Sample records for conformation polymorphism based

  1. Residue-Specific Side-Chain Polymorphisms via Particle Belief Propagation.

    PubMed

    Ghoraie, Laleh Soltan; Burkowski, Forbes; Li, Shuai Cheng; Zhu, Mu

    2014-01-01

    Protein side chains populate diverse conformational ensembles in crystals. Despite much evidence that there is widespread conformational polymorphism in protein side chains, most of the X-ray crystallography data are modeled by single conformations in the Protein Data Bank. The ability to extract or to predict these conformational polymorphisms is of crucial importance, as it facilitates deeper understanding of protein dynamics and functionality. In this paper, we describe a computational strategy capable of predicting side-chain polymorphisms. Our approach extends a particular class of algorithms for side-chain prediction by modeling the side-chain dihedral angles more appropriately as continuous rather than discrete variables. Employing a new inferential technique known as particle belief propagation, we predict residue-specific distributions that encode information about side-chain polymorphisms. Our predicted polymorphisms are in relatively close agreement with results from a state-of-the-art approach based on X-ray crystallography data, which characterizes the conformational polymorphisms of side chains using electron density information, and has successfully discovered previously unmodeled conformations.

  2. Anagostic interactions in chiral separation. Polymorphism in a [Co(II)(L)] complex: Crystallographic and theoretical studies

    NASA Astrophysics Data System (ADS)

    Awwadi, Firas F.; Hodali, Hamdallah A.

    2018-02-01

    Syntheses and crystal structures of two polymorphs of the complex [Co(II)(L)], where H2L = 2,2'-[cis-1,2-diaminocyclohexanediylbis (nitrilo-methylidyne)]bis (5-dimethyl-amino]phenol, have been studied. The two polymorphs concomitantly crystallized by vapour diffusion of solvent. The first polymorph (I) crystallized as a racemate in the centrosymmetric tetragonal I41/a space group. The second polymorph (II) crystallized in the chiral orthorhombic space group P212121. The chiral conformers of symmetrical cis-1,2-disubstituted cyclohexane molecules cannot be resolved in the liquid or gas phases, due to the rapid ring inversion. In the present study, the two chiral conformers are present in crystals of polymorph I, whereas, only one chiral conformer is present in crystals of polymorph II. Crystal structure analysis indicated that the formation of two different polymorphs of [Co(II)(L)] complex can be rationalized based on Csbnd H⋯Co anagostic interactions. Density Functional Theory (DFT) calculations indicated that Csbnd H⋯Co interactions are due to HOMO-LUMO interactions.

  3. Conformational polymorphs of a novel TCNQ derivative carrying an acetylene group

    NASA Astrophysics Data System (ADS)

    Iida, Yuki; Kataoka, Makoto; Okuno, Tsunehisa

    2018-01-01

    TCNQ is one of the most important organic acceptors and lots of its derivatives have been prepared. However the reports on their crystal polymorphs are limited to their complexes, and simple polymorphs of TCNQ derivatives are uncommon. We succeeded in preparation of a novel TCNQ derivative, 2,2'-(2-(prop-2-yn-1-yloxy)cyclohexa-2,5-diene-1,4-diylidene)dimalononitrile, having a propynyloxy group on a substituent. This compound was found to have two crystal polymorphs depending on a solvent for recrystallization. In polymorph I, dimeric hydrogen bonds are formed between acetylenic hydrogens and cyano nitrogens with the molecule in an inversion symmetry. While, in polymorph II, the molecules make intermolecular hydrogen bonds between acetylenic hydrogens and cyano nitrogens with the molecule in 21 symmetry, forming a hydrogen bonded molecular helix along the b axis. Besides patterns of the intermolecular hydrogen bonds, difference was recognized in conformation of propynyloxy group. The molecule has an anti conformation in polymorph I and a gauche conformation in polymorph II. DFT calculation indicates that the anti conformer is less stable than the gauche one. But a solvation model suggests the anti conformer is estimated to be more stable in a toluene solution.

  4. Conformational flexibility and packing plausibility of repaglinide polymorphs

    NASA Astrophysics Data System (ADS)

    Rani, Dimpy; Goyal, Parnika; Chadha, Renu

    2018-04-01

    The present manuscript highlights the structural insight into the repaglinide polymorphs. The experimental screening for the possible crystal forms were carried out using various solvents, which generated three forms. The crystal structure of Form II and III was determined using PXRD pattern whereas structural analysis of Form I has already been reported. Form I, II and II was found to exist in P212121, PNA21 and P21/c space groups respectively. Conformational analysis was performed to account the conformational flexibility of RPG. The obtained conformers were further utilized to obtain the information about the crystal packing pattern of RPG polymorphs by polymorph prediction module. The lattice energy landscape, depicting the relationship between lattice energy and density of the polymorphs has been obtained for various possible polymorphs. The experimentally isolated polymorphs were successfully fitted into lattice energy landscape.

  5. Unraveling the sequence-dependent polymorphic behavior of d(CpG) steps in B-DNA.

    PubMed

    Dans, Pablo Daniel; Faustino, Ignacio; Battistini, Federica; Zakrzewska, Krystyna; Lavery, Richard; Orozco, Modesto

    2014-10-01

    We have made a detailed study of one of the most surprising sources of polymorphism in B-DNA: the high twist/low twist (HT/LT) conformational change in the d(CpG) base pair step. Using extensive computations, complemented with database analysis, we were able to characterize the twist polymorphism in the d(CpG) step in all the possible tetranucleotide environment. We found that twist polymorphism is coupled with BI/BII transitions, and, quite surprisingly, with slide polymorphism in the neighboring step. Unexpectedly, the penetration of cations into the minor groove of the d(CpG) step seems to be the key element in promoting twist transitions. The tetranucleotide environment also plays an important role in the sequence-dependent d(CpG) polymorphism. In this connection, we have detected a previously unexplored intramolecular C-H···O hydrogen bond interaction that stabilizes the low twist state when 3'-purines flank the d(CpG) step. This work explains a coupled mechanism involving several apparently uncorrelated conformational transitions that has only been partially inferred by earlier experimental or theoretical studies. Our results provide a complete description of twist polymorphism in d(CpG) steps and a detailed picture of the molecular choreography associated with this conformational change. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Polymorphism at 129 dictates metastable conformations of the human prion protein N-terminal β-sheet† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc03275c Click here for additional data file.

    PubMed Central

    Paz, S. Alexis; Vanden-Eijnden, Eric

    2017-01-01

    We study the thermodynamic stability of the native state of the human prion protein using a new free-energy method, replica-exchange on-the-fly parameterization. This method is designed to overcome hidden-variable sampling limitations to yield nearly error-free free-energy profiles along a conformational coordinate. We confirm that all four (M129V, D178N) polymorphs have a ground-state conformation with three intact β-sheet hydrogen bonds. Additionally, they are observed to have distinct metastabilities determined by the side-chain at position 129. We rationalize these findings with reference to the prion “strain” hypothesis, which links the variety of transmissible spongiform encephalopathy phenotypes to conformationally distinct infectious prion forms and classifies distinct phenotypes of sporadic Creutzfeldt-Jakob disease based solely on the 129 polymorphism. Because such metastable structures are not easily observed in structural experiments, our approach could potentially provide new insights into the conformational origins of prion diseases and other pathologies arising from protein misfolding and aggregation. PMID:28451263

  7. Sparse networks of directly coupled, polymorphic, and functional side chains in allosteric proteins.

    PubMed

    Soltan Ghoraie, Laleh; Burkowski, Forbes; Zhu, Mu

    2015-03-01

    Recent studies have highlighted the role of coupled side-chain fluctuations alone in the allosteric behavior of proteins. Moreover, examination of X-ray crystallography data has recently revealed new information about the prevalence of alternate side-chain conformations (conformational polymorphism), and attempts have been made to uncover the hidden alternate conformations from X-ray data. Hence, new computational approaches are required that consider the polymorphic nature of the side chains, and incorporate the effects of this phenomenon in the study of information transmission and functional interactions of residues in a molecule. These studies can provide a more accurate understanding of the allosteric behavior. In this article, we first present a novel approach to generate an ensemble of conformations and an efficient computational method to extract direct couplings of side chains in allosteric proteins, and provide sparse network representations of the couplings. We take the side-chain conformational polymorphism into account, and show that by studying the intrinsic dynamics of an inactive structure, we are able to construct a network of functionally crucial residues. Second, we show that the proposed method is capable of providing a magnified view of the coupled and conformationally polymorphic residues. This model reveals couplings between the alternate conformations of a coupled residue pair. To the best of our knowledge, this is the first computational method for extracting networks of side chains' alternate conformations. Such networks help in providing a detailed image of side-chain dynamics in functionally important and conformationally polymorphic sites, such as binding and/or allosteric sites. © 2014 Wiley Periodicals, Inc.

  8. Differentiation among isolates of prunus necrotic ringspot virus by transcript conformation polymorphism.

    PubMed

    Rosner, A; Maslenin, L; Spiegel, S

    1998-09-01

    A method based on differences in electrophoretic mobility of RNA transcripts made from polymerase chain reaction (PCR) products was used for differentiation among virus isolates. A T7 RNA polymerase promoter was attached to amplified prunus necrotic ringspot virus (PNRSV) sequences by PCR. The PCR products then served as a template for transcription. Single-stranded transcripts originated from different PNRSV isolates varied in electrophoretic mobility in polyacrylamide gels, presumably because of transcript conformation polymorphism (TCP). This procedure was applied for the differentiation of PNRSV isolates.

  9. Development of an ELA-DRA gene typing method based on pyrosequencing technology.

    PubMed

    Díaz, S; Echeverría, M G; It, V; Posik, D M; Rogberg-Muñoz, A; Pena, N L; Peral-García, P; Vega-Pla, J L; Giovambattista, G

    2008-11-01

    The polymorphism of equine lymphocyte antigen (ELA) class II DRA gene had been detected by polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP) and reference strand-mediated conformation analysis. These methodologies allowed to identify 11 ELA-DRA exon 2 sequences, three of which are widely distributed among domestic horse breeds. Herein, we describe the development of a pyrosequencing-based method applicable to ELA-DRA typing, by screening samples from eight different horse breeds previously typed by PCR-SSCP. This sequence-based method would be useful in high-throughput genotyping of major histocompatibility complex genes in horses and other animal species, making this system interesting as a rapid screening method for animal genotyping of immune-related genes.

  10. Thermal, spectroscopic, and ab initio structural characterization of carprofen polymorphs.

    PubMed

    Bruni, Giovanna; Gozzo, Fabia; Capsoni, Doretta; Bini, Marcella; Macchi, Piero; Simoncic, Petra; Berbenni, Vittorio; Milanese, Chiara; Girella, Alessandro; Ferrari, Stefania; Marini, Amedeo

    2011-06-01

    Commercial and recrystallized polycrystalline samples of carprofen, a nonsteroidal anti-inflammatory drug, were studied by thermal, spectroscopic, and structural techniques. Our investigations demonstrated that recrystallized sample, stable at room temperature (RT), is a single polymorphic form of carprofen (polymorph I) that undergoes an isostructural polymorphic transformation by heating (polymorph II). Polymorph II remains then metastable at ambient conditions. Commercial sample is instead a mixture of polymorphs I and II. The thermodynamic relationships between the two polymorphs were determined through the construction of an energy/temperature diagram. The ab initio structural determination performed on synchrotron X-Ray powder diffraction patterns recorded at RT on both polymorphs allowed us to elucidate, for the first time, their crystal structure. Both crystallize in the monoclinic space group type P2(1) /c, and the unit cell similarity index and the volumetric isostructurality index indicate that the temperature-induced polymorphic transformation I → II is isostructural. Polymorphs I and II are conformational polymorphs, sharing a very similar hydrogen bond network, but with different conformation of the propanoic skeleton, which produces two different packing. The small conformational change agrees with the low value of transition enthalpy obtained by differential scanning calorimetry measurements and the small internal energy computed with density functional methods. Copyright © 2011 Wiley-Liss, Inc.

  11. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.)

    PubMed Central

    2009-01-01

    Background Expressed sequence tags (ESTs) are an important source of gene-based markers such as those based on insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs), to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. Results A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 × G19833 recombinant inbred line (RIL) population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 × 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. Conclusion The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction of a transcript map and given their high conservation between species allowed synteny comparisons to be made to sequenced genomes. This synteny analysis may support positional cloning of target genes in common bean through the use of genomic information from these other legumes. PMID:20030833

  12. Polymorphism of a new Mannich base - [-4-methyl-2-((4-(4-nitrophenyl)piperazin-1-yl)methyl)phenol

    NASA Astrophysics Data System (ADS)

    Ayeni, Ayowole O.; Watkins, Gareth M.; Hosten, Eric C.

    2018-05-01

    Two polymorphs (forms I and II) of a new Mannich base 4-methyl-2-((4-(4-nitrophenyl)piperazin-1-yl)methyl)phenol have been isolated and characterized by single crystal and powder (experimental and theoretical) X-ray diffraction, thermal analysis (differential scanning calorimetry), Fourier transform infrared spectroscopy. 1H and 13C nuclear magnetic resonance spectroscopy was employed in characterising the new Mannich base. Single crystal X-ray diffraction revealed that the two polymorphs contain different conformers of the Mannich base whose hydrogen bonding schemes and packing arrangements in their respective crystals are different. Thermal analysis led to the conclusion that the two polymorphs are enantiotropically related, with a transition temperature of 138.5 °C.

  13. Crystalline structure of the marketed form of Rifampicin: a case of conformational and charge transfer polymorphism

    NASA Astrophysics Data System (ADS)

    de Pinho Pessoa Nogueira, Luciana; de Oliveira, Yara S.; de C. Fonseca, Jéssica; Costa, Wendell S.; Raffin, Fernanda N.; Ellena, Javier; Ayala, Alejandro Pedro

    2018-03-01

    Rifampicin is a semi-synthetic drug derived from rifamycin B, and currently integrates the fixed dose combination tablet formulations used in the treatment of tuberculosis. It is also used in the leprosy polychemotherapy and prophylaxis, which are diseases classified as neglected according to the World Health Organization. Rifampicin is a polymorphic drug and its desirable polymorphic form is labeled as II, being the main goal of this study the elucidation of its crystalline structure. Polymorph II is characterized by two molecules with different conformations in the asymmetric unit and the following lattice parameters: a = 14.0760 (10) Å, b = 17.5450 (10) Å, c = 17.5270 (10) Å, β = 92.15°. Differently to the previously reported structures, a charge transference from the hydroxyl group of the naphthoquinone of one conformer to the nitrogen of the piperazine group of the second conformer was observed. The relevance of the knowledge of this crystalline structure, which is the preferred polymorph for pharmaceutical formulations, was evidenced by analyzing raw materials with polymorphic mixtures. Thus, the results presented in this contribution close an old information gap allowing the complete solid-state characterization of rifampicin.

  14. Identification of small molecules capable of regulating conformational changes of telomeric G-quadruplex

    NASA Astrophysics Data System (ADS)

    Chen, Shuo-Bin; Liu, Guo-Cai; Gu, Lian-Quan; Huang, Zhi-Shu; Tan, Jia-Heng

    2018-02-01

    Design of small molecules targeted at human telomeric G-quadruplex DNA is an extremely active research area. Interestingly, the telomeric G-quadruplex is a highly polymorphic structure. Changes in its conformation upon small molecule binding may be a powerful method to achieve a desired biological effect. However, the rational development of small molecules capable of regulating conformational change of telomeric G-quadruplex structures is still challenging. In this study, we developed a reliable ligand-based pharmacophore model based on isaindigotone derivatives with conformational change activity toward telomeric G-quadruplex DNA. Furthermore, virtual screening of database was conducted using this pharmacophore model and benzopyranopyrimidine derivatives in the database were identified as a strong inducer of the telomeric G-quadruplex DNA conformation, transforming it from hybrid-type structure to parallel structure.

  15. Crystal structure of carnidazole form II from synchrotron X-ray powder diffraction: structural comparison with form I, the hydrated form and the low energy conformations in vacuo.

    PubMed

    de Armas, Héctor Novoa; Peeters, Oswald M; Blaton, Norbert; Van den Mooter, Guy; De Ridder, Dirk J A; Schenk, Henk

    2006-10-01

    The crystal structure of carnidazole form II, O-methyl [2-(2-methyl-5-nitro-1H-imidazole-1-yl)ethyl]thiocarbamate, has been determined using synchrotron X-ray powder diffraction in combination with simulated annealing and whole profile pattern matching, and refined by the Rietveld method. For structure solution, 12 degrees of freedom were defined: one motion group and six torsions. Form II crystallizes in space group P2(1)/n, Z=4, with unit cell parameters after Rietveld refinement: a=13.915(4), b=8.095(2), c=10.649(3) A, beta=110.83(1) degrees, and V=1121.1(5) A3. The two polymorphic forms, as well as the hydrate, crystallize in the monoclinic space group P2(1)/n having four molecules in the cell. In form II, the molecules are held together by forming two infinite zig-zag chains via hydrogen bonds of the type N--H...N, the same pattern as in form I. A conformational study of carnidazole, at semiempirical PM3 level, was performed using stochastic approaches based on modification of the flexible torsion angles. The values of the torsion angles for the molecules of the two polymorphic forms and the hydrate of carnidazole are compared to those obtained from the conformational search. Form I and form II are enantiotropic polymorphic pairs this agrees with the fact that the two forms are conformational polymorphs. Copyright (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association

  16. Solid-state NMR and IR for the analysis of pharmaceutical solids: polymorphs of fosinopril sodium.

    PubMed

    Brittain, H G; Morris, K R; Bugay, D E; Thakur, A B; Serajuddin, A T

    1993-01-01

    The two polymorphic modifications of fosinopril sodium have been characterized as to their differences in melting behaviour, powder X-ray diffraction patterns, Fourier transform infrared spectra (FTIR), and solid-state 31P- and 13C-NMR spectra. The polymorphs were found to be enantiotropically related based upon melting point, heat of fusion, and solution mediated transformation data. Analysis of the solid-state FTIR and 13C-NMR data indicated that the environment of the acetal side chain of fosinopril sodium differed in two polymorphs, and that there might be cis-trans isomerization about the C6-N peptide bond. These conformational differences are postulated as the origin of the observed polymorphism.

  17. Presence of the p.L456V polymorphism in Cuban patients clinically diagnosed with Wilson's disease.

    PubMed

    Clark-Feoktistova, Y; Ruenes-Domech, C; García-Bacallao, E F; Roblejo-Balbuena, H; Feoktistova, L; Clark-Feoktistova, I; Jay-Herrera, O; Collazo-Mesa, T

    2018-06-10

    Wilson's disease is characterized by the accumulation of copper in different organs, mainly affecting the liver, brain, and cornea, and is caused by mutations in the ATP7B gene. More than 120 polymorphisms in the ATP7B gene have been reported in the medical literature. The aim of the present study was to identify the conformational changes in the exon 3 region of the ATP7B gene and detect the p.L456V polymorphism in Cuban patients clinically diagnosed with Wilson's disease. A descriptive study was conducted at the Centro Nacional de Genética Médica and the Instituto Nacional de Gastroenterología within the time frame of 2007-2012 and included 105 patients with a clinical diagnosis of Wilson's disease. DNA extraction was performed through the salting-out method and the fragment of interest was amplified using the polymerase chain reaction technique. The conformational shift changes in the exon 3 region and the presence of the p.L456V polymorphism were identified through the Single-Strand Conformation Polymorphism analysis. The so-called b and c conformational shift changes, corresponding to the p.L456V polymorphism in the heterozygous and homozygous states, respectively, were identified. The allelic frequency of the p.L456V polymorphism in the 105 Cuban patients that had a clinical diagnosis of Wilson's disease was 41% and liver-related symptoms were the most frequent in the patients with that polymorphism. The p.L456V polymorphism was identified in 64 Cuban patients clinically diagnosed with Wilson's disease, making future molecular study through indirect methods possible. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  18. Ocular findings associated with a Cys39Arg mutation in the Norrie disease gene.

    PubMed

    Joos, K M; Kimura, A E; Vandenburgh, K; Bartley, J A; Stone, E M

    1994-12-01

    To diagnose the carriers and noncarriers in a family affected with Norrie disease based on molecular analysis. Family members from three generations, including one affected patient, two obligate carriers, one carrier identified with linkage analysis, one noncarrier identified with linkage analysis, and one female family member with indeterminate carrier status, were examined clinically and electrophysiologically. Linkage analysis had previously failed to determine the carrier status of one female family member in the third generation. Blood samples were screened for mutations in the Norrie disease gene with single-strand conformation polymorphism analysis. The mutation was characterized by dideoxy-termination sequencing. Ophthalmoscopy and electroretinographic examination failed to detect the carrier state. The affected individuals and carriers in this family were found to have a transition from thymidine to cytosine in the first nucleotide of codon 39 of the Norrie disease gene, causing a cysteine-to-arginine mutation. Single-strand conformation polymorphism analysis identified a patient of indeterminate status (by linkage) to be a noncarrier of Norrie disease. Ophthalmoscopy and electroretinography could not identify carriers of this Norrie disease mutation. Single-strand conformation polymorphism analysis was more sensitive and specific than linkage analysis in identifying carriers in this family.

  19. Two polymorphs of 2,5-dichloro-3,6-bis(dibenzylamino)-p-hydroquinone with flexible dibenzylamino groups.

    PubMed

    Shin, In Sub; Shimada, Yuta; Horiguchi-Babamoto, Emi; Matsumoto, Shinya

    2018-04-01

    We obtained two conformational polymorphs of 2,5-dichloro-3,6-bis(dibenzylamino)-p-hydroquinone, C 34 H 30 Cl 2 N 2 O 2 . Both polymorphs have an inversion centre at the centre of the hydroquinone ring (Z' = 1/2), and there are no significant differences between their bond lengths and angles. The most significant structural difference in the molecular conformations was found in the rotation of the phenyl rings of the two crystallographically independent benzyl groups. The crystal structures of the polymorphs were distinguishable with respect to the arrangement of the hydroquinone rings and the packing motif of the phenyl rings that form part of the benzyl groups. The phenyl groups of one polymorph are arranged in a face-to-edge motif between adjacent molecules, with intermolecular C-H...π interactions, whereas the phenyl rings in the other polymorph form a lamellar stacking pattern with no significant intermolecular interactions. We suggest that this partial conformational difference in the molecular structures leads to the significant structural differences observed in their molecular arrangements.

  20. Polymorphs and polymorphic cocrystals of temozolomide.

    PubMed

    Babu, N Jagadeesh; Reddy, L Sreenivas; Aitipamula, Srinivasulu; Nangia, Ashwini

    2008-07-07

    Crystal polymorphism in the antitumor drug temozolomide (TMZ), cocrystals of TMZ with 4,4'-bipyridine-N,N'-dioxide (BPNO), and solid-state stability were studied. Apart from a known X-ray crystal structure of TMZ (form 1), two new crystalline modifications, forms 2 and 3, were obtained during attempted cocrystallization with carbamazepine and 3-hydroxypyridine-N-oxide. Conformers A and B of the drug molecule are stabilized by intramolecular amide N--HN(imidazole) and N--HN(tetrazine) interactions. The stable conformer A is present in forms 1 and 2, whereas both conformers crystallized in form 3. Preparation of polymorphic cocrystals I and II (TMZBPNO 1:0.5 and 2:1) were optimized by using solution crystallization and grinding methods. The metastable nature of polymorph 2 and cocrystal II is ascribed to unused hydrogen-bond donors/acceptors in the crystal structure. The intramolecularly bonded amide N-H donor in the less stable structure makes additional intermolecular bonds with the tetrazine C==O group and the imidazole N atom in stable polymorph 1 and cocrystal I, respectively. All available hydrogen-bond donors and acceptors are used to make intermolecular hydrogen bonds in the stable crystalline form. Synthon polymorphism and crystal stability are discussed in terms of hydrogen-bond reorganization.

  1. Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism.

    PubMed

    Zheng, Xuelian; Yang, Shixin; Zhang, Dengwei; Zhong, Zhaohui; Tang, Xu; Deng, Kejun; Zhou, Jianping; Qi, Yiping; Zhang, Yong

    2016-07-01

    A method based on DNA single-strand conformation polymorphism is demonstrated for effective genotyping of CRISPR/Cas9-induced mutants in rice. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) has been widely adopted for genome editing in many organisms. A large proportion of mutations generated by CRISPR/Cas9 are very small insertions and deletions (indels), presumably because Cas9 generates blunt-ended double-strand breaks which are subsequently repaired without extensive end-processing. CRISPR/Cas9 is highly effective for targeted mutagenesis in the important crop, rice. For example, homozygous mutant seedlings are commonly recovered from CRISPR/Cas9-treated calli. However, many current mutation detection methods are not very suitable for screening homozygous mutants that typically carry small indels. In this study, we tested a mutation detection method based on single-strand conformational polymorphism (SSCP). We found it can effectively detect small indels in pilot experiments. By applying the SSCP method for CRISRP-Cas9-mediated targeted mutagenesis in rice, we successfully identified multiple mutants of OsROC5 and OsDEP1. In conclusion, the SSCP analysis will be a useful genotyping method for rapid identification of CRISPR/Cas9-induced mutants, including the most desirable homozygous mutants. The method also has high potential for similar applications in other plant species.

  2. Structural polymorphism of a cytosine-rich DNA sequence forming i-motif structure: Exploring pH based biosensors.

    PubMed

    Ahmed, Saami; Kaushik, Mahima; Chaudhary, Swati; Kukreti, Shrikant

    2018-05-01

    Sequence recognition and conformational polymorphism enable DNA to emerge out as a substantial tool in fabricating the devices within nano-dimensions. These DNA associated nano devices work on the principle of conformational switches, which can be facilitated by many factors like sequence of DNA/RNA strand, change in pH or temperature, enzyme or ligand interactions etc. Thus, controlling these DNA conformational changes to acquire the desired function is significant for evolving DNA hybridization biosensor, used in genetic screening and molecular diagnosis. For exploring this conformational switching ability of cytosine-rich DNA oligonucleotides as a function of pH for their potential usage as biosensors, this study has been designed. A C-rich stretch of DNA sequence (5'-TCCCCCAATTAATTCCCCCA-3'; SG20c) has been investigated using UV-Thermal denaturation, poly-acrylamide gel electrophoresis and CD spectroscopy. The SG20c sequence is shown to adopt various topologies of i-motif structure at low pH. This pH dependent transition of SG20c from unstructured single strand to unimolecular and bimolecular i-motif structures can further be exploited for its utilization as switching on/off pH-based biosensors. Copyright © 2018. Published by Elsevier B.V.

  3. Non-rigid molecule of copper(II) diiminate Cu[CF3C(NH)C(F)C(NH)CF3]2, its conformational polymorphism in crystal and structure in solutions (Raman, UV-vis and quantum chemistry study)

    NASA Astrophysics Data System (ADS)

    Bukalov, Sergey S.; Aysin, Rinat R.; Leites, Larissa A.; Kurykin, Mikhail A.; Khrustalev, Victor N.

    2015-10-01

    Calculation of potential energy surface (PES) of isolated molecule of copper(II) diiminate Cu[CF3С(NH)C(F)C(NH)CF3]2 (1) resulted a double-well curve with the minima corresponding to equivalent screwed conformations. The low barrier leads to molecular non-rigidity which seems to be the reason of conformational polymorphism in crystals, reported in [1]. For one of newly found polymorphs, the X-ray structure was determined. The differences in the Raman and UV-vis spectra between differently colored species and their solutions were revealed, they are determined by different geometries of Cu(II) coordination polyhedron and different systems of intermolecular interactions in crystals. Transformations of the polymorphs under thermal, mechanical and photo exposures were studied.

  4. Three reversible polymorphic copper(I) complexes triggered by ligand conformation: insights into polymorphic crystal habit and luminescent properties.

    PubMed

    Chai, Wenxiang; Hong, Mingwei; Song, Li; Jia, Guohua; Shi, Hongsheng; Guo, Jiayu; Shu, Kangying; Guo, Bing; Zhang, Yicheng; You, Wenwu; Chen, Xueyuan

    2015-05-04

    Three luminescent polymorphs based on a new copper(I) complex Cu(2-QBO)(PPh3)PF6 (1, PPh3 = triphenylphosphine, 2-QBO = 2-(2'-quinolyl)benzoxazole) have been synthesized and characterized by FT-IR, UV-vis, elemental analyses, and single-crystal X-ray diffraction analyses. Each polymorph can reversibly convert from one to another through appropriate procedures. Interestingly, such interconversion can be distinguished by their intrinsic crystal morphologies and colors (namely α, dark yellow plate, β, orange block, γ, light yellow needle) as well as photoluminescent (PL) properties. X-ray crystal structure analyses of these three polymorphs show three different supramolecular structures from 1D to 3D, which are expected to be responsible for the formation of three different crystal morphologies such as needle, plate, and block. Combination of the experimental data with DFT calculations on these three polymorphs reveals that the polymorphic interconversion is triggered by the conformation isomerization of the 2-QBO ligand and can be successfully controlled by the polarity of the process solvents (affecting the molecular dipole moment) and thermodynamics (affecting the molecular total energy). It is also found that the different crystal colors of polymorphs and their PL properties are derived from different θ values (dihedral angle between benzoxazolyl and quinolyl group of the 2-QBO ligand) and P-Cu-P angles based on TD-DFT calculations. Moreover, an interesting phase interconversion between γ and β has also been found under different temperature, and this result is consistent with the DFT calculations in which the total energy of β is larger than that of γ. This polymorphism provides a good model to study the relationship between the structure and the physical properties in luminescent copper(I) complexes as well as some profound insights into their PL properties.

  5. Persistent hydrogen bonding in polymorphic crystal structures.

    PubMed

    Galek, Peter T A; Fábián, László; Allen, Frank H

    2009-02-01

    The significance of hydrogen bonding and its variability in polymorphic crystal structures is explored using new automated structural analysis methods. The concept of a chemically equivalent hydrogen bond is defined, which may be identified in pairs of structures, revealing those types of bonds that may persist, or not, in moving from one polymorphic form to another. Their frequency and nature are investigated in 882 polymorphic structures from the Cambridge Structural Database. A new method to compare conformations of equivalent molecules is introduced and applied to derive distinct subsets of conformational and packing polymorphs. The roles of chemical functionality and hydrogen-bond geometry in persistent interactions are systematically explored. Detailed structural comparisons reveal a large majority of persistent hydrogen bonds that are energetically crucial to structural stability.

  6. [High frequency of ancestral allele of the TJP1 polymorphism rs2291166 in Mexican population, conformational effect and applications in surgery and medicine].

    PubMed

    Ramirez-Garcia, Sergio Alberto; Flores-Alvarado, Luis Javier; Topete-González, Luz Rosalba; Charles-Niño, Claudia; Mazariegos-Rubi, Manuel; Dávalos-Rodríguez, Nory Omayra

    2016-01-01

    TJP1 gene encodes a ZO-1 protein that is required for the recruitment of occludins and claudins in tight junction, and is involved in cell polarisation. It has different variations, the frequency of which has been studied in different populations. In Mexico there are no studies of this gene. These are required because their polymorphisms can be used in studies associated with medicine and surgery. Therefore, the aim of this study was to estimate the frequency of alleles and genotypes of rs2291166 gene polymorphism TJP1 in Mexico Mestizos population, and to estimate the conformational effect of an amino acid change. A total of 473 individuals were included. The rs2291166 polymorphism was identified PASA PCR-7% PAGE, and stained with silver nitrate. The conformational effect of amino acid change was performed in silico, and was carried out with servers ProtPraram Tool and Search Database with Fasta. The most frequent allele in the two populations is the ancestral allele (T). A genotype distribution similar to other populations was found. The polymorphism is in Hardy-Weinberg, p>0.05. Changing aspartate to alanine produced a conformational change. The study reveals a high frequency of the ancestral allele at rs2291166 polymorphism in the Mexican population. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  7. Conformational polymorphism and thermochemical analysis of 5,5' ''-bis[(2,2,5,5-tetramethyl-1-aza-2,5-disila-1-cyclopentyl)ethyl]-2,2':5',2' ':5' ',2' ''-quaterthiophene.

