the central cavity. Although many studies on the lid's conformation have been carried out, the conformation in each step of the ATPase cycle remains obscure. To clarify this issue, we examined the effects of ADP-aluminum fluoride (AlFx) and ADP-beryllium fluoride (BeFx) complexes on alpha-chaperonin from the hyperthermophilic archaeum, Thermococcus sp. strain KS-1. Biochemical assays, electron microscopic observations, and small angle x-ray scattering measurements demonstrate that alpha-chaperonin incubated with ADP and BeFx exists in an asymmetric conformation; one ring is open, and the other is closed. The result indicates that alpha-chaperonin also shares the inherent functional asymmetry of bacterial and eukaryotic cytosolic chaperonins. Most interestingly, addition of ADP and BeFx induced alpha-chaperonin to encapsulate unfolded proteins in the closed ring but did not trigger their folding. Moreover, alpha-chaperonin incubated with ATP and AlFx or BeFx adopted a symmetric closed conformation, and its functional turnover was inhibited. These forms are supposed to be intermediates during the reaction cycle of group II chaperonins.
NASA Astrophysics Data System (ADS)
Hays, Brian M.; Mehta-Hurt, Deepali; Jawad, Khadija M.; Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Zhang, Di; Zwier, Timothy S.
2017-06-01
The pure rotational spectra of 4-pentynenitrile, 4-pentenenitrile, and glutaronitrile were acquired using chirped pulse Fouirer transform microwave spectroscopy. 4-pentynenitrile and 4-pentenenitrile are the recombination products of two resonance stabilized radicals, propargyl + cyanomethyl or allyl + cyanomethyl, respectively, and are thus anticipated to be significant among the more complex nitriles in Titan's atmosphere. Indeed, these partially unsaturated alkyl cyanides have been found in laboratory analogs of tholins and are also expected to have interesting photochemistry. The optimized structures of all conformers below predicted energies of 500 \\wn were calculated for each molecule. Both of the conformers, trans and gauche, for 4-pentynenitrile have been identified and assigned. Five conformers were assigned in 4-pentenenitrile. The eclipsed conformers, with respect to the vinyl group, dominate the spectrum but some population was found in the syn conformers including the syn-gauche conformer, calculated to be 324 \\wn above the global minimum. The glutaronitrile spectrum contained only the two conformers below 500 \\wn, with reduced amount of the gauche trans conformer. The assigned spectra and structural assignments will be presented.
Alagona, Giuliano; Ghio, Caterina; Iuliano, Anna; Monti, Susanna; Pieraccini, Ilaria; Salvadori, Piero
2003-04-18
CD spectra of the chiral auxiliaries for enantioselective HPLC N-allyl-N'-methyl-3,12-bis(2-naphthyl)carbamoyloxy-7-(3,5-dinitrophenyl)carbamoyloxycholan-24-amide (1), N-allyl-N'-methyl-3-(3,5-dinitrophenyl)carbamoyloxy-7,12-bis(2-naphthyl)carbamoyloxycholan-24-amide (2), N-allyl-N'-methyl-3,7-bis(2-naphthyl)carbamoyloxy-12-(3,5-dinitrophenyl)carbamoyloxycholan-24-amide (3), and N-allyl-N'-methyl-3,7,12-tris(2-naphthyl)carbamoyloxycholan-24-amide (4) are presented. To determine the preferred conformations of those chiral auxiliaries, a random search based on the aromatic side-chain conformational degrees of freedom was performed and the energy was minimized using two different molecular mechanics force fields. The low energy structures presenting common features were arranged in groups and selected exploiting appropriate filters. The calculation of theoretical CD spectra according to the De Voe model has allowed a further discrimination among the conformations, specifying which of them gave calculated CD spectra in acceptable agreement with the experimental ones. Finally, taking into account the additivity of the contributions of each 2-naphthylcarbamate chromophore to the CD spectrum of the cholic acid derivatives, and, hence, choosing, for derivatives 1-3, those conformations in which the 2-naphthylcarbamate groups take a similar disposition as in 4, the preferentially assumed conformation of each compound was obtained. A molecular dynamics simulation in the presence of acetonitrile allowed the fluctuations of one of the structures, used as a test case, depending on environmental effects, to be examined.
Small-scale Conformity of the Virgo Cluster Galaxies
NASA Astrophysics Data System (ADS)
Lee, Hye-Ran; Lee, Joon Hyeop; Jeong, Hyunjin; Park, Byeong-Gon
2016-06-01
We investigate the small-scale conformity in color between bright galaxies and their faint companions in the Virgo Cluster. Cluster member galaxies are spectroscopically determined using the Extended Virgo Cluster Catalog and the Sloan Digital Sky Survey Data Release 12. We find that the luminosity-weighted mean color of faint galaxies depends on the color of adjacent bright galaxy as well as on the cluster-scale environment (gravitational potential index). From this result for the entire area of the Virgo Cluster, it is not distinguishable whether the small-scale conformity is genuine or if it is artificially produced due to cluster-scale variation of galaxy color. To disentangle this degeneracy, we divide the Virgo Cluster area into three sub-areas so that the cluster-scale environmental dependence is minimized: A1 (central), A2 (intermediate), and A3 (outermost). We find conformity in color between bright galaxies and their faint companions (color-color slope significance S ˜ 2.73σ and correlation coefficient {cc}˜ 0.50) in A2, where the cluster-scale environmental dependence is almost negligible. On the other hand, the conformity is not significant or very marginal (S ˜ 1.75σ and {cc}˜ 0.27) in A1. The conformity is not significant either in A3 (S ˜ 1.59σ and {cc}˜ 0.44), but the sample size is too small in this area. These results are consistent with a scenario in which the small-scale conformity in a cluster is a vestige of infallen groups and these groups lose conformity as they come closer to the cluster center.
NASA Astrophysics Data System (ADS)
Durig, J. R.; Gounev, T. K.; Lee, M. S.; Little, T. S.
1994-10-01
The Raman (3100 to 50 cm -1) and IR (3100 to 50 cm -1) spectra of gaseous and solid n-propylphosphine, C 3H 7PH 2, and the corresponding P- d2 isotopomer have been recorded. Additionally, the Raman spectra of the liquids have been obtained with qualitative depolarization ratios. From these data, all five possible conformers have been identified in the fluid states and the trans-trans conformer is shown to be the most stable rotamer in both the gaseous and liquid states and it is the only conformer present in the solid. The first trans refers to the orientation of the lone pair to the ethylene group (rotation around the PC bond) whereas the second trans refers to the orientation of the methyl group relative to the PC bond (rotation around the -CH 2CH 2 bond). The next most stable conformer is the gauche-trans rotamer where the enthalpy difference has been determined from variable-temperature Raman studies to be 140 ± 5 cm -1 (400 ± 14 cal mol -1) for the vapor and 351 ± 20 cm -1 (1004 ± 57 cal mol -1) for the liquid. The other three conformers have nearly the same stabilities but significantly higher energies than the two more stable rotamers. From the far-IR data and relative conformer stabilities, some of the coefficients of the potential function governing conformer interconversion are estimated. A complete vibrational assignment is proposed for the trans-trans conformer and for the fundamentals for most of the heavy atom motions for the other conformers. The conformational stabilities, barriers to internal rotation, and fundamental vibrational frequencies which have been determined experimentally are compared to those obtained from ab initio calculations employing the RHF/3-21G* and/or RHF/6-31G* basis sets. Additionally, the conformational stabilities and structural parameters have been determined with the 6-31G* basis set with electron correlation at the MP2 level. These results are compared with the corresponding quantities for some similar molecules.
Conformal invariance of the Lungren-Monin-Novikov equations for vorticity fields in 2D turbulence
NASA Astrophysics Data System (ADS)
Grebenev, V. N.; Wacławczyk, M.; Oberlack, M.
2017-10-01
We study the statistical properties of the vorticity field in two-dimensional turbulence. The field is described in terms of the infinite Lundgren-Monin-Novikov (LMN) chain of equations for multi-point probability density functions (pdf’s) of vorticity. We perform a Lie group analysis of the first equation in this chain using the direct method based on the canonical Lie-Bäcklund transformations devised for integro-differential equations. We analytically show that the conformal group is broken for the first LMN equation i.e. for the 1-point pdf at least for the inviscid case but the equation is still conformally invariant on the associated characteristic with zero-vorticity. Then, we demonstrate that this characteristic is conformally transformed. We find this outcome coincides with the numerical results about the conformal invariance of the statistics of zero-vorticity isolines, see e.g. Falkovich (2007 Russian Math. Surv. 63 497-510). The conformal symmetry can be understood as a ‘local scaling’ and its traces in two-dimensional turbulence were already discussed in the literature, i.e. it was conjectured more than twenty years ago in Polyakov (1993 Nucl. Phys. B 396 367-85) and clearly validated experimentally in Bernard et al (2006 Nat. Phys. 2 124-8).
NASA Astrophysics Data System (ADS)
Fernando, Sudarshan; Günaydin, Murat
2010-12-01
We study the minimal unitary representation (minrep) of SO(6,2) over an Hilbert space of functions of five variables, obtained by quantizing its quasiconformal realization. The minrep of SO(6,2), which coincides with the minrep of SO(8) similarly constructed, corresponds to a massless conformal scalar field in six spacetime dimensions. There exists a family of "deformations" of the minrep of SO(8) labeled by the spin t of an SU(2 subgroup of the little group SO(4) of lightlike vectors. These deformations labeled by t are positive energy unitary irreducible representations of SO(8) that describe massless conformal fields in six dimensions. The SU(2 spin t is the six-dimensional counterpart of U(1) deformations of the minrep of 4D conformal group SU(2,2) labeled by helicity. We also construct the supersymmetric extensions of the minimal unitary representation of SO(8) to minimal unitary representations of OSp(8|2N) that describe massless six-dimensional conformal supermultiplets. The minimal unitary supermultiplet of OSp(8|4) is the massless supermultiplet of (2,0) conformal field theory that is believed to be dual to M-theory on AdS×S.
Conformational Studies of 1-OCTYNE from Rotational Spectroscopy
NASA Astrophysics Data System (ADS)
Maturo, Mark P.; Obenchain, Daniel A.; Melchreit, Robert; Cooke, S. A.; Novick, Stewart E.
2017-06-01
Alkanes of the form CH_3(CH_2)_nCH_3 generally favor ground state geometries that have co-planar carbon atoms. In this study, we have looked at a long chain hydrocarbon with a terminal carbon-carbon triple bond, viz., 1-octyne. Guided by the results of the 1-hexyne studies, three possible low energy conformers were studied which we reference as anti-anti (AA, straight chain), anti-gauche (AG, terminal methyl group is gauche), and gauche-anti (GA, ethyl group is gauche). An initial broadband chirp-pulse was performed between 7-13 GHz and a total of sixty-eight transitions were fit. Additional measurements on a Balle Flygare cavity instrument yielded an additional seventy-three lines belonging to three of the conformers. Transitions for all 8 of the singly substituted ^{13}C isotopologues, in natural abundance, have also been observed for the AA conformer. Ab-initio optimizations at the MP2/6-311++g(2d,2p) level of theory and basis set for these three conformers will be compared to experimental rotational constants. Structure determinations of the AA conformer will also be discussed. Atticks, K.; Bohn, R. K.; Michaels H. H. Int'l J. of Quantum Chem. 2001, 85, 514-519; Utzat, K.; Bohn, R. K.; Michaels H. H. J. Mol. Struct. 2007, 841, 22-27
Conformational Analysis of Stiff Chiral Polymers with End-Constraints
Kim, Jin Seob; Chirikjian, Gregory S.
2010-01-01
We present a Lie-group-theoretic method for the kinematic and dynamic analysis of chiral semi-flexible polymers with end constraints. The first is to determine the minimum energy conformations of semi-flexible polymers with end constraints, and the second is to perform normal mode analysis based on the determined minimum energy conformations. In this paper, we use concepts from the theory of Lie groups and principles of variational calculus to model such polymers as inextensible or extensible chiral elastic rods with coupling between twisting and bending stiffnesses, and/or between twisting and extension stiffnesses. This method is general enough to include any stiffness and chirality parameters in the context of elastic filament models with the quadratic elastic potential energy function. As an application of this formulation, the analysis of DNA conformations is discussed. We demonstrate our method with examples of DNA conformations in which topological properties such as writhe, twist, and linking number are calculated from the results of the proposed method. Given these minimum energy conformations, we describe how to perform the normal mode analysis. The results presented here build both on recent experimental work in which DNA mechanical properties have been measured, and theoretical work in which the mechanics of non-chiral elastic rods has been studied. PMID:20198114
FTIR and FT-Raman spectra and DFT vibrational analysis of phosphorus-containing dendrons
NASA Astrophysics Data System (ADS)
Furer, V. L.; Vandyukova, I. I.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.
2008-12-01
FTIR and FT-Raman spectra of four generations of phosphorus-containing dendrons with terminal aldehyde or P sbnd Cl groups have been recorded and analyzed. Their spectral patterns are determined by the ratio T/ R ( T, the number of terminal groups; R, the number of repeated units). Bands assigned to the core, repeated units and terminal groups were separated by the difference spectroscopy method. The optimized geometry, frequencies and intensity of IR bands of G1v generation dendron with terminal aldehyde groups were obtained by the density functional theory (DFT). It was found that the internal skeleton of molecules exists in a single stable conformation with planar sbnd O- C6H4- CHdbnd N- N( CH3)- P( dbnd S)< fragments, but terminal groups may adopt the t, g, g- and t,- g, g-rotational isomers. The t,- g, g-conformer is 0.74 kcal/mol less stable compared to the t, g, g-conformer. The bond length and bond angles obtained by DFT show the best agreement with experimental data. Relying on DFT calculations a complete assignment of vibrations is proposed for different parts of the studied dendrons. The calculated frequencies and intensity of IR bands of the t, g, g- and t,- g, g-conformers of G1v are found to be in reasonable agreement with the experimental results. The most reactive site in dendron is the core function and vinyl group is preferred for nucleophilic attack. In dendrimer the most reactive are the terminal groups.
NASA Astrophysics Data System (ADS)
Csankó, K.; Forgo, P.; Boros, K.; Hohmann, J.; Sipos, P.; Pálinkó, I.
2013-07-01
Following a preliminary exploration of the conformational space by the PM3 and HF/6-31 G*ab initio methods the conformational characteristics of the scarcely available Z isomer of an α-pyridyl-substituted cinnamic acid dimer [Z-2(3‧-pyridyl)-3-phenylpropanoic acid] was studied by NMR spectroscopy (NOESY measurements) in DMSO(d6), methanol(d4) and chloroform(d1). Calculations predicted that full conjugation was overruled by steric interactions and the rotation of the pyridyl ring was not restricted. NOESY measurements verified indeed that in all three solvents the pyridyl group was virtually freely rotating, while some restriction applied for that of the phenyl group.
Immirzi parameter without Immirzi ambiguity: Conformal loop quantization of scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Veraguth, Olivier J.; Wang, Charles H.-T.
2017-10-01
Conformal loop quantum gravity provides an approach to loop quantization through an underlying conformal structure i.e. conformally equivalent class of metrics. The property that general relativity itself has no conformal invariance is reinstated with a constrained scalar field setting the physical scale. Conformally equivalent metrics have recently been shown to be amenable to loop quantization including matter coupling. It has been suggested that conformal geometry may provide an extended symmetry to allow a reformulated Immirzi parameter necessary for loop quantization to behave like an arbitrary group parameter that requires no further fixing as its present standard form does. Here, we find that this can be naturally realized via conformal frame transformations in scalar-tensor gravity. Such a theory generally incorporates a dynamical scalar gravitational field and reduces to general relativity when the scalar field becomes a pure gauge. In particular, we introduce a conformal Einstein frame in which loop quantization is implemented. We then discuss how different Immirzi parameters under this description may be related by conformal frame transformations and yet share the same quantization having, for example, the same area gaps, modulated by the scalar gravitational field.
Molecular dynamics studies of the conformation of sorbitol
Lerbret, A.; Mason, P.E.; Venable, R.M.; Cesàro, A.; Saboungi, M.-L.; Pastor, R.W.; Brady, J.W.
2009-01-01
Molecular dynamics simulations of a 3 m aqueous solution of D-sorbitol (also called D-glucitol) have been performed at 300 K, as well as at two elevated temperatures to promote conformational transitions. In principle, sorbitol is more flexible than glucose since it does not contain a constraining ring. However, a conformational analysis revealed that the sorbitol chain remains extended in solution, in contrast to the bent conformation found experimentally in the crystalline form. While there are 243 staggered conformations of the backbone possible for this open-chain polyol, only a very limited number were found to be stable in the simulations. Although many conformers were briefly sampled, only eight were significantly populated in the simulation. The carbon backbones of all but two of these eight conformers were completely extended, unlike the bent crystal conformation. These extended conformers were stabilized by a quite persistent intramolecular hydrogen bond between the hydroxyl groups of carbon C-2 and C-4. The conformational populations were found to be in good agreement with the limited available NMR data except for the C-2–C-3 torsion (spanned by the O-2–O-4 hydrogen bond), where the NMR data supports a more bent structure. PMID:19744646
Conformational and NBO studies of serotonin as a radical scavenger. Changes induced by the OH group.
Lobayan, Rosana M; Schmit, María Celia Pérez
2018-03-01
Serotonin (5-hydroxytryptamine, SER) is a neurotransmitter that affects many different processes within the human body. We studied the conformational space of SER, and explored in depth the significant stereoelectronic features for the structure stabilization and antioxidant activity. Forty-eight equilibrium structures were described at the B3LYP/6-311++G(d,p) level, characterizing four non-previously reported conformers. Electron distributions were analyzed by topological QTAIM (Quantum Theory of atoms in molecules) and natural bond orbital (NBO) studies. The study was supplemented by an exploration of molecular electrostatic potential (MEP). Intramolecular hydrogen interactions were also investigated; N10⋯HC4 or N10⋯HC2 hydrogen bondings were depicted in 5 conformers. The conformer stabilization and the corresponding energy arrangement were explained by hyperconjugation interactions obtained by NBO analysis. The present study is based on the effect of the 5-OH group on geometric and electronic behavior that we have previously reported on the similar structure tryptamine (TRA). Our interest also lies in SER's free radical scavenging capacity as a member of the indole family. The H-atom abstraction and single-electron transfer mechanisms were taken into account. Our results showed that donor-acceptor interactions play a major role in explaining the changes induced by the OH group, and free-radical scavenging capability of the indole compounds. Copyright © 2018 Elsevier Inc. All rights reserved.
Vembanur, Srivathsan; Venkateshwaran, Vasudevan; Garde, Shekhar
2014-04-29
We focus on the conformational stability, structure, and dynamics of hydrophobic/charged homopolymers and heteropolymers at the vapor-liquid interface of water using extensive molecular dynamics simulations. Hydrophobic polymers collapse into globular structures in bulk water but unfold and sample a broad range of conformations at the vapor-liquid interface of water. We show that adding a pair of charges to a hydrophobic polymer at the interface can dramatically change its conformations, stabilizing hairpinlike structures, with molecular details depending on the location of the charged pair in the sequence. The translational dynamics of homopolymers and heteropolymers are also different, whereas the homopolymers skate on the interface with low drag, the tendency of charged groups to remain hydrated pulls the heteropolymers toward the liquid side of the interface, thus pinning them, increasing drag, and slowing the translational dynamics. The conformational dynamics of heteropolymers are also slower than that of the homopolymer and depend on the location of the charged groups in the sequence. Conformational dynamics are most restricted for the end-charged heteropolymer and speed up as the charge pair is moved toward the center of the sequence. We rationalize these trends using the fundamental understanding of the effects of the interface on primitive pair-level interactions between two hydrophobic groups and between oppositely charged ions in its vicinity.
NASA Astrophysics Data System (ADS)
Thomas, Javix; Sukhorukov, Oleksandr; Jaeger, Wolfgang; Xu, Yunjie
2013-06-01
Methyl lactate (ML), a chiral alpha-hydroxy ester, has attracted much attention as a prototype system in studies of chirality transfer,[1] solvation effects on chiroptical signatures,[2] and chirality recognition.[3] It has multiple functional groups which can serve both as a hydrogen donor and acceptor. By applying rotational spectroscopy and high level ab initio calculations, we examine the delicate competition between inter- and intramolecular hydrogen-bonding in the ML-water clusters. Broadband rotational spectra obtained with a chirp Fourier transform microwave (FTMW) spectrometer, reveal that the insertion conformations are the most favourable ones in the binary and ternary solvated complexes. In the insertion conformations, the water molecule(s) inserts itself (themselves) into the existing intramolecular hydrogen-bonded ring formed between the alcoholic hydroxyl group and the oxygen of the carbonyl group of ML. The final frequency measurements have been carried out using a cavity based FTMW instrument where internal rotation splittings due to the ester methyl group have also been detected. A number of insertion conformers with subtle structural differences for both the binary and ternary complexes have been identified theoretically. The interconversion dynamics of these conformers and the identification of the most favorable conformers will be discussed. 1. C. Merten, Y. Xu, Angew. Chem. Int. Ed., 2013, 52, 2073 -2076. 2. M. Losada, Y. Xu, Phys. Chem. Chem. Phys., 2007, 9, 3127-3135; Y. Liu, G. Yang, M. Losada, Y. Xu, J. Chem. Phys., 2010, 132, 234513/1-11. 3. A. Zehnacker, M. Suhm, Angew. Chem. Int. Ed. 2008, 47, 6970 - 6992.
Loquais, Yohan; Gloaguen, Eric; Alauddin, Mohammad; Brenner, Valérie; Tardivel, Benjamin; Mons, Michel
2014-10-28
The primary step of the near UV photophysics of a phenylalanine residue is investigated in one- and two-color pump-probe R2PI nanosecond experiments carried out on specific conformers of the Ac-Gly-Phe-NH2 molecule and related neutral compounds isolated in a supersonic expansion. Compared to toluene, whose ππ* state photophysics is dominated by intersystem crossing with a lifetime of ∼80 ns at the origin, the first ππ* state of Phe in the peptide environment is systematically found to be shorter-lived. The lifetime at the origin of transition is found to be significantly shortened in the presence of a primary amide (-CONH2) group (20-60 ns, depending on the conformer considered), demonstrating the existence of an additional non-radiative relaxation channel related to this chemical group. The quenching effect induced by the peptide environment is still more remarkable beyond the origin of the ππ* state, since vibronic bands of one of the 4 conformers observed (the 27-ribbon conformation) become barely detectable in the ns R2PI experiment, suggesting a significant conformer-selective lifetime shortening (below 100 ps). These results on dipeptides, which extend previous investigations on shorter Phe-containing molecules (N-Ac-Phe-NH2 and N-Ac-Phe-NH-Me), confirm the existence of conformer-dependent non-radiative deactivation processes, whose characteristic timescales range from tens of ns down to hundreds of ps or below. This dynamics is assigned to two distinct mechanisms: a first one, consistent with an excitation energy transfer from the optically active ππ* state to low-lying amide nπ* excited states accessed through conical intersections, especially in the presence of a C-terminal primary amide group (-CONH2); a second one, responsible for the short lifetimes in 2(7) ribbon structures, would be more specifically triggered by phenyl ring vibrational excitations. Implications in terms of spectroscopic probing of Phe in a peptide environment, especially in the presence of a quenching amide group, are discussed.
NASA Astrophysics Data System (ADS)
Yamamoto, Takashi; Kimikawa, Yuichi
1992-10-01
The conformational motion of a polymethylene molecule constrained by a cylindrical potential is simulated up to 100 ps. The molecule consists of 60 CH2 groups and has variable bond lengths, bond angles, and dihedral angles. Our main concern here is the excitation and the dynamics of the conformational defects: kinks, jogs, etc. Under weaker constraint a number of gauche bonds are excited; they mostly form pairs such as gtḡ kinks or gtttḡ jogs. These conformational defects show no continuous drift in space. Instead they often annihilate and then recreate at different sites showing apparently random positional changes. The conformational defects produce characteristic strain fields around them. It seems that the conformational defects interact attractively through these strain fields. This is evidenced by remarkably correlated spatial distributions of the gauche bonds.
NASA Astrophysics Data System (ADS)
Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.
2015-02-01
The FTIR and FT Raman spectra of the second generation dendrimer G‧2 built from thiophosphoryl core with terminal aldehyde groups have been recorded. The structural optimization and normal mode analysis were performed for model compound C, consisting of thiophosphoryl core, one branch with three repeated units, and four 4-oxybenzaldehyde terminal groups on the basis of the density functional theory (DFT) at the PBE/TZ2P level. The vibrational frequencies, infrared and Raman intensities for the t,g,g- and t,-g,g-conformers of the terminal groups were calculated. The t,g,g-conformer is 2.0 kcal/mol less stable compared to t,-g,g-conformer. A reliable assignment of the fundamental bands observed in the experimental IR and Raman spectra of dendrimer was achieved. For the low generations (G‧1 to G‧3) the disk form of studied dendrimer molecules is the most probable. For higher generations, the shape of dendrimer molecules will be that of a cauliflower.
Trigo-Mouriño, Pablo; de la Fuente, M Carmen; Gil, Roberto R; Sánchez-Pedregal, Víctor M; Navarro-Vázquez, Armando
2013-10-25
The conformational state of 8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (lorcaserin) in water has been determined on the basis of one-bond and long-range C-H residual dipolar coupling (RDC) data along with DFT computations and (3)J(HH) coupling-constant analysis. According to this analysis, lorcaserin exists as a conformational equilibrium of two crown-chair forms, of which the preferred conformation has the methyl group in an equatorial orientation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Relationship between ion pair geometries and electrostatic strengths in proteins.
Kumar, Sandeep; Nussinov, Ruth
2002-01-01
The electrostatic free energy contribution of an ion pair in a protein depends on two factors, geometrical orientation of the side-chain charged groups with respect to each other and the structural context of the ion pair in the protein. Conformers in NMR ensembles enable studies of the relationship between geometry and electrostatic strengths of ion pairs, because the protein structural contexts are highly similar across different conformers. We have studied this relationship using a dataset of 22 unique ion pairs in 14 NMR conformer ensembles for 11 nonhomologous proteins. In different NMR conformers, the ion pairs are classified as salt bridges, nitrogen-oxygen (N-O) bridges and longer-range ion pairs on the basis of geometrical criteria. In salt bridges, centroids of the side-chain charged groups and at least a pair of side-chain nitrogen and oxygen atoms of the ion-pairing residues are within a 4 A distance. In N-O bridges, at least a pair of the side-chain nitrogen and oxygen atoms of the ion-pairing residues are within 4 A distance, but the distance between the side-chain charged group centroids is greater than 4 A. In the longer-range ion pairs, the side-chain charged group centroids as well as the side-chain nitrogen and oxygen atoms are more than 4 A apart. Continuum electrostatic calculations indicate that most of the ion pairs have stabilizing electrostatic contributions when their side-chain charged group centroids are within 5 A distance. Hence, most (approximately 92%) of the salt bridges and a majority (68%) of the N-O bridges are stabilizing. Most (approximately 89%) of the destabilizing ion pairs are the longer-range ion pairs. In the NMR conformer ensembles, the electrostatic interaction between side-chain charged groups of the ion-pairing residues is the strongest for salt bridges, considerably weaker for N-O bridges, and the weakest for longer-range ion pairs. These results suggest empirical rules for stabilizing electrostatic interactions in proteins. PMID:12202384
Vila, Jorge A.; Scheraga, Harold A.
2008-01-01
Interest centers here on the analysis of two different, but related, phenomena that affect side-chain conformations and consequently 13Cα chemical shifts and their applications to determine, refine, and validate protein structures. The first is whether 13Cα chemical shifts, computed at the DFT level of approximation with charged residues is a better approximation of observed 13Cα chemical shifts than those computed with neutral residues for proteins in solution. Accurate computation of 13Cα chemical shifts requires a proper representation of the charges, which might not take on integral values. For this analysis, the charges for 139 conformations of the protein ubiquitin were determined by explicit consideration of protein binding equilibria, at a given pH, that is, by exploring the 2ξ possible ionization states of the whole molecule, with ξ being the number of ionizable groups. The results of this analysis, as revealed by the shielding/deshield-ing of the 13Cα nucleus, indicated that: (i) there is a significant difference in the computed 13Cα chemical shifts, between basic and acidic groups, as a function of the degree of charge of the side chain; (ii) this difference is attributed to the distance between the ionizable groups and the 13Cα nucleus, which is shorter for the acidic Asp and Glu groups as compared with that for the basic Lys and Arg groups; and (iii) the use of neutral, rather than charged, basic and acidic groups is a better approximation of the observed 13Cα chemical shifts of a protein in solution. The second is how side-chain flexibility influences computed 13Cα chemical shifts in an additional set of ubiquitin conformations, in which the side chains are generated from an NMR-derived structure with the backbone conformation assumed to be fixed. The 13Cα chemical shift of a given amino acid residue in a protein is determined, mainly, by its own backbone and side-chain torsional angles, independent of the neighboring residues; the conformation of a given residue itself, however, depends on the environment of this residue and, hence, on the whole protein structure. As a consequence, this analysis reveals the role and impact of an accurate side-chain computation in the determination and refinement of protein conformation. The results of this analysis are: (i) a lower error between computed and observed 13Cα chemical shifts (by up to 3.7 ppm), was found for ~68% and ~63% of all ionizable residues and all non-Ala/Pro/Gly residues, respectively, in the additional set of conformations, compared with results for the model from which the set was derived; and (ii) all the additional conformations exhibit a lower root-mean-square-deviation (1.97 ppm ≤ rmsd ≤ 2.13 ppm), between computed and observed 13Cα chemical shifts, than the rmsd (2.32 ppm) computed for the starting conformation from which this additional set was derived. As a validation test, an analysis of the additional set of ubiquitin conformations, comparing computed and observed values of both 13Cα chemical shifts and χ1 torsional angles (given by the vicinal coupling constants, 3JN–Cγ and 3JC′–Cγ, is discussed. PMID:17975838
Yahi, Nouara; Aulas, Anaïs; Fantini, Jacques
2010-02-05
Membrane lipids play a pivotal role in the pathogenesis of Alzheimer's disease, which is associated with conformational changes, oligomerization and/or aggregation of Alzheimer's beta-amyloid (Abeta) peptides. Yet conflicting data have been reported on the respective effect of cholesterol and glycosphingolipids (GSLs) on the supramolecular assembly of Abeta peptides. The aim of the present study was to unravel the molecular mechanisms by which cholesterol modulates the interaction between Abeta(1-40) and chemically defined GSLs (GalCer, LacCer, GM1, GM3). Using the Langmuir monolayer technique, we show that Abeta(1-40) selectively binds to GSLs containing a 2-OH group in the acyl chain of the ceramide backbone (HFA-GSLs). In contrast, Abeta(1-40) did not interact with GSLs containing a nonhydroxylated fatty acid (NFA-GSLs). Cholesterol inhibited the interaction of Abeta(1-40) with HFA-GSLs, through dilution of the GSL in the monolayer, but rendered the initially inactive NFA-GSLs competent for Abeta(1-40) binding. Both crystallographic data and molecular dynamics simulations suggested that the active conformation of HFA-GSL involves a H-bond network that restricts the orientation of the sugar group of GSLs in a parallel orientation with respect to the membrane. This particular conformation is stabilized by the 2-OH group of the GSL. Correspondingly, the interaction of Abeta(1-40) with HFA-GSLs is strongly inhibited by NaF, an efficient competitor of H-bond formation. For NFA-GSLs, this is the OH group of cholesterol that constrains the glycolipid to adopt the active L-shape conformation compatible with sugar-aromatic CH-pi stacking interactions involving residue Y10 of Abeta(1-40). We conclude that cholesterol can either inhibit or facilitate membrane-Abeta interactions through fine tuning of glycosphingolipid conformation. These data shed some light on the complex molecular interplay between cell surface GSLs, cholesterol and Abeta peptides, and on the influence of this molecular ballet on Abeta-membrane interactions.
Design, Conformation, and Crystallography of 2-Naphthyl Phenyl Ethers as Potent Anti-HIV Agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Won-Gil; Chan, Albert H.; Spasov, Krasimir A.
Catechol diethers that incorporate a 7-cyano-2-naphthyl substituent are reported as non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs). Many of the compounds have 1–10 nM potencies toward wild-type HIV-1. An interesting conformational effect allows two unique conformers for the naphthyl group in complexes with HIV-RT. X-ray crystal structures for 4a and 4f illustrate the alternatives.
NASA Astrophysics Data System (ADS)
Strino, Francesco; Lii, Jenn-Huei; Koppisetty, Chaitanya A. K.; Nyholm, Per-Georg; Gabius, Hans-Joachim
2010-12-01
The identification of glycan epitopes such as the histo-blood group ABH determinants as docking sites for bacterial/viral infections and signals in growth regulation fuels the interest to develop non-hydrolysable mimetics for therapeutic applications. Inevitably, the required substitution of the linkage oxygen atom will alter the derivative's topology. Our study addresses the question of the impact of substitution of oxygen by selenium. In order to characterize spatial parameters and flexibility of selenoglycosides, we first performed ab initio calculations on model compounds to refine the MM4 force field. The following application of the resulting MM4R version appears to reduce the difference to ab initio data when compared to using the MM4 estimator. Systematic conformational searches on the derivatives of histo-blood group ABH antigens revealed increased flexibility with acquisition of additional low-energy conformer(s), akin to the behavior of S-glycosides. Docking analysis using the Glide program for eight test cases indicated potential for bioactivity, giving further experimental investigation a clear direction to testing Se-glycosides as lectin ligands.
Exciplex and excimer molecular probes: detection of conformational flip in a myo-inositol chair.
Kadirvel, Manikandan; Arsic, Biljana; Freeman, Sally; Bichenkova, Elena V
2008-06-07
2-O-tert-Butyldimethylsilyl-4,6-bis-O-pyrenoyl-myo-inositol-1,3,5-orthoformate (6) and 2-O-tert-butyldimethylsilyl-4-O-[4-(dimethylamino)benzoyl]-6-O-pyrenoyl-myo-inositol-1,3,5-orthoacetate (10) adopt conformationally restricted unstable chairs with five axial substituents. In the symmetrical diester 6, the two pi-stacked pyrenoyl groups are electron acceptor-donor partners, giving a strong intramolecular excimer emission. In the mixed ester 10, the pyrenoyl group is the electron acceptor and the 4-(dimethylamino)benzoyl ester is the electron donor, giving a strong intramolecular exciplex emission. The conformation of the mixed ester 10 was assessed using 1H NMR spectroscopy (1H-NOESY) and computational studies. which showed the minimum inter-centroid distance between the two aromatic systems to be approximately 3.9 A. Upon addition of acid, the orthoformate/orthoacetate trigger in 6 and 10 was cleaved, which caused a switch of the conformation of the myo-inositol ring to the more stable penta-equatorial chair, leading to separation of the aromatic ester groups and loss of excimer and exciplex fluorescence, respectively. This study provides proof of principle for the development of novel fluorescent molecular probes.
Ruiz, Duncan D. A.; Norberto de Souza, Osmar
2015-01-01
Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward’s, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill biologically relevant information from MD trajectories, especially for docking purposes. PMID:26218832
De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D A; Norberto de Souza, Osmar
2015-01-01
Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward's, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill biologically relevant information from MD trajectories, especially for docking purposes.
Free energy landscapes of peptides by enhanced conformational sampling.
Nakajima, N; Higo, J; Kidera, A; Nakamura, H
2000-02-11
The free energy landscapes of peptide conformations in water have been observed by the enhanced conformational sampling method, applying the selectively enhanced multicanonical molecular dynamics simulations. The conformations of the peptide dimers, -Gly-Gly-, -Gly-Ala-, -Gly-Ser-, -Ala-Gly-, -Asn-Gly-, -Pro-Gly-, -Pro-Ala-, and -Ala-Ala-, which were all blocked with N-terminal acetyl and C-terminal N-methyl groups, were individually sampled with the explicit TIP3P water molecules. From each simulation trajectory, we obtained the canonical ensemble at 300 K, from which the individual three-dimensional landscape was drawn by the potential of mean force using the three reaction coordinates: the backbone dihedral angle, psi, of the first amino acid, the backbone dihedral angle, phi, of the second amino acid, and the distance between the carbonyl oxygen of the N-terminal acetyl group and the C-terminal amide proton. The most stable state and several meta-stable states correspond to extended conformations and typical beta-turn conformations, and their free energy values were accounted for from the potentials of mean force at the states. In addition, the contributions from the intra-molecular energies of peptides and those from the hydration effects were analyzed. Consequently, the stable beta-turn conformations in the free energy landscape were consistent with the empirically preferred beta-turn types for each amino acid sequence. The thermodynamic values for the hydration effect were decomposed and they correlated well with the empirical values estimated from the solvent accessible surface area of each molecular conformation during the trajectories. The origin of the architecture of protein local fragments was analyzed from the viewpoint of the free energy and its decomposed factors. Copyright 2000 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gokulan, Kuppan; Aggarwal, Anup; Shipman, Lance
2011-07-01
Bacterial acyl carrier protein synthase plays an essential role in the synthesis of fatty acids, nonribosomal peptides and polyketides. In Mycobacterium tuberculosis, AcpS or group I phosphopentatheine transferase exhibits two different structural conformations depending upon the pH. The crystal structures of acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) and Corynebacterium ammoniagenes determined at pH 5.3 and pH 6.5, respectively, are reported. Comparison of the Mtb apo-AcpS structure with the recently reported structure of the Mtb AcpS–ADP complex revealed that AcpS adopts two different conformations: the orthorhombic and trigonal space-group structures show structural differences in the α2 helix andmore » in the conformation of the α3–α4 connecting loop, which is in a closed conformation. The apo-AcpS structure shows electron density for the entire model and was obtained at lower pH values (4.4–6.0). In contrast, at a higher pH value (6.5) AcpS undergoes significant conformational changes, resulting in disordered regions that show no electron density in the AcpS model. The solved structures also reveal that C. ammoniagenes AcpS undergoes structural rearrangement in two regions, similar to the recently reported Mtb AcpS–ADP complex structure. In vitro reconstitution experiments show that AcpS has a higher post-translational modification activity between pH 4.4 and 6.0 than at pH values above 6.5, where the activity drops owing to the change in conformation. The results show that apo-AcpS and AcpS–ADP adopt different conformations depending upon the pH conditions of the crystallization solution.« less
Basic Theory of Fractional Conformal Invariance of Mei Symmetry and its Applications to Physics
NASA Astrophysics Data System (ADS)
Luo, Shao-Kai; Dai, Yun; Yang, Ming-Jing; Zhang, Xiao-Tian
2018-04-01
In this paper, we present a basic theory of fractional dynamics, i.e., the fractional conformal invariance of Mei symmetry, and find a new kind of conserved quantity led by fractional conformal invariance. For a dynamical system that can be transformed into fractional generalized Hamiltonian representation, we introduce a more general kind of single-parameter fractional infinitesimal transformation of Lie group, the definition and determining equation of fractional conformal invariance are given. And then, we reveal the fractional conformal invariance of Mei symmetry, and the necessary and sufficient condition whether the fractional conformal invariance would be the fractional Mei symmetry is found. In particular, we present the basic theory of fractional conformal invariance of Mei symmetry and it is found that, using the new approach, we can find a new kind of conserved quantity; as a special case, we find that an autonomous fractional generalized Hamiltonian system possesses more conserved quantities. Also, as the new method's applications, we, respectively, find the conserved quantities of a fractional general relativistic Buchduhl model and a fractional Duffing oscillator led by fractional conformal invariance of Mei symmetry.
Menon, Binuraj R K; Menon, Navya; Fisher, Karl; Rigby, Stephen E J; Leys, David; Scrutton, Nigel S
2015-01-01
How cobalamin-dependent enzymes promote C–Co homolysis to initiate radical catalysis has been debated extensively. For the pyridoxal 5′-phosphate and cobalamin-dependent enzymes lysine 5,6-aminomutase and ornithine 4,5-aminomutase (OAM), large-scale re-orientation of the cobalamin-binding domain linked to C–Co bond breakage has been proposed. In these models, substrate binding triggers dynamic sampling of the B12-binding Rossmann domain to achieve a catalytically competent ‘closed’ conformational state. In ‘closed’ conformations of OAM, Glu338 is thought to facilitate C–Co bond breakage by close association with the cobalamin adenosyl group. We investigated this using stopped-flow continuous-wave photolysis, viscosity dependence kinetic measurements, and electron paramagnetic resonance spectroscopy of a series of Glu338 variants. We found that substrate-induced C–Co bond homolysis is compromised in Glu388 variant forms of OAM, although photolysis of the C–Co bond is not affected by the identity of residue 338. Electrostatic interactions of Glu338 with the 5′-deoxyadenosyl group of B12 potentiate C–Co bond homolysis in ‘closed’ conformations only; these conformations are unlocked by substrate binding. Our studies extend earlier models that identified a requirement for large-scale motion of the cobalamin domain. Our findings indicate that large-scale motion is required to pre-organize the active site by enabling transient formation of ‘closed’ conformations of OAM. In ‘closed’ conformations, Glu338 interacts with the 5′-deoxyadenosyl group of cobalamin. This interaction is required to potentiate C–Co homolysis, and is a crucial component of the approximately 1012 rate enhancement achieved by cobalamin-dependent enzymes for C–Co bond homolysis. PMID:25627283
The Ligand Trans Influence Governs Conformation in Cobalamin-Dependent Methionine Synthase†
Fleischhacker, Angela S.; Matthews, Rowena G.
2008-01-01
Cobalamin-dependent methionine synthase (MetH) of Escherichia coli is a large, modular enzyme that uses a cobalamin prosthetic group as a donor or acceptor in three separate methyl transfer reactions. The prosthetic group alternates between methylcobalamin and cob(I)alamin during catalysis as homocysteine is converted to methionine using a methyl group derived from methyltetrahydrofolate. Occasional oxidation of cob(I)alamin to cob(II)alamin inactivates the enzyme. Reductive methylation with flavodoxin and adenosylmethionine returns the enzyme to an active methylcobalamin state. At different points during the reaction cycle, the coordination of the cobalt of the cobalamin changes. The imidazole side chain of His759 coordinates to cobalamin in a “His-on” state and dissociates to produce a “His-off” state. The His-off state has been associated with a conformation of MetH that is poised for reactivation of cobalamin by reductive methylation rather than catalysis. Our studies on cob(III)alamins bound to MetH, specifically aqua-, methyl-, and n-propylcobalamin, show a correlation between the accessibility of the reactivation conformation and the order of the established ligand trans influence. The trans influence also controls the affinity of MetH in the cob(III)alamin form for flavodoxin. Flavodoxin, which acts to shift the conformational equilibrium towards the reactivation conformation, binds less tightly to MetH when the cob(III)alamin has a strong trans ligand and therefore has less positive charge on cobalt. These results are compared to those for cob(II)alamin MetH, illustrating that access to the reactivation conformation is governed by the net charge on the cobalt as well as the trans influence in cob(III)alamins. PMID:17924667
Role of gender norms and group identification on hypothetical and experimental pain tolerance.
Pool, Gregory J; Schwegler, Andria F; Theodore, Brian R; Fuchs, Perry N
2007-05-01
Previous research indicates that men typically tolerate more pain in experimental settings than women. One likely explanation for these group differences in pain tolerance is conformity to traditional, gender group social norms (i.e., the ideal man is masculine and tolerates more pain; the ideal woman is feminine and tolerates less pain). According to self-categorization theory, norms guide behavior to the degree that group members adopt the group identity. Therefore, high-identifying men are expected to conform to gender norms and tolerate more pain than high-identifying women who conform to different gender norms as a guide for their behavior. We conducted two studies to investigate whether gender group identification moderates individuals' conformity to pain tolerance and reporting norms. In the first study, participants indicated their gender identification and expected tolerance of a hypothetical painful stimulus. As anticipated, high-identifying men reported significantly greater pain tolerance than high-identifying women. No differences existed between low-identifying men and women. To determine if self-reported pain tolerance in a role-playing scenario corresponds to actual pain tolerance in an experimental setting, the second study examined pain tolerance to a noxious stimulus induced by electrical stimulation of the index finger. The experimental outcome revealed that high-identifying men tolerated more painful stimulation than high-identifying women. Further, high-identifying men tolerated more pain than low-identifying men. These results highlight the influence of social norms on behavior and suggest the need to further explore the role of norms in pain reporting behaviors.
Conformational dynamics of ATP/Mg:ATP in motor proteins via data mining and molecular simulation.
Bojovschi, A; Liu, Ming S; Sadus, Richard J
2012-08-21
The conformational diversity of ATP/Mg:ATP in motor proteins was investigated using molecular dynamics and data mining. Adenosine triphosphate (ATP) conformations were found to be constrained mostly by inter cavity motifs in the motor proteins. It is demonstrated that ATP favors extended conformations in the tight pockets of motor proteins such as F(1)-ATPase and actin whereas compact structures are favored in motor proteins such as RNA polymerase and DNA helicase. The incorporation of Mg(2+) leads to increased flexibility of ATP molecules. The differences in the conformational dynamics of ATP/Mg:ATP in various motor proteins was quantified by the radius of gyration. The relationship between the simulation results and those obtained by data mining of motor proteins available in the protein data bank is analyzed. The data mining analysis of motor proteins supports the conformational diversity of the phosphate group of ATP obtained computationally.
Direct observation of fast protein conformational switching.
Ishikawa, Haruto; Kwak, Kyungwon; Chung, Jean K; Kim, Seongheun; Fayer, Michael D
2008-06-24
Folded proteins can exist in multiple conformational substates. Each substate reflects a local minimum on the free-energy landscape with a distinct structure. By using ultrafast 2D-IR vibrational echo chemical-exchange spectroscopy, conformational switching between two well defined substates of a myoglobin mutant is observed on the approximately 50-ps time scale. The conformational dynamics are directly measured through the growth of cross peaks in the 2D-IR spectra of CO bound to the heme active site. The conformational switching involves motion of the distal histidine/E helix that changes the location of the imidazole side group of the histidine. The exchange between substates changes the frequency of the CO, which is detected by the time dependence of the 2D-IR vibrational echo spectrum. These results demonstrate that interconversion between protein conformational substates can occur on very fast time scales. The implications for larger structural changes that occur on much longer time scales are discussed.
NASA Astrophysics Data System (ADS)
Mutoh, Atsuko; Tokuhara, Shinya; Kanoh, Masayoshi; Oboshi, Tamon; Kato, Shohei; Itoh, Hidenori
It is generally thought that living things have trends in their preferences. The mechanism of occurrence of another trends in successive periods is concerned in their conformity. According to social impact theory, the minority is always exists in the group. There is a possibility that the minority make the transition to the majority by conforming agents. Because of agent's promotion of their conform actions, the majority can make the transition. We proposed an evolutionary model with both genes and memes, and elucidated the interaction between genes and memes on sexual selection. In this paper, we propose an agent model for sexual selection imported the concept of conformity. Using this model we try an environment where male agents and female agents are existed, we find that periodic phenomena of fashion are expressed. And we report the influence of conformity and differentiation on the transition of their preferences.
Agravity up to infinite energy
NASA Astrophysics Data System (ADS)
Salvio, Alberto; Strumia, Alessandro
2018-02-01
The self-interactions of the conformal mode of the graviton are controlled, in dimensionless gravity theories (agravity), by a coupling f_0 that is not asymptotically free. We show that, nevertheless, agravity can be a complete theory valid up to infinite energy. When f_0 grows to large values, the conformal mode of the graviton decouples from the rest of the theory and does not hit any Landau pole provided that scalars are asymptotically conformally coupled and all other couplings approach fixed points. Then agravity can flow to conformal gravity at infinite energy. We identify scenarios where the Higgs mass does not receive unnaturally large physical corrections. We also show a useful equivalence between agravity and conformal gravity plus two extra conformally coupled scalars, and we give a simpler form for the renormalization group equations of dimensionless couplings as well as of massive parameters in the presence of the most general matter sector.
Conformational responses to changes in the state of ionization of titrable groups in proteins
NASA Astrophysics Data System (ADS)
Richman, Daniel Eric
Electrostatic energy links the structural properties of proteins with some of their important biological functions, including catalysis, energy transduction, and binding and recognition. Accurate calculation of electrostatic energy is essential for predicting and for analyzing function from structure. All proteins have many ionizable residues at the protein-water interface. These groups tend to have ionization equilibria (pK a values) shifted slightly relative to their values in water. In contrast, groups buried in the hydrophobic interior usually have highly anomalous p Ka values. These shifts are what structure-based calculations have to reproduce to allow examination of contributions from electrostatics to stability, solubility and interactions of proteins. Electrostatic energies are challenging to calculate accurately because proteins are heterogeneous dielectric materials. Any individual ionizable group can experience very different local environments with different dielectric properties. The studies in this thesis examine the hypothesis that proteins reorganize concomitant with changes in their state of ionization. It appears that the pKa value measured experimentally reflects the average of pKa values experienced in the different electrostatic environments corresponding to different conformational microstates. Current computational models fail to sample conformational reorganization of the backbone correctly. Staphyloccocal nuclease (SNase) was used as a model protein in nuclear magnetic resonance (NMR) spectroscopy studies to characterize the conformational rearrangements of the protein coupled to changes in the ionization state of titrable groups. One set of experiments tests the hypothesis that proton binding to surface Asp and Glu side chains drives local unfolding by stabilizing less-native, more water-solvated conformations in which the side chains have normalized pKa values. Increased backbone flexibility in the ps-ns timescale, hydrogen bond (H-bond) breaking on at least the mus timescale, and segmental unfolding were detected near titrating groups as pH decreased into the acidic range. The study identified local structural features and stabilities that modulate the magnitude of electrostatic effects. The data demonstrate that computational approaches to pK a calculations for surface groups must account for local fluctuations spanning a wide range of timescales. A comparative NMR spectroscopy study with the L25K and L125K variants of SNase, each with a Lys residue buried in the hydrophobic interior of the protein, determined locations, timescales, and amplitudes of backbone conformational reorganization coupled with ionization of the buried Lys residues. The L25K protein exhibited an ensemble of local fluctuations of the beta barrel in the hundreds of mus timescale and an ensemble of subglobally unfolded beta-barrel states in the hundreds of ms timescale with strong pH dependence. The L125K protein exhibited fluctuations of the helix around site 125 in the mus timescale, with negligible pH dependence. These data illustrate the diverse timescales and local structural properties of conformational reorganization coupled to ionization of buried groups, and the challenge to structure-based electrostatics calculations, which must capture these long-timescale processes.
RIEMANNIAN MANIFOLDS ADMITTING A CONFORMAL TRANSFORMATION GROUP
Yano, Kentaro
1969-01-01
Let M be a Riemannian manifold with constant scalar curvature K which admits an infinitesimal conformal transformation. A necessary and sufficient condition in order that it be isometric with a sphere is obtained. Inequalities giving upper and lower bounds for K are also derived. PMID:16578692
Group identity and positive deviance in work groups.
Kim, Moon Joung; Choi, Jin Nam
2017-12-05
This study examines why and how identity cognitions, including group identification and individual differentiation, influence the positive deviance of employees. We identify the risk-taking intention of employees as a critical psychological mechanism to overcome stigma-induced identity threat of positive deviance. The analysis of data collected from 293 members comprising 66 work teams reveals that the relationship between individual differentiation and positive deviance is partially mediated by risk-taking intention. The indirect effect of group identification on positive deviance through risk-taking intention is also significant and positive in groups with low conformity pressure, whereas the same indirect effect is neutralized in groups with high conformity pressure. The current analysis offers new insights into the way the group context and the identity cognition of members explain the development of positive deviance and workplace creativity.
Beyond the Bend: Exploring the Conformational Landscape of Decyl, Undecyl, and Dodecylbenzene
NASA Astrophysics Data System (ADS)
Hewett, Daniel M.; Zwier, Timothy S.
2017-06-01
Alkylbenzenes are important components in the combustion process: they make up 20-30% of petroleum fuels and are intermediates on the pathway to soot formation. Understanding their conformational preferences is a vital step in understanding the processes by which fuels begin their journey from small, simple hydrocarbons into the large, graphitic masses of soot. Previous work done in our group, in collaboration with the Sibert group, found that the smallest alkylbenzene which folds its chain back over the ring is octylbenzene. The population of the lone folded structure in octylbenzene is low; however, theory predicts a rapid stabilization of the folded conformations relative to more extended structures as the chain length is increased, suggesting a likely shift in population towards folded structures. This talk will focus on our exploration of this possibility by discussing the UV excitation and single conformation IR spectra of decyl, undecyl, and dodecylbenzene, where increasing chain length allows for multiple stable folded configurations.
Revilla-López, Guillem; Torras, Juan; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos
2009-01-01
The intrinsic conformational preferences of the non-proteinogenic amino acids constructed by incorporating the arginine side chain in the β position of 1-aminocyclopentane-1-carboxylic acid (either in a cis or a trans orientation relative to the amino group) have been investigated using computational methods. These compounds may be considered as constrained analogues of arginine (denoted as c5Arg) in which the orientation of the side chain is fixed by the cyclopentane moiety. Specifically, the N-acetyl-N′-methylamide derivatives of cis and trans-c5Arg have been examined in the gas phase and in solution using B3LYP/6-311+G(d,p) calculations and Molecular Dynamics simulations. Results indicate that the conformational space available to these compounds is highly restricted, their conformational preferences being dictated by the ability of the guanidinium group in the side chain to establish hydrogen-bond interactions with the backbone. A comparison with the behavior previously described for the analogous phenylalanine derivatives is presented. PMID:19236034
Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation.
Seufert, Knud; Bocquet, Marie-Laure; Auwärter, Willi; Weber-Bargioni, Alexander; Reichert, Joachim; Lorente, Nicolás; Barth, Johannes V
2011-02-01
Diatomic molecules attached to complexed iron or cobalt centres are important in many biological processes. In natural systems, metallotetrapyrrole units carry respiratory gases or provide sensing and catalytic functions. Conceiving synthetic model systems strongly helps to determine the pertinent chemical foundations for such processes, with recent work highlighting the importance of the prosthetic groups' conformational flexibility as an intricate variable affecting their functional properties. Here, we present simple model systems to investigate, at the single molecule level, the interaction of carbon monoxide with saddle-shaped iron- and cobalt-porphyrin conformers, which have been stabilized as two-dimensional arrays on well-defined surfaces. Using scanning tunnelling microscopy we identified a novel bonding scheme expressed in tilted monocarbonyl and cis-dicarbonyl configurations at the functional metal-macrocycle unit. Modelling with density functional theory revealed that the weakly bonded diatomic carbonyl adduct can effectively bridge specific pyrrole groups with the metal atom as a result of the pronounced saddle-shape conformation of the porphyrin cage.
Millimeter and submillimeter wave spectroscopy of propanal
NASA Astrophysics Data System (ADS)
Zingsheim, Oliver; Müller, Holger S. P.; Lewen, Frank; Jørgensen, Jes K.; Schlemmer, Stephan
2017-12-01
The rotational spectra of the two stable conformers syn- and gauche-propanal (CH3CH2CHO) were studied in the millimeter and submillimeter wave regions from 75 to 500 GHz with the Cologne (Sub-)Millimeter wave Spectrometer. Furthermore, the first excited states associated with the aldehyde torsion and with the methyl torsion, respectively, of the syn-conformer were analyzed. The newly obtained spectroscopic parameters yield better predictions, thus fulfill sensitivity and resolution requirements in new astronomical observations in order to unambiguously assign pure rotational transitions of propanal. This is demonstrated on a radio astronomical spectrum from the Atacama Large Millimeter/submillimeter Array Protostellar Interferometric Line Survey (ALMA-PILS). In particular, an accurate description of observed splittings, caused by internal rotation of the methyl group in the syn-conformer and by tunneling rotation interaction from two stable degenerate gauche-conformers, is reported. The rotational spectrum of propanal is of additional interest because of its two large amplitude motions pertaining to the methyl and the aldehyde group, respectively.
Conformational Changes of the Alanine Dipeptide in Water-Ethanol Binary Mixtures.