    PubMed

    Muguruma, Hitoshi; Hotta, Shu

    2006-11-23

    The titled compound exists as two polymorphic solid phases (denoted form-I and form-II). Form-I obtained by as-synthesized material is a more stable phase. Form-II is a less stable phase. Spontaneous solid-solid transformation from form-II to form-I is observed in the temperature range between room temperature and the melting point of form-I (Tm = 156.5 degrees C), and its activation energy is estimated to be 96 kJ mol-1 by Arrhenius plot. The solid-solute-solid transformation (recrystallization from solution) from form-II to form-I is also observed. In contrast, form-II is obtained only by a solid-melt-solid transformation from form-I. Therefore, the system of two polymorphs is monotropic. The solid-state NMR measurement shows that form-I has the molecular conformation of complete S-syn-anti-syn in the oligothiophene backbone, whereas form-II has that of S-all-anti. With the solution NMR data, the polymorphism could not be observed. Therefore, the polymorphs originate from the different molecular packing involving the conformational change of the molecule. This unique property is attributed to the extra bulky terminal groups of the compounds. However, despite the extra bulky terminal groups, the mentioned polymorphism is not observed in the titled compound analogue which has S-all-anti conformation (like form-II).

  8. Single-strand conformation polymorphism analysis of ribosomal DNA for detection of Phytophthora ramorum directly from plant tissues

    Treesearch

    Ping Kong; Patricia A. Richardson; Chuanxue Hong; Thomas L. Kubisiak

    2006-01-01

    At the first Sudden Oak Death Science Symposium, we reported on the use of a single strand conformation polymorphism (SSCP) analysis for rapid identification of Phytophthora ramorum in culture. We have since assessed and improved the fingerprinting technique for detecting this pathogen directly from plant tissues. The improved SSCP protocol uses a...

  9. G-Quadruplex conformational change driven by pH variation with potential application as a nanoswitch.

    PubMed

    Yan, Yi-Yong; Tan, Jia-Heng; Lu, Yu-Jing; Yan, Siu-Cheong; Wong, Kwok-Yin; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu

    2013-10-01

    G-Quadruplex is a highly polymorphic structure, and its behavior in acidic condition has not been well studied. Circular dichroism (CD) spectra were used to study the conformational change of G-quadruplex. The thermal stabilities of the G-quadruplex were measured with CD melting. Interconversion kinetics profiles were investigated by using CD kinetics. The fluorescence of the inserted 2-Aminopurine (Ap) was monitored during pH change and acrylamide quenching, indicating the status of the loop. Proton NMR was adopted to help illustrate the change of the conformation. G-Quadruplex of specific loop was found to be able to transform upon pH variation. The transformation was resulted from the loop rearrangement. After screening of a library of diverse G-quadruplex, a sequence exhibiting the best transformation property was found. A pH-driven nanoswitch with three gears was obtained based on this transition cycle. Certain G-quadruplex was found to go through conformational change at low pH. Loop was the decisive factor controlling the interconversion upon pH variation. G-Quadruplex with TT central loop could be converted in a much milder condition than the one with TTA loop. It can be used to design pH-driven nanodevices such as a nanoswitch. These results provide more insights into G-quadruplex polymorphism, and also contribute to the design of DNA-based nanomachines and logic gates. © 2013.

  10. Polymorphism in the nitrate salt of the [Mn(acetylacetonate)2(H2O)2]+ ion.

    PubMed

    Biju, A R; Rajasekharan, M V

    2010-06-01

    The crystallization of [Mn(acac)(2)(H(2)O)(2)](+) from solutions containing excess nitrate leads to the formation of four polymorphs. All polymorphs contain two different types of complex ions, one containing essentially coplanar acac ligands and the other in which the two acac ligands together assume a chair conformation. Molecular modelling using DFT (density-functional theory) calculations shows that the coplanar conformation is the electronically stable one. The hydrogen bonding between the trans-water molecules and the nitrate ion produces a one-dimensional chain of 12-membered rings, which are further organized into a two-dimensional network via a lattice water molecule. Lattice-energy calculations have been carried out to compare the stabilities of the four polymorphs.

  11. A fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp.

    PubMed

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-01

    The present study aimed to establish a fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp. Based on the sequences of the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA, we designed a set of genus-specific primers for the amplification of Fasciola ITS-2, with an estimated size of 140 bp. These primers were labelled by fluorescence dyes, and the PCR products were analyzed by capillary electrophoresis under non-denaturing conditions (F-PCR-SSCP). Capillary electrophoresis analysis of the fluorescence-labelled DNA fragments displayed three different peak profiles that allowed the accurate identification of Fasciola species: one single peak specific for either Fasciola hepatica or Fasciola gigantica and a doublet peak corresponding to the "intermediate" Fasciola. Validation of our novel method was performed using Fasciola specimens from different host animals from China, Spain, Nigeria, and Egypt. This F-PCR-SSCP assay provides a rapid, simple, and robust tool for the identification and differentiation between Fasciola spp.

  12. Concomitant and conformational polymorphism in 4‧-(isoquinolyl-2,2‧:6‧,2″-terpyridine and 4‧-(4-quinolyl)-2,2‧:6‧,2″-terpyridine

    NASA Astrophysics Data System (ADS)

    Njogu, Eric M.; Nyamori, Vincent O.; Omondi, Bernard

    2018-02-01

    The occurrence of concomitant polymorphism in 4‧-(isoquinolyl)-2,2‧:6‧,2″-terpyridine, 1a and 1b (2-quinterpy) and conformational polymorphism in 4‧-(4-quinolyl)-2,2‧:6‧,2″-terpyridine (4-quinterpy) has been identified to due to crystallization process and solvent, respectively. Crystallization of 2-quinterpy in acetone yielded the concomitant polymorphs 1a and 1b which crystallize in the monoclinic P21/c and the orthorhombic Pna21 space groups, respectively. The polymorph 2a was grown from bulk 4-quinterpy in dimethyl sulfoxide, crystallizes in the monoclinic P21/c space group, while 2b grown from acetonitrile or even acetone crystallizes in the monoclinic system but in P21/n space group.

  13. Hot topic: Bovine milk samples yielding negative or nonspecific results in bacterial culturing--the possible role of PCR-single strand conformation polymorphism in mastitis diagnosis.

    PubMed

    Schwaiger, K; Wimmer, M; Huber-Schlenstedt, R; Fehlings, K; Hölzel, C S; Bauer, J

    2012-01-01

    A large proportion of mastitis milk samples yield negative or nonspecific results (i.e., no mastitis pathogen can be identified) in bacterial culturing. Therefore, the culture-independent PCR-single strand conformation polymorphism method was applied to the investigation of bovine mastitis milk samples. In addition to the known mastitis pathogens, the method was suitable for the detection of fastidious bacteria such as Mycoplasma spp., which are often missed by conventional culturing methods. The detection of Helcococcus ovis in 4 samples might indicate an involvement of this species in pathogenesis of bovine mastitis. In conclusion, PCR-single-strand conformation polymorphism is a promising tool for gaining new insights into the bacteriological etiology of mastitis. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Polymorphism and haplotype analyses of swine leukocyte antigen DQA exons 2, 3, 4, and their associations with piglet diarrhea in Chinese native pig.

    PubMed

    Huang, X Y; Yang, Q L; Yuan, J H; Gun, S B

    2015-09-08

    In this study, 290 Chinese native Yantai black pig piglets were investigated to identify gene polymorphisms, for haplotype reconstruction, and to determine the association between piglet diarrhea and swine leukocyte antigen (SLA) class II DQA exons 2, 3, and 4 by polymerase chain reaction-single stranded conformational polymorphism and cloning sequencing. The results showed that the 5, 8, and 7 genotypes were identified from SLA-DQA exon 2, 3, and 4, respectively, based on the single-stranded conformational polymorphism banding patterns and found a novel allele D in exon 2 and 2 novel mutational sites of allele C (c.4828T>C) and allele F (c.4617T>C) in exon 3. Polymorphism information content testing showed that exon 2 was moderately polymorphic and that exons-3 and -4 loci were highly polymorphic. The piglet diarrhea scores for genotypes AB (1.40 ± 0.14) and AC (1.54 ± 0.17) in exon 2, AA (1.22 ± 0.32), BC (1.72 ± 0.13), DD (1.67 ± 0.35), and CF (1.22 ± 0.45) in exon 3, and AD (2.35 ± 0.25) in exon 4 were significantly higher than those for the other genotypes (P ≤ 0.05) in DQA exons. There were 14 reconstructed haplotypes in the 3 exons from 290 individuals and Hap12 may be the diarrhea-resistant gene. Haplotype distribution was extremely uneven, and the SLA-DQA gene showed genetic linkage. In this study, we identified molecular genetic markers and provided a theoretical foundation for future pig anti-disease resistance breeding.

  15. Synthesis, characterization, crystal structure and DFT study of two new polymorphs of a Schiff base (E)-2-((2,6-dichlorobenzylidene)amino)benzonitrile

    NASA Astrophysics Data System (ADS)

    Benarous, N.; Cherouana, A.; Aubert, Emmanuel; Durand, Pierrick; Dahaoui, S.

    2016-02-01

    Two new polymorphs of Schiff base, (E)-2-((2,6-dichlorobenzylidene)amino)benzonitrile, were prepared from the condensation of 4-amino-benzonitrile and 2,6-dichlorobenzaldehyde. The two polymorphs crystallize in two different space groups: P21/c for polymorph (I) with volume 1264.23(2) Å3 and Pbca for polymorph (II) with volume 2469.3(2) Å3. The two polymorphs have been characterized by FT-IR and UV-VIS spectroscopy. The crystal structures of both compounds were determined by single X-ray analysis. The difference between the two polymorphs was observed at the angle between the two phenyl rings which is 4.81° for the first one and 82.27° for the second one. Both crystal structures are built on the basis of moderate and weak hydrogen bonds. Theoretical calculations on isolated molecules at the MP2 cc-pVDZ level show that the two polymorphs correspond to two molecular conformations that are within less than 1 kJ mol-1 and DFT periodic calculations indicate that (II) is more stable than (I) by 4.1 kJ mol-1 of formula unit. Additionally, we performed TD-DFT calculation for free ligands to support the experimental data.

  16. The chemistry of prions: small molecules, protein conformers and mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Background/Introduction. Prions propagate by converting a normal cellular isoform (PrPC) into the prion isoform (PrPSc) in a template-driven process. The lysines in PrPC are highly conserved and strongly influence prion propagation, based on studies using natural polymorphisms of PrPC and transg...

  17. Study on four polymorphs of bifendate based on X-ray crystallography.

    PubMed

    Nie, Jinju; Yang, Dezhi; Hu, Kun; Lu, Yang

    2016-05-01

    Bifendate, a synthetic anti-hepatitis drug, exhibits polycrystalline mode phenomena with 2 polymorphs reported (forms A and B). Single crystals of the known crystalline form B and 3 new crystallosolvates involving bifendate solvated with tetrahydrofuran (C), dioxane (D), and pyridine (E) in a stoichiometric ratio of 1:1 were obtained and characterized by X-ray crystallography, thermal analysis, and Fourier transform infrared (FT-IR) spectroscopy. The differences in molecular conformation, intermolecular interaction and crystal packing arrangement for the four polymorphs were determined and the basis for the polymorphisms was investigated. The rotation of single bonds resulted in different orientations for the biphenyl, methyl ester and methoxyl groups. All guest solvent molecules interacted with the host molecule via an interesting intercalative mode along the [1 0 0] direction in the channel formed by the host molecules through weak aromatic stacking interactions or non-classical hydrogen bonds, of which the volume and planarity played an important role in the intercalation of the host with the guest. The incorporation of solvent-augmented rotation of the C-C bond of the biphenyl group had a striking effect on the host molecular conformation and contributed to the formation of bifendate polymorphs. Moreover, the simulated powder X-ray diffraction (PXRD) patterns for each form were calculated on the basis of the single-crystal data and proved to be unique. The single-crystal structures of the four crystalline forms are reported in this paper.

  18. Discovery of black dye crystal structure polymorphs: Implications for dye conformational variation in dye-sensitized solar cells

    DOE PAGES

    Cole, Jacqueline M.; Low, Kian Sing; Gong, Yun

    2015-11-24

    Here, we present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world’s leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO 2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiplemore » conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO 2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO 2 interfaces in DSSCs, at least for ruthenium-based dye complexes.« less

  19. Polymorphism complexity and handedness inversion in serum albumin amyloid fibrils.

    PubMed

    Usov, Ivan; Adamcik, Jozef; Mezzenga, Raffaele

    2013-12-23

    Protein-based amyloid fibrils can show a great variety of polymorphic structures within the same protein precursor, although the origins of these structural homologues remain poorly understood. In this work we investigate the fibrillation of bovine serum albumin--a model globular protein--and we follow the polymorphic evolution by a statistical analysis of high-resolution atomic force microscopy images, complemented, at larger length scales, by concepts based on polymer physics formalism. We identify six distinct classes of coexisting amyloid fibrils, including flexible left-handed twisted ribbons, rigid right-handed helical ribbons and nanotubes. We show that the rigid fibrils originate from flexible fibrils through two diverse polymorphic transitions, first, via a single-fibril transformation when the flexible left-handed twisted ribbons turn into the helical left-handed ribbons, to finally evolve into nanotube-like structures, and second, via a double-fibril transformation when two flexible left-handed twisted ribbons wind together resulting in a right-handed twisted ribbon, followed by a rigid right-handed helical ribbon polymorphic conformation. Hence, the change in handedness occurs with an increase in the level of the fibril's structural organization.

  20. Polymorphism at codon 36 of the p53 gene.

    PubMed

    Felix, C A; Brown, D L; Mitsudomi, T; Ikagaki, N; Wong, A; Wasserman, R; Womer, R B; Biegel, J A

    1994-01-01

    A polymorphism at codon 36 in exon 4 of the p53 gene was identified by single strand conformation polymorphism (SSCP) analysis and direct sequencing of genomic DNA PCR products. The polymorphic allele, present in the heterozygous state in genomic DNAs of four of 100 individuals (4%), changes the codon 36 CCG to CCA, eliminates a FinI restriction site and creates a BccI site. Including this polymorphism there are four known polymorphisms in the p53 coding sequence.

  1. The interplay between the paracetamol polymorphism and its molecular structures dissolved in supercritical CO2 in contact with the solid phase: In situ vibration spectroscopy and molecular dynamics simulation analysis.

    PubMed

    Oparin, Roman D; Moreau, Myriam; De Walle, Isabelle; Paolantoni, Marco; Idrissi, Abdenacer; Kiselev, Michael G

    2015-09-18

    The aim of this paper is to characterize the distribution of paracetamol conformers which are dissolved in a supercritical CO2 phase being in equilibrium with their corresponding crystalline form. The quantum calculations and molecular dynamics simulations were used in order to characterize the structure and analyze the vibration spectra of the paracetamol conformers in vacuum and in a mixture with CO2 at various thermodynamic state parameters (p,T). The metadynamics approach was applied to efficiently sample the various conformers of paracetamol. Furthermore, using in situ IR spectroscopy, the conformers that are dissolved in supercritical CO2 were identified and the evolution of the probability of their presence as a functions of thermodynamic condition was quantified while the change in the crystalline form of paracetamol have been monitored by DSC, micro IR and Raman techniques. The DSC analysis as well as micro IR and Raman spectroscopic studies of the crystalline paracetamol show that the subsequent heating up above the melting temperature of the polymorph I of paracetamol and the cooling down to room temperature in the presence of supercritical CO2 induces the formation of polymorph II. The in situ IR investigation shows that two conformers (Conf. 1 and Conf. 2) are present in the phase of CO2 while conformer 3 (Conf. 3) has a high probability to be present after re-crystallization. Copyright © 2015. Published by Elsevier B.V.

  2. [Association of muscle segment homeobox gene 1 polymorphisms with nonsyndromic cleft lip with or without cleft palate].

    PubMed

    Zhang, Li; Tang, Jun-Ling; Liang, Shang-Zheng

    2008-06-01

    Muscle segment homeobox gene (MSX)1 has been proposed as a gene in which mutations may contribute to nonsyndromic cleft lip with or without cleft palate (NSCL/P). To study MSX1 polymorphisms in NSCL/ P by means of polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP), and investigate the association of MSX1 exons 1 polymorphisms with NSCL/P. DNA were extracted from blood samples from NSCL/P and unrelated normal subjects. Genome DNA from peripheral leukocyte with these blood samples were extracted, which was used as template to amplify desired gene fragment of MSX1 exons 1 by means of polymerase chain reaction (PCR). The PCR products were examined by single-strand conformation polymorphism (SSCP). The MSX1 exons 1 polymorphisms were examined by sequencing if mutations were found. MSX1 genes of exon 1 mutation was not been found in the NSCL/P and unrelated normal subjects by SSCP. No correlation between MSX1 exon 1 and NSCL/P was found. MSX1 exon 1 may not be a key gene (susceptibility gene) in NSCL/P.

  3. Myelography Iodinated Contrast Media. 2. Conformational Versatility of Iopamidol in the Solid State.

    PubMed

    Bellich, Barbara; Di Fonzo, Silvia; Tavagnacco, Letizia; Paolantoni, Marco; Masciovecchio, Claudio; Bertolotti, Federica; Giannini, Giovanna; De Zorzi, Rita; Geremia, Silvano; Maiocchi, Alessandro; Uggeri, Fulvio; Masciocchi, Norberto; Cesàro, Attilio

    2017-02-06

    The phenomenon of polymorphism is of great relevance in pharmaceutics, since different polymorphs have different physicochemical properties, e.g., solubility, hence, bioavailability. Coupling diffractometric and spectroscopic experiments with thermodynamic analysis and computational work opens to a methodological approach which provides information on both structure and dynamics in the solid as well as in solution. The present work reports on the conformational changes in crystalline iopamidol, which is characterized by atropisomerism, a phenomenon that influences both the solution properties and the distinct crystal phases. The conformation of iopamidol is discussed for three different crystal phases. In the anhydrous and monohydrate crystal forms, iopamidol molecules display a syn conformation of the long branches stemming out from the triiodobenzene ring, while in the pentahydrate phase the anti conformation is found. IR and Raman spectroscopic studies carried out on the three crystal forms, jointly with quantum chemical computations, revealed that the markedly different spectral features can be specifically attributed to the different molecular conformations. Our results on the conformational versatility of iopamidol in different crystalline phases, linking structural and spectroscopic evidence for the solution state and the solid forms, provide a definite protocol for grasping the signals that can be taken as conformational markers. This is the first step for understanding the crystallization mechanism occurring in supersaturated solution of iopamidol molecules.

  4. DEVELOPMENT OF CODOMINANT MARKERS FOR IDENTIFYING SPECIES HYBRIDS

    EPA Science Inventory

    Herein we describe a simple method for developing species-diagnostic markers that would permit the rapid identification of hybrid individuals. Our method relies on amplified length polymorphism (AFLP) and single strand conformation polymorphism (SSCP) technologies, both of which...

  5. Selection and use of microsatellite markers for individual identification and meat traceability of six swine breeds in the Chinese market.

    PubMed

    Zhao, Jie; Li, Tingting; Zhu, Chao; Jiang, Xiaoling; Zhao, Yan; Xu, Zhenzhen; Yang, Shuming; Chen, Ailiang

    2018-06-01

    Meat traceability based on molecular markers is exerting a great influence on food safety and will enhance its key role in the future. This study aimed to investigate and verify the polymorphism of 23 microsatellite markers and select the most suitable markers for individual identification and meat traceability of six swine breeds in the Chinese market. The mean polymorphism information content value of these 23 loci was 0.7851, and each locus exhibited high polymorphism in the pooled population. There were 10 loci showing good polymorphism in each breed, namely, Sw632, S0155, Sw2406, Sw830, Sw2525, Sw72, Sw2448, Sw911, Sw122 and CGA. When six highly polymorphic loci were combined, the match probability value for two random individual genotypes among the pig breeds (Beijing Black, Sanyuan and Taihu) was lower than 1.151 E-06. An increasing number of loci indicated a gradually decreasing match probability value and therefore enhanced traceability accuracy. The validation results of tracing 18 blood and corresponding meat samples based on five highly polymorphic loci (Sw2525, S0005, Sw0107, Sw911 and Sw857) were successful, with 100% conformation probability, which provided a foundation for establishing a traceability system for pork in the Chinese market.

  6. Effects of conformism on the cultural evolution of social behaviour.

    PubMed

    Molleman, Lucas; Pen, Ido; Weissing, Franz J

    2013-01-01

    Models of cultural evolution study how the distribution of cultural traits changes over time. The dynamics of cultural evolution strongly depends on the way these traits are transmitted between individuals by social learning. Two prominent forms of social learning are payoff-based learning (imitating others that have higher payoffs) and conformist learning (imitating locally common behaviours). How payoff-based and conformist learning affect the cultural evolution of cooperation is currently a matter of lively debate, but few studies systematically analyse the interplay of these forms of social learning. Here we perform such a study by investigating how the interaction of payoff-based and conformist learning affects the outcome of cultural evolution in three social contexts. First, we develop a simple argument that provides insights into how the outcome of cultural evolution will change when more and more conformist learning is added to payoff-based learning. In a social dilemma (e.g. a Prisoner's Dilemma), conformism can turn cooperation into a stable equilibrium; in an evasion game (e.g. a Hawk-Dove game or a Snowdrift game) conformism tends to destabilize the polymorphic equilibrium; and in a coordination game (e.g. a Stag Hunt game), conformism changes the basin of attraction of the two equilibria. Second, we analyse a stochastic event-based model, revealing that conformism increases the speed of cultural evolution towards pure equilibria. Individual-based simulations as well as the analysis of the diffusion approximation of the stochastic model by and large confirm our findings. Third, we investigate the effect of an increasing degree of conformism on cultural group selection in a group-structured population. We conclude that, in contrast to statements in the literature, conformism hinders rather than promotes the evolution of cooperation.

  7. Leishmania major: genetic heterogeneity of Iranian isolates by single-strand conformation polymorphism and sequence analysis of ribosomal DNA internal transcribed spacer.

    PubMed

    Tashakori, Mahnaz; Mahnaz, Tashakori; Kuhls, Katrin; Katrin, Kuhls; Al-Jawabreh, Amer; Amer, Al-Jawabreh; Mauricio, Isabel L; Isabel, Mauricio; Schönian, Gabriele; Gabriele, Schönian; Farajnia, Safar; Safar, Farajnia; Alimohammadian, Mohammad Hossein; Hossein, Alimohammadian Mohammad

    2006-04-01

    Protozoan parasites of Leishmania major are the causative agents of cutaneous leishmaniasis in different parts of Iran. We applied PCR-based methods to analyze L. major parasites isolated from patients with active lesions from different geographic areas in Iran in order to understand DNA polymorphisms within L. major species. Twenty-four isolates were identified as L. major by RFLP analysis of the ribosomal internal transcribed spacer 1 (ITS1) amplicons. These isolates were further studied by single-strand conformation polymorphism (SSCP) analysis and sequencing of ITS1 and ITS2. Data obtained from SSCP analysis of the ITS1 and ITS2 loci revealed three and four different patterns among all studied samples, respectively. Sequencing of ITS1 and ITS2 confirmed the results of SSCP analysis and showed the potential of the PCR-SSCP method for assessing genetic heterogeneity within L. major. Different patterns in ITS1 were due to substitution of one nucleotide, whereas in ITS2 the changes were defined by variation in the number of repeats in two polymorphic microsatellites. In total five genotypic groups LmA, LmB, LmC, LmD and LmE were identified among L. major isolates. The most frequent genotype, LmA, was detected in isolates collected from different endemic areas of cutaneous leishmaniasis in Iran. Genotypes LmC, LmD and LmE were found only in the new focus of CL in Damghan (Semnan province) and LmB was identified exclusively among isolates of Kashan focus (Isfahan province). The distribution of genetic polymorphisms suggests the existence of distinct endemic regions of L. major in Iran.

  8. The great diversity of HMX conformers: probing the potential energy surface using CCSD(T).

    PubMed

    Molt, Robert W; Watson, Thomas; Bazanté, Alexandre P; Bartlett, Rodney J

    2013-04-25

    The octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine (HMX) molecule is a very commonly studied system, in all 3 phases, because of its importance as an explosive; however, no one has ever attempted a systematic study of what all the major gas-phase conformers are. This is critical to a mechanistic study of the kinetics involved, as well as the viability of various crystalline polymorphs based on the gas-phase conformers. We have used existing knowledge of basic cyclooctane chemistry to survey all possible HMX conformers based on its fundamental ring structure. After studying what geometries are possible after second-order many-body perturbation theory (MBPT(2)) geometry optimization, we calculated the energetics using coupled cluster singles, doubles, and perturbative triples (CCSD(T))/cc-pVTZ. These highly accurate energies allow us to better calculate starting points for future mechanistic studies. Additionally, the plethora of structures are compared to existing experimental data of crystals. It is found that the crystal field effect is sometimes large and sometimes small for HMX.

  9. Nature vs. nurture in human sociality: multi-level genomic analyses of social conformity.

    PubMed

    Chen, Biqing; Zhu, Zijian; Wang, Yingying; Ding, Xiaohu; Guo, Xiaobo; He, Mingguang; Fang, Wan; Zhou, Qin; Zhou, Shanbi; Lei, Han; Huang, Ailong; Chen, Tingmei; Ni, Dongsheng; Gu, Yuping; Liu, Jianing; Rao, Yi

    2018-05-01

    Social conformity is fundamental to human societies and has been studied for more than six decades, but our understanding of its mechanisms remains limited. Individual differences in conformity have been attributed to social and cultural environmental influences, but not to genes. Here we demonstrate a genetic contribution to conformity after analyzing 1,140 twins and single-nucleotide polymorphism (SNP)-based studies of 2,130 young adults. A two-step genome-wide association study (GWAS) revealed replicable associations in 9 genomic loci, and a meta-analysis of three GWAS with a sample size of ~2,600 further confirmed one locus, corresponding to the NAV3 (Neuron Navigator 3) gene which encodes a protein important for axon outgrowth and guidance. Further multi-level (haplotype, gene, pathway) GWAS strongly associated genes including NAV3, PTPRD (protein tyrosine phosphatase receptor type D), ARL10 (ADP ribosylation factor-like GTPase 10), and CTNND2 (catenin delta 2), with conformity. Magnetic resonance imaging of 64 subjects shows correlation of activation or structural features of brain regions with the SNPs of these genes, supporting their functional significance. Our results suggest potential moderate genetic influence on conformity, implicate several specific genetic elements in conformity and will facilitate further research on cellular and molecular mechanisms underlying human conformity.

  10. How social learning adds up to a culture: from birdsong to human public opinion

    PubMed Central

    Feher, Olga; Fimiarz, Daniel; Conley, Dalton

    2017-01-01

    ABSTRACT Distributed social learning may occur at many temporal and spatial scales, but it rarely adds up to a stable culture. Cultures vary in stability and diversity (polymorphism), ranging from chaotic or drifting cultures, through cumulative polymorphic cultures, to stable monolithic cultures with high conformity levels. What features can sustain polymorphism, preventing cultures from collapsing into either chaotic or highly conforming states? We investigate this question by integrating studies across two quite separate disciplines: the emergence of song cultures in birds, and the spread of public opinion and social conventions in humans. In songbirds, the learning process has been studied in great detail, while in human studies the structure of social networks has been experimentally manipulated on large scales. In both cases, the manner in which communication signals are compressed and filtered – either during learning or while traveling through the social network – can affect culture polymorphism and stability. We suggest a simple mechanism of a shifting balance between converging and diverging social forces to explain these effects. Understanding social forces that shape cultural evolution might be useful for designing agile communication systems, which are stable and polymorphic enough to promote gradual changes in institutional behavior. PMID:28057835

  11. Diversity of Secondary Structure in Catalytic Peptides with β-Turn-Biased Sequences

    PubMed Central

    2016-01-01

    X-ray crystallography has been applied to the structural analysis of a series of tetrapeptides that were previously assessed for catalytic activity in an atroposelective bromination reaction. Common to the series is a central Pro-Xaa sequence, where Pro is either l- or d-proline, which was chosen to favor nucleation of canonical β-turn secondary structures. Crystallographic analysis of 35 different peptide sequences revealed a range of conformational states. The observed differences appear not only in cases where the Pro-Xaa loop-region is altered, but also when seemingly subtle alterations to the flanking residues are introduced. In many instances, distinct conformers of the same sequence were observed, either as symmetry-independent molecules within the same unit cell or as polymorphs. Computational studies using DFT provided additional insight into the analysis of solid-state structural features. Select X-ray crystal structures were compared to the corresponding solution structures derived from measured proton chemical shifts, 3J-values, and 1H–1H-NOESY contacts. These findings imply that the conformational space available to simple peptide-based catalysts is more diverse than precedent might suggest. The direct observation of multiple ground state conformations for peptides of this family, as well as the dynamic processes associated with conformational equilibria, underscore not only the challenge of designing peptide-based catalysts, but also the difficulty in predicting their accessible transition states. These findings implicate the advantages of low-barrier interconversions between conformations of peptide-based catalysts for multistep, enantioselective reactions. PMID:28029251

  12. Methods for detection of ataxia telangiectasia mutations

    DOEpatents

    Gatti, Richard A.

    2005-10-04

    The present invention is directed to a method of screening large, complex, polyexonic eukaryotic genes such as the ATM gene for mutations and polymorphisms by an improved version of single strand conformation polymorphism (SSCP) electrophoresis that allows electrophoresis of two or three amplified segments in a single lane. The present invention also is directed to new mutations and polymorphisms in the ATM gene that are useful in performing more accurate screening of human DNA samples for mutations and in distinguishing mutations from polymorphisms, thereby improving the efficiency of automated screening methods.

  13. Modified SSCP method using sequential electrophoresis of multiple nucleic acid segments

    DOEpatents

    Gatti, Richard A.

    2002-10-01

    The present invention is directed to a method of screening large, complex, polyexonic eukaryotic genes such as the ATM gene for mutations and polymorphisms by an improved version of single strand conformation polymorphism (SSCP) electrophoresis that allows electrophoresis of two or three amplified segments in a single lane. The present invention also is directed to new mutations and polymorphisms in the ATM gene that are useful in performing more accurate screening of human DNA samples for mutations and in distinguishing mutations from polymorphisms, thereby improving the efficiency of automated screening methods.

  14. [Research progress of molecular genetic analysis in Schistosoma variation].

    PubMed

    Zheng, Su-Yue; Li, Fei

    2014-02-01

    The development of molecular biology techniques makes important contributions to the researches of heritable variation of Schistosoma. In recent years, the molecular genetic analysis in the Schistosoma variation researches mainly includes the restriction fragment length polymorphism (RFLP), random amplified polymorphism technology (RAPD), microsatellite anchored PCR (SSR-PCR), and polymerase reaction single-strand conformation polymorphism (PCR-SSCP). This article reviews the research progress of molecular genetic analysis in Schistosoma variation in recent years.

  15. Combinatorial selection of molecular conformations and supramolecular synthons in quercetin cocrystal landscapes: a route to ternary solids

    PubMed Central

    Dubey, Ritesh; Desiraju, Gautam R.

    2015-01-01

    The crystallization of 28 binary and ternary cocrystals of quercetin with dibasic coformers is analyzed in terms of a combinatorial selection from a solution of preferred molecular conformations and supramolecular synthons. The crystal structures are characterized by distinctive O—H⋯N and O—H⋯O based synthons and are classified as nonporous, porous and helical. Variability in molecular conformation and synthon structure led to an increase in the energetic and structural space around the crystallization event. This space is the crystal structure landscape of the compound and is explored by fine-tuning the experimental conditions of crystallization. In the landscape context, we develop a strategy for the isolation of ternary cocrystals with the use of auxiliary template molecules to reduce the molecular and supramolecular ‘confusion’ that is inherent in a molecule like quercetin. The absence of concomitant polymorphism in this study highlights the selectivity in conformation and synthon choice from the virtual combinatorial library in solution. PMID:26175900

  16. Pharmaceutical polymorph control in a drug-mimetic supramolecular gel† †Electronic supplementary information (ESI) available: Synthetic and crystallographic experimental details, rheology, full crystallization and calculation details. See DOI: 10.1039/c6sc04126d Click here for additional data file.

    PubMed Central

    Foster, Jonathan A.; Damodaran, Krishna K.; Maurin, Antoine; Thompson, Hugh P. G.; Cameron, Gary J.; Bernal, Jenifer Cuesta

    2017-01-01

    We report the synthesis of a bis(urea) gelator designed to specifically mimic the chemical structure of the highly polymorphic drug substance ROY. Crystallization of ROY from toluene gels of this gelator results in the formation of the metastable red form instead of the thermodynamic yellow polymorph. In contrast, all other gels and solution control experiments give the yellow form. Conformational and crystal structure prediction methods have been used to propose the structure of the gel and show that the templation of the red form by the targeted gel results from conformational matching of the gelator to the ROY substrate coupled with overgrowth of ROY onto the local periodic structure of the gel fibres. PMID:28451150

  17. Molecular identification of Amazonian stingless bees using polymerase chain reaction single-strand conformation polymorphism.

    PubMed

    Souza, M T; Carvalho-Zilse, G A

    2014-07-25

    In countries containing a mega diversity of wildlife, such as Brazil, identifying and characterizing biological diversity is a continuous process for the scientific community, even in face of technological and scientific advances. This activity demands initiatives for the taxonomic identification of highly diverse groups, such as stingless bees, including molecular analysis strategies. This type of bee is distributed in all of the Brazilian states, with the highest species diversity being found in the State of Amazônia. However, the estimated number of species diverges among taxonomists. These bees are considered the main pollinators in the Amazon rainforest, in which they obtain food and shelter; however, their persistence is constantly threatened by deforestation pressure. Hence, it is important to classify the number and abundance of bee specie, to measure their decline and implement meaningful, priority conservation strategies. This study aims to maximize the implementation of more direct, economic and successful techniques for the taxonomic identification of stingless bees. Specifically, the genes 16S rRNA and COI from mitochondrial DNA were used as molecular markers to differentiate 9 species of Amazonian stingless bees based on DNA polymorphism, using the polymerase chain reaction-single-strand conformation polymorphism technique. We registered different, exclusive SSCP haplotypes for both genes in all species analyzed. These results demonstrate that SSCP is a simple and cost-effective technique that is applicable to the molecular identification of stingless bee species.

  18. Kinetically governed polymorphism of d(G₄T₄G₃) quadruplexes in K+ solutions.

    PubMed

    Prislan, Iztok; Lah, Jurij; Milanic, Matija; Vesnaver, Gorazd

    2011-03-01

    It has been generally recognized that understanding the molecular basis of some important cellular processes is hampered by the lack of knowledge of forces that drive spontaneous formation/disruption of G-quadruplex structures in guanine-rich DNA sequences. According to numerous biophysical and structural studies G-quadruplexes may occur in the presence of K(+) and Na(+) ions as polymorphic structures formed in kinetically governed processes. The reported kinetic models suggested to describe this polymorphism should be considered inappropriate since, as a rule, they include bimolecular single-step associations characterized by negative activation energies. In contrast, our approach in studying polymorphic behavior of G-quadruplexes is based on model mechanisms that involve only elementary folding/unfolding transitions and structural conversion steps that are characterized by positive activation energies. Here, we are investigating a complex polymorphism of d(G(4)T(4)G(3)) quadruplexes in K(+) solutions. On the basis of DSC, circular dichroism and UV spectroscopy and polyacrylamide gel electrophoresis experiments we propose a kinetic model that successfully describes the observed thermally induced conformational transitions of d(G(4)T(4)G(3)) quadruplexes in terms of single-step reactions that involve besides single strands also one tetramolecular and three bimolecular quadruplex structures.

  19. How social learning adds up to a culture: from birdsong to human public opinion.

    PubMed

    Tchernichovski, Ofer; Feher, Olga; Fimiarz, Daniel; Conley, Dalton

    2017-01-01

    Distributed social learning may occur at many temporal and spatial scales, but it rarely adds up to a stable culture. Cultures vary in stability and diversity (polymorphism), ranging from chaotic or drifting cultures, through cumulative polymorphic cultures, to stable monolithic cultures with high conformity levels. What features can sustain polymorphism, preventing cultures from collapsing into either chaotic or highly conforming states? We investigate this question by integrating studies across two quite separate disciplines: the emergence of song cultures in birds, and the spread of public opinion and social conventions in humans. In songbirds, the learning process has been studied in great detail, while in human studies the structure of social networks has been experimentally manipulated on large scales. In both cases, the manner in which communication signals are compressed and filtered - either during learning or while traveling through the social network - can affect culture polymorphism and stability. We suggest a simple mechanism of a shifting balance between converging and diverging social forces to explain these effects. Understanding social forces that shape cultural evolution might be useful for designing agile communication systems, which are stable and polymorphic enough to promote gradual changes in institutional behavior. © 2017. Published by The Company of Biologists Ltd.

  20. Polymorphs and solvatomorphs of azilsartan medoxomil: Elucidation of solvent-induced construction and conformational diversity

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Rui; He, Sai-Fei; Zhang, Shuo; Li, Jing; Li, Shan; Liu, Jin-Song; Zhang, Lei

    2017-02-01

    Two polymorphs (AM-A and AM-B) of azilsartan medoxomil (AM) and four AM solvatomorphs with toluene (AM-TOL), 1,4-dioxane (AM-DIO), chloroform (AM-TCM) and N,N-dimethylacetamide (AM-DMA) have been prepared by the hydrolysis of azilsartan medoxomil potassium in aqueous-organic solutions. In the crystal structures of two polymorphs and three solvatomorphs (AM-TOL, AM-DIO and AM-TCM), two asymmetric AM molecules form the dimeric cycle-like structures via intermolecular Nsbnd H⋯N hydrogen bonds in R22 (26) ring, while AM-DMA shows intramolecular Nsbnd H⋯O hydrogen bond between AM and DMA molecules. The hydrogen bonds (Csbnd H⋯O or Csbnd H⋯N) and π···π (or Csbnd H···π) interactions are helpful to stabilize the conformational diversity of AM. The solvent-induced experiment shows that solvent molecules have great influence on the solvatomorph formation and DIO can form the most steady solvatomorph than other solvents. The thermal study demonstrates that toluene molecules in three solvatomorphs (AM-TOL, AM-DIO and AM-TCM) are the most difficult to remove from the cage. Our results illustrate that the solvent plays significant role in tuning the size of the cage and producing the conformational diversity of AM molecules.

  1. Numerical modeling of polymorphic transformation of oleic acid via near-infrared spectroscopy and factor analysis.

    PubMed

    Liu, Ling; Cheng, Yuliang; Sun, Xiulan; Pi, Fuwei

    2018-05-15

    Near-infrared (NIR) spectroscopy as a tool for direct and quantitatively screening the minute polymorphic transitions of bioactive fatty acids was assessed basing on a thermal heating process of oleic acid. Temperature-dependent NIR spectral profiles indicate that dynamical variances of COOH group dominate its γ → α phase transition, while the transition from active α to β phase mainly relates to the conformational transfer of acyl chain. Through operating multivariate curve resolution-alternating least squares with factor analysis, instantaneous contribution of each active polymorph during the transition process was illustrated for displaying the progressive evolutions of functional groups. Calculated contributions reveal that the α phase of oleic acid initially is present at around -18 °C, but sharply grows up around -2.2 °C from the transformation of γ phase and finally disappears at the melting point. On the other hand, the β phase of oleic acid is sole self-generation after melt even it embryonically appears at -2.2 °C. Such mathematical approach based on NIR spectroscopy and factor analysis calculation provides a volatile strategy in quantitatively exploring the transition processes of bioactive fatty acids; meanwhile, it maintains promising possibility for instantaneous quantifying each active polymorph of lipid materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Numerical modeling of polymorphic transformation of oleic acid via near-infrared spectroscopy and factor analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Cheng, Yuliang; Sun, Xiulan; Pi, Fuwei

    2018-05-01

    Near-infrared (NIR) spectroscopy as a tool for direct and quantitatively screening the minute polymorphic transitions of bioactive fatty acids was assessed basing on a thermal heating process of oleic acid. Temperature-dependent NIR spectral profiles indicate that dynamical variances of COOH group dominate its γ → α phase transition, while the transition from active α to β phase mainly relates to the conformational transfer of acyl chain. Through operating multivariate curve resolution-alternating least squares with factor analysis, instantaneous contribution of each active polymorph during the transition process was illustrated for displaying the progressive evolutions of functional groups. Calculated contributions reveal that the α phase of oleic acid initially is present at around -18 °C, but sharply grows up around -2.2 °C from the transformation of γ phase and finally disappears at the melting point. On the other hand, the β phase of oleic acid is sole self-generation after melt even it embryonically appears at -2.2 °C. Such mathematical approach based on NIR spectroscopy and factor analysis calculation provides a volatile strategy in quantitatively exploring the transition processes of bioactive fatty acids; meanwhile, it maintains promising possibility for instantaneous quantifying each active polymorph of lipid materials.

  3. Detection of AGXT bgene mutations by denaturing high-performance liquid chromatography for diagnosis of hyperoxaluria type 1.

    PubMed

    Pirulli, D; Giordano, M; Lessi, M; Spanò, A; Puzzer, D; Zezlina, S; Boniotto, M; Crovella, S; Florian, F; Marangella, M; Momigliano-Richiardi, P; Savoldi, S; Amoroso, A

    2001-06-01

    Primary hyperoxaluria type 1 is an autosomal recessive disorder of glyoxylate metabolism, caused by a deficiency of alanine:glyoxylate aminotransferase, which is encoded by a single copy gene (AGXT. The aim of this research was to standardize denaturing high-performance liquid chromatography, a new, sensitive, relatively inexpensive, and automated technique, for the detection of AGXT mutation. Denaturing high-performance liquid chromatography was used to analyze in blind the AGXT gene in 20 unrelated Italian patients with primary hyperoxaluria type I previously studied by other standard methods (single-strand conformation polymorphism analysis and direct sequencing) and 50 controls. Denaturing high-performance liquid chromatography allowed us to identify 13 mutations and the polymorphism at position 154 in exon I of the AGXT gene. Hence the method is more sensitive and less time consuming than single-strand conformation polymorphism analysis for the detection of AGXT mutations, thus representing a useful and reliable tool for detecting the mutations responsible for primary hyperoxaluria type 1. The new technology could also be helpful in the search for healthy carriers of AGXT mutations amongst family members and their partners, and for screening of AGXT polymorphisms in patients with nephrolithiasis and healthy populations.

  4. Structural study of piracetam polymorphs and cocrystals: crystallography redetermination and quantum mechanics calculations.

    PubMed

    Tilborg, Anaëlle; Jacquemin, Denis; Norberg, Bernadette; Perpète, Eric; Michaux, Catherine; Wouters, Johan

    2011-12-01

    Pharmaceutical compounds are mostly developed as solid dosage forms containing a single-crystal form. It means that the selection of a particular crystal state for a given molecule is an important step for further clinical outlooks. In this context, piracetam, a pharmaceutical molecule known since the sixties for its nootropic properties, is considered in the present work. This molecule is analyzed using several experimental and theoretical approaches. First, the conformational space of the molecule has been systematically explored by performing a quantum mechanics scan of the two most relevant dihedral angles of the lateral chain. The predicted stable conformations have been compared to all the reported experimental geometries retrieved from the Cambridge Structural Database (CSD) covering polymorphs and cocrystals structures. In parallel, different batches of powders have been recrystallized. Under specific conditions, single crystals of polymorph (III) of piracetam have been obtained, an outcome confirmed by crystallographic analysis. © 2011 International Union of Crystallography. Printed in Singapore – all rights reserved.

  5. Twisting Right to Left: A…A Mismatch in a CAG Trinucleotide Repeat Overexpansion Provokes Left-Handed Z-DNA Conformation

    PubMed Central

    2015-01-01

    Conformational polymorphism of DNA is a major causative factor behind several incurable trinucleotide repeat expansion disorders that arise from overexpansion of trinucleotide repeats located in coding/non-coding regions of specific genes. Hairpin DNA structures that are formed due to overexpansion of CAG repeat lead to Huntington’s disorder and spinocerebellar ataxias. Nonetheless, DNA hairpin stem structure that generally embraces B-form with canonical base pairs is poorly understood in the context of periodic noncanonical A…A mismatch as found in CAG repeat overexpansion. Molecular dynamics simulations on DNA hairpin stems containing A…A mismatches in a CAG repeat overexpansion show that A…A dictates local Z-form irrespective of starting glycosyl conformation, in sharp contrast to canonical DNA duplex. Transition from B-to-Z is due to the mechanistic effect that originates from its pronounced nonisostericity with flanking canonical base pairs facilitated by base extrusion, backbone and/or base flipping. Based on these structural insights we envisage that such an unusual DNA structure of the CAG hairpin stem may have a role in disease pathogenesis. As this is the first study that delineates the influence of a single A…A mismatch in reversing DNA helicity, it would further have an impact on understanding DNA mismatch repair. PMID:25876062

  6. Self-assembled monolayers of shape-persistent macrocycles on graphite: interior design and conformational polymorphism.

    PubMed

    Vollmeyer, Joscha; Eberhagen, Friederike; Höger, Sigurd; Jester, Stefan-S

    2014-01-01

    Three shape-persistent naphthylene-phenylene-acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior.

  7. Two polymorphs of safinamide, a selective and reversible inhibitor of monoamine oxidase B.

    PubMed

    Ravikumar, Krishnan; Sridhar, Balasubramanian

    2010-06-01

    Two polymorphs of safinamide {systematic name: (2S)-2-[4-(3-fluorobenzyloxy)benzylamino]propionamide}, C(17)H(19)FN(2)O(2), a potent selective and reversible monoamine oxidase B (MAO-B) inhibitor, are described. Both forms are orthorhombic and regarded as conformational polymorphs due to the differences in the orientation of the 3-fluorobenzyloxy and propanamide groups. Both structures pack with layers in the ac plane. In polymorph (I), the layers have discrete wide and narrow regions which are complementary when located next to adjacent layers. In polymorph (II), the layer has long flanges protruding from each side, which interdigitate when packed with the adjacent layers. N-H...O hydrogen bonds are present in both structures, whereas N-H...F hydrogen bonding is seen in polymorph (I), while N-H...N hydrogen bonding is seen in polymorph (II).

  8. Polymorphism in Energetic Materials

    DTIC Science & Technology

    2008-01-01

    2Department of Chemistry, Howard University Polymorphism often occurs in energetic materials. Differences in the forms range from conformational changes in...these two areas. rayMond J. ButchEr is a professor of inorganic and structural chemistry at Howard University , Washington, DC. He has worked at Howard ... University since 1977 and has been associated with the NRL Laboratory for Structure of Matter since 1989 (primarily during the summer months as an

  9. Mismatch repair gene MSH3 polymorphism is associated with the risk of sporadic prostate cancer.

    PubMed

    Hirata, Hiroshi; Hinoda, Yuji; Kawamoto, Ken; Kikuno, Nobuyuki; Suehiro, Yutaka; Okayama, Naoko; Tanaka, Yuichiro; Dahiya, Rajvir

    2008-05-01

    The mismatch repair system is a DNA repair mechanism that corrects mispaired bases during DNA replication errors. Cancer cells deficient in MMR proteins have a 10(2) to 10(3)-fold increase in the mutation rate. Single nucleotide polymorphisms of mismatch repair genes have been shown to cause a decrease in DNA repair activity. We hypothesized that mismatch repair gene polymorphism could be a risk factor for prostate cancer and p53 Pro/Pro genotype carriers could influence MSH3 and MSH6 polymorphisms. DNA samples from 110 patients with prostate cancer and 110 healthy controls were analyzed by single strand conformational polymorphism and polymerase chain reaction-restriction fragment length polymorphism to determine the genotypic frequency of 5 polymorphic loci on 2 MMR genes (MSH3 and MSH6) and p53 codon72. The chi-square test was applied to compare genotype frequency between patients and controls. A significant increase in the G/A+A/A genotype of MSH3 Pro222Pro was observed in patients compared to controls (OR 1.87, 95% CI 1.0-3.5). The frequency of A/G + G/G genotypes of MSH3 exon23 Thr1036Ala also tended to increase in patients (OR 1.57, 95% CI 0.92-2.72). In p53 codon72 Arg/Pro + Pro/Pro carriers the frequency of the AG + GG genotype of MSH3 exon23 was significantly increased in patients compared to controls (OR 2.1, 95% CI 1.05-4.34). To our knowledge this is the first report of the association of MSH3 gene polymorphisms in prostate cancer. These results suggest that the MSH3 polymorphism may be a risk factor for prostate cancer.

  10. Application of Solid-State NMR to Reveal Structural Differences in Cefazolin Sodium Pentahydrate from Different Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Wang, Wei D.; Zou, Wen-Bo; Qian, Jian-Qin; Hu, Chang-Qin

    2018-04-01

    The solid form of an active pharmaceutical ingredient is important when developing a new chemical entity. A solid understanding of the crystal structure and morphology that affect the mechanical and physical characteristics of pharmaceutical powders determines the manufacturing process. Solid-state NMR, thermogravimetric analysis, X-ray diffraction, and Fourier-transform infrared spectroscopy were combined with theoretical calculation to investigate different crystal packings of α-cefazolin sodium from three different vendors and conformational polymorphism was identified to exist in the α-cefazolin sodium. Marginal differences observed among CEZ-Na pentahydrate 1, 2, and 3 were speculated as the proportion of conformation 2. Understanding the differences in the polymorphic structure of α-cefazolin sodium may help with making modifications to incorporate new knowledge with a product’s development.

  11. The inverse podant [Li3(NBut)3S)]+ stabilises a single ethylene oxide OCH=CH2 anion as a high- and low-temperature polymorph of [(thf)3Li3(OCH=CH2)(NBut)3S)].

    PubMed

    Walfort, B; Pandey, S K; Stalke, D

    2001-09-07

    A single ethylene oxide anion derived from the ether cleavage reaction of thf with ButLi is stabilised by the inverse podant [Li3(NBut)3S)]+ to give a high- and a low-temperature polymorph with a considerable difference in conformation and packing.

  12. Collapsed state of polyglutamic acid results in amyloid spherulite formation

    PubMed Central

    Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin

    2015-01-01

    Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly. PMID:28232889

  13. Collapsed state of polyglutamic acid results in amyloid spherulite formation.

    PubMed

    Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin

    2015-01-01

    Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly.

  14. Polymorphic transformation of helical flagella of bacteria

    NASA Astrophysics Data System (ADS)

    Lim, Sookkyung; Howard Berg Collaboration; William Ko Collaboration; Yongsam Kim Collaboration; Wanho Lee Collaboration; Charles Peskin Collaboration

    2016-11-01

    Bacteria such as E. coli swim in an aqueous environment by utilizing the rotation of flagellar motors and alternate two modes of motility, runs and tumbles. Runs are steady forward swimming driven by bundles of flagellar filaments whose motors are turning CCW; tumbles involve a reorientation of the direction of swimming triggered by motor reversals. During tumbling, the helical flagellum undergoes polymorphic transformations, which is a local change in helical pitch, helical radius, and handedness. In this work, we investigate the underlying mechanism of structural conformation and how this polymorphic transition plays a role in bacterial swimming. National Science Foundation.

  15. Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle.

    PubMed

    Zhao, Q; Davis, M E; Hines, H C

    2004-08-01

    The Pit-1 gene was studied as a candidate for genetic markers of growth and carcass traits. Angus beef cattle that were divergently selected for high- or low-blood serum IGF-I concentration were used in this study. The single-strand conformation polymorphism method was used to identify polymorphism in the Pit-1 gene including regions from intron 2 to exon 6. Two polymorphisms, Pit1I3H (HinfI) and Pit1I3NL (NlaIII), were detected in intron 3 of the Pit-1 gene. One polymorphism, Pit1I4N (BstNI), was found in intron 4, and a single nucleotide polymorphism, Pit1I5, was found in intron 5. The previously reported polymorphism in exon 6, Pit1E6H (HinfI), was also studied in 416 Angus beef cattle. Associations of the polymorphisms with growth traits, carcass traits, and IGF-I concentration were analyzed using a general linear model procedure. No significant associations were observed between these polymorphisms and growth and carcass traits.

  16. Protein conformation and disease : pathological consequences of analogous mutations in homologous proteins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, F. J.; Pokkuluri, P. R.; Schiffer, M.

    2000-12-19

    The antibody light chain variable domain (V{sub L}){sup 1} and myelin protein zero (MPZ) are representatives of the functionally diverse immunoglobulin superfamily. The V{sub L} is a subunit of the antigen-binding component of antibodies, while MPZ is the major membrane-linked constituent of the myelin sheaths that coat peripheral nerves. Despite limited amino acid sequence homology, the conformations of the core structures of the two proteins are largely superimposable. Amino acid variations in V{sub L} account for various conformational disease outcomes, including amyloidosis. However, the specific amino acid changes in V{sub L} that are responsible for disease have been obscured bymore » multiple concurrent primary structure alterations. Recently, certain demyelination disorders have been linked to point mutations and single amino acid polymorphisms in MPZ. We demonstrate here that some pathogenic variations in MPZ correspond to changes suspected of determining amyloidosis in V{sub L}. This unanticipated observation suggests that studies of the biophysical origin of conformational disease in one member of a superfamily of homologous proteins may have implications throughout the superfamily. In some cases, findings may account for overt disease; in other cases, due to the natural repertoire of inherited polymorphisms, variations in a representative protein may predict subclinical impairment of homologous proteins.« less

  17. A comparative study of two polymorphs of L-aspartic acid hydrochloride.

    PubMed

    Benali-Cherif, Rim; Takouachet, Radhwane; Bendeif, El-Eulmi; Benali-Cherif, Nourredine

    2014-07-01

    Two polymorphs of L-aspartic acid hydrochloride, C4H8NO4(+)·Cl(-), were obtained from the same aqueous solution. Their crystal structures have been determined from single-crystal data collected at 100 K. The crystal structures revealed three- and two-dimensional hydrogen-bonding networks for the triclinic and orthorhombic polymorphs, respectively. The cations and anions are connected to one another via N-H···Cl and O-H···Cl interactions and form alternating cation-anion layer-like structures. The two polymorphs share common structural features; however, the conformations of the L-aspartate cations and the crystal packings are different. Furthermore, the molecular packing of the orthorhombic polymorph contains more interesting interactions which seems to be a favourable factor for more efficient charge transfer within the crystal.

  18. Single-strand conformation polymorphism (SSCP)-based mutation scanning approaches to fingerprint sequence variation in ribosomal DNA of ascaridoid nematodes.

    PubMed

    Zhu, X Q; Gasser, R B

    1998-06-01

    In this study, we assessed single-strand conformation polymorphism (SSCP)-based approaches for their capacity to fingerprint sequence variation in ribosomal DNA (rDNA) of ascaridoid nematodes of veterinary and/or human health significance. The second internal transcribed spacer region (ITS-2) of rDNA was utilised as the target region because it is known to provide species-specific markers for this group of parasites. ITS-2 was amplified by PCR from genomic DNA derived from individual parasites and subjected to analysis. Direct SSCP analysis of amplicons from seven taxa (Toxocara vitulorum, Toxocara cati, Toxocara canis, Toxascaris leonina, Baylisascaris procyonis, Ascaris suum and Parascaris equorum) showed that the single-strand (ss) ITS-2 patterns produced allowed their unequivocal identification to species. While no variation in SSCP patterns was detected in the ITS-2 within four species for which multiple samples were available, the method allowed the direct display of four distinct sequence types of ITS-2 among individual worms of T. cati. Comparison of SSCP/sequencing with the methods of dideoxy fingerprinting (ddF) and restriction endonuclease fingerprinting (REF) revealed that also ddF allowed the definition of the four sequence types, whereas REF displayed three of four. The findings indicate the usefulness of the SSCP-based approaches for the identification of ascaridoid nematodes to species, the direct display of sequence variation in rDNA and the detection of population variation. The ability to fingerprint microheterogeneity in ITS-2 rDNA using such approaches also has implications for studying fundamental aspects relating to mutational change in rDNA.

  19. Structural and abinitio studies on the polymorphism of iminophosphorane (CH3C6H4)3Pdbnd NP[(dbnd O)(OPh)2

    NASA Astrophysics Data System (ADS)

    Petric, Mihaela F.; Crisan, Manuela E.; Chumakov, Yurii M.; Varga, Richard A.; Micle, Andreea; Neda, Ion; Ilia, Gheorghe

    2015-03-01

    Two polymorphic forms of a new iminophosphorane have been investigated by infrared, nuclear magnetic resonance and mass spectroscopy, X-ray crystallography and studied through ab initio quantum chemical calculations. The monoclinic polymorph α contains two independent molecules (αI and αII) in the asymmetric unit, while the orthorhombic polymorph ß has one molecule in the asymmetric unit. The molecules in polymorphs α and β adopt different conformations. Hirshfeld surfaces and fingerprint plots were generated in order to compare the two independent molecules αI and αII in the asymmetric unit and also for a comparison of ß molecule, in the orthorhombic crystal system, with the previously reported monoclinic polymorph. The results show that the packing motifs in polymorphs α and β differ mainly due to the redistribution of Csbnd H⋯O and Csbnd H⋯π hydrogen-bond interactions rather than their percentage Hirshfeld surface area contributions. The dipole-dipole interactions significantly influence the intermolecular interactions in polymorphs α and β. The calculated lattice energies indicate that polymorph α is slightly more stable than polymorph α.

  20. The occurrence of Toxocara malaysiensis in cats in China, confirmed by sequence-based analyses of ribosomal DNA.

    PubMed

    Li, Ming-Wei; Zhu, Xing-Quan; Gasser, Robin B; Lin, Rui-Qing; Sani, Rehana A; Lun, Zhao-Rong; Jacobs, Dennis E

    2006-10-01

    Non-isotopic polymerase chain reaction (PCR)-based single-strand conformation polymorphism and sequence analyses of the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA (rDNA) were utilized to genetically characterise ascaridoids from dogs and cats from China by comparison with those from other countries. The study showed that Toxocara canis, Toxocara cati, and Toxascaris leonina from China were genetically the same as those from other geographical origins. Specimens from cats from Guangzhou, China, which were morphologically consistent with Toxocara malaysiensis, were the same genetically as those from Malaysia, with the exception of a polymorphism in the ITS-2 but no unequivocal sequence difference. This is the first report of T. malaysiensis in cats outside of Malaysia (from where it was originally described), supporting the proposal that this species has a broader geographical distribution. The molecular approach employed provides a powerful tool for elucidating the biology, epidemiology, and zoonotic significance of T. malaysiensis.

  1. Quantifying side-chain conformational variations in protein structure

    PubMed Central

    Miao, Zhichao; Cao, Yang

    2016-01-01

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs. PMID:27845406

  2. Quantifying side-chain conformational variations in protein structure

    NASA Astrophysics Data System (ADS)

    Miao, Zhichao; Cao, Yang

    2016-11-01

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.

  3. Quantifying side-chain conformational variations in protein structure.

    PubMed

    Miao, Zhichao; Cao, Yang

    2016-11-15

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.

  4. Further exploration of the conformational space of α-synuclein fibrils: solid-state NMR assignment of a high-pH polymorph.

    PubMed

    Verasdonck, Joeri; Bousset, Luc; Gath, Julia; Melki, Ronald; Böckmann, Anja; Meier, Beat H

    2016-04-01

    Polymorphism is a common and important phenomenon for protein fibrils which has been linked to the appearance of strains in prion and other neurodegenerative diseases. Parkinson disease is a frequently occurring neurodegenerative pathology, tightly associated with the formation of Lewy bodies. These deposits mainly consist of α-synuclein in fibrillar, β-sheet-rich form. α-synuclein is known to form numerous different polymorphs, which show distinct structural features. Here, we describe the chemical shift assignments, and derive the secondary structure, of a polymorph that was fibrillized at higher-than-physiological pH conditions. The fibrillar core contains residues 40-95, with both the C- and N-terminus not showing any ordered, rigid parts. The chemical shifts are similar to those recorded previously for an assigned polymorph that was fibrillized at neutral pH.

  5. Molecular mechanisms for protein-encoded inheritance

    PubMed Central

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  6. Phase behavior in quaternary ammonium ionic liquid-propanol solutions: Hydrophobicity, molecular conformations, and isomer effects

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Kohki, Erica; Nakada, Ayumu; Kishimura, Hiroaki

    2017-07-01

    In ionic liquids (ILs), the effects of a quaternary ammonium cation containing a hydroxyl group were investigated and compared with the effect of a standard quaternary ammonium cation. The cation possessing a hydroxyl group is choline, Chol+, and the anion is bis(trifluoromethylsulfonyl)imide, TFSI-. Crystal polymorphism of pure [Chol][TFSI] was observed upon both cooling and heating by simultaneous X-ray diffraction and differential scanning calorimetry measurements. In contrast, [N3111][TFSI] (N3111+: N-trimethyl-N-propylammonium), a standard IL, demonstrated simple crystallization upon cooling. By adding 1-propanol or 2-propanol, the phase behaviors of the [Chol][TFSI]-based and [N3111][TFSI]-based mixtures were clearly distinguished. By Raman spectroscopy, the TFSI- anion conformers in the liquid state were shown to vary according to the propanol concentration, propanol isomer, and type of cation. The anomalous behaviors of pure [Chol][TFSI] and its mixtures are derived from hydrogen bonding of the hydroxyl group of Chol+ cation coupled with the hydrophobicity and packing efficiency of propanol.

  7. Sequence Variations in the Bovine Growth Hormone Gene Characterized by Single-Strand Conformation Polymorphism (Sscp) Analysis and Their Association with Milk Production Traits in Holsteins

    PubMed Central

    Yao, J.; Aggrey, S. E.; Zadworny, D.; Hayes, J. F.; Kuhnlein, U.

    1996-01-01

    Sequence variations in the bovine growth hormone (GH) gene were investigated by single strand conformation polymorphism (SSCP) analysis of seven amplified fragments covering almost the entire gene (2.7 kb). SSCPs were detected in four of these fragments and a total of six polymorphisms were found in a sample of 128 Holstein bulls. Two polymorphisms, a T->C transition in the third intron (designated GH4.1) and an A->C transversion in the fifth exon (designated GH6.2), were shown to be associated with milk production traits. GH4.1(c)/GH4.1(c) bulls had higher milk yield than GH4.1(c)/GH4.1(t) (P <= 0.005) and GH4.1(t)/GH4.1(t) (P <= 0.0022) bulls. GH4.1(c)/GH4.1(c) bulls had higher kg fat (P <= 0.0076) and protein (P <= 0.0018) than GH4.1(c)/GH4.1(t) bulls. Similar effects on milk production traits with the GH6.2 polymorphism were observed with the GH6.2(a) allele being the favorable allele. The average effects of the gene substitution for GH4.1 and GH6.2 are similar, with +/-300 kg for milk yield, +/-8 kg for fat content and +/-7 kg for protein content per lactation. The positive association of GH4.1(c) and GH6.2(a) with milk production traits may be useful for improving milk performance in dairy cattle. PMID:8978066

  8. A low-temperature polymorph of m-quinquephenyl.

    PubMed

    Gomes, Ligia R; Howie, R Alan; Low, John Nicolson; Rodrigues, Ana S M C; Santos, Luís M N B F

    2012-12-01

    A low-temperature polymorph of 1,1':3',1'':3'',1''':3''',1''''-quinquephenyl (m-quinquephenyl), C(30)H(22), crystallizes in the space group P2(1)/c with two molecules in the asymmetric unit. The crystal is a three-component nonmerohedral twin. A previously reported room-temperature polymorph [Rabideau, Sygula, Dhar & Fronczek (1993). Chem. Commun. pp. 1795-1797] also crystallizes with two molecules in the asymmetric unit in the space group P-1. The unit-cell volume for the low-temperature polymorph is 4120.5 (4) Å(3), almost twice that of the room-temperature polymorph which is 2102.3 (6) Å(3). The molecules in both structures adopt a U-shaped conformation with similar geometric parameters. The structural packing is similar in both compounds, with the molecules lying in layers which stack perpendicular to the longest unit-cell axis. The molecules pack alternately in the layers and in the stacked columns. In both polymorphs, the only interactions between the molecules which can stabilize the packing are very weak C-H...π interactions.

  9. Association analysis of a polymorphism of the monoamine oxidase B gene with Parkinson`s disease in a Japanese population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morimoto, Yuji; Murayama, Nobuhiro; Kuwano, Akira

    1995-12-18

    The polymorphic allele of the monoamine oxidase B (MAO-B) gene detected by polymerase chain reaction (PCR) and single-stranded conformation polymorphism (SSCP) was associated with Parkinson`s disease (PD) in Caucasians. We characterized this polymorphic allele, allele 1, of the MAO-B gene using direct sequencing of PCR products. A single DNA substitution (G-A), resulting gain of Mae III restriction site was detected in intron 13 of the MAO-B gene. The allele associated with PD in Caucasians was twice as frequent as in healthy Japanese, but the association of the allele of the MAO-B gene was not observed in Japanese patients with PD.more » 7 refs., 2 figs., 1 tab.« less

  10. Polymorphic one-dimensional (N2H4)2ZnTe: soluble precursors for the formation of hexagonal or cubic zinc telluride.

    PubMed

    Mitzi, David B

    2005-10-03

    Two hydrazine zinc(II) telluride polymorphs, (N2H4)2ZnTe, have been isolated, using ambient-temperature solution-based techniques, and the crystal structures determined: alpha-(N2H4)2ZnTe (1) [P21, a = 7.2157(4) Angstroms, b = 11.5439(6) Angstroms, c = 7.3909(4) Angstroms, beta = 101.296(1) degrees, Z = 4] and beta-(N2H4)2ZnTe (2) [Pn, a = 8.1301(5) Angstroms, b = 6.9580(5) Angstroms, c = 10.7380(7) Angstroms, beta = 91.703(1) degrees, Z = 4]. The zinc atoms in 1 and 2 are tetrahedrally bonded to two terminal hydrazine molecules and two bridging tellurium atoms, leading to the formation of extended one-dimensional (1-D) zinc telluride chains, with different chain conformations and packings distinguishing the two polymorphs. Thermal decomposition of (N2H4)2ZnTe first yields crystalline wurtzite (hexagonal) ZnTe at temperatures as low as 200 degrees C, followed by the more stable zinc blende (cubic) form at temperatures above 350 degrees C. The 1-D polymorphs are soluble in hydrazine and can be used as convenient precursors for the low-temperature solution processing of p-type ZnTe semiconducting films.