Almeida, Glauco G; Cordeiro, João M M; Martín, M Elena; Aguilar, Manuel A
2016-04-12
Experimental work developed in the last years has evidenced the capacity of alcohols and polyalcohols to modify the energy landscape of peptides and proteins. However, the mechanism underlying this effect is not clear. Taking as a model system the alanine dipeptide (AD) we perform a QM/MM study in water, ethanol, and a 40-60% in volume water-ethanol mixture. The AD molecule was described at the MP2/aug-cc-pVDZ level. In polar solution, only αR and PPII conformers contribute in an appreciable way to the conformational equilibrium. The final in solution αR-PPII free energy difference is determined from the interplay between the internal energy of the dipeptide and the solute-solvent interaction free energy. Internal energy favors the formation of PPII, whereas, on the contrary, solute-solvent interaction is favorable to αR, so any factor that decreases the solute-solvent interaction free energy will increase the PPII population. The addition of ethanol increases the stability of the PPII conformer. Our results point to the presence of preferential solvation in this system, the composition of the first solvation shell in the binary mixture being dominated by water molecules. Remarkably, this fact does not affect the differential conformational stability that is controlled by long-range interactions. From the analysis of solvent density maps it is concluded that, in the water-ethanol mixture, ethanol molecules are more likely found around the alanine side chain and the carbonyl group, but while in PPII ethanol molecules interact mainly with the carbonyl group of the N-terminal end, in C5 the interaction is with the carbonyl group of the C-terminal end. In αR, ethanol interacts with both carbonyl groups.
Erdmann, Roman S; Wennemers, Helma
2012-10-17
The effect of sterically demanding groups at proline residues on the conformational stability of the collagen triple helix was examined. The thermal stabilities (T(m) and ΔG) of eight different triple helices derived from collagen model peptides with (4R)- or (4S)-configured amidoprolines bearing either methyl or bulkier tert-butyl groups in the Xaa or Yaa position were determined and served as a relative measure for the conformational stability of the corresponding collagen triple helices. The results show that sterically demanding substituents are tolerated in the collagen triple helix when they are attached to (4R)-configured amidoprolines in the Xaa position or to (4S)-configured amidoprolines in the Yaa position. Structural studies in which the preferred conformation of (4R)- or (4S)-configured amidoproline were overlaid with the Pro and Hyp residues within a crystal structure of collagen revealed that the sterically demanding groups point to the outside of these two triple helices and thereby do not interfere with the formation of the triple helix. In all of the other examined collagen derivatives with lower stability of the triple helices, the acetyl or pivaloyl residues point toward the inside of the triple helix and clash with a residue of the neighboring strand. The results also revealed that unfavorable steric dispositions affect the conformational stability of the collagen triple helix more than unfavorable ring puckers of the proline residues. The results are useful for the design of functionalized collagen based materials.
Vogel, David L; Heimerdinger-Edwards, Sarah R; Hammer, Joseph H; Hubbard, Asale
2011-07-01
The role of conformity to dominant U.S. masculine norms as an antecedent to help-seeking attitudes in men has been established using convenience samples made up largely of college-age and European American males. However, the role of conformity to masculine norms on help-seeking attitudes for noncollege-age men or for men from diverse backgrounds is not well understood. To fill this gap in the literature, the present study examined the cross-cultural relevance of a mediational model of the relationships between conformity to dominant U.S. masculine norms and attitudes toward counseling through the mediator of self-stigma of seeking counseling for 4,773 men from both majority and nonmajority populations (race/ethnicity and sexual orientation). Structural equation modeling results showed that the model established using college males from majority groups (European American, heterosexual) may be applicable to a community sample of males from differing racial/ethnic groups and sexual orientations. However, some important differences in the presence and strengths of the relationships between conformity to dominant masculine norms and the other variables in the model were present across different racial/ethnic groups and sexual orientations. These findings suggest the need to pay specific theoretical and clinical attention to how conformity to dominant masculine norms and self-stigma are linked to unfavorable attitudes toward help seeking for these men, in order to encourage underserved men's help-seeking behavior.
Conformational analysis and circular dichroism of bilirubin, the yellow pigment of jaundice
NASA Astrophysics Data System (ADS)
Lightner, David A.; Person, Richard; Peterson, Blake; Puzicha, Gisbert; Pu, Yu-Ming; Bojadziev, Stefan
1991-06-01
Conformational analysis of (4Z, 15Z)-bilirubin-IX(alpha) by molecular mechanics computations reveals a global energy minimum folded conformation. Powerful added stabilization is achieved through intramolecular hydrogen bonding. Theoretical treatment of bilirubin as a molecular exciton predicts an intense bisignate circular dichroism spectrum for the folded conformation: (Delta) (epsilon) is congruent to 270 L (DOT) mole-1 (DOT) cm-1 for the $OM450 nm electronic transition(s). Synthesis of bilirubin analogs with propionic acid groups methylated at the (alpha) or (beta) position introduces an allosteric effect that allows for an optical resolution of the pigments, with enantiomers exhibiting the theoretically predicted circular dichroism.
The heavy atom microwave structure of 2-methyltetrahydrofuran
NASA Astrophysics Data System (ADS)
Van, Vinh; Stahl, Wolfgang; Nguyen, Ha Vinh Lam
2016-11-01
The rotational spectra of 2-methyltetrahydrofuran have been observed using a pulsed molecular beam Fourier transform microwave spectrometer operating in the frequency range 2-26.5 GHz. Conformational analysis using quantum chemical calculations yields two stable conformers; both of them possess an envelope structure. The conformational transformation can occur via two different transition states. The Cremer-Pople notation for five-membered rings is chosen for describing the conformations. Only one conformer with equatorial position of the methyl group is assigned in the experimental spectrum. The fits of its parent species, 13C- and 18O-isotopologues result in highly accurate molecular parameters, and enable the determination of a heavy atom rs structure using Kraitchman's equations. This experimentally determined structure is in excellent agreement with the structure calculated by anharmonic frequency calculations.
Reciprocity Outperforms Conformity to Promote Cooperation.
Romano, Angelo; Balliet, Daniel
2017-10-01
Evolutionary psychologists have proposed two processes that could give rise to the pervasiveness of human cooperation observed among individuals who are not genetically related: reciprocity and conformity. We tested whether reciprocity outperformed conformity in promoting cooperation, especially when these psychological processes would promote a different cooperative or noncooperative response. To do so, across three studies, we observed participants' cooperation with a partner after learning (a) that their partner had behaved cooperatively (or not) on several previous trials and (b) that their group members had behaved cooperatively (or not) on several previous trials with that same partner. Although we found that people both reciprocate and conform, reciprocity has a stronger influence on cooperation. Moreover, we found that conformity can be partly explained by a concern about one's reputation-a finding that supports a reciprocity framework.
Diehl, Carl; Engström, Olof; Delaine, Tamara; Håkansson, Maria; Genheden, Samuel; Modig, Kristofer; Leffler, Hakon; Ryde, Ulf; Nilsson, Ulf J; Akke, Mikael
2010-10-20
Rational drug design is predicated on knowledge of the three-dimensional structure of the protein-ligand complex and the thermodynamics of ligand binding. Despite the fundamental importance of both enthalpy and entropy in driving ligand binding, the role of conformational entropy is rarely addressed in drug design. In this work, we have probed the conformational entropy and its relative contribution to the free energy of ligand binding to the carbohydrate recognition domain of galectin-3. Using a combination of NMR spectroscopy, isothermal titration calorimetry, and X-ray crystallography, we characterized the binding of three ligands with dissociation constants ranging over 2 orders of magnitude. (15)N and (2)H spin relaxation measurements showed that the protein backbone and side chains respond to ligand binding by increased conformational fluctuations, on average, that differ among the three ligand-bound states. Variability in the response to ligand binding is prominent in the hydrophobic core, where a distal cluster of methyl groups becomes more rigid, whereas methyl groups closer to the binding site become more flexible. The results reveal an intricate interplay between structure and conformational fluctuations in the different complexes that fine-tunes the affinity. The estimated change in conformational entropy is comparable in magnitude to the binding enthalpy, demonstrating that it contributes favorably and significantly to ligand binding. We speculate that the relatively weak inherent protein-carbohydrate interactions and limited hydrophobic effect associated with oligosaccharide binding might have exerted evolutionary pressure on carbohydrate-binding proteins to increase the affinity by means of conformational entropy.
Teaching Techniques of Resistance to Unwarranted Social Pressure
ERIC Educational Resources Information Center
Richey, Harold W.
1976-01-01
Literature examining compliance with majority opinion, obedience to authority, maladaptive implications of such conformity and ways to counteract it is presented. Suggestions are given for making students aware of conformity and techniques of appropriate resistance. The special problem of peer group pressure for adolescents is considered. (Author)
Game Theory and Social Psychology: Conformity Games
NASA Astrophysics Data System (ADS)
Alessio, Danielle; Kilgour, D. Marc
2011-11-01
Game models can contribute to understanding of how social biases and pressures to conform can lead to puzzling behaviour in social groups. A model of the psychological biases false uniqueness and false consensus is set out. The model predicts the phenomenon of pluralistic ignorance, which is well-studied in social psychology, showing how it arises as a result of the prevalence of false uniqueness and the desire to conform. An efficient method is developed for finding Nash equilibria of the model under certain restrictions.
Dynamic optimization and conformity in health behavior and life enjoyment over the life cycle
Bejarano, Hernán D.; Kaplan, Hillard; Rassenti, Stephen
2015-01-01
This article examines individual and social influences on investments in health and enjoyment from immediate consumption. Our lab experiment mimics the problem of health investment over a lifetime (Grossman, 1972a,b). Incentives to find the appropriate expenditures on life enjoyment and health are given by making in each period come period a function of previous health investments. In order to model social effects in the experiment, we randomly assigned individuals to chat/observation groups. Groups were permitted to freely chat between repeated lifetimes. Two treatments were employed: In the Independent-rewards treatment, an individual's rewards from investments in life enjoyment depend only on his choice and in the Interdependent-rewards treatment; rewards not only depend on an individual's choices but also on their similarity to the choices of the others in their group, generating a premium on conformity. The principal hypothesis is that gains from conformity increase variance in health behavior among groups and can lead to suboptimal performance. We tested three predictions and each was supported by the data: the Interdependent-rewards treatment (1) decreased within-group variance, (2) increased between-group variance, and (3) increased the likelihood of behavior far from the optimum with respect to the dynamic problem. We also test and find support for a series of subsidiary hypotheses. We found: (4) Subjects engaged in helpful chat in both treatments; (5) there was significant heterogeneity among both subjects and groups in chat frequencies; and (6) chat was most common early in the experiment, and (7) the interdependent rewards treatment increased strategic chat frequency. Incentives for conformity appear to promote prosocial behavior, but also increase variance among groups, leading to convergence on suboptimal strategies for some groups. We discuss these results in light of the growing literature focusing on social networks and health outcomes. PMID:26136666
ERIC Educational Resources Information Center
McGrath, Joseph E.
1978-01-01
Summarizes research on small group processes by giving a comprehensive account of the types of variables primarily studied in the laboratory. These include group structure, group composition, group size, and group relations. Considers effects of power, leadership, conformity to social norms, and role relationships. (Author/AV)
Proline-based chiral stationary phases: a molecular dynamics study of the interfacial structure.
Ashtari, M; Cann, N M
2011-09-16
Proline chains have generated considerable interest as a possible basis for new selectors in chiral chromatography. In this article, we employ molecular dynamics simulations to examine the interfacial structure of two diproline chiral selectors, one with a terminal trimethylacetyl group and one with a terminal t-butyl carbamate group. The solvents consist of a relatively apolar n-hexane/2-propanol and a polar water/methanol mixture. We begin with electronic structure calculations for the two chiral selectors to assess the energetics of conformational changes, particularly along the backbone where the amide bonds can alternate between cis and trans conformations. Force fields have been developed for the two selectors, based on these ab initio calculations. Molecular dynamics simulations of the selective interfaces are performed to examine the preferred backbone conformations, as a function of end-group and solvent. The full chiral surface includes the diproline selectors, trimethylsilyl end-caps, and silanol groups. Connection is made with selectivity measurements on these interfaces, where significant differences are observed between these two very similar selectors. Copyright © 2011 Elsevier B.V. All rights reserved.
Shin, In Sub; Shimada, Yuta; Horiguchi-Babamoto, Emi; Matsumoto, Shinya
2018-04-01
We obtained two conformational polymorphs of 2,5-dichloro-3,6-bis(dibenzylamino)-p-hydroquinone, C 34 H 30 Cl 2 N 2 O 2 . Both polymorphs have an inversion centre at the centre of the hydroquinone ring (Z' = 1/2), and there are no significant differences between their bond lengths and angles. The most significant structural difference in the molecular conformations was found in the rotation of the phenyl rings of the two crystallographically independent benzyl groups. The crystal structures of the polymorphs were distinguishable with respect to the arrangement of the hydroquinone rings and the packing motif of the phenyl rings that form part of the benzyl groups. The phenyl groups of one polymorph are arranged in a face-to-edge motif between adjacent molecules, with intermolecular C-H...π interactions, whereas the phenyl rings in the other polymorph form a lamellar stacking pattern with no significant intermolecular interactions. We suggest that this partial conformational difference in the molecular structures leads to the significant structural differences observed in their molecular arrangements.
Mezzache, S; Pepe, C; Karoyan, P; Fournier, F; Tabet, J-C
2005-01-01
The proton affinity (PA) of cis/trans-3-prolinoleucines and cis/trans-3-prolinoglutamic acids have been studied by the kinetic method and density functional theory (DFT) calculations. Several conformations of the neutral and the protonated modified prolines, in particular the endo and exo ring conformations, were analyzed with respect to their contribution to the PA values. When the substituent is an alkyl, both the diastereoisomers have the same PA value. However, the PA values for the diastereoisomers are different when the substituted chain contains functional groups (e.g. a carboxyl group). This variation in PA values could be attributed to the existence of intramolecular hydrogen bonds. Copyright (c) 2005 John Wiley & Sons, Ltd.
Conformational analysis of cellobiose by electronic structure theories.
French, Alfred D; Johnson, Glenn P; Cramer, Christopher J; Csonka, Gábor I
2012-03-01
Adiabatic Φ/ψ maps for cellobiose were prepared with B3LYP density functional theory. A mixed basis set was used for minimization, followed with 6-31+G(d) single-point calculations, with and without SMD continuum solvation. Different arrangements of the exocyclic groups (38 starting geometries) were considered for each Φ/ψ point. The vacuum calculations agreed with earlier computational and experimental results on the preferred gas phase conformation (anti-Φ(H), syn-ψ(H)), and the results from the solvated calculations were consistent with the (syn Φ(H)/ψ(H) conformations from condensed phases (crystals or solutions). Results from related studies were compared, and there is substantial dependence on the solvation model as well as arrangements of exocyclic groups. New stabilizing interactions were revealed by Atoms-In-Molecules theory. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Glagoleva, A. A.; Vasilevskaya, V. V.; Yoshikawa, K.; Khokhlov, A. R.
2013-12-01
In general, bio-macromolecules are composed of hydrophilic and hydrophobic moieties and are confined within small cavities, such as cell membranes and intracellular organelles. Here, we studied the self-organization of macromolecules having groups with different affinities to solvents under spherical nano-scale confinement by means of computer modeling. It is shown that depending on the interaction parameters of monomer units composed of side- and main-chain monomer groups along a single linear macromolecule and on cavity size, such amphiphilic polymers undergo the conformational transitions between hollow nanospheres, rod-like and folded cylindrical structures, and a necklace conformation with and without a particular ordering of beads. The diagram of the conformations in the variables the incompatibility parameter of monomer units and the cavity radius is constructed.
NASA Astrophysics Data System (ADS)
Melo, Ulisses Zonta de; Yamazaki, Diego Alberto dos Santos; Cândido, Augusto de Araújo; Basso, Ernani Abicht; Gauze, Gisele de Freitas
2018-07-01
The three-dimensional structure of a potential drug molecule is of critical importance. Factors that determine its conformational stability and, consequently, corresponding biological/physicochemical properties of interest must therefore be carefully analyzed. Conformational properties and molecular structures of cis and trans-3-phenylaminocyclohexyl N,N-dimethylcarbamates were studied by low temperature 1H and 13C NMR spectroscopy and electronic structure calculations. B3LYP and M06-2X methods associated with the 6-311++G(2df,2p) basis set, and the integral-equation-formalism polarizable continuum model were used to study the conformational preferences in dichloromethane, acetone and methanol. NMR measurements indicated that for the cis isomer, the conformer with both substituents in equatorial position is the most stable, while for the trans isomer, the conformer with the carbamate group in the axial position and the arylamine in the equatorial position is favored in all solvents. B3LYP/6-311++G(2df,2p) theory level associated with IEF-PCM described properly the conformational preference in solution. NBO analyses were applied to determine the importance of hyperconjugative interactions in the conformational equilibrium.
Discovering Conformational Sub-States Relevant to Protein Function
Ramanathan, Arvind; Savol, Andrej J.; Langmead, Christopher J.; Agarwal, Pratul K.; Chennubhotla, Chakra S.
2011-01-01
Background Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests that sub-groups within the range of conformations (or sub-states) contain properties that may be functionally relevant. However, low populations in these sub-states and the transient nature of conformational transitions between these sub-states present significant challenges for their identification and characterization. Methods and Findings To overcome these challenges we have developed a new computational technique, quasi-anharmonic analysis (QAA). QAA utilizes higher-order statistics of protein motions to identify sub-states in the conformational landscape. Further, the focus on anharmonicity allows identification of conformational fluctuations that enable transitions between sub-states. QAA applied to equilibrium simulations of human ubiquitin and T4 lysozyme reveals functionally relevant sub-states and protein motions involved in molecular recognition. In combination with a reaction pathway sampling method, QAA characterizes conformational sub-states associated with cis/trans peptidyl-prolyl isomerization catalyzed by the enzyme cyclophilin A. In these three proteins, QAA allows identification of conformational sub-states, with critical structural and dynamical features relevant to protein function. Conclusions Overall, QAA provides a novel framework to intuitively understand the biophysical basis of conformational diversity and its relevance to protein function. PMID:21297978
Changes in conformational dynamics of basic side chains upon protein–DNA association
Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B. Montgometry; Iwahara, Junji
2016-01-01
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein–DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1–DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. PMID:27288446
Conformation of poly(γ-glutamic acid) in aqueous solution.
Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru
2016-04-01
Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε(*) , however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random-coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media. © 2015 Wiley Periodicals, Inc.
In God we trust? Neural measures reveal lower social conformity among non-religious individuals.
Thiruchselvam, Ravi; Gopi, Yashoda; Kilekwang, Leonard; Harper, Jessica; Gross, James J
2017-06-01
Even in predominantly religious societies, there are substantial individual differences in religious commitment. Why is this? One possibility is that differences in social conformity (i.e. the tendency to think and behave as others do) underlie inclination towards religiosity. However, the link between religiosity and conformity has not yet been directly examined. In this study, we tested the notion that non-religious individuals show dampened social conformity, using both self-reported and neural (EEG-based ERPs) measures of sensitivity to others' influence. Non-religious vs religious undergraduate subjects completed an experimental task that assessed levels of conformity in a domain unrelated to religion (i.e. in judgments of facial attractiveness). Findings showed that, although both groups yielded to conformity pressures at the self-report level, non-religious individuals did not yield to such pressures in their neural responses. These findings highlight a novel link between religiosity and social conformity, and hold implications for prominent theories about the psychological functions of religion. © The Author (2017). Published by Oxford University Press.
Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation.
Mishra, Sushil Kumar; Kara, Mahmut; Zacharias, Martin; Koca, Jaroslav
2014-01-01
Knowledge of the structure and conformational flexibility of carbohydrates in an aqueous solvent is important to improving our understanding of how carbohydrates function in biological systems. In this study, we extend a variant of the Hamiltonian replica-exchange molecular dynamics (MD) simulation to improve the conformational sampling of saccharides in an explicit solvent. During the simulations, a biasing potential along the glycosidic-dihedral linkage between the saccharide monomer units in an oligomer is applied at various levels along the replica runs to enable effective transitions between various conformations. One reference replica runs under the control of the original force field. The method was tested on disaccharide structures and further validated on biologically relevant blood group B, Lewis X and Lewis A trisaccharides. The biasing potential-based replica-exchange molecular dynamics (BP-REMD) method provided a significantly improved sampling of relevant conformational states compared with standard continuous MD simulations, with modest computational costs. Thus, the proposed BP-REMD approach adds a new dimension to existing carbohydrate conformational sampling approaches by enhancing conformational sampling in the presence of solvent molecules explicitly at relatively low computational cost.
Ethanol Dimer: Observation of Three New Conformers by Broadband Rotational Spectroscopy
NASA Astrophysics Data System (ADS)
Loru, Donatella; Peña, Isabel; Sanz, M. Eugenia
2017-06-01
The conformational behaviour of the hydrogen-bonded cluster ethanol dimer has been reinvestigated by chirped pulse Fourier transform microwave spectroscopy in the 2-8 GHz frequency region. Three new conformers ({tt}, {tg}+, and {g}-{g}+) have been identified together with the three ({g}+{g}+, {g}-{t}, and {g}+{t}) previously observed by Hearn et al. (J. Chem. Phys. 123, 134324, 2005) and their rotational and centrifugal distortion constants have been determined. By using different carrier gases in the supersonic expansion, the relative abundances of the observed conformers have been estimated. The monosubstituted ^{13}C species and some of the ^{18}O species of the most abundant conformers {g}+{g}+, {g}-{t}, and {tt} have been observed in their natural abundance, which led to the partial determination of their r_{s} structures, and the r_{0} structure for the {tt} conformer. The six observed conformers are stabilized by the delicate interplay of primary O-H...O and secondary C-H...O hydrogen bonds, and dispersion interactions between the methyl groups. Density functional and ab initio methods with different basis sets are benchmarked against the experimental data.
NASA Astrophysics Data System (ADS)
Wheeler, James T.
2018-07-01
We develop the properties of Weyl geometry, beginning with a review of the conformal properties of Riemannian spacetimes. Decomposition of the Riemann curvature into trace and traceless parts allows an easy proof that the Weyl curvature tensor is the conformally invariant part of the Riemann curvature, and shows the explicit change in the Ricci and Schouten tensors required to insure conformal invariance. We include a proof of the well-known condition for the existence of a conformal transformation to a Ricci-flat spacetime. We generalize this to a derivation of the condition for the existence of a conformal transformation to a spacetime satisfying the Einstein equation with matter sources. Then, enlarging the symmetry from Poincaré to Weyl, we develop the Cartan structure equations of Weyl geometry, the form of the curvature tensor and its relationship to the Riemann curvature of the corresponding Riemannian geometry. We present a simple theory of Weyl-covariant gravity based on a curvature-linear action, and show that it is conformally equivalent to general relativity. This theory is invariant under local dilatations, but not the full conformal group.
NASA Astrophysics Data System (ADS)
Cheng, Xiao; Li, Feng; Han, Shenghua; Zhang, Yufei; Jiao, Chuanjun; Wei, Jinbei; Ye, Kaiqi; Wang, Yue; Zhang, Hongyu
2015-03-01
A series of unsymmetrical 1,3-diaryl-β-diketones 1-6 displaying molecular conformation-dependent fluorescence quantum yields have been synthesized. Crystals with planar molecular conformation such as 1, 2, 3 and 4 are highly fluorescent (φf: 39-53%), and the one holding slightly twisted conformation (5) is moderately luminescent (φf = 17%), while crystal 6 possessing heavily bent structure is completely nonluminous (φf ~ 0). The distinct fluorescence efficiencies are ascribed to their different molecular conformations, since all the crystals hold the same crystal system, space group and crystal packing structures. Additionally, the fluorescent crystals 1-5 display low threshold amplified spontaneous emission (ASE) with small full widths at half-maximum (FWHM: 3-7 nm), indicating their potential as candidates for organic crystal lasing devices.
Topham, Christopher M.; Smith, Jeremy C.
2007-01-01
Geometric descriptions of nonideal interresidue hydrogen bonding and backbone-base water bridging in the minor groove are established in terms of polyamide backbone carbonyl group orientation from analyses of residue junction conformers in experimentally determined peptide nucleic acid (PNA) complexes. Two types of interresidue hydrogen bonding are identified in PNA conformers in heteroduplexes with nucleic acids that adopt A-like basepair stacking. Quantum chemical calculations on the binding of a water molecule to an O2 base atom in glycine-based PNA thymine dimers indicate that junctions modeled with P-form backbone conformations are lower in energy than a dimer comprising the predominant conformation observed in A-like helices. It is further shown in model systems that PNA analogs based on D-lysine are better able to preorganize in a conformation exclusive to P-form helices than is glycine-based PNA. An intrinsic preference for this conformation is also exhibited by positively charged chiral PNA dimers carrying 3-amino-D-alanine or 4-aza-D-leucine residue units that provide for additional rigidity by side-chain hydrogen bonding to the backbone carbonyl oxygen. Structural modifications stabilizing P-form helices may obviate the need for large heterocycles to target DNA pyrimidine bases via PNA·DNA-PNA triplex formation. Quantum chemical modeling methods are used to propose candidate PNA Hoogsteen strand designs. PMID:17071666
Human Growth Hormone Adsorption Kinetics and Conformation on Self-Assembled Monolayers
Buijs, Jos; Britt, David W.; Hlady, Vladimir
2012-01-01
The adsorption process of the recombinant human growth hormone on organic films, created by self-assembly of octadecyltrichlorosilane, arachidic acid, and dipalmitoylphosphatidylcholine, is investigated and compared to adsorption on silica and methylated silica substrates. Information on the adsorption process of human growth hormone (hGH) is obtained by using total internal reflection fluorescence (TIRF). The intensity, spectra, and quenching of the intrinsic fluorescence emitted by the growth hormone’s single tryptophan are monitored and related to adsorption kinetics and protein conformation. For the various alkylated hydrophobic surfaces with differences in surface density and conformational freedom it is observed that the adsorbed amount of growth hormone is relatively large if the alkyl chains are in an ordered structure while the amounts adsorbed are considerably lower for adsorption onto less ordered alkyl chains of fatty acid and phospholipid layers. Adsorption on methylated surfaces results in a relatively large conformational change in the growth hormone’s structure, as displayed by a 7 nm blue shift in emission wavelength and a large increase in the effectiveness of fluorescence quenching. Conformational changes are less evident for hGH adsorption onto the fatty acid and phospholipid alkyl chains. Adsorption kinetics on the hydrophilic head groups of the self-assembled monolayers are similar to those on solid hydrophilic surfaces. The relatively small conformational changes in the hGH structure observed for adsorption on silica are even further reduced for adsorption on fatty acid head groups. PMID:25125795
Assembly of Huntingtin headpiece into α-helical bundles.
Ozgur, Beytullah; Sayar, Mehmet
2017-05-24
Protein aggregation is a hallmark of neurodegenerative disorders. In this group of brain-related disorders, a disease-specific "host" protein or fragment misfolds and adopts a metastatic, aggregate-prone conformation. Often, this misfolded conformation is structurally and thermodynamically different from its native state. Intermolecular contacts, which arise in this non-native state, promote aggregation. In this regard, understanding the molecular principles and mechanisms that lead to the formation of such a non-native state and further promote the formation of the critical nucleus for fiber growth is essential. In this study, the authors analyze the aggregation propensity of Huntingtin headpiece (htt NT ), which is known to facilitate the polyQ aggregation, in relation to the helix mediated aggregation mechanism proposed by the Wetzel group. The authors demonstrate that even though htt NT displays a degenerate conformational spectrum on its own, interfaces of macroscopic or molecular origin can promote the α-helix conformation, eliminating all other alternatives in the conformational phase space. Our findings indicate that htt NT molecules do not have a strong orientational preference for parallel or antiparallel orientation of the helices within the aggregate. However, a parallel packed bundle of helices would support the idea of increased polyglutamine concentration, to pave the way for cross-β structures.
NASA Astrophysics Data System (ADS)
Zhao, YueYue; Mouhib, Halima; Li, Guohua; Stahl, Wolfgang; Kleiner, Isabelle
2014-06-01
The tert-Butyl acetate molecule was studied using a combination of quantum chemical calculations and molecular beam Fourier transform microwave spectroscopy in the 9 to 14 GHz range. Due to its rather rigid frame, the molecule possesses only two different conformers: one of Cs and one of C1 symmetry. According to ab initio calculations, the Cs conformer is 46 kJ/mol lower in energy and is the one observed in the supersonic jet. We report on the structure and dynamics of the most abundant conformer of tert-butyl acetate, with accurate rotational and centrifugal distortion constants. Additionally, the barrier to internal rotation of the acetyl methyl group was determined. Splittings due to the internal rotation of the methyl group of up to 1.3 GHz were observed in the spectrum. Using the programs XIAM and BELGI-Cs, we determine the barrier height to be about 113 cm-1 and compare the molecular parameters obtained from these two codes. Additionally, the experimental rotational constants were used to validate numerous quantum chemical calculations. This study is part of a larger project which aims at determining the lowest energy conformers of organic esters and ketones which are of interest for flavor or perfume synthetic applications Project partly supported by the PHC PROCOPE 25059YB.
Su, Zheng; Wen, Qing; Xu, Yunjie
2006-05-24
The 1:1 molecular adduct of propylene oxide and water (PO-H(2)O) was studied using Fourier transform microwave spectroscopy and high level ab initio methods. Two distinct structural conformers with the water molecule acting as a proton donor were detected experimentally: one with the water on the same side as the methyl group with respect to the ether ring, i.e., syn-PO-H(2)O, the other with the water molecule binding to the O-atom from the opposite side of the methyl group, i.e., anti-PO-H(2)O. The nonbonded hydrogen is entgegen to the ether ring in both conformers. Rotational spectra of four isotopic species, namely PO-H(2)O, PO-DOH, PO-HOD, and PO-D(2)O, were recorded for the two conformers. The hydrogen bond parameters: r(O(epoxy)...H), angle(ring-O(epoxy)...H), and angle(O(epoxy)...H-O) are 1.908 A, 112 degrees, and 177 degrees for syn-PO-H(2)O, and 1.885 A, 104.3 degrees, and 161.7 degrees for anti-PO-H(2)O, respectively. The experimental results suggest that the hydrogen bond in syn-PO-H(2)O is stronger and the monomer subunits are more rigidly locked in their positions than in the ethylene oxide-water adduct. The stabilizing effect of the methyl group to the intermolecular hydrogen bond is discussed in terms of the experimentally estimated binding energies, the structural parameters, and the ab initio calculations.
Microwave Spectroscopy of Seven Conformers of 1,2-PROPANEDIOL
NASA Astrophysics Data System (ADS)
Neill, Justin L.; Muckle, Matt T.; Pate, Brooks H.; Lovas, F. J.; Plusquellic, D. F.; Remijan, A. J.
2009-06-01
Previously, two conformations of 1,2-propanediol have been identified by microwave spectroscopy by Caminati. Here we report the assignment of five additional conformers, two from work on a Balle-Flygare type cavity FTMW spectrometer at NIST, operating between 8 and 26 GHz, and three from a deep average scan on the chirped pulse Fourier transform microwave (CP-FTMW) spectrometer at the University of Virginia, operating between 6.5 and 18.5 GHz. All seven of the assigned conformers contain an intramolecular hydrogen bond between the two hydroxyl groups. Stark effect measurements have been performed on the cavity FTMW spectrometer to determine the dipole moments of the three lowest energy conformers. Relative abundances of the conformers have also been determined from the CP-FTMW spectrum. A subsequent interstellar search toward Sgr B2(N) yielded negative results with an upper limit to the total column density that is less than those of glycolaldehyde and ethylene glycol. W.Caminati, J. Mol. Spectrosc. 86 (1981) 193-201.
Watts, C R; Mezei, M; Murphy, R F; Lovas, S
2001-04-01
The conformational space available to GnRH and lGnRH-III was compared using 5.2 ns constant temperature and pressure molecular dynamics simulations with explicit TIP3P solvation and the AMBER v. 5.0 force field. Cluster analysis of both trajectories resulted in two groups of conformations. Results of free energy calculations, in agreement with previous experimental data, indicate that a conformation with a turn from residues 5 through 8 is preferred for GnRH in an aqueous environment. By contrast, a conformation with a helix from residues 2 through 7 with a bend from residues 6 through 10 is preferred for lGnRH-III in an aqueous environment. The side chains of His2 and Trp3 in lGnRH-III occupy different regions of phase space and participate in weakly polar interactions different from those in GnRH. The unique conformational properties of lGnRH-III may account for its specific anti cancer activity.
Effects of conformism on the cultural evolution of social behaviour.
Molleman, Lucas; Pen, Ido; Weissing, Franz J
2013-01-01
Models of cultural evolution study how the distribution of cultural traits changes over time. The dynamics of cultural evolution strongly depends on the way these traits are transmitted between individuals by social learning. Two prominent forms of social learning are payoff-based learning (imitating others that have higher payoffs) and conformist learning (imitating locally common behaviours). How payoff-based and conformist learning affect the cultural evolution of cooperation is currently a matter of lively debate, but few studies systematically analyse the interplay of these forms of social learning. Here we perform such a study by investigating how the interaction of payoff-based and conformist learning affects the outcome of cultural evolution in three social contexts. First, we develop a simple argument that provides insights into how the outcome of cultural evolution will change when more and more conformist learning is added to payoff-based learning. In a social dilemma (e.g. a Prisoner's Dilemma), conformism can turn cooperation into a stable equilibrium; in an evasion game (e.g. a Hawk-Dove game or a Snowdrift game) conformism tends to destabilize the polymorphic equilibrium; and in a coordination game (e.g. a Stag Hunt game), conformism changes the basin of attraction of the two equilibria. Second, we analyse a stochastic event-based model, revealing that conformism increases the speed of cultural evolution towards pure equilibria. Individual-based simulations as well as the analysis of the diffusion approximation of the stochastic model by and large confirm our findings. Third, we investigate the effect of an increasing degree of conformism on cultural group selection in a group-structured population. We conclude that, in contrast to statements in the literature, conformism hinders rather than promotes the evolution of cooperation.
Gender Expression Associated With BMI in a Prospective Cohort Study of U.S. Adolescents
Austin, S. Bryn; Ziyadeh, Najat J.; Calzo, Jerel P.; Sonneville, Kendrin R.; Kennedy, Grace A.; Roberts, Andrea L.; Haines, Jess; Scherer, Emily A.
2015-01-01
Objective To examine the relationship between gender expression (GE) and BMI in adolescence. Methods Repeated measures of weight-related behaviors and BMI were collected 1996-2011 via annual/biennial self-report surveys from youth ages 10 to 23 years (6,693 females, 2,978 males) in the longitudinal Growing Up Today Study. GE (very conforming [referent], mostly conforming, nonconforming) was assessed in 2010/11. Sex-stratified, multivariable linear models estimated GE group differences in BMI and the contribution of sexual orientation and weight-related exposures to group differences. Models for males included interaction terms for GE with age. Results In females, mostly conforming youth had 0.53 kg/m2 and nonconforming had 1.23 kg/m2 higher BMI; when adding adjustment for sexual orientation and weight-related exposures, GE-group estimates were attenuated up to 8% and remained statistically significant. In males, mostly conforming youth had −0.67 kg/m2 and nonconforming had −1.99 kg/m2 lower BMI (age [in years] interactions were between −0.09 to −0.14 kg/m2; when adding adjustment for sexual orientation and weight-related exposures, GE-group estimates were attenuated up to 11% and remained statistically significant. Conclusions GE is a strong independent predictor of BMI in adolescence. Obesity prevention and treatment interventions with youth must address ways that gender norms may reinforce or undermine healthful behaviors. PMID:26813530
No need to fake it: reproduction of the Asch experiment without confederates.
Mori, Kazuo; Arai, Miho
2010-10-01
In the present experiment, we replicated Asch's seminal study on social conformity without using confederates. We adapted a presentation trick in order to present two different stimuli secretly to groups of participants to create minorities and majorities without utilizing confederates. One hundred and four Japanese undergraduates (40 men and 64 women) carried out Asch-equivalent tasks in same-sex groups of four. In each group, we adapted the fMORI Technique to present the tasks such that one person (minority participant) observed different stimuli than the other three people (majority participants). The same nine stimulus sets that Asch had used were carefully reproduced as PowerPoint slides and projected onto a half-transparent screen. As for the critical tasks, the top part of the standard lines appeared in either green or magenta so that two groups of participants would see them differently when they wore two types of polarizing sunglasses that filtered either green or magenta to make the lines appear longer or shorter. A post-experimental questionnaire confirmed that no participant among either the minority or majority viewers noticed the presentation trick. The results showed that, in line with Asch's basic findings, the minority women participants conformed to the majority. However, our study produced two different results: While minority women conformed, minority men did not. Contrary to Asch's findings, the frequency of conformity of minority participants was almost the same regardless of whether the majority answered unanimously or not.
NASA Astrophysics Data System (ADS)
He, Lijie; Langlet, Michel; Stambouli, Valerie
2017-03-01
The conformation and topological properties of DNA single strand probe molecules attached on solid surfaces are important, notably for the performances of devices such as biosensors. Commonly, the DNA probes are tethered to the surface using external linkers such as NH2. In this study, the role and influence of this amino-linker on the immobilization way and conformation of DNA probes on Ag nanoparticle surface is emphasized using Surface Enhanced Raman Spectroscopy (SERS). We compare the SERS spectra and their reproducibility in the case of two groups of DNA polybase probes which are polyA, polyC, polyT, and polyG. In the first group, the polybases exhibit an external NH2 functional linker while in the second group the polybases are NH2-free. The results show that the reproducibility of SERS spectra is enhanced in the case of the first group. It leads us to propose two models of polybase conformation on Ag surface according to the presence or the absence of the external NH2 linker. In the presence of the NH2 external linker, the latter would act as a major anchoring point. As a result, the polybases are much ordered with a less random orientation than in the case of NH2-free polybases. Consequently, in view of further in situ hybridization for biosensing applications, it is strongly recommended to use NH2 linker functionalized DNA probes.
NASA Astrophysics Data System (ADS)
Wu, Xing-Gang; Shen, Jian-Ming; Du, Bo-Lun; Brodsky, Stanley J.
2018-05-01
As a basic requirement of the renormalization group invariance, any physical observable must be independent of the choice of both the renormalization scheme and the initial renormalization scale. In this paper, we show that by using the newly suggested C -scheme coupling, one can obtain a demonstration that the principle of maximum conformality prediction is scheme-independent to all-orders for any renormalization schemes, thus satisfying all of the conditions of the renormalization group invariance. We illustrate these features for the nonsinglet Adler function and for τ decay to ν + hadrons at the four-loop level.
Structural characterization of two novel potential anticholinesterasic agents
NASA Astrophysics Data System (ADS)
Oliveira, Paulo R.; Wiectzycosky, Franciele; Basso, Ernani A.; Gonçalves, Regina A. C.; Pontes, Rodrigo M.
2003-09-01
Two novel compounds with possible anticholinesterase activity have been synthesized containing a carbamate and a dimethylamine group in 1,2-positions of a cyclohexane ring ( cis and trans isomers). Conformer populations were established by a combination of NMR 1H coupling constant analysis and DFT (B3LYP/6-311+G(d,p)) calculations. 13C chemical shifts were calculated in order to confirm signal attributions. The cis isomer adopts a conformation in which the carbamate group lies at the axial position (>99%), whereas the trans isomer adopts a diequatorial arrangement (98%). These preferences have been explained in terms of syn-1,3-diaxial interactions of the individual groups.
NASA Technical Reports Server (NTRS)
Harrison, A. A.
1979-01-01
Group dynamics, sociological and psychological factors are examined. Crew composition and compatability are studied. Group dynamics analysis includes: leadership; cohesiveness; conformity; and conflict.
Levels of Conformity to Leader in Normal and Critical Situations
ERIC Educational Resources Information Center
Gündüz, Yüksel
2017-01-01
The aim of this study is to determine primary school, middle school, high school and university students' levels of conformity to leader in normal and critical situations. Experimental model was used in the research. Study group is comprised of 80 students chosen randomly from Karadeniz Bakir Primary School, Gazi Middle School, Kazim Karabekir…
ERIC Educational Resources Information Center
Beran, Tanya N.; McLaughlin, Kevin; Al Ansari, Ahmed; Kassam, Aliya
2013-01-01
Although the development of collaborative relationships is considered a requirement for medical education, the functioning of these relationships may be impaired by a well-documented social-psychological phenomenon known as group conformity. The authors hypothesized that students would insert a needle into an incorrect location relative to the…
A Latent Class Regression Analysis of Men's Conformity to Masculine Norms and Psychological Distress
ERIC Educational Resources Information Center
Wong, Y. Joel; Owen, Jesse; Shea, Munyi
2012-01-01
How are specific dimensions of masculinity related to psychological distress in specific groups of men? To address this question, the authors used latent class regression to assess the optimal number of latent classes that explained differential relationships between conformity to masculine norms and psychological distress in a racially diverse…
NASA Astrophysics Data System (ADS)
Juncal, Luciana C.; Cozzarín, Melina V.; Romano, Rosana M.
2015-03-01
ROC(S)SC(O)OCH2CH3, with R = CH3sbnd , (CH3)2CHsbnd and CH3(CH2)2sbnd , were obtained through the reaction between potassium xanthate salts, ROC(S)SK, and ethyl chloroformate, ClC(O)OCH2CH3. The liquid compounds were identified and characterized by 1H and 13C NMR and mass spectrometry. The conformations adopted by the molecules were studied by DFT methods. 6 conformers were theoretically predicted for R = CH3sbnd and (CH3)2CHsbnd , while the conformational flexibility of the n-propyl substituent increases the total number of feasible rotamers to 21. For the three molecules, the conformers can be associated in 3 groups, being the most stable the AS forms - the Cdbnd S double bond anti (A) with respect to the Csbnd S single bond and the Ssbnd C single bond syn (S) with respect to the Cdbnd O double bond - followed by AA and SS conformers. The vibrational spectra were interpreted in terms of the predicted conformational equilibrium, presenting the ν(Cdbnd O) spectral region signals corresponding to the three groups of conformers. A moderated pre-resonance Raman enhancement of the ν(Cdbnd S) vibrational mode of CH3(CH2)2OC(S)SC(O)OCH2CH3 was detected, when the excitation radiation approaches the energy of a n → π∗ electronic transition associated with the Cdbnd S chromophore. UV-visible spectra in different solvents were measured and interpreted in terms of TD-DFT calculations. The unknown molecule CH3CH2OC(O)SH was isolated by the UV-visible photolysis of CH3OC(S)SC(O)OCH2CH3 isolated in Ar matrix, and also obtained as a side-product of the reaction between potassium xanthate salts, ROC(S)SK, and ethyl chloroformate, ClC(O)OCH2CH3.
Juncal, Luciana C; Cozzarín, Melina V; Romano, Rosana M
2015-03-15
ROC(S)SC(O)OCH2CH3, with R=CH3-, (CH3)2CH- and CH3(CH2)2-, were obtained through the reaction between potassium xanthate salts, ROC(S)SK, and ethyl chloroformate, ClC(O)OCH2CH3. The liquid compounds were identified and characterized by (1)H and (13)C NMR and mass spectrometry. The conformations adopted by the molecules were studied by DFT methods. 6 conformers were theoretically predicted for R=CH3- and (CH3)2CH-, while the conformational flexibility of the n-propyl substituent increases the total number of feasible rotamers to 21. For the three molecules, the conformers can be associated in 3 groups, being the most stable the AS forms - the C=S double bond anti (A) with respect to the C-S single bond and the S-C single bond syn (S) with respect to the C=O double bond - followed by AA and SS conformers. The vibrational spectra were interpreted in terms of the predicted conformational equilibrium, presenting the ν(C=O) spectral region signals corresponding to the three groups of conformers. A moderated pre-resonance Raman enhancement of the ν(C=S) vibrational mode of CH3(CH2)2OC(S)SC(O)OCH2CH3 was detected, when the excitation radiation approaches the energy of a n→π∗ electronic transition associated with the C=S chromophore. UV-visible spectra in different solvents were measured and interpreted in terms of TD-DFT calculations. The unknown molecule CH3CH2OC(O)SH was isolated by the UV-visible photolysis of CH3OC(S)SC(O)OCH2CH3 isolated in Ar matrix, and also obtained as a side-product of the reaction between potassium xanthate salts, ROC(S)SK, and ethyl chloroformate, ClC(O)OCH2CH3. Copyright © 2014 Elsevier B.V. All rights reserved.
Unitary subsector of generalized minimal models
NASA Astrophysics Data System (ADS)
Behan, Connor
2018-05-01
We revisit the line of nonunitary theories that interpolate between the Virasoro minimal models. Numerical bootstrap applications have brought about interest in the four-point function involving the scalar primary of lowest dimension. Using recent progress in harmonic analysis on the conformal group, we prove the conjecture that global conformal blocks in this correlator appear with positive coefficients. We also compute many such coefficients in the simplest mixed correlator system. Finally, we comment on the status of using global conformal blocks to isolate the truly unitary points on this line.
Conformal structure of massless scalar amplitudes beyond tree level
NASA Astrophysics Data System (ADS)
Banerjee, Nabamita; Banerjee, Shamik; Bhatkar, Sayali Atul; Jain, Sachin
2018-04-01
We show that the one-loop on-shell four-point scattering amplitude of massless ϕ 4 scalar field theory in 4D Minkowski space time, when Mellin transformed to the Celestial sphere at infinity, transforms covariantly under the global conformal group (SL(2, ℂ)) on the sphere. The unitarity of the four-point scalar amplitudes is recast into this Mellin basis. We show that the same conformal structure also appears for the two-loop Mellin amplitude. Finally we comment on some universal structure for all loop four-point Mellin amplitudes specific to this theory.
NASA Astrophysics Data System (ADS)
Ilieva, S.; Hadjieva, B.; Galabov, B.
1999-09-01
Ab initio molecular orbital calculations at HF/4-31G level and infrared spectroscopic data for the frequencies are applied to analyse the grouping in a series model aromatic secondary amides: formanilide; acetanilide; o-methylacetanilide; 2,6-dimethylformanilide, 2,6-dimethylacetanilide; N-benzylacetamide and N-benzylformamide. The theoretical and experimental data obtained show that the conformational state of the molecules studied is determined by the fine balance of several intramolecular factors: resonance effect between the amide group and the aromatic ring, steric interaction between various substituents around the -NH-CO- grouping in the aromatic ring, conjugation between the carbonyl bond and the nitrogen lone pair as well as direct field influences inside the amide group.
Conformable apparatus in a drill string
Hall, David R [Provo, UT; Hall, Jr., H. Tracy; Pixton, David S [Lehi, UT; Fox, Joe [Spanish Fork, UT
2007-08-28
An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.
NASA Astrophysics Data System (ADS)
Al-Masoudi, Najim A.; Essa, Ali Hashem; Alwaaly, Ahmed A. S.; Saeed, Bahjat A.; Langer, Peter
2017-10-01
Sorafenib, is a relatively new cytostatic drug approved for the treatment of renal cell and hepatocellular carcinoma. The development of new sorafenib analogues offers the possibility of generating structures of increased potency. To this end, a series of arylated-diphenylurea analogues 17-31 were synthesized via Suzuki-Miyaura coupling reaction, related to sorafenib by treatment of three diarylureas 2-4 having 3-bromo, 4-chloro and 2-iodo groups with various arylboronic acids. Conformational analysis of the new arylated urea analogues has been investigated using MOPAC 2016 of semi empirical PM7 Hamiltonian computational method. Our results showed that all compounds preferred the trans-trans conformations. Compound 17 has been selected to calculate the torsional energy profiles for rotation around the urea bonds and found to be existed predominantly in the trans-trans conformation with only very minimal fluctuation in conformation.
NASA Astrophysics Data System (ADS)
Mozaffari Majd, M.; Dabbagh, H. A.; Farrokhpour, H.; Najafi Chermahini, A.
2017-11-01
The adsorption energies (Eads) and relative stabilities of selected conformers of the most stable tautomer of L-ascorbic acid (vitamin C) on the dehydroxylated γ-alumina (100) surface were calculated in both gas phase and solvent (water) using the density functional theory (DFT) method. The selected conformers were related to the different rotational angles of OH groups of L-ascorbic acid. The conformational analysis of bare tautomer in both gas and water showed that the conformer No.20 (conf. 20) and 13 (conf. 13) with the dihedral angles of H15sbnd O10sbnd C11sbnd C9 (-73°) and H20sbnd O19sbnd C9sbnd C11 (-135°) were the most stable and unstable conformers, respectively. The performed calculations in the presence of surface showed that the interaction of the conformers with the surface changes their relative stabilities and structures in both gas phase and water. The Ead of each conformer was calculated and it was determined that conf. 8 and conf. 16 have the highest value of Ead in the gas phase (-62.56 kcal/mol) and water (-54.44 kcal/mol), respectively. The optimized structure of each conformer on the surface and the number of hydrogen bonds between it and surface along with their bond lengths were determined.
NASA Astrophysics Data System (ADS)
Moon, Ceol Joo; Min, Ahreum; Ahn, Ahreum; Lee, Seung Jun; Choi, Myong Yong; Kim, Seong Keun
2013-06-01
Conformational investigations and photochemistry of jet-cooled methacetine (MA) and phenacetine (PA) using one color resonant two-photon ionization (REMPI), UV-UV hole-burning and IR-dip spectroscopy are presented. MA and PA are derivatives of acetanilide, substituted by methoxyl, ethoxyl group in the para position of acetanilide, respectively. Moreover, we have investigated conformational information of the acetanilide derivatives (AAP, MA and PA)-water. In this work, we will present and discuss the solvent effects of the hydroxyl group of acetanilide derivatives in the excited state.
Xie, Min; Qi, Yajing; Hu, Yongjun
2011-04-14
2-Phenylethylamine (PEA) is the simplest aromatic amine neurotransmitter, as well as one of the most important. In this work, the conformational equilibrium and hydrogen bonding in liquid PEA were studied by means of Raman spectroscopy and theoretical calculations (DFT/MP2). By changing the orientation of the ethyl and the NH(2) group, nine possible conformers of PEA were found, including four degenerate conformers. Comparison of the experimental Raman spectra of liquid PEA and the calculated Raman spectra of the five typical conformers in selected regions (550-800 and 1250-1500 cm(-1)) revealed that the five conformers can coexist in conformational equilibrium in the liquid. The NH(2) stretching mode of the liquid is red-shifted by ca. 30 cm(-1) relative to that of an isolated PEA molecule (measured previously), implying that intermolecular N-H···N hydrogen bonds play an important role in liquid PEA. The relative intensity of the Raman band at 762 cm(-1) was found to increase with increasing temperature, indicating that the anti conformer might be favorable in liquid PEA at room temperature. The blue shift of the band for the bonded N-H stretch with increasing temperature also provides evidence of the existence of intermolecular N-H···N hydrogen bonds.
Deformed twistors and higher spin conformal (super-)algebras in four dimensions
Govil, Karan; Gunaydin, Murat
2015-03-05
Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS 5.more » The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS 5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS 5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS 5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS 5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in HS algebras in AdS 4 where the corresponding 3d conformal group Sp(4,R) admits only two massless representations (minreps), namely the scalar and spinor singletons.« less
Wang, Jian-Hua; Lu, Xu-Jing; Zhou, Jian; Wang, Feng
2012-01-01
We compared the curative and side-effects in esophageal carcinoma treated by conventional fraction (CF) and late course accelerated hyperfraction (LCAF) three-dimensional conformal radiotherapy. Ninety-eight patients were randomly assigned to two different radiotherapy model groups. Fifty patients were treated using CF three-dimensional conformal radiotherapy at a total dose of 60-68 Gy; 2 Gy/F; 5 fractions/week (median 64 Gy), 48 patients were treated with LCAF (First CF-treated at the dose 40 Gy. Later, LCAF-treated 1.5 Gy/F; 2 fractions/day; 21-27 Gy; a total dose of 61-67 Gy; median 64 Gy). The data showed that the 1-, 2- and 3-year-survival rates in LCAF group were 79.2, 56.3, and 43.8%, compared to 74, 54, and 36% in CF group (P = 0.476). The 1-, 2- and 3-year-local control rates in LCAF group were 81.3, 62.5, and 50%, compared to 78, 58, and 42% in CF group (P = 0.454). In CF group, the incidence of radiation-induced esophagitis was lower than that in LCAF group (72 vs. 93.8%; P = 0.008) and there was no significant difference between rates of radiation-induced pneumonitis in CF and LCAF groups (10 vs. 6.25%; P = 0.498). It was concluded that the 1-, 2- and 3-year-local control and survival rates of esophageal carcinoma patients treated with LCAF were slightly better than CF radiotherapy; however, the radiation side-effects in LCAF group were greater than those in CF group.
Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads
Baruah, Anupaul; Rani, Pooja; Biswas, Parbati
2015-01-01
This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206
Todorova, Tanya K; Rozanska, Xavier; Gervais, Christel; Legrand, Alexandre; Ho, Linh N; Berruyer, Pierrick; Lesage, Anne; Emsley, Lyndon; Farrusseng, David; Canivet, Jérôme; Mellot-Draznieks, Caroline
2016-11-07
We use density functional theory, newly parameterized molecular dynamics simulations, and last generation 15 N dynamic nuclear polarization surface enhanced solid-state NMR spectroscopy (DNP SENS) to understand graft-host interactions and effects imposed by the metal-organic framework (MOF) host on peptide conformations in a peptide-functionalized MOF. Focusing on two grafts typified by MIL-68-proline (-Pro) and MIL-68-glycine-proline (-Gly-Pro), we identified the most likely peptide conformations adopted in the functionalized hybrid frameworks. We found that hydrogen bond interactions between the graft and the surface hydroxyl groups of the MOF are essential in determining the peptides conformation(s). DNP SENS methodology shows unprecedented signal enhancements when applied to these peptide-functionalized MOFs. The calculated chemical shifts of selected MIL-68-NH-Pro and MIL-68-NH-Gly-Pro conformations are in a good agreement with the experimentally obtained 15 N NMR signals. The study shows that the conformations of peptides when grafted in a MOF host are unlikely to be freely distributed, and conformational selection is directed by strong host-guest interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fourier transformation microwave spectroscopy of the methyl glycolate-H2O complex
NASA Astrophysics Data System (ADS)
Fujitake, Masaharu; Tanaka, Toshihiro; Ohashi, Nobukimi
2018-01-01
The rotational spectrum of one conformer of the methyl glycolate-H2O complex has been measured by means of the pulsed jet Fourier transform microwave spectrometer. The observed a- and b-type transitions exhibit doublet splittings due to the internal rotation of the methyl group. On the other hand, most of the c-type transitions exhibit quartet splittings arising from the methyl internal rotation and the inversion motion between two equivalent conformations. The spectrum was analyzed using parameterized expressions of the Hamiltonian matrix elements derived by applying the tunneling matrix formalism. Based on the results obtained from ab initio calculation, the observed complex of methyl glycolate-H2O was assigned to the most stable conformer of the insertion complex, in which a non-planer seven membered-ring structure is formed by the intermolecular hydrogen bonds between methyl glycolate and H2O subunits. The inversion motion observed in the c-type transitions is therefore a kind of ring-inversion motion between two equivalent conformations. Conformational flexibility, which corresponds to the ring-inversion between two equivalent conformations and to the isomerization between two possible conformers of the insertion complex, was investigated with the help of the ab initio calculation.
Hydration and conformational equilibria of simple hydrophobic and amphiphilic solutes.
Ashbaugh, H S; Kaler, E W; Paulaitis, M E
1998-01-01
We consider whether the continuum model of hydration optimized to reproduce vacuum-to-water transfer free energies simultaneously describes the hydration free energy contributions to conformational equilibria of the same solutes in water. To this end, transfer and conformational free energies of idealized hydrophobic and amphiphilic solutes in water are calculated from explicit water simulations and compared to continuum model predictions. As benchmark hydrophobic solutes, we examine the hydration of linear alkanes from methane through hexane. Amphiphilic solutes were created by adding a charge of +/-1e to a terminal methyl group of butane. We find that phenomenological continuum parameters fit to transfer free energies are significantly different from those fit to conformational free energies of our model solutes. This difference is attributed to continuum model parameters that depend on solute conformation in water, and leads to effective values for the free energy/surface area coefficient and Born radii that best describe conformational equilibrium. In light of these results, we believe that continuum models of hydration optimized to fit transfer free energies do not accurately capture the balance between hydrophobic and electrostatic contributions that determines the solute conformational state in aqueous solution. PMID:9675177
USDA-ARS?s Scientific Manuscript database
One of the most important and least understood properties of carbohydrates is their conformational profile in solution. The study of carbohydrates in solution is a most difficult computational problem, a result of the many soft conformational variables (hydroxyl groups) inherent in the structures of...
ERIC Educational Resources Information Center
Brinkman, Britney G; Rabenstein, Kelly L.; Rosén, Lee A.; Zimmerman, Toni S.