  11. Association of polymorphisms of exon 2 of the growth hormone gene with production performance in Huoyan goose.

    PubMed

    Zhang, Yang; Zhu, Zhen; Xu, Qi; Chen, Guohong

    2014-01-07

    Primers based on the cDNA sequence of the goose growth hormone (GH) gene in GenBank were designed to amplify exon 2 of the GH gene in Huoyan goose. A total of 552 individuals were brooded in one batch and raised in Liaoning and Jiangsu Provinces, China. Single nucleotide polymorphisms (SNPs) of exon 2 in the GH gene were detected by the polymerase chain reaction (single strand conformation polymorphism method). Homozygotes were subsequently cloned, sequenced and analyzed. Two SNP mutations were detected, and 10 genotypes (referred to as AA, BB, CC, DD, AB, AC, AD, BC, BD and CD) were obtained. Allele D was predominant, and the frequencies of the 10 genotypes fit the Hardy-Weinberg equilibrium in the male, female and whole populations according to the chi-square test. Based on SNP types, the 10 genotypes were combined into three main genotypes. Multiple comparisons were carried out between different genotypes and production traits when the geese were 10 weeks old. Some indices of production performance were significantly (p < 0.05) associated with the genotype. Particularly, geese with genotype AB or BB were highly productive. Thus, these genotypes may serve as selection markers for production traits in Huoyan geese.

  12. Gene-Based Single Nucleotide Polymorphism Markers for Genetic and Association Mapping in Common Bean

    PubMed Central

    2012-01-01

    Background In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. Results In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. Conclusions In short, this study illustrates the power of intron-based markers for linkage and association mapping in common bean. The utility of these markers is discussed in relation with the usefulness of microsatellites, the molecular markers by excellence in this crop. PMID:22734675

  13. Gene analysis of steroid 5 alpha-reductase 1 in hyperandrogenic women.

    PubMed

    Eminović, Izet; Komel, Radovan; Prezelj, Janez; Karamehić, Jasenko; Gavrankapetanović, Faris; Heljić, Becir

    2005-08-01

    To examine the gene encoding for 5alpha-reductase type 1 in hyperandrogenic women, and assess the association of its eventual mutations or polymorphisms with the development of the hyperandrogenic female pattern. Sixteen hyperandrogenic women were included in the study. Single-stranded conformation polymorphism analysis (SSCP) and DNA sequencing were performed after polymerase chain reaction amplification of each of the 5 exons of the SRD5A1 gene in both hyperandrogenic and control group (16 participants). Sequence analysis identified the existence of many polymorphisms; in codon 24 of exon 1, GGC (Gly) into GAC (Asp); in codon 30 of exon 1, CGG (Arg) into CGC (Arg); in exon 3 codon 169, ACA to ACG (both encoding for threonine); in exon 5, AGA to AGG (both encoding for arginine, codon 260); and T/C polymorphism in intron 2. Polymorphisms were found in both groups. Polymorphisms of SRD5A1 gene were the same in both hyperandrogenic and healthy women, indicating no significant associations of genetic polymorphisms/variations of SRD5A1 gene with clinical manifestations of hyperandrogenic disorders in women.

  14. Structural analyses of polymorphic transitions of sn-1, 3-distearoyl-2-oleoylglycerol (SOS) and sn-1, 3-dioleoyl-2-stearoylglycerol (OSO): assessment on steric hindrance of unsaturated and saturated acyl chain interactions.

    PubMed

    Yano, J; Sato, K; Kaneko, F; Small, D M; Kodali, D R

    1999-01-01

    Polymorphic transformations in two saturated-unsaturated mixed acid triacylglycerols, SOS (sn -1,3-distearoyl-2-oleoylglycerol) and OSO (sn -1,3-dioleoyl-2-stearoylglycerol), have been studied by FT-IR spectroscopy using deuterated specimens in which stearoyl chains are fully deuterated. A reversible phase transition between sub alpha and alpha and a series of irreversible transitions (alpha-->gamma-->beta'-->beta (beta2, beta1) for SOS and alpha-->beta'-->beta for OSO) were studied with an emphasis on the conformational ordering process of stearoyl and oleoyl chains. The alpha-->sub alpha reversible transition was due to the orientational change of stearoyl chains in the lateral directions from the hexagonal subcell to a perpendicularly packed one. As the first stage of the series of irreversible transitions from alpha to beta, the conformational ordering of saturated chains took place in the alpha-->gamma transition of SOS and in the alpha-->beta' transition of OSO; one stearoyl chain in SOS and OSO takes the all-trans conformation and the second stearoyl chain in SOS takes the bent conformation like those observed in the most stable beta-type. As the final stage, the ordering of unsaturated chains occurred in the beta'-->beta transition both for SOS and OSO. A conversion in the layered structure from bilayer to trilayer was also accompanied by the conformational ordering in the alpha-->gamma transition of SOS and in the beta'-->beta transition of OSO.

  15. Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer's disease.

    PubMed

    Rasmussen, Jay; Mahler, Jasmin; Beschorner, Natalie; Kaeser, Stephan A; Häsler, Lisa M; Baumann, Frank; Nyström, Sofie; Portelius, Erik; Blennow, Kaj; Lashley, Tammaryn; Fox, Nick C; Sepulveda-Falla, Diego; Glatzel, Markus; Oblak, Adrian L; Ghetti, Bernardino; Nilsson, K Peter R; Hammarström, Per; Staufenbiel, Matthias; Walker, Lary C; Jucker, Mathias

    2017-12-05

    The molecular architecture of amyloids formed in vivo can be interrogated using luminescent conjugated oligothiophenes (LCOs), a unique class of amyloid dyes. When bound to amyloid, LCOs yield fluorescence emission spectra that reflect the 3D structure of the protein aggregates. Given that synthetic amyloid-β peptide (Aβ) has been shown to adopt distinct structural conformations with different biological activities, we asked whether Aβ can assume structurally and functionally distinct conformations within the brain. To this end, we analyzed the LCO-stained cores of β-amyloid plaques in postmortem tissue sections from frontal, temporal, and occipital neocortices in 40 cases of familial Alzheimer's disease (AD) or sporadic (idiopathic) AD (sAD). The spectral attributes of LCO-bound plaques varied markedly in the brain, but the mean spectral properties of the amyloid cores were generally similar in all three cortical regions of individual patients. Remarkably, the LCO amyloid spectra differed significantly among some of the familial and sAD subtypes, and between typical patients with sAD and those with posterior cortical atrophy AD. Neither the amount of Aβ nor its protease resistance correlated with LCO spectral properties. LCO spectral amyloid phenotypes could be partially conveyed to Aβ plaques induced by experimental transmission in a mouse model. These findings indicate that polymorphic Aβ-amyloid deposits within the brain cluster as clouds of conformational variants in different AD cases. Heterogeneity in the molecular architecture of pathogenic Aβ among individuals and in etiologically distinct subtypes of AD justifies further studies to assess putative links between Aβ conformation and clinical phenotype.

  16. Partner-Mediated Polymorphism of an Intrinsically Disordered Protein.

    PubMed

    Bignon, Christophe; Troilo, Francesca; Gianni, Stefano; Longhi, Sonia

    2017-11-29

    Intrinsically disordered proteins (IDPs) recognize their partners through molecular recognition elements (MoREs). The MoRE of the C-terminal intrinsically disordered domain of the measles virus nucleoprotein (N TAIL ) is partly pre-configured as an α-helix in the free form and undergoes α-helical folding upon binding to the X domain (XD) of the viral phosphoprotein. Beyond XD, N TAIL also binds the major inducible heat shock protein 70 (hsp70). So far, no structural information is available for the N TAIL /hsp70 complex. Using mutational studies combined with a protein complementation assay based on green fluorescent protein reconstitution, we have investigated both N TAIL /XD and N TAIL /hsp70 interactions. Although the same N TAIL region binds the two partners, the binding mechanisms are different. Hsp70 binding is much more tolerant of MoRE substitutions than XD, and the majority of substitutions lead to an increased N TAIL /hsp70 interaction strength. Furthermore, while an increased and a decreased α-helicity of the MoRE lead to enhanced and reduced interaction strength with XD, respectively, the impact on hsp70 binding is negligible, suggesting that the MoRE does not adopt an α-helical conformation once bound to hsp70. Here, by showing that the α-helical conformation sampled by the free form of the MoRE does not systematically commit it to adopt an α-helical conformation in the bound form, we provide an example of partner-mediated polymorphism of an IDP and of the relative insensitiveness of the bound structure to the pre-recognition state. The present results therefore contribute to shed light on the molecular mechanisms by which IDPs recognize different partners. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Analysis of the Effects of Polymorphism on Pollen Profilin Structural Functionality and the Generation of Conformational, T- and B-Cell Epitopes

    PubMed Central

    Jimenez-Lopez, Jose C.; Rodríguez-García, María I.; Alché, Juan D.

    2013-01-01

    An extensive polymorphism analysis of pollen profilin, a fundamental regulator of the actin cytoskeleton dynamics, has been performed with a major focus in 3D-folding maintenance, changes in the 2-D structural elements, surface residues involved in ligands-profilin interactions and functionality, and the generation of conformational and lineal B- and T-cell epitopes variability. Our results revealed that while the general fold is conserved among profilins, substantial structural differences were found, particularly affecting the special distribution and length of different 2-D structural elements (i.e. cysteine residues), characteristic loops and coils, and numerous micro-heterogeneities present in fundamental residues directly involved in the interacting motifs, and to some extension these residues nearby to the ligand-interacting areas. Differential changes as result of polymorphism might contribute to generate functional variability among the plethora of profilin isoforms present in the olive pollen from different genetic background (olive cultivars), and between plant species, since biochemical interacting properties and binding affinities to natural ligands may be affected, particularly the interactions with different actin isoforms and phosphoinositides lipids species. Furthermore, conspicuous variability in lineal and conformational epitopes was found between profilins belonging to the same olive cultivar, and among different cultivars as direct implication of sequences polymorphism. The variability of the residues taking part of IgE-binding epitopes might be the final responsible of the differences in cross-reactivity among olive pollen cultivars, among pollen and plant-derived food allergens, as well as between distantly related pollen species, leading to a variable range of allergy reactions among atopic patients. Identification and analysis of commonly shared and specific epitopes in profilin isoforms is essential to gain knowledge about the interacting surface of these epitopes, and for a better understanding of immune responses, helping design and development of rational and effective immunotherapy strategies for the treatment of allergy diseases. PMID:24146818

  18. Polymorphism of DNA conformation inside the bacteriophage capsid.

    PubMed

    Leforestier, Amélie

    2013-03-01

    Double-stranded DNA bacteriophage genomes are packaged into their icosahedral capsids at the highest densities known so far (about 50 % w:v). How the molecule is folded at such density and how its conformation changes upon ejection or packaging are fascinating questions still largely open. We review cryo-TEM analyses of DNA conformation inside partially filled capsids as a function of the physico-chemical environment (ions, osmotic pressure, temperature). We show that there exists a wide variety of DNA conformations. Strikingly, the different observed structures can be described by some of the different models proposed over the years for DNA organisation inside bacteriophage capsids: either spool-like structures with axial or concentric symmetries, or liquid crystalline structures characterised by a DNA homogeneous density. The relevance of these conformations for the understanding of DNA folding and unfolding upon ejection and packaging in vivo is discussed.

  19. Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy

    PubMed Central

    Qin, Nan; Zhang, Shaoqing; Jiang, Jianjuan; Corder, Stephanie Gilbert; Qian, Zhigang; Zhou, Zhitao; Lee, Woonsoo; Liu, Keyin; Wang, Xiaohan; Li, Xinxin; Shi, Zhifeng; Mao, Ying; Bechtel, Hans A.; Martin, Michael C.; Xia, Xiaoxia; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.; Liu, Mengkun; Tao, Tiger H.

    2016-01-01

    Silk protein fibres produced by silkworms and spiders are renowned for their unparalleled mechanical strength and extensibility arising from their high-β-sheet crystal contents as natural materials. Investigation of β-sheet-oriented conformational transitions in silk proteins at the nanoscale remains a challenge using conventional imaging techniques given their limitations in chemical sensitivity or limited spatial resolution. Here, we report on electron-regulated nanoscale polymorphic transitions in silk proteins revealed by near-field infrared imaging and nano-spectroscopy at resolutions approaching the molecular level. The ability to locally probe nanoscale protein structural transitions combined with nanometre-precision electron-beam lithography offers us the capability to finely control the structure of silk proteins in two and three dimensions. Our work paves the way for unlocking essential nanoscopic protein structures and critical conditions for electron-induced conformational transitions, offering new rules to design protein-based nanoarchitectures. PMID:27713412

  20. Prenatal diagnosis of glycogen storage disease type 1a by single stranded conformation polymorphism (SSCP).

    PubMed

    Parvari, R; Hershkovitz, E; Carmi, R; Moses, S

    1996-09-01

    Glycogen storage disease type 1a (GSD 1a), a severe metabolic disorder, is caused by the absence of glucose-6-phosphatase (G6Pase) activity. Diagnosis is currently established by demonstrating the lack of G6Pase activity in the patient's liver specimen. Enzymatic diagnosis cannot be performed in chorionic villi or amniocytes as G6Pase is active only in the liver, kidney, and intestinal mucosa. Recent cloning of the G6Pase gene and subsequent identification of the mutations causing GSD 1a have led to the possibility of performing DNA-based diagnosis in chorionic villus samples (CVS) or amniocytes. Here we report the first DNA-based prenatal diagnosis in two families in whom GSD 1a patients were diagnosed. In one Jewish family with a previously identified R83C mutation, single-stranded conformation polymorphism (SSCP) analysis of the DNA extracted from CVS showed a homozygous R83C mutant pattern. As a result, the pregnancy was terminated and the diagnosis was confirmed on DNA analysis of the aborted fetus. In another family of Arabic extraction in which a V166G mutation has been identified in one of the siblings, SSCP analysis performed on DNA extracted from CVS presented the pattern of a normal control. The pregnancy was carried to term and a healthy baby was born. Thus, once mutations causing the disease are identified, prenatal diagnosis of GSD 1a is possible. SSCP analysis of DNA prepared from CVS is reliable, simple and fast, making it a suitable method for prenatal diagnosis.

  1. Analysis of p53 gene mutations in human gliomas by polymerase chain reaction-based single-strand conformation polymorphism and DNA sequencing.

    PubMed

    Sarkar, F H; Kupsky, W J; Li, Y W; Sreepathi, P

    1994-03-01

    Mutations in the p53 gene have been recognized in brain tumors, and clonal expansion of p53 mutant cells has been shown to be associated with glioma progression. However, studies on the p53 gene have been limited by the need for frozen tissues. We have developed a method utilizing polymerase chain reaction (PCR) for the direct analysis of p53 mutation by single-strand conformation polymorphism (SSCP) and by direct DNA sequencing of the p53 gene using a single 10-microns paraffin-embedded tissue section. We applied this method to screen for p53 gene mutations in exons 5-8 in human gliomas utilizing paraffin-embedded tissues. Twenty paraffin blocks containing tumor were selected from surgical specimens from 17 different adult patients. Tumors included six anaplastic astrocytomas (AAs), nine glioblastomas (GBs), and two mixed malignant gliomas (MMGs). The tissue section on the stained glass slide was used to guide microdissection of an unstained adjacent tissue section to ensure > 90% of the tumor cell population for p53 mutational analysis. Simultaneously, microdissection of the tissue was also carried out to obtain normal tissue from adjacent areas as a control. Mutations in the p53 gene were identified in 3 of 17 (18%) patients by PCR-SSCP analysis and subsequently confirmed by PCR-based DNA sequencing. Mutations in exon 5 resulting in amino acid substitution were found in one thalamic AA (codon 158, CGC > CTT: Arg > Leu) and one cerebral hemispheric GB (codon 151, CCG > CTG: Pro > Leu).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution.

    PubMed

    Marez, D; Legrand, M; Sabbagh, N; Lo Guidice, J M; Spire, C; Lafitte, J J; Meyer, U A; Broly, F

    1997-06-01

    The polymorphic cytochrome P450 CYP2D6 is involved in the metabolism of various drugs of wide therapeutic use and is a presumed susceptibility factor for certain environmentally-induced diseases. Our aim was to define the mutations and alleles of the CYP2D6 gene and to evaluate their frequencies in the European population. Using polymerase chain reaction-single strand conformation polymorphism analysis, 672 unrelated subjects were screened for mutations in the 9 exons of the gene and their exon-intron boundaries. A total of 48 point mutations were identified, of which 29 were novel. Mutations 1749 G-->C, 2938 C-->T and 4268 G-->C represented 52.6%, 34.3% and 52.9% of the mutations in the total population, respectively. Of the eight detrimental mutations detected, the 1934 G-->A, the 1795 Tdel and the 2637 Adel accounted for 65.8%, 6.2% and 4.8% respectively, within the poor metabolizer subgroup. Fifty-three different alleles were characterized from the mutation pattern and by allele-specific sequencing. They are derived from three major alleles, namely the wild-type CYP2D6*1A, the functional CYP2D6*2 and the null CYP2D6*4A. Five allelic variants (CYP2D6*1A, *2, *2B, *4A and *5) account for about 87% of all alleles, while the remaining alleles occur with a frequency of 0.1%-2.7%. These data provide a solid basis for future epidemiological, clinical as well as interethnic studies of the CYP2D6 polymorphism and highlight that the described single strand conformation polymorphism method can be successfully used in designing such studies.

  3. Laser desorption single-conformation UV and IR spectroscopy of the sulfonamide drug sulfanilamide, the sulfanilamide-water complex, and the sulfanilamide dimer.

    PubMed

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W

    2017-06-07

    We have studied the conformational preferences of the sulfonamide drug sulfanilamide, its dimer, and its monohydrated complex through laser desorption single-conformation UV and IR spectroscopy in a molecular beam. Based on potential energy curves for the inversion of the anilinic and the sulfonamide NH 2 groups calculated at DFT level, we suggest that the zero-point level wave function of the sulfanilamide monomer is appreciably delocalized over all four conformer wells. The sulfanilamide dimer, and the monohydrated complex each exhibit a single isomer in the molecular beam. The isomeric structures of the sulfanilamide dimer and the monohydrated sulfanilamide complex were assigned based on their conformer-specific IR spectra in the NH and OH stretch region. Quantum Theory of Atoms in Molecules (QTAIM) analysis of the calculated electron density in the water complex suggests that the water molecule is bound side-on in a hydrogen bonding pocket, donating one O-HO[double bond, length as m-dash]S hydrogen bond and accepting two hydrogen bonds, a NHO and a CHO hydrogen bond. QTAIM analysis of the dimer electron density suggests that the C i symmetry dimer structure exhibits two dominating N-HO[double bond, length as m-dash]S hydrogen bonds, and three weaker types of interactions: two CHO bonds, two CHN bonds, and a chalcogen OO interaction. Most interestingly, the molecular beam dimer structure closely resembles the R dimer unit - the dimer unit with the greatest interaction energy - of the α, γ, and δ crystal polymorphs. Interacting Quantum Atoms analysis provides evidence that the total intermolecular interaction in the dimer is dominated by the short-range exchange-correlation contribution.

  4. X-ray structural studies and physicochemical characterization of (E)-6-(3,4-dimethoxyphenyl)-1-ethyl-4-mesitylimino-3-methyl- 3,4-dihydro-2(1H)-pyrimidinone polymorphs.

    PubMed

    Miyamae, A; Kitamura, S; Tada, T; Koda, S; Yasuda, T

    1991-10-01

    The polymorphism of (E)-6-(3,4-dimethoxyphenyl)-1-ethyl-4-mesitylimino-3-methyl-3,4-di hydro- 2(1 H)-pyrimidinone (FK664; 1) was characterized by using X-ray powder diffractometry, differential scanning calorimetry (DSC), and IR spectroscopy. Structures of two polymorphs (Forms A and B) were determined by X-ray crystallographic analysis. Form A crystallized in the monoclinic space group P2(1)/c, with a = 13.504(2), b = 6.733(1), c = 24.910(8) A, beta = 96.55(4) degrees, z = 4, and dcal = 1.203 g/cm3, while Form B crystallized in the same space group, with a = 8.067(2), b = 15.128(4), c = 18.657(4) A, beta = 102.34(3) degrees, z = 4, and dcal = 1.216 g/cm3. The conformational features of 1 were very similar between the two polymorphs. Compound 1, in both crystal forms, took an energetically reasonable conformation in three rigid planes, such as 2-pyrimidone, trimethylphenyl, and dimethoxyphenyl rings, but the molecules were packed in different ways between the two polymorphs. In the Form B crystal, a short contact was possible, to form pi-pi interactions between two dimethoxyphenyl groups related with the inversion center in the crystal lattice; this interaction seems to contribute to stabilizing the crystal structure of Form B. Both Forms A and B showed only one endothermic peak due to fusion at 115 and 140 degrees C, respectively, on the DSC thermograms; therefore, it is suggested that there are no transition points between the two polymorphs. The heats of fusion obtained from the DSC thermograms were 33.2(2) kJ/mol for Form A and 36.8(1) kJ/mol for Form B.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. A novel single-nucleotide polymorphism of the visfatin gene and its associations with performance traits in the chicken.

    PubMed

    Han, R-L; Lan, X-Y; Zhang, L-Z; Ren, G; Jing, Y-J; Li, M-J; Zhang, B; Zhao, M; Guo, Y-K; Kang, X-T; Chen, H

    2010-01-01

    Visfatin is a peptide that is predominantly expressed in visceral adipose tissue and is hypothesized to be related to obesity and insulin resistance. In this study, a novel silent single-nucleotide polymorphism (SNP) was found in exon 7 of the chicken visfatin gene (also known as PBEF1) by single-stranded conformation polymorphism (SSCP) and DNA sequencing. In total, 836 chickens forming an F2 resource population of Gushi chicken crossed with Anka broiler were genotyped by XbaI forced RFLP, and the associations of this polymorphism with chicken growth, carcass characteristics, and meat quality were analyzed. Significant associations were found between the polymorphism and 4-week body weight (BW4), 6-week body weight (BW6), 4-week body slanting length (BSL4), fat bandwidth (FBW), breast muscle water loss rate (BWLR) and breast muscle fiber density (BFD) (P < 0.05), as well as 4-week breastbone length (BBL4) (P < 0.01). These observations suggested that the polymorphism in exon7 of the visfatin gene had significant effects on the early growth traits of chicken.

  6. [Association analysis between SNPs of the growth hormone receptor gene and growth traits in arctic fox].

    PubMed

    DU, Zhi-Heng; Liu, Zong-Yue; Bai, Xiu-Juan

    2010-06-01

    Using single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing, single nucleotide polymorphisms (SNPs) of growth hormone receptor (GHR) gene were detected in an arctic fox population. Correlation analysis between GHR polymorphisms and growth traits were carried out using the appropriate model. Four SNPs, G3A in the 5'UTR, C99T in the first exon, T59C and G65A in the fifth exon were identified on the arctic fox GHR gene. The G3A and C99T polymorphisms of GHR were associated with female fox body weight (Pamp;0.05) and the T59C and G65A polymorphisms of GHR were associated with male fox body weight (Pamp;0.05) and the skin length of the female fox (Pamp;0.01). Therefore, marker assistant selection on body weight and skin length of arctic foxes using these SNPs can be applied to get big and high quality arctic foxes.

  7. Allele frequency and genotype distribution of polymorphisms within disease-related genes is influenced by ethnic population sub-structuring in Sudan.

    PubMed

    Bereir, R E H; Mohamed, H S; Seielstad, M; El Hassani, A M; Khalil, E A G; Peacock, C S; Blackwell, J M; Ibrahim, M E

    2003-09-01

    Four single nucleotide polymorphisms (SNPs) and a variable number of tandem repeats (VNTR) polymorphism located within disease associated/causing genes were typed in four populations of different tribal and ethnic affiliation from the Sudan. The genotype and allele frequencies were compared with those of other groups from published and unpublished data of world populations. The combined Sudanese sample conformed with Hardy-Weinberg equilibrium (HWE) expectation. However, population sub-structuring according to ethnic/linguistic group indicated at least two SNPs in departure from HWE. Differences in allele frequencies and genotype distribution between groups was also noted in three of the four SNPs. The other loci were distributed homogeneously within the populations studied with genotype frequencies in agreement with HWE expectation. These results highlight the importance of inter-population stratification for polymorphic markers, as well as the potential influence of evolutionary history and ethnic variation of loci, in the general distribution of SNPs and other polymorphisms.

  8. Polymorphism in and localization of the gene LCP2 (SLP-76) to chromosome 5q33.1-qter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunden, S.L.F.; Carr, L.L.; Clements, J.L.

    This report describes the localization of the human LCP2 gene to human chromosome 5q33.1-qter using single-stranded conformation polymorphisms analysis. This gene encodes an SH2 domain containing leukocyte protein of 76 kDa (SLP-76), which plays a functional role in T-cell activation. It remains to be determined whether mutations in this gene or translocations at this chromosome location are the genetic basis for various diseases, including lymphoblastic leukemia. 12 refs., 1 fig.

  9. Structural polymorphism exhibited by a quasipalindrome present in the locus control region (LCR) of the human beta-globin gene cluster.

    PubMed

    Kaushik, Mahima; Kukreti, Shrikant

    2006-01-01

    Structural polymorphism of DNA is a widely accepted property. A simple addition to this perception has been our recent finding, where a single nucleotide polymorphism (SNP) site present in a quasipalindromic sequence of beta-globin LCR exhibited a hairpin-duplex equilibrium. Our current studies explore that secondary structures adopted by individual complementary strands compete with formation of a perfect duplex. Using gel-electrophoresis, ultraviolet (UV)-thermal denaturation, circular dichroism (CD) techniques, we have demonstrated the structural transitions within a perfect duplex containing 11 bp quasipalindromic stretch (TGGGG(G/C)CCCCA), to hairpins and bulge duplex forms. The extended version of the 11 bp duplex, flanked by 5 bp on both sides also demonstrated conformational equilibrium between duplex and hairpin species. Gel-electrophoresis confirms that the duplex coexists with hairpin and bulge duplex/cruciform species. Further, in CD spectra of duplexes, presence of two overlapping positive peaks at 265 and 285 nm suggest the features of A- as well as B-type DNA conformation and show oligomer concentration dependence, manifested in A --> B transition. This indicates the possibility of an architectural switching at quasipalindromic region between linear duplex to a cruciform structure. Such DNA structural variations are likely to be found in the mechanics of molecular recognition and manipulation by proteins.

  10. Vibrational spectroscopic study on polymorphism of erucic acid and palmitoleic acid: γ1→α1 and γ→α reversible solid state phase transitions

    NASA Astrophysics Data System (ADS)

    Kaneko, Fumitoshi; Yamazaki, Kazuhiro; Kobayashi, Masamichi; Sato, Kiyotaka; Suzuki, Masao

    1994-08-01

    The infrared and Raman spectra of four polymorphic phases (α, α1, γ and γ1) of erucic acid ( cis-13-docosenoic acid) and those of two polymorphic phases (α and γ) of palmitoleic acid ( cis-9-hexadecenoic acid) were investigated. The γ and γ1 phases of erucic acid were analyzed on the basis of crystal structures determined by us. There were large spectral differences between γ and γ1 phases, which could be ascribed to the differences in the conformation of cis-olefin groups and the subcell structure. Two types of reversible solid state phase transitions (γ→α and γ1→α1 transitions) were followed by the infrared and Raman spectra. It was concluded that the mechanism of the γ→α phase transition of erucic and palmitoleic acids is essentially the same as that of oleic acid previously reported by us [ J. Phys. Chem.90, 6371 (1986)], i.e. this phase transition is of order-disorder type accompanied by a conformational disordering at the methyl-terminal chain. Spectral changes on the γ1→α1 transition suggested that a similar structural change took place during this transition but there were large structural differences between α and α1.

  11. Ionic tethering contributes to the conformational stability and function of complement C3b.

    PubMed

    López-Perrote, Andrés; Harrison, Reed E S; Subías, Marta; Alcorlo, Martín; Rodríguez de Córdoba, Santiago; Morikis, Dimitrios; Llorca, Oscar

    2017-05-01

    C3b, the central component of the alternative pathway (AP) of the complement system, coexists as a mixture of conformations in solution. These conformational changes can affect interactions with other proteins and complement regulators. Here we combine a computational model for electrostatic interactions within C3b with molecular imaging to study the conformation of C3b. The computational analysis shows that the TED domain in C3b is tethered ionically to the macroglobulin (MG) ring. Monovalent counterion concentration affects the magnitude of electrostatic forces anchoring the TED domain to the rest of the C3b molecule in a thermodynamic model. This is confirmed by observing NaCl concentration dependent conformational changes using single molecule electron microscopy (EM). We show that the displacement of the TED domain is compatible with C3b binding to Factor B (FB), suggesting that the regulation of the C3bBb convertase could be affected by conditions that promote movement in the TED domain. Our molecular model also predicts mutations that could alter the positioning of the TED domain, including the common R102G polymorphism, a risk variant for developing age-related macular degeneration. The common C3b isoform, C3bS, and the risk isoform, C3bF, show distinct energetic barriers to displacement in the TED that are related to a network of electrostatic interactions at the interface of the TED and MG-ring domains of C3b. These computational predictions agree with experimental evidence that shows differences in conformation observed in C3b isoforms purified from homozygous donors. Altogether, we reveal an ionic, reversible attachment of the TED domain to the MG ring that may influence complement regulation in some mutations and polymorphisms of C3b. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Molecular evolution of the leptin exon 3 in some species of the family Canidae.

    PubMed

    Chmurzynska, Agata; Zajac, Magdalena; Switonski, Marek

    2003-01-01

    The structure of the leptin gene seems to be well conserved. The polymorphism of this gene in four species belonging to the Canidae family (the dog (Canis familiaris)--16 different breeds, the Chinese racoon dog (Nyctereutes procyonoides procyonoides), the red fox (Vulpes vulpes) and the arctic fox (Alopex lagopus)) were studied with the use of single strand conformation polymorphism (SSCP), restriction fragment length polymorphism (RFLP) and DNA sequencing techniques. For exon 2, all species presented the same SSCP pattern, while in exon 3 some differences were found. DNA sequencing of exon 3 revealed the presence of six nucleotide substitutions, differentiating the studied species. Three of them cause amino acid substitutions as well. For all dog breeds studied, SSCP patterns were identical.

  13. Discovery of Cellulose Surface Layer Conformation by Nonlinear Vibrational Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Libing; Fu, Li; Wang, Hong-fei

    2017-03-14

    Significant questions remain with respect to the structure and polymorphs of cellulose. These include the cellulose surface layers and the bulk crystalline core as well as the conformational differences. The Total Internal Reflection Sum Frequency Generation Vibrational Spectroscopy (TIR-SFG-VS) combined with the conventional SFG-VS (non-TIR) can help to resolve these questions by selectively characterizing the molecular structures of surface layers and the crystalline core of cellulose. From the SFG spectra in the C-H and O-H regions, we found that the surface layers of Avicel are essentially amorphous; while the surface layers of Iβ cellulose are crystalline but with different structuralmore » and spectroscopic signatures than that of its crystalline core. This work demonstrates the capacity of TIR and Non-TIR SFG-VS tools in selectively studying the structures and polymorphs of cellulose. In addition, these results also suggest that the assignments of major vibrational peaks for cellulose need to be further determined.« less

  14. Genetic association of cyclooxygenase-2 gene polymorphisms with Parkinson's disease susceptibility in Chinese Han population.