2014-01-01
In the current study, 45 girls and 41 boys participated in focus groups following a program designed to teach them about social justice. The children articulated the discrepancy between their own gender identity and gender role stereotypes and discussed potential problems with conforming to gender role expectations as well as consequences of…
Froimowitz, M; Cody, V
1997-08-01
This study is an attempt to incorporate the butyrophenones, an important class of nontricyclic antipsychotic drugs, into a previously proposed pharmacophore model of tricyclic dopamine D2 receptor antagonist ligands. Conformational energy calculations were performed using the MM3-92 program on spiperone, as a representative butyrophenone, and milenperone and R48455, as related compounds with more limited conformational freedom. Twenty seven conformers were evaluated for spiperone with MM3-92 calculations and nine of these were within 1.1 kcal/mole of the global minima indicating the flexibility of the compound. A conformational analysis of twenty crystal structures of butyrophenones was also performed and six distinct conformers were represented. All of the energy minimized conformers of spiperone were superimposed in a least squares sense onto loxapine as a relatively rigid, typical D2 antagonist and a pair of mirror image conformers, which are observed in one crystal structure of spiperone, were found to be the best fit. However, it was not possible to discriminate between these two conformers since they fit the pharmacophore model equally well. The para-fluoro and carbonyl group of the butyrophenones were found to correspond best to the oxygen and chlorine atoms of loxapine, respectively. The conformations of milenperone and R48455 were also consistent with the two putative biologically active forms of spiperone and the pharmacophore model. Conformational energy calculations were also performed on molindone, an antipsychotic drug in clinical use, which can be related to the butyrophenones since both have a carbonyl group adjacent to an aromatic ring. A putative biologically active form was proposed for molindone and this was related to the structure of piquindone, a rigid analog of molindone. All of the compounds were found to be entirely consistent with the pharmacophore model. However, as previously found, there is great variability in the distance between the ammonium nitrogen and the center of the relevant aromatic ring with the most extreme case in the present study being R48455 where the distance is 7.2 A. The results of the present study should also be relevant to the structures of novel, atypical antipsychotic drugs such as risperidone which appear to be analogs of the butyrophenones.
Ab initio investigation of the first hydration shell of protonated glycine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Zhichao; Chen, Dong, E-mail: dongchen@henu.edu.cn, E-mail: boliu@henu.edu.cn; Zhao, Huiling
2014-02-28
The first hydration shell of the protonated glycine is built up using Monte Carlo multiple minimum conformational search analysis with the MMFFs force field. The potential energy surfaces of the protonated glycine and its hydration complexes with up to eight water molecules have been scanned and the energy-minimized structures are predicted using the ab initio calculations. First, three favorable structures of protonated glycine were determined, and the micro-hydration processes showed that water can significantly stabilize the unstable conformers, and then their first hydration shells were established. Finally, we found that seven water molecules are required to fully hydrate the firstmore » hydration shell for the most stable conformer of protonated glycine. In order to analyse the hydration process, the dominant hydration sites located around the ammonium and carboxyl groups are studied carefully and systemically. The results indicate that, water molecules hydrate the protonated glycine in an alternative dynamic hydration process which is driven by the competition between different hydration sites. The first three water molecules are strongly attached by the ammonium group, while only the fourth water molecule is attached by the carboxyl group in the ultimate first hydration shell of the protonated glycine. In addition, the first hydration shell model has predicted most identical structures and a reasonable accord in hydration energy and vibrational frequencies of the most stable conformer with the conductor-like polarizable continuum model.« less
1-anilino-8-naphthalene sulfonate as a protein conformational tightening agent.
Matulis, D; Baumann, C G; Bloomfield, V A; Lovrien, R E
1999-05-01
1-Anilino-8-naphthalene sulfonate (ANS) anion is conventionally considered to bind to preexisting hydrophobic (nonpolar) surfaces of proteins, primarily through its nonpolar anilino-naphthalene group. Such binding is followed by an increase in ANS fluorescence intensity, similar to that occurring when ANS is dissolved in organic solvents. It is generally assumed that neither the negative sulfonate charge on the ANS, nor charges on the protein, participate significantly in ANS-protein interaction. However, titration calorimetry has demonstrated that most ANS binding to a number of proteins occurs through electrostatic forces, in which ion pairs are formed between ANS sulfonate groups and cationic groups on the proteins (D. Matulis and R. E. Lovrien, Biophys. J., 1998, Vol. 74, pp. 1-8). Here we show by viscometry and diffusion coefficient measurements that bovine serum albumin and gamma-globulin, starting from their acid-expanded, most hydrated conformations, undergo extensive molecular compaction upon ANS binding. As the cationic protein binds negatively charged ANS anion it also takes up positively charged protons from water to compensate the effect of the negative charge, and leaves the free hydroxide anions in solution thus shifting pH upward (the Scatchard-Black effect). These results indicate that ANS is not always a definitive reporter of protein molecular conformation that existed before ANS binding. Instead, ANS reports on a conformationally tightened state produced by the interplay of ionic and hydrophobic characters of both protein and ligand.
Lack of conformity to new local dietary preferences in migrating captive chimpanzees
Vale, Gillian L.; Davis, Sarah J.; van de Waal, Erica; Schapiro, Steven J.; Lambeth, Susan P.; Whiten, Andrew
2017-01-01
Conformity to the behavioural preferences of others can have powerful effects on intragroup behavioural homogeneity in humans, but evidence in animals remains minimal. In this study, we took advantage of circumstances in which individuals or pairs of captive chimpanzees, Pan troglodytes, were ‘migrated’ between groups, to investigate whether immigrants would conform to a new dietary population preference experienced in the group they entered, an effect suggested by recent fieldwork. Such ‘migratory-minority’ chimpanzees were trained to avoid one of two differently coloured foods made unpalatable, before ‘migrating’ to, and then observing, a ‘local-majority’ group consume a different food colour. Both migratory-minority and local-majority chimpanzees displayed social learning, spending significantly more time consuming the previously unpalatable, but instead now edible, food, than did control chimpanzees who did not see immigrants eat this food, nor emigrate themselves. However, following the migration of migratory-minority chimpanzees, these control individuals and the local-majority chimpanzees tended to rely primarily upon personal information, consuming first the food they had earlier learned was palatable before sampling the alternative. Thus, chimpanzees did not engage in conformity in the context we tested; instead seeing others eat a previously unpalatable food led to socially learned and adaptive re-exploration of this now-safe option in both minority and majority participants. PMID:29200465
Changes in conformational dynamics of basic side chains upon protein-DNA association.
Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B Montgometry; Iwahara, Junji
2016-08-19
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein-DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1-DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
1H NMR studies of the 5-(hydroxymethyl)-2'-deoxyuridine containing TF1 binding site.
Pasternack, L B; Bramham, J; Mayol, L; Galeone, A; Jia, X; Kearns, D R
1996-07-15
The pyrimidine base 5-(hydroxymethyl)-2'-deoxyuridine (HmU) is a common nucleotide in SPO1 phage DNA. Numerous transcriptional proteins bind HmU-containing DNA preferentially implicating a regulatory function of HmU. We have investigated the conformation and dynamics of d-(5'-CHmUCHmUACACGHmUGHmUAGAG-OH-3')2 (HmU-DNA). This oligonucleotide mimics the consensus sequence of Transcription Factor 1 (TF1). The HmU-DNA was compared to the thymine-containing oligonucleotide. NOESY and DQF COSY spectroscopy provided resonance assignments of nonexchangeable and exchangeable protons, intranucleotide, internucleotide and intrastrand proton-proton distances, and dihedral angle constraints. Methylene protons of the hydroxymethyl group are nonequivalent protons and the hydroxymethyl group is not freely rotating. The hydroxymethyl group adopts a specific orientation with the OH group oriented on the 3' side of the plane of the base. Analysis of imino proton resonances and NOEs indicates additional end base pair fraying and a temperature-induced transition to a conformation in which the internal HmU-A base pairs are disrupted or have reduced lifetimes. Orientation of the hydroxymethyl group indicates the presence of internucleotide intrastrand hydrogen bonding between the HmU12C5 hydroxyl group and A13. All sugars in both DNAs show a C2'endo conformation (typical of B-DNA).
NASA Astrophysics Data System (ADS)
Lee, Kyung-Koo; Joo, Cheonik; Yang, Seongeun; Han, Hogyu; Cho, Minhaeng
2007-06-01
The phosphorylation effect on the small peptide conformation in water has not been clearly understood yet, despite the widely acknowledged notion that control of protein activity by phosphorylation works mainly by inducing conformational change. To elucidate the detailed mechanism, we performed infrared (IR) absorption and vibrational and electronic circular dichroism studies of both unphosphorylated and phosphorylated tetrapeptides, GSSS 1 and GSSpS 2. The solution structure of the tetrapeptide is found to be little dependent on the presence of the neutral or negatively charged phosphoryl group, and to be a mixture of extended structures including polyproline II (PII) and β-sheet conformations. The additional band at 1598cm-1 in the amide I IR spectrum of the phosphorylated peptide GSSpS at neutral pD appears to be clear spectroscopic evidence for direct intramolecular hydrogen-bonding interaction between the side chain dianionic phosphoryl group and the backbone amide proton. On the basis of amide I IR band analyses, the authors found that the probability of finding the phosphoryl group strongly H bonded to the backbone proton in GSSpS is about 43% at pD 7.0 and 37°C. Such a H-bonding interaction in GSSpS has the biological standard enthalpy and entropy of -15.1kJ /mol and -51.2J/Kmol, respectively. Comparisons between the experimentally measured IR and VCD spectra and the numerically simulated ones suggested that the currently available force field parameters need to be properly modified. The results in this paper may shed light on an unknown mechanism of controlling the peptide conformation by phosphorylation.
Lee, Ting-Wai; Cherney, Maia M; Liu, Jie; James, Karen Ellis; Powers, James C; Eltis, Lindsay D; James, Michael N G
2007-02-23
The SARS coronavirus main peptidase (SARS-CoV M(pro)) plays an essential role in the life-cycle of the virus and is a primary target for the development of anti-SARS agents. Here, we report the crystal structure of M(pro) at a resolution of 1.82 Angstroms, in space group P2(1) at pH 6.0. In contrast to the previously reported structure of M(pro) in the same space group at the same pH, the active sites and the S1 specificity pockets of both protomers in the structure of M(pro) reported here are in the catalytically competent conformation, suggesting their conformational flexibility. We report two crystal structures of M(pro) having an additional Ala at the N terminus of each protomer (M(+A(-1))(pro)), both at a resolution of 2.00 Angstroms, in space group P4(3)2(1)2: one unbound and one bound by a substrate-like aza-peptide epoxide (APE). In the unbound form, the active sites and the S1 specificity pockets of both protomers of M(+A(-1))(pro) are observed in a collapsed (catalytically incompetent) conformation; whereas they are in an open (catalytically competent) conformation in the APE-bound form. The observed conformational flexibility of the active sites and the S1 specificity pockets suggests that these parts of M(pro) exist in dynamic equilibrium. The structural data further suggest that the binding of APE to M(pro) follows an induced-fit model. The substrate likely also binds in an induced-fit manner in a process that may help drive the catalytic cycle.
Roy, M; Lee, R W; Brange, J; Dunn, M F
1990-04-05
The effects of high dilution on the 1H Fourier transform NMR spectrum of native human insulin at pH* 8.0 and 9.3 have been examined at 500 MHz resolution. The dependence of the spectrum on concentration and comparison with the spectrum of a biologically highly potent monomeric insulin mutant (SerB9----Asp) establish that at 36 microM (pH* 9.3) or 18 microM (pH* 8) and no added buffer or salts, human insulin is monomeric. Under these conditions of dilution, ionic strength, and pH*, human insulin and the SerB9----Asp mutant exhibit nearly identical 1H NMR spectra. At higher concentrations (i.e. greater than 36 microM to 0.91 mM), native human insulin dimerizes, and this aggregation causes a change in insulin conformation. Although there are many changes in the spectrum, the TyrB26 ring H3,5 proton signals located at 6.63 ppm and the methyl signal located at 0.105 ppm (characteristics of monomeric insulin) are particularly distinct signatures of the conformation change that accompanies dimerization. Magnetization transfer experiments show that the 0.105 ppm methyl signal shifts downfield to a new position at 0.45 ppm. We conclude that the 0.105 ppm methyl signal is due to a conformation in which a Leu methyl group is centered over and in van der Waals contact with the ring of an aromatic side chain. Dimerization causes a conformation change that alters this interaction, thereby causing the downfield shift. Nuclear Overhauser studies indicate that the methyl group involved is located within a cluster of aromatic side chains and that the closest ring-methyl group interaction is with the ring of PheB24.
Chakraborty, Sandipan; Jana, Biman
2017-05-10
The mechanism of ice recognition by antifreeze protein (AFP) is a topic of recent interest. Here, using equilibrium simulations and free energy calculations, we provide structural rationale to the observed experimental anomalies on type I AFP (wfAFP isoform HPLC6) and its mutants as well as probe the molecular origin of ice recognition by them. Our results clearly demonstrate that the interplay between the conformational and hydration properties dictates the ice binding ability of type I AFP and its mutants. We find that HPLC6 exists as a highly stable long helix which adsorbs on the ice surface through the ordered water cages around the CH 3 group of threonine (THR) residues, rather than directly binding to the ice surface via threonine (THR) through hydrogen bonding. Upon mutating THR with serine (SER), the straight helix conformation of HPLC6 disappears and the most stable conformation is a kinked helix devoid of ice binding ability. Free energy calculations reveal that there is a dynamic equilibrium between straight and bent helical conformations in the case of a valine (VAL) mutant. The straight long helical form of the VAL mutant also has the ability to form an ordered water cage structure around the CH 3 groups of the VAL residues and thereby efficiently adsorbs on an ice plane similar to the wild type AFP.
Microwave Spectroscopy of 2-PENTANONE
NASA Astrophysics Data System (ADS)
Andresen, Maike; Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Stahl, Wolfgang
2017-06-01
Methyl propyl ketone (MPK) or 2-Pentanone is known to be an alarm pheroromone released by the mandibular glands of the bees. It is a highly volatile compound. This molecule was studied by a combination of quantum chemical calculations and microwave spectroscopy in order to get informations about the lowest energy conformers and their structures.The rotational spectrum of 2-pentanone was measured using the molecular beam Fourier transform microwave spectrometer in Aachen operating between 2 and 26.5 GHz. Ab initio calculations determine 4 conformers but only two of them are observed in our jet-beam conditions.The lowest conformer has a C_{1} structure and its spectrum shows internal rotation splittings arising from two methyl groups. The internal splittings of 305 transitions for this conformer were analyzed using the XIAM code It led to the determination of the values for the barrier heights hindering the internal rotation of two methyl groups of 239 cm^{-1} and 980 cm^{-1} respectively. The next energy conformer has a C_{s} structure and the analysis of the internal splittings of 134 transitions using the XIAM code and the BELGI code led to the determination of internal rotation barrier height of 186 cm^{-1}. Comparisons of quantum chemistry and experimental results will be discussed. H. Hartwig, H. Dreizler, Z. Naturforsch. 51a, 923 (1996). J. T. Hougen, I. Kleiner and M. Godefroid, J. Mol. Spectrosc., 163, 559-586 (1994).
NASA Astrophysics Data System (ADS)
Ferres, Lynn; Stahl, Wolfgang; Nguyen, Ha Vinh Lam
2018-03-01
The microwave spectrum of m-methylanisole (also known as 3-methylanisole, or 3-methoxytoluene) was measured using a pulsed molecular jet Fourier transform microwave spectrometer operating in the frequency range of 2-26.5 GHz. Quantum chemical calculations predicted two conformers with the methoxy group in trans or cis position related to the ring methyl group, both of which were assigned in the experimental spectrum. Due to the internal rotation of the ring methyl group, all rotational transitions introduced large A-E splittings up to several GHz, which were analyzed with a newly developed program, called aixPAM, working in the principal axis system. There are significant differences in the V3 potential barriers of 55.7693(90) cm-1 and 36.6342(84) cm-1 determined by fitting 223 and 320 torsional components of the cis and the trans conformer, respectively. These values were compared with those found in other m-substituted toluenes as well as in o- and p-methylanisole. A comparison between the aixPAM and the XIAM code (using a combined axis system) was also performed.
Brinkman, Britney G; Khan, Aliya; Edner, Benjamin; Rosén, Lee A
2014-01-01
Recent research has suggested that vegetarians may be at an increased risk for developing disordered eating or body image issues when compared to non-vegetarians. However, the results of such studies are mixed, and no research has explored potential connections between vegetarianism and self-objectification. In the current study, the authors examine factors that predicted body surveillance, body shame, and appearance control beliefs; three aspects of self-objectification. Surveys were completed by 386 women from the United States who were categorized as vegetarian, semi-vegetarian, or non-vegetarian. The three groups differed regarding dietary motivations, levels of feminist activism, and body shame, but did not differ on their conformity to feminine norms. While conformity to feminine norms predicted body surveillance and body shame levels among all three groups of women, feminist activism predicted appearance control beliefs among non-vegetarians only. These findings suggest that it is important for researchers and clinicians to distinguish among these three groups when examining the relationship between vegetarianism and self-objectification. Copyright © 2013 Elsevier Ltd. All rights reserved.
Unable to Conform, Unwilling to Rebel? Youth, Culture, and Motivation in Globalizing Japan
Toivonen, Tuukka; Norasakkunkit, Vinai; Uchida, Yukiko
2011-01-01
This paper investigates the effects of globalization on Japanese young adults from sociological and psychological perspectives. While Japan’s socio-economic institutions have shown mainly resistant (or “hot”) reactions to globalization, individual-level adaptations remain oriented toward conformity to dominant life expectations, which remain largely unchanged, despite decreasing rewards. However, a socially withdrawn sub-group (the so-called hikikomori) appears to be unable to conform yet is also unwilling to rebel. The experimental evidence we review suggests such youth deviate from typical Japanese motivational patterns but have not necessarily become more Western. This poses serious problems in an interdependence-oriented culture, but the paralysis of this group seems to be an outcome of labor market change rather than a psychopathology. Finally, we also identify a contrasting group – whom we call the quiet mavericks – that adapts in creative and integrative (or “cool”) ways by negotiating conformist pressures tactfully. Our account sheds light on just how complex and painful the psychological and sociological effects of globalization can be for young people in conformist societies, with implications to policy and social sustainability. PMID:21949510
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, G.D.; Bharadwaj, R.K.
The molecular geometries and conformational energies of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 1,3-dimethyl-1,3-dinitro methyldiamine (DDMD) and have been determined from high-level quantum chemistry calculations and have been used in parametrizing a classical potential function for simulations of HMX. Geometry optimizations for HMX and DDMD and rotational energy barrier searches for DDMD were performed at the B3LYP/6-311G** level, with subsequent single-point energy calculations at the MP2/6-311G** level. Four unique low-energy conformers were found for HMX, two whose conformational geometries correspond closely to those found in HMX polymorphs from crystallographic studies and two additional, lower energy conformers that are not seen in the crystallinemore » phases. For DDMD, three unique low-energy conformers, and the rotational energy barriers between them, were located. In parametrizing the classical potential function for HMX, nonbonded repulsion/dispersion parameters, valence parameters, and parameters describing nitro group rotation and out-of-plane distortion at the amine nitrogen were taken from the previous studies of dimethylnitramine. Polar effects in HMX and DDMD were represented by sets of partial atomic charges that reproduce the electrostatic potential and dipole moments for the low-energy conformers of these molecules as determined from the quantum chemistry wave functions. Parameters describing conformational energetics for the C-N-C-N dihedrals were determined by fitting the classical potential function to reproduce relative conformational energies in HMX as found from quantum chemistry. The resulting potential was found to give a good representation of the conformer geometries and relative conformer energies in HMX and a reasonable description of the low-energy conformers and rotational energy barriers in DDMD.« less
Fluorine conformational effects in organocatalysis: an emerging strategy for molecular design.
Zimmer, Lucie E; Sparr, Christof; Gilmour, Ryan
2011-12-09
Molecular design strategies that profit from the intrinsic stereoelectronic and electrostatic effects of fluorinated organic molecules have mainly been restricted to bio-organic chemistry. Indeed, many fluorine conformational effects remain academic curiosities with no immediate application. However, the renaissance of organocatalysis offers the possibility to exploit many of these well-described phenomena for molecular preorganization. In this minireview, we highlight examples of catalyst refinement by introduction of an aliphatic C-F bond which functions as a chemically inert steering group for conformational control. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cox, M B; Arjunan, P; Arora, S K
1990-08-01
X-ray, NMR and molecular mechanics studies on pentostatin (C11H16N4O4), a potent inhibitor of the enzyme adenosine deaminase, have been carried out to study the structure and conformation. The crystals belong to the monoclinic space group P21 with the cell dimensions of a = 4.960(1), b = 10.746(3), c = 11.279(4)A, beta = 101.18(2) degrees and Z = 2. The structure was solved by direct methods and difference Fourier methods and refined to an R value of 0.047 for 997 reflections. The trihydrodiazepine ring is nonplanar and adopts a distorted sofa conformation with C(7) deviated from the mean plane by 0.66A. The deoxyribose ring adopts a C3'-endo conformation, different from coformycin where the sugar has a C2'-endo conformation. The observed glycosidic torsion angle (chi = -119.5 degrees) is in the anti range. The conformation about the C(4')-C(5') bond is gauche+. The conformation of the molecule is compared with that of coformycin and 2-azacoformycin. 1 and 2D NMR studies have been carried out and the dihedral angles obtained from coupling constants have been compared with those obtained from the crystal structure. The conformation of deoxyribose in solution is approximately 70% S and 30% N. Molecular mechanics studies were performed to obtain the energy minimized conformation, which is compared with X-ray and NMR results.
Nei, Y-w; Crampton, K T; Berden, G; Oomens, J; Rodgers, M T
2013-10-17
The IRMPD action spectra of the deprotonated forms of the four common RNA mononucleotides, adenosine-5'-monophosphate (A5'p), guanosine-5'-monophosphate (G5'p), cytidine-5'-monophosphate (C5'p), and uridine-5'-monophosphate (U5'p), are measured to probe their gas-phase structures. The IRMPD action spectra of all four deprotonated RNA mononucleotides exhibit distinct IR signatures in the frequency region investigated, 570-1900 cm(-1), that allows these deprotonated mononucleotides to be easily differentiated from one other. Comparison of the measured IRMPD action spectra to the linear IR spectra calculated at the B3LYP/6-31+G(d,p) level of theory finds that the most stable conformations of the deprotonated forms of A5'p, C5'p, and U5'p are accessed in the experiments, and these conformers adopt the C3' endo conformation of the ribose moiety and the anti conformation of the nucleobase. In the case of deprotonated G5'p, the most stable conformer is also accessed in the experiments. However, the ground-state conformer differs from the other three deprotonated RNA mononucleotides in that it adopts the syn rather than anti conformation for the nucleobase. Present results are compared to results previously obtained for the deprotonated forms of the four common DNA mononucleotides to examine the fundamental conformational differences between these species, and thus elucidate the effects of the 2'-hydroxyl group on their structure, stability, and fragmentation behavior.
NASA Astrophysics Data System (ADS)
de Pinho Pessoa Nogueira, Luciana; de Oliveira, Yara S.; de C. Fonseca, Jéssica; Costa, Wendell S.; Raffin, Fernanda N.; Ellena, Javier; Ayala, Alejandro Pedro
2018-03-01
Rifampicin is a semi-synthetic drug derived from rifamycin B, and currently integrates the fixed dose combination tablet formulations used in the treatment of tuberculosis. It is also used in the leprosy polychemotherapy and prophylaxis, which are diseases classified as neglected according to the World Health Organization. Rifampicin is a polymorphic drug and its desirable polymorphic form is labeled as II, being the main goal of this study the elucidation of its crystalline structure. Polymorph II is characterized by two molecules with different conformations in the asymmetric unit and the following lattice parameters: a = 14.0760 (10) Å, b = 17.5450 (10) Å, c = 17.5270 (10) Å, β = 92.15°. Differently to the previously reported structures, a charge transference from the hydroxyl group of the naphthoquinone of one conformer to the nitrogen of the piperazine group of the second conformer was observed. The relevance of the knowledge of this crystalline structure, which is the preferred polymorph for pharmaceutical formulations, was evidenced by analyzing raw materials with polymorphic mixtures. Thus, the results presented in this contribution close an old information gap allowing the complete solid-state characterization of rifampicin.
Weak encoding of faces predicts socially influenced judgments of facial attractiveness.
Schnuerch, Robert; Koppehele-Gossel, Judith; Gibbons, Henning
2015-01-01
Conforming to the majority can be seen as a heuristic type of judgment, as it allows the individual to easily choose the most accurate or most socially acceptable type of behavior. People who process the currently to-be-judged items in a superficial, heuristic way should tend to conform to group judgment more than people processing these items in a systematic and elaborate way. We investigated this hypothesis using electroencephalography (EEG), analyzing whether the strength of neural encoding of faces was related to the tendency to adopt a group's evaluative judgments regarding these faces. As expected, we found that the amplitude of the N170, a specific neural correlate of face encoding, was inversely related to conformity across participants: The weaker the faces were encoded, the more the majority response regarding the faces' attractiveness was adopted instead of relying on the actual qualities of the faces. Applying neurophysiological methodology, we thus provide support for previous claims, based on behavioral data and theorizing, that social conformity is a heuristic type of judgment. We propose that weak encoding of judgment-relevant information is a typical, possibly even necessary, precursor of socially adjusted judgments, irrespective of one's current motivational goal (i.e., to be accurate or accepted).
Luchian, Raluca; Vinţeler, Emil; Chiş, Cosmina; Vasilescu, Mihai; Leopold, Nicolae; Prates Ramalho, João P; Chiş, Vasile
2017-12-01
The analysis of the possible conformers and the conformational change between solid and liquid states of a particular drug molecule are mandatory not only for describing reliably its spectroscopical properties but also for understanding the interaction with the receptor and its mechanism of action. Therefore, here we investigated the free-energy conformational landscape of levetiracetam (LEV) in gas phase as well as in water and ethanol, aiming to describe the 3-dimensional structure and energetic stability of its conformers. Twenty-two unique conformers were identified, and their energetic stability was determined at density functional theory B3LYP/6-31+G(2d,2p) level of theory. The 6 most stable monomers in water, within a relative free-energy window of 0.71 kcal mol -1 and clearly separated in energy from the remaining subset of 16 conformers, as well as the 3 most stable dimers were then used to compute the Boltzmann populations-averaged UV-Vis and NMR spectra of LEV. The conformational landscape in solution is distinctly different from that corresponding to gas phase, particularly due to the relative orientations of the butanamide group. Aiming to clarify the stability of the possible dimers of LEV, we also investigated computationally the structure of a set of 11 nonhydrated and hydrated homochiral hydrogen-bonded LEV dimers. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Conformational effects in photoelectron circular dichroism
NASA Astrophysics Data System (ADS)
Turchini, S.
2017-12-01
Photoelectron circular dichroism (PECD) is a novel type of spectroscopy, which presents surprising sensitivity to conformational effects in chiral systems. While classical photoelectron spectroscopy mainly responds to conformational effects in terms of energy level shifts, PECD provides a rich and detailed response to tiny changes in electronic and structural properties by means of the intensity dispersion of the circular dichroism as a function of photoelectron kinetic energy. In this work, the basics of PECD will be outlined, emphasizing the role of interference from the l,l+/- 1 outgoing partial wave of the photoelectron in the PECD transition matrix element, which is responsible for the extreme sensitivity to conformational effects. Examples using molecular systems and interfaces will shed light on the powerful application of PECD to classical conformational effects such as group substitution, isomerism, conformer population and clustering. Moreover, the PECD results will be reported in challenging new fields where conformations play a key role, such as vibrational effects, transient chirality and time- resolved experiments. To date, PECD has mostly been based on synchrotron radiation facilities, but it also has a future as a table-top lab experiment by means of multiphoton ionization. An important application of PECD as an analytical tool will be reported. The aim of this review is to illustrate that in PECD, the presence of conformational effects is essential for understanding a wide range of effects from a new perspective, making it different from classical spectroscopy.
The architecture of metal coordination groups in proteins.
Harding, Marjorie M
2004-05-01
A set of tables is presented and a survey given of the architecture of metal coordination groups in a representative set of protein structures from the Protein Data Bank [Bernstein et al. (1977), J. Mol. Biol. 112, 535-542; Berman et al. (2000), Nucleic Acids Res. 28, 235-242]. The structures have been determined to a resolution of 2.5 A or better; the metals considered are Ca, Mg, Mn, Fe, Cu, Zn, Na and K, with particular emphasis on Ca and Zn and the exclusion of haem groups and Fe/S clusters; the proteins are a representative set in which none has more than 30% sequence identity with any other. In them the metal is coordinated by several donor groups from different amino-acid residues in the protein chain and often also by water or other small molecules. The tables, for approximately 600 metal coordination groups, include information on the conformations of the protein chain in the region around the metal and reliability indicators. They illustrate the wide variety of coordination numbers, chelate-loop sizes and other properties and the different characteristics of different metals. They show that glycine has a particular significance in the position adjacent to a donor residue, especially in Ca coordination groups. They also show that metal coordination does not appear to lead to significant distortions of the torsion angles phi, psi from their normally allowed values. Very few metal coordination groups occur more than once in the representative set and when they do they are usually related in fold and function; they have similar but not necessarily identical conformations. However, individual chelate loops, for example Zn(-C-X-X'-C-), in which both cysteines are coordinated to Zn through S, and X and X' are any amino acids, are repeated frequently in many different and unrelated proteins. Not all chelate loops with the same composition have the same conformation, but for smaller loops there are usually one or two strongly preferred and well defined conformations. Quite frequently more than one metal coordination group is associated with one protein chain; these proteins are identified.
Kan, Zigui; Zhu, Qiang; Yang, Lijiang; Huang, Zhixiong; Jin, Biaobing; Ma, Jing
2017-05-04
Conformation of cellulose with various degree of polymerization of n = 1-12 in ionic liquid 1,3-dimethylimidazolium chloride ([C 1 mim]Cl) and the intermolecular interaction between them was studied by means of molecular dynamics (MD) simulations with fixed-charge and charge variable polarizable force fields, respectively. The integrated tempering enhanced sampling method was also employed in the simulations in order to improve the sampling efficiency. Cellulose undergoes significant conformational changes from a gaseous right-hand helical twist along the long axis to a flexible conformation in ionic liquid. The intermolecular interactions between cellulose and ionic liquid were studied by both infrared spectrum measurements and theoretical simulations. Designated by their puckering parameters, the pyranose rings of cellulose oligomers are mainly arranged in a chair conformation. With the increase in the degree of polymerization of cellulose, the boat and skew-boat conformations of cellulose appear in the MD simulations, especially in the simulations with polarization model. The number and population of hydrogen bonds between the cellulose and the chloride anions show that chloride anion is prone to form HBs whenever it approaches the hydroxyl groups of cellulose and, thus, each hydroxyl group is fully hydrogen bonded to the chloride anion. MD simulations with polarization model presented more abundant conformations than that with nonpolarization model. The application of the enhanced sampling method further enlarged the conformational spaces that could be visited by facilitating the system escaping from the local minima. It was found that the electrostatics interactions between the cellulose and ionic liquid contribute more to the total interaction energies than the van der Waals interactions. Although the interaction energy between the cellulose and anion is about 2.9 times that between the cellulose and cation, the role of cation is non-negligible. In contrast, the interaction energy between the cellulose and water is too weak to dissolve cellulose in water.
NASA Astrophysics Data System (ADS)
Gord, Joseph R.; Hewett, Daniel M.; Kubasik, Matthew A.; Zwier, Timothy S.
2014-06-01
2-Aminoisobutyric acid (Aib) is an achiral, α-amino acid having two equivalent methyl groups attached to Cα. Extended Aib oligomers are known to preferentially adopt a 310-helical structure in the condensed phase. Here, we take a simplifying step and focus on the intrinsic folding propensities of Aib by looking at a single, capped Aib structure and then extending to longer oligomers in the gas phase, free from the influence of solvent molecules and cooled in a supersonic expansion. Resonant two-photon ionization and IR-UV holeburning will be used to record single-conformation UV spectra using the Z-cap as UV chromophore. Resonant ion-dip infrared (RIDIR) spectroscopy provides single-conformation IR spectra in the OH stretch, NH stretch, amide I and amide II regions. Two conformational isomers have been identified for the smallest unit in the study, Z-Aib-OH, and four conformational isomers were seen for Z-Aib-Aib-OH, with widely-varying IR spectral patterns. In addition to investigating the conformational dependence on oligomer length, this work also studies the steric and electrostatic impact of different capping groups, R-X where X = -OH, -OMethyl, and -OtButyl. These caps are considered here for the case of Z-Aib-Aib-X. Extension to larger Z-(Aib)n-X oligomers will shed light on the extent to which the solution phase preference for 310-helix formation is retained in the gas phase, and when its onset first appears. When possible 13C isotopomers will be used to assist with the assignments and modulate the coupling between amide I fundamentals. Toniolo, C.; Bonora, G. M.; Barone, V.; Bavoso, A.; Benedetti, E.; Di Blasio, B.; Grimaldi, P.; Lelj, F.; Pavone, V.; Padone, C., Conformation of Pleionomers of α-Aminoisobutyric Acid. Macromolecules 1985, 18, 895-902.
Kreis, U C; Varma, V; Pinto, B M
1995-06-01
This paper describes the use of a protocol for conformational analysis of oligosaccharide structures related to the cell-wall polysaccharide of Streptococcus group A. The polysaccharide features a branched structure with an L-rhamnopyranose (Rhap) backbone consisting of alternating alpha-(1-->2) and alpha-(1-->3) links and D-N-acetylglucosamine (GlcpNAc) residues beta-(1-->3)-connected to alternating rhamnose rings: [formula: see text] Oligomers consisting of three to six residues have been synthesized and nuclear magnetic resonance (NMR) assignments have been made. The protocol for conformational analysis of the solution structure of these oligosaccharides involves experimental and theoretical methods. Two-dimensional NMR spectroscopy methods (TOCSY, ROESY and NOESY) are utilized to obtain chemical shift data and proton-proton distances. These distances are used as constraints in 100 ps molecular dynamics simulations in water using QUANTA and CHARMm. In addition, the dynamics simulations are performed without constraints. ROE build-up curves are computed from the averaged structures of the molecular dynamics simulations using the CROSREL program and compared with the experimental curves. Thus, a refinement of the initial structure may be obtained. The alpha-(1-->2) and the beta-(1-->3) links are unambiguously defined by the observed ROE cross peaks between the A-B',A'-B and C-B,C'-B' residues, respectively. The branch-point of the trisaccharide CBA' is conformationally well-defined. Assignment of the conformation of the B-A linkage (alpha-(1-->3)) was problematic due to TOCSY relay, but could be solved by NOESY and T-ROESY techniques. A conformational model for the polysaccharide is proposed.
Maeno, Akihiro; Sindhikara, Daniel; Hirata, Fumio; Otten, Renee; Dahlquist, Frederick W.; Yokoyama, Shigeyuki; Akasaka, Kazuyuki; Mulder, Frans A.A.; Kitahara, Ryo
2015-01-01
Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins are manifested by their corresponding amino acid sequences, the natural rules for molecular design and their corresponding interplay remain obscure. In this study, we focused on the role of internal cavities of proteins in conformational dynamics. We investigated the pressure-induced responses from the cavity-enlarged L99A mutant of T4 lysozyme, using high-pressure NMR spectroscopy. The signal intensities of the methyl groups in the 1H/13C heteronuclear single quantum correlation spectra, particularly those around the enlarged cavity, decreased with the increasing pressure, and disappeared at 200 MPa, without the appearance of new resonances, thus indicating the presence of heterogeneous conformations around the cavity within the ground state ensemble. Above 200 MPa, the signal intensities of >20 methyl groups gradually decreased with the increasing pressure, without the appearance of new resonances. Interestingly, these residues closely matched those sensing a large conformational change between the ground- and high-energy states, at atmospheric pressure. 13C and 1H NMR line-shape simulations showed that the pressure-induced loss in the peak intensity could be explained by the increase in the high-energy state population. In this high-energy state, the aromatic side chain of F114 gets flipped into the enlarged cavity. The accommodation of the phenylalanine ring into the efficiently packed cavity may decrease the partial molar volume of the high-energy state, relative to the ground state. We suggest that the enlarged cavity is involved in the conformational transition to high-energy states and in the volume fluctuation of the ground state. PMID:25564860
Maeno, Akihiro; Sindhikara, Daniel; Hirata, Fumio; Otten, Renee; Dahlquist, Frederick W; Yokoyama, Shigeyuki; Akasaka, Kazuyuki; Mulder, Frans A A; Kitahara, Ryo
2015-01-06
Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins are manifested by their corresponding amino acid sequences, the natural rules for molecular design and their corresponding interplay remain obscure. In this study, we focused on the role of internal cavities of proteins in conformational dynamics. We investigated the pressure-induced responses from the cavity-enlarged L99A mutant of T4 lysozyme, using high-pressure NMR spectroscopy. The signal intensities of the methyl groups in the (1)H/(13)C heteronuclear single quantum correlation spectra, particularly those around the enlarged cavity, decreased with the increasing pressure, and disappeared at 200 MPa, without the appearance of new resonances, thus indicating the presence of heterogeneous conformations around the cavity within the ground state ensemble. Above 200 MPa, the signal intensities of >20 methyl groups gradually decreased with the increasing pressure, without the appearance of new resonances. Interestingly, these residues closely matched those sensing a large conformational change between the ground- and high-energy states, at atmospheric pressure. (13)C and (1)H NMR line-shape simulations showed that the pressure-induced loss in the peak intensity could be explained by the increase in the high-energy state population. In this high-energy state, the aromatic side chain of F114 gets flipped into the enlarged cavity. The accommodation of the phenylalanine ring into the efficiently packed cavity may decrease the partial molar volume of the high-energy state, relative to the ground state. We suggest that the enlarged cavity is involved in the conformational transition to high-energy states and in the volume fluctuation of the ground state. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Gagnon, Susannah M. L.; Meloncelli, Peter J.; Zheng, Ruixiang B.; Haji-Ghassemi, Omid; Johal, Asha R.; Borisova, Svetlana N.; Lowary, Todd L.; Evans, Stephen V.
2015-01-01
Homologous glycosyltransferases α-(1→3)-N-acetylgalactosaminyltransferase (GTA) and α-(1→3)-galactosyltransferase (GTB) catalyze the final step in ABO(H) blood group A and B antigen synthesis through sugar transfer from activated donor to the H antigen acceptor. These enzymes have a GT-A fold type with characteristic mobile polypeptide loops that cover the active site upon substrate binding and, despite intense investigation, many aspects of substrate specificity and catalysis remain unclear. The structures of GTA, GTB, and their chimeras have been determined to between 1.55 and 1.39 Å resolution in complex with natural donors UDP-Gal, UDP-Glc and, in an attempt to overcome one of the common problems associated with three-dimensional studies, the non-hydrolyzable donor analog UDP-phosphono-galactose (UDP-C-Gal). Whereas the uracil moieties of the donors are observed to maintain a constant location, the sugar moieties lie in four distinct conformations, varying from extended to the “tucked under” conformation associated with catalysis, each stabilized by different hydrogen bonding partners with the enzyme. Further, several structures show clear evidence that the donor sugar is disordered over two of the observed conformations and so provide evidence for stepwise insertion into the active site. Although the natural donors can both assume the tucked under conformation in complex with enzyme, UDP-C-Gal cannot. Whereas UDP-C-Gal was designed to be “isosteric” with natural donor, the small differences in structure imposed by changing the epimeric oxygen atom to carbon appear to render the enzyme incapable of binding the analog in the active conformation and so preclude its use as a substrate mimic in GTA and GTB. PMID:26374898
NASA Astrophysics Data System (ADS)
Gord, Joseph R.; Hewett, Daniel M.; Kubasik, Matthew A.; Zwier, Timothy S.
2015-06-01
2-Aminoisobutyric acid (Aib) is an achiral, α-amino acid having two equivalent methyl groups attached to C_α. Extended Aib oligomers are known to have a strong preference for the adoption of a 310-helical structure in the condensed phase. Here, we have taken a simplifying step and focused on the intrinsic folding propensities of Aib by looking at a series of capped Aib oligomers in the gas phase, free from the influence of solvent molecules and cooled in a supersonic expansion. Resonant two-photon ionization and IR-UV holeburning have been used to record single-conformation UV spectra using the Z-cap as the UV chromophore. Resonant ion-dip infrared (RIDIR) spectroscopy provides single-conformation IR spectra in the OH stretch and NH stretch regions. Data have been collected on a set of Z-(Aib)n-X oligomers with n = 1, 2, 4, 6 and X = -OH and -OMethyl. The impacts of these capping groups and differences in backbone length have been found to dramatically influence the conformational space accessed by the molecules studied here. Oligomers of n=4 have sufficient backbone length for a full turn of the 310-helix to be formed. Early interpretation of the data collected shows clear spectroscopic markers signaling the onset of 310-helix formation as well as evidence of structures incorporating C7 and C14 hydrogen bonded rings. Toniolo, C.; Bonora, G. M.; Barone, V.; Bavoso, A.; Benedetti, E.; Di Blasio, B.; Grimaldi, P.; Lelj, F.; Pavone, V.; Pedone, C., Conformation of Pleionomers of α-Aminoisobutyric Acid. Macromolecules 1985, 18, 895-902.
NASA Astrophysics Data System (ADS)
Bourget, Antoine; Troost, Jan
2018-04-01
We revisit the study of the multiplets of the conformal algebra in any dimension. The theory of highest weight representations is reviewed in the context of the Bernstein-Gelfand-Gelfand category of modules. The Kazhdan-Lusztig polynomials code the relation between the Verma modules and the irreducible modules in the category and are the key to the characters of the conformal multiplets (whether finite dimensional, infinite dimensional, unitary or non-unitary). We discuss the representation theory and review in full generality which representations are unitarizable. The mathematical theory that allows for both the general treatment of characters and the full analysis of unitarity is made accessible. A good understanding of the mathematics of conformal multiplets renders the treatment of all highest weight representations in any dimension uniform, and provides an overarching comprehension of case-by-case results. Unitary highest weight representations and their characters are classified and computed in terms of data associated to cosets of the Weyl group of the conformal algebra. An executive summary is provided, as well as look-up tables up to and including rank four.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, B.; Amyes, T; Fedorov, A
2010-01-01
The structural factors responsible for the extraordinary rate enhancement ({approx}10{sup 17}) of the reaction catalyzed by orotidine 5{prime}-monophosphate decarboxylase (OMPDC) have not been defined. Catalysis requires a conformational change that closes an active site loop and 'clamps' the orotate base proximal to hydrogen-bonded networks that destabilize the substrate and stabilize the intermediate. In the OMPDC from Methanobacter thermoautotrophicus, a 'remote' structurally conserved cluster of hydrophobic residues that includes Val 182 in the active site loop is assembled in the closed, catalytically active conformation. Substitution of these residues with Ala decreases k{sub cat}/K{sub m} with a minimal effect on k{sub cat},more » providing evidence that the cluster stabilizes the closed conformation. The intrinsic binding energies of the 5{prime}-phosphate group of orotidine 5{prime}-monophosphate for the mutant enzymes are similar to that for the wild type, supporting this conclusion.« less
Quantum mechanical origin of the conformational preferences of 4-thiaproline and its S-oxides
Choudhary, Amit; Pua, Khian Hong
2010-01-01
The saturated ring and secondary amine of proline spawn equilibria between pyrrolidine ring puckers as well as peptide bond isomers. These conformational equilibria can be modulated by alterations to the chemical architecture of proline. For example, Cγ in the pyrrolidine ring can be replaced with sulfur, which can be oxidized either stereoselectively to yield diastereomeric S-oxides or completely to yield a sulfone. Here, the thiazolidine ring and peptide bond conformations of 4-thiaproline and its S-oxides were analyzed in an Ac-Xaa-OMe system by using NMR spectroscopy, X-ray crystallography, and hybrid density functional theory. The results indicate that the ring pucker of the S-oxides is governed by the gauche effect, and the prolyl peptide bond conformation is determined by the strength of the n→π* interaction between the amide oxygen and the ester carbonyl group. These findings, which are consistent with those for isologous 4-hydroxyprolines and 4-fluoroprolines, substantiate the importance of electron delocalization in amino-acid conformation. PMID:20221839
Conformational Preferences of α-Substituted Proline Analogues
Flores-Ortega, Alejandra; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos; Casanovas, Jordi
2009-01-01
DFT calculations at the B3LYP/6-31+G(d,p) level have been used to investigate how the replacement of the α hydrogen by a more sterically demanding group affects the conformational preferences of proline. Specifically, the N-acetyl-N’-methylamide derivatives of L-proline, L-α-methylproline and L-α-phenylproline have been calculated, with both the cis/trans isomerism of the peptide bonds and the puckering of the pyrrolidine ring being considered. The effects of solvation have been evaluated using a Self Consistent Reaction Field model. As expected, tetrasubstitution at the α carbon destabilizes the conformers with one or more peptide bonds arranged in cis. The lowest energy minimum has been found to be identical for the three compounds investigated, but important differences are observed regarding other energetically accessible backbone conformations. The results obtained provide evidence that the distinct steric requirements of the substituent at Cα may play a significant role in modulating the conformational preferences of proline. PMID:18351745
NASA Astrophysics Data System (ADS)
Chen, Xianwen; Lei, Shulai; Lotze, Christian; Czekelius, Constantin; Paulus, Beate; Franke, Katharina J.
2017-03-01
Porphyrins are highly flexible molecules and well known to adapt to their local environment via conformational changes. We studied the self-assembly of manganese meso-tetra(4-pyridyl)porphyrin (Mn-TPyP) molecules on a Cu(111) surface by low temperature scanning tunneling microscopy (STM) and atomic force microscopy (ATM). We observe molecular chains along the ⟨1 1 ¯ 0 ⟩ direction of the substrate. Within these chains, we identify two molecular conformations, which differ by the orientation of the upward bending of the macrocycle. Using density functional theory, we show that this saddle shape is a consequence of the rotation and inclination of the pyridyl groups towards Cu adatoms, which stabilize the metal-organic chains. The molecular conformations obey a strict alternation, reflecting the mutual enforcement of conformational adaptation in densely packed structures. Tunneling electrons from the STM tip can induce changes in the orientation of the pyridyl endgroups. The switching behaviour varies with the different adsorption configurations.
Kumawat, Amit; Chakrabarty, Suman; Kulkarni, Kiran
2017-01-01
Ras superfamily of GTPases regulate myriad cellular processes through a conserved nucleotide (GTP/GDP) dependent switching mechanism. Unlike Ras family of GTPases, for the Rho GTPases, there is no clear evidence for the existence of “sub-states” such as state 1 & state 2 in the GTP bound form. To explore the nucleotide dependent conformational space of the Switch I loop and also to look for existence of state 1 like conformations in Rho GTPases, atomistic molecular dynamics and metadynamics simulations on RhoA were performed. These studies demonstrate that both the nucleotide-free state and the GDP bound “OFF” state have very similar conformations, whereas the GTP bound “ON” state has unique conformations with signatures of two intermediate states. The conformational free energy landscape for these systems suggests the presence of multiple intermediate states. Interestingly, the energetic penalty of exposing the non-polar residues in the GTP bound form is counter balanced by the favourable hydrogen bonded interactions between the γ-phosphate group of GTP with the highly conserved Tyr34 and Thr37 residues. These competing molecular interactions lead to a tuneable energy landscape of the Switch I conformation, which can undergo significant changes based on the local environment including changes upon binding to effectors. PMID:28374773
NASA Astrophysics Data System (ADS)
Kumawat, Amit; Chakrabarty, Suman; Kulkarni, Kiran
2017-04-01
Ras superfamily of GTPases regulate myriad cellular processes through a conserved nucleotide (GTP/GDP) dependent switching mechanism. Unlike Ras family of GTPases, for the Rho GTPases, there is no clear evidence for the existence of “sub-states” such as state 1 & state 2 in the GTP bound form. To explore the nucleotide dependent conformational space of the Switch I loop and also to look for existence of state 1 like conformations in Rho GTPases, atomistic molecular dynamics and metadynamics simulations on RhoA were performed. These studies demonstrate that both the nucleotide-free state and the GDP bound “OFF” state have very similar conformations, whereas the GTP bound “ON” state has unique conformations with signatures of two intermediate states. The conformational free energy landscape for these systems suggests the presence of multiple intermediate states. Interestingly, the energetic penalty of exposing the non-polar residues in the GTP bound form is counter balanced by the favourable hydrogen bonded interactions between the γ-phosphate group of GTP with the highly conserved Tyr34 and Thr37 residues. These competing molecular interactions lead to a tuneable energy landscape of the Switch I conformation, which can undergo significant changes based on the local environment including changes upon binding to effectors.
NASA Astrophysics Data System (ADS)
De Almeida, Wagner B.; O'Malley, Patrick J.
2018-03-01
Ubiquinone is the key electron and proton transfer agent in biology. Its mechanism involves the formation of its intermediate one-electron reduced form, the ubisemiquinone radical. This is formed in a protein-bound form which permits the semiquinone to vary its electronic and redox properties. This can be achieved by hydrogen bonding acceptance by one or both oxygen atoms or as we now propose by restricted orientations for the methoxy groups of the headgroup. We show how the orientation of the two methoxy groups of the quinone headgroup affects the electronic structure of the semiquinone form and demonstrate a large dependence of the ubisemiquinone spin density distribution on the orientation each methoxy group takes with respect to the headgroup ring plane. This is shown to significantly modify associated hyperfine couplings which in turn needs to be accounted for in interpreting experimental values in vivo. The study uncovers the key potential role the methoxy group orientation can play in controlling the electronic structure and spin density of ubisemiquinone and provides an electronic-level insight into the variation in electron affinity and redox potential of ubiquinone as a function of the methoxy orientation. Taken together with the already known influence of cofactor conformation on heme and chlorophyll electronic structure, it reveals a more widespread role for cofactor conformational control of electronic structure and associated electron transfer in biology.
A Reassessment of Bergmann's Rule in Modern Humans
Foster, Frederick; Collard, Mark
2013-01-01
It is widely accepted that modern humans conform to Bergmann's rule, which holds that body size in endothermic species will increase as temperature decreases. However, there are reasons to question the reliability of the findings on which this consensus is based. One of these is that the main studies that have reported that modern humans conform to Bergmann's rule have employed samples that contain a disproportionately large number of warm-climate and northern hemisphere groups. With this in mind, we used latitudinally-stratified and hemisphere-specific samples to re-assess the relationship between modern human body size and temperature. We found that when groups from north and south of the equator were analyzed together, Bergmann's rule was supported. However, when groups were separated by hemisphere, Bergmann's rule was only supported in the northern hemisphere. In the course of exploring these results further, we found that the difference between our northern and southern hemisphere subsamples is due to the limited latitudinal and temperature range in the latter subsample. Thus, our study suggests that modern humans do conform to Bergmann's rule but only when there are major differences in latitude and temperature among groups. Specifically, groups must span more than 50 degrees of latitude and/or more than 30°C for it to hold. This finding has important implications for work on regional variation in human body size and its relationship to temperature. PMID:24015229
Crapster, J. Aaron; Stringer, Joseph R.; Guzei, Ilia A.; Blackwell, Helen E.
2011-01-01
N-hydroxy amides can be found in many naturally occurring and synthetic compounds and are known to act as both strong proton donors and chelators of metal cations. We have initiated studies of peptoids, or N-substituted glycines, that contain N-hydroxy amide side chains to investigate the potential effects of these functional groups on peptoid backbone amide rotamer equilibria and local conformations. We reasoned that the propensity of these functional groups to participate in hydrogen bonding could be exploited to enforce intramolecular or intermolecular interactions that yield new peptoid structures. Here, we report the design, synthesis, and detailed conformational analysis of a series of model N-hydroxy peptoids. These peptoids were readily synthesized, and their structures were analyzed in solution by 1D and 2D NMR and in the solid-state by X-ray crystallography. The N-hydroxy amides were found to strongly favor trans conformations with respect to the peptoid backbone in chloroform. More notably, unique sheet-like structures held together via intermolecular hydrogen bonds were observed in the X-ray crystal structures of an N-hydroxy amide peptoid dimer, which to our knowledge represent the first structure of this type reported for peptoids. These results suggest that the N-hydroxy amide can be utilized to control both local backbone geometries and longer-range intermolecular interactions in peptoids, and represents a new functional group in the peptoid design toolbox. PMID:22180908
Rodríguez, Sheerly; Silva, May-Li; Benaím, Gustavo; Bubis, José
2018-05-03
In order to monitor conformational changes following photoactivation and phosphorylation of bovine rhodopsin, the two reactive sulfhydryl groups at Cys 140 and Cys 316 were specifically labeled with the monobromobimane (mBBr) fluorophore. Although alterations in conformation after light exposure of rhodopsin were not detected by fluorescence excitation scans (300-450 nm) of the mBBr-labeled protein, the fluorescence signal was reduced ∼ 90% in samples containing photoactivated phosphorhodopsin. Predominant labeling at either Cys 140 or Cys 316 in light-activated and phosphorylated rhodopsin merely generated a decrease of ∼ 38% and 28%, respectively, in the fluorescence excitation intensity. Thus, neither mBBr-modified Cys 140 nor mBBr-modified Cys 316 were involved single-handedly in the remarkable fall seen on the signal following phosphorylation of the protein; rather, the incorporation of phosphate groups on the mBBr-labeled light-activated rhodopsin appeared to affect its fluorescence signal in a cooperative or synergistic manner. These findings demonstrated that the phosphorylation of specific hydroxyl groups at the carboxyl terminal tail of rhodopsin causes definite conformational changes in the three-dimensional fold of the protein. Apparently, amino acid residues that are buried in the interior of the inactive protein become accessible following bleaching and phosphorylation of rhodopsin, quenching in turn the fluorescence excitation signal of mBBr-modified rhodopsin. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Aripiprazole salts IV. Anionic plus solvato networks defining molecular conformation
NASA Astrophysics Data System (ADS)
Freire, Eleonora; Polla, Griselda; Baggio, Ricardo
2014-06-01
Five new examples of aripiprazole (arip) salts are presented, viz., the Harip phthalate [Harip+·C8H5O4-(I)], homophthalate [Harip+·C9H7O4-(II)] and thiosalicilate [Harip+·C7H4O2S-(III)] salts on one side, and two different dihidrogenphosphates, Harip+·H2PO4-·2(H3PO4)·H2O (IV) and Harip+·H2PO4-·H3PO4(V). Regarding the internal structure of the aripH+ cations, they do not differ from the already known moieties in bond distances and angles, while interesting differences in conformation can be observed, setting them apart in two groups: those in I, II and III present similar conformations to those in the so far reported arip salts presenting the same centrosymmetric R(8)22 dimeric synthon, but different to those in IV and V. In parallel, the anion (+ acid) groups define bulky systems of different dimensionality (1D in the former group, 2D in the latter). The correlation between arip molecular conformation and anionic network type is discussed. An interesting feature arises with the water solvato molecule in IV, disordered around an inversion center, in regard with its interaction with an (also disordered) phosphato O-H, in a way that an “orderly disordered” H-bonding scheme arises, complying with the S.G. symmetry requirements only on average.
Han, Nanyu; Mu, Yuguang
2013-01-01
Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.
Han, Nanyu; Mu, Yuguang
2013-01-01
Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147–150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus. PMID:23593372
Nakano, Shu-ichi; Uotani, Yuuki; Sato, Yuichi; Oka, Hirohito; Fujii, Masayuki; Sugimoto, Naoki
2013-01-01
DNA lesions produced by aromatic isocyanates have an extra bulky group on the nucleotide bases, with the capability of forming stacking interaction within a DNA helix. In this work, we investigated the conformation of the 2′-deoxyadenosine and 2′-deoxycytidine derivatives tethering a phenyl or naphthyl group, introduced in a DNA duplex. The chemical modification experiments using KMnO4 and 1-cyclohexyl-3 -(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate have shown that the 2′-deoxycytidine lesions form the base pair with guanine while the 2′-deoxyadenosine lesions have less ability of forming the base pair with thymine in solution. Nevertheless, the kinetic analysis shows that these DNA lesions are compatible with DNA ligase and DNA polymerase reactions, as much as natural DNA bases. We suggest that the adduct lesions have a capability of adopting dual conformations, depending on the difference in their interaction energies between stacking of the attached aromatic group and base pairing through hydrogen bonds. It is also presented that the attached aromatic groups change their orientation by interacting with the minor groove binding netropsin, distamycin and synthetic polyamide. The nucleotide derivatives would be useful for enhancing the phenotypic diversity of DNA molecules and for exploring new non-natural nucleotides. PMID:23873956
NASA Technical Reports Server (NTRS)
Harrison, A. A.
1978-01-01
Group dynamics, sociological and psychological factors are examined. Crew composition and compatibility are studied. Group dynamics analysis includes: leadership; cohesiveness; conformity; and conflict.
NASA Astrophysics Data System (ADS)
Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W.
2017-06-01
Molecules containing the sulfonamide group R^{1}-SO_2-NHR^{2} have a longstanding history as antimicrobial agents. Even though nowadays they are not commonly used in treating humans anymore, they continue to be studied as effective inhibitors of metalloenzyme carbonic anhydrases. These enzymes are important targets for a variety of diseases, such as, for instance, breast cancer, glaucoma, and obesity. Here we present the results of our laser desorption single-conformation UV and IR study of sulfanilamide (NH_2Ph-SO_2-NHR, R=H), a variety of singly substituted derivatives, and their monohydrated complexes. Depending on the substituent, the sulfonamide group can either adopt an amino or an imino tautomeric form. The form prevalent in the crystal is not necessarily also the tautomeric form we identified in the molecular beam after laser desorbing the sample. Furthermore, we explored the effect of complexation with a single water molecule on the tautomeric and conformational preferences of the sulfonamides. Our conformer-specific IR spectra in the NH and OH stretch region (3200-3750 \\wn) suggest that the intra- and intermolecular interactions governing the structures of the monomers and water complexes are surprisingly diverse. We have undertaken both Quantum Theory of Atoms in Molecules (QTAIM) and Interacting Quantum Atoms (IQA) analyses of calculated electron densities to quantitatively characterize the nature and strengths of the intra- and intermolecular interactions prevalent in the monomer and water complex structures.
Conformational plasticity of JRAB/MICAL-L2 provides "law and order" in collective cell migration.
Sakane, Ayuko; Yoshizawa, Shin; Nishimura, Masaomi; Tsuchiya, Yuko; Matsushita, Natsuki; Miyake, Kazuhisa; Horikawa, Kazuki; Imoto, Issei; Mizuguchi, Chiharu; Saito, Hiroyuki; Ueno, Takato; Matsushita, Sachi; Haga, Hisashi; Deguchi, Shinji; Mizuguchi, Kenji; Yokota, Hideo; Sasaki, Takuya
2016-10-15
In fundamental biological processes, cells often move in groups, a process termed collective cell migration. Collectively migrating cells are much better organized than a random assemblage of individual cells. Many molecules have been identified as factors involved in collective cell migration, and no one molecule is adequate to explain the whole picture. Here we show that JRAB/MICAL-L2, an effector protein of Rab13 GTPase, provides the "law and order" allowing myriad cells to behave as a single unit just by changing its conformation. First, we generated a structural model of JRAB/MICAL-L2 by a combination of bioinformatic and biochemical analyses and showed how JRAB/MICAL-L2 interacts with Rab13 and how its conformational change occurs. We combined cell biology, live imaging, computational biology, and biomechanics to show that impairment of conformational plasticity in JRAB/MICAL-L2 causes excessive rigidity and loss of directionality, leading to imbalance in cell group behavior. This multidisciplinary approach supports the concept that the conformational plasticity of a single molecule provides "law and order" in collective cell migration. © 2016 Sakane et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W
2018-03-07
To determine the preferred water molecule binding sites of the polybasic sulfa drugs sulfamethoxazole (SMX) and sulfisoxazole (SIX), we have studied their monomers and monohydrated complexes through laser-desorption conformer-specific UV and IR spectroscopy. Both the SMX and SIX monomer adopt a single conformer in the molecular beam. On the basis of their conformer-specific IR spectra in the NH stretch region, these conformers were assigned to the SMX and SIX global minimum structures, both exhibiting a staggered sulfonamide group and an intramolecular C-HO[double bond, length as m-dash]S hydrogen bond. The SMX-H 2 O and SIX-H 2 O complexes each adopt a single isomer in the molecular beam. Their isomeric structures were determined based on their isomer-specific IR spectra in the NH/OH stretch region. Quantum Theory of Atoms in Molecules analysis of the calculated electron densities revealed that in the SMX-H 2 O complex the water molecule donates an O-HN hydrogen bond to the heterocycle nitrogen atom and accepts an N-HO hydrogen bond from the sulfonamide NH group. In the SIX-H 2 O complex, however, the water molecule does not bind to the heterocycle but instead donates an O-HO[double bond, length as m-dash]S hydrogen bond to the sulfonamide group and accepts an N-HO hydrogen bond from the sulfonamide NH group. Both water complexes are additionally stabilized by a C ph -HOH 2 hydrogen bond. Interacting Quantum Atoms analysis suggests that all intermolecular hydrogen bonds are dominated by the short-range exchange-correlation contribution.
Sengupta, Raghuvir N.; Van Schie, Sabine N.S.; Giambaşu, George; Dai, Qing; Yesselman, Joseph D.; York, Darrin; Piccirilli, Joseph A.; Herschlag, Daniel
2016-01-01
Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such “off-pathway” species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2′- and 3′-deoxy (–H) and −amino (–NH2) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3′-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2′-OH making no interaction. Upon S binding, a rearrangement occurs that allows both –OH groups to contact a different active site metal ion, termed MC, to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA's difficulty in specifying a unique conformation and highlighting Nature's potential to use local transitions of RNA in complex function. PMID:26567314
Sengupta, Raghuvir N; Van Schie, Sabine N S; Giambaşu, George; Dai, Qing; Yesselman, Joseph D; York, Darrin; Piccirilli, Joseph A; Herschlag, Daniel
2016-01-01
Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such "off-pathway" species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2'- and 3'-deoxy (-H) and -amino (-NH(2)) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3'-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2'-OH making no interaction. Upon S binding, a rearrangement occurs that allows both -OH groups to contact a different active site metal ion, termed M(C), to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA's difficulty in specifying a unique conformation and highlighting Nature's potential to use local transitions of RNA in complex function. © 2015 Sengupta et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
What befalls the proteins and water in a living cell when the cell dies?
Ling, Gilbert N; Fu, Ya-zhen
2005-01-01
The solvency of solutes of varying molecular size in the intracellular water of freshly-killed Ehrlich carcinoma cells fits the same theoretical curve that describes the solvency of similar solutes in a 36% solution of native bovine hemoglobin--a protein found only in red blood cells and making up 97.3% of the red cell's total intracellular proteins. The merging of the two sets of data confirms the prediction of the AI Hypothesis that key intracellular protein(s) in dying cells undergo(es) a transition from: (1) one in which the polypeptide NHCO groups assume a fully-extended conformation with relatively strong power of polarizing and orienting the bulk-phase water in multilayers; to (2) one in which most of the polypeptide NHCO groups are engaged in alpha-helical and other "introvert" conformations (see below for definition) with much weaker power in polarizing-orienting multilayers of bulk-phase water. This concordance of the two sets of data also shows that what we now call native hemoglobin--supposedly denoting hemoglobin found in its natural state in living red blood cells--, in fact, more closely resembles the water-polarizing, and -orienting intracellular proteins in dead cells. Although in the dead Ehrlich carcinoma cells as well as in the 36% solution of native hemoglobin, much of the protein's polypeptide NHCO groups are engaged in alpha-helical and other "introvert" conformation (Perutz 1969; Weissbluth 1974), both systems produce a weak but nonetheless pervasive and "long-range" water polarization and orientation. It is suggested that in both the dead Ehrlich carcinoma ascites cells and in the 36% native bovine hemoglobin solution, enough polypeptide NHCO groups assume the fully-extended conformation to produce the weak but far-reaching multilayer water polarization and orientation observed.
Birkhoff theorem and conformal Killing-Yano tensors
NASA Astrophysics Data System (ADS)
Ferrando, Joan Josep; Sáez, Juan Antonio
2015-06-01
We analyze the main geometric conditions imposed by the hypothesis of the Jebsen-Birkhoff theorem. We show that the result (existence of an additional Killing vector) does not necessarily require a three-dimensional isometry group on two-dimensional orbits but only the existence of a conformal Killing-Yano tensor. In this approach the (additional) isometry appears as the known invariant Killing vector that the -metrics admit.
Theoretical and conformational studies of a series of cannabinoids
NASA Astrophysics Data System (ADS)
Da Silva, Albérico B. F.; Trsic, Milan
1995-11-01
The MNDO semi-empirical method is applied to the study of a series of cannabinoids with the aim of providing an improved understanding of the structure-activity relationship (SAR). The conformation of some groups that seem important in the biological activity (psychoactivity) of these compounds is characterized. Some electronic properties, such as atomic net charges and HOMO and LUMO energies, are correlated with the psychoactive effect.
"This Was My Hell": The Violence Experienced by Gender Non-Conforming Youth in US High Schools
ERIC Educational Resources Information Center
Wyss, Shannon E.
2004-01-01
This paper explores the experiences of harassment and violence endured by seven gender non-conforming youth in US high schools. Based on a larger research project, it opens an inquiry into the school-based lives of gender-variant teens, a group heretofore ignored by most academics and educators. Breaking violence down into two main types (physical…
NASA Astrophysics Data System (ADS)
Arjunan, V.; Anitha, R.; Thenmozhi, S.; Marchewka, M. K.; Mohan, S.
2016-06-01
The stable conformers of trans-2-methoxycinnamic acid (trans-2MCA) are determined by potential energy profile analysis. The energies of the s-cis and s-trans conformers of trans-2MCA determined by B3LYP/cc-pVTZ method are -612.9788331 Hartrees and -612.9780953 Hartrees, respectively. The vibrational and electronic investigations of the stable s-cis and s-trans conformers of trans-2-methoxycinnamic acid have been carried out extensively with FTIR and FT-Raman spectral techniques. The s-cis conformer (I) with a (C16-C17-C18-O19) dihedral angle equal to 0° is found to be more favoured relative to the one s-trans (II) with (C16-C17-C18-O19) = 180°, possibly due to delocalization, hydrogen bonding and steric repulsion effects between the methoxy and acrylic acid groups. The DFT studies are performed with B3LYP method by utilizing 6-311++G** and cc-pVTZ basis sets to determine the structure, thermodynamic properties, vibrational characteristics and chemical shifts of the compound. The total dipole moments of the conformers determined by B3LYP/cc-pVTZ method are 3.35 D and 4.87 D for s-cis and s-trans, respectively. It reveals the higher polarity of s-trans conformer of trans-2MCA molecule. The electronic and steric influence of the methoxy group on the skeletal frequencies has been analysed. The energies of the frontier molecular orbitals and the LUMO-HOMO energy gap have been determined. The MEP of s-cis conformer lie in the range +1.374e × 10-2 to -1.374e × 10-2 while for s-trans it is +1.591e × 10-2 to -1.591e × 10-2. The total electron density of s-cis conformer lie in the range +5.273e × 10-2 to -5.273e × 10-2 while for s-trans it is +5.403e × 10-2 to -5.403e × 10-2. The MEP and total electron density shows that the s-cis conformer is less polar, less reactive and more stable than the s-trans conformer. All the reactivity descriptors of the molecule have been discussed. Intramolecular electronic interactions and their stabilisation energies have analysed by NBO method.
2014-01-01
Aim The aim of this study was to evaluate the effects of radiotherapy plus concurrent weekly cisplatin chemotherapy on the postoperative recurrence of mediastinal lymph node metastases in esophageal cancer patients. Methods Ninety-eight patients were randomly enrolled to receive either three-dimensional conformal radiotherapy alone (group A) or concurrent chemoradiotherapy (group B). A radiation dose of 62–70 Gy/31–35 fractions was delivered to the recurrent tumor. Furthermore, the patients in group B simultaneously received weekly doses of cisplatin (30 mg/m2), and the survival outcomes and toxic effects were compared. Results The response rate of group B (91.8%) was significantly greater than that of group A (73.5%) (χ2 = 5.765, P = 0.016). The 1- and 3-year survival rates of group B (85.7% and 46.9%, respectively) were also greater than those of group A (69.4% and 28.6%, respectively). However, there were no significant differences in the 5-year survival rates. The numbers of patients who died of distant metastases in groups A and B were 13 (26.5%) and 5 (10.2%), respectively (χ2 = 4.356, P = 0.036). Acute radiation-related esophagitis and granulocytopenia in group B was frequent. However, intergroup differences in terms of late toxicity were not significant. Conclusions Three-dimensional conformal radiotherapy (3DCRT) is a practical and feasible technique to treat the recurrence of mediastinal lymph node metastases of postoperative esophageal cancer. In addition, concurrent chemotherapy can increase local tumor control, decrease the distant metastasis rate, and increase the long-term survival rate. PMID:24438695
Ma, Dai-yuan; Tan, Bang-xian; Liu, Mi; Li, Xian-fu; Zhou, Ye-qin; Lu, You
2014-01-19
The aim of this study was to evaluate the effects of radiotherapy plus concurrent weekly cisplatin chemotherapy on the postoperative recurrence of mediastinal lymph node metastases in esophageal cancer patients. Ninety-eight patients were randomly enrolled to receive either three-dimensional conformal radiotherapy alone (group A) or concurrent chemoradiotherapy (group B). A radiation dose of 62-70 Gy/31-35 fractions was delivered to the recurrent tumor. Furthermore, the patients in group B simultaneously received weekly doses of cisplatin (30 mg/m(2)), and the survival outcomes and toxic effects were compared. The response rate of group B (91.8%) was significantly greater than that of group A (73.5%) (χ(2) = 5.765, P = 0.016). The 1- and 3-year survival rates of group B (85.7% and 46.9%, respectively) were also greater than those of group A (69.4% and 28.6%, respectively). However, there were no significant differences in the 5-year survival rates. The numbers of patients who died of distant metastases in groups A and B were 13 (26.5%) and 5 (10.2%), respectively (χ(2) = 4.356, P = 0.036). Acute radiation-related esophagitis and granulocytopenia in group B was frequent. However, intergroup differences in terms of late toxicity were not significant. Three-dimensional conformal radiotherapy (3DCRT) is a practical and feasible technique to treat the recurrence of mediastinal lymph node metastases of postoperative esophageal cancer. In addition, concurrent chemotherapy can increase local tumor control, decrease the distant metastasis rate, and increase the long-term survival rate.
Higher symmetries of the Schrödinger operator in Newton-Cartan geometry
NASA Astrophysics Data System (ADS)
Gundry, James
2017-03-01
We establish several relationships between the non-relativistic conformal symmetries of Newton-Cartan geometry and the Schrödinger equation. In particular we discuss the algebra sch(d) of vector fields conformally-preserving a flat Newton-Cartan spacetime, and we prove that its curved generalisation generates the symmetry group of the covariant Schrödinger equation coupled to a Newtonian potential and generalised Coriolis force. We provide intrinsic Newton-Cartan definitions of Killing tensors and conformal Schrödinger-Killing tensors, and we discuss their respective links to conserved quantities and to the higher symmetries of the Schrödinger equation. Finally we consider the role of conformal symmetries in Newtonian twistor theory, where the infinite-dimensional algebra of holomorphic vector fields on twistor space corresponds to the symmetry algebra cnc(3) on the Newton-Cartan spacetime.
Conformational flexibility and packing plausibility of repaglinide polymorphs
NASA Astrophysics Data System (ADS)
Rani, Dimpy; Goyal, Parnika; Chadha, Renu
2018-04-01
The present manuscript highlights the structural insight into the repaglinide polymorphs. The experimental screening for the possible crystal forms were carried out using various solvents, which generated three forms. The crystal structure of Form II and III was determined using PXRD pattern whereas structural analysis of Form I has already been reported. Form I, II and II was found to exist in P212121, PNA21 and P21/c space groups respectively. Conformational analysis was performed to account the conformational flexibility of RPG. The obtained conformers were further utilized to obtain the information about the crystal packing pattern of RPG polymorphs by polymorph prediction module. The lattice energy landscape, depicting the relationship between lattice energy and density of the polymorphs has been obtained for various possible polymorphs. The experimentally isolated polymorphs were successfully fitted into lattice energy landscape.
NASA Astrophysics Data System (ADS)
Lerner, Eitan; Ingargiola, Antonino; Weiss, Shimon
2018-03-01
Bio-macromolecules carry out complicated functions through structural changes. To understand their mechanism of action, the structure of each step has to be characterized. While classical structural biology techniques allow the characterization of a few "structural snapshots" along the enzymatic cycle (usually of stable conformations), they do not cover all (and often fast interconverting) structures in the ensemble, where each may play an important functional role. Recently, several groups have demonstrated that structures of different conformations in solution could be solved by measuring multiple distances between different pairs of residues using single-molecule Förster resonance energy transfer (smFRET) and using them as constrains for hybrid/integrative structural modeling. However, this approach is limited in cases where the conformational dynamics is faster than the technique's temporal resolution. In this study, we combine existing tools that elucidate sub-millisecond conformational dynamics together with hybrid/integrative structural modeling to study the conformational states of the transcription bubble in the bacterial RNA polymerase-promoter open complex (RPo). We measured microsecond alternating laser excitation-smFRET of differently labeled lacCONS promoter dsDNA constructs. We used a combination of burst variance analysis, photon-by-photon hidden Markov modeling, and the FRET-restrained positioning and screening approach to identify two conformational states for RPo. The experimentally derived distances of one conformational state match the known crystal structure of bacterial RPo. The experimentally derived distances of the other conformational state have characteristics of a scrunched RPo. These findings support the hypothesis that sub-millisecond dynamics in the transcription bubble are responsible for transcription start site selection.
Irreversibility and higher-spin conformal field theory
NASA Astrophysics Data System (ADS)
Anselmi, Damiano
2000-08-01
I discuss the properties of the central charges c and a for higher-derivative and higher-spin theories (spin 2 included). Ordinary gravity does not admit a straightforward identification of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-derivative theories can be conformal, but have negative c and a. A third possibility is to consider higher-spin conformal field theories. They are not unitary, but have a variety of interesting properties. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. There exists a conserved spin-2 current (not the canonical stress tensor) defining positive central charges c and a. I calculate the values of c and a and study the operator-product structure. Higher-spin conformal spinors have no gauge invariance, admit a standard definition of c and a and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a conformal window and non-trivial interacting fixed points. There are composite operators of high spin and low dimension, which violate the Ferrara-Gatto-Grillo theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more severe internal problems. This research is motivated by the idea that fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points, and quantum irreversibility should be a general principle of nature.
Sweet Structural Signatures Unveiled in Ketohexoses.
Bermúdez, Celina; Peña, Isabel; Mata, Santiago; Alonso, José L
2016-11-14
The conformational behaviour of naturally occurring ketohexoses has been revealed in a supersonic expansion by Fourier transform microwave spectroscopy coupled with a laser ablation source. Three, two and one conformers of d-tagatose, d-psicose and l-sorbose, respectively, have been identified by their rotational constants extracted from the analysis of the spectra. Singular structural signatures involving the hydroxyl groups OH (1) and OH (2) have been disentangled from the intricate intramolecular hydrogen bond networks stabilising the most abundant conformers. The present results place the old Shallenberger and Kier sweetness theories on a firmer footing. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pressure-induced phase transition of 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6
NASA Astrophysics Data System (ADS)
Takekiyo, Takahiro; Hatano, Naohiro; Imai, Yusuke; Abe, Hiroshi; Yoshimura, Yukihiro
2011-03-01
We have investigated the pressure-induced Raman spectral change of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) using Raman spectroscopy. The relative Raman intensity at 590 cm-1 of the CH2 rocking band assigned to the gauche conformer of the NCCC dihedral angle of the butyl group in the [bmim]+ cation increases when the pressure-induced liquid-crystalline phase transition occurs, while that at 610 cm-1 assigned to the trans conformer decreases. Our results show that the high-pressure phase transition of [bmim][PF6] causes the increase of the gauche conformer of the [bmim]+ cation.
Conformational profile of a proline-arginine hybrid
Revilla-López, Guillermo; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos; Zanuy, David
2010-01-01
The intrinsic conformational preferences of a new non-proteinogenic amino acid have been explored by computational methods. This tailored molecule, named (βPro)Arg, is conceived as a replacement for arginine in bioactive peptides when the stabilization of folded turn-like conformations is required. The new residue features a proline skeleton that bears the guanidilated side chain of arginine at the Cβ position of the five-membered pyrrolidine ring, either in a cis or a trans orientation with respect to the carboxylic acid. The conformational profile of the N-acetyl-N'-methylamide derivatives of the cis and trans isomers of (βPro)Arg has been examined in the gas phase and in solution by B3LYP/6–31+G(d,p) calculations and molecular dynamics simulations. The main conformational features of both isomers represent a balance between geometric restrictions imposed by the five-membered pyrrolidine ring and the ability of the guanidilated side chain to interact with the backbone through hydrogen-bonds. Thus, both cis and trans (βPro)Arg exhibit a preference for the αL conformation as a consequence of the interactions established between the guanidinium moiety and the main-chain amide groups. PMID:20886854
Conformational profile of a proline-arginine hybrid.
Revilla-López, Guillermo; Jiménez, Ana I; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos; Zanuy, David
2010-10-25
The intrinsic conformational preferences of a new nonproteinogenic amino acid have been explored by computational methods. This tailored molecule, named ((β)Pro)Arg, is conceived as a replacement for arginine in bioactive peptides when the stabilization of folded turn-like conformations is required. The new residue features a proline skeleton that bears the guanidilated side chain of arginine at the C(β) position of the five-membered pyrrolidine ring, in either a cis or a trans orientation with respect to the carboxylic acid. The conformational profiles of the N-acetyl-N'-methylamide derivatives of the cis and trans isomers of ((β)Pro)Arg have been examined in the gas phase and in solution by B3LYP/6-31+G(d,p) calculations and molecular dynamics simulations. The main conformational features of both isomers represent a balance between geometric restrictions imposed by the five-membered pyrrolidine ring and the ability of the guanidilated side chain to interact with the backbone through hydrogen bonds. Thus, both cis- and trans-((β)Pro)Arg exhibit a preference for the α(L) conformation as a consequence of the interactions established between the guanidinium moiety and the main-chain amide groups.
Selwa, Edithe; Huynh, Tru; Ciccotti, Giovanni; Maragliano, Luca; Malliavin, Thérèse E
2014-10-01
The catalytic domain of the adenyl cyclase (AC) toxin from Bordetella pertussis is activated by interaction with calmodulin (CaM), resulting in cAMP overproduction in the infected cell. In the X-ray crystallographic structure of the complex between AC and the C terminal lobe of CaM, the toxin displays a markedly elongated shape. As for the structure of the isolated protein, experimental results support the hypothesis that more globular conformations are sampled, but information at atomic resolution is still lacking. Here, we use temperature-accelerated molecular dynamics (TAMD) simulations to generate putative all-atom models of globular conformations sampled by CaM-free AC. As collective variables, we use centers of mass coordinates of groups of residues selected from the analysis of standard molecular dynamics (MD) simulations. Results show that TAMD allows extended conformational sampling and generates AC conformations that are more globular than in the complexed state. These structures are then refined via energy minimization and further unrestrained MD simulations to optimize inter-domain packing interactions, thus resulting in the identification of a set of hydrogen bonds present in the globular conformations. © 2014 Wiley Periodicals, Inc.
Wong, Y Joel; Owen, Jesse; Shea, Munyi
2012-01-01
How are specific dimensions of masculinity related to psychological distress in specific groups of men? To address this question, the authors used latent class regression to assess the optimal number of latent classes that explained differential relationships between conformity to masculine norms and psychological distress in a racially diverse sample of 223 men. The authors identified a 2-class solution. Both latent classes demonstrated very different associations between conformity to masculine norms and psychological distress. In Class 1 (labeled risk avoiders; n = 133), conformity to the masculine norm of risk-taking was negatively related to psychological distress. In Class 2 (labeled detached risk-takers; n = 90), conformity to the masculine norms of playboy, self-reliance, and risk-taking was positively related to psychological distress, whereas conformity to the masculine norm of violence was negatively related to psychological distress. A post hoc analysis revealed that younger men and Asian American men (compared with Latino and White American men) had significantly greater odds of being in Class 2 versus Class 1. The implications of these findings for future research and clinical practice are examined. (c) 2012 APA, all rights reserved.
Discrepancies between parents' and children's attitudes toward TV advertising.
Baiocco, Roberto; D'Alessio, Maria; Laghi, Fiorenzo
2009-06-01
The authors conducted a study with 500 parent-child dyads. The sample comprised 254 boys and 246 girls. The children were grouped into 5 age groups (1 group for each age from 7 to 11 years), with each group comprising 100 children. The survey regards discrepancies between children and their parents on attitudes toward TV advertising to determine how TV commercials affect children's developmental stages and, particularly, their credence, behavioral intentions, and TV enjoyment. Regarding enjoyment and purchase dimensions, the group of 7-year-old children claimed that they enjoyed and are influenced in their consumer attitude more than did the groups of 8-11-year-old children. Credence decreased significantly with age. This study showed that parents tended to undervalue TV advertising's influence on their children. Parents' conformity was a significant predictor of children's attitude toward TV advertising. Results indicated that a high level of parental conformity was linked to the number of brands children claimed to possess.
Desulfurization of 2-thiouracil nucleosides: conformational studies of 4-pyrimidinone nucleosides.
Kraszewska, Karina; Kaczyńska, Iwona; Jankowski, Stefan; Karolak-Wojciechowska, Janina; Sochacka, Elzbieta
2011-04-01
4-Pyrimidinone ribofuranoside (H(2)o(4)U) and 4-pyrimidinone 2'-deoxyribofuranoside (dH(2)o(4)U) were synthesized by the oxidative desulfurization of parent 2-thiouracil nucleosides with m-chloroperbenzoic acid. The crystal structures of H(2)o(4)U and dH(2)o(4)U and their conformations in solution were determined and compared with corresponding 2-thiouracil and uracil nucleosides. The absence of a large 2-thiocarbonyl/2-carbonyl group in the nucleobase moiety results in C2'-endo puckering of the ribofuranose ring (S conformer) in the crystal structure of H(2)o(4)U, which is not typical of RNA nucleosides. Interestingly, the hydrogen bonding network in the crystals of dH(2)o(4)U stabilizes the sugar moiety conformation in the C3'-endo form (N conformer), rarely found in DNA nucleosides. In aqueous solution, dH(2)o(4)U reveals a similar population of the C2'-endo conformation (65%) to that of 2'-deoxy-2-thiouridine (62%), while the 62% population of the S conformer for H(2)o(4)U is significantly different from that of the parent 2-thiouridine, for which the N conformer is dominant (71%). Such a difference may be of biological importance, as the desulfurization process of natural tRNA 2-thiouridines may occur under conditions of oxidative stress in the cell and may influence the decoding process. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Attig, T.; Sutikdja, L. W.; Kannengiesser, R.; Stahl, W.; Kleiner, I.
2013-06-01
In the course of our studies on a number of aliphatic ester molecules and natural substances, the rotational spectrum of n-butyl acetate (CH_{3}-COO-C_4H_9) has been recorded for the first time in the 10-13.5 GHz frequency range, using the MB-FTMW spectrometer in Aachen, with an instrumental uncertainty of a few kHz for unblended lines. Three conformers were observed. The main conformer with C_{1} symmetry has a strong spectrum. The other two conformers have C_{s} and C_{1} symmetries. Their intensities are considerably weaker. The quantum chemical calculations of specific conformers were carried out at the MP2/6-311++G(d,p) level, and for the main conformer different levels of theory were calculated. To analyze the internal rotation of the acetyl methyl groups the codes XIAM (based on the Combined Axis Method) and BELGI (based on the Rho-Axis-Method) were used to model the large amplitude motion. The molecular structures of the three conformers were determined and the values of the experimental rotational constants were compared with those obtained by ab initio methods. For all conformers torsional barriers of approximately 100 cm^{-1} were found. This study is part of a larger project which aims at determining the lowest energy conformers and their structures of organic esters and ketones which are of interest for flavour or perfume synthetic applications. Project partly supported by the PHC PROCOPE 25059YB
Vibrational Raman optical activity of ketose monosaccharides
NASA Astrophysics Data System (ADS)
Bell, Alasdair F.; Hecht, Lutz; Barron, Laurence D.
1995-07-01
The vibrational Raman optical activity (ROA) spectra of the four ketose sugars D-fructose, L-sorbose, D-tagatose and D-psicose in aqueous solution, which have been measured in backscattering in the range ≈250-1500 cm -1, are reported. These results are combined with those from a previous ROA study of aldose and pentose sugars in an attempt to establish new vibrational assignments and to verify old ones. The high information content of these spectra provides a new perspective on all the central features of monosaccharide stereochemistry including dominant anomeric configuration, ring conformation, exocyclic CH 2OH group conformation and relative disposition of the hydroxyl groups around the ring.
The ontogeny of cultural learning.
Tomasello, Michael
2016-04-01
All primates engage in one or another form of social learning. Humans engage in cultural learning. From very early in ontogeny human infants and young children do not just learn useful things from others, they conform to others in order to affiliate with them and to identify with the cultural group. The cultural group normatively expects such conformity, and adults actively instruct children so as to ensure it. Young children learn from this instruction how the world is viewed and how it works in their culture. These special forms of cultural learning enable powerful and species-unique processes of cumulative cultural evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Authoritarian Disbeliefs in Diversity.
Asbrock, Frank; Kauff, Mathias
2015-01-01
Ethnic diversity poses a threat to authoritarians, as it indicates non-conformism to group norms and poses a threat to group conformity. According to authoritarian dynamic theory, threats elicit authoritarian reactions in people with authoritarian predispositions. In the present article we tested a mediation model derived from authoritarian dynamic theory in a sample of 171 students. As expected, authoritarian predisposition negatively predicted diversity beliefs. This effect was fully mediated by an authoritarian manifestation, that is, authoritarian aggression. The two other components of right-wing authoritarianism, authoritarian submission and conventionalism, did not mediate the effect. Results confirm contemporary research on authoritarianism and the differentiation of authoritarian predispositions and its manifestations.
NASA Astrophysics Data System (ADS)
Škorňa, Peter; Michalík, Martin; Lukeš, Vladimír; Klein, Erik
2017-09-01
The quantum chemical DFT study of 1-hydroxynaphthalene-2-carboxanilide (A-H) and 2-hydroxynaphthalene-1-carboxanilide (B-H) and their selected ortho-derivatives (A-R, B-R) is presented. The structural analysis showed that the energetically preferred conformation is stabilized via the intramolecular hydrogen bonds occurring between the Cdbnd O⋯H-O1 of A-H molecule and Cdbnd O⋯H-O2 groups of B-H molecule. The A-R derivatives are practically planar, while the B-R derivatives are slightly distorted due to the spatial repulsion of hydrogen atoms. The conformation analysis of molecules with deprotonated hydroxyl group supports the concept of existence of two conformer types with respect to the sbnd NHsbnd COsbnd bridge orientation. Stabilization of the naphtholate moiety by a hydrogen bond to the amide sbnd NHsbnd group may allow the compound to cross the membrane to the extracellular space. The ortho substitution effect on the selected calculated properties was analyzed and the theoretical data were correlated with the substituent constants. For the B-R derivatives, the antitubercular activity concentrations were correlated and predicted by the calculated quantities.
Quesada, Antonio; Fontecha, Maria A; López, Maria V; Low, John N; Glidewell, Christopher
2008-08-01
The title compound (trivial name terbutylazine), C(9)H(16)ClN(5), (I), crystallizes with Z' = 4 in the space group Pca2(1), and equal numbers of molecules adopt two different conformations for the ethylamine groups. The four independent molecules form two approximately enantiomorphic pairs. Eight independent N-H...N hydrogen bonds link the molecules into two independent chains of R(2)(2)(8) rings, in which the arrangement of the alkylamine substituents in the independent molecules precludes any further crystallographic symmetry. The significance of this study lies in its finding of two distinct molecular conformations within the structure and two distinct ways in which the molecules are organized into hydrogen-bonded chains, and in its comparison of the hydrogen-bonded structure of (I) with those of analogous 1,3,5-triazines and pyrimidines.
Intricate Conformational Tunneling in Carbonic Acid Monomethyl Ester.
Linden, Michael M; Wagner, J Philipp; Bernhardt, Bastian; Bartlett, Marcus A; Allen, Wesley D; Schreiner, Peter R
2018-04-05
Disentangling internal and external effects is a key requirement for understanding conformational tunneling processes. Here we report the s- trans/ s- cis tunneling rotamerization of carbonic acid monomethyl ester (1) under matrix isolation conditions and make comparisons to its parent carbonic acid (3). The observed tunneling rate of 1 is temperature-independent in the 3-20 K range and accelerates when using argon instead of neon as the matrix material. The methyl group increases the effective half life (τ eff ) of the energetically disfavored s- trans-conformer from 3-5 h for 3 to 11-13 h for 1. Methyl group deuteration slows the rotamerization further (τ eff ≈ 35 h). CCSD(T)/cc-pVQZ//MP2/aug-cc-pVTZ computations of the tunneling probability suggest that the rate should be almost unaffected by methyl substitution or its deuteration. Thus the observed relative rates are puzzling, and they disagree with previous explanations involving fast vibrational relaxation after the tunneling event facilitated by the alkyl rotor.
Flos, Manon; Lameiras, Pedro; Denhez, Clément; Mirand, Catherine; Berber, Hatice
2016-03-18
A catalytic hydrogenation of cannabidiol derivatives known as phenylcyclohexenes was used to prepare epimeric (1R,1S) and/or rotameric (M,P) phenylcyclohexanes. The reaction is diastereoselective, in favor of the 1S epimer, when large groups are attached to the phenyl ring. For each epimer, variable-temperature NMR experiments, including EXSY spectroscopy and DFT calculations, were used to determine the activation energies of the conformational exchange arising from the restricted rotation about the aryl-C(sp(3)) bond that led to two unequally populated rotamers. The conformational preference arises essentially from steric interactions between substituents vicinal to the pivot bond. The conformers of epimers (1S)-2e,f show high rotational barriers of up to 92 kJ mol(-1), unlike those of (1R)-2e,f and with much lower barriers of ∼72 kJ mol(-1). The height of the barriers not only depends on the substituents at the axis of chirality but also is influenced by the position of a methyl group on the monoterpene ring. The feature most favorable to high rotational barriers is when the methyl at C1 lies equatorially. This additional substituent effect, highlighted for the first time, seems fundamental to allowing atropisomerism in hindered ortho-substituted phenylcyclohexanes.
An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.
Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J
2015-07-30
Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation.
Hernández, Belén; Houzé, Pascal; Pflüger, Fernando; Kruglik, Sergei G; Ghomi, Mahmoud
2017-05-10
Acetylcholine is the first discovered neurotransmitter that has received a great attention regarding its capability of binding to several cellular targets. The chemical composition of acetylcholine, including a positively charged trimethylammonium and a carbonyl group, as well as its conformational flexibility was pointed out as the key factors in the stabilization of its interactions. Here, the possibilities offered by a Raman scattering-based multiconformatioal analysis to access the most stable conformers of acetylcholine, is discussed. To control the validity of this protocol, acetylcholine and one of its closely structured analogues, acetylthiocholine, were simultaneously analyzed. Solution Raman spectra revealed distinct and well resolved strong markers for each molecule. Density functional theory calculations were consistent with the fact that the energy order of the low energy conformers is considerably affected by the acyloxy oxygen→sulfur atom substitution. Raman spectra were calculated on the basis of the thermal average of the spectra arising from the low energy conformers. It has been evidenced that the carbonyl and trimethylammonium groups are the most favorable hydration sites in aqueous environment. Taking into account the large gap between the carbonyl bond-stretch and aliphatic bending bands, Raman spectra also allowed separation of the HOH bending vibrations arising from the bound and bulk water molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
A Theoretical Study of the Conformational Landscape of Serotonin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mourik, Van Tonja; Emson, Laura E.
2002-10-25
The conformational landscape of neutral serotonin has been investigated by several theoretical methods. The potential energy surface was scanned by systematically varying the three dihedral angles that determine the conformation of the alkyl side chain. In addition, the two possible conformations of the phenol hydroxyl group (anti and syn with respect to the indole NH) were considered. The OH-anti stationary points located with SCF/6-31G* have been re-optimized with B3LYP/6-31+G*, which resulted in twelve true minima. Eleven of these have a corresponding OH-syn conformer that is 1-4 kJ/mol higher in energy. IR vibrational spectra of all twenty-three serotonin conformers, computed atmore » the B3LYP/6-31+G* level f theory, are presented. The initial scan of the serotonin potential energy surface has been repeated with several computationally cheaper methods, to assess their reliability for locating the correct serotonin conformers. It is found that the semi-empirical methods AM1 and PM3 do no t yield sufficiently accurate results, due to their inability to account for subtle intramolecular interactions within the serotonin molecule. On the other hand, SCF in combination with the 3-21G* basis set is ascertained to be a good alternative to SCF/6-31G* for performing the initial scan of the potential energy surface of flexible molecules.« less
The influence of solvent on conformational properties of peptides with Aib residue-a DFT study.
Wałęsa, Roksana; Broda, Małgorzata A
2017-11-21
The conformational propensities of the Aib residue on the example of two model peptides Ac-Aib-NHMe (1) and Ac-Aib-NMe 2 (2), were studied by B3LYP and M06-2X functionals, in the gas phase and in the polar solvents. To verify the reliability of selected functionals, we also performed MP2 calculations for the tested molecules in vacuum. Polarizable continuum models (PCM and SMD) were used to estimate the solvent effect. Ramachandran maps were calculated to find all energy minima. Noncovalent intramolecular interactions due to hydrogen-bonds and dipole attractions between carbonyl groups are responsible for the relative stabilities of the conformers. In order to verify the theoretical results, the available conformations of similar X-ray structures from the Cambridge Crystallographic Data Center (CCDC) were analyzed. The results of the calculations show that both derivatives with the Aib residue in the gas phase prefer structures stabilized by intramolecular N-H⋯O hydrogen bonds, i.e., C 5 and C 7 conformations, while polar solvent promotes helical conformation with φ, ψ values equal to +/-60°, +/-40°. In addition, in the case of molecule 2, the helical conformation is the only one available in the polar environment. This result is fully consistent with the X-ray data. Graphical abstract Effect of solvent on the Ramachandran maps of the model peptides with Aib residue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Linda X., E-mail: lhong0812@gmail.com; Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY; Shankar, Viswanathan
We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio ofmore » 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.« less
Effect of Intramolecular Dispersion Interactions on the Conformational Preferences of Monoterpenoids
NASA Astrophysics Data System (ADS)
Loru, Donatella; Vigorito, Annalisa; Santos, Andreia; Tang, Jackson; Sanz, M. Eugenia
2017-06-01
The rotational spectra of several monoterpenoids have been reinvestigated with a 2-8 GHz chirped pulse FTMW spectrometer. Axial conformers, in addition to previously reported equatorial conformers, have been detected for carvone, perillaldehyde, and limonene. Observation of the ^{13}C isotopologues of these monoterpenoids in their natural abundances allowed the determination of r_s and r_0 structures. Axial conformers are stabilised by dispersion interactions between the six-membered ring of the monoterpenoids and the isopropenyl group. Comparison of experimental data with ab initio and density functional calculations shows that an accurate description of dispersion interactions is still a challenge for theoretical methods. J. R. Avilés Moreno, F. Partal Ureña, J. J. López González and T. R. Huet, Chem. Phys. Lett., 2009, 473, 17-20. J. R. Avilés Moreno, T. R. Huet and J. J. López González, Struct. Chem., 2013, 24, 1163-1170.
NASA Technical Reports Server (NTRS)
Jaffe, Richard; Han, Jie; Matsuda, Tsunetoshi; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
Confirmations of 2,4-dihydroxypentane (DHP), a model molecule for poly(vinyl alcohol), have been studied by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. QC calculations at the 6-311G MP2 level show the meso tt conformer to be lowest in energy followed by the racemic tg, due to intramolecular hydrogen bond between the hydroxy groups. The Dreiding force field has been modified to reproduce the QC conformer energies for DHP. MD simulations using this force field have been carried out for DHP molecules in the gas phase, melt, and CHCl3 and water solutions. Extensive intramolecular hydrogen bonding is observed for the gas phase and CHCl3 solution, but not for the melt or aqueous solution, Such a condensed phase effect due to intermolecular interactions results in a drastic change in chain conformations, in agreement with experiments.
Boo, Bong Hyun; Lee, Minyung; Jeon, Ki-Seok; Kim, Seung-Joon
2014-03-27
Intramolecular excimer formation of bis(9-fluorenyl)methane (BFM) and 9-(9'-ethylfluorenyl)-9-fluorenylmethane (EFFM), in which an ethyl group is substituted to a 9-H atom in BFM, was studied by means of steady-state and time-resolved fluorescence. Ab initio and DFT calculations enabled the prediction of three conformers as stable species of orthogonal, trans-gauche, and gauche-gauche. The theoretical and experimental results reveal that the substitution effect is also found to appreciably influence the energies, spectroscopy, and kinetics associated with the interconversion of various conformers of the diaryl compounds. We have not observed the rising components in the excimer fluorescence decay of BFM and EFFM in PMMA as observed in the liquid solutions probably because of the existence of the sandwich conformer responsible for the excimer fluorescence prior to the laser irradiation.
N-Methyl Inversion and Accurate Equilibrium Structures in Alkaloids: Pseudopelletierine.
Vallejo-López, Montserrat; Écija, Patricia; Vogt, Natalja; Demaison, Jean; Lesarri, Alberto; Basterretxea, Francisco J; Cocinero, Emilio J
2017-11-21
A rotational spectroscopy investigation has resolved the conformational equilibrium and structural properties of the alkaloid pseudopelletierine. Two different conformers, which originate from inversion of the N-methyl group from an axial to an equatorial position, have been unambiguously identified in the gas phase, and nine independent isotopologues have been recorded by Fourier-transform microwave spectroscopy in a jet expansion. Both conformers share a chair-chair configuration of the two bridged six-membered rings. The conformational equilibrium is displaced towards the axial form, with a relative population in the supersonic jet of N axial /N equatorial ≈2/1. An accurate equilibrium structure has been determined by using the semiexperimental mixed-estimation method and alternatively computed by quantum-chemical methods up to the coupled-cluster level of theory. A comparison with the N-methyl inversion equilibria in related tropanes is also presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Avilés-Moreno, Juan Ramón; Berden, Giel; Oomens, Jos; Martínez-Haya, Bruno
2018-02-07
The recognition of arginine plays a central role in modern proteomics and genomics. Arginine is unique among natural amino acids due to the high basicity of its guanidinium side chain, which sustains specific interactions and proton exchange biochemical processes. The search for suitable macrocyclic ionophores constitutes a promising route towards the development of arginine receptors. This study evaluates the conformational features involved in the binding of free arginine by the polyether macrocycle (18-crown-6)-tetracarboxylic acid. Infrared action vibrational spectroscopy and quantum-chemical computations are combined to characterize the complexes with net charges +1 and +2. The spectrum of the +1 complex can be explained in terms of a configuration predominantly stabilized by a robust bidentate coordination of guanidinium with a carboxylate group formed from the deprotonation of one side group of the crown ether. The released proton is transferred to the amino terminus of arginine, which then coordinates with the crown ether ring. In an alternative type of conformation, partly consistent with experiment, the amino terminus is neutral and the guanidinium group inserts into the crown ether cavity. In the +2 complexes, arginine is always doubly protonated and the most stable conformations are characterized by a tripodal coordination of the ammonium -NH 3 + group of arginine with the oxygen atoms of the macrocycle ring, while the interactions of the amino acid with the side carboxylic acid groups of the crown ether acquire a remarkable lesser role.
Nuclear arms threat: psychosocial correlates of attitudes and behavioral response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chilstrom, G.A.
1985-01-01
Why do some Americans believe a mutual (US-USSR) freeze on nuclear weapons production is the best way to prevent nuclear war, while others believe the strengthening of America's nuclear arsenal is the best answer. This study examined four psychological variables - dogmatism, intolerance of ambiguity, rigidity, and conformity - that might differentiate individuals with these opposing views. Also examined was the question of why some citizens are more actively engaged in peace activity than others. Subjects for the first part of the study were 146 student volunteers, predominantly undergraduate, from San Diego State University. Thirty-eight students were in favor ofmore » additional nuclear arms, while 108 advocated the freeze. The 108 subjects in the freeze group were also used in the second part of the study involving peace activity. In addition, a sample of 47 volunteers from various peace organizations in San Diego County were used to form a peace group. As predicted, individuals favoring a nuclear arms build-up were found to be significantly more rigid and conforming than individuals favoring a mutual freeze. However, no differences in dogmatism or intolerance of ambiguity were found between the two groups. With regard to peace activity, the results indicated that measures of locus of control were not significantly related to anti-nuclear activity, even when political ideology was taken into account. The highly activist peace group was found, however, to be significantly less conforming than the relatively non-activist freeze group.« less
Casiano-Negroni, Anette; Sun, Xiaoyan; Al-Hashimi, Hashim M.
2012-01-01
Many regulatory RNAs undergo large changes in structure upon recognition of proteins and ligands but the mechanism by which this occur remains poorly understood. Using NMR residual dipolar coupling (RDCs), we characterized Na+ induced changes in the structure and dynamics of the bulge-containing HIV-1 transactivation response element (TAR) RNA that mirror changes induced by small molecules bearing a different number of cationic groups. Increasing the Na+ concentration from 25 mM to 320 mM led to a continuous reduction in the average inter-helical bend angle (from 46° to 22°), inter-helical twist angle (from 66° to −18°) and inter-helix flexibility (as measured by an increase in the internal generalized degree of order from 0.56 to 0.74). Similar conformational changes were observed with Mg2+, indicating that non-specific electrostatic interactions drive the conformational transition, although results also suggest that Na+ and Mg2+ may associate with TAR in distinct modes. The transition can be rationalized based on a population-weighted average of two ensembles comprising an electrostatically relaxed bent and flexible TAR conformation that is weakly associated with counterions, and a globally rigid coaxial conformation which has stronger electrostatic potential and association with counterions. The TAR inter-helical orientations that are stabilized by small molecules fall around the metal-induced conformational pathway, indicating that counterions may help predispose the TAR conformation for target recognition. Our results underscore the intricate sensitivity of RNA conformational dynamics to environmental conditions and demonstrate the ability to detect subtle conformational changes using NMR RDCs. PMID:17488097
de Armas, Héctor Novoa; Peeters, Oswald M; Blaton, Norbert; Van den Mooter, Guy; De Ridder, Dirk J A; Schenk, Henk
2006-10-01
The crystal structure of carnidazole form II, O-methyl [2-(2-methyl-5-nitro-1H-imidazole-1-yl)ethyl]thiocarbamate, has been determined using synchrotron X-ray powder diffraction in combination with simulated annealing and whole profile pattern matching, and refined by the Rietveld method. For structure solution, 12 degrees of freedom were defined: one motion group and six torsions. Form II crystallizes in space group P2(1)/n, Z=4, with unit cell parameters after Rietveld refinement: a=13.915(4), b=8.095(2), c=10.649(3) A, beta=110.83(1) degrees, and V=1121.1(5) A3. The two polymorphic forms, as well as the hydrate, crystallize in the monoclinic space group P2(1)/n having four molecules in the cell. In form II, the molecules are held together by forming two infinite zig-zag chains via hydrogen bonds of the type N--H...N, the same pattern as in form I. A conformational study of carnidazole, at semiempirical PM3 level, was performed using stochastic approaches based on modification of the flexible torsion angles. The values of the torsion angles for the molecules of the two polymorphic forms and the hydrate of carnidazole are compared to those obtained from the conformational search. Form I and form II are enantiotropic polymorphic pairs this agrees with the fact that the two forms are conformational polymorphs. Copyright (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
Carmona, P.; Molina, M.; Lasagabaster, A.
1995-05-01
The conformational structure of fragment 1-29 of human growth hormone releasing factor, hGHRF (1-29), in aqueous solution and in the solid state is investigated by infrared and Raman spectroscopy. The polypeptide backbone is found to be unordered in the solid state. However, the spectra of the peptide prepared as 5% (w/w) aqueous solutions show that approximately 28% of the peptide is involved in intermolecular β-sheet aggregation. The remainder of the peptide exists largely as disordered and β-sheet conformations with a small portion of α-helices. Tyrosine residues are found to be exposed to the solvent. The secondary structures are quantitatively examined through infrared spectroscopy, the conformational percentages being near those obtained by HONDAet al. [ Biopolymers31, 869 (1991)] using circular dichroism. The fast hydrogen/deuterium exchange in peptide groups and the absence of any NMR sign indicative of ordered structure [ G. M. CLOREet al., J. Molec. Biol.191, 553 (1986)] support that the solution conformations of the non-aggregated peptide interconvert in dynamic equilibrium. Some physiological advantages that may derive from this conformational flexibility are also discussed
Xu, Xiejun; Xiao, Xingqing; Wang, Yiming; Xu, Shouhong; Liu, Honglai
2018-06-13
Targeted therapy for cancer requires thermosensitive components in drug carriers for controlled drug release against viral cells. The conformational transition characteristic of leucine zipper-structured lipopeptides is utilized in our lab to modulate the phase transition temperature of liposomes, thus achieving temperature-responsive control. In this study, we computationally examined the conformational transition behaviors of leucine zipper-structured lipopeptides that were modified at the N-terminus by distinct functional groups. The conformational transition temperatures of these lipopeptides were determined by structural analysis of the implicit-solvent replica exchange molecular dynamics simulation trajectories using the dihedral angle principal component analysis and the dictionary of protein secondary structure method. Our calculations revealed that the computed transition temperatures of the lipopeptides are in good agreement with the experimental measurements. The effect of hydrogen bonds on the conformational stability of the lipopeptide dimers was examined in conventional explicit-solvent molecular dynamics simulations. A quantitative correlation of the degree of structural dissociation of the dimers and their binding strength is well described by an exponential fit of the binding free energies to the conformation transition temperatures of the lipopeptides.
Elucidation of Different Binding Modes of Purine Nucleosides to Human Deoxycytidine Kinase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabini, Elisabetta; Hazra, Saugata; Konrad, Manfred
2008-07-30
Purine nucleoside analogues of medicinal importance, such as cladribine, require phosphorylation by deoxycytidine kinase (dCK) for pharmacological activity. Structural studies of ternary complexes of human dCK show that the enzyme conformation adjusts to the different hydrogen-bonding properties between dA and dG and to the presence of substituent at the 2-position present in dG and cladribine. Specifically, the carbonyl group in dG elicits a previously unseen conformational adjustment of the active site residues Arg104 and Asp133. In addition, dG and cladribine adopt the anti conformation, in contrast to the syn conformation observed with dA. Kinetic analysis reveals that cladribine is phosphorylatedmore » at the highest efficiency with UTP as donor. We attribute this to the ability of cladribine to combine advantageous properties from dA (favorable hydrogen-bonding pattern) and dG (propensity to bind to the enzyme in its anti conformation), suggesting that dA analogues with a substituent at the 2-position are likely to be better activated by human dCK.« less
Chimpanzees’ socially maintained food preferences indicate both conservatism and conformity
Hopper, Lydia M.; Schapiro, Steven J.; Lambeth, Susan P.; Brosnan, Sarah F.
2015-01-01
Chimpanzees remain fixed on a single strategy, even if a novel, more efficient, strategy is introduced. Previous studies reporting such findings have incorporated paradigms in which chimpanzees learn one behavioural method and then are shown a new one that the chimpanzees invariably do not adopt. This study provides the first evidence that chimpanzees show such conservatism even when the new method employs the identical required behaviour as the first, but for a different reward. Groups of chimpanzees could choose to exchange one of two types of inedible tokens, with each token type being associated with a different food reward: one type was rewarded with a highly preferred food (grape) and the other type was rewarded with a less preferred food (carrot). Individuals first observed a model chimpanzee from their social group trained to choose one of the two types of tokens. In one group, this token earned a carrot, while in the other, control, group the token earned a grape. In both groups, chimpanzees conformed to the trained model’s choice. This was especially striking for those gaining the pieces of carrot, the less favoured reward. This resulted in a population-level trend of food choices, even when counter to their original, individual, preferences. Moreover, the chimpanzees’ food preferences did not change over time, demonstrating that these results were not due to a simple shift in preferences. We discuss social factors apparent in the interactions and suggest that, despite seeming to be inefficient, in chimpanzees, conformity may benefit them, possibly by assisting with the maintenance of group relations. PMID:27011390
Graph theory and the Virasoro master equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obers, N.A.J.
1991-01-01
A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equation is given. By studying ansaetze of the master equation, the author obtains exact solutions and gains insight in the structure of large slices of affine-Virasoro space. He finds an isomorphism between the constructions in the ansatz SO(n){sub diag}, which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabeled graphs of order n. On the one hand, the conformal constructions, are classified by the graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graphmore » of graph theory. He also defines a class of magic Lie group bases in which the Virasoro master equation admits a simple metric ansatz {l brace}g{sub metric}{r brace}, whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of SO(n), and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). Finally, he defines the sine-area graphs' of SU(n), which label the conformal field theories of SU(n){sub metric}, and he notes that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g{sub metric}.« less
NASA Astrophysics Data System (ADS)
Marković, Svetlana; Tošović, Jelena; Dimitrić Marković, Jasmina M.
2016-07-01
Although chlorogenic acid (5-O-caffeoylquinic acid, 5CQA) is a dietary polyphenol known for its pharmacological and nutritional properties, its structural features have not been completely elucidated. This is the first study whose aim is to contribute to clarification of the 5CQA structure by comparing the experimental and simulated IR, Raman, 1H NMR, 13C NMR, and UV spectra. For this purpose, a comprehensive conformational analysis of 5CQA was performed to reveal its most stable conformations in the gas-state and solution (DMSO and methanol). The lowest-energy conformers were used to predict the spectra at two levels of theory: B3LYP-D3/and M06-2X/6-311+G(d,p) in combination with the CPCM solvation model. Both methods provide very good agreement between all experimental and simulated spectra, thus indicating correct arrangement of the atoms in the 5CQA molecule. The quinic moiety is characterized with directed hydrogen bonds, where the carboxylic hydrogen is not oriented towards the carbonyl oxygen of the carboxylic group, but towards the oxygen of the proximate hydroxyl group. In the gas-state the lowest-energy conformers are characterized with the O4sbnd H4 ⋯ O9‧ hydrogen bond, whereas in the solvated state the structures with the O4sbnd H4 ⋯ O10‧ hydrogen bond prevail. Knowing the fine structural details, i.e. the proper conformation of 5CQA, provides a solid base for all further investigations related to this compound.
N,N′-Bis(3β-acetoxy-5α-cholest-6-ylidene)hydrazine
Tabassum, Zishan; Sulaiman, Othman; Ibrahim, M. N. Mohamad; Quah, Ching Kheng; Fun, Hoong-Kun
2011-01-01
The asymmetric unit of the title compound, C58H96N2O4, contains two crystallographically independent molecules. All cyclohexane rings are in chair conformations, while the furan ring is in an envelope conformation in one molecule and a twist conformation in the other. Two acetaldehyde and one isobutane groups are disordered over two orientations with refined site occupancies of 0.940 (4):0.060 (4) and 0.791 (7):0.209 (7), respectively. In the crystal, molecules are stacked along the a axis through van der Waals interactions. PMID:21523172
High-resolution crystal structure and IgE recognition of the major grass pollen allergen Phl p 3.
Devanaboyina, S C; Cornelius, C; Lupinek, C; Fauland, K; Dall'Antonia, F; Nandy, A; Hagen, S; Flicker, S; Valenta, R; Keller, W
2014-12-01
Group 2 and 3 grass pollen allergens are major allergens with high allergenic activity and exhibit structural similarity with the C-terminal portion of major group 1 allergens. In this study, we aimed to determine the crystal structure of timothy grass pollen allergen, Phl p 3, and to study its IgE recognition and cross-reactivity with group 2 and group 1 allergens. The three-dimensional structure of Phl p 3 was solved by X-ray crystallography and compared with the structures of group 1 and 2 grass pollen allergens. Cross-reactivity was studied using a human monoclonal antibody which inhibits allergic patients' IgE binding and by IgE inhibition experiments with patients' sera. Conformational Phl p 3 IgE epitopes were predicted with the algorithm SPADE, and Phl p 3 variants containing single point mutations in the predicted IgE binding sites were produced to analyze allergic patients' IgE binding. Phl p 3 is a globular β-sandwich protein showing structural similarity to Phl p 2 and the Phl p 1-C-terminal domain. Phl p 3 showed IgE cross-reactivity with group 2 allergens but not with group 1 allergens. SPADE identified two conformational IgE epitope-containing areas, of which one overlaps with the epitope defined by the monoclonal antibody. The mutation of arginine 68 to alanine completely abolished binding of the blocking antibody. This mutation and a mutation of D13 in the predicted second IgE epitope area also reduced allergic patients' IgE binding. Group 3 and group 2 grass pollen allergens are cross-reactive allergens containing conformational IgE epitopes. They lack relevant IgE cross-reactivity with group 1 allergens and therefore need to be included in diagnostic tests and allergen-specific treatments in addition to group 1 allergens. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, W; Zhang, R; Zhou, Z
Purpose: To compare elective nodal irradiation with involved-field irradiation for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer by a metaanalysis. Methods: Wanfang, CNKI, VIP, CBM databases, PubMed, Embase and Cochrane Library were searched to identify the controlled clinical trials of elective nodal irradiation with involved-field irradiation for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer. The obtained data were analyzed using Stata 11.0. The difference between two groups was estimated by calculating the odds ratio (OR) with 95% confidence interval (95% CI). Results: A total of 12 controlled clinical trials involving 1095 esophagealmore » cancer patients, which were selected according to inclusion and exclusion criteria, were included in this meta-analysis. The meta-analysis showed that the elective nodal irradiation group reduced the rates of out-field failure comparing with involved-field irradiation group (OR=3.727, P=0.007). However, the rates of ≥grades 3 acute radiation pneumonitis and esophagitis were significantly higher in the elective nodal irradiation group than in the involved-field irradiation group (OR=0.348, P=0.001, OR=0.385, P=0.000). 1-, 2-, 3-year local control rates (OR=0.966, P=0.837, OR=0.946, P=0.781; OR=0.732P=0.098) and 1-, 3-, 5-year survival rates were similar in the two groups ( OR=0.966, P=0.837; OR=0.946, P=0.781; OR=0.732, P=0.098; OR=0.952, P=0.756; OR=1.149, P=0.422; OR=0.768, P=0.120). It is the same with the rates of distant metastasis (OR=0.986, P=0.937). Conclusion: Compared with involved-field irradiation, the elective nodal irradiation can reduce the rates of out-field failure for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer. However, its advantage of local control and survival rates is not obvious and it increases the incidence of toxicities.« less
Social learning strategies modify the effect of network structure on group performance.