    PubMed

    Dai, Yi; Wu, Yuquan; Li, Yansheng

    2015-01-01

    The aim of this study was to explore the genetic association of cyclooxygenase-2 (COX2) gene promoter region polymorphisms with Parkinson's disease (PD) susceptibility in Chinese Han population. The genotyping of COX2 gene polymorphisms was conducted by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 122 patients with PD and 120 healthy persons. The association strength of gene polymorphism with disease was measured by odds ratio (OR) and 95% confidence interval (95% CI) calculated using χ(2) test which also evaluated the Hardy-Weinberg equilibrium (HWE) of gene polymorphism in controls. The linkage disequilibrium and haplotype were also analyzed as evidence in the analysis of association. On condition that the genotypes distributions of COX2 -1290A>G, -1195G>A, -765G>C in the control group all conformed to HWE, however, only the homozygous genotype AA of -1195G>A polymorphism showed an association with PD (OR=0.432, 95% CI=0.196-0.950). In addition, in haplotype analysis, G-A-C haplotype frequency in cases was significantly lower than the controls, compared with the common haplotype A-G-G (P=0.031, OR=0.375, 95% CI=0.149-0.940). COX2 -1195G>A polymorphism might play a protective role in the onset of PD and G-A-C haplotype in this three promoter region polymorphisms also showed a negative association.

  15. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    PubMed

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Conformational dimorphism of isochroman-1-ones in the solid state

    NASA Astrophysics Data System (ADS)

    Babjaková, Eva; Hanulíková, Barbora; Dastychová, Lenka; Kuřitka, Ivo; Nečas, Marek; Vícha, Robert

    2014-12-01

    Isochroman-1-one derivatives, which are relatives of coumarins, display a broad spectrum of biological activity; therefore, these derivatives attract the attention of chemists. A series of new isochroman-1-ones were prepared by the reaction of benzyl-derived Grignard reagents with acyl chlorides. All of the prepared compounds were characterized using single-crystal X-ray diffraction as well as FT-IR, NMR and MS techniques. Single crystal X-ray diffraction analysis revealed that the isochromanones can adopt two distinct conformations in the solid state. For one of the compounds, two polymorphs with unique forms crystallized separately under different temperatures. The packing of all of the examined crystals is stabilized via weak intramolecular C-H⋯π and/or C-H⋯O interactions. Although the closed conformer was predominantly found in the actual crystals, the open conformer is thermochemically more stable for all of the examined compounds according to DFT calculations.

  17. The genetics of amphibian decline: population substructure and molecular differentiation in the Yosemite toad, Bufo canorus (Anura, Bufonidae) based on single-strand conformation polymorphism analysis (SSCP) and mitochondrial DNA sequence data

    USGS Publications Warehouse

    Shaffer, H. Bradley; Fellers, Gary M.; Magee, Allison; Voss, S. Randal

    2000-01-01

    We present a comprehensive survey of genetic variation across the range of the narrowly distributed endemic Yosemite toad Bufo canorus, a declining amphibian restricted to the Sierra Nevada of California. Based on 322 bp of mitochondrial cytochrome b sequence data, we found limited support for the monophyly of B. canorus and its closely related congener B. exsul to the exclusion of the widespread western toad B. boreas. However, B. exsul was always phylogenetically nested within B. canorus, suggesting that the latter may not be monophyletic. SSCP (single-strand conformation polymorphism) analysis of 372 individual B. canorus from 28 localities in Yosemite and Kings Canyon National Parks revealed no shared haplotypes among these two regions and lead us to interpret these two parks as distinct management units for B. canorus. Within Yosemite, we found significant genetic substructure both at the level of major drainages and among breeding ponds. Kings Canyon samples show a different pattern, with substantial variation among breeding sites, but no substructure among drainages. Across the range of B. canorus as well as among Yosemite ponds, we found an isolation-by-distance pattern suggestive of a stepping stone model of migration. However, in Kings Canyon we found no hint of such a pattern, suggesting that movement patterns of toads may be quite different in these nearby parklands. Our data imply that management for B. canorus should focus at the individual pond level, and effective management may necessitate reintroductions if local extirpations occur. A brief review of other pond-breeding anurans suggests that highly structured populations are often the case, and thus that our results for B. canorus may be general for other species of frogs and toads.

  18. Identification of Nematodirus species (Nematoda: Molineidae) from wild ruminants in Italy using ribosomal DNA markers.

    PubMed

    Gasser, R B; Rossi, L; Zhu, X

    1999-11-01

    The sequence of the second internal transcribed spacer of ribosomal DNA was determined for four species of Nematodirus (Nematodirus rupicaprae, Nematodirus oiratianus, Nematodirus davtiani alpinus and Nematodirus europaeus) from roe deer or alpine chamois. The second internal transcribed spacer of the four species varied in length from 228 to 236 bp, and the G + C contents ranged from 41 to 44%. While no intraspecific sequence variation was detected among multiple samples representing three of the taxa, sequence differences of 5.9-9.7% were detected among the four species, Nematodirus davtiani alpinus and N. rupicaprae were genetically most similar (94.1%), followed by N. oiratianus, N. europaeus and N. rupicaprae (91.1-91.5%), whereas N. oiratianus was genetically most different from N. davtiani alpinus. The interspecific sequence differences were exploited for the delineation of the four species by PCR-based restriction fragment length polymorphism (using two enzymes) and single-strand conformation polymorphism. The results have implications for diagnosis, epidemiology and for studying the systematics of the Nematodirinae.

  19. Molecular evolution of the leptin exon 3 in some species of the family Canidae

    PubMed Central

    Chmurzynska, Agata; Zajac, Magdalena; Switonski, Marek

    2003-01-01

    The structure of the leptin gene seems to be well conserved. The polymorphism of this gene in four species belonging to the Canidae family (the dog (Canis familiaris) – 16 different breeds, the Chinese racoon dog (Nyctereutes procyonoides procyonoides), the red fox (Vulpes vulpes) and the arctic fox (Alopex lagopus)) were studied with the use of single strand conformation polymorphism (SSCP), restriction fragment length polymorphism (RFLP) and DNA sequencing techniques. For exon 2, all species presented the same SSCP pattern, while in exon 3 some differences were found. DNA sequencing of exon 3 revealed the presence of six nucleotide substitutions, differentiating the studied species. Three of them cause amino acid substitutions as well. For all dog breeds studied, SSCP patterns were identical. PMID:12939206

  20. Association between mismatch repair gene MSH3 codons 1036 and 222 polymorphisms and sporadic prostate cancer in the Iranian population.

    PubMed

    Jafary, Fariba; Salehi, Mansoor; Sedghi, Maryam; Nouri, Nayereh; Jafary, Farzaneh; Sadeghi, Farzaneh; Motamedi, Shima; Talebi, Maede

    2012-01-01

    The mismatch repair system (MMR) is a post-replicative DNA repair mechanism whose defects can lead to cancer. The MSH3 protein is an essential component of the system. We postulated that MSH3 gene polymorphisms might therefore be associated with prostate cancer (PC). We studied MSH3 codon 222 and MSH3 codon 1036 polymorphisms in a group of Iranian sporadic PC patients. A total of 60 controls and 18 patients were assessed using the polymerase chain reaction and single strand conformational polymorphism. For comparing the genotype frequencies of patients and controls the chi-square test was applied. The obtained result indicated that there was significantly association between G/A genotype of MSH3 codon 222 and G/G genotype of MSH3 codon 1036 with an increased PC risk (P=0.012 and P=0.02 respectively). Our results demonstrated that MSH3 codon 222 and MSH3 codon 1036 polymorphisms may be risk factors for sporadic prostate cancer in the Iranian population.

  1. A triclinic polymorph of tri­cyclo­hexyl­phosphane sulfide: crystal structure and Hirshfeld surface analysis

    PubMed Central

    Tan, Yi Jiun; Yeo, Chien Ing; Halcovitch, Nathan R.; Jotani, Mukesh M.

    2017-01-01

    The title compound, (C6H11)3PS (systematic name: tri­cyclo­hexyl-λ5-phosphane­thione), is a triclinic (P-1, Z′ = 1) polymorph of the previously reported ortho­rhom­bic form (Pnma, Z′ = 1/2) [Kerr et al. (1977 ▸). Can. J. Chem. 55, 3081–3085; Reibenspies et al. (1996 ▸). Z. Kristallogr. 211, 400]. While conformational differences exist between the non-symmetric mol­ecule in the triclinic polymorph, cf. the mirror-symmetric mol­ecule in the ortho­rhom­bic form, these differences are not chemically significant. The major feature of the mol­ecular packing in the triclinic polymorph is the formation of linear chains along the a axis sustained by methine-C—H⋯S(thione) inter­actions. The chains pack with no directional inter­actions between them. The analysis of the Hirshfeld surface for both polymorphs indicates a high degree of similarity, being dominated by H⋯H (ca 90%) and S⋯H/H⋯S contacts. PMID:28435705

  2. Ala397Asp mutation of myosin VIIA gene segregating in a Spanish family with type-Ib Usher syndrome.

    PubMed

    Espinós, C; Millán, J M; Sánchez, F; Beneyto, M; Nájera, C

    1998-06-01

    In the current study, 12 Spanish families affected by type-I Usher syndrome, that was previously linked to chromosome 11q, were screened for the presence of mutations in the N-terminal coding portion of the motor domain of the myosin VIIA gene by single-strand conformation polymorphism analysis of the first 14 exons. A mutation (Ala397Asp) segregating with the disease was identified, and several polymorphisms were also detected. It is presumed that the other USHIB mutations in these families could be located in the unscreened regions of the gene.

  3. Molecular and immunohistochemical analysis of P53 in phaeochromocytoma.

    PubMed Central

    Dahia, P. L.; Aguiar, R. C.; Tsanaclis, A. M.; Bendit, I.; Bydlowski, S. P.; Abelin, N. M.; Toledo, S. P.

    1995-01-01

    We searched for mutations of the p53 gene in 25 phaeochromocytomas using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis of the entire conserved region of the gene, encompassing exons 4-8; expression of the p53 protein was assessed by immunohistochemistry. No mutations were found, while a polymorphism in codon 72 was observed. Immunohistochemistry revealed nuclear p53 overexpression in one tumour sample. We conclude that mutations of the 'hotspot' region of the p53 gene do not seem to play a role in the pathogenesis of phaeochromocytoma. Images Figure 1 Figure 2 Figure 3 PMID:7577469

  4. (E)-Ethyl 3-(3,4-dihydroxyphenyl)prop-2-enoate: a natural polymorph extracted from Aristotelia chilensis (Maqui).

    PubMed

    Paz, Cristian; Moreno, Yanko; Becerra, José; Silva, Mario; Burgos, Viviana; Freire, Eleonora; Baggio, Ricardo

    2013-07-01

    The natural title compound, C11H12O4, extracted from the Chilean native tree Aristotelia chilensis (Maqui), is a polymorph of the synthetic E form reported by Xia, Hu & Rao [Acta Cryst. (2004), E60, o913-o914]. Both rotational conformers are identical from a metrical point of view, and only differ in the orientation of the 3,4-dihydroxyphenyl ring with respect to the rest of the molecule, which leads to completely different crystal structure arrangements and packing efficiencies. The reasons behind both reside in the different hydrogen-bonding interactions.

  5. Isolation and characterization of 21 polymorphic microsatellite loci in the Japanese dace (Tribolodon hakonensis)

    USGS Publications Warehouse

    Koizumi, Noriyuki; Quinn, Thomas W.; Park, Myeongsoo; Fike, Jennifer A.; Nishida, Kazuya; Takemura, Takeshi; Watabe, Keiji; Mori, Atsushi

    2011-01-01

    Twenty one polymorphic microsatellite loci for the Japanese dace (Tribolodon hakonensis) were isolated and characterized. The number of observed alleles per locus in 32 individuals ranged from 3 to 30. The observed and expected heterozygosities ranged from 0.125 to 0.969 and from 0.175 to 0.973, respectively. All loci conformed to Hardy–Weinberg equilibrium, no linkage disequilibrium was observed between pairs of loci and no loci showed evidence of null alleles. These microsatellite loci will be useful for investigating the intraspecific genetic variation and population structure of this species.

  6. Dramatic effect of single-base mutation on the conformational dynamics of human telomeric G-quadruplex

    PubMed Central

    Lee, Ja Yil; Kim, D. S.

    2009-01-01

    Guanine-rich DNA sequences can form G-quadruplexes. These four-stranded structures are known to form in several genomic regions and to influence certain biological activities. Sometimes, the instability of G-quadruplexes causes the abnormal biological processes. Mutation is a culprit for the destabilization of G-quadruplexes, but the details of mutated G-quadruplexes are poorly understood. In this article, we investigated the conformational dynamics of single-base mutated human telomeric G-quadruplexes in the presence of K+ with single-molecule FRET spectroscopy. We observed that the replacement of single guanine by thymine in a G-track induces various folded structures, i.e. structural polymorphism. Moreover, direct observation of their dynamics revealed that a single-base mutation causes fast unfolding of folded states under physiological conditions. Furthermore, we found that the degree of destabilization varies according to mutation positions. When the central guanine of a G-track is replaced, the G-quadruplexes unfold quickly at any K+ concentrations and temperature. Meanwhile, outer-quartet mutated G-quadruplexes have heterogeneous dynamics at intermediate K+ concentrations and longstanding folded states at high K+ concentrations. Several factors such as base-stacking interaction and K+ coordination are responsible for the different dynamics according to the mutation position. PMID:19359361

  7. Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes

    USGS Publications Warehouse

    Jarvi, S.I.; Goto, R.M.; Gee, G.F.; Briles, W.E.; Miller, M.M.

    1999-01-01

    We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbgl and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of '-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.

  8. Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes.

    PubMed

    Jarvi, S I; Goto, R M; Gee, G F; Briles, W E; Miller, M M

    1999-01-01

    We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbg1 and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of alpha-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.

  9. FT-IR spectra of the anti-HIV nucleoside analogue d4T (Stavudine). Solid state simulation by DFT methods and scaling by different procedures

    NASA Astrophysics Data System (ADS)

    Alcolea Palafox, M.; Kattan, D.; Afseth, N. K.

    2018-04-01

    A theoretical and experimental vibrational study of the anti-HIV d4T (stavudine or Zerit) nucleoside analogue was carried out. The predicted spectra in the three most stable conformers in the biological active anti-form of the isolated state were compared. Comparison of the conformers with those of the natural nucleoside thymidine was carried out. The calculated spectra were scaled by using different scaling procedures and three DFT methods. The TLSE procedure leads to the lowest error and is thus recommended for scaling. With the population of these conformers the IR gas-phase spectra were predicted. The crystal unit cell of the different polymorphism forms of d4T were simulated through dimer forms by using DFT methods. The scaled spectra of these dimer forms were compared. The FT-IR spectrum was recorded in the solid state in the 400-4000 cm-1 range. The respective vibrational bands were analyzed and assigned to different normal modes of vibration by comparison with the scaled vibrational values of the different dimer forms. Through this comparison, the polymorphous form of the solid state sample was identified. The study indicates that d4T exist only in the ketonic form in the solid state. The results obtained were in agreement with those determined in related anti-HIV nucleoside analogues.

  10. Conformational dimorphism in o-nitrobenzoic acid: alternative ways to avoid the O...O clash.

    PubMed

    Ibragimov, Aziz; Ashurov, Jamshid; Ibragimov, Bakhtiyar; Wang, Ai; Mouhib, Halima; Englert, Ulli

    2016-07-01

    Polymorphism is a challenging phenomenon and the competitive packing alternatives which are characteristic for polymorphs may be encountered for essentially rigid molecules. A second crystal form of the well known compound o-nitrobenzoic acid, C7H5NO4, an important intermediate in the production of dyes, pharmaceuticals and agrochemicals, is described. Although obtained serendipitously, its intra- and intermolecular features match expectations from database searches and theoretical calculations. O-H...O hydrogen-bonded carboxylic acid dimers represent the building blocks in both polymorphs. For steric reasons and in agreement with a calculated potential energy surface, the carboxylic acid and nitro groups cannot simultaneously be coplanar with the benzene ring but have to tilt. In the well established crystal form, this out-of-plane torsion is more pronounced for the nitro substituent. In contrast, the new polymorph is characterized by a major tilt of the carboxylic acid group. The molecules in both alternative crystal forms achieve a similar compromise with respect to acceptable intramolecular O...O contacts.

  11. A pair of polymorphous metal-organic frameworks based on an angular diisophthalate linker: synthesis, characterization and gas adsorption properties.

    PubMed

    Chen, Fengli; Bai, Dongjie; Wang, Yao; He, Minghui; Gao, Xiaoxia; He, Yabing

    2018-01-15

    The combination of an angular diisophthalate ligand, 5,5'-(naphthyl-2,7-yl)diisophthalate (H 4 L), and copper ions under different solvothermal conditions afforded two polymorphous metal-organic frameworks (ZJNU-77 and ZJNU-78) with the same framework composition of [Cu 2 (L)(H 2 O) 2 ], providing a platform to investigate the relationship between MOF polymorphism and gas adsorption properties. As determined by single-crystal X-ray diffraction, ZJNU-77 and ZJNU-78 exhibited three-dimensional networks crystallizing in different space groups. Their structural differences were mainly manifested by the ligand's conformation, the level of framework interpenetration and the network's topology. Interestingly, gas adsorption studies showed that the two compounds after desolvation displayed comparable gas adsorption properties with respect to C 2 H 2 , CO 2 and CH 4 , despite their different surface areas and pore volumes. The C 2 H 2 , CO 2 , and CH 4 uptake capacities at 298 K and 1 atm are 120.2, 78.1, and 18.4 cm 3 (STP) g -1 for ZJNU-77, and 122.0, 82.0, and 18.9 cm 3 (STP) g -1 for ZJNU-78, respectively. The IAST adsorption selectivities for the equimolar C 2 H 2 /CH 4 and CO 2 /CH 4 mixtures are 28.6 and 5.7 for ZJNU-77, and 28.4 and 5.9 for ZJNU-78 at 298 K and 1 atm. These results indicate that besides the surface area, the pore size also plays a crucial role in gas adsorption. This work not only represents an intriguing example of MOF polymorphism achieved by controlling solvothermal conditions, but also provides an insight into the correlation between MOF polymorphism and gas adsorption properties.

  12. Conformational landscape, photochemistry, and infrared spectra of sulfanilamide.

    PubMed

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui

    2013-01-31

    A combined matrix isolation FTIR and theoretical DFT(B3LYP)/6-311++G(3df,3pd) study of sulfanilamide (SA) was performed. The full conformational search on the potential energy surface of the compound allowed the identification of four different minima, all of them bearing the sulfamide nitrogen atom placed in the perpendicular orientation relatively to the aromatic ring and differing from each other in the orientation of the hydrogen atoms connected to the two nitrogen atoms of the molecule. All conformers were predicted to be significantly populated in the gas phase (at 100 °C, their relative populations were estimated as being 1:0.9:0.3:0.2). However, in agreement with the theoretically calculated low-energy barriers for conformational isomerization, in the low-temperature matrices, only the most stable conformer could be observed, with the remaining forms being converted into this form during matrix deposition (conformational cooling). The unimolecular photochemistry of matrix-isolated SA (in both argon and xenon) was also investigated. Upon broadband UV irradiation (λ > 215 nm), two photofragmentation pathways were observed: the prevalent pathway (A), leading to extrusion of sulfur dioxide and simultaneous formation of benzene-1,4-diamine, which then converts to 2,5-cyclohexadiene-1,4-diimine, and the minor pathway (B), conducting an γ-cleavage plus [1,3] H-atom migration from the sulfamide group to the aromatic ring, which leads to formation of iminosulfane dioxide and aniline, the latter undergoing subsequent phototransformation into cyclohexa-2,5-dien-1-imine. Finally, the crystalline polymorph of SA resulting from warming (265 K) the amorphous solid obtained from fast cooling of the vapor of the compound onto the cold (13 K) substrate of the cryostat was identified spectroscopically, and found to be the γ-crystalline phase, the one exhibiting in average longer H-bonds and an infrared spectrum resembling more that of the low temperature SA glass. Full assignment of the infrared spectra of this crystalline variety as well as of those of the β-polymorph room temperature crystalline sample and low temperature amorphous state was undertaken with help of theoretical results obtained for the crystallographically relevant dimer of SA.

  13. Phytophthora species in forest streams in Oregon and Alaska

    Treesearch

    Paul Reeser; Everett M. Hansen; Wendy Sutton; Philippe Remigi; Gerard Adams

    2010-01-01

    Eighteen Phytophthora species and one species of Halophytophthora were identified in 113 forest streams in Alaska, western Oregon, and southwestern Oregon that were sampled by baiting or filtration of stream water with isolation on selective media. Species were identified by morphology and DNA characterization using single strand conformational polymorphism, COX spacer...

  14. Quantifying the relative amounts of PrP polymorphisms present in prions isolated from heterozygous prion-infected animals

    USDA-ARS?s Scientific Manuscript database

    Prions cause protein misfolding diseases, such as transmissible spongiform encephalopathy. They propagate infections by converting a normal cellular prion protein into a prion (PrPSc). PrPC and PrPSc are isosequential and differ only in their respective conformations. PrPC is monomeric and sensit...

  15. Silk Fibroin as Edible Coating for Perishable Food Preservation

    NASA Astrophysics Data System (ADS)

    Marelli, B.; Brenckle, M. A.; Kaplan, D. L.; Omenetto, F. G.

    2016-05-01

    The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material.

  16. Silk Fibroin as Edible Coating for Perishable Food Preservation

    PubMed Central

    Marelli, B.; Brenckle, M. A.; Kaplan, D. L.; Omenetto, F. G.

    2016-01-01

    The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material. PMID:27151492

  17. Expression and mutational analysis of Cip/Kip family in early glottic cancer.

    PubMed

    Kim, D-K; Lee, J H; Lee, O J; Park, C H

    2015-02-01

    Genetic alteration of cyclin-dependent kinase inhibitors has been associated with carcinogenesis mechanisms in various organs. This study aimed to evaluate the expression and mutational analysis of Cip/Kip family cyclin-dependent kinase inhibitors (p21CIP1/WAF1, p27KIP1 and p57KIP2) in early glottic cancer. Expressions of Cip/Kip family and p53 were determined by quantitative reverse transcription polymerase chain reaction and densitometry. For the analysis of p21 inactivation, sequence alteration was assessed using single-strand conformational polymorphism polymerase chain reaction. Additionally, the inactivation mechanism of p27 and p57 were investigated using DNA methylation analysis. Reduced expression of p27 and p57 were detected in all samples, whereas the expression of p21 was incompletely down-regulated in 6 of 11 samples. Additionally, single-strand conformational polymorphism polymerase chain reaction analysis showed the p53 mutation at exon 6. Methylation of p27 and p57 was detected by DNA methylation assay. Our results suggest that the Cip/Kip family may have a role as a molecular mechanism of carcinogenesis in early glottic cancer.

  18. [Comparison of the sensibility and specificity between single-stranded conformation polymorphism and denaturing high-performance liquid chromatography in screening hMSH2 and hMLH1 gene mutations in hereditary non-polyposis colorectal cancer].

    PubMed

    Wei, Guang-hui; Zhao, Bo; Wang, Zhen-jun

    2008-09-01

    To compare the sensibility and specificity between single-stranded conformation polymorphism (SSCP) and denaturing high-performance liquid chromatography (DHPLC) in screening hMSH2 and hMLH1 gene mutations for the diagnosis of hereditary non-polyposis colorectal cancer (HNPCC). Seven Chinese HNPCC kindreds were collected. PCR-SSCP and DHPLC were used to screen the coding regions of hMSH2 and hMLH1 genes and the abnormal profiles were sequenced by a 377 DNA sequencer. Seven gene sequence variations of hMSH2 or hMLH1 were found. Among them, 4 variations were not found by SSCP, but by DHPLC. The sensibility of SSCP and DHPLC were 51.6% and 100% respectively, and the specificity were 66.6% and 93.3% respectively. DHPLC has better sensibility and specificity in screening hMSH2 and hMLH1 gene mutation as compared to SSCP. DHPLC is an ideal method in the diagnosis of HNPCC.

  19. Real-Time Imaging of Fluorescent Flagellar Filaments of Rhizobium lupini H13-3: Flagellar Rotation and pH-Induced Polymorphic Transitions

    PubMed Central

    Scharf, Birgit

    2002-01-01

    The soil bacterium Rhizobium lupini H13-3 has complex right-handed flagellar filaments with unusual ridged, grooved surfaces. Clockwise (CW) rotation propels the cells forward, and course changes (tumbling) result from changes in filament speed instead of the more common change in direction of rotation. In view of these novelties, fluorescence labeling was used to analyze the behavior of single flagellar filaments during swimming and tumbling, leading to a model for directional changes in R. lupini. Also, flagellar filaments were investigated for helical conformational changes, which have not been previously shown for complex filaments. During full-speed CW rotation, the flagellar filaments form a propulsive bundle that pushes the cell on a straight path. Tumbling is caused by asynchronous deceleration and stops of individual filaments, resulting in dissociation of the propulsive bundle. R. lupini tumbles were not accompanied by helical conformational changes as are tumbles in other organisms including enteric bacteria. However, when pH was experimentally changed, four different polymorphic forms were observed. At a physiological pH of 7, normal flagellar helices were characterized by a pitch angle of 30°, a pitch of 1.36 μm, and a helical diameter of 0.50 μm. As pH increased from 9 to 11, the helices transformed from normal to semicoiled to straight. As pH decreased from 5 to 3, the helices transformed from normal to curly to straight. Transient conformational changes were also noted at high viscosity, suggesting that the R. lupini flagellar filament may adapt to high loads in viscous environments (soil) by assuming hydrodynamically favorable conformations. PMID:12374832

  20. Association of CYP1A1 and CYP1B1 polymorphisms with bone mineral density variations in postmenopausal Mexican-Mestizo women.

    PubMed

    Chávez, Bertha; Vilchis, Felipe; Rojano-Mejía, David; Coral Vázquez, Ramón Mauricio; Aguirre-García, María Del Carmen; Canto, Patricia

    2017-08-01

    Herein, we investigated potential associations between polymorphisms of genes related to estrogen metabolism and bone mineral density (BMD) in postmenopausal women. This was a cross-sectional study, in which two hundred and ninety postmenopausal Mexican-Mestizo women were studied. The BMD of the lumbar spine (LS), total hip (TH), and femoral neck (FN) was measured. The distribution of the genetic polymorphisms, including rs1799814 and rs1048943 at CYP1A1 as well as rs1056836 at CYP1B1, were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), single-stranded conformational polymorphism (SSCP), and DNA sequencing. Deviations from Hardy-Weinberg equilibrium (HWE) were tested, and linkage disequilibrium (LD) was calculated by direct correlation (r 2 ). Moreover, haplotype analysis was performed. All polymorphisms were in HWE. The genotype and allele distributions of the three single nucleotide polymorphisms (SNPs) studied showed no significant differences. However, statistical significance was reached when constructing haplotypes. The CG haplotype in CYP1A1 was associated with variations in LS and FN BMD after adjustment for covariates (p = 0.021 and 0.045, respectively), but the association with TH BMD was not significant. These results suggested that the CG haplotype in CYP1A1 may play an important role in the mechanism of osteoporosis and may be useful as a genetic marker.

  1. Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan.

    PubMed

    Rahm, Martin; Lunine, Jonathan I; Usher, David A; Shalloway, David

    2016-07-19

    The chemistry of hydrogen cyanide (HCN) is believed to be central to the origin of life question. Contradictions between Cassini-Huygens mission measurements of the atmosphere and the surface of Saturn's moon Titan suggest that HCN-based polymers may have formed on the surface from products of atmospheric chemistry. This makes Titan a valuable "natural laboratory" for exploring potential nonterrestrial forms of prebiotic chemistry. We have used theoretical calculations to investigate the chain conformations of polyimine (pI), a polymer identified as one major component of polymerized HCN in laboratory experiments. Thanks to its flexible backbone, the polymer can exist in several different polymorphs, which are relatively close in energy. The electronic and structural variability among them is extraordinary. The band gap changes over a 3-eV range when moving from a planar sheet-like structure to increasingly coiled conformations. The primary photon absorption is predicted to occur in a window of relative transparency in Titan's atmosphere, indicating that pI could be photochemically active and drive chemistry on the surface. The thermodynamics for adding and removing HCN from pI under Titan conditions suggests that such dynamics is plausible, provided that catalysis or photochemistry is available to sufficiently lower reaction barriers. We speculate that the directionality of pI's intermolecular and intramolecular =N-H(…)N hydrogen bonds may drive the formation of partially ordered structures, some of which may synergize with photon absorption and act catalytically. Future detailed studies on proposed mechanisms and the solubility and density of the polymers will aid in the design of future missions to Titan.

  2. Structural and conformational properties of 1-decyl-3-methylimidazolium tetrafluoroborate under high pressure

    NASA Astrophysics Data System (ADS)

    Chen, Liucheng; Li, Haining; Zhu, Xiang; Su, Lei; Yang, Kun; Yuan, Chaosheng; Yang, Guoqiang; Li, Xiaodong

    2017-06-01

    In situ crystalization of 1-decyl-3-methylimidazolium tetrafluoroborate ([C10MIM][BF4]) from melt has been investigated under high pressure up to 3.4 GPa at room temperature by using Raman spectroscopy and synchrotron X-ray diffraction measurement. Raman spectral analysis indicated that [C10MIM][BF4] experienced two successive phase transitions at about 0.3 GPa and 1.6 GPa. And the polymorphism was also discussed in view of the conformational isomerism of [C10MIM]+ cation between gauche and trans conformers. Notably, liquid-crystal and crystal-crystal phase transitions were further confirmed by synchrotron X-ray diffraction measurement. Moreover, it also indicated that high structural flexibility of the cations with long alkyl chain might have effect on the degree of disorder of pressure-induced crystallization for ionic liquids.

  3. Polymorphisms of the bovine DKK2 and their associations with body measurement traits and meat quality traits in Qinchuan cattle.

    PubMed

    Zhan, Xiaoli; Gao, Jianbin; Huangfu, Yifan; Fu, Changzhen; Zan, Linsen

    2013-12-01

    The objective of this research were to detect bovine Dickkopf 2 (DKK2) gene polymorphism and analyze their associations with body measurement traits (BMT) and meat quality traits (MQT) of animals. Blood samples were taken from a total of 541 Qinchuan cattle aged from 18 to 24 months. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was employed to find out DKK2 single-polymorphism nucleotide (SNPs) and to explore their possible association with BMT and MQT. Sequence analysis of DKK2 gene revealed 2 SNPs (C29 T and A169C) in 5' untranslated region (5'UTR) of exon 1.C29T and A164T SNPs are both synonymous mutation, which showed 2 genotypes namely (CC, CT) and (AA and AC), respectively. Association analysis of polymorphism with body measurement and meat quality traits at the two locus showed that there were significant effects on CT, BL, RL, PBW, BFT, LMA, and IFC. These results suggest that the DKK2 gene might have potential effects on BMT and MQT in Qinchuan cattle population and could be used for marker-assisted selection.

  4. Soluble polymorphic bank vole prion proteins induced by co-expression of quiescin sulfhydryl oxidase in E. coli and their aggregation behaviors.

    PubMed

    Abskharon, Romany; Dang, Johnny; Elfarash, Ameer; Wang, Zerui; Shen, Pingping; Zou, Lewis S; Hassan, Sedky; Wang, Fei; Fujioka, Hisashi; Steyaert, Jan; Mulaj, Mentor; Surewicz, Witold K; Castilla, Joaquín; Wohlkonig, Alexandre; Zou, Wen-Quan

    2017-10-04

    The infectious prion protein (PrP Sc or prion) is derived from its cellular form (PrP C ) through a conformational transition in animal and human prion diseases. Studies have shown that the interspecies conversion of PrP C to PrP Sc is largely swayed by species barriers, which is mainly deciphered by the sequence and conformation of the proteins among species. However, the bank vole PrP C (BVPrP) is highly susceptible to PrP Sc from different species. Transgenic mice expressing BVPrP with the polymorphic isoleucine (109I) but methionine (109M) at residue 109 spontaneously develop prion disease. To explore the mechanism underlying the unique susceptibility and convertibility, we generated soluble BVPrP by co-expression of BVPrP with Quiescin sulfhydryl oxidase (QSOX) in Escherichia coli. Interestingly, rBVPrP-109M and rBVPrP-109I exhibited distinct seeded aggregation pathways and aggregate morphologies upon seeding of mouse recombinant PrP fibrils, as monitored by thioflavin T fluorescence and electron microscopy. Moreover, they displayed different aggregation behaviors induced by seeding of hamster and mouse prion strains under real-time quaking-induced conversion. Our results suggest that QSOX facilitates the formation of soluble prion protein and provide further evidence that the polymorphism at residue 109 of QSOX-induced BVPrP may be a determinant in mediating its distinct convertibility and susceptibility.