Barkoczi, Daniel; Galesic, Mirta
2016-10-07
The structure of communication networks is an important determinant of the capacity of teams, organizations and societies to solve policy, business and science problems. Yet, previous studies reached contradictory results about the relationship between network structure and performance, finding support for the superiority of both well-connected efficient and poorly connected inefficient network structures. Here we argue that understanding how communication networks affect group performance requires taking into consideration the social learning strategies of individual team members. We show that efficient networks outperform inefficient networks when individuals rely on conformity by copying the most frequent solution among their contacts. However, inefficient networks are superior when individuals follow the best member by copying the group member with the highest payoff. In addition, groups relying on conformity based on a small sample of others excel at complex tasks, while groups following the best member achieve greatest performance for simple tasks. Our findings reconcile contradictory results in the literature and have broad implications for the study of social learning across disciplines.
Social learning strategies modify the effect of network structure on group performance
NASA Astrophysics Data System (ADS)
Barkoczi, Daniel; Galesic, Mirta
2016-10-01
The structure of communication networks is an important determinant of the capacity of teams, organizations and societies to solve policy, business and science problems. Yet, previous studies reached contradictory results about the relationship between network structure and performance, finding support for the superiority of both well-connected efficient and poorly connected inefficient network structures. Here we argue that understanding how communication networks affect group performance requires taking into consideration the social learning strategies of individual team members. We show that efficient networks outperform inefficient networks when individuals rely on conformity by copying the most frequent solution among their contacts. However, inefficient networks are superior when individuals follow the best member by copying the group member with the highest payoff. In addition, groups relying on conformity based on a small sample of others excel at complex tasks, while groups following the best member achieve greatest performance for simple tasks. Our findings reconcile contradictory results in the literature and have broad implications for the study of social learning across disciplines.
Stochastic quantization of conformally coupled scalar in AdS
NASA Astrophysics Data System (ADS)
Jatkar, Dileep P.; Oh, Jae-Hyuk
2013-10-01
We explore the relation between stochastic quantization and holographic Wilsonian renormalization group flow further by studying conformally coupled scalar in AdS d+1. We establish one to one mapping between the radial flow of its double trace deformation and stochastic 2-point correlation function. This map is shown to be identical, up to a suitable field re-definition of the bulk scalar, to the original proposal in arXiv:1209.2242.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindenmaier, Rodica; Scharko, Nicole K.; Tonkyn, Russell G.
Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, we report high quality quantitative vapor-phase infrared spectra of all three isomers over the 540-6500 cm -1 range. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C 2v symmetry for ortho-xylene, andmore » two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have C s and C 2 symmetry, and for para-xylene these conformers have C 2v or C 2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, we made an arbitrary choice to discuss the C s conformer for meta-xylene and the C 2v conformer for para-xylene. We report integrated band intensities for all isomers. Using the quantitative infrared data, we determine the global warming potential values of each isomer and discuss potential bands for atmospheric monitoring.« less
NASA Astrophysics Data System (ADS)
Lindenmaier, Rodica; Scharko, Nicole K.; Tonkyn, Russell G.; Nguyen, Kiet T.; Williams, Stephen D.; Johnson, Timothy J.
2017-12-01
Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, high quality quantitative vapor-phase infrared spectra of all three isomers over the 6500 - 540 cm-1 range are reported. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C2v symmetry for ortho-xylene, and two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have Cs and C2 symmetry, and for para-xylene these conformers have C2v or C2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, an arbitrary choice to discuss the Cs conformer for meta-xylene and the C2v conformer for para-xylene is made. Integrated band intensities for all isomers are reported. Using the quantitative infrared data, the global warming potential values of each isomer are determined. Potential bands for atmospheric monitoring are also discussed.
A DFT and structural investigation of the conformations of Fischer carbene complexes
NASA Astrophysics Data System (ADS)
Landman, Marilé
2015-09-01
A set of different Fischer carbene complexes of group VI and VII metals, with varied heteroatom and heteroaromatic substituents on the carbene carbon atom, was studied. Density functional theory as well as single crystal diffraction techniques were employed to investigated the most stable conformation of these complexes. The complexes studied, [M(CO)4L{C(X)Z}], with L = PPh3 or CO, X = ethoxy (-OCH2CH3) or amino (-NH2 or NHCy) substituents as the heteroatom carbene substituents, Z = 2-furyl (-C4H3O), 2-thienyl (-C4H3S), 2-(N-methyl)pyrrolyl (-C4H3NCH3) as the second carbene substituent had their substituents varied systematically to give all the possible conformations of these complexes. The conformations of the complexes, in particular the relative orientations of the heteroatoms in the molecule (syn vs. anti), E/Z isomerism in the aminocarbene complexes and cis/trans isomerism in the ligand substituted complexes as well as various combinations of these aspects, were studied. In general, it was found that the most stable conformation theoretically as well as in the solid state for most of the complexes preferred the syn conformation. The Z-isomer is generally preferred over the E isomer while the cis is more predominant than the trans isomer. Using DFT and NBO calculations, explanations for the preferred conformations were explored. It was concluded that both steric and electronic factors influence the conformations of the carbene complexes, with the extent of contribution of these two factors varying for each of the different carbene substituents.
Physical–chemical determinants of coil conformations in globular proteins
Perskie, Lauren L; Rose, George D
2010-01-01
We present a method with the potential to generate a library of coil segments from first principles. Proteins are built from α-helices and/or β-strands interconnected by these coil segments. Here, we investigate the conformational determinants of short coil segments, with particular emphasis on chain turns. Toward this goal, we extracted a comprehensive set of two-, three-, and four-residue turns from X-ray–elucidated proteins and classified them by conformation. A remarkably small number of unique conformers account for most of this experimentally determined set, whereas remaining members span a large number of rare conformers, many occurring only once in the entire protein database. Factors determining conformation were identified via Metropolis Monte Carlo simulations devised to test the effectiveness of various energy terms. Simulated structures were validated by comparison to experimental counterparts. After filtering rare conformers, we found that 98% of the remaining experimentally determined turn population could be reproduced by applying a hydrogen bond energy term to an exhaustively generated ensemble of clash-free conformers in which no backbone polar group lacks a hydrogen-bond partner. Further, at least 90% of longer coil segments, ranging from 5- to 20 residues, were found to be structural composites of these shorter primitives. These results are pertinent to protein structure prediction, where approaches can be divided into either empirical or ab initio methods. Empirical methods use database-derived information; ab initio methods rely on physical–chemical principles exclusively. Replacing the database-derived coil library with one generated from first principles would transform any empirically based method into its corresponding ab initio homologue. PMID:20512968
Nandel, Fateh S; Shafique, Mohd
2014-10-01
The non-proteinogenic amino acids--phenylglycine (PG) and hydroxyphenylglycine (HPG) are crucial components of certain peptidic natural products and are important for the preparation of various medicines. In this, study, the conformation of model dipeptides Ac-X-NHMe of PG, p-HPG and 3, 5-di-hydroxyphenylglycine (3, 5-DHPG) was studied both in R and S form by quantum mechanical (QM) and molecular dynamics approaches. On the energy scale, the conformational states of these molecules in both the R and S were found to be degenerate by QM studies, stabilized by non-covalent interactions like carbonyl--carbonyl interactions, carbonyl-lp .. π (aromatic ring) interactions etc. These interactions disappeared/weakened due to interaction of water molecules with carbonyl groups of backbone in simulation and water was found to interact with the aromatic ring through O(w)-H .. π or O(w)lp .. π interactions. The degeneracy of conformational states was lifted in favor of R-form of PG and DHPG and water molecules interactions with aromatic ring led to non-planarity of the aromatic ring. In simulation studies, irrespective of the starting geometry, the Φ, ψ values for the R form correspond to inverse β/inverse collagen region and for the S-form, the Φ, ψ values correspond to β/collagen region i.e., adopt single conformation. The obtained results were in conformity with the CD spectroscopic data on D-PG and D-p-HPG. The conformational behavior of the unusual amino acids might be of great help in designing of bioactive peptides/peptide based drugs to be realized in single conformation--an essential requirement.
The Effects of Internal Rotation and 14N Quadrupole Coupling in N-Methyldiacetamide
NASA Astrophysics Data System (ADS)
Kannengießer, Raphaela; Eibl, Konrad; Nguyen, Ha Vinh Lam; Stahl, Wolfgang
2015-06-01
Acetyl- and nitrogen containing substances play an important role in chemical, physical, and especially biological systems. This applies in particular for acetamides, which are structurally related to peptide bonds. In this work, N-methyldiacetamide, CH_3N(COCH_3)_2, was investigated by a combination of molecular beam Fourier transform microwave spectroscopy and quantum chemical calculations. In N-methyldiacetamide, at least three large amplitude motions are possible: (1) the internal rotation of the methyl group attached to the nitrogen atom and (2, 3) the internal rotations of both acetyl methyl groups. This leads to a rather complicated torsional fine structure of all rotational transitions with additional quadrupole hyperfine splittings caused by the 14N nucleus. Quantum chemical calculations were carried out at the MP2/6-311++G(d,p) level of theory to support the spectral assignment. Conformational analysis was performed by calculating a full potential energy surface depending on the orientation of the two acetyl groups. This yielded three stable conformers with a maximum energy difference of 35.2 kJ/mol. The spectrum of the lowest energy conformer was identified in the molecular beam. The quadrupole hyperfine structure as well as the internal rotation of two methyl groups could be assigned. For the N-methyl group and for one of the two acetyl methyl groups, barriers to internal rotation of 147 cm-1 and of 680 cm-1, respectively, were determined. The barrier of the last methyl group seems to be so high that no additional splittings could be resolved. Using the XIAM program, a global fit with a standard deviation on the order of our experimental accuracy could be achieved.
Horvat, Gordan; Stilinović, Vladimir; Hrenar, Tomica; Kaitner, Branko; Frkanec, Leo; Tomišić, Vladislav
2012-06-04
The calix[4]arene secondary-amide derivative L was synthesized, and its complexation with alkali-metal cations in acetonitrile (MeCN) was studied by means of spectrophotometric, NMR, conductometric, and microcalorimetric titrations at 25 °C. The stability constants of the 1:1 (metal/ligand) complexes determined by different methods were in excellent agreement. For the complexation of M(+) (M = Li, Na, K) with L, both enthalpic and entropic contributions were favorable, with their values and mutual relations being quite strongly dependent on the cation. The enthalpic and overall stability was the largest in the case of the sodium complex. Molecular and crystal structures of free L, its methanol and MeCN solvates, the sodium complex, and its MeCN solvate were determined by single-crystal X-ray diffraction. The inclusion of a MeCN molecule in the calixarene hydrophobic cavity was observed both in solution and in the solid state. This specific interaction was found to be stronger in the case of metal complexes compared to the free ligand because of the better preorganization of the hydrophobic cone to accept the solvent molecule. Density functional theory calculations showed that the flattened cone conformation (C(2) point group) of L was generally more favorable than the square cone conformation (C(4) point group). In the complex with Na(+), L was in square cone conformation, whereas in its adduct with MeCN, the conformation was slightly distorted from the full symmetry. These conformations were in agreement with those observed in the solid state. The classical molecular dynamics simulations indicated that the MeCN molecule enters the L hydrophobic cavity of both the free ligand and its alkali-metal complexes. The inclusion of MeCN in the cone of free L was accompanied by the conformational change from C(2) to C(4) symmetry. As in solution studies, in the case of ML(+) complexes, an allosteric effect was observed: the ligand was already in the appropriate square cone conformation to bind the solvent molecule, allowing it to more easily and faster enter the calixarene cavity.
NASA Astrophysics Data System (ADS)
Ziegler, Wolfgang; Blume, Alfred
1995-09-01
The conformational ordering of the acyl chains of all possible binary 1:1 mixtures containing the phospholipids DMPC, DMPA, DPPC, and DPPA was investigated using FTIR and 2H NMR spectroscopy. One of the components was always labelled with perdeuterated chains to be able to observe the individual behaviour of the two components. From the temperature dependence of the frequencies of the symmetric and antisymmetric CH 2- and CD 2-stretching vibrations the transition temperatures were determined. The integral intensities of the conformation sensitive CH 2-wagging bands at ca. 1368 cm -1(gtg' and gtg sequences), 1356 cm -1 (double gauche), and 1342 cm -1 (end gauche) can be converted to numbers of gauche conformers per acyl chain using calibration factors published by Senak et al. J. Phys. Chem. 95 (1991) 2565. The 2H NMR quadrupolar splittings of the CD 2-segments of the perdeuterated lipid components are affected not only by trans-gauche isomerizations but also by long axis rotations and restricted wobbling motions of the acyl chains. The values of the average gauche probability overlinep3 from FTIR spectroscopy and the average order parameters overlineSCD, the order parameter of the terminal methyl groups SCDCD 3 and the average order parameter for the plateau region overlineSCDPlat of components in the mixtures are compared to those of the pure lipids evaluated in a previous publication Tuchtenhagen et al. Eur. Biophys. J. 23 (1994) 323. The conformational behaviour of lipids in mixtures is mainly influenced by head groups interactions, PAs always being more ordered than the corresponding PCs. Depending on absolute chain length and on chain length differences between the two components different conformational behaviour is observed for the two components in the mixtures, indicating non-ideal mixing and formation of micro-domains in the liquid-crystalline phase. Increases in order at the chain ends with a concomitant decrease in probabilities for end gauche conformations give hints to chain interdigitation in the liquid-crystalline phase.
NASA Astrophysics Data System (ADS)
Sarver, Ronald W.; Friedman, Alan R.; Thamann, Thomas J.
1997-10-01
The secondary structure of the bovine growth hormone releasing factor analog, [Ile 2, Ser 8,28, Ala 15, Leu 27, Hse 30] bGRF(1-30)-NH-Ethyl, acetate salt (U-90699F) was studied in solution by Fourier transform infrared and Raman spectroscopies. Spectroscopic studies revealed that concentrated aqueous solutions of U-90699F (100 mg ml -1) undergo a secondary structure transition from disordered coil/α-helix to intermolecular β-sheet. Disordered coil and α-helical structure were grouped together in the infrared and Raman studies since the amide I vibrations are close in frequency and overlap in assignments was possible. Before the conformational transition, the facile exchange of the peptide's amide hydrogens for deuterium indicated that the majority of amide hydrogens were readily accessible to solvent. The kinetics of the conformational transition coincided with an increase in solution viscosity and turbidity. An initiation phase preceded the conformational transition during which only minor spectral changes were observed by infrared spectroscopy. The initiation phase and reaction kinetics were consistent with a highly cooperative nucleation ultimately leading to a network of intermolecular β-sheet structure and gel formation. Increased temperature accelerated the conformational transition. The conformational transition was thermally irreversible but the β-sheet structure of aggregated or gelled peptide could be disrupted by dilution and agitation.
H-Bonding Networks in Sugar Alcohols: Identifying Glucophores?
NASA Astrophysics Data System (ADS)
Alonso, E. R.; Mata, Santiago; Cabezas, Carlos; Peña, Isabel; Alonso, José L.
2016-06-01
The conformational behaviour of sorbitol and dulcitol has been investigated for the first time using a combination of chirped pulse Fourier transform microwave spectroscopy (CP-FTMW) coupled with a laser ablation (LA) source. The observed conformers have been found to be overstabilised by cooperative networks of intramolecular hydrogen bonds between vicinal hydroxyl groups stretching throughout the whole molecule. A common structural signature - involving hydroxyl groups in the H-bond - has been characterized and ascribed to the glucophore's AH and B sites in accordance with Shallenberger's old proposal. R. S. Shallenberger, T. E. Acree, Nature, 1967, 216, 480-482 R. S. Shallenberger, T. E. Acree, C. Y. Lee, Nature, 1969, 221, 555-556
Enhanced Ligand Sampling for Relative Protein–Ligand Binding Free Energy Calculations
2016-01-01
Free energy calculations are used to study how strongly potential drug molecules interact with their target receptors. The accuracy of these calculations depends on the accuracy of the molecular dynamics (MD) force field as well as proper sampling of the major conformations of each molecule. However, proper sampling of ligand conformations can be difficult when there are large barriers separating the major ligand conformations. An example of this is for ligands with an asymmetrically substituted phenyl ring, where the presence of protein loops hinders the proper sampling of the different ring conformations. These ring conformations become more difficult to sample when the size of the functional groups attached to the ring increases. The Adaptive Integration Method (AIM) has been developed, which adaptively changes the alchemical coupling parameter λ during the MD simulation so that conformations sampled at one λ can aid sampling at the other λ values. The Accelerated Adaptive Integration Method (AcclAIM) builds on AIM by lowering potential barriers for specific degrees of freedom at intermediate λ values. However, these methods may not work when there are very large barriers separating the major ligand conformations. In this work, we describe a modification to AIM that improves sampling of the different ring conformations, even when there is a very large barrier between them. This method combines AIM with conformational Monte Carlo sampling, giving improved convergence of ring populations and the resulting free energy. This method, called AIM/MC, is applied to study the relative binding free energy for a pair of ligands that bind to thrombin and a different pair of ligands that bind to aspartyl protease β-APP cleaving enzyme 1 (BACE1). These protein–ligand binding free energy calculations illustrate the improvements in conformational sampling and the convergence of the free energy compared to both AIM and AcclAIM. PMID:25906170
Conformational and functional analysis of molecular dynamics trajectories by Self-Organising Maps
2011-01-01
Background Molecular dynamics (MD) simulations are powerful tools to investigate the conformational dynamics of proteins that is often a critical element of their function. Identification of functionally relevant conformations is generally done clustering the large ensemble of structures that are generated. Recently, Self-Organising Maps (SOMs) were reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data mining problems. We present a novel strategy to analyse and compare conformational ensembles of protein domains using a two-level approach that combines SOMs and hierarchical clustering. Results The conformational dynamics of the α-spectrin SH3 protein domain and six single mutants were analysed by MD simulations. The Cα's Cartesian coordinates of conformations sampled in the essential space were used as input data vectors for SOM training, then complete linkage clustering was performed on the SOM prototype vectors. A specific protocol to optimize a SOM for structural ensembles was proposed: the optimal SOM was selected by means of a Taguchi experimental design plan applied to different data sets, and the optimal sampling rate of the MD trajectory was selected. The proposed two-level approach was applied to single trajectories of the SH3 domain independently as well as to groups of them at the same time. The results demonstrated the potential of this approach in the analysis of large ensembles of molecular structures: the possibility of producing a topological mapping of the conformational space in a simple 2D visualisation, as well as of effectively highlighting differences in the conformational dynamics directly related to biological functions. Conclusions The use of a two-level approach combining SOMs and hierarchical clustering for conformational analysis of structural ensembles of proteins was proposed. It can easily be extended to other study cases and to conformational ensembles from other sources. PMID:21569575
Hewett, Daniel M.; Bocklitz, Sebastian; Tabor, Daniel P.; ...
2017-05-23
The conformational preferences of pentyl- through decylbenzene are studied under jet-cooled conditions in the gas phase. Laser-induced fluorescence excitation spectra, fluorescence-dip infrared spectra in the alkyl CH stretch region, and Raman spectra are combined to provide assignments for the observed conformers. Density functional theory calculations at the B3LYP-D3BJ/def2TZVP level of theory provide relative energies and normal mode vibrations that serve as inputs for an anharmonic local mode theory introduced in earlier work on alkylbenzenes with n = 2–4. This model explicitly includes anharmonic mixing of the CH stretch modes with the overtones of scissors/bend modes of the CH 2 andmore » CH 3 groups in the alkyl chain, and is used to assign and interpret the single-conformation IR spectra. In octylbenzene, a pair of LIF transitions shifted -92 and -78 cm -1 from the all-trans electronic origin have unique alkyl CH stretch transitions that are fit by the local model to a g1g3g4 conformation in which the alkyl chain folds back over the aromatic ring π cloud. Its calculated energy is only 1.0 kJ mol -1 above the all-trans global minimum. This fold is at an alkyl chain length less than half that of the pure alkanes (n = 18), consistent with a smaller energy cost for the g1 dihedral and the increased dispersive interaction of the chain with the π cloud. Local site frequencies for the entire set of conformers from the local mode model show ‘edge effects’ that raise the site frequencies of CH 2(1) and CH 2(2) due to the phenyl ring and CH 2(n - 1) due to the methyl group. The g1g3g4 conformer also shows local sites shifted up in frequency at CH 2(3) and CH 2(6) due to interaction with the π cloud.« less
On an algebraic structure of dimensionally reduced magical supergravity theories
NASA Astrophysics Data System (ADS)
Fukuchi, Shin; Mizoguchi, Shun'ya
2018-06-01
We study an algebraic structure of magical supergravities in three dimensions. We show that if the commutation relations among the generators of the quasi-conformal group in the super-Ehlers decomposition are in a particular form, then one can always find a parameterization of the group element in terms of various 3d bosonic fields that reproduces the 3d reduced Lagrangian of the corresponding magical supergravity. This provides a unified treatment of all the magical supergravity theories in finding explicit relations between the 3d dimensionally reduced Lagrangians and particular coset nonlinear sigma models. We also verify that the commutation relations of E 6 (+ 2), the quasi-conformal group for A = C, indeed satisfy this property, allowing the algebraic interpretation of the structure constants and scalar field functions as was done in the F 4 (+ 4) magical supergravity.
NASA Astrophysics Data System (ADS)
Fragoso, Erick; Azpiroz, Ramón; Sharma, Pankaj; Espinosa-Pérez, Georgina; Lara-Ochoa, Francisco; Toscano, Alfredo; Gutierrez, Rene; Portillo, Oscar
2018-03-01
New 1,3-bis(phenylselanylmethyl)benzene (1, 2 and 4) and butyl phenylselane derivatives (3 and 5) are synthesized and full heteronuclear NMR characterization of these compounds are reported. Interestingly, NMR spectrum of compounds 2-5 show coupling of 1H and 13C signals of groups involved in intramolecular nonbonding interactions with 77Se. The coupling constants JH-Se and JC-Se are in the range 13.6-21.6 Hz and 28-49 Hz, respectively. For compounds 4 and 5, JH-Se coupling constants of formyl proton are smaller than their respective acetal sbnd CH protons for compounds 2 and 3. However, this trend is opposite for JC-Se coupling constants, indicating that in formyl group containing compounds 4 and 5, Se⋯O interactions are present while in compounds 2 and 3 with acetal fragments, Se⋯H interactions also could be present because of steric constraints. To confirm these interactions, quantum chemical analyses were performed for 2, 4 and 5. The minimal energy conformation for these compounds present Se⋯O/Se⋯H interactions and are at lower energy in comparison to different conformers which do not show any interaction. For compounds 4 and 5, minimal energy conformation present Se⋯O interactions and for compound 2, Se⋯H is the favored conformation. These results are in accordance with the NMR data for these compounds. X-ray crystal structure of compound 1,3-bis(phenylselanylmethyl)benzene (1) was also determined during this work. In order to understand the effect of the Se⋯O/Se⋯H interactions and the position of phenylselanylmethyl groups, quantum chemical analyses were also carried out for 1,4-bis(phenylselanylmethyl)benzene derivatives (6 and 7). Interestingly, minimal energy conformers of 1,3-bis(phenylselanylmethyl)benzene derivatives 2 and 4 are more stable than their corresponding conformers of 1,4-bis-(phenylselanylmethyl)benzene derivatives 6 and 7.1,3-bis[{(2-(diethoxymethyl)phenyl)selanyl}methyl]benzene (2) with an energy barrier of 16.22 kcal/mol is more stable than corresponding 1,4-bis [{(2-(diethoxymethyl)phenyl)selanyl}methyl]benzene (7), while molecule 4 is 1.79 kcal/mol more stable than its corresponding 2'-[{1,4-phenylenebis(methylene)}bis(selanediyl)]dibenzaldehyde (6).
Yan, Bin; Jaeqx, Sander; van der Zande, Wim J; Rijs, Anouk M
2014-06-14
The conformational preferences of peptides are mainly controlled by the stabilizing effect of intramolecular interactions. In peptides with polar side chains, not only the backbone but also the side chain interactions determine the resulting conformations. In this paper, the conformational preferences of the capped dipeptides Ac-Phe-Ser-NH2 (FS) and Ac-Phe-Cys-NH2 (FC) are resolved under laser-desorbed jet cooling conditions using IR-UV ion dip spectroscopy and density functional theory (DFT) quantum chemistry calculations. As serine (Ser) and cysteine (Cys) only differ in an OH (Ser) or SH (Cys) moiety; this subtle alteration allows us to study the effect of the difference in hydrogen bonding for an OH and SH group in detail, and its effect on the secondary structure. IR absorption spectra are recorded in the NH stretching region (3200-3600 cm(-1)). In combination with quantum chemical calculations the spectra provide a direct view of intramolecular interactions. Here, we show that both FS as FC share a singly γ-folded backbone conformation as the most stable conformer. The hydrogen bond strength of OH···O (FS) is stronger than that of SH···O (FC), resulting in a more compact gamma turn structure. A second conformer is found for FC, showing a β turn interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gokulan, Kuppan; Aggarwal, Anup; Shipman, Lance
2011-09-20
The crystal structures of acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) and Corynebacterium ammoniagenes determined at pH 5.3 and pH 6.5, respectively, are reported. Comparison of the Mtb apo-AcpS structure with the recently reported structure of the Mtb AcpS-ADP complex revealed that AcpS adopts two different conformations: the orthorhombic and trigonal space-group structures show structural differences in the {alpha}2 helix and in the conformation of the {alpha}3-{alpha}4 connecting loop, which is in a closed conformation. The apo-AcpS structure shows electron density for the entire model and was obtained at lower pH values (4.4-6.0). In contrast, at a highermore » pH value (6.5) AcpS undergoes significant conformational changes, resulting in disordered regions that show no electron density in the AcpS model. The solved structures also reveal that C. ammoniagenes AcpS undergoes structural rearrangement in two regions, similar to the recently reported Mtb AcpS-ADP complex structure. In vitro reconstitution experiments show that AcpS has a higher post-translational modification activity between pH 4.4 and 6.0 than at pH values above 6.5, where the activity drops owing to the change in conformation. The results show that apo-AcpS and AcpS-ADP adopt different conformations depending upon the pH conditions of the crystallization solution.« less
Nguyen, Dat H; Colvin, Michael E; Yeh, Yin; Feeney, Robert E; Fink, William H
2002-01-01
Recent NMR studies of the solution structure of the 14-amino acid antifreeze glycoprotein AFGP-8 have concluded that the molecule lacks long-range order. The implication that an apparently unstructured molecule can still have a very precise function as a freezing inhibitor seems startling at first consideration. To gain insight into the nature of conformations and motions in AFGP-8, we have undertaken molecular dynamics simulations augmented with free energy calculations using a continuum solvation model. Starting from 10 different NMR structures, 20 ns of dynamics of AFGP were explored. The dynamics show that AFGP structure is composed of four segments, joined by very flexible pivots positioned at alanine 5, 8, and 11. The dynamics also show that the presence of prolines in this small AFGP structure facilitates the adoption of the poly-proline II structure as its overall conformation, although AFGP does adopt other conformations during the course of dynamics as well. The free energies calculated using a continuum solvation model show that the lowest free energy conformations, while being energetically equal, are drastically different in conformations. In other words, this AFGP molecule has many structurally distinct and energetically equal minima in its energy landscape. In addition, conformational, energetic, and hydrogen bond analyses suggest that the intramolecular hydrogen bonds between the N-acetyl group and the protein backbone are an important integral part of the overall stability of the AFGP molecule. The relevance of these findings to the mechanism of freezing inhibition is discussed. PMID:12023212
Nguyen, Dat H; Colvin, Michael E; Yeh, Yin; Feeney, Robert E; Fink, William H
2002-06-01
Recent NMR studies of the solution structure of the 14-amino acid antifreeze glycoprotein AFGP-8 have concluded that the molecule lacks long-range order. The implication that an apparently unstructured molecule can still have a very precise function as a freezing inhibitor seems startling at first consideration. To gain insight into the nature of conformations and motions in AFGP-8, we have undertaken molecular dynamics simulations augmented with free energy calculations using a continuum solvation model. Starting from 10 different NMR structures, 20 ns of dynamics of AFGP were explored. The dynamics show that AFGP structure is composed of four segments, joined by very flexible pivots positioned at alanine 5, 8, and 11. The dynamics also show that the presence of prolines in this small AFGP structure facilitates the adoption of the poly-proline II structure as its overall conformation, although AFGP does adopt other conformations during the course of dynamics as well. The free energies calculated using a continuum solvation model show that the lowest free energy conformations, while being energetically equal, are drastically different in conformations. In other words, this AFGP molecule has many structurally distinct and energetically equal minima in its energy landscape. In addition, conformational, energetic, and hydrogen bond analyses suggest that the intramolecular hydrogen bonds between the N-acetyl group and the protein backbone are an important integral part of the overall stability of the AFGP molecule. The relevance of these findings to the mechanism of freezing inhibition is discussed.
Hu, Guodong; Ma, Aijing; Wang, Jihua
2017-04-24
Riboswitches regulate gene expression through direct and specific interactions with small metabolite molecules. Binding of a ligand to its RNA target is high selectivity and affinity and induces conformational changes of the RNA's secondary and tertiary structure. The structural difference of two purine riboswitches aptamers is caused by only one single mutation, where cytosine 74 in the guanine riboswitch is corresponding to a uracil 74 in adenine riboswitch. Here we employed molecular dynamics (MD) simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and thermodynamic integration computational methodologies to evaluate the energetic and conformational changes of ligands binding to purine riboswitches. The snapshots used in MM-PBSA calculation were extracted from ten 50 ns MD simulation trajectories for each complex. These free energy results are in consistent with the experimental data and rationalize the selectivity of the riboswitches for different ligands. In particular, it is found that the loss in binding free energy upon mutation is mainly electrostatic in guanine (GUA) and riboswitch complex. Furthermore, new hydrogen bonds are found in mutated complexes. To reveal the conformational properties of guanine riboswitch, we performed a total of 6 μs MD simulations in both the presence and the absence of the ligand GUA. The MD simulations suggest that the conformation of guanine riboswitch depends on the distance of two groups in the binding pocket of ligand. The conformation is in a close conformation when U51-A52 is close to C74-U75.
Modified Amber Force Field Correctly Models the Conformational Preference for Tandem GA pairs in RNA
2015-01-01
Molecular mechanics with all-atom models was used to understand the conformational preference of tandem guanine-adenine (GA) noncanonical pairs in RNA. These tandem GA pairs play important roles in determining stability, flexibility, and structural dynamics of RNA tertiary structures. Previous solution structures showed that these tandem GA pairs adopt either imino (cis Watson–Crick/Watson–Crick A-G) or sheared (trans Hoogsteen/sugar edge A-G) conformations depending on the sequence and orientation of the adjacent closing base pairs. The solution structures (GCGGACGC)2 [Biochemistry, 1996, 35, 9677–9689] and (GCGGAUGC)2 [Biochemistry, 2007, 46, 1511–1522] demonstrate imino and sheared conformations for the two central GA pairs, respectively. These systems were studied using molecular dynamics and free energy change calculations for conformational changes, using umbrella sampling. For the structures to maintain their native conformations during molecular dynamics simulations, a modification to the standard Amber ff10 force field was required, which allowed the amino group of guanine to leave the plane of the base [J. Chem. Theory Comput., 2009, 5, 2088–2100] and form out-of-plane hydrogen bonds with a cross-strand cytosine or uracil. The requirement for this modification suggests the importance of out-of-plane hydrogen bonds in stabilizing the native structures. Free energy change calculations for each sequence demonstrated the correct conformational preference when the force field modification was used, but the extent of the preference is underestimated. PMID:24803859
[Conduct problems in a sample of institutionalized minors with previous mistreatment].
Carrasco-Ortiz, M A; Rodríguez-Testal, J F; Hesse, B M
2001-06-01
The present study tries to analyse the maltreatment effects and the expected relation, according to the reviewed literature, with behaviour problems in a sample of children in residential care in a protection centre in Seville county (Spain). The sample was conformed by a group of maltreated subjects in a protection setting (n = 30) and two groups of equivalent comparison (n = 30 and n = 30). The first group was conformed by subjects living in a marginal area of Sevilla, similar to the origin setting of the study group, and the second group comes from a wealthy area of this city. The behaviour problems index CBC of Achenbach (1978; 1979; Achenbach & Edelbrock, 1983) was used. No significant differences between groups in the CBC total score was found. However, significant differences were found in the extemalising dimension and in the delinquency, somatic anxiety, somatic problems, and social withdrawal dimensions. Victims of corruption presented higher scores on the CBC total score, extemalising dimension, and delinquency. Young people, victims of child maltreatment and living in an institution, showed problems of withdrawal. Victims of corruption or emotional abuse presented more psychopathological problems.
NASA Astrophysics Data System (ADS)
Young, Andrew J.; Phillip, Denise M.; Hashimoto, Hideki
2002-12-01
The binding of xanthophylls to the main light-harvesting complex (LHC) of higher plants has been studied using the technique of in vitro reconstitution. This demonstrated that the carotenoid diol lactucaxanthin (native to many LHC) would not support the assembly of LHC whilst other diols, notably zeaxanthin and lutein would. Analysis of the most stable forms of the carotenoid end-groups found in xanthophylls native to higher plant LHC (as determined by theoretical calculations) revealed profound differences in the adiabatic potential energy curves for the C5-C6-C7-C8-torsion angle for the ɛ end-groups in lactucaxanthin (6-s- trans), in comparison to carotenoids possessing a 3-hydroxy β end-group (zeaxanthin; 6-s- cis), 3-hydroxy-4-keto β end-group (astaxanthin, 6-s- cis) or a 3-hydroxy-5,6-epoxy end-group (violaxanthin, distorted 6-s- cis). The (ɛ end-groups of other carotenoids studied were 6-s- trans. We examine the possible relationship between carotenoid ring-to-chain conformation and binding to LHC.
NASA Astrophysics Data System (ADS)
Macleod, Neil A.; Simons, John P.
2002-10-01
The conformational landscapes of 2-phenoxy ethanol (POX) and its hydrated clusters have been studied in the gas-phase, providing a model for pharmaceutical β-blockers. A combination of experimental techniques, including resonant two-photon ionisation (R2PI), laser-induced-fluorescence (LIF) and resonant ion-dip infra-red spectroscopy (RIDIRS), coupled with high-level ab initio calculations has allowed the assignment of the individually resolved spectral features to discrete conformational and supra-molecular structures. Assignments were made by comparison of experimental vibrational spectra and partially resolved ultra-violet rotational band contours with those predicted from quantum chemical calculations. The isolated molecule displays a solitary structure with an extended geometry of the side-chain which is stabilised by an intramolecular hydrogen-bond between the alcohol (proton donor) and the ether (proton acceptor) groups of the side-chain. In singly hydrated clusters the water molecule is accommodated by insertion into the intramolecular hydrogen-bond. In the doubly hydrated and higher clusters cyclic structures are generated which incorporate both the water molecules and the terminal OH group of the side-chain; additional (weak) hydrogen bonded interactions with the phenoxy group provide a degree of selectivity but essentially, the water 'droplet' forms on the end of the alcohol side-chain.
Memory conformity and the perceived accuracy of self versus other.
Allan, Kevin; Midjord, J Palli; Martin, Doug; Gabbert, Fiona
2012-02-01
Here, we demonstrate that the decision to conform to another person's memory involves a strategic trade-off that balances the accuracy of one's own memory against that of another person. We showed participants three household scenes, one for 30 s, one for 60 s, and one for 120 s. Half were told that they would encode each scene for half as long as their virtual partner, and half were told that they would encode each scene for twice as long as their virtual partner. On a subsequent two-alternative-forced choice (2AFC) memory test, the simulated answer of the partner (accurate, errant, or no response) was shown before participants responded. Conformity to the partner's responses was significantly enhanced for the 30-s versus the 60- and 120-s scenes. This pattern, however, was present only in the group who believed that they had encoded each scene for half as long as their partner, even though the short-duration scene had the lowest baseline 2AFC accuracy in both groups and was also subjectively rated as the least memorable by both groups. Our reliance on other people's memory is therefore dynamically and strategically adjusted according to knowledge of the conditions under which we and other people have acquired different memories.
NASA Astrophysics Data System (ADS)
Cai, Lu; Lv, Wenzhen; Zhu, Hong; Xu, Qun
2016-07-01
The mechanism of the adsorption of pyrene-polyethylene (Py-PE) onto ultrathin single-walled carbon nanotube (SWNT) was studied by using all-atom molecular dynamics (MD) simulations. We found that solvent polarity and pyrene group are two critical factors in the Py-PE decoration on ultrathin SWNT. Combined MD simulations with free energy calculations, our results indicate that larger solvent polarity can decrease the contribution of conformation entropy, but contributes little to the interaction energy, moreover, larger SWNT diameter can decrease the contribution of conformation entropy but lead to the increasing of the interaction energy. In polar organic solvent (N, N-Dimethylacetamide), the pyrene group plays a key role in the adsorption of Py-PE onto ultrathin SWNT, not only facilitates the spontaneous adsorption of Py-PE onto ultrathin SWNT, but also helps to form compact structure between themselves in the final adsorption states. While in aqueous solution, pyrene group no longer works as an anchor, but still affects a lot to the final adsorption conformation. Our present work provides detailed theoretical clue to understand the noncovalent interaction between aromatic segment appended polymer and ultrathin SWNT, and helps to explore the potential application of ultrathin SWNT in the fields of hybrid material, biomedical and electronic materials.
Classification of Kantowski-Sachs metric via conformal Ricci collineations
NASA Astrophysics Data System (ADS)
Hussain, Tahir; Khan, Fawad; Bokhari, Ashfaque H.; Akhtar, Sumaira Saleem
In this paper, we present a classification of the Kantowski-Sachs spacetime metric according to its conformal Ricci collineations (CRCs). Solving the CRC equations, it is shown that the Kantowski-Sachs metric admits 15-dimensional Lie algebra of CRCs when its Ricci tensor is non-degenerate and an infinite dimensional group of CRCs when the Ricci tensor is degenerate. Some examples of Kantowski-Sachs metric admitting nontrivial CRCs are presented and their physical interpretation is provided.
rac-(S,S)-Bis(1-ferrocenylbut-3-en-yl) ether.
Xie, Hao-Jun; Zhao, Chun-Zheng; Sun, Jun; Chen, Si; Wang, Jian-Jun
2013-01-01
The title complex, [Fe2(C5H5)2(C18H20O)], formed by dehydration of 1-ferrocenylbut-3-en-1-ol, crystallizes as a racemic compound. The central C-O-C fragment, in which the C atoms are the chiral centers, is characterized by an angle of 116.26 (10)° at the O atom. One ferrocene group shows a staggered conformation whereas the other shows an eclipsed conformation.
Drake, Michael D; Harsha, Alex K; Terterov, Sergei; Roberts, John D
2006-03-01
Vicinal (1)H--(1)H coupling constants were used to determine the conformational preferences of 2,3-dihydroxypropanoic acid (1) (DL-glyceric acid) in various solvents and its different carboxyl ionization states. The stereospecific assignments of J(12) and J(13) were confirmed through the point-group substitution of the C-3 hydrogen with deuterium, yielding rac-(2SR,3RS)-[3-(2)H]-1, and the observation of only J(13) in the (1)H NMR spectra. While hydrogen bonding and steric strain may be expected to drive the conformational equilibrium, their role is overshadowed by a profound gauche effect between the vicinal hydroxyl groups that mimics other substituted ethanes, such as 1,2-ethanediol and 1,2-difluoroethane. At low pH, the conformational equilibrium is heavily weighted toward the gauche-hydroxyl rotamers with a range of 81% in DMSO-d(6) to 92% in tert-butyl alcohol-d(10). At high pH, the equilibrium exhibits a larger dependence upon the polarity and solvating capability of the medium, although the gauche effect still dominates in D(2)O, 1,4-dioxane-d(8), methanol-d(4), and ethanol-d(6) (96, 89, 85, and 83% gauche-hydroxyls respectively). The observed preference for the gauche-hydroxyl rotamers is believed to stem primarily from hyperconjugative sigma(C--H) --> sigma*(C--OH) interactions.
Frequency of Behavior Witnessed and Conformity in an Everyday Social Context
Claidière, Nicolas; Bowler, Mark; Brookes, Sarah; Brown, Rebecca; Whiten, Andrew
2014-01-01
Conformity is thought to be an important force in human evolution because it has the potential to stabilize cultural homogeneity within groups and cultural diversity between groups. However, the effects of such conformity on cultural and biological evolution will depend much on the particular way in which individuals are influenced by the frequency of alternative behavioral options they witness. In a previous study we found that in a natural situation people displayed a tendency to be ‘linear-conformist’. When visitors to a Zoo exhibit were invited to write or draw answers to questions on cards to win a small prize and we manipulated the proportion of text versus drawings on display, we found a strong and significant effect of the proportion of text displayed on the proportion of text in the answers, a conformist effect that was largely linear with a small non-linear component. However, although this overall effect is important to understand cultural evolution, it might mask a greater diversity of behavioral responses shaped by variables such as age, sex, social environment and attention of the participants. Accordingly we performed a further study explicitly to analyze the effects of these variables, together with the quality of the information participants' responses made available to further visitors. Results again showed a largely linear conformity effect that varied little with the variables analyzed. PMID:24950212
Ab Initio Calculations of the N-N Bond Dissociation for the Gas-phase RDX and HMX.
Liu, Lin-Lin; Liu, Pei-Jin; Hu, Song-Qi; He, Guo-Qiang
2017-01-17
NO 2 fission is a vital factor for 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) decomposition. In this study, the geometry of the gas-phase RDX and HMX molecules was optimized, and the bond order and the bond dissociation energy of the N-N bonds were examined. Moreover, the rate constants of the gas-phase RDX and HMX conformers, concerning the N-N bond dissociation, were evaluated using the microcanonical variational transition state theory (μVT). The calculation results have shown that HMX is more stable than RDX in terms of the N-N bond dissociation, and the conformers stability parameters were as follows: RDXaaa < RDXaae < HMX I < HMX II. In addition, for the RDX conformers, the N-N bond of the pseudo-equatorial positioning of the nitro group was more stable than the N-N bond of the axial positioning of the nitro group, while the results were opposite in the case of the HMX conformers. Moreover, it has been shown that the dissociation rate constant of the N-N bond is influenced by the temperature significantly, thus the rate constants were much lower (<10 -10 s -1 ) when the temperature was less than 1000 K.
Ab Initio Calculations of the N-N Bond Dissociation for the Gas-phase RDX and HMX
Liu, Lin-lin; Liu, Pei-jin; Hu, Song-qi; He, Guo-qiang
2017-01-01
NO2 fission is a vital factor for 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) decomposition. In this study, the geometry of the gas-phase RDX and HMX molecules was optimized, and the bond order and the bond dissociation energy of the N-N bonds were examined. Moreover, the rate constants of the gas-phase RDX and HMX conformers, concerning the N-N bond dissociation, were evaluated using the microcanonical variational transition state theory (μVT). The calculation results have shown that HMX is more stable than RDX in terms of the N-N bond dissociation, and the conformers stability parameters were as follows: RDXaaa < RDXaae < HMX I < HMX II. In addition, for the RDX conformers, the N-N bond of the pseudo-equatorial positioning of the nitro group was more stable than the N-N bond of the axial positioning of the nitro group, while the results were opposite in the case of the HMX conformers. Moreover, it has been shown that the dissociation rate constant of the N-N bond is influenced by the temperature significantly, thus the rate constants were much lower (<10−10 s−1) when the temperature was less than 1000 K. PMID:28094774
Ab Initio Calculations of the N-N Bond Dissociation for the Gas-phase RDX and HMX
NASA Astrophysics Data System (ADS)
Liu, Lin-Lin; Liu, Pei-Jin; Hu, Song-Qi; He, Guo-Qiang
2017-01-01
NO2 fission is a vital factor for 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) decomposition. In this study, the geometry of the gas-phase RDX and HMX molecules was optimized, and the bond order and the bond dissociation energy of the N-N bonds were examined. Moreover, the rate constants of the gas-phase RDX and HMX conformers, concerning the N-N bond dissociation, were evaluated using the microcanonical variational transition state theory (μVT). The calculation results have shown that HMX is more stable than RDX in terms of the N-N bond dissociation, and the conformers stability parameters were as follows: RDXaaa < RDXaae < HMX I < HMX II. In addition, for the RDX conformers, the N-N bond of the pseudo-equatorial positioning of the nitro group was more stable than the N-N bond of the axial positioning of the nitro group, while the results were opposite in the case of the HMX conformers. Moreover, it has been shown that the dissociation rate constant of the N-N bond is influenced by the temperature significantly, thus the rate constants were much lower (<10-10 s-1) when the temperature was less than 1000 K.
When Two Heads Aren't Better than One: Conformity in a Group Activity
ERIC Educational Resources Information Center
Fender, C. Melissa; Stickney, Lisa T.
2017-01-01
Group and team class decision-making activities often focus on demonstrating that "two heads are better than one." Typically, students solve a problem or complete an assessment individually, then in a group. Generally, the group does better and that is what the students learn. However, if that is all such an activity conveys, then a…
Mom, Sophal; Beaupérin, Matthieu; Roy, David; Royer, Sylviane; Amardeil, Régine; Cattey, Hélène; Doucet, Henri; Hierso, J-C
2011-11-21
The synthesis of novel substituted cyclopentadienyl salts that incorporate both a congested branched alkyl group (tert-butyl, (triphenyl)methyl, or tri(4-tert-butyl)phenylmethyl) and a phosphanyl group is reported. The introduction of either electron-withdrawing or electron-donating substituents (furyl, i-propyl, cyclohexyl, tert-butyl) on P atoms was generally achieved in high yield. The modular synthesis of ferrocenyl polyphosphanes from an assembly of these cyclopentadienyl salts was investigated, leading to the formation of new triphosphanes (denoted as 9-12) and diphosphanes (denoted as 14-16). The resulting phosphanes are not sensitive to air or moisture, even when electron-rich substituents are present. This set of polyphosphanes displays varied conformational features, which are discussed in the light of their multinuclear NMR characterization in solution and of the X-ray solid state structure of the representative triphosphane 1,2-bis(diphenylphosphanyl)-1'-(diisopropylphosphanyl)-3'-(triphenyl)methyl-4-tert-butyl ferrocene, 11. In particular, the existence of a range of significantly different nonbonded ("through-space", TS) spin-spin coupling constants between heteroannular P atoms, for the triphosphanes of this class, allowed their preferred conformation in solution to be appraised. The study evidences an unanticipated flexibility of the ferrocene platform, despite the presence of very congested tert-butyl and trityl groups. Herein, we show that, contrary to our first belief, the preferred conformation for the backbone of ferrocenyl polyphosphanes can not only depend on the hindrance of the groups decorating the cyclopentadienyl rings but is also a function of the substituents of the phosphanyl groups. The interest of these robust phosphanes as ligands was illustrated in palladium catalysis for the arylation of n-butyl furan with chloroarenes, using direct C-H activation of the heteroaromatic in the presence of low metal/ligand loadings (0.5-1.0 mol %). Thus, 4-chlorobenzonitrile, 4-chloronitrobenzene, 4-chloropropiophenone, and 4-(trifluoromethyl)chlorobenzene were efficiently coupled to n-butyl furan, using Pd(OAc)(2) associated to the new diphosphane ligands 1,1'-bis(diisopropylphosphanyl)-3,3'-di(triphenyl)methyl ferrocene (15) or 1,1'-bis(dicyclohexylphosphanyl)-3,3'-di(triphenyl)methylferrocene (16), which respectively hold the electron-rich -Pi-Pr(2) and -PCy(2) groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Govil, Karan; Gunaydin, Murat
Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS 5.more » The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS 5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS 5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS 5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS 5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in HS algebras in AdS 4 where the corresponding 3d conformal group Sp(4,R) admits only two massless representations (minreps), namely the scalar and spinor singletons.« less
Kathuria, Preetleen; Sharma, Purshotam; Abendong, Minette N; Wetmore, Stacey D
2015-04-21
Aristolochic acids (AAI and AAII), produced by the Aristolochiaceae family of plants, are classified as group I (human) carcinogens by the International Agency for Research on Cancer. These acids are metabolized in cells to yield aristolactams (ALI and ALII, respectively), which further form bulky adducts with the purine nucleobases. Specifically, the adenine lesions are more persistent in cells and have been associated with chronic renal diseases and related carcinogenesis. To understand the structural basis of the nephrotoxicity induced by AAs, the ALI-N(6)-dA and ALII-N(6)-dA lesions are systematically studied using computational methods. Density functional theory calculations indicate that the aristolactam moiety intrinsically prefers a planar conformation with respect to adenine. Nucleoside and nucleotide models suggest that the anti and syn orientations about the glycosidic bond are isoenergetic for both adducts. Molecular dynamics simulations and free energy calculations reveal that the anti base-displaced intercalated conformation is the most stable conformer for both types of AL-N(6)-dA adducted DNA, which agrees with previous experimental work on the ALII-N(6)-dA adduct and thereby validates our approach. Interestingly, this conformer differs from the dominant conformations adopted by other N6-linked adenine lesions, including those derived from polycyclic aromatic hydrocarbons. Furthermore, the second most stable syn base-displaced intercalated conformation lies closer in energy to the anti base-displaced intercalated conformation for ALI-N(6)-dA compared to ALII-N(6)-dA. This indicates that a mixture of conformations may be detectable for ALI-N(6)-dA in DNA. If this enhanced conformational flexibility of double-stranded DNA persists when bound to a lesion-bypass polymerase, this provides a possible structural explanation for the previously observed greater nephrotoxic potential for the ALI versus ALII-N(6)-dA adduct. In addition, the structural characteristics of the preferred conformations of adducted DNA explain the resistance of these adducts to repair and thereby add to our current understanding of the toxicity of AAs within living cells.
Kim, Hyoungrae; Jang, Cheongyun; Yadav, Dharmendra K; Kim, Mi-Hyun
2017-03-23
The accuracy of any 3D-QSAR, Pharmacophore and 3D-similarity based chemometric target fishing models are highly dependent on a reasonable sample of active conformations. Since a number of diverse conformational sampling algorithm exist, which exhaustively generate enough conformers, however model building methods relies on explicit number of common conformers. In this work, we have attempted to make clustering algorithms, which could find reasonable number of representative conformer ensembles automatically with asymmetric dissimilarity matrix generated from openeye tool kit. RMSD was the important descriptor (variable) of each column of the N × N matrix considered as N variables describing the relationship (network) between the conformer (in a row) and the other N conformers. This approach used to evaluate the performance of the well-known clustering algorithms by comparison in terms of generating representative conformer ensembles and test them over different matrix transformation functions considering the stability. In the network, the representative conformer group could be resampled for four kinds of algorithms with implicit parameters. The directed dissimilarity matrix becomes the only input to the clustering algorithms. Dunn index, Davies-Bouldin index, Eta-squared values and omega-squared values were used to evaluate the clustering algorithms with respect to the compactness and the explanatory power. The evaluation includes the reduction (abstraction) rate of the data, correlation between the sizes of the population and the samples, the computational complexity and the memory usage as well. Every algorithm could find representative conformers automatically without any user intervention, and they reduced the data to 14-19% of the original values within 1.13 s per sample at the most. The clustering methods are simple and practical as they are fast and do not ask for any explicit parameters. RCDTC presented the maximum Dunn and omega-squared values of the four algorithms in addition to consistent reduction rate between the population size and the sample size. The performance of the clustering algorithms was consistent over different transformation functions. Moreover, the clustering method can also be applied to molecular dynamics sampling simulation results.
Computer display and manipulation of biological molecules
NASA Technical Reports Server (NTRS)
Coeckelenbergh, Y.; Macelroy, R. D.; Hart, J.; Rein, R.
1978-01-01
This paper describes a computer model that was designed to investigate the conformation of molecules, macromolecules and subsequent complexes. Utilizing an advanced 3-D dynamic computer display system, the model is sufficiently versatile to accommodate a large variety of molecular input and to generate data for multiple purposes such as visual representation of conformational changes, and calculation of conformation and interaction energy. Molecules can be built on the basis of several levels of information. These include the specification of atomic coordinates and connectivities and the grouping of building blocks and duplicated substructures using symmetry rules found in crystals and polymers such as proteins and nucleic acids. Called AIMS (Ames Interactive Molecular modeling System), the model is now being used to study pre-biotic molecular evolution toward life.
Kofuku, Yutaka; Yokomizo, Tomoki; Imai, Shunsuke; Shiraishi, Yutaro; Natsume, Mei; Itoh, Hiroaki; Inoue, Masayuki; Nakata, Kunio; Igarashi, Shunsuke; Yamaguchi, Hideyuki; Mizukoshi, Toshimi; Suzuki, Ei-Ichiro; Ueda, Takumi; Shimada, Ichio
2018-03-08
G protein-coupled receptors (GPCRs) exist in equilibrium between multiple conformations, and their populations and exchange rates determine their functions. However, analyses of the conformational dynamics of GPCRs in lipid bilayers are still challenging, because methods for observations of NMR signals of large proteins expressed in a baculovirus-insect cell expression system (BVES) are limited. Here, we report a method to incorporate methyl- 13 C 1 H 3 -labeled alanine with > 45% efficiency in highly deuterated proteins expressed in BVES. Application of the method to the NMR observations of β 2 -adrenergic receptor in micelles and in nanodiscs revealed the ligand-induced conformational differences throughout the transmembrane region of the GPCR.
Clayden, Jonathan; Foricher, Yann J Y; Helliwell, Madeleine; Johnson, Paul; Mitjans, David; Vinader, Victoria
2006-02-07
The orientation of a tertiary amide group adjacent to an aromatic ring may be governed by the stereochemistry of an adjacent chiral substituent. With a chiral substituent in both ortho positions, matched/mismatched pairs of isomers result. Evidence for matched stereochemistry is provided by the clean NMR spectra of single conformers, while mismatching gives poor or unexpected selectivities in the formation of chiral substituents, or mixtures of amide conformers. Attempts to use the match-mismatch effect to select for racemic pairs of enantiomeric substituents, and hence develop a "racemate-sequestering" reagent, are described, along with the use of "matching" to scavenge a single enantiomer of a diamine from material of incomplete enantiomeric purity.
Comparing live and remote models in eating conformity research.
Feeney, Justin R; Polivy, Janet; Pliner, Patricia; Sullivan, Margot D
2011-01-01
Research demonstrates that people conform to how much other people eat. This conformity occurs in the presence of other people (live model) and when people view information about how much food prior participants ate (remote models). The assumption in the literature has been that remote models produce a similar effect to live models, but this has never been tested. To investigate this issue, we randomly paired participants with a live or remote model and compared their eating to those who ate alone. We found that participants exposed to both types of model differed significantly from those in the control group, but there was no significant difference between the two modeling procedures. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Solution properties of the capsular polysaccharide produced by Klebsiella pneumoniae K40.
Flaibani, A; Leonhartsberger, S; Navarini, L; Cescutti, P; Paoletti, S
1994-04-01
This paper reports some physicochemical properties of the capsular polysaccharide produced by Klebsiella pneumoniae serotype K40 (K40-CPS) in aqueous solution. The polymer has a linear hexasaccharide repeating unit containing one glucuronic acid residue as the only ionizable group. Potentiometric, viscometric, chiro-optical and rheological measurements have been carried out over a range of ionic strength, pH and temperature, with the aim of characterizing the conformational state of the polysaccharide in aqueous solution. All the data reported indicate that the K40-CPS does not undergo a cooperative conformational transition under the investigated experimental conditions. Furthermore, the viscosity data and the viscoelastic spectra suggest that the K40-CPS is rather flexible and adopts a random coil conformation in solution.
NASA Astrophysics Data System (ADS)
Srivastava, Anubha; Singh, Harshita; Mishra, Rashmi; Dev, Kapil; Tandon, Poonam; Maurya, Rakesh
2017-04-01
Isoformononetin, a methoxylated isoflavone present in medicinal plants, has non-estrogenic bone forming effect via differential mitogen-activated protein kinase (MAPK) signaling. Spectroscopic (FT-Raman, FT-IR, UV-vis and NMR spectra) and quantum chemical calculations using density functional theory (DFT) and 6-311++G(d,p) as a large basis set have been employed to study the structural and electronic properties of isoformononetin. A detailed conformational analysis is performed to determine the stability among conformers and the various possibilities of intramolecular hydrogen bonding formation. Molecular docking studies with different protein kinases were performed on isoformononetin and previously studied isoflavonoid, formononetin in order to understand their inhibitory nature and the effect of functional groups on osteogenic or osteoporosis associated proteins. It is found that the oxygen atoms of methoxy, hydroxyl groups attached to phenyl rings R1, R3 and carbonyl group attached to pyran ring R2, play a major role in binding with the protein kinases that is responsible for the osteoporosis; however, no hydrophobic interactions are observed between rings of ligand and protein. The electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT which predict that conformer II is a little bit more stable and chemically low reactive than conformer I of isoformononetin. To estimate the structure-activity relationship, the molecular electrostatic potential (MEP) surface map, and reactivity descriptors are calculated from the optimized geometry of the molecule. From these results, it is also found that isoformononetin is kinetically more stable, less toxic, weak electrophile and chemically less reactive than formononetin. The atoms in molecules and natural bond orbital analysis are applied for the detailed analysis of intra and intermolecular hydrogen bonding interactions.
Tsuruoka, H; Shohda, K; Wada, T; Sekine, M
2000-11-03
To synthesize oligonucleotides containing 2'-O-phosphate groups, four kinds of ribonucleoside 3'-phosphoramidite building blocks 6a-d having the bis(2-cyano-1,1-dimethylethoxy)thiophosphoryl (BCMETP) group were prepared according to our previous phosphorylation procedure. These phosphoramidite units 6a-d were not contaminated with 3'-regioisomers and were successfully applied to solid-phase synthesis to give oligodeoxyuridylates 15, 16 and oligouridylates 21, 22. Self-complementary Drew-Dickerson DNA 12mers 24-28 replaced by a 2'-O-phosphorylated ribonucleotide at various positions were similarly synthesized. In these syntheses, it turned out that KI(3) was the most effective reagent for oxidative desulfurization of the initially generated thiophosphate group to the phosphate group on polymer supports. Without using this conversion step, a tridecadeoxyuridylate 17 incorporating a 2'-O-thiophosphorylated uridine derivative was also synthesized. To investigate the effect of the 2'-phosphate group on the thermal stability and 3D-structure of DNA(RNA) duplexes, T(m) measurement of the self-complementary oligonucleotides obtained and MD simulation of heptamer duplexes 33-36 were carried out. According to these analyses, it was suggested that the nucleoside ribose moiety phosphorylated at the 2'-hydroxyl function predominantly preferred C2'-endo to C3'-endo conformation in DNA duplexes so that it did not significantly affect the stability of the DNA duplex. On the other hand, the 2'-modified ribose moiety was expelled to give a C3'-endo conformation in RNA duplexes so that the RNA duplexes were extremely destabilized.
NASA Astrophysics Data System (ADS)
Awwadi, Firas F.; Hodali, Hamdallah A.
2018-02-01
Syntheses and crystal structures of two polymorphs of the complex [Co(II)(L)], where H2L = 2,2'-[cis-1,2-diaminocyclohexanediylbis (nitrilo-methylidyne)]bis (5-dimethyl-amino]phenol, have been studied. The two polymorphs concomitantly crystallized by vapour diffusion of solvent. The first polymorph (I) crystallized as a racemate in the centrosymmetric tetragonal I41/a space group. The second polymorph (II) crystallized in the chiral orthorhombic space group P212121. The chiral conformers of symmetrical cis-1,2-disubstituted cyclohexane molecules cannot be resolved in the liquid or gas phases, due to the rapid ring inversion. In the present study, the two chiral conformers are present in crystals of polymorph I, whereas, only one chiral conformer is present in crystals of polymorph II. Crystal structure analysis indicated that the formation of two different polymorphs of [Co(II)(L)] complex can be rationalized based on Csbnd H⋯Co anagostic interactions. Density Functional Theory (DFT) calculations indicated that Csbnd H⋯Co interactions are due to HOMO-LUMO interactions.
The large N limit of superconformal field theories and supergravity
NASA Astrophysics Data System (ADS)
Maldacena, Juan
1999-07-01
We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large N. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The 't Hooft limit of 3+1N=4 super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes is dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions.
NASA Astrophysics Data System (ADS)
Filho, Edilson B. A.; Moraes, Ingrid A.; Weber, Karen C.; Rocha, Gerd B.; Vasconcellos, Mário L. A. A.
2012-08-01
Morita-Baylis-Hillman Adducts (MBHA) has been recently synthesized and bio-evaluated by our research group against Leishmania amazonensis, parasite that causes cutaneous and mucocutaneous leishmaniasis. We present here a theoretical conformational study of thirty-two leismanicidal MBHA by B3LYP/6-31+g(d) calculations with Polarized Continuum Model (PCM) to simulate water influence. Intramolecular Hydrogen Bonds (IHBs) indicated to control the most conformational preferences of MBHA. Quantum Theory Atoms in Molecules (QTAIM) calculations were able to characterize these interactions at Bond Critical Point level. Compounds presenting an unusual seven member IHB between NO2 group and hydroxyl moiety, supported by experimental spectroscopic data, showed a considerable improvement of biological activity (lower IC50 values). These results are in accordance to redox NO2 mechanism of action. Based on structural observations, some molecular descriptors were calculated and submitted to Quantitative Structure-Activity Relationship (QSAR) studies through the PLS Regression Method. These studies provided a model with good validation parameters values (R2 = 0.71, Q2 = 0.61 and Qext2 = 0.92).
NASA Astrophysics Data System (ADS)
Halder, Srimanta; Bhavana, Purushothaman
2017-12-01
An attempt of correlating the conformation of the derivatives of free base meso-thien-2-ylporphyrin with their performance as ionophores in sensing metal ions (potentiometric investigation) is made in the present work. The porphyrins were synthesized by following the condensation of pyrrole with corresponding aldehyde in Lewis acidic medium. The orientation of the 3- or 5- substituted (bromo- or methyl-) thien-2-yl- group at the meso-position of the porphyrin dictates their conformation. The molecule with a better electron delocalization due to the near planarity of the meso-ring has showed better activity as ionophore (porphyrin with 5-bromothien-2-yl- vs 3-bromothien-2-yl-). The role of the position of the substituent is investigated by comparing the results obtained for porphyrins with 5-bromothien-2-yl- and 4-bromothien-2-yl- at the meso-positions. The importance of resonance due to the electron delocalization from the substituent to the porphyrin core is evident on comparing the results obtained for porphyrin with 5-bromothien-2-yl and 5-methylthien-2-yl groups.
NMR crystallography of oxybuprocaine hydrochloride, Modification II degrees.
Harris, Robin K; Cadars, Sylvian; Emsley, Lyndon; Yates, Jonathan R; Pickard, Chris J; Jetti, Ram K R; Griesser, Ulrich J
2007-01-21
The (13)C CPMAS spectrum is presented for the polymorph of oxybuprocaine hydrochloride which is stable at room temperature, i.e. Mod. II degrees . It shows crystallographic splittings arising from the fact that there are two molecules, with substantially different conformations, in the asymmetric unit. An INADEQUATE two-dimensional experiment was used to link signals for the same independent molecule. The chemical shifts are discussed in relation to the crystal structure. Of the four ethyl groups attached to NH(+) nitrogens, one gives rise to unusually low chemical shifts, very different from those of the other three ethyl groups. This is attributed empirically to gamma-gauche conformational effects, as is confirmed by shielding computations. These considerations allow (13)C signals to be assigned to specific carbons in the two crystallographically inequivalent molecules in the crystal structure. Indeed, information about the conformations is inherent in the NMR spectrum, which thus provides data of crystallographic significance. A (13)C/(1)H HETCOR experiment enabled resolution to be obtained in the (1)H dimension and allowed (1)H and (13)C signals for the same independent molecule to be linked.
Interaction of Tl +3 with mononucleotides: metal ion binding and sugar conformation
NASA Astrophysics Data System (ADS)
Nafisi, Sh.; Mohajerani, N.; Hadjiakhoondi, A.; Monajemi, M.; Garib, F.
2001-05-01
The interaction of Tl 3+ with sodium salts of adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP), cytidine-5'-monophosphate (5'-CMP), thymidine 5'-monophosphate (5'-dTMP) in ratios 1 and 2 have been studied in neutral pH. The solid complexes were isolated and characterized by Fourier transform infrared (FTIR) and 1H NMR spectroscopy. In the Tl 2(AMP) 3, Tl 3+ binds directly to N-7 and indirectly to the N-1 position of the pyrimidine ring and phosphate group with sugar moiety in C2'-endoanti. The crystalline salt of Tl 2(GMP) 3 show direct Tl-N-7 and Tl-PO 3(inner-sphere) binding. The conformation of ribose moiety in Tl 2(GMP) 3 is C3'-endoanti. In the Tl 2(CMP) 3, Tl 3+ bind directly to N-3 and PO32- (inner-sphere). The conformation of ribose moiety in Tl 2(CMP) 3 is C2'-endoanti. In the Tl 2(dTMP) 3, Tl 3+ bind indirectly to carbonyl group. The sugar moiety in Tl 2(dTMP) 3 is C3'-endoanti.
NASA Astrophysics Data System (ADS)
Iriepa, I.; Bellanato, J.
2014-09-01
A series of α and β-esters bearing a 3-methyl-3-azabicyclo[3.2.1]octane moiety as well as methyl and aryl substituents were synthesized and studied by 1H and 13C NMR spectroscopies. In CDCl3 solution, at room temperature, a chair-envelope conformation for the bicycle moiety with the N-CH3 group in equatorial position with respect to the chair ring is proposed for both, α and β-esters. The chair conformation of the piperidine ring is puckered at C8 in the α-epimers and it is flattened at N3, in the β-epimers. Free rotation of the acyloxy group around the C8sbnd O bond has also been deduced. Analgesic activity of four of these substances was studied. 8β-Benzoyloxy-3-methyl-3-azabicyclo[3.2.1]octane demonstrated significant analgesic activity in the hot plate test compared to morphine. By measuring the rectal temperature in mice, results also showed a significant antipyretic activity of this compound.
Holehouse, Alex S.; Garai, Kanchan; Lyle, Nicholas; Vitalis, Andreas; Pappu, Rohit V.
2015-01-01
In aqueous solutions with high concentrations of chemical denaturants such as urea and guanidinium chloride (GdmCl) proteins expand to populate heterogeneous conformational ensembles. These denaturing environments are thought to be good solvents for generic protein sequences because properties of conformational distributions align with those of canonical random coils. Previous studies showed that water is a poor solvent for polypeptide backbones and therefore backbones form collapsed globular structures in aqueous solvents. Here, we ask if polypeptide backbones can intrinsically undergo the requisite chain expansion in aqueous solutions with high concentrations of urea and GdmCl. We answer this question using a combination of molecular dynamics simulations and fluorescence correlation spectroscopy. We find that the degree of backbone expansion is minimal in aqueous solutions with high concentrations denaturants. Instead, polypeptide backbones sample conformations that are denaturant-specific mixtures of coils and globules, with a persistent preference for globules. Therefore, typical denaturing environments cannot be classified as good solvents for polypeptide backbones. How then do generic protein sequences expand in denaturing environments? To answer this question, we investigated the effects of sidechains using simulations of two archetypal sequences with amino acid compositions that are mixtures of charged, hydrophobic, and polar groups. We find that sidechains lower the effective concentration of backbone amides in water leading to an intrinsic expansion of polypeptide backbones in the absence of denaturants. Additional dilution of the effective concentration of backbone amides is achieved through preferential interactions with denaturants. These effects lead to conformational statistics in denaturing environments that are congruent with those of canonical random coils. Our results highlight the role of sidechain-mediated interactions as determinants of the conformational properties of unfolded states in water and in influencing chain expansion upon denaturation. PMID:25664638
Guthöhrlein, E W; Malesević, M; Majer, Z; Sewald, N
2007-01-01
While numerous examples of beta-peptides--exclusively composed of beta-amino acids--have been investigated during the past decade, there are only few reports on the conformational preference of a single beta-amino acid when incorporated into a cyclopeptide. The conformational bias of beta-amino acids on the secondary structure of cyclopeptides has been investigated by NMR spectroscopy in combination with distance geometry (DG) and molecular dynamics (MD) calculations using experimental constraints. The atomic coordinate RMSD criterion usually employed for clustering of conformations after DG and MD calculations does not necessarily group similar peptide conformations, as there is an insufficient correlation between atomic coordinates and torsion angles. To improve on this shortcoming and to eliminate any arbitrary decisions during this process, a torsion angle clustering procedure has been implemented. For the cyclic pentapeptides cyclo-(-Val-beta-Hala-Phe-Leu-Ile-) 1 and cyclo-(-Ser-Pro-Leu-beta-Hasn-Asp-) 3, the beta-amino acid is found in the central position of an extended gamma-turn (pseudo gamma-turn, Psigamma-turn), while the beta-Hpro residue in the cyclic hexapeptide cyclo-(-Ser-beta-Hpro-Leu-Asn-Ile-Asp-) 5 preferentially occupies position i+1 of a pseudo beta-turn (Psibeta-turn). These results further corroborate the hypothesis of beta-amino acids being reliable inducers of secondary structure in cyclic penta- and hexapeptides. They can be employed in the de novo design of biologically active cyclopeptides in pharmaceutical research, since the three-dimensional presentation of pharmacophoric groups in the side chains can be tailored by incorporation of beta-amino acids in strategic sequential positions. (c) 2007 Wiley Periodicals, Inc.
Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia; Hu, Qichi
2017-03-13
Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS+2H]2+, and two charge states of ubiquitin, [U+5H]5+ and [U+13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletionmore » of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs« less
Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces
NASA Astrophysics Data System (ADS)
Laskin, Julia; Hu, Qichi
2017-07-01
Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS + 2H]2+, and two charge states of ubiquitin, [U + 5H]5+ and [U + 13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs.
NASA Astrophysics Data System (ADS)
Liwo, A.; Tempczyk, A.; Grzonka, Z.
1989-01-01
The backbone conformations of the cyclic moieties of 1-[ β-mercaptopropionic acid]-oxytocin ([Mpa1]-OT), [1- β-mercaptopropionic acid]-arginine-vasopressin ([Mpa1]-AVP), [1-( β'-mercapto- β,β-cyclopentamethylene)propionic acid]-arginine-vasopressin ([Cpp1]-AVP), and [1-thiosalicylic acid]-arginine-vasopressin ([Ths1]-AVP) have been analyzed by means of molecular mechanics. In these calculations, the side chains were simulated by pseudoatoms. For the three last compounds, the calculations were also performed on the whole molecules, in order to shed light on the differences in their biological activity. Their starting conformations were obtained by attaching the acyclic tail and side chains to the lowest energy conformations of the cyclic parts. In the case of [Ths1]-AVP, however, other starting conformations were also examined, which were obtained by attaching the planar benzene ring to the lowest energy conformations of [Mpa1]-AVP. In the calculations, all the degrees of freedom were relaxed and Weiner's force field was used, the parameters required for the benzene parts of [Ths1]-AVP being determined from the experimental data available, as well as from the results of molecular dynamics calculations on the model compounds. The lowest energy conformations of [Mpa1]-AVP and [Cpp1]-AVP are similar, while [Ths1]-AVP differs from them near the disulphide region, due to the presence of a planar benzene ring. Interactions involving the charged guanidine group of arginine make, in each case, an important contribution to the conformational energy. A model description of the shapes of the oxytocin and vasopressin ring has been proposed, which is based on the cyclohexane geometry. This description is in good correlation with the energetics of the conformations corresponding to different shapes.
Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Myungkoo
1995-12-06
Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases.more » Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G 2 or G 3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N 2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N 2-dG.« less
Patterns and conformations in molecularly thin films
NASA Astrophysics Data System (ADS)
Basnet, Prem B.
Molecularly thin films have been a subject of great interest for the last several years because of their large variety of industrial applications ranging from micro-electronics to bio-medicine. Additionally, molecularly thin films can be used as good models for biomembrane and other systems where surfaces are critical. Many different kinds of molecules can make stable films. My research has considered three such molecules: a polymerizable phospholipid, a bent-core molecules, and a polymer. One common theme of these three molecules is chirality. The phospolipid molecules studied here are strongly chiral, which can be due to intrinsically chiral centers on the molecules and also due to chiral conformations. We find that these molecules give rise to chiral patterns. Bent-core molecules are not intrinsically chiral, but individual molecules and groups of molecules can show chiral structures, which can be changed by surface interactions. One major, unconfirmed hypothesis for the polymer conformation at surface is that it forms helices, which would be chiral. Most experiments were carried out at the air/water interface, in what are called Langmuir films. Our major tools for studying these films are Brewster Angle Microscopy (BAM) coupled with the thermodynamic information that can be deduced from surface pressure isotherms. Phospholipids are one of the important constituents of liposomes -- a spherical vesicle com-posed of a bilayer membrane, typically composed of a phospholipid and cholesterol bilayer. The application of liposomes in drug delivery is well-known. Crumpling of vesicles of polymerizable phospholipids has been observed. With BAM, on Langmuir films of such phospholipids, we see novel spiral/target patterns during compression. We have found that both the patterns and the critical pressure at which they formed depend on temperature (below the transition to a i¬‘uid layer). Bent-core liquid crystals, sometimes knows as banana liquid crystals, have drawn increasing attention because of the richness in phases that they exhibit. Due to the unique coupling between dipole properties and the packing constraints placed by the bent shape, these molecules are emerging as strong candidates in electromechanical devices. However, most applications require that the molecules be aligned, which has proved difficult. Our group has tested such molecules both as Langmuir layers and, when transferred to a solid, as alignment layers with some limited success. However, these molecules do not behave well with the surfaces and the domains at the air/water interface tend to form ill-controlled multilayer structures since attraction with the surfaces is relatively weak. New bent-core molecules obtained from Prof. Dr. C. Tsehiemke from Department of Chemistry Institute of Organic Chemistry, Martin-Luther-University, Germany, have a hydrophilic group at one end. We expect this molecule to behave better on the surface because of the stronger attraction of the hydrophilic group towards the surface than for the bent-core molecules without the hydrophilic group. Polydimethylsiloxane (PDMS) is a polymer which finds many applications in modifying surface properties. It is used in manufacturing lubricants, protective coatings, hair conditioner and glass-coating. However its properties are not well understood. This polymer has been proposed to follow either helical or caterpillar conformations on a surface. The orientational order of CH3 side groups can test for these conformations (they would be predominantly up/down for the caterpillar conformation, but rotating through the entire 360 degree for the helical one). Thus previous work on the Langmuir polymer films at the air/water interface were complemented by deuterium NMR studies to probe their conformations at a surface. These experiments were performed using humid porous solids, in order to provide sufficient surface area for the technique. Previous tests in this group at room temperature were suggestive but inconclusive because of the rapid averaging motion of the molecules. Here, we attempt to freeze the molecules on the surface.
3DNALandscapes: a database for exploring the conformational features of DNA.
Zheng, Guohui; Colasanti, Andrew V; Lu, Xiang-Jun; Olson, Wilma K
2010-01-01
3DNALandscapes, located at: http://3DNAscapes.rutgers.edu, is a new database for exploring the conformational features of DNA. In contrast to most structural databases, which archive the Cartesian coordinates and/or derived parameters and images for individual structures, 3DNALandscapes enables searches of conformational information across multiple structures. The database contains a wide variety of structural parameters and molecular images, computed with the 3DNA software package and known to be useful for characterizing and understanding the sequence-dependent spatial arrangements of the DNA sugar-phosphate backbone, sugar-base side groups, base pairs, base-pair steps, groove structure, etc. The data comprise all DNA-containing structures--both free and bound to proteins, drugs and other ligands--currently available in the Protein Data Bank. The web interface allows the user to link, report, plot and analyze this information from numerous perspectives and thereby gain insight into DNA conformation, deformability and interactions in different sequence and structural contexts. The data accumulated from known, well-resolved DNA structures can serve as useful benchmarks for the analysis and simulation of new structures. The collective data can also help to understand how DNA deforms in response to proteins and other molecules and undergoes conformational rearrangements.
Host–guest complexes between cryptophane-C and chloromethanes revisited
Takacs, Z; Soltesova, M; Kowalewski, J; Lang, J; Brotin, T; Dutasta, J-P
2013-01-01
Cryptophane-C is composed of two nonequivalent cyclotribenzylene caps, one of which contains methoxy group substituents on the phenyl rings. The two caps are connected by three OCH2CH2O linkers in an anti arrangement. Host–guest complexes of cryptophane-C with dichloromethane and chloroform in solution were investigated in detail by nuclear magnetic resonance techniques and density functional theory (DFT) calculations. Variable temperature proton and carbon-13 spectra show a variety of dynamic processes, such as guest exchange and host conformational transitions. The guest exchange was studied quantitatively by exchange spectroscopy measurements or by line-shape analysis. The conformational preferences of the guest-containing host were interpreted through cross-relaxation measurements, providing evidence of the gauche+2 and gauche−2 conformations of the linkers. In addition, the mobility of the chloroform guest inside the cavity was studied by carbon-13 relaxation experiments. Combining different types of evidence led to a detailed picture of molecular recognition, interpreted in terms of conformational selection. Copyright © 2012 John Wiley & Sons, Ltd. PMID:23132654
Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR
Keedy, Daniel A.; van den Bedem, Henry; Sivak, David A.; Petsko, Gregory A.; Ringe, Dagmar; Wilson, Mark A.; Fraser, James S.
2014-01-01
Summary Most macromolecular X-ray structures are determined from cryocooled crystals, but it is unclear whether cryocooling distorts functionally relevant flexibility. Here we compare independently acquired pairs of high-resolution datasets of a model Michaelis complex of dihydrofolate reductase (DHFR), collected by separate groups at both room and cryogenic temperatures. These datasets allow us to isolate the differences between experimental procedures and between temperatures. Our analyses of multiconformer models and time-averaged ensembles suggest that cryocooling suppresses and otherwise modifies sidechain and mainchain conformational heterogeneity, quenching dynamic contact networks. Despite some idiosyncratic differences, most changes from room temperature to cryogenic temperature are conserved, and likely reflect temperature-dependent solvent remodeling. Both cryogenic datasets point to additional conformations not evident in the corresponding room-temperature datasets, suggesting that cryocooling does not merely trap pre-existing conformational heterogeneity. Our results demonstrate that crystal cryocooling consistently distorts the energy landscape of DHFR, a paragon for understanding functional protein dynamics. PMID:24882744
A computational and spectroscopic study of the gas-phase conformers of adrenaline
NASA Astrophysics Data System (ADS)
Çarçabal, P.; Snoek, L. C.; van Mourik, T.
The conformational landscapes of the neurotransmitter l-adrenaline (l-epinephrine) and its diastereoisomer pseudo-adrenaline, isolated in the gas phase and un-protonated, have been investigated by using a combination of mass-selected ultraviolet and infrared holeburn spectroscopy, following laser desorption of the sample into a pulsed supersonic argon jet, and DFT and ab initio computation (at the B3LYP/6-31+G*, MP2/6-31+G* and MP2/aug-cc-pVDZ levels of theory). Both for adrenaline and its diastereoisomer, pseudo-adrenaline, one dominant molecular conformation, very similar to the one seen in noradrenaline, has been observed. It could be assigned to an extended side-chain structure (AG1a) stabilized by an OH → N intramolecular hydrogen bond. An intramolecular hydrogen bond is also formed between the neighbouring hydroxyl groups on the catechol ring. The presence of further conformers for both diastereoisomers could not be excluded, but overlapping electronic spectra and low ion signals prevented further assignments.
Specific interactions study in complexes of poly(mono-n-alkyl itaconates) with tertiary polyamides.
Katime, Issa; Meaurio, Emilio; Cesteros, Luis C; Mendizábal, Eduardo
2003-07-01
This paper reports an FT-IR study of blends of poly(mono-n-alkyl itaconates) with poly(N,N-dimethylacrylamide) (PDMA) and poly(ethyloxazoline) (PEOX). Strong hydrogen bonding has been found, and both polybases have shown similar acceptor strengths. Derivative techniques show asymmetric profiles for the free carbonyl band of the polybases, resulting in shifted band locations. The extent of the interassociation has been estimated by spectral curve fitting of the polybase carbonyl band. The results show that the interaction degree in blends with PEOX does not depend on the length of the poly(monoalkyl itaconate) side group, while an inter-associating ability loss is observed in blends with PDMA as the side-group size of the polyacid increases. This different behavior is attributed to the greater interspacing between vicinal carbonyl groups in PEOX. This band shows conformational sensitivity and reflects the conformational changes that occur as the steric hindrances present in the medium (due to the bulky side groups of the polyacids) increase.
Shieh, D D; Ueda, I; Lin, H; Eyring, H
1976-01-01
Sonicated 1,2-dihexadecyl-sn-glycero-3-phosphorylcholine forms liposomes. Studies by Fourier transform proton magnetic resonance of the interaction of these bilayers with some general anesthetics, i.e., chloroform, halothane, methoxyflurane, and enflurane, show that the addition of a general anesthetic to the liposomes and raising the temperature have a similar effect in cuasing the fluidization of the bilayer. General anesthetics act on the hydrophilic site (choline group) in clinical concentrations and then diffuse into the hydrophobic region with the addition of larger amount of anesthetics. There is evidence that the lecithin choline groups are involved in the interaction with protein and that the general anesthetics change the conformation of some polypeptides and proteins. We conclude that the general anesthetics, by increasing the motion of positively charged choline groups and negatively charged groups in protein, weaken the Coulomb-type interaction and cause the liprotein conformational changes. PMID:1069285
Nosov, Roman; Padnya, Pavel; Shurpik, Dmitriy; Stoikov, Ivan
2018-05-08
A convenient approach to the synthesis of multithiacalix[4]arene derivatives containing amino groups and phthalimide fragments by the formation of quaternary ammonium salts is presented. As the initial macrocycle for the synthesis of multithiacalix[4]arenes, a differently substituted p-tert- butylthiacalix[4]arene containing bromoacetamide and three phthalimide fragments was used in a 1,3-alternate conformation. The macrocycle in cone conformation containing the tertiary amino groups was found to be a convenient core for the multithiacalix[4]arene systems. Interaction of the core multithiacalix[4]arene with monobromoacetamide derivatives of p-tert- butylthiacalix[4]arene resulted in formation in high yields of pentakisthiacalix[4]arene containing quaternary ammonium and phthalimide fragments. The removal of phthalimide groups led to the formation of amino multithiacalix[4]arene in a good yield. Based on dynamic light scattering, it was shown that the synthesized amino multithiacalix[4]arene, with pronounced hydrophobic and hydrophilic fragments, formed dendrimer-like nanoparticles in water via direct supramolecular self-assembly.
Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried
2014-02-01
In a previous study, we showed that virtually simulated social group pressure could influence early stages of perception after only 100 ms. In the present EEG study, we investigated the influence of social pressure on visual perception in participants with high (HA) and low (LA) levels of autonomy. Ten HA and ten LA individuals were asked to accomplish a visual discrimination task in an adapted paradigm of Solomon Asch. Results indicate that LA participants adapted to the incorrect group opinion more often than HA participants (42% vs. 30% of the trials, respectively). LA participants showed a larger posterior P1 component contralateral to targets presented in the right visual field when conforming to the correct compared to conforming to the incorrect group decision. In conclusion, our ERP data suggest that the group context can have early effects on our perception rather than on conscious decision processes in LA, but not HA participants. Copyright © 2013 Society for Psychophysiological Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Supratim; Koutmos, Markos; Pattridge, Katherine A.
2008-07-08
B{sub 12}-dependent methionine synthase (MetH) from Escherichia coli is a large modular protein that is alternately methylated by methyltetrahydrofolate to form methylcobalamin and demethylated by homocysteine to form cob(I)alamin. Major domain rearrangements are required to allow cobalamin to react with three different substrates: homocysteine, methyltetrahydrofolate, and S-adenosyl-l-methionine (AdoMet). These same rearrangements appear to preclude crystallization of the wild-type enzyme. Disulfide cross-linking was used to lock a C-terminal fragment of the enzyme into a unique conformation. Cysteine point mutations were introduced at Ile-690 and Gly-743. These cysteine residues span the cap and the cobalamin-binding module and form a cross-link that reducesmore » the conformational space accessed by the enzyme, facilitating protein crystallization. Here, we describe an x-ray structure of the mutant fragment in the reactivation conformation; this conformation enables the transfer of a methyl group from AdoMet to the cobalamin cofactor. In the structure, the axial ligand to the cobalamin, His-759, dissociates from the cobalamin and forms intermodular contacts with residues in the AdoMet-binding module. This unanticipated intermodular interaction is expected to play a major role in controlling the distribution of conformers required for the catalytic and the reactivation cycles of the enzyme.« less
Ant groups optimally amplify the effect of transiently informed individuals
NASA Astrophysics Data System (ADS)
Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer
2015-07-01
To cooperatively transport a large load, it is important that carriers conform in their efforts and align their forces. A downside of behavioural conformism is that it may decrease the group's responsiveness to external information. Combining experiment and theory, we show how ants optimize collective transport. On the single-ant scale, optimization stems from decision rules that balance individuality and compliance. Macroscopically, these rules poise the system at the transition between random walk and ballistic motion where the collective response to the steering of a single informed ant is maximized. We relate this peak in response to the divergence of susceptibility at a phase transition. Our theoretical models predict that the ant-load system can be transitioned through the critical point of this mesoscopic system by varying its size; we present experiments supporting these predictions. Our findings show that efficient group-level processes can arise from transient amplification of individual-based knowledge.
NASA Astrophysics Data System (ADS)
Njogu, Eric M.; Nyamori, Vincent O.; Omondi, Bernard
2018-02-01
The occurrence of concomitant polymorphism in 4‧-(isoquinolyl)-2,2‧:6‧,2″-terpyridine, 1a and 1b (2-quinterpy) and conformational polymorphism in 4‧-(4-quinolyl)-2,2‧:6‧,2″-terpyridine (4-quinterpy) has been identified to due to crystallization process and solvent, respectively. Crystallization of 2-quinterpy in acetone yielded the concomitant polymorphs 1a and 1b which crystallize in the monoclinic P21/c and the orthorhombic Pna21 space groups, respectively. The polymorph 2a was grown from bulk 4-quinterpy in dimethyl sulfoxide, crystallizes in the monoclinic P21/c space group, while 2b grown from acetonitrile or even acetone crystallizes in the monoclinic system but in P21/n space group.
NASA Astrophysics Data System (ADS)
Tong, Kefeng; Song, Xingfu; Sun, Shuying; Xu, Yanxia; Yu, Jianguo
2014-08-01
All-atom molecular dynamics simulations were employed to provide microscopic mechanism for the salt tolerance of polyelectrolytes dispersants. The conformational variation of polyelectrolytes and interactions between COO- groups and counterions/water molecules were also studied via radius of gyration and pair correlations functions. Sodium polyacrylate (NaPA) and sodium salts of poly(acrylic acid)-poly(ethylene oxide) (NaPA-PEO) were selected as the representative linear and comb-like polyelectrolyte, respectively. The results show that Ca2+ ions interact with COO- groups much stronger than Na+ ions and can bring ion-bridging interaction between intermolecular COO- groups in the NaPA systems. While in the NaPA-PEO systems, the introduced PEO side chains can prevent backbone chains from ion-bridging interactions and weaken the conformational changes. The present results can help in selecting and designing new-type efficient polyelectrolyte dispersants with good salt tolerance.
A Longitudinal View of the Relationship Between Social Marginalization and Obesity
NASA Astrophysics Data System (ADS)
Apolloni, Andrea; Marathe, Achla; Pan, Zhengzheng
We use 3 Waves of the Add Health data collected between 1994 and 2002 to conduct a longitudinal study of the relationship between social marginalization and the weight status of adolescents and young adults. Past studies have shown that overweight and obese children are socially marginalized. This research tests (1) if this is true when we account for the sample size of each group, (2) does this phenomenon hold over time and (3) is it obesity or social marginalization that precedes in time. Our results show that when the sample size for each group is considered, the share of friendship is conforming to the size of the group. This conformity seems to increase over time as the population becomes more obese. Finally, we find that obesity precedes social marginalization which lends credence to the notion that obesity causes social marginalization and not vice versa.
Ant groups optimally amplify the effect of transiently informed individuals
Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer
2015-01-01
To cooperatively transport a large load, it is important that carriers conform in their efforts and align their forces. A downside of behavioural conformism is that it may decrease the group's responsiveness to external information. Combining experiment and theory, we show how ants optimize collective transport. On the single-ant scale, optimization stems from decision rules that balance individuality and compliance. Macroscopically, these rules poise the system at the transition between random walk and ballistic motion where the collective response to the steering of a single informed ant is maximized. We relate this peak in response to the divergence of susceptibility at a phase transition. Our theoretical models predict that the ant-load system can be transitioned through the critical point of this mesoscopic system by varying its size; we present experiments supporting these predictions. Our findings show that efficient group-level processes can arise from transient amplification of individual-based knowledge. PMID:26218613
Nobiletin: a citrus flavonoid displaying potent physiological activity.
Noguchi, Shuji; Atsumi, Haruka; Iwao, Yasunori; Kan, Toshiyuki; Itai, Shigeru
2016-02-01
Nobiletin [systematic name: 2-(3,4-dimethoxyphenyl)-5,6,7,8-tetramethoxy-4H-chromen-4-one; C21H22O8] is a flavonoid found in citrus peels, and has been reported to show a wide range of physiological properties, including anti-inflammatory, anticancer and antidementia activities. We have solved the crystal structure of nobiletin, which revealed that the chromene and arene rings of its flavone moiety, as well as the two methoxy groups bound to its arene ring, were coplanar. In contrast, the C atoms of the four methoxy groups bound to the chromene ring are out of the plane, making the molecule conformationally chiral. A comparison of the crystal structures of nobiletin revealed that it could adopt a variety of different conformations through rotation of the covalent bond between the chromene and arene rings, and the orientations of methoxy groups bound to the chromene ring.
Markov Property of the Conformal Field Theory Vacuum and the a Theorem.
Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo
2017-06-30
We use strong subadditivity of entanglement entropy, Lorentz invariance, and the Markov property of the vacuum state of a conformal field theory to give new proof of the irreversibility of the renormalization group in d=4 space-time dimensions-the a theorem. This extends the proofs of the c and F theorems in dimensions d=2 and d=3 based on vacuum entanglement entropy, and gives a unified picture of all known irreversibility theorems in relativistic quantum field theory.
Phyo, Pyae; Wang, Tuo; Yang, Yu; O'Neill, Hugh; Hong, Mei
2018-05-14
In contrast to the well-studied crystalline cellulose of microbial and animal origins, cellulose in plant cell walls is disordered due to its interactions with matrix polysaccharides. Plant cell wall (PCW) is an undisputed source of sustainable global energy; therefore, it is important to determine the molecular structure of PCW cellulose. The most reactive component of cellulose is the exocyclic hydroxymethyl group: when it adopts the tg conformation, it stabilizes intrachain and interchain hydrogen bonding, while gt and gg conformations destabilize the hydrogen-bonding network. So far, information about the hydroxymethyl conformation in cellulose has been exclusively obtained from 13 C chemical shifts of monosaccharides and oligosaccharides, which do not reflect the environment of cellulose in plant cell walls. Here, we use solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy to measure the hydroxymethyl torsion angle of cellulose in two model plants, by detecting distance-dependent polarization transfer between H4 and H6 protons in 2D 13 C- 13 C correlation spectra. We show that the interior crystalline portion of cellulose microfibrils in Brachypodium and Arabidopsis cell walls exhibits H4-H6 polarization transfer curves that are indicative of a tg conformation, whereas surface cellulose chains exhibit slower H4-H6 polarization transfer that is best fit to the gt conformation. Joint constraints by the H4-H6 polarization transfer curves and 13 C chemical shifts indicate that it is unlikely for interior cellulose to have a significant population of the gt and gg conformation mixed with the tg conformation, while surface cellulose may adopt a small percentage of the gg conformation. These results provide new constraints to the structure and matrix interactions of cellulose in plant cell walls, and represent the first direct determination of a torsion angle in an important noncrystalline carbohydrate polymer.
NASA Astrophysics Data System (ADS)
Palmer, Michael H.; Blair-Fish, John A.; Sherwood, Paul
1997-07-01
A study of the equilibrium structures and relative energies for the conformers of 3-methylenepenta-1,4-diene (MPD) and bis(3,4-methylene)-1,5-hexadiene (MHD) have been obtained by SCF and MP2 correlated methods; a double zeta+polarisation basis set (DZP) was used. Both planar and non-planar forms were evaluated for a variety of point groups. The force constants for each conformer were obtained, in order to determine whether the minima were saddle points rather than genuine minima owing to the constraints of molecular symmetry. For both molecules, all the non-planar forms studied were of lower energy than the best planar-forms. Indeed the planar structures are all saddle-points between the interconverting pairs of non-planar forms, as shown by one or more negative vibration frequencies for the planar molecules. The relative energies and structures of the different conformers of MPD and MHD are almost identical between the SCF and MP2 series, the MP2 calculations merely leading to slight extensions of the C=C bonds, minor changes in dihedral angles, and small changes otherwise. Because of the H⋯H interactions, all the planar forms showed considerable in-plane angle bending, and small but consistent H-C bond compressions were also obtained in the most hindered cases. The lowest energy conformer of MPD is a gauche-trans conformer, with symmetry C 1, but a second conformer of trans-trans type and C 2 symmetry lies only 6 kJ mol -1 above. The C 2 non-planar conformer of MHD containing (basically) trans-butadiene units is the lowest energy by a significant amount, but several trans-cis and cis-cis conformers were all identified as potential species for gas phase mixtures.
Nonfouling Characteristics of Dextran-Containing Surfaces
Martwiset, Surangkhana; Koh, Anna E.; Chen, Wei
2008-01-01
Hydroxyl groups in dextrans have been selectively oxidized to aldehyde groups by sodium periodate in a controlled fashion with percentage of conversion ranging from 6% to 100%. Dextrans (10 k, 70 k, 148 k, 500 k, and 2 000 kDa) and oxidized 10 k dextrans have been successfully grafted to functionalized silicon surfaces. The effect of molecular weight on protein adsorption is not nearly as striking as that of the extent of oxidation. When ∼ 25% of the hydroxyl groups have been converted to aldehyde groups, there is negligible protein adsorption on surfaces containing the oxidized polysaccharides. Conformations of grafted polymers depend strongly on their chemical structures, i.e. the relative amounts of –OH and –CHO groups. That the dependence of the chain conformation as well as the protein resistance on the balance of the hydrogen bond donors (-OH) and the acceptors (-OH and –CHO) implies the importance of chemical structure of surface molecules, specifically the interactions between surface and surrounding water molecules on protein adsorption. Oxidized dextrans are potential poly(ethylene glycol)-alternatives for nonfouling applications. PMID:16952261
Group typicality, group loyalty and cognitive development.
Patterson, Meagan M
2014-09-01
Over the course of childhood, children's thinking about social groups changes in a variety of ways. Developmental Subjective Group Dynamics (DSGD) theory emphasizes children's understanding of the importance of conforming to group norms. Abrams et al.'s study, which uses DSGD theory as a framework, demonstrates the social cognitive skills underlying young elementary school children's thinking about group norms. Future research on children's thinking about groups and group norms should explore additional elements of this topic, including aspects of typicality beyond loyalty. © 2014 The British Psychological Society.
Halo histories versus galaxy properties at z = 0 II: large-scale galactic conformity
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.; Conroy, Charlie
2018-06-01
Using group catalogues from the Sloan Digital Sky Survey (SDSS) Data Release 7, we measure galactic conformity in the local universe. We measure the quenched fraction of neighbour galaxies around isolated primary galaxies, dividing the isolated sample into star-forming and quiescent objects. We restrict our measurements to scales >1 Mpc to probe the correlations between halo formation histories. Over the stellar mass range 109.7 ≤ M*/M⊙ ≤ 1010.9, we find minimal evidence for conformity. We further compare these data to predictions of the halo age-matching model, in which the oldest galaxies are associated with the oldest haloes. For models with strong correlations between halo and stellar age, the conformity is too large to be consistent with the data. Weaker implementations of the age-matching model would not produce a detectable signal in SDSS data. We reproduce the results of Kauffmann et al., in which the star formation rates of neighbour galaxies are reduced around primary galaxies when the primaries are low star formers. However, we find this result is mainly driven by contamination in the isolation criterion; when removing the small fraction of satellite galaxies in the sample, the conformity signal largely goes away. Lastly, we show that small conformity signals, i.e. 2-5 per cent differences in the quenched fractions of neighbour galaxies, can be produced by mechanisms other than halo assembly bias. For example, if passive galaxies occupy more massive haloes than star-forming galaxies of the same stellar mass, a conformity signal that is consistent with recent measurements from PRIMUS (Berti et al.) can be produced.
Albayrak, Çiğdem; Kaştaş, Gökhan; Odabaşoğlu, Mustafa; Frank, René
2012-09-01
In this study, (E)-2-[(4-bromophenylimino)methyl]-5-(diethylamino)phenol compound was investigated by mainly focusing on conformational isomerism. For this purpose, molecular structure and spectroscopic properties of the compound were experimentally characterized by X-ray diffraction, FT-IR and UV-Vis spectroscopic techniques, and computationally by DFT method. The X-ray diffraction analysis of the compound shows the formation of two conformers (anti and eclipsed) related to the ethyl groups of the compound. The two conformers are connected to each other by non-covalent C-H⋯Br and C-H⋯π interactions. The combination of these interactions is resulted in fused R(2)(2)(10) and R(2)(4)(20) synthons which are responsible for the tape structure of crystal packing arrangement. The X-ray diffraction and FT-IR analyses also reveal the existence of enol form in the solid state. From thermochemical point of view, the computational investigation of isomerism includes three studies: the calculation of (a) the rate constants for transmission from anti or eclipsed conformations to transition state by using Eyring equation, (b) the activation energy needed for isomerism by using Arrhenius equation, (c) the equilibrium constant from anti conformer to eclipsed conformer by using the equation including the change in Gibbs free energy. The dependence of tautomerism on solvent types was studied on the basis of UV-Vis spectra recorded in different organic solvents. The results showed that the compound exists in enol form in all solvents except ethyl alcohol. Copyright © 2012 Elsevier B.V. All rights reserved.
Oehme, Daniel P.; Downton, Matthew T.; Doblin, Monika S.; Wagner, John; Gidley, Michael J.; Bacic, Antony
2015-01-01
The question of how many chains an elementary cellulose microfibril contains is critical to understanding the molecular mechanism(s) of cellulose biosynthesis and regulation. Given the hexagonal nature of the cellulose synthase rosette, it is assumed that the number of chains must be a multiple of six. We present molecular dynamics simulations on three different models of Iβ cellulose microfibrils, 18, 24, and 36 chains, to investigate their structure and dynamics in a hydrated environment. The 36-chain model stays in a conformational space that is very similar to the initial crystalline phase, while the 18- and 24-chain models sample a conformational space different from the crystalline structure yet similar to conformations observed in recent high-temperature molecular dynamics simulations. Major differences in the conformations sampled between the different models result from changes to the tilt of chains in different layers, specifically a second stage of tilt, increased rotation about the O2-C2 dihedral, and a greater sampling of non-TG exocyclic conformations, particularly the GG conformation in center layers and GT conformation in solvent-exposed exocyclic groups. With a reinterpretation of nuclear magnetic resonance data, specifically for contributions made to the C6 peak, data from the simulations suggest that the 18- and 24-chain structures are more viable models for an elementary cellulose microfibril, which also correlates with recent scattering and diffraction experimental data. These data inform biochemical and molecular studies that must explain how a six-particle cellulose synthase complex rosette synthesizes microfibrils likely comprised of either 18 or 24 chains. PMID:25786828
NASA Astrophysics Data System (ADS)
de Oliveira, Paulo R.; Viesser, Renan V.; Guerrero, Palimécio G., Jr.; Rittner, Roberto
2011-05-01
The analysis of concentration effects in the 1H NMR data of cis-3-aminocyclohexanol ( ACOL) showed that its diequatorial conformer changes from 60% at 0.01 mol L -1 to 70% at 0.40 mol L -1 in acetone-d 6. A similar increase was also observed for the diequatorial conformer of cis-3-N-methylaminocyclohexanol ( MCOL), from 32% (CDCl 3 0.01 mol L -1) to 55% (CDCl 3 0.40 mol L -1). The increase in solvent basicity leads to a large stabilization effect for the diequatorial conformer of both compounds too. For ACOL, it changes from 47% (Δ Geqeq- axax = 0.06 kcal mol -1) in CCl 4 to 93% (Δ Geqeq- axax = -1.53 kcal mol -1) in DMSO, while for MCOL it goes from 7% (Δ Geqeq- axax = 1.54 kcal mol -1) in CCl 4 to 82% (Δ Geqeq- axax = -0.88 kcal mol -1) in pyridine-d 6. These results indicate that the intr amolecular hydrogen bonds (IAHB) OH⋯N and NH⋯O stabilize the diaxial conformers of these compounds in a non-polar solvent. For cis-3-amino-1-methoxycyclohexane ( ACNE) and cis-3-N-methylamino-1-methoxy-cyclohexane ( MCNE) no changes were observed in equilibrium with the variation of solvent polarity. These results indicate for the first time that the IAHB NH⋯O is not strong enough to stabilize the diaxial conformer of these compounds and that the conformation equilibria of the cis isomers of compounds ACOL and MCOL are influenced only by the IAHB OH⋯N. Moreover, the presence of a secondary amino group (93% of diaxial conformer in CCl 4) leads to an IAHB OH⋯N stronger than in primary and tertiary amino-derivatives (53 and 54% of diaxial conformer, respectively) for 1,3-disubstituted cyclohexanes. Values obtained from the theoretical data through the B3LYP functional are in agreement with the experimental results and indicate that the IAHB strength that influences the conformational equilibrium of these compounds is the IAHB OH⋯N. Thus, the IAHB NH⋯O do not stabilize the diaxial conformer of the cis isomer of compounds ACNE and MCNE showing that the diequatorial conformer will always be more stable than the diaxial conformer, independent of concentration or solvent.
NASA Technical Reports Server (NTRS)
Coeckelenbergh, Y.; Macelroy, R. D.; Rein, R.
1978-01-01
The investigation of specific interactions among biological molecules must take into consideration the stereochemistry of the structures. Thus, models of the molecules are essential for describing the spatial organization of potentially interacting groups, and estimations of conformation are required for a description of spatial organization. Both the function of visualizing molecules, and that of estimating conformation through calculations of energy, are part of the molecular modeling system described in the present paper. The potential uses of the system in investigating some aspects of the origin of life rest on the assumption that translation of conformation from genetic elements to catalytic elements would have been required for the development of the first replicating systems subject to the process of biological evolution.
Raman study of vibrational dynamics of aminopropylsilanetriol in gas phase
NASA Astrophysics Data System (ADS)
Volovšek, V.; Dananić, V.; Bistričić, L.; Movre Šapić, I.; Furić, K.
2014-01-01
Raman spectrum of aminopropylsilanetriol (APST) in gas phase has been recorded at room temperature in macro chamber utilizing two-mirror technique over the sample tube. Unlike predominantly trans molecular conformation in condensed phase, the spectra of vapor show that the molecules are solely in gauche conformation with intramolecular hydrogen bond N⋯Hsbnd O which reduces the molecular energy in respect to trans conformation by 0.152 eV. The assignment of the molecular spectra based on the DFT calculation is presented. The strong vibrational bands at 354 cm-1, 588 cm-1 and 3022 cm-1 are proposed for verifying the existence of the ring like, hydrogen bonded structure. Special attention was devoted to the high frequency region, where hydrogen bond vibrations are coupled to stretchings of amino and silanol groups.
Vorobjev, Y N; Almagro, J C; Hermans, J
1998-09-01
A new method for calculating the total conformational free energy of proteins in water solvent is presented. The method consists of a relatively brief simulation by molecular dynamics with explicit solvent (ES) molecules to produce a set of microstates of the macroscopic conformation. Conformational energy and entropy are obtained from the simulation, the latter in the quasi-harmonic approximation by analysis of the covariance matrix. The implicit solvent (IS) dielectric continuum model is used to calculate the average solvation free energy as the sum of the free energies of creating the solute-size hydrophobic cavity, of the van der Waals solute-solvent interactions, and of the polarization of water solvent by the solute's charges. The reliability of the solvation free energy depends on a number of factors: the details of arrangement of the protein's charges, especially those near the surface; the definition of the molecular surface; and the method chosen for solving the Poisson equation. Molecular dynamics simulation in explicit solvent relaxes the protein's conformation and allows polar surface groups to assume conformations compatible with interaction with solvent, while averaging of internal energy and solvation free energy tend to enhance the precision. Two recently developed methods--SIMS, for calculation of a smooth invariant molecular surface, and FAMBE, for solution of the Poisson equation via a fast adaptive multigrid boundary element--have been employed. The SIMS and FAMBE programs scale linearly with the number of atoms. SIMS is superior to Connolly's MS (molecular surface) program: it is faster, more accurate, and more stable, and it smooths singularities of the molecular surface. Solvation free energies calculated with these two programs do not depend on molecular position or orientation and are stable along a molecular dynamics trajectory. We have applied this method to calculate the conformational free energy of native and intentionally misfolded globular conformations of proteins (the EMBL set of deliberately misfolded proteins) and have obtained good discrimination in favor of the native conformations in all instances.
Schwarzkopf, Ran; Scott, Richard D; Carlson, Evan M; Currier, John H
2015-01-01
Modular metal-backed tibia components allow surgeons intraoperative flexibility. Although it is known that modular tibia components introduce the possibility for backside wear resulting from relative motion between the polyethylene insert and the tibial baseplate, it is not known to what degree variability in the conformity of the tibial polyethylene liner itself might contribute to backside wear. The purpose of this study was to determine whether a flat, cruciate-retaining tibial polyethylene bearing generates less backside wear than a more conforming (curved) tibial polyethylene bearing in an analysis of specimens explanted during revision surgery. The study included 70 total knee inserts explanted at revision surgery, all implanted and explanted by the same surgeon. Two different cruciate-retaining insert options in an otherwise similar knee system were used: one with a curved-on-flat (17) articular geometry and one with a highly conforming curved-on-curved design (53); both groups were sequential cohorts. The composite backside wear depth for the insert as well as the volume of backside wear was measured and compared between groups. The median linear backside-normalized wear for the posterior lipped inserts was 0.0063 mm/year (range, 0-0.085 mm/year), which was lower than for the curved inserts at 0.05 mm/year (range, 0.00003-0.14 mm/year) (p<0.001). The median calculated volumetric backside-normalized wear for the posterior lipped inserts was 14.2 mm3/year (range, 0-282.8 mm3/year) compared with 117 mm3/year (range, 2.1-312 mm3/year) for the curved inserts (p<0.001). In this retrieval study, more conforming tibial inserts demonstrated more backside-normalized wear than the flatter designs. This suggests that in this modular total knee arthroplasty design, higher articular conformity to address the issues of high bearing contact stress comes at a price: increased torque transmitted to the backside insert-to-tray interface. We suggest further work be undertaken to examine newer insert designs to evaluate if our conclusions hold true with the newer generation locking mechanism, tibial tray finish and polyethylene designs, as more highly conforming tibial inserts are introduced into the market. Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Graph theory and the Virasoro master equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obers, N.A.J.
1991-04-01
A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equations is given. By studying ansaetze of the master equation, we obtain exact solutions and gain insight in the structure of large slices of affine-Virasoro space. We find an isomorphism between the constructions in the ansatz SO(n){sub diag}, which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabelled graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graph of graph theory. We also define a class of magic'' Lie group bases in which themore » Virasoro master equation admits a simple metric ansatz (gmetric), whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of SO(n), and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). Finally, we define the sine-area graphs'' of SU(n), which label the conformal field theories of SU(n){sub metric}, and we note that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g{sub metric}. 24 figs., 4 tabs.« less
Madu, C N; Quint, D J; Normolle, D P; Marsh, R B; Wang, E Y; Pierce, L J
2001-11-01
To delineate with computed tomography (CT) the anatomic regions containing the supraclavicular (SCV) and infraclavicular (IFV) nodal groups, to define the course of the brachial plexus, to estimate the actual radiation dose received by these regions in a series of patients treated in the traditional manner, and to compare these doses to those received with an optimized dosimetric technique. Twenty patients underwent contrast material-enhanced CT for the purpose of radiation therapy planning. CT scans were used to study the location of the SCV and IFV nodal regions by using outlining of readily identifiable anatomic structures that define the nodal groups. The brachial plexus was also outlined by using similar methods. Radiation therapy doses to the SCV and IFV were then estimated by using traditional dose calculations and optimized planning. A repeated measures analysis of covariance was used to compare the SCV and IFV depths and to compare the doses achieved with the traditional and optimized methods. Coverage by the 90% isodose surface was significantly decreased with traditional planning versus conformal planning as the depth to the SCV nodes increased (P < .001). Significantly decreased coverage by using the 90% isodose surface was demonstrated for traditional planning versus conformal planning with increasing IFV depth (P = .015). A linear correlation was found between brachial plexus depth and SCV depth up to 7 cm. Conformal optimized planning provided improved dosimetric coverage compared with standard techniques.
Structure and spectroscopic propierties of imine acetaldehyde: a possible interstellar molecule
NASA Astrophysics Data System (ADS)
Redondo, Pilar; Largo, Antonio; Barrientos, Carmen
2018-05-01
A previous theoretical study shows that imine acetaldehyde can be obtained from the reaction between protonated vinyl alcohol and azanone. Therefore, imine acetaldehyde could be considered as a good molecule candidate to be found in space and could evolve to more complex organic molecules of prebiotic interest. In the present work, we carried out a computational study of the different conformers of imine acetaldehyde. For characterize its conformers we apply a composite approach which considers the extrapolation to the complete basis set (CBS) limit and core-valence (CV) electron correlation corrections at the at the CC level including single and double excitations and a perturbative treatment of triple excitations (CCSD(T)). This approach provides bond distances with an accuracy of 0.001-0.002 Åand angles accurate to 0.05-0.1°. Vibrational harmonic and anharmonic frequencies and IR intensities are also reported at the CCSD level. The most stable structure corresponds to an antiperiplanar disposition of the oxygen atom and of NH group with the hydrogen atom of the NH group addressed outside the skeleton. Interconversion processes between the four conformers characterized are studied. The lowest isomerization barrier is estimated to be around 1.2 kcal mol-1, making these processes unlikely under low temperature conditions, such as those reigning in the interstellar medium. The reported, at "spectroscopic" accuracy, stabilities, molecular structures, as well as spectroscopic parameters for the four imine acetaldehyde conformers that could help in their laboratory or astronomical detection.