  5. Molecular Model of Prion Transmission to Humans

    PubMed Central

    Wight, Darren; Barron, Rona; Jeffrey, Martin; Manson, Jean; Prowse, Christopher; Ironside, James W.; Head, Mark W.

    2009-01-01

    To assess interspecies barriers to transmission of transmissible spongiform encephalopathies, we investigated the ability of disease-associated prion proteins (PrPd) to initiate conversion of the human normal cellular form of prion protein of the 3 major PRNP polymorphic variants in vitro. Protein misfolding cyclic amplification showed that conformation of PrPd partly determines host susceptibility. PMID:19961689

  6. Using single strand conformational polymorphisms (SSCP) to identify Phytophthora species in Oregon forests affected by sudden oak death

    Treesearch

    E. Hansen; C. Hesse; P. Reeser; W. Sutton; L. Winton

    2006-01-01

    Phytophthora species are abundant in streams, widespread in soils and occasionally found in diseased plants in the tanoak forests of southwestern Oregon. It is time-consuming and expensive to identify hundreds of isolates to species using morphology or internal transribed spacer (ITS) sequencing. We modified a published Phytophthora...

  7. C9orf72 nucleotide repeat structures initiate molecular cascades of disease.

    PubMed

    Haeusler, Aaron R; Donnelly, Christopher J; Periz, Goran; Simko, Eric A J; Shaw, Patrick G; Kim, Min-Sik; Maragakis, Nicholas J; Troncoso, Juan C; Pandey, Akhilesh; Sattler, Rita; Rothstein, Jeffrey D; Wang, Jiou

    2014-03-13

    A hexanucleotide repeat expansion (HRE), (GGGGCC)n, in C9orf72 is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we identify a molecular mechanism by which structural polymorphism of the HRE leads to ALS/FTD pathology and defects. The HRE forms DNA and RNA G-quadruplexes with distinct structures and promotes RNA•DNA hybrids (R-loops). The structural polymorphism causes a repeat-length-dependent accumulation of transcripts aborted in the HRE region. These transcribed repeats bind to ribonucleoproteins in a conformation-dependent manner. Specifically, nucleolin, an essential nucleolar protein, preferentially binds the HRE G-quadruplex, and patient cells show evidence of nucleolar stress. Our results demonstrate that distinct C9orf72 HRE structural polymorphism at both DNA and RNA levels initiates molecular cascades leading to ALS/FTD pathologies, and provide the basis for a mechanistic model for repeat-associated neurodegenerative diseases.

  8. Amyloid Polymorphism in the Protein Folding and Aggregation Energy Landscape.

    PubMed

    Adamcik, Jozef; Mezzenga, Raffaele

    2018-02-15

    Protein folding involves a large number of steps and conformations in which the folding protein samples different thermodynamic states characterized by local minima. Kinetically trapped on- or off-pathway intermediates are metastable folding intermediates towards the lowest absolute energy minima, which have been postulated to be the natively folded state where intramolecular interactions dominate, and the amyloid state where intermolecular interactions dominate. However, this view largely neglects the rich polymorphism found within amyloid species. We review the protein folding energy landscape in view of recent findings identifying specific transition routes among different amyloid polymorphs. Observed transitions such as twisted ribbon→crystal or helical ribbon→nanotube, and forbidden transitions such helical ribbon↛crystal, are discussed and positioned within the protein folding and aggregation energy landscape. Finally, amyloid crystals are identified as the ground state of the protein folding and aggregation energy landscape. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Amino acid sequence of the Amur tiger prion protein.

    PubMed

    Wu, Changde; Pang, Wanyong; Zhao, Deming

    2006-10-01

    Prion diseases are fatal neurodegenerative disorders in human and animal associated with conformational conversion of a cellular prion protein (PrP(C)) into the pathologic isoform (PrP(Sc)). Various data indicate that the polymorphisms within the open reading frame (ORF) of PrP are associated with the susceptibility and control the species barrier in prion diseases. In the present study, partial Prnp from 25 Amur tigers (tPrnp) were cloned and screened for polymorphisms. Four single nucleotide polymorphisms (T423C, A501G, C511A, A610G) were found; the C511A and A610G nucleotide substitutions resulted in the amino acid changes Lysine171Glutamine and Alanine204Threoine, respectively. The tPrnp amino acid sequence is similar to house cat (Felis catus ) and sheep, but differs significantly from other two cat Prnp sequences that were previously deposited in GenBank.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.D.; Bharadwaj, R.K.

    The molecular geometries and conformational energies of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 1,3-dimethyl-1,3-dinitro methyldiamine (DDMD) and have been determined from high-level quantum chemistry calculations and have been used in parametrizing a classical potential function for simulations of HMX. Geometry optimizations for HMX and DDMD and rotational energy barrier searches for DDMD were performed at the B3LYP/6-311G** level, with subsequent single-point energy calculations at the MP2/6-311G** level. Four unique low-energy conformers were found for HMX, two whose conformational geometries correspond closely to those found in HMX polymorphs from crystallographic studies and two additional, lower energy conformers that are not seen in the crystallinemore » phases. For DDMD, three unique low-energy conformers, and the rotational energy barriers between them, were located. In parametrizing the classical potential function for HMX, nonbonded repulsion/dispersion parameters, valence parameters, and parameters describing nitro group rotation and out-of-plane distortion at the amine nitrogen were taken from the previous studies of dimethylnitramine. Polar effects in HMX and DDMD were represented by sets of partial atomic charges that reproduce the electrostatic potential and dipole moments for the low-energy conformers of these molecules as determined from the quantum chemistry wave functions. Parameters describing conformational energetics for the C-N-C-N dihedrals were determined by fitting the classical potential function to reproduce relative conformational energies in HMX as found from quantum chemistry. The resulting potential was found to give a good representation of the conformer geometries and relative conformer energies in HMX and a reasonable description of the low-energy conformers and rotational energy barriers in DDMD.« less

  11. Correlating Single Crystal Structure, Nanomechanical, and Bulk Compaction Behavior of Febuxostat Polymorphs.

    PubMed

    Yadav, Jayprakash A; Khomane, Kailas S; Modi, Sameer R; Ugale, Bharat; Yadav, Ram Naresh; Nagaraja, C M; Kumar, Navin; Bansal, Arvind K

    2017-03-06

    Febuxostat exhibits unprecedented solid forms with a total of 40 polymorphs and pseudopolymorphs reported. Polymorphs differ in molecular arrangement and conformation, intermolecular interactions, and various physicochemical properties, including mechanical properties. Febuxostat Form Q (FXT Q) and Form H1 (FXT H1) were investigated for crystal structure, nanomechanical parameters, and bulk deformation behavior. FXT Q showed greater compressibility, densification, and plastic deformation as compared to FXT H1 at a given compaction pressure. Lower mechanical hardness of FXT Q (0.214 GPa) as compared to FXT H1 (0.310 GPa) was found to be consistent with greater compressibility and lower mean yield pressure (38 MPa) of FXT Q. Superior compaction behavior of FXT Q was attributed to the presence of active slip systems in crystals which offered greater plastic deformation. By virtue of greater compressibility and densification, FXT Q showed higher tabletability over FXT H1. Significant correlation was found with anticipation that the preferred orientation of molecular planes into a crystal lattice translated nanomechanical parameters to a bulk compaction process. Moreover, prediction of compactibility of materials based on true density or molecular packing should be carefully evaluated, as slip-planes may cause deviation in the structure-property relationship. This study supported how molecular level crystal structure confers a bridge between particle level nanomechanical parameters and bulk level deformation behavior.

  12. Leptin and leptin receptor gene polymorphisms are correlated with production performance in the Arctic fox.

    PubMed

    Zhang, M; Bai, X J

    2015-05-25

    The polymerase chain reaction-single-strand conformation polymorphism technique was employed to measure mononucleotide diversity in the coding region of the leptin and leptin receptor genes in the Arctic fox. The relationships between specific genetic mutations and reproductive performance in Arctic foxes were determined to im-prove breeding strategies. We found that a leptin gene polymorphism was significantly associated with body weight (P < 0.01), abdominal circumference (P < 0.01), and fur length (P < 0.01). Furthermore, a polymorphism in the leptin receptor gene was associated with carcass weight and guard hair length (P < 0.01). Leptin and leptin receptor gene combinatorial genotypes were significantly associated with abdominal circumference, fur length (P < 0.01), and body weight (P < 0.05). The leptin gene is thus a key gene affecting body weight, abdominal circumference, and fur length in Arctic foxes, whereas variations in the leptin receptor mainly affect carcass weight and guard hair. The marker loci identified in this study can be used to assist in the selection of Arctic foxes for breeding to raise the production performance of this species.

  13. Thermophoretic melting curves quantify the conformation and stability of RNA and DNA

    PubMed Central

    Wienken, Christoph J.; Baaske, Philipp; Duhr, Stefan; Braun, Dieter

    2011-01-01

    Measuring parameters such as stability and conformation of biomolecules, especially of nucleic acids, is important in the field of biology, medical diagnostics and biotechnology. We present a thermophoretic method to analyse the conformation and thermal stability of nucleic acids. It relies on the directed movement of molecules in a temperature gradient that depends on surface characteristics of the molecule, such as size, charge and hydrophobicity. By measuring thermophoresis of nucleic acids over temperature, we find clear melting transitions and resolve intermediate conformational states. These intermediate states are indicated by an additional peak in the thermophoretic signal preceding most melting transitions. We analysed single nucleotide polymorphisms, DNA modifications, conformational states of DNA hairpins and microRNA duplexes. The method is validated successfully against calculated melting temperatures and UV absorbance measurements. Interestingly, the methylation of DNA is detected by the thermophoretic amplitude even if it does not affect the melting temperature. In the described setup, thermophoresis is measured all-optical in a simple setup using a reproducible capillary format with only 250 nl probe consumption. The thermophoretic analysis of nucleic acids shows the technique’s versatility for the investigation of nucleic acids relevant in cellular processes like RNA interference or gene silencing. PMID:21297115

  14. Single-Nucleotide-Polymorphism-Based Association Mapping of Dog Stereotypes

    PubMed Central

    Jones, Paul; Chase, Kevin; Martin, Alan; Davern, Pluis; Ostrander, Elaine A.; Lark, Karl G.

    2008-01-01

    Phenotypic stereotypes are traits, often polygenic, that have been stringently selected to conform to specific criteria. In dogs, Canis familiaris, stereotypes result from breed standards set for conformation, performance (behaviors), etc. As a consequence, phenotypic values measured on a few individuals are representative of the breed stereotype. We used DNA samples isolated from 148 dog breeds to associate SNP markers with breed stereotypes. Using size as a trait to test the method, we identified six significant quantitative trait loci (QTL) on five chromosomes that include candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Less well-documented data for behavioral stereotypes tentatively identified loci for herding, pointing, boldness, and trainability. Four significant loci were identified for longevity, a breed characteristic not under direct selection, but inversely correlated with breed size. The strengths and limitations of the approach are discussed as well as its potential to identify loci regulating the within-breed incidence of specific polygenic diseases. PMID:18505865

  15. Mechanisms of Size Control and Polymorphism in Viral Capsid Assembly

    PubMed Central

    Elrad, Oren M.; Hagan, Michael F.

    2009-01-01

    We simulate the assembly dynamics of icosahedral capsids from subunits that interconvert between different conformations (or quasi-equivalent states). The simulations identify mechanisms by which subunits form empty capsids with only one morphology, but adaptively assemble into different icosahedral morphologies around nanoparticle cargoes with varying sizes, as seen in recent experiments with brome mosaic virus (BMV) capsid proteins. Adaptive cargo encapsidation requires moderate cargo-subunit interaction strengths; stronger interactions frustrate assembly by stabilizing intermediates with incommensurate curvature. We compare simulation results to experiments with cowpea chlorotic mottle virus empty capsids and BMV capsids assembled on functionalized nanoparticles, and suggest new cargo encapsidation experiments. Finally, we find that both empty and templated capsids maintain the precise spatial ordering of subunit conformations seen in the crystal structure even if interactions that preserve this arrangement are favored by as little as the thermal energy, consistent with experimental observations that different subunit conformations are highly similar. PMID:18950240

  16. Markers and mapping revisited: finding your gene.

    PubMed

    Jones, Neil; Ougham, Helen; Thomas, Howard; Pasakinskiene, Izolda

    2009-01-01

    This paper is an update of our earlier review (Jones et al., 1997, Markers and mapping: we are all geneticists now. New Phytologist 137: 165-177), which dealt with the genetics of mapping, in terms of recombination as the basis of the procedure, and covered some of the first generation of markers, including restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNA (RAPDs), simple sequence repeats (SSRs) and quantitative trait loci (QTLs). In the intervening decade there have been numerous developments in marker science with many new systems becoming available, which are herein described: cleavage amplification polymorphism (CAP), sequence-specific amplification polymorphism (S-SAP), inter-simple sequence repeat (ISSR), sequence tagged site (STS), sequence characterized amplification region (SCAR), selective amplification of microsatellite polymorphic loci (SAMPL), single nucleotide polymorphism (SNP), expressed sequence tag (EST), sequence-related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), microarrays, diversity arrays technology (DArT), single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE) and methylation-sensitive PCR. In addition there has been an explosion of knowledge and databases in the area of genomics and bioinformatics. The number of flowering plant ESTs is c. 19 million and counting, with all the opportunity that this provides for gene-hunting, while the survey of bioinformatics and computer resources points to a rapid growth point for future activities in unravelling and applying the burst of new information on plant genomes. A case study is presented on tracking down a specific gene (stay-green (SGR), a post-transcriptional senescence regulator) using the full suite of mapping tools and comparative mapping resources. We end with a brief speculation on how genome analysis may progress into the future of this highly dynamic arena of plant science.

  17. Isolation and characterization of microsatellite loci for alligator gar (Atractosteus spatula) and their variability in two other species (Lepisosteus oculatus and L. osseus) of Lepisosteidae

    USGS Publications Warehouse

    Moyer, G.R.; Sloss, Brian L.; Kreiser, B.R.; Feldheim, K.A.

    2009-01-01

    We report on the isolation of 17 polymorphic microsatellite loci from alligator gar (Atractosteus spatula), a large-bodied species that has experienced population declines across much of its range. These loci possessed 2-19 alleles and observed heterozygosities of 0-0.974. All loci conformed to Hardy-Weinberg equilibrium expectations, and none exhibited linkage disequilibrium. Nine and eight of these loci were found to be polymorphic in the related species Lepisosteus oculatus and L. osseus, respectively. These microsatellite loci should prove useful in conservation efforts of A. spatula through the study of population structure and hatchery broodstock management. ?? 2009 Blackwell Publishing Ltd.

  18. Biomolecular Chemistry of Isopropyl Fibrates

    PubMed Central

    Rath, Niharika; Kotheimer, Amenda; Miller, Chad; Zeller, Matthias; Rath, Nigam P.

    2012-01-01

    Isopropyl 2-[4-(4-chlorobenzoyl)-phenoxy]-2-methylpropanoic acid and isopropyl 2-(4-chlorophenoxy)-2-methylpropanoate, also known as fenofibrate and isopropyl clofibrate, are hypolipidemic agents of the fibrate family. In a previously reported triclinic structure of fenofibrate (polymorph I) the methyl groups of the isopropyl moiety (iPr) are located symmetrically about the carboxylate group. We report a new monoclinic form (polymorph II) of fenofibrate and a first structural description of isopropyl clofibrate, and in these the methyl groups are placed asymmetrically about the carboxylate group. In particular the dihedral (torsion) angle between the hydrogen atom on the secondary C and the C atom of the carboxyl group makes a 2.74° angle about the ester O-C bond in the symmetric fenofibrate structure of polymorph I, whereas the same dihedral angle is 45.94° in polymorph II and -30.9° in the crystal structure of isopropyl clofibrate. Gas phase DFT geometry minimizations of fenofibrate and isopropyl clofibrate result in lowest energy conformations for both molecules with a value of about ± 30° for this same angle between the O=C-O-C plane and the C-H bond of the iPr group. A survey of crystal structures containing an iPr ester group reveals that the asymmetric conformation is predominant. Although the hydrogen atom on the secondary C atom of the isopropyl group is located at a comparable distance from the carbonyl oxygen in the symmetric and asymmetric fenofibrate (2.52 and 2.28 Å) and the isopropyl clofibrate (2.36 Å) structures, this hydrogen atom participates in a puckered five membered ring arrangement in the latter two that is unlike the planar arrangement found in symmetric fenofibrate (polymorph I). Polar molecular surface area (PSA) values indicate fenofibrate and isopropyl clofibrate are less able to act as acceptors of hydrogen bonds than their corresponding acid derivatives. Surface area calculations show dynamic polar molecular surface area (PSAd) values of the iPr esters of the fibrates are lower than those of their acids, implying that the fibrates have better membrane permeability and a higher absorbability and hence are better prodrugs when these agents need to be orally administered. PMID:22246648

  19. Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis.

    PubMed

    Arko, B; Prezelj, J; Komel, R; Kocijancic, A; Hudler, P; Marc, J

    2002-09-01

    Osteoprotegerin (OPG) is a recently discovered member of the TNF receptor superfamily that acts as an important paracrine regulator of bone remodeling. OPG knockout mice develop severe osteoporosis, whereas administration of OPG can prevent ovariectomy-induced bone loss. These findings implicate a role for OPG in the development of osteoporosis. In the present study, we screened the OPG gene promoter for sequence variations and examined their association with bone mineral density (BMD) in 103 osteoporotic postmenopausal women. Single-strand conformation polymorphism analysis followed by DNA sequencing revealed a presence of four nucleotide substitutions: 209 G-->A, 245 T-->G, 889 C-->T, and 950 T-->C. The frequencies of genotypes were as follows: GG (89.3%), GA (10.7%) for 209 G-->A polymorphism; TT (89.3%), TG (10.7%) for 245 T-->G polymorphism; and TT (25.2%), TC (53.4%), CC (21.4%) for 950 T-->C polymorphism. Substitution 889 C-->T was found in only two patients. Statistically significant association of genotypes with BMD at the lumbar spine (P = 0.005) was observed for 209 G-->A and 245 T-->G polymorphisms. Haplotype GATG was associated with lower BMD as compared with GGTT haplotype. Our results suggest that 209 G-->A and 245 T-->G polymorphisms in the OPG gene promoter may contribute to the genetic regulation of BMD.

  20. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of bacterial, algal, and animal cellulose, interacts with hemicellulose, is poorly hydrated, and is targeted by the protein expansin during wall loosening. To obtain information about the C6 hydroxymethyl conformation of these plant celluloses, we carried out DFT calculations of (13)C chemical shifts, using the Iα and Iβ crystal structures as templates and varying the C5-C6 torsion angle. Comparison with the experimental chemical shifts suggests that all interior cellulose favor the tg conformation, but cellulose d also has a similar propensity to adopt the gt conformation. These results indicate that cellulose in plant primary cell walls, due to their interactions with matrix polysaccharides, and has polymorphic structures that are not a simple superposition of the Iα and Iβ allomorphs, thus distinguishing them from bacterial and animal celluloses.

  1. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations

    PubMed Central

    Wang, Tuo; Yang, Hui; Kubicki, James D.; Hong, Mei

    2017-01-01

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D 13C-13C correlation spectra of uniformly 13C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose 13C chemical shifts differ significantly from the 13C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing and hydrogen bonding from celluloses of other organisms. 2D 13C-13C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Cellulose f and g are well mixed chains on the microfibril surface, cellulose a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of bacterial, algal and animal cellulose, interacts with hemicellulose, is poorly hydrated, and is targeted by the protein expansin during wall loosening. To obtain information about the C6 hydroxymethyl conformation of these plant celluloses, we carried out DFT calculations of 13C chemical shifts, using the Iα and Iβ crystal structures as templates and varying the C5-C6 torsion angle. Comparison with the experimental chemical shifts suggests that all interior cellulose favor the tg conformation, but cellulose d also has a similar propensity to adopt the gt conformation. These results indicate that cellulose in plant primary cell walls, due to their interactions with matrix polysaccharides, has polymorphic structures that are not a simple superposition of the Iα and Iβ allomorphs, thus distinguishing them from bacterial and animal celluloses. PMID:27192562

  2. A genome-wide association study of calf birth weight in Holstein cattle using single nucleotide polymorphisms and phenotypes predicted from auxiliary traits

    USDA-ARS?s Scientific Manuscript database

    Previous research has found that there is a QTL affecting calving and conformation traits on Bos taurus (BTA) autosome 18 that may be related to increased calf birth weights, which are not routinely recorded in the US. Birth weight (BW) data from large, intensively managed dairies in eastern German...

  3. The differentiation of tuna (family: Scombridae) products through the PCR-based analysis of the cytochrome b gene and parvalbumin introns.

    PubMed

    Abdullah, Asadatun; Rehbein, Hartmut

    2016-01-30

    In spite of the many studies performed over the years, there are still problems in the authentication of closely related tuna species, not only for canned fish but also for raw products. With the aim of providing screening methods to identify different tuna species and related scombrids, segments of mitochondrial cytochrome b (cyt b) and nuclear parvalbumin genes were amplified and sequenced or subjected to single-strand conformation polymorphism (SSCP) and restriction fragment length polymorphism (RFLP) analyses. The nucleotide diagnostic sites in the cyt b gene of five tuna species from Indonesia were determined in this study and used to construct a phylogenetic tree. In addition, the suitability of the nuclear gene that encodes parvalbumin for the differentiation of tuna species was determined by SSCP and RFLP analyses of an intron segment. RFLP differentiated Thunnus albacares and from T. obesus, and fish species in the Thunnus genus could be distinguished from bullet tuna (Auxis rochei) by SSCP. Parvalbumin-based polymerase chain reaction systems could serve as an additional tool in the detection and identification of tuna and other Scombridae fish species for routine seafood control. This reaction can be performed in addition to the cyt b analysis as previously described. © 2015 Society of Chemical Industry.

  4. Electron Microscopic Visualization of Protein Assemblies on Flattened DNA Origami.

    PubMed

    Mallik, Leena; Dhakal, Soma; Nichols, Joseph; Mahoney, Jacob; Dosey, Anne M; Jiang, Shuoxing; Sunahara, Roger K; Skiniotis, Georgios; Walter, Nils G

    2015-07-28

    DNA provides an ideal substrate for the engineering of versatile nanostructures due to its reliable Watson-Crick base pairing and well-characterized conformation. One of the most promising applications of DNA nanostructures arises from the site-directed spatial arrangement with nanometer precision of guest components such as proteins, metal nanoparticles, and small molecules. Two-dimensional DNA origami architectures, in particular, offer a simple design, high yield of assembly, and large surface area for use as a nanoplatform. However, such single-layer DNA origami were recently found to be structurally polymorphous due to their high flexibility, leading to the development of conformationally restrained multilayered origami that lack some of the advantages of the single-layer designs. Here we monitored single-layer DNA origami by transmission electron microscopy (EM) and discovered that their conformational heterogeneity is dramatically reduced in the presence of a low concentration of dimethyl sulfoxide, allowing for an efficient flattening onto the carbon support of an EM grid. We further demonstrated that streptavidin and a biotinylated target protein (cocaine esterase, CocE) can be captured at predesignated sites on these flattened origami while maintaining their functional integrity. Our demonstration that protein assemblies can be constructed with high spatial precision (within ∼2 nm of their predicted position on the platforms) by using strategically flattened single-layer origami paves the way for exploiting well-defined guest molecule assemblies for biochemistry and nanotechnology applications.

  5. Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan

    NASA Astrophysics Data System (ADS)

    Rahm, Martin; Lunine, Jonathan I.; Usher, David A.; Shalloway, David

    2016-07-01

    The chemistry of hydrogen cyanide (HCN) is believed to be central to the origin of life question. Contradictions between Cassini-Huygens mission measurements of the atmosphere and the surface of Saturn’s moon Titan suggest that HCN-based polymers may have formed on the surface from products of atmospheric chemistry. This makes Titan a valuable “natural laboratory” for exploring potential nonterrestrial forms of prebiotic chemistry. We have used theoretical calculations to investigate the chain conformations of polyimine (pI), a polymer identified as one major component of polymerized HCN in laboratory experiments. Thanks to its flexible backbone, the polymer can exist in several different polymorphs, which are relatively close in energy. The electronic and structural variability among them is extraordinary. The band gap changes over a 3-eV range when moving from a planar sheet-like structure to increasingly coiled conformations. The primary photon absorption is predicted to occur in a window of relative transparency in Titan’s atmosphere, indicating that pI could be photochemically active and drive chemistry on the surface. The thermodynamics for adding and removing HCN from pI under Titan conditions suggests that such dynamics is plausible, provided that catalysis or photochemistry is available to sufficiently lower reaction barriers. We speculate that the directionality of pI’s intermolecular and intramolecular =N-H…N hydrogen bonds may drive the formation of partially ordered structures, some of which may synergize with photon absorption and act catalytically. Future detailed studies on proposed mechanisms and the solubility and density of the polymers will aid in the design of future missions to Titan.

  6. Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan

    PubMed Central

    Rahm, Martin; Lunine, Jonathan I.; Usher, David A.; Shalloway, David

    2016-01-01

    The chemistry of hydrogen cyanide (HCN) is believed to be central to the origin of life question. Contradictions between Cassini–Huygens mission measurements of the atmosphere and the surface of Saturn’s moon Titan suggest that HCN-based polymers may have formed on the surface from products of atmospheric chemistry. This makes Titan a valuable “natural laboratory” for exploring potential nonterrestrial forms of prebiotic chemistry. We have used theoretical calculations to investigate the chain conformations of polyimine (pI), a polymer identified as one major component of polymerized HCN in laboratory experiments. Thanks to its flexible backbone, the polymer can exist in several different polymorphs, which are relatively close in energy. The electronic and structural variability among them is extraordinary. The band gap changes over a 3-eV range when moving from a planar sheet-like structure to increasingly coiled conformations. The primary photon absorption is predicted to occur in a window of relative transparency in Titan’s atmosphere, indicating that pI could be photochemically active and drive chemistry on the surface. The thermodynamics for adding and removing HCN from pI under Titan conditions suggests that such dynamics is plausible, provided that catalysis or photochemistry is available to sufficiently lower reaction barriers. We speculate that the directionality of pI’s intermolecular and intramolecular =N–H…N hydrogen bonds may drive the formation of partially ordered structures, some of which may synergize with photon absorption and act catalytically. Future detailed studies on proposed mechanisms and the solubility and density of the polymers will aid in the design of future missions to Titan. PMID:27382167

  7. Association of a novel SNP in exon 10 of the IGF2 gene with growth traits in Egyptian water buffalo (Bubalus bubalis).

    PubMed

    Abo-Al-Ela, Haitham G; El-Magd, Mohammed Abu; El-Nahas, Abeer F; Mansour, Ali A

    2014-08-01

    Insulin-like growth factor 2 (IGF2) plays an important role in muscle growth and it might be used as a marker for the growth traits selection strategies in farm animals. The objectives of this study were to detect polymorphisms in exon 10 of IGF2 and to determine associations between these polymorphisms and growth traits in Egyptian water buffalo. PCR-single-strand conformation polymorphism (SSCP) and DNA sequencing methods were used to detect any prospective polymorphism. A novel single nucleotide polymorphism (SNP), C287A, was detected. It was a non-synonymous mutation and led to replacement of glutamine (Q) amino acid (aa) by histidine (H) aa. Three different SSCP patterns were observed: AA, AC, and CC, with frequencies of 0.540, 0.325, and 0.135, respectively. Association analyses revealed that the AA individuals had a higher average daily gain (ADG) than other individuals (CC and AC) from birth to 9 months of age. We conclude that the AA genotype in C287A SNP in the exon 10 of the IGF2 gene is associated with the ADG during the age from birth to 9 months and could be used as a potential genetic marker for selection of growth traits in Egyptian buffalo.

  8. Polymorphism of Glucokinase Gene in Non-Insulin Dependent Diabetes Mellitus

    PubMed Central

    Kim, Deog-Yoon; Choi, Jung-Hee; Woo, Jeong-Taek; Paeng, Jeong-Ryung; Yang, In-Myung; Kim, Sung-Woon; Kim, Jin-Woo; Kim, Young-Seol; Kim, Kwang-Won; Choi, Young-Kil

    1994-01-01

    Several lines of evidence suggest a strong genetic component to NIDDM. To clarify the role of glucokinase gene in the development of NIDDM, restriction fragment length polymorphism (RFLP) of glucokinase gene and 3′ microsatellite polymorphism analyses by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) were performed in NIDDM and control subjects. Compared to NIDDM with 1.3 kb allele/Pvu I digestion of glucokinase, 10% of NIDDM did not demonstrate 1.3 kb allele and these patients were charcterized by increased insulin secretion. In 3′ microsatellite polymorphism analysis, autoradiography of PCR products revealed three different alleles, including Z, Z+2 and Z+4. Z was the most common allele in both NIDDM and nondiabetic controls. There was no significant allele associated with NIDDM. Frequency of the homozygote Z/Z genotype was significantly lower in NIDDM subjects (16.7%) compared to normal control (46.7%) (p<0.05). There was no difference in clinical findings according to 3′ microsatellite genotypes in NIDDM. These data suggest that there does not appear to be a significant glucokinase allele associated with NIDDM but Z/Z genotype may play a suppressive role in the pathogenesis of a certain type of NIDDM in Korea. Further studies may be required to identify the molecular basis of this association. PMID:7913622

  9. Effects of Single Nucleotide Polymorphisms on Human N-Acetyltransferase 2 Structure and Dynamics by Molecular Dynamics Simulation

    PubMed Central

    Rajasekaran, M.; Abirami, Santhanam; Chen, Chinpan

    2011-01-01

    Background Arylamine N-acetyltransferase 2 (NAT2) is an important catalytic enzyme that metabolizes the carcinogenic arylamines, hydrazine drugs and chemicals. This enzyme is highly polymorphic in different human populations. Several polymorphisms of NAT2, including the single amino acid substitutions R64Q, I114T, D122N, L137F, Q145P, R197Q, and G286E, are classified as slow acetylators, whereas the wild-type NAT2 is classified as a fast acetylator. The slow acetylators are often associated with drug toxicity and efficacy as well as cancer susceptibility. The biological functions of these 7 mutations have previously been characterized, but the structural basis behind the reduced catalytic activity and reduced protein level is not clear. Methodology/Principal Findings We performed multiple molecular dynamics simulations of these mutants as well as NAT2 to investigate the structural and dynamical effects throughout the protein structure, specifically the catalytic triad, cofactor binding site, and the substrate binding pocket. None of these mutations induced unfolding; instead, their effects were confined to the inter-domain, domain 3 and 17-residue insert region, where the flexibility was significantly reduced relative to the wild-type. Structural effects of these mutations propagate through space and cause a change in catalytic triad conformation, cofactor binding site, substrate binding pocket size/shape and electrostatic potential. Conclusions/Significance Our results showed that the dynamical properties of all the mutant structures, especially in inter-domain, domain 3 and 17-residue insert region were affected in the same manner. Similarly, the electrostatic potential of all the mutants were altered and also the functionally important regions such as catalytic triad, cofactor binding site, and substrate binding pocket adopted different orientation and/or conformation relative to the wild-type that may affect the functions of the mutants. Overall, our study may provide the structural basis for reduced catalytic activity and protein level, as was experimentally observed for these polymorphisms. PMID:21980537

  10. Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese.

    PubMed

    Quigley, Lisa; O'Sullivan, Orla; Beresford, Tom P; Ross, R Paul; Fitzgerald, Gerald F; Cotter, Paul D

    2011-11-01

    The availability and application of culture-independent tools that enable a detailed investigation of the microbiota and microbial biodiversity of food systems has had a major impact on food microbiology. This review focuses on the application of DNA-based technologies, such as denaturing gradient gel electrophoresis (DGGE), temporal temperature gradient gel electrophoresis (TTGE), single stranded conformation polymorphisms (SSCP), the polymerase chain reaction (PCR) and others, to investigate the diversity, dynamics and identity of microbes in dairy products from raw milk. Here, we will highlight the benefits associated with culture-independent methods which include enhanced sensitivity, rapidity and the detection of microorganisms not previously associated with such products. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Relationship of plasminogen activator inhibitor 1 gene 4G/5G polymorphisms to hypertension in Korean women.