Kawatkar, Sameer P.; Kuntz, Douglas A; Woods, Robert J.; Rose, David R.; Boons, Geert-Jan
2008-01-01
The X-ray crystal structures of mannose trimming enzyme Drosophila Golgi α–mannosidase II (dGMII) complexed with the inhibitors mannostatin A (1) and an N-benzyl analog (2) have been determined. Molecular dynamics simulations and NMR studies have shown that the five-membered ring of mannostatin A is rather flexible occupying pseudo-rotational itineraries between 2T3 and 5E, and 2T3 and 4E. In the bound state, mannostatin A adopts a 2T1 twist envelope conformation, which is not significantly populated in solution. Possible conformations of the mannosyl oxacarbenium ion and an enzyme-linked intermediate have been compared to the conformation of mannostatin A in the co-crystal structure with dGMII. It has been found that mannostatin A best mimics the covalent linked mannosyl intermediate, which adopts a 1S5 skew boat conformation. The thiomethyl group, which is critical for high affinity, superimposes with the C-6 hydroxyl of the covalent linked intermediate. This functionality is able to make a number of additional polar and non-polar interactions increasing the affinity for dGMII. Furthermore, the X-ray structures show that the environment surrounding the thiomethyl group of 1 is remarkably similar to the arrangements around the methionine residues in the protein. Collectively, our studies contradict the long held view that potent inhibitors of glycosidases mimic an oxacarbenium ion like transition state. PMID:16787095
Muguruma, Hitoshi; Hotta, Shu
2006-11-23
The titled compound exists as two polymorphic solid phases (denoted form-I and form-II). Form-I obtained by as-synthesized material is a more stable phase. Form-II is a less stable phase. Spontaneous solid-solid transformation from form-II to form-I is observed in the temperature range between room temperature and the melting point of form-I (Tm = 156.5 degrees C), and its activation energy is estimated to be 96 kJ mol-1 by Arrhenius plot. The solid-solute-solid transformation (recrystallization from solution) from form-II to form-I is also observed. In contrast, form-II is obtained only by a solid-melt-solid transformation from form-I. Therefore, the system of two polymorphs is monotropic. The solid-state NMR measurement shows that form-I has the molecular conformation of complete S-syn-anti-syn in the oligothiophene backbone, whereas form-II has that of S-all-anti. With the solution NMR data, the polymorphism could not be observed. Therefore, the polymorphs originate from the different molecular packing involving the conformational change of the molecule. This unique property is attributed to the extra bulky terminal groups of the compounds. However, despite the extra bulky terminal groups, the mentioned polymorphism is not observed in the titled compound analogue which has S-all-anti conformation (like form-II).
Young Children's Responses to Guilt Displays
ERIC Educational Resources Information Center
Vaish, Amrisha; Carpenter, Malinda; Tomasello, Michael
2011-01-01
Displaying guilt after a transgression serves to appease the victim and other group members, restore interpersonal relationships, and indicate the transgressors' awareness of and desire to conform to the group's norms. We investigated whether and when young children are sensitive to these functions of guilt displays. In Study 1, after 4- and…
Perceptual Articulation in Three Middle Eastern Culture
ERIC Educational Resources Information Center
Amir, Yehuda
1975-01-01
Noting that one would expect that members of cultural groups whose modes of child rearing foster individual autonomy would achieve more articulated perceptual functioning rather than persons reared in societies where conformity and emotional dependence are stressed, this article discusses a study which compared two Israeli sub-groups and two…
Ateş, Utku; Baka, Meral; Turgut, Mehmet; Uyanikgil, Yiğit; Ulker, Sibel; Yilmaz, Ozlem; Tavmergen, Erol; Yurtseven, Mine
2007-04-01
To evaluate structural alterations in rat endometrium at preimplantation following treatment with aspirin beginning from proestrus by light microscopy, electron microscopy and immunohistochemical techniques. Twenty rats were divided into control (n = 10) and experimental (n = 10) groups. Experimental rats were treated with low-dose aspirin daily (2 mg/kg/day) during estrus, beginning from the proestrus phase, mated at end of cycle and treated with aspirin. Untreated pregnant rats were the control group. Rats in both groups were sacrificed at the 84th pregnancy hour; the uterus was rapidly removed and dissected free of surrounding adipose tissue. Uteri specimens from nonpregnant rats were transferred into fixative solution and processed for light, electron microscopic and immunohistochemical study. Light and electron microscopy of endometrium from control rats conformed to mid-diestrus phase; endometrial histology of the aspirin-treated group conformed to late diestrus phase. The endometrial layer was significantly thicker in the aspirin-treated group compared to the untreated control group (p <0.001). No significant difference was found in vessel number between groups. Staining with alphaV integrin was more dense in the aspirin-treated group. Based on histologic findings, we suggest low-dose aspirin has positive effects on preparing endometrium before implantation.
NASA Astrophysics Data System (ADS)
Guo, Yu-Cong; Cai, Chen; Zhang, Yun-Hong
2018-05-01
Attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectra of ethylene glycol-water (abbreviated as EG-H2O) mixtures were measured at 298 K with the ethylene glycol molar ratio ranging from 0.01 to 1400. The two bands at 1033 and 1082 cm-1 were assigned to be the C-C stretching vibration modes related to the trans- and gauche- conformation of EG. The absorbance of the two bands was found to be sensitive to the molar ratios. We made theoretical calculation for ten conformations of the EG molecules to understand the conformational transformation of EG molecules changing with EG-H2O molar ratios. The absorbance ratio (A1033/A1082) was used to determine the trans- and gauche- conformation ratio with the calculated (AνO-C-C-O-T/AνO-C-C-O-G) as standard. When the molar ratio of water and EG (xH2O/xEG) is smaller than 0.4, strong associations formed by the intermolecular hydrogen bonds were dominant in the solutions and the proportion of gauche- conformation was about 0.5. Within the region of 0.4< xH2O/xEG < 20, the intermolecular hydrogen bonds structure between EG molecules were broken by the water molecules and the structure of most EG molecules changed from trans- to gauche- conformation. The blue shift of the peaks indicated the increasing hydrogen bonding between water and EG. When xH2O/xEG is larger than 20, the monomers of molecules started to appear in the EG-H2O solution. The gauche- conformation was the dominated conformation in the dilute EG-H2O solution with proportion of 0.87. In the CH2 rocking vibration (δC-H) region, the computational results showed that the majority bands in this region were influenced by the gauche- conformation which can be divided into group G1 or G2. The transformation between the gauche- conformations of EG molecules can be studied by combining the experimental results and the computational results, The proportion of G1 for the EG-rich solution was about 0.71 while it decreased to 0.55 for the H2O-rich solution.
NASA Astrophysics Data System (ADS)
Michel, André; Villeneuve, Gérald; DiMaio, John
1991-12-01
The molecular basis underlying the divergent receptor selectivity of two cyclic opioid peptides Tyr-c[ N δ- d-Orn2-Gly-Phe-Leu-] (c-ORN) and [ d-Pen2, l-Cys5]-enkephalinamide (c-PEN) was investigated using a molecular modeling approach. Ring closure and conformational searching procedures were used to determine low-energy cyclic backbone conformers. Following reinsertion of amino acid side chains, the narcotic alkaloid 7α-[(1R)-1-methyl-1-hydroxy-3-phenylpropyl]-6,14-endoethenotetrahydro oripavine (PEO) was used as a flexible template for bimolecular superpositions with each of the determined peptide ring conformers using the coplanarity and cocentricity of the phenolic rings as the minimum constraint. A vector space of PEO, accounting for all possible orientations for the C21-aromatic ring of PEO served as a geometrical locus for the aromatic ring of the Phe4 residue in the opioid peptides. Although a vast number of polypeptide conformations satisfied the criteria of the opiate pharmacophore, they could be grouped into three classes differing in magnitude and sign of the torsional angle values of the tyrosyl side chain. Only class III conformers for both c-ORN and c-PEN, having tyramine dihedral angles χ1 =-150° ± 30° and χ2=-155° ± 20°, had significant structural and conformational properties that were mutually compatible while respecting the PEO vector space. Comparison of these properties in the context of the divergent receptor selectivity of the studied opioid peptides suggests that the increased distortion of the peptide backbone in the closure region of c-PEN together with the pendant β,β-dimethyl group, combine to generate a steric volume which is absent in c-ORN and that may be incompatible with a restrictive topography of the μ receptor. The nature and stereo-chemistry of substituents adjacent to the closure region of the peptides could also modulate receptor selection by interacting with a charged (δ) or neutral (μ) subsite.
NASA Astrophysics Data System (ADS)
Bandoli, Giuliano; Nicolini, Marino; Lumbroso, Henri; Grassi, Antonio; Pappalardo, Giuseppe C.
1987-09-01
N-( p-anisoyl)pyrrolidin-2-one in the crystalline state exhibites a cis— rans conrotatory conformation with NCO and COC ar rotational angles of 33.5° and 38.5° respectively, and the p-methoxy group situated cis to the central carbonyl bond, as shown by X-ray structure analysis. As suggested by dipole moment analysis and MMP2 molecular mechanics calculations, in solution similar conrotatory models hold for both c- and t-subconformers having the p-methoxy group cis or trans to the central carbonyl bond. INDO calculations were also carried out, indicating that both subconformers are equally stable.
Tomasz, J; Simoncsits, A; Kajtár, M; Krug, R M; Shatkin, A J
1978-01-01
A simple, two-step method is described for the synthesis of the 5'-pyro- and triphosphate derivatives of 3'-5' ApA, ApG, GpA and GpG. The readily accessible 2'(3')-5' ApA, ApG, GpA and GpG were converted in one step to the corresponding 5'-phosphoramidate derivatives which were then transformed to the 5'-pyro- and triphosphates. CD spectra of 3'-5' pn GpG (n = 0,1,2 or 3) derivatives, measured at pH 1, indicated stabilization of the (syn) G+p (anti)G conformation by the 5'-phosphate groups. PMID:211490
Das, Supriya; Pal, Uttam; Chatterjee, Moumita; Pramanik, Sumit Kumar; Banerji, Biswadip; Maiti, Nakul C
2016-12-15
The proline residue in a protein sequence generates constraints to its secondary structure as the associated torsion angles become a part of the heterocyclic ring. It becomes more significant when two consecutive proline residues link via amide linkage and produce additional configurational constraint to a protein's folding and stability. In the current manuscript we have illustrated conformation preference of a novel dipeptide, (R)-tert-butyl 2-((S)-2-(methoxycarbonyl)pyrrolidine-1-carbonyl)pyrrolidine-1-carboxylate. The dipeptide crystallized in the orthorhombic crystalline state and produced rod-shaped macroscopic material. The analysis of the crystal coordinates showed dihedral angles (φ, ψ) of the interlinked amide groups as (+72°, -147°) and the dihedral angles (φ, ψ) produced with the next carbonyl were (-68°, +151°), indicating polyglycine II (PGII) and polyproline II (PPII)-like helix states at the N- and C-terminals, respectively. These two states, PGII and PPII, are mirror image configurations and are expected to produce similar vibration bands from the associated carbonyl groups. However, the unique atomic arrangement in the molecule produces three carbonyl groups and one of them was very specific, being part of the main peptide linkage that connects both the pyrrolidine rings. The carbonyl group in the peptide bond exhibited a Raman vibration frequency at ∼1642 cm -1 and is considered a signatory Raman marker band for the peptide bond linking two heterochiral proline residues. The carbonyl group (t-Boc) at the N-terminal of the peptide showed a characteristic vibration at ∼1685 cm -1 and the C-terminal carbonyl group as a part of the ester showed a vibration signature at a significantly high frequency (1746 cm -1 ). Conformation analyses performed with density functional theory (DFT) calculations depicted that the dipeptide was stabilized in vacuum with dihedral angles (+72°, -154°) and (-72°, +151°) at the N- and C-terminals, respectively. Molecular dynamics (MD) simulation also showed that the peptide conformation having dihedral angles around (+75°, -150°) and (-75°, +150°) at the N- and C-terminals, respectively, was reasonably stable in water. Due to unique absence of the amide N-H, the peptide was ineffective in forming any intramolecular hydrogen bonding. MD investigation, however, revealed an intermolecular hydrogen bonding interaction with the water molecules, leading to its stability in aqueous solution. Metadynamics simulation analysis of the dipeptide in water also supported the PGII-PPII-like conformation at the N- and C-terminals, respectively, as the energetically stable conformation among the other possible combinations of conformations. The possible electronic transitions along with the HOMO-LUMO analysis further depicted the stability of the dipeptide in water and their possible absorption pattern. Time-dependent density functional theory (TDDFT) analysis showed strong negative rotatory strength of the dipeptide around 210 nm in water and acetonitrile, and it could be the source of experimentally observed high-amplitude negative absorption in the circular dichroism (CD) spectra around 200-203 nm. The very weak positive band (signature) in the region at ∼228 nm in CD spectra could also be correlated to the positive rotatory strength at 228 nm observed in ECD. To test the effect of such a dipeptide on a living cell, an MTT assay was performed and the result indicated no cytotoxic effect toward human hepatocellular carcinoma Hep G2 cancer cell lines.
Kuş, Nihal; Henriques, Marta Sofia; Paixão, José António; Lapinski, Leszek; Fausto, Rui
2014-09-25
The crystal structure of 3-quinolinecarboxaldehyde (3QC) has been solved, and the compound has been shown to crystallize in the space group P21/c (monoclinic) with a = 6.306(4), b = 18.551(11), c = 6.999(4) Å, β = 106.111(13)°, and Z = 4. The crystals were found to exhibit pseudomerohedral twinning with a twin law corresponding to a two-fold rotation around the monoclinic (100) reciprocal lattice axis (or [4 0 1] in direct space). Individual molecules adopt the syn conformation in the crystal, with the oxygen atom of the aldehyde substituent directed toward the same side of the ring nitrogen atom. In the gas phase, the compound exists in two nearly isoenergetic conformers (syn and anti), which could be successfully trapped in solid argon at 10 K, and their infrared spectra are registered and interpreted. Upon in situ irradiation of matrix-isolated 3QC with UV light (λ > 315 nm), significant reduction of the population of the less stable anti conformer was observed, while that of the conformational ground state (syn conformer) increased, indicating occurrence of the anti → syn isomerization. Upon irradiation at higher energy (λ > 235 nm), the syn → anti reverse photoreaction was observed. Interpretation of the structural, spectroscopic, and photochemical experimental data received support from quantum chemical theoretical results obtained at both DFT/B3LYP (including TD-DFT investigation of excited states) and MP2 levels, using the 6-311++G(d,p) basis set.
N-Methyl Inversion in Pseudo-Pelletierine
NASA Astrophysics Data System (ADS)
Vallejo-López, Montserrat; Ecija, Patricia; Cocinero, Emilio J.; Lesarri, Alberto; Basterretxea, Francisco J.; Fernández, José A.
2016-06-01
We have previously conducted rotational studies of several tropanes, since this bicyclic structural motif forms the core of different alkaloids of pharmaceutical interest. Now we report on the conformational properties and molecular structure of pseudo-pelletierine (9-methyl-9-azabicyclo[3.3.1]nonan-3-one), probed in a jet expansion with Fourier-transform microwave spectroscopy. Pseudo-pelletierine is an azabicycle with two fused six-membered rings, where the N-methyl group can produce inverting axial o equatorial conformations. The two conformations were detected in the rotational spectrum, recorded in the region 6-18 GHz. Unlike tropinone and N-methylpiperidone, where the most stable conformer is equatorial, the axial species was found dominant for pseudo-pelletierine. All monosubstituted isotopic species (13C, 15N and 18O) were identified for the axial conformer, leading to an accurate determination of the effective and substitution structures. An estimation of conformational populations was derived from relative intensities. The experimental results will be compared with ab initio (MP2) and DFT (M06-2X, B3LYP) calculations. E. J. Cocinero, A. Lesarri, P. Écija, J.-U. Grabow, J. A. Fernández, F. Castaño, Phys. Chem. Chem. Phys. 2010, 49, 4503 P. Écija, E. J. Cocinero, A. Lesarri, F. J. Basterretxea, J. A. Fernández, F. Castaño, Chem. Phys. Chem. 2013, 14, 1830 P. Écija, M. Vallejo-Lopez, I. Uriarte, F. J. Basterretxea, A. Lesarri, J. A. Fernández, E. J. Cocinero, submitted 2016
New parasite inhibitors encompassing novel conformationally-locked 5'-acyl sulfamoyl adenosines.
Dixit, Shailesh S; Upadhayaya, Ram Shankar; Chattopadhyaya, Jyoti
2012-08-14
We describe the design, synthesis and biological evaluation of conformationally-locked 5'-acyl sulfamoyl adenosine derivatives as new parasitic inhibitors against Trypanosoma and Leishmania. The conformationally-locked (3'-endo, North-type) nucleosides have been synthesized by covalently attaching a 4'-CH(2)-O-2' bridge () across C2'-C4' of adenosine in order to reduce the conformational flexibility of the pentose ring. This is designed to decrease the entropic penalty for complex formation with the target protein, which may improve free-energy of stabilization of the complex leading to improved potency. Conformationally-locked 5'-acyl sulfamoyl adenosine derivatives (16-22) were tested against parasitic protozoans for the first time in this work, and showed potent inhibition of Trypanosoma cruzi, Trypanosoma brucei, Trypanosoma rhodesiense and Leishmania infantum with IC(50) = 0.25-0.51 μM. In particular, the potent 5'-pentanyl acyl sulfamoyl adenosine derivative 17 (IC(50) = 0.25 μM) against intracellular L. infantum amastigotes and Trypanosoma subspecies is interesting in view of its almost insignificant cytotoxicity in murine macrophage host cells (CC(50) >4 μM) and in diploid human fibroblasts MRC-5 cell lines (CC(50) 4 μM). This work also suggests that variable alkyl chain length of the acyl group on the acylsulfamoyl side chain at 5' can modulate the toxicity of 5'-O-sulfamoylnucleoside analogues. This conformationally-locked sulfamoyl adenosine scaffold presents some interesting possibilities for further drug design and lead optimization.
Conformation of kainic acid in solution from molecular modelling and NMR spectra.
Falk, M; Sidhu, P; Walter, J A
1998-01-01
Conformational behaviour of kainic acid in aqueous solution was elucidated by molecular mechanics and dynamics. The pucker of the five-membered ring in kainic acid was examined and compared with that of model compounds. In cyclopentane there is no barrier to pseudorotation, so that all puckered states coexist. In pyrrolidinium, the presence of a hetero-atom in the ring introduces a small barrier (about 0.6 kcal mol(-1)) to pseudorotation, separating two stable regions, A and B, which are equivalent by symmetry. In proline, the presence of the carboxylate group on C2 removes the symmetry but two stable conformational minima, A and B, remain. In kainic acid, the presence of side-chains on C3 and C4 introduces complications resulting in additional sub-minima in both regions, A and B. In solution, kainic acid is a complex mixture of conformers with comparable energies, because of the combination of several stable states of the pyrrolidinium ring with the torsional degrees of freedom arising from the two side-chains. The individual geometries, energies, and estimates of relative populations of these conformers were obtained from molecular dynamics simulations. The calculations were validated by a comparison of predicted inter-proton distances and vicinal proton coupling constants with the experimental quantities derived from NMR spectra.
Houser, Josef; Kozmon, Stanislav; Mishra, Deepti; Mishra, Sushil K; Romano, Patrick R; Wimmerová, Michaela; Koča, Jaroslav
2017-01-01
Protein-carbohydrate interactions are very often mediated by the stacking CH-π interactions involving the side chains of aromatic amino acids such as tryptophan (Trp), tyrosine (Tyr) or phenylalanine (Phe). Especially suitable for stacking is the Trp residue. Analysis of the PDB database shows Trp stacking for 265 carbohydrate or carbohydrate like ligands in 5 208 Trp containing motives. An appropriate model system to study such an interaction is the AAL lectin family where the stacking interactions play a crucial role and are thought to be a driving force for carbohydrate binding. In this study we present data showing a novel finding in the stacking interaction of the AAL Trp side chain with the carbohydrate. High resolution X-ray structure of the AAL lectin from Aleuria aurantia with α-methyl-l-fucoside ligand shows two possible Trp side chain conformations with the same occupation in electron density. The in silico data shows that the conformation of the Trp side chain does not influence the interaction energy despite the fact that each conformation creates interactions with different carbohydrate CH groups. Moreover, the PDB data search shows that the conformations are almost equally distributed across all Trp-carbohydrate complexes, which would suggest no substantial preference for one conformation over another.
On the Chern-Gauss-Bonnet Theorem and Conformally Twisted Spectral Triples for C*-Dynamical Systems
NASA Astrophysics Data System (ADS)
Fathizadeh, Farzad; Gabriel, Olivier
2016-02-01
The analog of the Chern-Gauss-Bonnet theorem is studied for a C^*-dynamical system consisting of a C^*-algebra A equipped with an ergodic action of a compact Lie group G. The structure of the Lie algebra g of G is used to interpret the Chevalley-Eilenberg complex with coefficients in the smooth subalgebra A subset A as noncommutative differential forms on the dynamical system. We conformally perturb the standard metric, which is associated with the unique G-invariant state on A, by means of a Weyl conformal factor given by a positive invertible element of the algebra, and consider the Hermitian structure that it induces on the complex. A Hodge decomposition theorem is proved, which allows us to relate the Euler characteristic of the complex to the index properties of a Hodge-de Rham operator for the perturbed metric. This operator, which is shown to be selfadjoint, is a key ingredient in our construction of a spectral triple on A and a twisted spectral triple on its opposite algebra. The conformal invariance of the Euler characteristic is interpreted as an indication of the Chern-Gauss-Bonnet theorem in this setting. The spectral triples encoding the conformally perturbed metrics are shown to enjoy the same spectral summability properties as the unperturbed case.
NASA Astrophysics Data System (ADS)
Singh, Warispreet; Karabencheva-Christova, Tatyana G.; Black, Gary W.; Ainsley, Jon; Dover, Lynn; Christov, Christo Z.
2016-01-01
Heme d1, a vital tetrapyrrol involved in the denitrification processes is synthesized from its precursor molecule precorrin-2 in a chemical reaction catalysed by an S-adenosyl-L-methionine (SAM) dependent Methyltransferase (NirE). The NirE enzyme catalyses the transfer of a methyl group from the SAM to uroporphyrinogen III and serves as a novel potential drug target for the pharmaceutical industry. An important insight into the structure-activity relationships of NirE has been revealed by elucidating its crystal structure, but there is still no understanding about how conformational flexibility influences structure, cofactor and substrate binding by the enzyme as well as the structural effects of mutations of residues involved in binding and catalysis. In order to provide this missing but very important information we performed a comprehensive atomistic molecular dynamics study which revealed that i) the binding of the substrate contributes to the stabilization of the structure of the full complex; ii) conformational changes influence the orientation of the pyrrole rings in the substrate, iii) more open conformation of enzyme active site to accommodate the substrate as an outcome of conformational motions; and iv) the mutations of binding and active site residues lead to sensitive structural changes which influence binding and catalysis.
Differential Enzyme Flexibility Probed Using Solid-State Nanopores.
Hu, Rui; Rodrigues, João V; Waduge, Pradeep; Yamazaki, Hirohito; Cressiot, Benjamin; Chishti, Yasmin; Makowski, Lee; Yu, Dapeng; Shakhnovich, Eugene; Zhao, Qing; Wanunu, Meni
2018-05-22
Enzymes and motor proteins are dynamic macromolecules that coexist in a number of conformations of similar energies. Protein function is usually accompanied by a change in structure and flexibility, often induced upon binding to ligands. However, while measuring protein flexibility changes between active and resting states is of therapeutic significance, it remains a challenge. Recently, our group has demonstrated that breadth of signal amplitudes in measured electrical signatures as an ensemble of individual protein molecules is driven through solid-state nanopores and correlates with protein conformational dynamics. Here, we extend our study to resolve subtle flexibility variation in dihydrofolate reductase mutants from unlabeled single molecules in solution. We first demonstrate using a canonical protein system, adenylate kinase, that both size and flexibility changes can be observed upon binding to a substrate that locks the protein in a closed conformation. Next, we investigate the influence of voltage bias and pore geometry on the measured electrical pulse statistics during protein transport. Finally, using the optimal experimental conditions, we systematically study a series of wild-type and mutant dihydrofolate reductase proteins, finding a good correlation between nanopore-measured protein conformational dynamics and equilibrium bulk fluorescence probe measurements. Our results unequivocally demonstrate that nanopore-based measurements reliably probe conformational diversity in native protein ensembles.
Vohra, V.; Niranjan, S. K.; Mishra, A. K.; Jamuna, V.; Chopra, A.; Sharma, Neelesh; Jeong, Dong Kee
2015-01-01
Phenotypic characterization and body biometric in 13 traits (height at withers, body length, chest girth, paunch girth, ear length, tail length, length of tail up to switch, face length, face width, horn length, circumference of horn at base, distances between pin bone and hip bone) were recorded in 233 adult Gojri buffaloes from Punjab and Himachal Pradesh states of India. Traits were analysed by using varimax rotated principal component analysis (PCA) with Kaiser Normalization to explain body conformation. PCA revealed four components which explained about 70.9% of the total variation. First component described the general body conformation and explained 31.5% of total variation. It was represented by significant positive high loading of height at wither, body length, heart girth, face length and face width. The communality ranged from 0.83 (hip bone distance) to 0.45 (horn length) and unique factors ranged from 0.16 to 0.55 for all these 13 different biometric traits. Present study suggests that first principal component can be used in the evaluation and comparison of body conformation in buffaloes and thus provides an opportunity to distinguish between early and late maturing to adult, based on a small group of biometric traits to explain body conformation in adult buffaloes. PMID:25656215
NASA Astrophysics Data System (ADS)
Mantsyzov, Alexey B.; Savelyev, Oleg Y.; Ivantcova, Polina M.; Bräse, Stefan; Kudryavtsev, Konstantin V.; Polshakov, Vladimir I.
2018-03-01
Synthetic β-peptides are potential functional mimetics of native α-proteins. A recently developed, novel, synthetic approach provides an effective route to the broad group of β-proline oligomers with alternating patterns of stereogenic centers. Conformation of the pyrrolidine ring, Z/E isomerism of β-peptide bonds, and hindered rotation of the neighboring monomers determine the spatial structure of this group of β-proline oligopeptides. Preferences in structural organization and corresponding thermodynamic properties are determined by NMR spectroscopy, restrained molecular dynamics and quantum mechanics. The studied β-proline oligopeptides exist in dimethyl sulfoxide solution in a limited number of conformers, with compatible energy of formation and different spatial organization. In the β-proline tetrapeptide with alternating chirality of composing pyrrolidine units, one of three peptide bonds may exist in an E configuration. For the alternating β-proline pentapeptide, the presence of an E configuration for at least of one β-peptide bond is mandatory. In this case, three peptide bonds synchronously change their configurations. Larger polypeptides may only exist in the presence of several E configurations of β-peptide bonds forming a wave-like extended structure.
Compactification on phase space
NASA Astrophysics Data System (ADS)
Lovelady, Benjamin; Wheeler, James
2016-03-01
A major challenge for string theory is to understand the dimensional reduction required for comparison with the standard model. We propose reducing the dimension of the compactification by interpreting some of the extra dimensions as the energy-momentum portion of a phase-space. Such models naturally arise as generalized quotients of the conformal group called biconformal spaces. By combining the standard Kaluza-Klein approach with such a conformal gauge theory, we may start from the conformal group of an n-dimensional Euclidean space to form a 2n-dimensional quotient manifold with symplectic structure. A pair of involutions leads naturally to two n-dimensional Lorentzian manifolds. For n = 5, this leaves only two extra dimensions, with a countable family of possible compactifications and an SO(5) Yang-Mills field on the fibers. Starting with n=6 leads to 4-dimensional compactification of the phase space. In the latter case, if the two dimensions each from spacetime and momentum space are compactified onto spheres, then there is an SU(2)xSU(2) (left-right symmetric electroweak) field between phase and configuration space and an SO(6) field on the fibers. Such a theory, with minor additional symmetry breaking, could contain all parts of the standard model.
NASA Astrophysics Data System (ADS)
Viana, Rommel B.; Ribeiro, Gabriela L. O.; Valencia, Leidy J.; Varela, Jaldyr J. G.; Viana, Anderson B.; da Silva, Albérico B. F.; Moreno-Fuquen, Rodolfo
2016-12-01
The aim of this study was to report the spectroscopic and electronic properties of 2,5-dimethyl-benzyl benzoate. FT-IR and Raman vibrational spectral analyses were performed, while a computational approach was used to elucidate the vibrational frequency couplings. The electronic properties were predicted using the Density Functional Theory, while the G3MP2 method was employed in the thermochemical calculation. A conformational analysis, frontier orbitals, partial atomic charge distribution and the molecular electrostatic potential were also estimated. Concerning to the dihedral angles in the ester group, a conformational analysis showed a barrier energy of 10 kcal mol-1, while other small barriers (below 0.6 kcal mol-1) were predicted within the potential surface energy investigation. Insights into the relative stability among the different positions of methyl groups in the phenyl ring demonstrated that the energy gaps were lower than 1 kcal mol-1 among the regioisomers. In addition, the Quantum Theory of Atoms in Molecules (QTAIM) was used to understand the intramolecular CH⋯O interaction in the title compound, while various methodologies were applied in the atomic charge distribution to evaluate the susceptibility to the population method.
Protonmotive force: development of electrostatic drivers for synthetic molecular motors.
Crowley, James D; Steele, Ian M; Bosnich, Brice
2006-12-04
Ferrocene has been investigated as a platform for developing protonmotive electrostatic drivers for molecular motors. When two 3-pyridine groups are substituted to the (rapidly rotating) cyclopentadienyl (Cp) rings of ferrocene, one on each Cp, it is shown that the (Cp) eclipsed, pi-stacked rotameric conformation is preferred both in solution and in the solid state. Upon quaternization of both of the pyridines substituents, either by protonation or by alkylation, it is shown that the preferred rotameric conformation is one where the pyridinium groups are rotated away from the fully pi-stacked conformation. Electrostatic calculations indicate that the rotation is caused by the electrostatic repulsion between the charges. Consistently, when the pi-stacking energy is increased pi-stacked population increases, and conversely when the electrostatic repulsion is increased pi-stacked population is decreased. This work serves to provide an approximate estimate of the amount of torque that the electrostatically driven ferrocene platform can generate when incorporated into a molecular motor. The overall conclusion is that the electrostatic interaction energy between dicationic ferrocene dipyridyl systems is similar to the pi-stacking interaction energy and, consequently, at least tricationic systems are required to fully uncouple the pi-stacked pyridine substituents.
Mantsyzov, Alexey B; Savelyev, Oleg Y; Ivantcova, Polina M; Bräse, Stefan; Kudryavtsev, Konstantin V; Polshakov, Vladimir I
2018-01-01
Synthetic β-peptides are potential functional mimetics of native α-proteins. A recently developed, novel, synthetic approach provides an effective route to the broad group of β-proline oligomers with alternating patterns of stereogenic centers. Conformation of the pyrrolidine ring, Z / E isomerism of β-peptide bonds, and hindered rotation of the neighboring monomers determine the spatial structure of this group of β-proline oligopeptides. Preferences in their structural organization and corresponding thermodynamic properties are determined by NMR spectroscopy, restrained molecular dynamics and quantum mechanics. The studied β-proline oligopeptides exist in dimethyl sulfoxide solution in a limited number of conformers, with compatible energy of formation and different spatial organization. In the β-proline tetrapeptide with alternating chirality of composing pyrrolidine units, one of three peptide bonds may exist in an E configuration. For the alternating β-proline pentapeptide, the presence of an E configuration for at least of one β-peptide bond is mandatory. In this case, three peptide bonds synchronously change their configurations. Larger polypeptides may only exist in the presence of several E configurations of β-peptide bonds forming a wave-like extended structure.
Ashtari, M; Cann, N M
2012-11-23
Poly-proline chains and derivatives have been recently examined as the basis for new chiral stationary phases in high performance liquid chromatography. The selectivity of poly-proline has been measured for peptides with up to ten proline units. In this article, we employ molecular dynamics simulations to examine the interfacial structure and solvation of surface-bound poly-proline chiral selectors. Specifically, we study the interfacial structure of trimethylacetyl-terminated poly-proline chains with three-to-six prolines. The surface includes silanol groups and end-caps, to better capture the characteristics of the stationary phase, and the solvent is either a polar water/methanol or a relatively apolar n-hexane/2-propanol mixture. We begin with a comprehensive ab initio study of the conformers, their energies, and an assessment of conformer flexibility. Force fields have been developed for each poly-proline selector. Molecular dynamics simulations are employed to study the preferred backbone conformations and solvent hydrogen bonding for different poly-proline/solvent interfaces. For triproline, the effect of two different terminal groups, trimethylacetyl and t-butyl carbamate are compared. Copyright © 2012 Elsevier B.V. All rights reserved.
Tintaru, Aura; Chendo, Christophe; Wang, Qi; Viel, Stéphane; Quéléver, Gilles; Peng, Ling; Posocco, Paola; Pricl, Sabrina; Charles, Laurence
2014-01-15
Tandem mass spectrometry and ion mobility spectrometry experiments were performed on multiply charged molecules formed upon conjugation of a poly(amidoamine) (PAMAM) dendrimer with a poly(ethylene oxide) (PEO) linear polymer to evidence any conformational modification as a function of their charge state (2+ to 4+) and of the adducted cation (H(+)vs Li(+)). Experimental findings were rationalized by molecular dynamics simulations. The G0 PAMAM head-group could accommodate up to three protons, with protonated terminal amine group enclosed in a pseudo 18-crown-6 ring formed by the PEO segment. This particular conformation enabled a hydrogen bond network which allowed long-range proton transfer to occur during collisionally activated dissociation. In contrast, lithium adduction was found to mainly occur onto oxygen atoms of the polyether, each Li(+) cation being coordinated by a 12-crown-4 pseudo structure. As a result, for the studied polymeric segment (Mn=1500gmol(-1)), PEO-PAMAM hybrid molecules exhibited a more expanded shape when adducted to lithium as compared to proton. Copyright © 2013 Elsevier B.V. All rights reserved.
Ostracism Online: A social media ostracism paradigm.
Wolf, Wouter; Levordashka, Ana; Ruff, Johanna R; Kraaijeveld, Steven; Lueckmann, Jan-Matthis; Williams, Kipling D
2015-06-01
We describe Ostracism Online, a novel, social media-based ostracism paradigm designed to (1) keep social interaction experimentally controlled, (2) provide researchers with the flexibility to manipulate the properties of the social situation to fit their research purposes, (3) be suitable for online data collection, (4) be convenient for studying subsequent within-group behavior, and (5) be ecologically valid. After collecting data online, we compared the Ostracism Online paradigm with the Cyberball paradigm (Williams & Jarvis Behavior Research Methods, 38, 174-180, 2006) on need-threat and mood questionnaire scores (van Beest & Williams Journal of Personality and Social Psychology 91, 918-928, 2006). We also examined whether ostracized targets of either paradigm would be more likely to conform to their group members than if they had been included. Using a Bayesian analysis of variance to examine the individual effects of the different paradigms and to compare these effects across paradigms, we found analogous effects on need-threat and mood. Perhaps because we examined conformity to the ostracizers (rather than neutral sources), neither paradigm showed effects of ostracism on conformity. We conclude that Ostracism Online is a cost-effective, easy to use, and ecologically valid research tool for studying the psychological and behavioral effects of ostracism.
The Millimeter-Wave Spectrum of Propanal
NASA Astrophysics Data System (ADS)
Zingsheim, Oliver; Müller, Holger S. P.; Lewen, Frank; Schlemmer, Stephan
2017-06-01
The microwave spectrum of propanal, also known as propionaldehyde, CH_3CH_2CHO, has been investigated in the laboratory already since 1964^1 and has also been detected in space^2. Recently, propanal was detected with the Atacama Large Millimeter/submillimeter Array (ALMA), Protostellar Interferometric Line Survey (PILS)^3. The high sensitivity and resolution of ALMA indicated small discrepancies between observed and predicted rotational spectra of propanal. As higher accuracies are desired the spectrum of propanal was measured up to 500 GHz with the Cologne (Sub-)Millimeter spectrometer. Propanal has two stable conformers, syn and gauche, which differ mainly in the rotation of the aldehyd group with respect to the rigid C-atom framework of the molecule. We extensively studied both of them. The lower syn-conformer shows small splittings caused by the internal rotation of the methyl group, whereas the spectrum of gauche-propanal is complicated due to the tunneling rotation interaction from two stable degenerate conformers. Additionally, we analyzed vibrationally excited states. ^1 Butcher et al., J. Chem. Phys. 40 6 (1964) ^2 Hollis et al., Astrophys. J. 610 L21 (2004) ^3 Lykke et al., A&A 597 A53 (2017)
[Role of creative discussion in the learning of critical reading of scientific articles].
Cobos-Aguilar, Héctor; Viniegra-Velázquez, Leonardo; Pérez-Cortés, Patricia
2011-01-01
To compare two active educational strategies on critical reading (two and three stages) for research learning in medical students. Four groups were conformed in a quasi-experimental design. The medical student group, related to three stages (critical reading guide resolution, creative discussion, group discussion) g1, n = 9 with school marks > 90 and g2, n = 19 with a < 90, respectively. The two-stage groups (guide resolution and group discussion) were conformed by pre-graduate interns, g3, n = 17 and g4, n = 12, who attended social security general hospitals. A validated and consistent survey with 144 items was applied to the four groups before and after educational strategies. Critical reading with its subcomponents: interpretation, judgment and proposal were evaluated with 47, 49 and 48 items, respectively. The case control studies, cohort studies, diagnostic test and clinical trial designs were evaluated. Nonparametric significance tests were performed to compare the groups and their results. A bias calculation was performed for each group. The highest median was obtained by the three-stage groups (g1 and g2) and so were the medians in interpretation, judgment and proposal. The several research design results were higher in the same groups. An active educational strategy with three stages is superior to another with two stages in medical students. It is advisable to perform these activities in goal of better learning in our students.
Oehme, Daniel P; Downton, Matthew T; Doblin, Monika S; Wagner, John; Gidley, Michael J; Bacic, Antony
2015-05-01
The question of how many chains an elementary cellulose microfibril contains is critical to understanding the molecular mechanism(s) of cellulose biosynthesis and regulation. Given the hexagonal nature of the cellulose synthase rosette, it is assumed that the number of chains must be a multiple of six. We present molecular dynamics simulations on three different models of Iβ cellulose microfibrils, 18, 24, and 36 chains, to investigate their structure and dynamics in a hydrated environment. The 36-chain model stays in a conformational space that is very similar to the initial crystalline phase, while the 18- and 24-chain models sample a conformational space different from the crystalline structure yet similar to conformations observed in recent high-temperature molecular dynamics simulations. Major differences in the conformations sampled between the different models result from changes to the tilt of chains in different layers, specifically a second stage of tilt, increased rotation about the O2-C2 dihedral, and a greater sampling of non-TG exocyclic conformations, particularly the GG conformation in center layers and GT conformation in solvent-exposed exocyclic groups. With a reinterpretation of nuclear magnetic resonance data, specifically for contributions made to the C6 peak, data from the simulations suggest that the 18- and 24-chain structures are more viable models for an elementary cellulose microfibril, which also correlates with recent scattering and diffraction experimental data. These data inform biochemical and molecular studies that must explain how a six-particle cellulose synthase complex rosette synthesizes microfibrils likely comprised of either 18 or 24 chains. © 2015 American Society of Plant Biologists. All Rights Reserved.
Cole, Jacqueline M.; Low, Kian Sing; Gong, Yun
2015-11-24
Here, we present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world’s leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO 2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiplemore » conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO 2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO 2 interfaces in DSSCs, at least for ruthenium-based dye complexes.« less
Iglesias-Fernández, Javier; Raich, Lluís; Ardèvol, Albert; Rovira, Carme
2015-02-01
Unraveling the conformational catalytic itinerary of glycoside hydrolases (GHs) is a growing topic of interest in glycobiology, with major impact in the design of GH inhibitors. β-xylanases are responsible for the hydrolysis of glycosidic bonds in β-xylans, a group of hemicelluloses of high biotechnological interest that are found in plant cell walls. The precise conformations followed by the substrate during catalysis in β-xylanases have not been unambiguously resolved, with three different pathways being proposed from structural analyses. In this work, we compute the conformational free energy landscape (FEL) of β-xylose to predict the most likely catalytic itineraries followed by β-xylanases. The calculations are performed by means of ab initio metadynamics, using the Cremer-Pople puckering coordinates as collective variables. The computed FEL supports only two of the previously proposed itineraries, 2 S O → [ 2,5 B] ǂ → 5 S 1 and 1 S 3 → [ 4 H 3 ] ǂ → 4 C 1 , which clearly appear in low energy regions of the FEL. Consistently, 2 S O and 1 S 3 are conformations preactivated for catalysis in terms of free energy/anomeric charge and bond distances. The results however exclude the O E → [ O S 2 ] ǂ → B 2,5 itinerary that has been recently proposed for a family 11 xylanase. Classical and ab initio QM/MM molecular dynamics simulations reveal that, in this case, the observed O E conformation has been enforced by enzyme mutation. These results add a word of caution on using modified enzymes to inform on catalytic conformational itineraries of glycoside hydrolases.
Iglesias-Fernández, Javier; Raich, Lluís; Ardèvol, Albert
2015-01-01
Unraveling the conformational catalytic itinerary of glycoside hydrolases (GHs) is a growing topic of interest in glycobiology, with major impact in the design of GH inhibitors. β-xylanases are responsible for the hydrolysis of glycosidic bonds in β-xylans, a group of hemicelluloses of high biotechnological interest that are found in plant cell walls. The precise conformations followed by the substrate during catalysis in β-xylanases have not been unambiguously resolved, with three different pathways being proposed from structural analyses. In this work, we compute the conformational free energy landscape (FEL) of β-xylose to predict the most likely catalytic itineraries followed by β-xylanases. The calculations are performed by means of ab initio metadynamics, using the Cremer–Pople puckering coordinates as collective variables. The computed FEL supports only two of the previously proposed itineraries, 2SO → [2,5B]ǂ → 5S1 and 1S3 → [4H3]ǂ → 4C1, which clearly appear in low energy regions of the FEL. Consistently, 2SO and 1S3 are conformations preactivated for catalysis in terms of free energy/anomeric charge and bond distances. The results however exclude the OE → [OS2]ǂ → B2,5 itinerary that has been recently proposed for a family 11 xylanase. Classical and ab initio QM/MM molecular dynamics simulations reveal that, in this case, the observed OE conformation has been enforced by enzyme mutation. These results add a word of caution on using modified enzymes to inform on catalytic conformational itineraries of glycoside hydrolases. PMID:29560204
(E)-2-Meth-oxy-9-(2-meth-oxy-9H-xanthen-9-yl-idene)-9H-xanthene.
Tian, Xiang-Yu; Song, Qin-Hua
2013-01-01
The title compound, C28H20O4, was synthesized by a bimolecular Zn-HCl reduction in glacial acetic acid using the meth-oxy-substituted xanthone as a starting material. The crystal structure shows that the 2,2'-meth-oxy-bixanthenyl-idene unit is an E-type conformation anti-folded conformer. The mol-ecule lies on an inversion center. The meth-oxy group is almost coplanar with the attached benzene ring, with a C-O-C-C torsion angle of 179.38 (14)°.
Diethyl 4,4'-(3,6-dioxaoctane-1,8-diyl-dioxy)dibenzoate.
Ma, Zhen; Qin, Haisha; Lai, Gang; Fan, Jingjie
2012-03-01
The title compound, C(24)H(30)O(8), was obtained by reaction of ethyl 4-hy-droxy-benzoate with 1,2-dichloro-ethane. The mol-ecule occupies a crystallographic inversion center, with its central ethyl-ene bridge in an anti conformation. The other ethyl-ene bridge has a gauche conformation, with the corresponding O-C-C-O torsion angle being 74.2 (1)°. The benzene rings are almost coplanar with the adjacent eth-oxy-carbonyl groups, with an r.m.s. deviation of 0.078 Å.
Non-polynomial closed string field theory: loops and conformal maps
NASA Astrophysics Data System (ADS)
Hua, Long; Kaku, Michio
1990-11-01
Recently, we proposed the complete classical action for the non-polynomial closed string field theory, which succesfully reproduced all closed string tree amplitudes. (The action was simultaneously proposed by the Kyoto group). In this paper, we analyze the structure of the theory. We (a) compute the explicit conformal map for all g-loop, p-puncture diagrams, (b) compute all one-loop, two-puncture maps in terms of hyper-elliptic functions, and (c) analyze their modular structure. We analyze, but do not resolve, the question of modular invariance.
1999-06-23
ESC/EN- IB , Hanscom AFB, MA F-15 Program Office F-16 Program Office F-22 Program Office HQ-AFMC/LG-EV, Wright Patterson AFB Javelin...Fungus Type ATCC a No. MYCO b No. Aspergillus Niger 9642 386 Penicillium Pinophilum c 11797 391 Chaetomium Globosum 6205 459 Gliocladium
{{SO(d,1)}}-Invariant Yang-Baxter Operators and the dS/CFT Correspondence
NASA Astrophysics Data System (ADS)
Hollands, Stefan; Lechner, Gandalf
2018-01-01
We propose a model for the dS/CFT correspondence. The model is constructed in terms of a "Yang-Baxter operator" R for unitary representations of the de Sitter group {SO(d,1)}. This R-operator is shown to satisfy the Yang-Baxter equation, unitarity, as well as certain analyticity relations, including in particular a crossing symmetry. With the aid of this operator we construct: (a) a chiral (light-ray) conformal quantum field theory whose internal degrees of freedom transform under the given unitary representation of {SO(d,1)}. By analogy with the O( N) non-linear sigma model, this chiral CFT can be viewed as propagating in a de Sitter spacetime. (b) A (non-unitary) Euclidean conformal quantum field theory on R}^{d-1, where SO( d, 1) now acts by conformal transformations in (Euclidean) spacetime. These two theories can be viewed as dual to each other if we interpret R}^{d-1 as conformal infinity of de Sitter spacetime. Our constructions use semi-local generator fields defined in terms of R and abstract methods from operator algebras.
Wen, Yan; Yao, Fanglian; Sun, Fang; Tan, Zhilei; Tian, Liang; Xie, Lei; Song, Qingchao
2015-03-01
The action mode of quaternized carboxymethyl chitosan/poly(amidoamine) dendrimer core-shell nanoparticles (CM-HTCC/PAMAM) against Escherichia coli (E. coli) was investigated via a combination of approaches including measurements of cell membrane integrity, outer membrane (OM) and inner membrane (IM) permeability, and scanning electron microscopy (SEM). CM-HTCC/PAMAM dendrimer nanoparticles likely acted in a sequent event-driven mechanism, beginning with the binding of positively charged groups from nanoparticle surface with negative cell surface, thereby causing the disorganization of cell membrane, and subsequent leakage of intracellular components which might ultimately lead to cell death. Moreover, the chain conformation of polymers was taken into account for a better understanding of the antibacterial action mode by means of viscosity and GPC measurements. High utilization ratio of positive charge and large specific surface area generated from a compacted conformation of CM-HTCC/PAMAM, significantly different from the extended conformation of HTCC, were proposed to be involved in the antibacterial action. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Long, Brittany E.; Betancur, Juan; Choi, Yoon Jeong; Cooke, S. A.; Grubbs, G. S., II; Ogulnick, Jonathan; Holmes, Tara
2017-06-01
Pure rotational spectra of the title molecules have been recorded using chirped pulse Fourier transform microwave spectroscopy. Under our experimental conditions only one conformer has been observed for each of the four compounds. These conformers have torsional angles of CXCC = 180^o, XCCC = 60^o, CCCC = 180^o, and, for the C_5H_{11}-X-CH_3 species, CCCC_{Methyl} = 180^o. These angles correspond to anti-gauche-anti conformations for the butyl methyl ether/thioether species, and anti-gauche-anti-anti conformations for the pentyl methyl ether/thioether species. Splittings due to the internal rotation of the X-CH_3 group are observed in both butyl species but are not observed in the pentyl species. The barrier to the X-CH_3 internal rotation has been investigated through spectral analyses and quantum chemical calculations. The differences in the internal rotation barrier between the ethers and thioethers will be discussed and will further be compared to the barriers obtained for similar molecules.
Picolinic and isonicotinic acids: a Fourier transform microwave spectroscopy study.
Peña, Isabel; Varela, Marcelino; Franco, Vanina G; López, Juan C; Cabezas, Carlos; Alonso, José L
2014-12-04
The rotational spectra of laser ablated picolinic and isonicotinic acids have been studied using broadband chirped pulse (CP-FTMW) and narrowband molecular beam (MB-FTMW) Fourier transform microwave spectroscopies. Two conformers of picolinic acid, s-cis-I and s-cis-II, and one conformer of isonicotinic acid have been identified through the analysis of their rotational spectra. The values of the inertial defect and the quadrupole coupling constants obtained for the most stable s-cis-I conformer of picolinic acid, evidence the formation of an O-H···N hydrogen bond between the acid group and the endocyclic N atom. The stabilization provided by this hydrogen bond compensates the destabilization energy due to the adoption of a -COOH trans configuration in this conformer. Its rs structure has been derived from the rotational spectra of several (13)C, (15)N, and (18)O species observed in their natural abundances. Mesomeric effects have been revealed by comparing the experimental values of the (14)N nuclear quadrupole coupling constants in the isomeric series of picolinic, isonicotinic, and nicotinic acids.
Beyond basins: φ,ψ preferences of a residue depend heavily on the φ,ψ values of its neighbors.
Hollingsworth, Scott A; Lewis, Matthew C; Karplus, P Andrew
2016-09-01
The Ramachandran plot distributions of nonglycine residues from experimentally determined structures are routinely described as grouping into one of six major basins: β, PII , α, αL , ξ and γ'. Recent work describing the most common conformations adopted by pairs of residues in folded proteins [i.e., (φ,ψ)2 -motifs] showed that commonly described major basins are not true single thermodynamic basins, but are composed of distinct subregions that are associated with various conformations of either the preceding or following neighbor residue. Here, as documentation of the extent to which the conformational preferences of a central residue are influenced by the conformations of its two neighbors, we present a set of φ,ψ-plots that are delimited simultaneously by the φ,ψ-angles of its neighboring residues on both sides. The level of influence seen here is typically greater than the influence associated with considering the identities of neighboring residues, implying that the use of this heretofore untapped information can improve the accuracy of structure prediction algorithms and low resolution protein structure refinement. © 2016 The Protein Society.
NASA Astrophysics Data System (ADS)
Sebastian, S.; Sylvestre, S.; Jayabharathi, J.; Ayyapan, S.; Amalanathan, M.; Oudayakumar, K.; Herman, Ignatius A.
2015-02-01
In this work we analyzed the vibrational spectra of 3,5-dinitrosalicylic acid (3,5DNSA) molecule. The total energy of eight possible conformers can be calculated by Density Functional Theory with 6-31G(d,p) as basis set to find the most stable conformer. Computational result identify the most stable conformer of 3,5DNSA is C6. The assignments of the vibrational spectra have been carried out by computing Total Energy Distribution (TED). The molecular geometry, second order perturbation energies and Electron Density (ED) transfer from filled lone pairs of Lewis base to unfilled Lewis acid sites for 3,5-DNSA molecular analyzed on the basis of Natural Bond Orbital (NBO) analysis. The formation of inter and intramolecular hydrogen bonding between sbnd OH and sbnd COOH group gave the evidence for the formation of dimer formation for 3,5-DNSA molecule. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra.
Limit cycles and conformal invariance
NASA Astrophysics Data System (ADS)
Fortin, Jean-François; Grinstein, Benjamín; Stergiou, Andreas
2013-01-01
There is a widely held belief that conformal field theories (CFTs) require zero beta functions. Nevertheless, the work of Jack and Osborn implies that the beta functions are not actually the quantites that decide conformality, but until recently no such behavior had been exhibited. Our recent work has led to the discovery of CFTs with nonzero beta functions, more precisely CFTs that live on recurrent trajectories, e.g., limit cycles, of the beta-function vector field. To demonstrate this we study the S function of Jack and Osborn. We use Weyl consistency conditions to show that it vanishes at fixed points and agrees with the generator Q of limit cycles on them. Moreover, we compute S to third order in perturbation theory, and explicitly verify that it agrees with our previous determinations of Q. A byproduct of our analysis is that, in perturbation theory, unitarity and scale invariance imply conformal invariance in four-dimensional quantum field theories. Finally, we study some properties of these new, "cyclic" CFTs, and point out that the a-theorem still governs the asymptotic behavior of renormalization-group flows.
Buijs; Hlady
1997-06-01
Interactions of recombinant human growth hormone and lysozyme with solid surfaces are studied using total internal reflection fluorescence (TIRF) and monitoring the protein's intrinsic tryptophan fluorescence. The intensity, spectra, quenching, and polarization of the fluorescence emitted by the adsorbed proteins are monitored and related to adsorption kinetics, protein conformation, and fluorophore rotational mobility. To study the influence of electrostatic and hydrophobic interactions on the adsorption process, three sorbent surfaces are used which differ in charge and hydrophobicity. The chemical surface groups are silanol, methyl, and quaternary amine. Results indicate that adsorption of hGH is dominated by hydrophobic interactions. Lysozyme adsoption is strongly affected by the ionic strength. This effect is probably caused by an ionic strength dependent conformational state in solution which, in turn, influences the affinity for adsorption. Both proteins are more strongly bound to hydrophobic surfaces and this strong interaction is accompanied by a less compact conformation. Furthermore, it was seen that regardless of the characteristics of the sorbent surface, the rotational mobility of both proteins' tryptophans is largely reduced upon adsorption.
Conformations of organophosphine oxides
De Silva, Nuwan; Zahariev, Federico; Hay, Benjamin P.; ...
2015-07-17
The conformations of a series of organophosphine oxides, OP(CH 3) 2R, where R = methyl, ethyl, isopropyl, tert-butyl, vinyl, and phenyl, are predicted using the MP2/cc-pVTZ level of theory. Comparison of potential energy surfaces for rotation about P–C bonds with crystal structure data reveals a strong correlation between predicted location and energetics of minima and histograms of dihedral angle distributions observed in the solid state. In addition, the most stable conformers are those that minimize the extent of steric repulsion between adjacent rotor substituents, and the torsional barriers tend to increase with the steric bulk of the rotating alkyl group.more » MM3 force field parameters were adjusted to fit the MP2 results, providing a fast and accurate model for predicting organophosphine oxides shapes—an essential part of understanding the chemistry of these compounds. As a result, the predictive power of the modified MM3 model was tested against MP2/cc-pVTZ conformations for triethylphosphine oxide, OP(CH 2CH 3) 3, and triphenylphosphine oxide, OP(Ph) 3.« less
The Prion Concept and Synthetic Prions.
Legname, Giuseppe; Moda, Fabio
2017-01-01
Transmissible spongiform encephalopathies or prion diseases are a group of fatal neurodegenerative diseases caused by unconventional infectious agents, known as prions (PrP Sc ). Prions derive from a conformational conversion of the normally folded prion protein (PrP C ), which acquires pathological and infectious features. Moreover, PrP Sc is able to transmit the pathological conformation to PrP C through a mechanism that is still not well understood. The generation of synthetic prions, which behave like natural prions, is of fundamental importance to study the process of PrP C conversion and to assess the efficacy of therapeutic strategies to interfere with this process. Moreover, the ability of synthetic prions to induce pathology in animals confirms that the pathological properties of the prion strains are all enciphered in abnormal conformations, characterizing these infectious agents. © 2017 Elsevier Inc. All rights reserved.
DNATCO: assignment of DNA conformers at dnatco.org.
Černý, Jiří; Božíková, Paulína; Schneider, Bohdan
2016-07-08
The web service DNATCO (dnatco.org) classifies local conformations of DNA molecules beyond their traditional sorting to A, B and Z DNA forms. DNATCO provides an interface to robust algorithms assigning conformation classes called NTC: to dinucleotides extracted from DNA-containing structures uploaded in PDB format version 3.1 or above. The assigned dinucleotide NTC: classes are further grouped into DNA structural alphabet NTA: , to the best of our knowledge the first DNA structural alphabet. The results are presented at two levels: in the form of user friendly visualization and analysis of the assignment, and in the form of a downloadable, more detailed table for further analysis offline. The website is free and open to all users and there is no login requirement. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wubben, T.; Mesecar, A.D.; UIC)
Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observedmore » in the MtPPAT-CoA complex.« less
Big bounce, slow-roll inflation, and dark energy from conformal gravity
NASA Astrophysics Data System (ADS)
Gegenberg, Jack; Rahmati, Shohreh; Seahra, Sanjeev S.
2017-02-01
We examine the cosmological sector of a gauge theory of gravity based on the SO(4,2) conformal group of Minkowski space. We allow for conventional matter coupled to the spacetime metric as well as matter coupled to the field that gauges special conformal transformations. An effective vacuum energy appears as an integration constant, and this allows us to recover the late time acceleration of the Universe. Furthermore, gravitational fields sourced by ordinary cosmological matter (i.e. dust and radiation) are significantly weakened in the very early Universe, which has the effect of replacing the big bang with a big bounce. Finally, we find that this bounce is followed by a period of nearly exponential slow roll inflation that can last long enough to explain the large scale homogeneity of the cosmic microwave background.