    PubMed

    Kim, Kyu-nam; Kim, Kwang-min; Kim, Bom-taeck; Joo, Nam-seok; Cho, Doo-yeoun; Lee, Duck-joo

    2012-04-01

    Hypertension (HTN) is a major determinant of various cardiovascular events. Plasma levels of plasminogen activator inhibitor 1 (PAI-1) modulate this risk. A deletion/insertion polymorphism within the PAI-1 loci (4G/4G, 4G/5G, 5G/5G) affects the expression of this gene. The present study investigated the association between PAI-1 loci polymorphisms and HTN in Korean women. Korean women (n = 1312) were enrolled in this study to evaluate the association between PAI-1 4G/5G gene polymorphisms and HTN as well as other metabolic risk factors. PAI-1 loci polymorphisms were investigated using polymerase chain reaction amplification and single-strand conformation polymorphism analysis. The three genotype groups differed with respect to systolic blood pressure (P = 0.043), and diastolic blood pressure (P = 0.009) but not with respect to age, body mass index, total cholesterol, low or high density lipoprotein cholesterol, triglycerides, or fasting blood glucose. Carriers of the PAI-1 4G allele had more hypertension significantly (PAI-1 4G/5G vs. PAI-1 5G/5G, P = 0.032; PAI-1 4G/4G vs. PAI-1 5G/5G, P = 0.034). When stratified according to PAI-1 4G/5G polymorphism, there was no significant difference in all metabolic parameters among PAI-1 genotype groups in patients with HTN as well as subjects with normal blood pressure. The estimated odds ratio of the 4G/4G genotype and 4G/5G for HTN was 1.7 (P = 0.005), and 1.6 (P = 0.015), respectively. These findings might indicate that PAI-1 loci polymorphisms independently contribute to HTN and that gene-environmental interaction may be not associated in Korean women.

  12. [Aldose reductase gene polymorphism and rate of appearance of retinopathy in non insulin dependent diabetics].

    PubMed

    Olmos, P; Acosta, A M; Schiaffino, R; Díaz, R; Alvarado, D; O'Brien, A; Muñoz, X; Arriagada, P; Claro, J C; Vega, R; Vollrath, V; Velasco, S; Emmerich, M; Maiz, A

    1999-04-01

    Recent studies suggest that polymorphisms associated to the aldose reductase gene could be related to early retinopathy in noninsulin dependent diabetics (NIDDM). There is also new interest on the genetic modulation of coagulation factors in relation to this complication. To look for a possible relationship between the rate of appearance of retinopathy and the genotype of (AC)n polymorphic marker associated to aldose reductase gene. A random sample of 27 NIDDM, aged 68.1 +/- 10.6 years, with a mean diabetes duration of 20.7 +/- 4.8 years and a mean glycosilated hemoglobin of 10.6 +/- 1.6%, was studied. The genotype of the (AC)n, polymorphic marker associated to the 5' end of the aldose reductase (ALR2) gene was determined by 32P-PCR plus sequenciation. Mutations of the factor XIII-A gene were studied by single stranded conformational polymorphism, sequenciation and restriction fragment length polymorphism. Four patients lacked the (AC)24 and had a higher rate of appearance of retinopathy than patients with the (AC)24 allele (0.0167 and 0.0907 score points per year respectively, p = 0.047). Both groups had similar glycosilated hemoglobin (11.7 +/- 0.2 and 10.5 +/- 1.6% respectively). Factor XIII gene mutations were not related to the rate of appearance of retinopathy. Our data suggest that the absence of the (AC)24 allele of the (AC)n polymorphic marker associated to the 5' end of the aldose reductase gene, is associated to a five fold reduction of retinopathy appearance rate.

  13. Single nucleotide polymorphism of FSHβ gene associated with reproductive traits in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    He, Feng; Wen, Haishen; Yu, Dahui; Li, Jifang; Shi, Bao; Chen, Caifang; Zhang, Jiaren; Jin, Guoxiong; Chen, Xiaoyan; Shi, Dan; Yang, Yanping

    2010-12-01

    Follicle stimulating hormone β (FSHβ) of Japanese flounder ( Paralichthys olivaceus) plays a key role in the regulation of gonadal development. This study aimed to investigate molecular genetic characteristics of the FSHβ gene and elucidate the effects of single nucleotide polymorphisms (SNPs) of FSHβ on reproductive traits in Japanese flounder. We used polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and sequencing of the FSHβ gene in 60 individuals. We identified only an SNP (T/C) in the coding region of exon3 of FSHβ. The SNP (T/C) did not lead to amino acid changes at the position 340 bp of FSHβ gene. Statistical analysis showed that the SNP was significantly associated with testosterone (T) level and gonadosomatic index (GSI) ( P < 0.05). Individuals with genotype TC of the SNP had significantly higher serum T levels and GSI ( P < 0.05) than that of genotype CC. Therefore, FSHβ gene could be a useful molecular marker in selection for prominent reproductive trait in Japanese Flounder.

  14. The search for mutations in the gene for the beta subunit of the cGMP phosphodiesterase (PDEB) in patients with autosomal recessive retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riess, O.; Weber, B.; Hayden, M.R.

    1992-10-01

    The finding of a mutation in the beta subunit of the cyclic GMP (cGMP) phosphodiesterase gene causing retinal degeneration in mice (the Pdeb gene) prompted a search for disease-causing mutations in the human phosphodiesterase gene (PDEB gene) in patients with retinitis pigmentosa. All 22 exons including 196 bp of the 5[prime] region of the PDEB gene have been assessed for mutations by using single-strand conformational polymorphism analysis in 14 patients from 13 unrelated families with autosomal recessive retinitis pigmentosa (ARRP). No disease-causing mutations were found in this group of affected individuals of seven different ancestries. However, a frequent intronic andmore » two exonic polymorphisms (Leu[sup 489][yields]Gln and Gly[sup 842][yields]Gly) were identified. Segregation analysis using these polymorphic sites excludes linkage of ARRP to the PDEB gene in a family with two affected children. 43 refs., 3 figs., 2 tabs.« less

  15. Genetic Variants in SDC3 Gene are Significantly Associated with Growth Traits in Two Chinese Beef Cattle Breeds.

    PubMed

    Huang, Yong-Zhen; Wang, Qin; Zhang, Chun-Lei; Fang, Xing-Tang; Song, En-Liang; Chen, Hong

    2016-01-01

    Identification of the genes and polymorphisms underlying quantitative traits, and understanding these genes and polymorphisms affect economic growth traits, are important for successful marker-assisted selection and more efficient management strategies in commercial cattle (Bos taurus) population. Syndecan-3 (SDC3), a member of the syndecan family of type I transmembrane heparan sulfate proteoglycans is a novel regulator of feeding behavior and body weight. The aim of this study is to examine the association of the SDC3 polymorphism with growth traits in Chinese Jiaxian and Qinchuan cattle breeds (). Four single nucleotide polymorphisms (SNPs: 1-4) were detected in 555 cows from three Chinese native cattle breeds by means of sequencing pooled DNA samples and polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) methods. We found one SNP (g.28362A > G) in intron and three SNPs (g.30742T > G, g.30821C > T and 33418 A > G) in exons. The statistical analyses indicated that these SNPs of SDC3 gene were associated with bovine body height, body length, chest circumference, and circumference of cannon bone (P < 0.05). The mutant-type variant was superior for growth traits; the heterozygote was associated with higher growth traits compared to wild-type homozygote. Our result confirms the polymorphisms in the SDC3 gene are associated with growth traits that may be used for marker-assisted selection in beef cattle breeding programs.

  16. Association between a polymorphism of the α-lactalbumin gene and milk production traits in Chinese Holstein cows.

    PubMed

    Zhou, J P; Dong, C H

    2013-09-04

    The traits particularly important for milk production include milk yield, protein percentage, fat percentage, and the somatic cell score. Alpha-lactalbumin (α-LA) is an important whey protein of cow milk, and is also present in the milk of many other mammalian species. In this study, we analyzed the genetic polymorphisms of the α-LA gene and their relationship to milk production traits (milk yield, protein percentage, fat percentage, and somatic cell score) in Chinese Holstein cows. The goal of this study was to contribute further molecular genetic information related to dairy cattle, to determine the molecular markers that are most closely linked with milk production traits, and to provide a scientific basis for the improvement of economically relevant traits in cows. Fluorescence-based conformation-sensitive gel electrophoresis, DNA sequencing, and ligation detection reaction techniques were used to analyze genetic variations of the α-LA gene (5'-UTR, exons 1, 2, 3, 4, and 3'-UTR) in 923 Chinese Holstein cows. One novel single nucleotide polymorphism (SNP), α-LA2516, was identified in exon 4 of the α-LA gene. Allele frequencies were as follows: T 0.674, C 0.326. Association analysis revealed that α-LA2516 was not associated with milk yield, protein percentage, fat percentage, or somatic cell score (P > 0.05). These findings suggest that the SNP α-LA2516 in the α-LA gene likely does not have potential as a molecular marker for milk production traits in Chinese Holstein cows.

  17. Conformational organizations of G-quadruplexes composed of d(G(4)T(n))(3)G(4).

    PubMed

    Wong, Wan Chi; Zhuang, Jinyi; Ng, Selina Ling Ling; New, Lilian Li Lin; Hiew, Shuhui; Guo, Juanjuan; Yang, Zhaoqi; Li, Tianhu

    2010-08-01

    Structural polymorphism is one of the important issues with regard to G-quadruplexes because the structural diversity may significantly affect their biological functions in vivo and their physical property in nano-material. A series of oligonucleotides with four repeat guanines sequence [d(G(4)T(n))(3)G(4) (n=1-6)] were designed. In this study, the effects of loop length on the formation of structures of G-quadruplex were investigated through the result of CD (circular dichroism) and 20% non-denatured polyacrylamide gel electrophoresis. Our studies demonstrate that the length of loop in 100mM KCl solution could predict the conformation of G-quadruplex. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Mapping of the serotonin 5-HT{sub 1D{alpha}} autoreceptor gene (HTR1D) on chromosome 1 using a silent polymorphism in the coding region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozaki, N.; Lappalainen, J.; Linnoila, M.

    Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP)more » analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.« less

  19. The role of the unusual threonine string in the conversion of prion protein.

    PubMed

    Abskharon, Romany; Wang, Fei; Vander Stel, Kayla J; Sinniah, Kumar; Ma, Jiyan

    2016-12-16

    The conversion of normal prion protein (PrP) into pathogenic PrP conformers is central to prion disease, but the mechanism remains unclear. The α-helix 2 of PrP contains a string of four threonines, which is unusual due to the high propensity of threonine to form β-sheets. This structural feature was proposed as the basis for initiating PrP conversion, but experimental results have been conflicting. We studied the role of the threonine string on PrP conversion by analyzing mouse Prnp a and Prnp b polymorphism that contains a polymorphic residue at the beginning of the threonine string, and PrP mutants in which threonine 191 was replaced by valine, alanine, or proline. The PMCA (protein misfolding cyclic amplification) assay was able to recapitulate the in vivo transmission barrier between PrP a and PrP b . Relative to PMCA, the amyloid fibril growth assay is less restrictive, but it did reflect certain properties of in vivo prion transmission. Our results suggest a plausible theory explaining the apparently contradictory results in the role of the threonine string in PrP conversion and provide novel insights into the complicated relationship among PrP stability, seeded conformational change, and prion structure, which is critical for understanding the molecular basis of prion infectivity.

  20. Bacterial Community Dynamics during Production of Registered Designation of Origin Salers Cheese as Evaluated by 16S rRNA Gene Single-Strand Conformation Polymorphism Analysis

    PubMed Central

    Duthoit, Frédérique; Godon, Jean-Jacques; Montel, Marie-Christine

    2003-01-01

    Microbial dynamics during processing and ripening of traditional cheeses such as registered designation of origin Salers cheese, an artisanal cheese produced in France, play an important role in the elaboration of sensory qualities. The aim of the present study was to obtain a picture of the dynamics of the microbial ecosystem of RDO Salers cheese by using culture-independent methods. This included DNA extraction, PCR, and single-strand conformation polymorphism (SSCP) analysis. Bacterial and high-GC% gram-positive bacterial primers were used to amplify V2 or V3 regions of the 16S rRNA gene. SSCP patterns revealed changes during the manufacturing of the cheese. Patterns of the ecosystems of cheeses that were provided by three farmers were also quite different. Cloning and sequencing of the 16S rRNA gene revealed sequences related to lactic acid bacteria (Lactococcus lactis, Streptococcus thermophilus, Enterococcus faecium, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Lactobacillus plantarum, and Lactobacillus pentosus), which were predominant during manufacturing and ripening. Bacteria belonging to the high-GC% gram-positive group (essentially corynebacteria) were found by using specific primers. The present molecular approach can effectively describe the ecosystem of artisanal dairy products. PMID:12839752

  1. Metal Cations in G-Quadruplex Folding and Stability

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-09-01

    This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  2. Genetics and Genomics of Longitudinal Lung Function Patterns in Individuals with Asthma

    PubMed Central

    Yates, Katherine P.; Zhou, Xiaobo; Guo, Feng; Sternberg, Alice L.; Van Natta, Mark L.; Wise, Robert A.; Szefler, Stanley J.; Sharma, Sunita; Kho, Alvin T.; Cho, Michael H.; Croteau-Chonka, Damien C.; Castaldi, Peter J.; Jain, Gaurav; Sanyal, Amartya; Zhan, Ye; Lajoie, Bryan R.; Dekker, Job; Stamatoyannopoulos, John; Covar, Ronina A.; Zeiger, Robert S.; Adkinson, N. Franklin; Williams, Paul V.; Kelly, H. William; Grasemann, Hartmut; Vonk, Judith M.; Koppelman, Gerard H.; Postma, Dirkje S.; Raby, Benjamin A.; Houston, Isaac; Lu, Quan; Fuhlbrigge, Anne L.; Tantisira, Kelan G.; Silverman, Edwin K.; Tonascia, James; Strunk, Robert C.; Weiss, Scott T.

    2016-01-01

    Rationale: Patterns of longitudinal lung function growth and decline in childhood asthma have been shown to be important in determining risk for future respiratory ailments including chronic airway obstruction and chronic obstructive pulmonary disease. Objectives: To determine the genetic underpinnings of lung function patterns in subjects with childhood asthma. Methods: We performed a genome-wide association study of 581 non-Hispanic white individuals with asthma that were previously classified by patterns of lung function growth and decline (normal growth, normal growth with early decline, reduced growth, and reduced growth with early decline). The strongest association was also measured in two additional cohorts: a small asthma cohort and a large chronic obstructive pulmonary disease metaanalysis cohort. Interaction between the genomic region encompassing the most strongly associated single-nucleotide polymorphism and nearby genes was assessed by two chromosome conformation capture assays. Measurements and Main Results: An intergenic single-nucleotide polymorphism (rs4445257) on chromosome 8 was strongly associated with the normal growth with early decline pattern compared with all other pattern groups (P = 6.7 × 10−9; odds ratio, 2.8; 95% confidence interval, 2.0–4.0); replication analysis suggested this variant had opposite effects in normal growth with early decline and reduced growth with early decline pattern groups. Chromosome conformation capture experiments indicated a chromatin interaction between rs4445257 and the promoter of the distal CSMD3 gene. Conclusions: Early decline in lung function after normal growth is associated with a genetic polymorphism that may also protect against early decline in reduced growth groups. Clinical trial registered with www.clinicaltrials.gov (NCT00000575). PMID:27367781

  3. Pit-1 gene polymorphism, milk yield, and conformation traits for Italian Holstein-Friesian bulls.

    PubMed

    Renaville, R; Gengler, N; Vrech, E; Prandi, A; Massart, S; Corradini, C; Bertozzi, C; Mortiaux, F; Burny, A; Portetelle, D

    1997-12-01

    The growth hormone factor-1/pituitary-specific transcription factor Pit-1 is responsible for the expression of growth hormone in mammals. Mutations in Pit-1 have been found in growth hormone disorders of mice and humans. We studied the eventual association between Pit-1 polymorphism using the HinfI enzyme and the milk yield and conformation traits of 89 Italian Holstein-Friesian bulls. A strategy employing polymerase chain reaction was used to amplify a 451-bp fragment from semen DNA. Digestion of polymerase chain reaction products with HinfI revealed two alleles: allele A was not digested (451-bp fragment), and allele B was cut at one restriction site, generating two fragments of 244 and 207 bp. Three patterns were observed; frequencies were 2.2, 31.5, and 66.3% for AA, AB, and BB, respectively. Fixed and mixed linear models were fitted on daughter yield deviations for milk yields and on deregressed proofs for conformation traits. Predictions were weighted using the inverse of the estimated variance of records. The models used contained mean and gene substitution effects for Pit-1 A allele as fixed effects and random sire effect for the mixed model. The A allele was found to be superior for milk and protein yields, inferior for fat percentage, and superior for body depth, angularity, and rear leg set, which is difficult to explain. A canonical transformation revealed that Pit-1 had three actions, one linked to milk yield traits and angularity, a second linked to body depth and rear leg set, and a third linked to lower fat yields and to higher angularity.

  4. Structural basis of Arp2/3 complex inhibition by GMF, Coronin, and Arpin

    PubMed Central

    Sokolova, Olga S.; Chemeris, Angelina; Guo, Siyang; Alioto, Salvatore L.; Gandhi, Meghal; Padrick, Shae; Pechnikova, Evgeniya; David, Violaine; Gautreau, Alexis; Goode, Bruce L.

    2017-01-01

    The evolutionarily conserved Arp2/3 complex plays a central role in nucleating the branched actin filament arrays that drive cell migration, endocytosis, and other processes. To better understand Arp2/3 complex regulation, we used single particle electron microscopy to compare the structures of Arp2/3 complex bound to three different inhibitory ligands: GMF, Coronin, and Arpin. Although the three inhibitors have distinct binding sites on Arp2/3 complex, they each induced an ‘open’ nucleation-inactive conformation. Coronin promoted a standard (previously described) open conformation of Arp2/3 complex, with the N-terminal β-propeller domain of Coronin positioned near the p35/ARPC2 subunit of Arp2/3 complex. GMF induced two distinct open conformations of Arp2/3 complex, which correlated with two suggested binding sites for GMF. Further, GMF synergized with Coronin in inhibiting actin nucleation by Arp2/3 complex. Arpin, which uses VCA-related acidic (A) motifs to interact with the Arp2/3 complex, induced the standard open conformation, and two new masses appeared at positions near Arp2 and Arp3. Further, Arpin showed additive inhibitory effects on Arp2/3 complex with Coronin and GMF. Together, these data suggest that Arp2/3 complex conformation is highly polymorphic and that its activities can be controlled combinatorially by different inhibitory ligands. PMID:27939292

  5. Molecular dynamics simulations of void defects in the energetic material HMX.

    PubMed

    Duan, Xiao Hui; Li, Wen Peng; Pei, Chong Hua; Zhou, Xiao Qing

    2013-09-01

    A molecular dynamics (MD) simulation was carried out to characterize the dynamic evolution of void defects in crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX). Different models were constructed with the same concentration of vacancies (10 %) to discuss the size effects of void. Energetic ground state properties were determined by annealing simulations. The void formation energy per molecule removed was found to be 55-63 kcal/mol(-1), and the average binding energy per molecule was between 32 and 34 kcal/mol(-1) according to the change in void size. Voids with larger size had lower formation energy. Local binding energies for molecules directly on the void surface decreased greatly compared to those in defect-free lattice, and then gradually increased until the distance away from the void surface was around 10 Å. Analysis of 1 ns MD simulations revealed that the larger the void size, the easier is void collapse. Mean square displacements (MSDs) showed that HMX molecules that had collapsed into void present liquid structure characteristics. Four unique low-energy conformers were found for HMX molecules in void: two whose conformational geometries corresponded closely to those found in HMX polymorphs and two, additional, lower energy conformers that were not seen in the crystalline phases. The ratio of different conformers changed with the simulated temperature, in that the ratio of α conformer increased with the increase in temperature.

  6. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    NASA Astrophysics Data System (ADS)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P < 0.01), from which we constructed four main haplotypes due to linkage disequilibrium. Furthermore, the most effective haplotype H2 (GAGGAT) had extremely significant relationship with high glycogen content ( P < 0.0001). These findings revealed the potential influence of Cg-GYS polymorphism on the glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  7. Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy.

    PubMed

    Kong, Lingyan; Lee, Christopher; Kim, Seong H; Ziegler, Gregory R

    2014-02-20

    The polymorphic structures of starch were characterized with vibrational sum frequency generation (SFG) spectroscopy. The noncentrosymmetry requirement of SFG spectroscopy allows for the detection of the ordered domains without spectral interferences from the amorphous phase and also the distinction of the symmetric elements among crystalline polymorphs. The V-type amylose was SFG-inactive due to the antiparallel packing of single helices in crystal unit cells, whereas the A- and B-type starches showed strong SFG peaks at 2904 cm(-1) and 2952-2968 cm(-1), which were assigned to CH stretching of the axial methine group in the ring and CH2 stretching of the exocyclic CH2OH side group, respectively. The CH2/CH intensity ratios of the A- and B-type starches are significantly different, indicating that the conformation of hydroxymethyl groups in these two polymorphs may be different. Cyclodextrin inclusion complexes were also analyzed as a comparison to the V-type amylose and showed that the head-to-tail and head-to-head stacking patterns of cyclodextrin molecules govern their SFG signals and peak positions. Although the molecular packing is different between V-type amylose and cyclodextrin inclusion complexes, both crystals show the annihilation of SFG signals when the functional group dipoles are arranged pointing in opposite directions.

  8. Molecular screening of the ghrelin gene in Italian obese children: the Leu72Met variant is associated with an earlier onset of obesity.

    PubMed

    Miraglia del Giudice, E; Santoro, N; Cirillo, G; Raimondo, P; Grandone, A; D'Aniello, A; Di Nardo, M; Perrone, L

    2004-03-01

    To test whether ghrelin variants could play a role in modulating some aspects of the obese phenotype during childhood. We screened the ghrelin gene in 300 Italian obese children and adolescents (mean age 10.5+/-3.2 y; range 4-19 y) and 200 controls by using the single-strand conformation polymorphism and the restriction fragment length polymoprhism analysis. No mutations were detected with the exception of two previously described polymorphisms, Arg51Gln and Leu72Met. For both variations, allelic frequencies were similar between patients and controls. Interestingly, we showed that the Leu72Met polymorphism was associated with differences in the age at obesity onset. Patients with the Met72 allele became obese earlier than homozygous patients for the wild Leu72 allele. The logrank test comparing the plots of the complement of Kaplan-Meier estimates between the two groups of patients was statistically significant (P<0.0001). It is unlikely that ghrelin variations cause the obesity due to single-gene mutations. The Leu72Met polymorphism of the ghrelin gene seems to play a role in anticipating the onset of obesity among children suggesting, therefore, that ghrelin may be involved in the pathophysiology of human adiposity.

  9. Differential occurrence of chromosome inversion polymorphisms among Muller's elements in three species of the tripunctata group of Drosophila, including a species with fast chromosomal evolution.

    PubMed

    Brianti, Mitsue T; Ananina, Galina; Klaczko, Louis B

    2013-01-01

    Detailed chromosome maps with reliable homologies among chromosomes of different species are the first step to study the evolution of the genetic architecture in any set of species. Here, we present detailed photo maps of the polytene chromosomes of three closely related species of the tripunctata group (subgenus Drosophila): Drosophila mediopunctata, D. roehrae, and D. unipunctata. We identified Muller's elements in each species, using FISH, establishing reliable chromosome homologies among species and D. melanogaster. The simultaneous analysis of chromosome inversions revealed a distribution pattern for the inversion polymorphisms among Muller's elements in the three species. Element E is the most polymorphic, with many inversions in each species. Element C follows; while the least polymorphic elements are B and D. While interesting, it remains to be determined how general this pattern is among species of the tripunctata group. Despite previous studies showing that D. mediopunctata and D. unipunctata are phylogenetically closer to each other than to D. roehrae, D. unipunctata shows rare karyotypic changes. It has two chromosome fusions: an additional heterochromatic chromosome pair and a pericentric inversion in the X chromosome. This especial conformation suggests a fast chromosomal evolution that deserves further study.

  10. Analysis of ELA-DQB exon 2 polymorphism in Argentine Creole horses by PCR-RFLP and PCR-SSCP.

    PubMed

    Villegas-Castagnasso, E E; Díaz, S; Giovambattista, G; Dulout, F N; Peral-García, P

    2003-08-01

    The second exon of equine leucocyte antigen (ELA)-DQB genes was amplified from genomic DNA of 32 Argentine Creole horses by PCR. Amplified DNA was analysed by PCR-restriction fragment length polymorphism (RFLP) and PCR-single-strand conformation polymorphism (SSCP). The PCR-RFLP analysis revealed two HaeIII patterns, four RsaI patterns, five MspI patterns and two HinfI patterns. EcoRI showed no variation in the analysed sample. Additional patterns that did not account for known exon 2 DNA sequences were observed, suggesting the existence of novel ELA-DQB alleles. PCR-SSCP analysis exhibited seven different band patterns, and the number of bands per animal ranged from four to nine. Both methods indicated that at least two DQB genes are present. The presence of more than two alleles in each animal showed that the primers employed in this work are not specific for a unique DQB locus. The improvement of this PCR-RFLP method should provide a simple and rapid technique for an accurate definition of ELA-DQB typing in horses.

  11. Adapting phase-switch Monte Carlo method for flexible organic molecules

    NASA Astrophysics Data System (ADS)

    Bridgwater, Sally; Quigley, David

    2014-03-01

    The role of cholesterol in lipid bilayers has been widely studied via molecular simulation, however, there has been relatively little work on crystalline cholesterol in biological environments. Recent work has linked the crystallisation of cholesterol in the body with heart attacks and strokes. Any attempt to model this process will require new models and advanced sampling methods to capture and quantify the subtle polymorphism of solid cholesterol, in which two crystalline phases are separated by a phase transition close to body temperature. To this end, we have adapted phase-switch Monte Carlo for use with flexible molecules, to calculate the free energy between crystal polymorphs to a high degree of accuracy. The method samples an order parameter , which divides a displacement space for the N molecules, into regions energetically favourable for each polymorph; which is traversed using biased Monte Carlo. Results for a simple model of butane will be presented, demonstrating that conformational flexibility can be correctly incorporated within a phase-switching scheme. Extension to a coarse grained model of cholesterol and the resulting free energies will be discussed.

  12. Lack of association between sigma receptor gene variants and schizophrenia.

    PubMed

    Satoh, Fumiaki; Miyatake, Ryosuke; Furukawa, Aizo; Suwaki, Hiroshi

    2004-08-01

    Several pharmacological studies suggest the possible involvement of sigma(1) receptors in the pathogenesis of schizophrenia. An association has been reported between schizophrenia and two variants (GC-241-240TT and Gln2Pro) in the sigma(1) receptor gene (SIGMAR1). We also previously reported that, along with T-485 A, these two variants alter SIGMAR1 function. To investigate the role of SIGMAR1 in conveying susceptibility to schizophrenia, we performed a case-control study. We initially screened for polymorphisms in the SIGMAR1 coding region using PCR-single strand conformation polymorphism analysis. The distribution of SIGMAR1 polymorphisms was analyzed in 100 schizophrenic and 104 control subjects. A novel G620A variant was detected in exon4. G620A was predicted to alter the amino acid represented by codon 211 from arginine to glutamine. Our case-control study showed no significant association between the T-485 A, GC-241-240TT, Gln2Pro, and G620A (Arg211Gln) variants and schizophrenia and clinical characteristics. These findings suggest that these SIGMAR1 variants may not affect susceptibility to schizophrenia.

  13. Role of PTPN22 and CSK gene polymorphisms as predictors of susceptibility and clinical heterogeneity in patients with Henoch-Schönlein purpura (IgA vasculitis).

    PubMed

    López-Mejías, Raquel; Genre, Fernanda; Remuzgo-Martínez, Sara; Pérez, Belén Sevilla; Castañeda, Santos; Llorca, Javier; Ortego-Centeno, Norberto; Ubilla, Begoña; Mijares, Verónica; Pina, Trinitario; Calvo-Río, Vanesa; Palmou, Natalia; Miranda-Filloy, José A; Parejo, Antonio Navas; Argila, Diego; Sánchez-Pérez, Javier; Rubio, Esteban; Luque, Manuel León; Blanco-Madrigal, Juan María; Galíndez-Aguirregoikoa, Eva; Ocejo-Vinyals, J Gonzalo; Martín, Javier; Blanco, Ricardo; González-Gay, Miguel A

    2015-10-13

    To determine whether the PTPN22 (protein tyrosine phosphatase nonreceptor 22)/CSK (c-src tyrosine kinase) pathway is implicated in the susceptibility and clinical heterogeneity of Henoch-Schönlein purpura (HSP) in the largest series of Caucasian HSP patients ever assessed for genetic studies. A set of 329 Spanish patients diagnosed with HSP fulfilling the American College of Rheumatology and the Michel et al. classification criteria and 515 sex and ethnically matched controls were recruited in this study. Two well-known CSK (CSK rs34933034 and CSK rs1378942) and two functional PTPN22 (PTPN22 rs2476601 (R620W) and PTPN22 rs33996649 (R263Q)) polymorphisms, previously associated with autoimmunity, were genotyped with TaqMan single nucleotide polymorphism (SNP) genotyping assays. No significant differences in the genotype and allele frequencies between HSP patients and controls were observed when the CSK rs34933034, CSK rs1378942, PTPN22 rs2476601 (R620W) and PTPN22 rs33996649 (R263Q) polymorphisms were analyzed independently. In keeping with this observation, no significant differences were found when we assessed these polymorphisms combined conforming haplotypes. In addition, there were no differences in the allele or genotype frequencies when HSP patients were stratified according the age at disease onset, sex, presence of arthralgia/arthritis, nephritis or gastrointestinal manifestations. Our results do not support association between PTPN22/CSK and HSP.

  14. Bovine GDF10 gene polymorphism analysis and its association with body measurement traits in Chinese indigenous cattle.

    PubMed

    Adoligbe, C; Zan, Linsen; Farougou, S; Wang, Hongbao; Ujjan, J A

    2012-04-01

    The objective of this research was to detect bovine GDF10 gene polymorphism and analyze its association with body measurement traits (BMT) of animals sampled from 6 different Chinese indigenous cattle populations. The populations included Xuelong (Xl), Luxi (Lx), Qinchuan (Qc), Jiaxian red (Jx), Xianang (Xn) and Nanyang (Ny). Blood samples were taken from a total of 417 female animals stratified into age categories of 12-36 months. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was employed to find out GDF10 single polymorphism nucleotide (SNPs) and explore their possible association with BMT. Sequence analysis of GDF10 gene revealed 3 SNPs in total: 1 in exon1 (G142A) and 2 in exon3 (A11471G, and T12495C). G142A and T12495C SNPs are both synonymous mutation. They showed 2 genotypes namely respectively (GG, GA) and (PP and PB). A11471G SNP is a missense mutation leading to the change of Alanine to Threonine amino acid. It showed three genotypes namely AA, BB and AB. Analysis of association of polymorphism with body measurement traits at the three locus showed that there were significant effects on BMT in Qc, Jx and Ny cattle population. These results suggest that the GDF10 gene might have potential effects on body measurement traits in the above mentioned cattle populations and could be used for marker-assisted selection.

  15. Structural polymorphism at LCR and its role in beta-globin gene regulation.

    PubMed

    Kukreti, Shrikant; Kaur, Harpreet; Kaushik, Mahima; Bansal, Aparna; Saxena, Sarika; Kaushik, Shikha; Kukreti, Ritushree

    2010-09-01

    Information on the secondary structures and conformational manifestations of eukaryotic DNA and their biological significance with reference to gene regulation and expression is limited. The human beta-globin gene Locus Control Region (LCR), a dominant regulator of globin gene expression, is a contiguous piece of DNA with five tissue-specific DNase I-hypersensitive sites (HSs). Since these HSs have a high density of transcription factor binding sites, structural interdependencies between HSs and different promoters may directly or indirectly regulate LCR functions. Mutations and SNPs may stabilize or destabilize the local secondary structures, affecting the gene expression by changes in the protein-DNA recognition patterns. Various palindromic or quasi-palindromic segments within LCR, could cause structural polymorphism and geometrical switching of DNA. This emphasizes the importance of understanding of the sequence-dependent variations of the DNA structure. Such structural motifs might act as regulatory elements. The local conformational variability of a DNA segment or action of a DNA specific protein is key to create and maintain active chromatin domains and affect transcription of various tissue specific beta-globin genes. We, summarize here the current status of beta-globin LCR structure and function. Further structural studies at molecular level and functional genomics might solve the regulatory puzzles that control the beta-globin gene locus. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  16. Effect of Field Inoculation with Sinorhizobium meliloti L33 on the Composition of Bacterial Communities in Rhizospheres of a Target Plant (Medicago sativa) and a Non-Target Plant (Chenopodium album)—Linking of 16S rRNA Gene-Based Single-Strand Conformation Polymorphism Community Profiles to the Diversity of Cultivated Bacteria

    PubMed Central

    Schwieger, Frank; Tebbe, Christoph C.