The Microwave Spectroscopy Study of 1,2-DIMETHOXYETHANE
NASA Astrophysics Data System (ADS)
Li, Weixing; Vigorito, Annalisa; Calabrese, Camilla; Evangelisti, Luca; Favero, Laura B.; Maris, Assimo; Melandri, Sonia
2017-06-01
With Pulsed-Jet Fourier Transform MicroWave (PJ-FTMW) spectroscopy and Stark modulated Free Jet Millimeter-Wave absorption (FJ-AMMW) spectroscopy, the rotational spectra of two conformers of 1,2-Dimethoxyethane were identified and characterized. Besides the normal species, the spectra of all the mono-substituted ^{13}C isotopologues in natural abundance were also measured. By fitting the rotational transitions split by the methyl internal rotations using both XIAM and ERHAM programs, the spectroscopic parameters were obtained and compared. The rotational constants indicated the conformers to be TGT and TGG', respectively. With the rotational constants of the normal and ^{13}C species, the coordinates of the substituted carbon atoms could be calculated with Kraitchmann's equations. The carbon-frameworks further confirmed the assignment of the two conformations. The V_{3} barriers of the two methyl groups' internal rotations were also experimentally determined.
NASA Astrophysics Data System (ADS)
Mutrikah, N.; Winarno, H.; Amalia, T.; Djakaria, M.
2017-08-01
The objective of this study was to compare conventional and conformal techniques of external beam radiotherapy (EBRT) in terms of the dose distribution, tumor response, and side effects in the treatment of locally advanced cervical cancer patients. A retrospective cohort study was conducted on cervical cancer patients who underwent EBRT before brachytherapy in the Radiotherapy Department of Cipto Mangunkusumo Hospital. The prescribed dose distribution, tumor response, and acute side effects of EBRT using conventional and conformal techniques were investigated. In total, 51 patients who underwent EBRT using conventional techniques (25 cases using Cobalt-60 and 26 cases using a linear accelerator (LINAC)) and 29 patients who underwent EBRT using conformal techniques were included in the study. The distribution of the prescribed dose in the target had an impact on the patient’s final response to EBRT. The complete response rate of patients to conformal techniques was significantly greater (58%) than that of patients to conventional techniques (42%). No severe acute local side effects were seen in any of the patients (Radiation Therapy Oncology Group (RTOG) grades 3-4). The distribution of the dose and volume to the gastrointestinal tract affected the proportion of mild acute side effects (RTOG grades 1-2). The urinary bladder was significantly greater using conventional techniques (Cobalt-60/LINAC) than using conformal techniques at 72% and 78% compared to 28% and 22%, respectively. The use of conformal techniques in pelvic radiation therapy is suggested in radiotherapy centers with CT simulators and 3D Radiotherapy Treatment Planning Systems (RTPSs) to decrease some uncertainties in radiotherapy planning. The use of AP/PA pelvic radiation techniques with Cobalt-60 should be limited in body thicknesses equal to or less than 18 cm. When using conformal techniques, delineation should be applied in the small bowel, as it is considered a critical organ according to RTOG consensus guidelines.
Isenman, D E; Kells, D I; Cooper, N R; Müller-Eberhard, H J; Pangburn, M K
1981-07-21
Inactivation of C3 by enzymatic cleavage, nucleophilic addition, or slow freezing and thawing resulted in the acquisition of similar end-state conformations as judged by near-UV circular dichroism. Although inactivation by the two nonenzymatic processes involves no peptide bond scission, the inactivated C3 resembled C3b in that it possessed a free sulfhydryl group not present in the native protein and an increased surface hydrophobicity as evidenced by enhanced binding of the fluorophore 8-anilino-1-naphthalensulfonate (ANS). The C3b-like functional properties of modified C3 [Pangburn, M. K., & Müller-Eberhard, H. J. (1980) J. Exp. Med. 152, 1102-1114] may thus be understood in terms of the similarity of its conformation to that of C3b. The rate of the conformational change following proteolytic cleavage was fast and appeared to be limited by the rate of the enzymatic reaction. In contrast, the rate of conformational change following addition of methylamine was slow and rate limited by the conformational rearrangement itself, not by the chemical modification. A kinetic analysis of the changes in circular dichroism and ANS fluorescence enhancement suggested that the nucleophilic addition was spectroscopically undetectable and was followed by a minimally biphasic, spectroscopically demonstrable conformational rearrangement. The appearance of C3b-like functional activity in nucleophile-modified C3 largely parallels the time course of the spectroscopically detectable conformational change but is distinctly slower than the rate at which hemolytic activity is lost. While fully transconformed methylamine-inactivated C3 can bind factor B and is susceptible to cleavage by C3b inactivator and its cofactor beta 1H, this cleavage occurs at a substantially slower rate than the equivalent process in C3b. The implications of these findings in terms of the mechanism through which the alterative pathway of complement is initiated are discussed.
Evaluating which plan quality metrics are appropriate for use in lung SBRT.
Yaparpalvi, Ravindra; Garg, Madhur K; Shen, Jin; Bodner, William R; Mynampati, Dinesh K; Gafar, Aleiya; Kuo, Hsiang-Chi; Basavatia, Amar K; Ohri, Nitin; Hong, Linda X; Kalnicki, Shalom; Tome, Wolfgang A
2018-02-01
Several dose metrics in the categories-homogeneity, coverage, conformity and gradient have been proposed in literature for evaluating treatment plan quality. In this study, we applied these metrics to characterize and identify the plan quality metrics that would merit plan quality assessment in lung stereotactic body radiation therapy (SBRT) dose distributions. Treatment plans of 90 lung SBRT patients, comprising 91 targets, treated in our institution were retrospectively reviewed. Dose calculations were performed using anisotropic analytical algorithm (AAA) with heterogeneity correction. A literature review on published plan quality metrics in the categories-coverage, homogeneity, conformity and gradient was performed. For each patient, using dose-volume histogram data, plan quality metric values were quantified and analysed. For the study, the radiation therapy oncology group (RTOG) defined plan quality metrics were: coverage (0.90 ± 0.08); homogeneity (1.27 ± 0.07); conformity (1.03 ± 0.07) and gradient (4.40 ± 0.80). Geometric conformity strongly correlated with conformity index (p < 0.0001). Gradient measures strongly correlated with target volume (p < 0.0001). The RTOG lung SBRT protocol advocated conformity guidelines for prescribed dose in all categories were met in ≥94% of cases. The proportion of total lung volume receiving doses of 20 Gy and 5 Gy (V 20 and V 5 ) were mean 4.8% (±3.2) and 16.4% (±9.2), respectively. Based on our study analyses, we recommend the following metrics as appropriate surrogates for establishing SBRT lung plan quality guidelines-coverage % (ICRU 62), conformity (CN or CI Paddick ) and gradient (R 50% ). Furthermore, we strongly recommend that RTOG lung SBRT protocols adopt either CN or CI Padddick in place of prescription isodose to target volume ratio for conformity index evaluation. Advances in knowledge: Our study metrics are valuable tools for establishing lung SBRT plan quality guidelines.
Youth's Motivations for Using Homophobic and Misogynistic Language
ERIC Educational Resources Information Center
Romeo, Katherine E.; Chico, Emilia; Darcangelo, Nicole; Bellinger, L. Boyd; Horn, Stacey S.
2017-01-01
A diverse group of adolescents (N = 41) from a large city in the Midwestern United States participated in focus groups about misogynistic and homophobic language. Our qualitative analysis yielded two major themes. First, participants discussed this language as a way to regulate peers' conformity to norms related to gender and sexuality. Second,…
Quality, Conformity, and Conflict: Questioning the Assumptions of Osborn's Brainstorming Technique
ERIC Educational Resources Information Center
Goldenberg, Olga; Wiley, Jennifer
2011-01-01
Divergent thinking tasks are a popular basis for research on group creative problem solving, or brainstorming. The brainstorming literature has been dominated by research that investigates group performance by measuring the total number of generated ideas using the original rules put forth by Osborn (1953). This review of empirical literature on…
Intramolecular interactions in the polar headgroup of sphingosine: serinol.
Loru, Donatella; Peña, Isabel; Alonso, José L; Sanz, M Eugenia
2016-03-04
The intramolecular interactions in the lipid sphingosine have been elucidated through the investigation of the amino alcohol serinol which mimics its polar headgroup. Intricate networks of intramolecular hydrogen bonds involving the hydroxyl groups and the amino group contribute to the stabilisation of five different conformations observed in the broadband rotational spectrum.
The Relationship of Ethnicity-Related Stressors and Latino Ethnic Identity to Well-Being
ERIC Educational Resources Information Center
French, Sabine Elizabeth; Chavez, Noe R.
2010-01-01
Based on the risk and resilience model, the current study examined the effect of ethnicity-related stressors (perceived discrimination, stereotype confirmation concern, and own-group conformity pressure) and ethnic identity (centrality, private regard, public regard, and other-group orientation) on the well-being of 171 Latino American college…
ERIC Educational Resources Information Center
Suizzo, Marie-Anne; Chen, Wan-Chen; Cheng, Chi-Chia; Liang, Angel S.; Contreras, Helen; Zanger, Dinorah; Robinson, Courtney
2008-01-01
This study compared dimensions of independence and interdependence in parents' beliefs about daily child-rearing practices across four ethnic groups. Two questionnaires were completed by 310 parents of preschool-age children, and three belief constructs were identified. "Conformity" was least valued by European Americans. "Autonomy" was equally…
7 CFR 1755.200 - RUS standard for splicing copper and fiber optic cables.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Color coded plastic tie wraps shall be placed loosely around each binder group of cables before splicing... conform to the same color designations as the binder ribbons. Twisted wire pigtails shall not be used to identify binder groups due to potential transmission degradation. (ii) The standard insulation color code...
Group Exercise in Chinese Preschools in an Era of Child-Centered Pedagogy
ERIC Educational Resources Information Center
Liu, Chang; Tobin, Joseph
2018-01-01
"Guangbo ticao" (group exercise) is a daily routine in Chinese preschools characterized by collectivity, discipline, and conformity. In this article we explore the question of why "guangbo ticao" has survived in an era of progressive educational reform in contemporary China. We use interviews with Chinese preschool teachers and…
Haniu, M.; Narhi, L. O.; Arakawa, T.; Elliott, S.; Rohde, M. F.
1993-01-01
Several amino groups of recombinant human erythropoietin are selectively cross-linked by specific cross-linkers including disuccinimidyl suberate or dithiobis(succinimidyl propionate). Intramolecular cross-linkings are obtained without significant change of the protein conformation using appropriate concentrations (0.2 mM) of the cross-linkers, which possess an 11-12-A length of a spacer between two reacting groups. Intramolecularly cross-linked peptides obtained suggest that several amino groups in erythropoietin (EPO) are positioned at a distance of near 12 A in the solution state. These interfacing amino groups include Lys 20-Lys 154, Lys 45-Lys 140, Lys 52-Lys 154, Lys 52-Lys 140, and Ala 1-Lys 116. A comparison of the cross-linking results between nonglycosylated EPO and glycosylated EPO suggests that both proteins retain high similarity regarding protein conformation. These results fit a structural model similar to that of human growth hormone, in which four alpha-helical bundles and a long stretch of beta-sheet structure are involved in the active protein. PMID:8401229
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gifford, Brendan Joel; Kilina, Svetlana; Htoon, Han
Recent spectroscopic studies have revealed the appearance of multiple low-energy peaks in the fluorescence of single-walled carbon nanotubes (SWCNTs) upon their covalent functionalization by aryl groups. The photophysical nature of these low energy optical bands is of significant interest in the quest to understand their appearance and to achieve their precise control via chemical modification of SWCNTs. This theoretical study explains the specific energy dependence of emission features introduced in chemically functionalized (6,5) SWCNTs with aryl bromides at different conformations and in various dielectric media. Calculations using density functional theory (DFT) and time dependent DFT (TD-DFT) show that the specificmore » isomer geometry—the relative position of functional groups on the carbon-ring of the nanotube—is critical for controlling the energies and intensities of optical transitions introduced by functionalization, while the dielectric environment and the chemical composition of functional groups play less significant roles. Furthermore, the predominant effects on optical properties as a result of functionalization conformation are rationalized by exciton localization on the surface of the SWCNT near the dopant sp3-defect but not onto the functional group itself.« less
Aspects of Higher-Spin Conformal Field Theories and Their Renormalization Group Flows
NASA Astrophysics Data System (ADS)
Diab, Kenan S.
In this thesis, we study conformal field theories (CFTs) with higher-spin symmetry and the renormalization group flows of some models with interactions that weakly break the higher-spin symmetry. When the higher-spin symmetry is exact, we will present CFT analogues of two classic results in quantum field theory: the Coleman-Mandula theorem, which is the subject of chapter 2, and the Weinberg-Witten theorem, which is the subject of chapter 3. Schematically, our Coleman-Mandula analogue states that a CFT that contains a symmetric conserved current of spin s > 2 in any dimension d > 3 is effectively free, and our Weinberg-Witten analogue states that the presence of certain short, higher-spin, "sufficiently asymmetric" representations of the conformal group is either inconsistent with conformal symmetry or leads to free theories in d = 4 dimensions. In both chapters, the basic strategy is to solve certain Ward identities in convenient kinematical limits and thereby show that the number of solutions is very limited. In the latter chapter, Hofman-Maldacena bounds, which constrain one-point functions of the stress tensor in general states, play a key role. Then, in chapter 4, we will focus on the particular examples of the O(N) and Gross-Neveu model in continuous dimensions. Using diagrammatic techniques, we explicitly calculate how the coefficients of the two-point function of a U(1) current and the two-point function of the stress tensor (CJ and CT, respectively) are renormalized in the 1/N and epsilon expansions. From the higher-spin perspective, these models are interesting since they are related via the AdS/CFT correspondence to Vasiliev gravity. In addition to checking and extending a number of previously-known results about CT and CJ in these theories, we find that in certain dimensions, CJ and CT are not monotonic along the renormalization group flow. Although it was already known that certain supersymmetric models do not satisfy a "CJ"- or " CT"-theorem, this shows that such a theorem is unlikely to hold even under more restrictive assumptions.
NASA Astrophysics Data System (ADS)
Amicangelo, Jay; Silbaugh, Matthew J.
2016-06-01
Ethanol can exist in two conformers, one in which the OH group is trans to the methyl group (trans-ethanol) and the other in which the OH group is gauche to the methyl group (gauche-ethanol). Matrix isolation infrared spectra of ethanol deposited in 20 K argon matrices display distinct infrared peaks that can be assigned to the trans-ethanol and gauche-ethanol conformers, particularly with the O-H stretching vibrations. Given this, matrix isolation experiments were performed in which ethanol (C_2H_5OH) and benzene (C_6H_6) were co-deposited in argon matrices at 20 K in order to determine if conformer specific ethanol complexes with benzene could be observed in the infrared spectra. New infrared peaks that can be attributed to the trans-ethanol and gauche-ethanol complexes with benzene have been observed near the O-H stretching vibrations of ethanol. The initial identification of the new infrared peaks as being due to the ethanol-benzene complexes was established by performing a concentration study (1:200 to 1:1600 S/M ratios), by comparing the co-deposition spectra with the spectra of the individual monomers, by matrix annealing experiments (35 K), and by performing experiments using isotopically labeled ethanol (C_2D_5OD) and benzene (C_6D_6). Quantum chemical calculations were also performed for the C_2H_5OH-C_6H_6 complexes using density functional theory (B3LYP) and ab initio (MP2) methods. Stable minima were found for the both the trans-ethanol and gauche-ethanol complexes with benzene at both levels of theory and were predicted to have similar interaction energies. Both complexes can be characterized as H-π complexes, in which the ethanol is above the benzene ring with the hydroxyl hydrogen interacting with the π cloud of the ring. The theoretical O-H stretching frequencies for the complexes were predicted to be shifted from the monomer frequencies and from each other and these results were used to make the conformer specific infrared peak assignments. Barnes, A. J.; Hallam, H. E. Trans. Faraday Soc., 1970, 66, 1932-1940.
The Rotational Spectrum of Complex Organic Molecules: 2(N)-METHYLAMINOETHANOL
NASA Astrophysics Data System (ADS)
Melandri, S.; Maris, A.; Calabrese, C.
2013-06-01
The detection of molecules in space, is based on their spectroscopic features and high resolution spectral data is needed to allow an unambiguous identification of them. Many of the molecules detected in space are complex organic molecules containing chains of carbon atoms and which therefore show a high degree of molecular flexibility. The high number of low energy conformations and the presence of large amplitude motions on shallow potential energy surfaces are peculiar to this kind of systems. The presence of a high number of stable conformers - often interconverting through small energy barriers - usually gives rise to very complex spectra, which represent a challenge for spectroscopic and computational methods. We report the rotational study of methylaminoethanol (MAE) performed by Free Jet Absorption Microwave Spectrocopy (FJAMW). For this species it has proved essential to compute the complete potential energy surfaces related to the low amplitude modes. This has been calculated at the B3LYP/6-311++G** level of theory while the stable geometries have been characterized MP2/6-311++G**. The interest in the conformational properties of MAE is twofold: in the first place, aminoethanol and thus also MAE can be considered precursors of aminoacids in the interstellar medium and secondly, the MAE side chain is present in important biological molecules such as adrenaline. The conformational preferences of MAE are dominated by the intramolecular hydrogen bond between the OH and NH2 groups and its flexibility and asymmetry generate a very high number of conformers. 24 stable conformations have been predicted and two conformers were observed by FJAMW spectroscopy with our 60-72 GHz spectrometer. With respect to a previous study we have extended the observed frequency range, partly reassigned the rotational spectrum of one of the conformers and determined the nuclear quadrupole constants. The search for higher energy conformers has also been undertaken. S. Charnley, in Proceedings of the workshop: The bridge between the Big Bang and Biology, CNR, Italy 1999. R. E. Penn and L. W. Buxton J. Mol. Spectrosc. {56} 229 1975.
Isfahani, Sakineh Saghaeiannejad; Khajouei, Reza; Jahanbakhsh, Maryan; Mirmohamadi, Mahboubeh
2014-01-01
Introduction: Nowadays, modern laboratories are faced with a huge volume of information. One of the goals of the Laboratory Information Management System (LIMS) is to assist in the management of the information generated in the laboratory. This study intends to evaluate the LIMS based on the standards of the American National Standard Institute (ANSI). Materials and Methods: This research is a descriptive–analytical study, which had been conducted in 2011, on the LIMSs in use, in the teaching and private hospitals in Isfahan. The data collecting instrument was a checklist, which was made by evaluating three groups of information components namely: ‘System capabilities’, ‘work list functions,’ and ‘reporting’ based on LIS8-A. Data were analyzed using the SPSS 20. Data were analyzed using (relative) frequency, percentage. To compare the data the following statistical tests were used: Leven test, t-test, and Analysis of Variance (ANOVA). Results: The results of the study indicated that the LIMS had a low conformity (30%) with LIS8-A (P = 0.001), with no difference between teaching and private hospitals (P = 0.806). The ANOVA revealed that in terms of conformity with the LIS8-A standard, there was a significant difference between the systems produced by different vendors (P = 0.023). According to the results, a Kowsar system with more than %57 conformity in the three groups of information components had a better conformity to the standard, compared to the other systems. Conclusions: This study indicated that none of the LIMSs had a good conformity to the standard. It seems that system providers did not pay sufficient attention to many of the information components required by the standards when designing and developing their systems. It was suggested that standards from certified organizations and institutions be followed in the design and development process of health information systems. PMID:25077154
Isfahani, Sakineh Saghaeiannejad; Khajouei, Reza; Jahanbakhsh, Maryan; Mirmohamadi, Mahboubeh
2014-01-01
Nowadays, modern laboratories are faced with a huge volume of information. One of the goals of the Laboratory Information Management System (LIMS) is to assist in the management of the information generated in the laboratory. This study intends to evaluate the LIMS based on the standards of the American National Standard Institute (ANSI). This research is a descriptive-analytical study, which had been conducted in 2011, on the LIMSs in use, in the teaching and private hospitals in Isfahan. The data collecting instrument was a checklist, which was made by evaluating three groups of information components namely: 'System capabilities', 'work list functions,' and 'reporting' based on LIS8-A. Data were analyzed using the SPSS 20. Data were analyzed using (relative) frequency, percentage. To compare the data the following statistical tests were used: Leven test, t-test, and Analysis of Variance (ANOVA). The results of the study indicated that the LIMS had a low conformity (30%) with LIS8-A (P = 0.001), with no difference between teaching and private hospitals (P = 0.806). The ANOVA revealed that in terms of conformity with the LIS8-A standard, there was a significant difference between the systems produced by different vendors (P = 0.023). According to the results, a Kowsar system with more than %57 conformity in the three groups of information components had a better conformity to the standard, compared to the other systems. This study indicated that none of the LIMSs had a good conformity to the standard. It seems that system providers did not pay sufficient attention to many of the information components required by the standards when designing and developing their systems. It was suggested that standards from certified organizations and institutions be followed in the design and development process of health information systems.
How Native and Alien Metal Cations Bind ATP: Implications for Lithium as a Therapeutic Agent
NASA Astrophysics Data System (ADS)
Dudev, Todor; Grauffel, Cédric; Lim, Carmay
2017-02-01
Adenosine triphosphate (ATP), the major energy currency of the cell, exists in solution mostly as ATP-Mg. Recent experiments suggest that Mg2+ interacts with the highly charged ATP triphosphate group and Li+ can co-bind with the native Mg2+ to form ATP-Mg-Li and modulate the neuronal purine receptor response. However, it is unclear how the negatively charged ATP triphosphate group binds Mg2+ and Li+ (i.e. which phosphate group(s) bind Mg2+/Li+) and how the ATP solution conformation depends on the type of metal cation and the metal-binding mode. Here, we reveal the preferred ATP-binding mode of Mg2+/Li+ alone and combined: Mg2+ prefers to bind ATP tridentately to each of the three phosphate groups, but Li+ prefers to bind bidentately to the terminal two phosphates. We show that the solution ATP conformation depends on the cation and its binding site/mode, but it does not change significantly when Li+ binds to Mg2+-loaded ATP. Hence, ATP-Mg-Li, like Mg2+-ATP, can fit in the ATP-binding site of the host enzyme/receptor, activating specific signaling pathways.
NASA Astrophysics Data System (ADS)
Abe, Hiroshi; Kohki, Erica; Nakada, Ayumu; Kishimura, Hiroaki
2017-07-01
In ionic liquids (ILs), the effects of a quaternary ammonium cation containing a hydroxyl group were investigated and compared with the effect of a standard quaternary ammonium cation. The cation possessing a hydroxyl group is choline, Chol+, and the anion is bis(trifluoromethylsulfonyl)imide, TFSI-. Crystal polymorphism of pure [Chol][TFSI] was observed upon both cooling and heating by simultaneous X-ray diffraction and differential scanning calorimetry measurements. In contrast, [N3111][TFSI] (N3111+: N-trimethyl-N-propylammonium), a standard IL, demonstrated simple crystallization upon cooling. By adding 1-propanol or 2-propanol, the phase behaviors of the [Chol][TFSI]-based and [N3111][TFSI]-based mixtures were clearly distinguished. By Raman spectroscopy, the TFSI- anion conformers in the liquid state were shown to vary according to the propanol concentration, propanol isomer, and type of cation. The anomalous behaviors of pure [Chol][TFSI] and its mixtures are derived from hydrogen bonding of the hydroxyl group of Chol+ cation coupled with the hydrophobicity and packing efficiency of propanol.
Crystal structure of group II intron domain 1 reveals a template for RNA assembly
Zhao, Chen; Rajashankar, Kanagalaghatta R.; Marcia, Marco; ...
2015-10-26
Although the importance of large noncoding RNAs is increasingly appreciated, our understanding of their structures and architectural dynamics remains limited. In particular, we know little about RNA folding intermediates and how they facilitate the productive assembly of RNA tertiary structures. In this paper, we report the crystal structure of an obligate intermediate that is required during the earliest stages of group II intron folding. Composed of domain 1 from the Oceanobacillus iheyensis group II intron (266 nucleotides), this intermediate retains native-like features but adopts a compact conformation in which the active site cleft is closed. Transition between this closed andmore » the open (native) conformation is achieved through discrete rotations of hinge motifs in two regions of the molecule. Finally, the open state is then stabilized by sequential docking of downstream intron domains, suggesting a 'first come, first folded' strategy that may represent a generalizable pathway for assembly of large RNA and ribonucleoprotein structures.« less
Using steric hindrance to design new inhibitors of class C beta-lactamases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trehan, Indi; Morandi, F.; Blaszczak, L.C.
{beta}-lactamases confer resistance to {beta}-lactam antibiotics such as penicillins and cephalosporins. However, {beta}-lactams that form an acyl-intermediate with the enzyme but subsequently are hindered from forming a catalytically competent conformation seem to be inhibitors of {beta}-lactamases. This inhibition may be imparted by specific groups on the ubiquitous R1 side chain of {beta}-lactams, such as the 2-amino-4-thiazolyl methoxyimino (ATMO) group common among third-generation cephalosporins. Using steric hindrance of deacylation as a design guide, penicillin and carbacephem substrates were converted into effective {beta}-lactamase inhibitors and antiresistance antibiotics. To investigate the structural bases of inhibition, the crystal structures of the acyl-adducts of themore » penicillin substrate amoxicillin and the new analogous inhibitor ATMO-penicillin were determined. ATMO-penicillin binds in a catalytically incompetent conformation resembling that adopted by third-generation cephalosporins, demonstrating the transferability of such sterically hindered groups in inhibitor design.« less
Safko, Trevor M; Faleiros, Marcelo M; Atvars, Teresa D Z; Weiss, Richard G
2016-06-16
An intramolecular exciplex-mediated, proton-coupled, charge-transfer (PCCT) process has been investigated for a series of N,N-dimethyl-3-(1-pyrenyl)propan-1-ammonium cations with different anions (PyS) in solvents of low to intermediate polarity over a wide temperature range. Solvent mediates both the equilibrium between conformations of the cation that place the pyrenyl and ammonium groups in proximity (conformation C) or far from each other (conformation O) and the ability of the ammonium group to transfer a proton adiabatically in the PyS excited singlet state. Thus, exciplex emission, concurrent with the PCCT process, was observed only in hydrogen-bond accepting solvents of relatively low polarity (tetrahydrofuran, ethyl acetate, and 1,4-dioxane) and not in dichloromethane. From the exciplex emission and other spectroscopic and thermodynamic data, the acidity of the ammonium group in conformation C of the excited singlet state of PyS (pKa*) has been estimated to be ca. -3.4 in tetrahydrofuran. The ratios between the intensities of emission from the exciplex and the locally excited state (IEx/ILE) appear to be much more dependent on the nature of the anion than are the rates of exciplex formation and decay, although the excited state data do not provide a quantitative measure of the anion effect on the C-O equilibrium. The activation energies associated with exciplex formation in THF are calculated to be 0.08 to 0.15 eV lower than for the neutral amine, N,N-dimethyl-3-(1-pyrenyl)propan-1-amine. Decay of the exciplexes formed from the deprotonation of PyS is hypothesized to occur through charge-recombination processes. To our knowledge, this is the first example in which photoacidity and intramolecular exciplex formation (i.e., a PCCT reaction) are coupled.
Ultrahigh-resolution crystal structures of Z-DNA in complex with Mn(2+) and Zn(2+) ions.
Drozdzal, Pawel; Gilski, Miroslaw; Kierzek, Ryszard; Lomozik, Lechoslaw; Jaskolski, Mariusz
2013-06-01
X-ray crystal structures of the spermine(4+) form of the Z-DNA duplex with the self-complementary d(CG)3 sequence in complexes with Mn(2+) and Zn(2+) cations have been determined at the ultrahigh resolutions of 0.75 and 0.85 Å, respectively. Stereochemical restraints were only used for the sperminium cation (in both structures) and for nucleotides with dual conformation in the Zn(2+) complex. The Mn(2+) and Zn(2+) cations at the major site, designated M(2+)(1), bind at the N7 position of G6 by direct coordination. The coordination geometry of this site was octahedral, with complete hydration shells. An additional Zn(2+)(2) cation was bis-coordinated in a tetrahedral fashion by the N7 atoms of G10 and G12 from a symmetry-related molecule. The coordination distances of Zn(2+)(1) and Zn(2+)(2) to the O6 atom of the guanine residues were 3.613 (6) and 3.258 (5) Å, respectively. Moreover, a chloride ion was also identified in the coordination sphere of Zn(2+)(2). Alternate conformations were observed in the Z-DNA-Zn(2+) structure not only at internucleotide linkages but also at the terminal C3'-OH group of G12. The conformation of the sperminium chain in the Z-DNA-Mn(2+) complex is similar to the spermine(4+) conformation in analogous Z-DNA-Mg(2+) structures. In the Z-DNA-Zn(2+) complex the sperminium cation is disordered and partially invisible in electron-density maps. In the Z-DNA-Zn(2+) complex the sperminium cation only interacts with the phosphate groups of the Z-DNA molecules, while in the Z-DNA-Mn(2+) structure it forms hydrogen bonds to both the phosphate groups and DNA bases.
Mamat, Constantin; Pretze, Marc; Gott, Matthew; Köckerling, Martin
2016-01-01
Novel, functionalized piperazine derivatives were successfully synthesized and fully characterized by 1 H/ 13 C/ 19 F NMR, MS, elemental analysis and lipophilicity. All piperazine compounds occur as conformers resulting from the partial amide double bond. Furthermore, a second conformational shape was observed for all nitro derivatives due to the limited change of the piperazine chair conformation. Therefore, two coalescence points were determined and their resulting activation energy barriers were calculated using 1 H NMR. To support this result, single crystals of 1-(4-nitrobenzoyl)piperazine ( 3a , monoclinic, space group C 2/ c , a = 24.587(2), b = 7.0726(6), c = 14.171(1) Å, β = 119.257(8)°, V = 2149.9(4) Å 3 , Z = 4, D obs = 1.454 g/cm 3 ) and the alkyne derivative 4-(but-3-yn-1-yl)-1-(4-fluorobenzoyl)piperazine ( 4b , monoclinic, space group P 2 1 / n , a = 10.5982(2), b = 8.4705(1), c = 14.8929(3) Å, β = 97.430(1)°, V = 1325.74(4) Å 3 , Z = 4, D obs = 1.304 g/cm 3 ) were obtained from a saturated ethyl acetate solution. The rotational conformation of these compounds was also verified by XRD. As proof of concept for future labeling purposes, both nitropiperazines were reacted with [ 18 F]F - . To test the applicability of these compounds as possible 18 F-building blocks, two biomolecules were modified and chosen for conjugation either using the Huisgen-click reaction or the traceless Staudinger ligation.
Gas-Phase Structures of Linalool and Coumarin Studied by Microwave Spectroscopy
NASA Astrophysics Data System (ADS)
Nguyen, H. V. L.; Stahl, W.; Grabow, J.-U.
2013-06-01
The microwave spectra of two natural substances, linalool and coumarin, were recorded in the microwave range from 9 to 16 GHz and 8.5 to 10.5 GHz, respectively.Linalool is an acyclic monoterpene and the main component of lavender oil. It has a structure with many possible conformations. The geometry of the lowest energy conformer has been determined by a combination of microwave spectroscopy and quantum chemical calculations. Surprisingly, a globular rather than a prolate shape was found. This structure is probably stabilized by a π interaction between two double bonds which are arranged in two stacked layers of atoms within the molecule. A-E splittings due to the internal rotation of one methyl group could be resolved and the barrier to internal rotation was determined to be 400.20(64) cm^{-1}. The standard deviation of the fit was close to experimental accuracy. For an identification of the observed conformer not only the rotational constants but also the internal rotation parameters of one of the methyl groups were needed. Coumarin is a widely used flavor in perfumery as sweet woodruff scent. The aromatic structure allows solely for one planar conformer, which was found under molecular beam conditions and compared to other molecules with similar structures. Here, the rotational spectrum could be described by a set of parameters including the rotational constants and the centrifugal distortion constants using a semi-rigid molecule Hamiltonian. Furthermore, the rotational transitions of all nine ^{13}C isotopologues were measured in natural abundance. As a consequence, the microwave structure of coumarin could be almost completely determined.
2015-01-01
Dehaloperoxidase hemoglobin A (DHP A) is a multifunctional hemoglobin that appears to have evolved oxidative pathways for the degradation of xenobiotics as a protective function that complements the oxygen transport function. DHP A possesses at least two internal binding sites, one for substrates and one for inhibitors, which include various halogenated phenols and indoles. Herein, we report the X-ray crystallographic structure of the carbonmonoxy complex (DHPCO). Unlike other DHP structures with 6-coordinated heme, the conformation of the distal histidine (H55) in DHPCO is primarily external or solvent exposed, despite the fact that the heme Fe is 6-coordinated. As observed generally in globins, DHP exhibits two distal histidine conformations (one internal and one external). In previous structural studies, we have shown that the distribution of H55 conformations is weighted strongly toward the external position when the DHP heme Fe is 5-coordinated. The large population of the external conformation of the distal histidine observed in DHPCO crystals at pH 6.0 indicates that some structural factor in DHP must account for the difference from other globins, which exhibit a significant external conformation only when pH < 4.5. While the original hypothesis suggested that interaction with a heme-Fe-bound ligand was the determinant of H55 conformation, the current study forces a refinement of that hypothesis. The external or open conformation of H55 is observed to have interactions with two propionate groups in heme, at distances of 3.82 and 2.73 Å, respectively. A relatively weak hydrogen bonding interaction between H55 and CO, combined with strong interactions with heme propionate (position 6), is hypothesized to strengthen the external conformation of H55. Density function theory (DFT) calculations were conducted to test whether there is a weaker hydrogen bond interaction between H55 and heme bonded CO or O2. Molecular dynamics simulations were conducted to examine how the tautomeric forms of H55 affect the dynamic motions of the distal histidine that govern the switching between open and closed conformations. The calculations support the modified hypothesis suggesting a competition between the strength of interactions with heme ligand and the heme propionates as the factors that determine the conformation of the distal histidine. PMID:24670063
Conformal field algebras with quantum symmetry from the theory of superselection sectors
NASA Astrophysics Data System (ADS)
Mack, Gerhard; Schomerus, Volker
1990-11-01
According to the theory of superselection sectors of Doplicher, Haag, and Roberts, field operators which make transitions between different superselection sectors—i.e. different irreducible representations of the observable algebra—are to be constructed by adjoining localized endomorphisms to the algebra of local observables. We find the relevant endomorphisms of the chiral algebra of observables in the minimal conformal model with central charge c=1/2 (Ising model). We show by explicit and elementary construction how they determine a representation of the braid group B ∞ which is associated with a Temperley-Lieb-Jones algebra. We recover fusion rules, and compute the quantum dimensions of the superselection sectors. We exhibit a field algebra which is quantum group covariant and acts in the Hilbert space of physical states. It obeys local braid relations in an appropriate weak sense.
The mass-zero spin-two field and gravitational theory.
NASA Technical Reports Server (NTRS)
Coulter, C. A.
1972-01-01
Demonstration that the conventional theory of the mass-zero spin-two field with sources introduces extraneous nonspin-two field components in source regions and fails to be covariant under the full or restricted conformal group. A modified theory is given, expressed in terms of the physical components of mass-zero spin-two field rather than in terms of 'potentials,' which has no extraneous components inside or outside sources, and which is covariant under the full conformal group. For a proper choice of source term, this modified theory has the correct Newtonian limit and automatically implies that a symmetric second-rank source tensor has zero divergence. It is shown that possibly a generally covariant form of the spin-two theory derived here can be constructed to agree with general relativity in all currently accessible experimental situations.
The single-crystal structure of the organic superconductor betaCO-(BEDT-TTF)2I3 from a powder grain.
Madsen; Burghammer; Fiedler; Müller
1999-08-01
Synchrotron radiation diffraction data have been collected at 200 K on a microscopic single crystal (dimensions 12 x 10 x 2 µm) of the title compound, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene, C(10)H(8)S(8). The quality of the diffraction data allowed a full structure refinement and enabled the determination of structural details such as the conformations of the ethylene groups as well as the occupancy of the triiodide sites. The compound was found to be slightly iodine-deficient and better described as beta(CO)-(BEDT-TTF)(2)I(3-x) [x = 0.014 (3)]. One of the ethylene groups of the BEDT-TTF cation is disordered at this temperature and exists in two distinct conformations with occupancies which are identical within the standard uncertainty.
More on asymptotically anti-de Sitter spaces in topologically massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henneaux, Marc; Physique theorique et mathematique, Universite Libre de Bruxelles and International Solvay Institutes, ULB Campus Plaine C.P. 231, B-1050 Bruxelles; Martinez, Cristian
2010-09-15
Recently, the asymptotic behavior of three-dimensional anti-de Sitter (AdS) gravity with a topological mass term was investigated. Boundary conditions were given that were asymptotically invariant under the two dimensional conformal group and that included a falloff of the metric sufficiently slow to consistently allow pp-wave type of solutions. Now, pp waves can have two different chiralities. Above the chiral point and at the chiral point, however, only one chirality can be considered, namely, the chirality that has the milder behavior at infinity. The other chirality blows up faster than AdS and does not define an asymptotically AdS spacetime. By contrast,more » both chiralities are subdominant with respect to the asymptotic behavior of AdS spacetime below the chiral point. Nevertheless, the boundary conditions given in the earlier treatment only included one of the two chiralities (which could be either one) at a time. We investigate in this paper whether one can generalize these boundary conditions in order to consider simultaneously both chiralities below the chiral point. We show that this is not possible if one wants to keep the two-dimensional conformal group as asymptotic symmetry group. Hence, the boundary conditions given in the earlier treatment appear to be the best possible ones compatible with conformal symmetry. In the course of our investigations, we provide general formulas controlling the asymptotic charges for all values of the topological mass (not just below the chiral point).« less
NASA Astrophysics Data System (ADS)
Iriepa, I.; Bellanato, J.; Gálvez, E.; Gil-Alberdi, B.
2010-07-01
Some mono-substituted amides ( 2- 5) derived from 3-methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9α-amine were synthesized and studied by IR, 1H and 13C NMR spectroscopy. The crystal structure of 3-methyl-2,4-diphenyl-9α-(3,5-dichlorobenzamido)-3-azabicyclo[3.3.1]nonane ( 3) was determined by X-ray diffraction. NMR data showed that all compounds adopt in CDCl 3 a preferred flattened chair-chair conformation with the N-CH 3 group in equatorial disposition. X-ray data agreed with this conformation in the case of compound 3. IR data revealed that compounds 2 and 3 present a C dbnd O⋯HN intermolecular bond in the solid state. This conclusion was also confirmed by X-ray data of compound 3. In the case of compound 5, IR results suggested intermolecular NH⋯N-heterocyclic bonding. On the contrary, in the pyrazine derivative ( 4), IR, 1H and 13C NMR data showed the presence of an intramolecular NH⋯N1″-heterocyclic hydrogen bond in the solid state and solution. Moreover, NMR and IR data showed a preferred trans disposition for the NH-C dbnd O group. NMR also revealed free rotation of the -NH-CO-R group around C9-NH bond. Pharmacological assays on mice were drawn to evaluate analgesic activity.
2-[3-Furyl(hydroxy)methyl]-2,3-dimethylcyclohexanone.
García, Esther; Mendoza, Virgilio; Guzmán, José Agustín; Maldonado Graniel, Luis Angel; Hernández-Ortega, Simón
2002-06-01
Contribution No. 1750 of the Instituto de Quimica, UNAM, Mexico. In the molecule of the title compound, C(13)H(18)O(3), there is a syn relationship between the two vicinal methyl groups. The six-membered ring adopts a chair conformation, with one equatorial and two axial groups, and the furyl group is almost parallel to the ketone group. Intermolecular hydrogen bonds [O[bond]H...O[double bond]C 2.814 (3) A] form chains along [100].
Açikgöz, Ayla; Ergör, Gül
2011-01-01
Cervical cancer screening with Pap smear test is a cost-effective method. The Ministry of Health in Turkey recommends that it be performed once every five years after age 35. The purpose of this study was to determine the cervical cancer risk levels of women between 35 and 69, and the intervals they have the Pap smear test, and to investigate the relation between the two. This study was performed on 227 women aged between 35 and 69 living in Balçova District of İzmir province. Using the cervical cancer risk index program of Harvard School of Public Health, the cervical cancer risk level of 70% of the women was found below average, 22.1% average, and 7.9% above average. Only 52% of the women have had Pap smear test at least once in their lives. The percentage screening regularly in conformity with the national screening standard was 39.2%. Women in the 40-49 age group, were married, conformed significantly more (p<0.05) to the national screening standard. Compliance also increased with the level of education and decreased with the cervical cancer risk level (p<0.05). A logistic regression model was constructed including age, education level, menstruation state of the women and the economic level of the family. Not having the Pap smear test in conformity with the national cervical cancer screening standard in 35-39 age group was 2.52 times more than 40-49 age group, while it was 3.26 times more in 60-69 age group (p< 0.05). Not having Pap smear test in 35-39 age group more than other groups might result from lack of information on the cervical cancer national screening standard and the necessity of having Pap smear test. As for 60-69 age group, the low education level might cause not having Pap smear test. Under these circumstances, the cervical cancer risk levels should be determined and the individuals should be informed. Providing Pap smear test screening service to individuals in the target group of national screening standard, as a public service may resolve the inequalities due to age and educational differences.
Ma, Zhiqian; Zhang, Yan; Chen, Xiaofang; Liu, Chaoxing; Xu, Huijun; Zhao, Peng
2015-01-01
This study aims to observe and discuss the curative and side effects of three different fractionation regimen of three-dimensional conformable radiotherapy (3DCRT) for esophageal cancer. A total of 169 untreated patients of esophageal cancer were randomized into three groups: groups A (conventional group, 2.0 Gy per time), B (2.5 Gy group, 2 Gy per time), and C (3.0 Gy group, 3.0 Gy per time), respectively. Groups A, B, and C are similar in terms of partial response (P = 0.35). However, the three groups had no significant differences in terms of the complete response (P = 0.63). The three-year survival rate of group B was higher than those of the other two groups, and the difference was significant (P = 0.047). For the three-year local control rate, that of group B was also higher than those of groups A and C, but the difference was not significant (P = 0.067). The incidence rate of 3 level esophagitis and bronchitis was highest in group C (P = 0.023 and P = 0.064). The 3 level tardive radioactive esophagitis in group C was higher than those in other two groups (P = 0.037 and P = 0.04). The incidence rate of the 3 level advanced lung reaction was also the highest in the three groups (P = 0.041). The effect is better and the side effect is tolerable for the 2.5 Gy per fraction, 5 times per week; thus, it can be used clinically for 3DCRT for esophageal carcinoma.
Swedish women's perceptions of and conformity to feminine norms.
Kling, Johanna; Holmqvist Gattario, Kristina; Frisén, Ann
2017-06-01
The relatively high gender equality in the Swedish society is likely to exert an influence on gender role construction. Hence, the present research aimed to investigate Swedish women's perceptions of and conformity to feminine norms. A mixed methods approach with two studies was used. In Study 1, young Swedish women's gender role conformity, as measured by the Conformity to Feminine Norms Inventory 45 (CFNI-45), was compared to the results from previously published studies in Canada, the United States, and Slovakia. Overall, Swedish women displayed less conformity than their foreign counterparts, with the largest difference on the subscale Sexual fidelity. In Study 2, focus group interviews with young Swedish women added a more complex picture of feminine norms in the Swedish society. For instance the results indicated that Swedish women, while living in a society with a strong gender equality discourse, are torn between the perceived need to invest in their appearances and the risk of being viewed as non-equal when doing so. In sum, despite the fact that traditional gender roles are less pronounced in Sweden, gender role conformity is still a pressing issue. Since attending to the potential roles of feminine norms in women's lives previously has been proposed to be useful in counseling and therapeutic work, the present research also offers valuable information for both researchers and practitioners. [Correction added on 5 May 2017, after first online publication in April 2017: An incorrect Abstract was inadvertently captured in the published article and has been corrected in this current version.]. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
A planning comparison of 7 irradiation options allowed in RTOG 1005 for early-stage breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guang-Pei, E-mail: gpchen@mcw.edu; Liu, Feng; White, Julia
2015-04-01
This study compared the 7 treatment plan options in achieving the dose-volume criteria required by the Radiation Therapy Oncology Group (RTOG) 1005 protocol. Dosimetry plans were generated for 15 representative patients with early-stage breast cancer (ESBC) based on the protocol-required dose-volume criteria for each of the following 7 treatment options: 3D conformal radiotherapy (3DCRT), whole-breast irradiation (WBI) plus 3DCRT lumpectomy boost, 3DCRT WBI plus electron boost, 3DCRT WBI plus intensity-modulated radiation therapy (IMRT) boost, IMRT WBI plus 3DCRT boost, IMRT WBI plus electron boost, IMRT WBI plus IMRT boost, and simultaneous integrated boost (SIB) with IMRT. A variety of dose-volumemore » parameters, including target dose conformity and uniformity and normal tissue sparing, were compared for these plans. For the patients studied, all plans met the required acceptable dose-volume criteria, with most of them meeting the ideal criteria. When averaged over patients, most dose-volume goals for all plan options can be achieved with a positive gap of at least a few tenths of standard deviations. The plans for all 7 options are generally comparable. The dose-volume goals required by the protocol can in general be easily achieved. IMRT WBI provides better whole-breast dose uniformity than 3DCRT WBI does, but it causes no significant difference for the dose conformity. All plan options are comparable for lumpectomy dose uniformity and conformity. Patient anatomy is always an important factor when whole-breast dose uniformity and conformity and lumpectomy dose conformity are considered.« less
Bentz, Erika N; Pomilio, Alicia B; Lobayan, Rosana M
2014-12-01
The extension of the study of the conformational space of the structure of (+)-catechin at the B3LYP/6-31G(d,p) level of theory is presented in this paper. (+)-Catechin belongs to the family of the flavan-3-ols, which is one of the five largest phenolic groups widely distributed in nature, and whose biological activity and pharmaceutical utility are related to the antioxidant activity due to their ability to scavenge free radicals. The effects of free rotation around all C-O bonds of the OH substituents at different rings are taken into account, obtaining as the most stable conformer, one that had not been previously reported. One hundred seven structures, and a study of the effects of charge delocalization and stereoelectronic effects at the B3LYP/6-311++G(d,p) level are reported by natural bond orbital analysis, streamlining the order of these structures. For further analysis of the structural and molecular properties of this compound in a biological environment, the calculation of polarizabilities, and the study of the electric dipole moment are performed considering the whole conformational space described. The results are analyzed in terms of accumulated knowledge for (4α → 6″, 2α → O → 1″)-phenylflavans and (+)-catechin in previous works, enriching the study of both types of structures, and taking into account the importance of considering the whole conformational space in modeling both the polarizability and the electric dipole moment, also proposing to define a descriptive subspace of only 16 conformers.
Optimizing pKa computation in proteins with pH adapted conformations.
Kieseritzky, Gernot; Knapp, Ernst-Walter
2008-05-15
pK(A) in proteins are determined by electrostatic energy computations using a small number of optimized protein conformations derived from crystal structures. In these protein conformations hydrogen positions and geometries of salt bridges on the protein surface were determined self-consistently with the protonation pattern at three pHs (low, ambient, and high). Considering salt bridges at protein surfaces is most relevant, since they open at low and high pH. In the absence of these conformational changes, computed pK(A)(comp) of acidic (basic) groups in salt bridges underestimate (overestimate) experimental pK(A)(exp), dramatically. The pK(A)(comp) for 15 different proteins with 185 known pK(A)(exp) yield an RMSD of 1.12, comparable with two other methods. One of these methods is fully empirical with many adjustable parameters. The other is also based on electrostatic energy computations using many non-optimized side chain conformers but employs larger dielectric constants at short distances of charge pairs that diminish their electrostatic interactions. These empirical corrections that account implicitly for additional conformational flexibility were needed to describe the energetics of salt bridges appropriately. This is not needed in the present approach. The RMSD of the present approach improves if one considers only strongly shifted pK(A)(exp) in contrast to the other methods under these conditions. Our method allows interpreting pK(A)(comp) in terms of pH dependent hydrogen bonding pattern and salt bridge geometries. A web service is provided to perform pK(A) computations. 2007 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Borowski, Piotr
2012-01-01
Quantum chemistry SCF/GIAO calculations were carried out on a set of compounds containing diastereotopic protons. Five molecules, including recently synthesized 1,3-di(2,3-epoxypropoxy)benzene, containing the chiral or pro-chiral center and the neighboring methylene group, were chosen. The rotational averages (i.e. normalized averages with respect to the rotation about the torsional angle τ with the exponential energy weight at temperature T) calculated individually for each of the methylene protons in 1,3-di(2,3-epoxypropoxy)benzene differ by ca. 0.6 ppm, which is significantly less than the value calculated for the lowest energy conformer. This value turned out to be low enough to guarantee the proper ordering of theoretical chemical shifts, supporting the interpretation of the 1H NMR spectrum of this important compound. The rotational averages of chemical shifts for methylene protons for a given type of conformer are shown to be essentially equal to the Boltzmann averages (here, the population-weighted averages for the individual conformers representing minima on the E( τ) cross-section). The calculated Boltzmann averages in the representative conformational space may exhibit completely different ordering as compared to the chemical shifts calculated for the lowest-energy conformer. This is especially true in the case of molecules, for which no significant steric effects are present. In this case, only Boltzmann averages account for the experimental pattern of proton signals. In addition, better overall agreement with experiment (lower value of the root-mean-square deviation between calculated and measured chemical shifts) is typically obtained when Boltzmann averages are used.
Kancharla, Pavan K; Crich, David
2013-12-18
Two N-acetyl 4O,5N-oxazolidinone-protected sialyl thioglycosides epimeric at the 7-position have been synthesized and their reactivity and stereoselectivity in glycosylation reactions have been compared. It is demonstrated that the natural 7S-donor is both more reactive and more α-selective than the unnatural 7R-isomer. The difference in reactivity is attributed to the side chain conformation and specifically to the proximity of O7 to the anomeric center. In the natural 7S-isomer, O7 is closer to the anomeric center than in its unnatural 7R-epimer and, therefore, better able to support incipient positive charge at the locus of reaction. The difference in selectivity is also attributed to the side conformation, which in the unnatural 7R-series is placed perpendicularly above the α-face of the donor and so shields it to a greater extent than in the 7S-series. These observations are consistent with earlier conclusions on the influence of the side chain conformation on reactivity and selectivity derived from conformationally locked models in the glucose and galactose series and corroborate the suggestion that those effects are predominantly stereoelectronic rather than torsional. The possible relevance of side chain conformation as a factor in the influence of glycosylation stereoselectivity by remote protecting groups and as a control element in enzymic processes for glycosidic bond formation and hydrolysis are discussed. Methods for assignment of the anomeric configuration in the sialic acid glycosides are critically surveyed.
NASA Astrophysics Data System (ADS)
Thomas, Javix; Sukhorukov, Oleksandr; Jaeger, Wolfgang; Xu, Yunjie
2012-06-01
The hydrogen bonded complex of ammonia with methyl lactate, a chiral alpha-hydroxyester, has been studied using rotational spectroscopy and high level ab initio calculations. Previous studies showed that methyl lactate can exist in a number of conformers. However, only the most stable one which has an intramolecular hydrogen bonded ring formed with its alcoholic hydroxyl and its carbonyl oxygen atom was detected experimentally An extensive ab initio search has been performed to locate all possible low energy conformers of the methyl lactate-ammonia contact pair. Five lowest energy conformers have been identified at the MP2/6-311++G(d,p) level. The lowest energy conformer favors an insertion arrangement, where ammonia is inserted into the existing intramolecular hydrogen bonded ring in the most stable methyl lactate conformer. Broadband scans for the rotational spectra of possible binary conformers have been carried out using a chirped-pulse Fourier transform microwave (FTMW) instrument. The most stable binary adduct was identified and assigned. The final frequency measurements have been done with a cavity based FTMW instrument. The spectrum observed shows complicated fine and hyperfine splitting patterns, likely due to the internal rotations of the methyl groups of methyl lactate and that of ammonia, as well as the 14N quadrupolar nucleus. The binary adduct with 15NH3 has also been studied to simplify the splitting pattern and to aid the assignments of the extensive splittings. The isotopic data and the fine and hyperfine structures will be discussed in terms of internal rotation dynamics and geometry of the hydrogen bonded adduct.
NASA Astrophysics Data System (ADS)
Melandri, S.; Maris, A.; Merloni, A.
2011-06-01
Fluorine substitution in molecules is a common practice in bio-organic chemistry in order to modulate physicochemical properties and biological activity of molecules and an increasing number of drugs on the market contain fluorine, the presence of which is often of major importance to modify pharmacokinetics properties and molecular activity. The rationale for such a strategy is that fluorine is generally a stronger electron acceptor than the other halogen atoms and its size is intermediate between that of hydrogen and oxygen. We have studied two fluorinated analogs of 2-phenylethylamine (PEA), the prototype molecule for adrenergic neurotransmitters, namely: 4-Fluoro (4FPEA) and 2-Fluoro-2-phenylethylamine (2FPEA) by Molecular Beam Fourier Transform Microwave Spectroscopy in the frequency range 6-18 GHz and ab initio calculations at the MP2/6311++G** level. The aim is to obtain information on the spatial arrangement of the ethylamine side chain and the effects of fluorination on the energy landscape. The conformational space is dominated by low energy gauche conformations stabilized by weak interactions between the aminic hydrogens and the electron cloud of the benzene ring and anti conformations higher in energy. In 2FPEA the presence of the fluorine atom almost duplicate the number of possible conformation with respect to 4FPEA. We observed two conformers of 4FPEA and five conformers of 2FPEA which have been classified with the guide provided by accurate ab initio calculations. The identification of the conformational species was helped by the analysis of the quadrupole hyperfine pattern which is greatly influenced by the orientation of the amino group and acts as a fingerprint for each conformation. The orientation of the dipole moment within the principal axis frame and the order of stability of the different conformations are other independent pieces of evidence for the unambiguous assignment and identification of the conformers. The order of stability was found to be altered in both molecules with respect to the prototype PEA molecule, especially in the case of 2FPEA where we observe a stabilization of some of the anti forms and great destabilization of some of the gauche forms. These observations are in agreement with the results of the theoretical calculation and can be rationalized in terms of the effect of the fluorine atom on the electron density of the molecule and in particular on the electron cloud on the benzene ring.
2013-01-01
Background Patients with brain metastases from lung cancer have poor prognoses and short survival time, and they are often excluded from clinical trials. Whole-cranial irradiation is considered to be the standard treatment, but its efficacy is not satisfactory. The purpose of this phase II clinical trial was to evaluate the preliminary efficacy and safety of the treatment of whole-brain irradiation plus three-dimensional conformal boost combined with concurrent topotecan for the patients with brain metastases from lung cancer. Methods Patients with brain metastasis from lung cancer received concurrent chemotherapy and radiotherapy: conventional fractionated whole-brain irradiation, 2 fields/time, 1 fraction/day, 2 Gy/fraction, 5 times/week, and DT 40 Gy/20 fractions; for the patients with ≤ 3 lesions with diameter ≥ 2 cm, a three-dimensional (3-D) conformal localised boost was given to increase the dosage to 56–60 Gy; and during radiotherapy, concurrent chemotherapy with topotecan was given (the chemoradiotherapy group, CRT). The patients with brain metastasis from lung cancer during the same period who received radiotherapy only were selected as the controls (the radiotherapy-alone group, RT). Results From March 2009 to March 2012, both 38 patients were enrolled into two groups. The median progression-free survival(PFS) time , the 1- and 2-year PFS rates of CRT group and RT group were 6 months, 42.8%, 21.6% and 3 months, 11.6%, 8.7% (χ2 = 6.02, p = 0.014), respectively. The 1- and 2-year intracranial lesion control rates of CRT and RT were 75.9% , 65.2% and 41.6% , 31.2% (χ2 = 3.892, p = 0.049), respectively. The 1- and 2-year overall survival rates (OS) of CRT and RT were 50.8% , 37.9% and 40.4% , 16.5% (χ2 = 1.811, p = 0.178), respectively. The major side effects were myelosuppression and digestive toxicities, but no differences were observed between the two groups. Conclusion Compared with radiotherapy alone, whole-brain irradiation plus 3-D conformal boost irradiation and concurrent topotecan chemotherapy significantly improved the PFS rate and the intracranial lesion control rate of patients with brain metastases from lung cancer, and no significant increases in side effects were observed. Based on these results, this treatment method is recommended for phase III clinical trial. PMID:24125485
ERIC Educational Resources Information Center
O'Brien, Catherine
2007-01-01
Background: Bullying has usefully been described as demonstrations of the norms of young people's social groups, outlawing and punishing those who do not conform. The way a person appraises bullying strongly influences the coping process, how the person reacts emotionally and bystander behaviour. A social-psychological perspective was used to…