    2000-01-01

    Fourteen weeks after field release of luciferase gene-tagged Sinorhizobium meliloti L33 in field plots seeded with Medicago sativa, we found that the inoculant also occurred in bulk soil from noninoculated control plots. In rhizospheres of M. sativa plants, S. meliloti L33 could be detected in noninoculated plots 12 weeks after inoculation, indicating that growth in the rhizosphere preceded spread into bulk soil. To determine whether inoculation affected bacterial diversity, 1,119 bacteria were isolated from the rhizospheres of M. sativa and Chenopodium album, which was the dominant weed in the field plots. Amplified ribosomal DNA restriction analysis (ARDRA) revealed plant-specific fragment size frequencies. Dominant ARDRA groups were identified by 16S rRNA gene nucleotide sequencing. Database comparisons indicated that the rhizospheres contained members of the Proteobacteria (α, β, and γ subgroups), members of the Cytophaga-Flavobacterium group, and gram-positive bacteria with high G+C DNA contents. The levels of many groups were affected by the plant species and, in the case of M. sativa, by inoculation. The most abundant isolates were related to Variovorax sp., Arthrobacter ramosus, and Acinetobacter calcoaceticus. In the rhizosphere of M. sativa, inoculation reduced the numbers of cells of A. calcoaceticus and members of the genus Pseudomonas and increased the number of rhizobia. Cultivation-independent PCR–single-strand conformation polymorphism (SSCP) profiles of a 16S rRNA gene region confirmed the existence of plant-specific rhizosphere communities and the effect of the inoculant. All dominant ARDRA groups except Variovorax species could be detected. On the other hand, the SSCP profiles revealed products which could not be assigned to the dominant cultured isolates, indicating that the bacterial diversity was greater than the diversity suggested by cultivation. PMID:10919821

  17. Molecular characterization of a Toxocara variant from cats in Kuala Lumpur, Malaysia.

    PubMed

    Zhu, X Q; Jacobs, D E; Chilton, N B; Sani, R A; Cheng, N A; Gasser, R B

    1998-08-01

    The ascaridoid nematode of cats from Kuala Lumpur, Malaysia, previously identified morphologically as Toxocara canis, was characterized using a molecular approach. The nuclear ribosomal DNA (rDNA) region spanning the first internal transcribed spacer (ITS-1), the 5.8S gene and the second internal transcribed spacer (ITS-2) was amplified and sequenced. The sequences for the parasite from Malaysian cats were compared with those for T. canis and T. cati. The sequence data showed that this taxon was genetically more similar to T. cati than to T. canis in the ITS-1, 5.8S and ITS-2. Differences in the ITS-1 and ITS-2 sequences between the taxa (9.4-26.1%) were markedly higher than variation between samples within T. canis and T. cati (0-2.9%). The sequence data demonstrate that the parasite from Malaysian cats is neither T. canis nor T. cati and indicate that it is a distinct species. Based on these data, PCR-linked restriction fragment length polymorphism (RFLP) and single-strand conformation polymorphism (SSCP) methods were employed for the unequivocal differentiation of the Toxocara variant from T. canis and T. cati. These methods should provide valuable tools for studying the life-cycle, transmission pattern(s) and zoonotic potential of this parasite.

  18. NMR crystallography of oxybuprocaine hydrochloride, Modification II degrees.

    PubMed

    Harris, Robin K; Cadars, Sylvian; Emsley, Lyndon; Yates, Jonathan R; Pickard, Chris J; Jetti, Ram K R; Griesser, Ulrich J

    2007-01-21

    The (13)C CPMAS spectrum is presented for the polymorph of oxybuprocaine hydrochloride which is stable at room temperature, i.e. Mod. II degrees . It shows crystallographic splittings arising from the fact that there are two molecules, with substantially different conformations, in the asymmetric unit. An INADEQUATE two-dimensional experiment was used to link signals for the same independent molecule. The chemical shifts are discussed in relation to the crystal structure. Of the four ethyl groups attached to NH(+) nitrogens, one gives rise to unusually low chemical shifts, very different from those of the other three ethyl groups. This is attributed empirically to gamma-gauche conformational effects, as is confirmed by shielding computations. These considerations allow (13)C signals to be assigned to specific carbons in the two crystallographically inequivalent molecules in the crystal structure. Indeed, information about the conformations is inherent in the NMR spectrum, which thus provides data of crystallographic significance. A (13)C/(1)H HETCOR experiment enabled resolution to be obtained in the (1)H dimension and allowed (1)H and (13)C signals for the same independent molecule to be linked.

  19. Phosphorylation Interferes with Maturation of Amyloid-β Fibrillar Structure in the N Terminus.

    PubMed

    Rezaei-Ghaleh, Nasrollah; Kumar, Sathish; Walter, Jochen; Zweckstetter, Markus

    2016-07-29

    Neurodegeneration is characterized by the ubiquitous presence of modifications in protein deposits. Despite their potential significance in the initiation and progression of neurodegenerative diseases, the effects of posttranslational modifications on the molecular properties of protein aggregates are largely unknown. Here, we study the Alzheimer disease-related amyloid-β (Aβ) peptide and investigate how phosphorylation at serine 8 affects the structure of Aβ aggregates. Serine 8 is shown to be located in a region of high conformational flexibility in monomeric Aβ, which upon phosphorylation undergoes changes in local conformational dynamics. Using hydrogen-deuterium exchange NMR and fluorescence quenching techniques, we demonstrate that Aβ phosphorylation at serine 8 causes structural changes in the N-terminal region of Aβ aggregates in favor of less compact conformations. Structural changes induced by serine 8 phosphorylation can provide a mechanistic link between phosphorylation and other biological events that involve the N-terminal region of Aβ aggregates. Our data therefore support an important role of posttranslational modifications in the structural polymorphism of amyloid aggregates and their modulatory effect on neurodegeneration. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Drastic stabilization of parallel DNA hybridizations by a polylysine comb-type copolymer with hydrophilic graft chain.

    PubMed

    Miyoshi, Daisuke; Ueda, Yu-Mi; Shimada, Naohiko; Nakano, Shu-Ichi; Sugimoto, Naoki; Maruyama, Atsushi

    2014-09-01

    Electrostatic interactions play a major role in protein-DNA interactions. As a model system of a cationic protein, herein we focused on a comb-type copolymer of a polycation backbone and dextran side chains, poly(L-lysine)-graft-dextran (PLL-g-Dex), which has been reported to form soluble interpolyelectrolyte complexes with DNA strands. We investigated the effects of PLL-g-Dex on the conformation and thermodynamics of DNA oligonucleotides forming various secondary structures. Thermodynamic analysis of the DNA structures showed that the parallel conformations involved in both DNA duplexes and triplexes were significantly and specifically stabilized by PLL-g-Dex. On the basis of thermodynamic parameters, it was further possible to design DNA switches that undergo structural transition responding to PLL-g-Dex from an antiparallel duplex to a parallel triplex even with mismatches in the third strand hybridization. These results suggest that polycationic molecules are able to induce structural polymorphism of DNA oligonucleotides, because of the conformation-selective stabilization effects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Associations between CD24 gene polymorphisms and inflammatory bowel disease: A meta-analysis.

    PubMed

    Huang, Xiao-Li; Xu, Dong-Hua; Wang, Guo-Pin; Zhang, Shu; Yu, Cheng-Gong

    2015-05-21

    To evaluate the relationships between CD24 gene polymorphisms and the risk of inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD). The PubMed, Web of Science and Cochrane Library databases were searched (up to May 30, 2014). The search terms "CD24", "inflammatory bowel disease", "Crohn's disease", "Ulcerative colitis", "IBD", "CD" or "UC"; and "polymorphism", "mutation" or "variant" were used. Association studies were limited to the English language, but no limitations in terms of race, ethnicity or geographic area were employed. Stata SE12 software was used to calculate the pooled odds ratios (ORs) with 95% confidence intervals (CIs). P < 0.05 was considered statistically significant. The information was independently extracted from each eligible study by two investigators. Two common polymorphisms, C170T (rs8734) and TG1527del (rs3838646), in the CD24 gene were assessed. A total of three case-control studies including 2342 IBD patients and 1965 healthy controls were involved in this meta-analysis. The patients and controls were from Caucasian cohorts. The three articles included in this meta-analysis all conformed to Hardy-Weinberg equilibrium. This meta-analysis revealed that there were no significant associations between the two CD24 polymorphisms and the risk for IBD (all P > 0.05). However, in a disease subgroup analysis, we found that the CD24 C170T polymorphism was associated with an increased risk of UC in a dominant model (OR = 1.79, 95%CI: 1.15-2.77, P = 0.009) and an additive model (OR = 1.87, 95%CI: 1.19-2.93, P = 0.007), but this relationship was not present for CD. The CD24 TG1570del polymorphism was significantly associated with CD in the additive model (OR = 1.24, 95%CI: 1.01-1.52, P = 0.037). Our findings provide evidence that the CD24 C170T polymorphism might contribute to the susceptibility to UC, and the CD24 TG1527del polymorphism might be associated with the risk of CD.

  2. Interaction of small molecules with double-stranded RNA: spectroscopic, viscometric, and calorimetric study of hoechst and proflavine binding to PolyCG structures.

    PubMed

    Sinha, Rangana; Hossain, Maidul; Kumar, Gopinatha Suresh

    2009-04-01

    Design and synthesis of new small molecules binding to double-stranded RNA necessitate complete understanding of the molecular aspects of the binding of many existing molecules. Toward this goal, in this work we evaluated the biophysical aspects of the interaction of a DNA intercalator (proflavine) and a minor groove binder (hoechst 33258) with two polymorphic forms of polyCG, namely, the right-handed Watson-Crick base paired A-form and the left-handed Hoogsteen base paired H(L)-form, by absorption, fluorescence, and viscometry experiments. The energetics of the interaction of these molecules with the RNA structures has also been elucidated by isothermal titration calorimetry (ITC). Results suggest that proflavine strongly intercalates in both forms of polyCG, whereas hoechst shows mainly groove-binding modes. The binding of both drugs to both forms of RNA resulted in significant conformational change to the RNA structure with the bound molecules being placed in the chiral RNA helix. ITC profiles for both proflavine and hoechst show two binding sites. Binding of proflavine to both forms of RNA is endothermic and entropy driven in the first site and exothermic and enthalpy driven in the second site, whereas hoechst binding to both forms of RNA is exothermic and enthalpy driven in the first site and endothermic and entropy driven in the second site. This study suggests that the binding affinity characteristics and energetics of interaction of these DNA binding molecules with the RNA conformations are significantly different and may serve as data for future development of effective structure-selective RNA-based drugs.

  3. Lack of association of GH1 and POU1F1 gene variants with meat production traits in Piemontese cattle.

    PubMed

    Di Stasio, L; Sartore, S; Albera, A

    2002-02-01

    Growth hormone (GH) and the Pit-1 transcription factor have been shown to be involved in the physiological mechanisms related to growth. The present study was carried out to investigate the possible association of the polymorphism at GH1 and POU1F1 loci with meat production traits in Piemontese cattle. Fourteen traits were considered, expressing growth (weight at 5, 7 and 11 months, daily gain), size [withers height (WH), trunk length (TL), chest girth (CG) at 12 months] and meat conformation [withers width (WW), shoulder muscularity (SM), loin width (LW), loin thickness (LT), thigh muscularity (TM), thigh profile (TP), bone thinness (BT)]. Data were analysed with a mixed model procedure to estimate the allele substitution and the dominance effects. The results did not provide evidence of association of GH1 and POU1F1 polymorphisms with the evaluated traits.

  4. Microbial diversity of landslide soils assessed by RFLP and SSCP fingerprints.

    PubMed

    Guida, Marco; Cannavacciuolo, Paolo Losanno; Cesarano, Mara; Borra, Marco; Biffali, Elio; D'Alessandro, Raffaella; De Felice, Bruna

    2014-08-01

    Landslides are a significant component of natural disasters in most countries around the world. Understanding these destructive phenomena through the analysis of possible correlations between microbial communities and the alteration of the soil responsible for landslides is important in order to reduce their negative consequences. To address this issue, bacterial and fungal communities in soils triggering landslides in Termini-Nerano and Massa Lubrense-Nerano (Naples, Italy) were analysed by genetic profiling techniques. Fingerprints were generated by single-strand conformation polymorphisms (SSCP) and random amplified polymorphic DNA (RAPD). The microbial community in both soil types was enriched in species which could contribute to the degradation process occurring during landslides, forming biofilms and leading to the transformation or the formation of minerals. Indeed, some of the identified bacteria were found to favour the transformation of clay minerals. These findings suggest a possible relationship between bacterial and fungal community-colonising soils and the occurrence of landslides.

  5. Binary Phase Behavior of Saturated-Unsaturated Mixed-Acid Triacylglycerols-A Review.

    PubMed

    Zhang, Lu; Ueno, Satoru; Sato, Kiyotaka

    2018-06-01

    Most natural lipids contain a complex mixture of individual triacylglycerols (TAGs). An in-depth knowledge of the mixing behavior of TAGs is necessary for the rational design and engineering of food materials. The binary phase diagram of TAGs is a simplified model that can be explored to help foster an understanding of the phase behavior of complex fats and oils. This article reviews recent research on the binary phase behavior of saturated-unsaturated mixed-acid TAGs, with special emphasis on the stearicunsaturated and palmitic-unsaturated diacid TAGs. The occurrence of polymorphic forms and mutual solubility of TAG mixtures are strongly related to the glycerol conformation of the saturated-oleic diacid TAGs; it appears to be most influenced by the chain-length mismatch in saturated-elaidic diacid TAGs. In addition, the polymorphism of pure enantiomers and racemic mixture of chiral TAGs was also reviewed, while the effect of chirality on mixing behavior was discussed.

  6. Case-control approach application for finding a relationship between candidate genes and clinical mastitis in Holstein dairy cattle.

    PubMed

    Bagheri, Masoumeh; Moradi-Sharhrbabak, M; Miraie-Ashtiani, R; Safdari-Shahroudi, M; Abdollahi-Arpanahi, R

    2016-02-01

    Mastitis is a major source of economic loss in dairy herds. The objective of this research was to evaluate the association between genotypes within SLC11A1 and CXCR1 candidate genes and clinical mastitis in Holstein dairy cattle using the selective genotyping method. The data set contained clinical mastitis records of 3,823 Holstein cows from two Holstein dairy herds located in two different regions in Iran. Data included the number of cases of clinical mastitis per lactation. Selective genotyping was based on extreme values for clinical mastitis residuals (CMR) from mixed model analyses. Two extreme groups consisting of 135 cows were formed (as cases and controls), and genotyped for the two candidate genes, namely, SLC11A1 and CXCR1, using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), respectively. Associations between single nucleotide polymorphism (SNP) genotypes with CMR and breeding values for milk and protein yield were carried out by applying logistic regression analyses, i.e. estimating the probability of the heterogeneous genotype in the dependency of values for CMR and breeding values (BVs). The sequencing results revealed a novel mutation in 1139 bp of exon 11 of the SLC11A1 gene and this SNP had a significant association with CMR (P < 0.05). PCR-RFLP analysis leads to three banding patterns for CXCR1c.735C>G and these genotypes had significant relationships with CMR. Overall, the results showed that SLC11A1 and CXCR1 are valuable candidate genes for the improvement of mastitis resistance as well as production traits in dairy cattle populations.

  7. Infrequent detectable somatic mutations of the RET and glial cell line-derived neurotrophic factor (GDNF) genes in human pituitary adenomas.

    PubMed

    Yoshimoto, K; Tanaka, C; Moritani, M; Shimizu, E; Yamaoka, T; Yamada, S; Sano, T; Itakura, M

    1999-02-01

    RET is a receptor tyrosine kinase expressed in neuroendocrine cells and tumors. RET is activated by a ligand complex comprising glial cell line-derived neurotrophic factor (GDNF) and GDNF receptor-alpha (GDNFR-alpha). Activating mutations of the RET proto-oncogene were found in multiple endocrine neoplasia (MEN) 2 and in sporadic medullary thyroid carcinoma and pheochromocytoma of neuroendocrine origin. Mutations of the RET proto-oncogene and the glial cell line-derived neurotrophic factor (GDNF) gene were examined in human pituitary tumors. No mutations of the RET proto-oncogene including the cysteine-rich region or codon 768 and 918 in the tyrosine kinase domain were detected in 172 human pituitary adenomas either by polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) or by PCR-restriction fragment length polymorphism (RFLP). Further, somatic mutations of the GDNF gene in 33 human pituitary adenomas were not detected by PCR-SSCP. One polymorphism of the GDNF gene at codon 145 of TGC or TGT was observed in a prolactinoma. The RET proto-oncogene message was detected in a normal human pituitary gland or 4 of 4 human pituitary adenomas with reverse transcription (RT)-PCR, and in rodent pituitary tumor cell lines with Western blotting. The expression of GDNF gene was detected in 1 of 4 human somatotroph adenomas, 1 of 2 corticotroph adenomas, and 2 of 6 rodent pituitary tumor cell lines with RT-PCR. Based on these, it is concluded that somatic mutations of the RET proto-oncogene or the GDNF gene do not appear to play a major role in the pituitary tumorigenesis in examined tumors.

  8. Differentiation of Erwinia amylovora and Erwinia pyrifoliae strains with single nucleotide polymorphisms and by synthesis of dihydrophenylalanine.

    PubMed

    Gehring, I; Geider, K

    2012-07-01

    Fire blight has spread from North America to New Zealand, Europe, and the Mediterranean region. We were able to differentiate strains from various origins with a novel PCR method. Three Single Nucleotide Polymorphisms (SNPs) in the Erwinia amylovora genome were characteristic of isolates from North America and could distinguish them from isolates from other parts of the world. They were derived from the galE, acrB, and hrpA genes of strains Ea273 and Ea1/79. These genes were analyzed by conventional PCR (cPCR) and quantitative PCR (qPCR) with differential primer annealing temperatures. North-American E. amylovora strains were further differentiated according to their production of L: -2,5-dihydrophenylalanine (DHP) as tested by growth inhibition of the yeast Rhodotorula glutinis. E. amylovora fruit tree (Maloideae) and raspberry (rubus) strains were also differentiated by Single Strand Conformational Polymorphism analysis. Strains from the related species Erwinia pyrifoliae isolated in Korea and Japan were all DHP positive, but were differentiated from each other by SNPs in the galE gene. Differential PCR is a rapid and simple method to distinguish E. amylovora as well as E. pyrifoliae strains according to their geographical origin.

  9. [Molecular techniques applied in species identification of Toxocara].

    PubMed

    Fogt, Renata

    2006-01-01

    Toxocarosis is still an important and actual problem in human medicine. It can manifest as visceral (VLM), ocular (OLM) or covert (CT) larva migrans syndroms. Complicated life cycle of Toxocara, lack of easy and practical methods of species differentiation of the adult nematode and embarrassing in recognition of the infection in definitive hosts create difficulties in fighting with the infection. Although studies on human toxocarosis have been continued for over 50 years there is no conclusive answer, which of species--T. canis or T. cati constitutes a greater risk of transmission of the nematode to man. Neither blood serological examinations nor microscopic observations of the morphological features of the nematode give the satisfied answer on the question. Since the 90-ths molecular methods were developed for species identification and became useful tools being widely applied in parasitological diagnosis. This paper cover the survey of methods of DNA analyses used for identification of Toxocara species. The review may be helpful for researchers focused on Toxocara and toxocarosis as well as on detection of new species. The following techniques are described: PCR (Polymerase Chain Reaction), RFLP (Restriction Fragment Length Polymorphism), RAPD (Random Amplified Polymorphic DNA) and SSCP (Single Strand Conformation Polymorphism).

  10. Missense mutation of the cholecystokinin B receptor gene: Lack of association with panic disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Tadafumi; Wang, Zhe Wu; Crowe, R.R.

    1996-07-26

    Cholecystokinin tetrapeptide (CCK{sub 4}) is known to induce panic attacks in patients with panic disorder at a lower dose than in normal controls. Therefore, the cholecystokinin B (CCK{sub B}) receptor gene is a candidate gene for panic disorder. We searched for mutations in the CCK{sub B} gene in 22 probands of panic disorder pedigrees, using single-strand conformation polymorphism (SSCP) analysis. Two polymorphisms were detected. A polymorphism in an intron (2491 C{yields}A) between exons 4 and 5 was observed in 10 of 22 probands. A missense mutation in the extracellular loop of exon 2 (1550 G{yields}A, Val{sup 125}{yields}Ile) was found inmore » only one proband. This mutation was also examined in additional 34 unrelated patients with panic disorder and 112 controls. The prevalence rate of this mutation was 8.8% in patients with panic disorder (3/34) and 4.4% in controls (5/112). The mutation did not segregate with panic disorder in two families where this could be tested. These results suggest no pathophysiological significance of this mutation in panic disorder. 21 refs., 4 figs., 1 tab.« less

  11. Structural characterization of polymorphs and molecular complexes of finasteride

    NASA Astrophysics Data System (ADS)

    Wawrzycka, Irena; Stȩpniak, Krystyna; Matyjaszczyk, Sławomir; Kozioł, Anna E.; Lis, Tadeusz; Abboud, Khalil A.

    1999-01-01

    The molecular structure of finasteride, 17 β-( N-tert-butylcarbamoyl)-4-aza-5 α-androst-1-en-3-one, and structures of three related crystalline forms have been determined by X-ray analysis. The rigid steroid skeleton of the molecule adopts a half-chair/chair/chair/half-chair conformation. Two peptide groups, one cyclic (lactam) in the ring A and a second being a part of the substituent at C17, are the main factors influencing intermolecular contacts. Different hydrogen-bond interactions of these hydrophilic groups are observed in the crystal structures. An infinite ribbon of finasteride molecules is formed between lactam groups in the orthorhombic homomolecular crystal ( 1) obtained from an ethanol solution. The linear molecular complex finasteride-acetic acid ( 1a) is connected by hydrogen bonds between the lactam of finasteride and the carboxyl group of acetic acid. The crystallization from an ethyl acetate solution gives a complex structure of bis-finasteride monohydrate ethyl acetate clathrate ( 1b) with guest molecule disordered in channels. Crystals of a second (monoclinic) finasteride polymorph ( 2) were obtained during thermal decomposition of 1a, and sublimation of 1, 1a and 1b. Two polymorphic forms show different IR spectra.

  12. Polymorphism analysis of the prion gene in BSE-affected and unaffected cattle.

    PubMed

    Neibergs, H L; Ryan, A M; Womack, J E; Spooner, R L; Williams, J L

    1994-10-01

    Polymerase chain reaction (PCR) primers designed to amplify the octapeptide repeat region of the bovine prion gene were used to test the association of genotypes with bovine spongiform encephalitis (BSE) in 56 BSE-affected and 177 unaffected animals. Three alleles (A,B,C) were detected as single-strand conformation polymorphisms (SSCPs) and two alleles (1,2--representing six or five copies of the octapeptide repeat respectively) were detected as amplified double-strand fragment length polymorphisms (AMFLPs). Observed genotypes of SSCPs and AMFLPs were analysed by chi-square. The SSCP genotypes of nuclear family members of animals with BSE and BSE-affected animals were different (P < 0.001, P < 0.01) from unrelated animals of the same breed without BSE. No genotypic differences were found between the BSE-affected animals and their relatives (P > 0.469). No AMFLP genotypic differences were detected between BSE-affected animals, their relatives, unrelated animals of the same breed or animals of different breeds (P > 0.05). These data suggest that BSE-affected animals and their relatives are more likely to have the AA SSCP genotype than unrelated animals of the same breed or animals of different breeds.

  13. Induced secondary structure and polymorphism in an intrinsically disordered structural linker of the CNS: solid-state NMR and FTIR spectroscopy of myelin basic protein bound to actin.

    PubMed

    Ahmed, Mumdooh A M; Bamm, Vladimir V; Shi, Lichi; Steiner-Mosonyi, Marta; Dawson, John F; Brown, Leonid; Harauz, George; Ladizhansky, Vladimir

    2009-01-01

    The 18.5 kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that maintains the structural integrity of the myelin sheath of the central nervous system by conjoining the cytoplasmic leaflets of oligodendrocytes and by linking the myelin membrane to the underlying cytoskeleton whose assembly it strongly promotes. It is a multifunctional, intrinsically disordered protein that behaves primarily as a structural stabilizer, but with elements of a transient or induced secondary structure that represent binding sites for calmodulin or SH3-domain-containing proteins, inter alia. In this study we used solid-state NMR (SSNMR) and Fourier transform infrared (FTIR) spectroscopy to study the conformation of 18.5 kDa MBP in association with actin microfilaments and bundles. FTIR spectroscopy of fully (13)C,(15)N-labeled MBP complexed with unlabeled F-actin showed induced folding of both protein partners, viz., some increase in beta-sheet content in actin, and increases in both alpha-helix and beta-sheet content in MBP, albeit with considerable extended structure remaining. Solid-state NMR spectroscopy revealed that MBP in MBP-actin assemblies is structurally heterogeneous but gains ordered secondary structure elements (both alpha-helical and beta-sheet), particularly in the terminal fragments and in a central immunodominant epitope. The overall conformational polymorphism of MBP is consistent with its in vivo roles as both a linker (membranes and cytoskeleton) and a putative signaling hub.

  14. Conformation of phylogenetic relationship of Penaeidae shrimp based on morphometric and molecular investigations.

    PubMed

    Rajakumaran, P; Vaseeharan, B; Jayakumar, R; Chidambara, R

    2014-01-01

    Understanding of accurate phylogenetic relationship among Penaeidae shrimp is important for academic and fisheries industry. The Morphometric and Randomly amplified polymorphic DNA (RAPD) analysis was used to make the phylogenetic relationsip among 13 Penaeidae shrimp. For morphometric analysis forty variables and total lengths of shrimp were measured for each species, and removed the effect of size variation. The size normalized values obtained was subjected to UPGMA (Unweighted Pair-Group Method with Arithmetic Mean) cluster analysis. For RAPD analysis, the four primers showed reliable differentiation between species, and used correlation coefficient between the DNA banding patterns of 13 Penaeidae species to construct UPGMA dendrogram. Phylogenetic relationship from morphometric and molecular analysis for Penaeidae species found to be congruent. We concluded that as the results from morphometry investigations concur with molecular one, phylogenetic relationship obtained for the studied Penaeidae are considered to be reliable.

  15. Identification and genetic mapping of a homeobox gene to the 4p16. 1 region of human chromosome 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, H.S.; Padanilam, B.J.; Solursh, M.

    1992-12-01

    A human craniofacial cDNA library was screened with a degenerate oligonucleotide probe based on the conserved third helix of homeobox genes. From this screening, we identified a homeobox gene, H6, which shared only 57-65% amino acid identity to previously reported homeodomains. H6 was physically mapped to the 4P16.1 region by using somatic cell hybrids containing specific deletions of human chromosome 4. Linkage data from a single-stranded conformational polymorphism derived from the 3[prime] untranslated region of the H6 cDNA placed this homeobox gene more than 20 centimorgans proximal of the previously mapped HOX7 gene on chromosome 4. Identity comparisons of themore » H6 Homeodomain with previously reported homeodomains reveal the highest identities to be with the Nk class of homeobox genes in Drosophila melanogaster. 53 refs., 5 figs., 2 tabs.« less

  16. Novel mutations of CYP3A4 in Chinese.

    PubMed

    Hsieh, K P; Lin, Y Y; Cheng, C L; Lai, M L; Lin, M S; Siest, J P; Huang, J D

    2001-03-01

    Human cytochrome P450 3A4 is a major P450 enzyme in the liver and gastrointestinal tract. It plays important roles in the metabolism of a wide variety of drugs, some endogenous steroids, and harmful environmental contaminants. CYP3A4 exhibits a remarkable interindividual activity variation as high as 20-fold. To investigate whether the interindividual variation in CYP3A4 levels can be partly explained by genetic polymorphism, we analyzed DNA samples from 102 Chinese subjects by polymerase chain reaction (PCR)-single-strand conformation polymorphism analysis for novel point mutation in the CYP3A4 coding sequence and promoter region. Using PCR and directed sequencing method to establish the complete intron sequence of CYP3A4 from leukocytes, the complete genomic sequence from exon 1 through 13 of CYP3A4 was determined and published in the GenBank database (accession no. AF209389). CYP3A4-specific primers were designed accordingly. After PCR-single-strand conformation polymorphism and restriction fragment length polymorphism screening, we found three novel mutations; two are point mutations and one is insertion. The first variant allele (CYP3A4*4), an Ile118Val change, was found in 3 of 102 Chinese subjects. The next allele (CYP3A4*5), which causes a Pro218Arg amino acid change, was found in 2 of 102 subjects. We found an insertion in A(17776), designated as CYP3A4*6, which causes frame shift and an early stop codon in exon 9, in one heterozygous subject. We also investigated the CYP3A4 activity in these mutant subjects by measuring the morning spot urinary 6beta-hydroxycortisol to free cortisol ratio with the enzyme-linked immunosorbent assay method. When compared with healthy Chinese population data, the 6beta-hydroxycortisol to free cortisol ratio data suggested that these alleles (CYP3A4*4, CYP3A4*5, and CYP3A4*6) may decrease the CYP3A4 activity. Incidences of these mutations in Chinese subjects are rare. The prevalence of these point mutations in other ethnic groups and its effect on the metabolic activity of CYP3A4 remain to be further evaluated.

  17. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases.

    PubMed

    Kabir, M Enamul; Safar, Jiri G

    2014-01-01

    There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrP(C)) to a misfolded pathogenic conformer (PrP(Sc)). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrP(Sc). Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrP(Sc) particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrP(Sc). Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and adapt by a prion-like mechanism calls for the reevaluation of therapeutic strategies that target aggregates of misfolded proteins, and argues for new therapeutic approaches that will focus on prior pathogenetic steps.

  18. Crystal Nucleation of Tolbutamide in Solution: Relationship to Solvent, Solute Conformation, and Solution Structure.

    PubMed

    Zeglinski, Jacek; Kuhs, Manuel; Khamar, Dikshitkumar; Hegarty, Avril C; Devi, Renuka K; Rasmuson, Åke C

    2018-04-03

    The influence of the solvent in nucleation of tolbutamide, a medium-sized, flexible and polymorphic organic molecule, has been explored by measuring nucleation induction times, estimating solvent-solute interaction enthalpies using molecular modelling and calorimetric data, probing interactions and clustering with spectroscopy, and modelling solvent-dependence of molecular conformation in solution. The nucleation driving force required to reach the same induction time is strongly solvent-dependent, increasing in the order: acetonitrile

  19. Role of conformational sampling in computing mutation-induced changes in protein structure and stability.

    PubMed

    Kellogg, Elizabeth H; Leaver-Fay, Andrew; Baker, David

    2011-03-01

    The prediction of changes in protein stability and structure resulting from single amino acid substitutions is both a fundamental test of macromolecular modeling methodology and an important current problem as high throughput sequencing reveals sequence polymorphisms at an increasing rate. In principle, given the structure of a wild-type protein and a point mutation whose effects are to be predicted, an accurate method should recapitulate both the structural changes and the change in the folding-free energy. Here, we explore the performance of protocols which sample an increasing diversity of conformations. We find that surprisingly similar performances in predicting changes in stability are achieved using protocols that involve very different amounts of conformational sampling, provided that the resolution of the force field is matched to the resolution of the sampling method. Methods involving backbone sampling can in some cases closely recapitulate the structural changes accompanying mutations but not surprisingly tend to do more harm than good in cases where structural changes are negligible. Analysis of the outliers in the stability change calculations suggests areas needing particular improvement; these include the balance between desolvation and the formation of favorable buried polar interactions, and unfolded state modeling. Copyright © 2010 Wiley-Liss, Inc.

  20. Correlation between metabolic enzyme GSTP1 polymorphisms and susceptibility to lung cancer

    PubMed Central

    WANG, YUFEI; REN, BU; ZHANG, LEI; GUO, ZHANLIN

    2015-01-01

    The aim of the present study was to determine the frequency distribution and characteristics of polymorphic alleles and genotypes in glutathione S-transferase π 1 (GSTP1) exon 5, and to explore the correlation between GSTP1 exon 5 polymorphisms and susceptibility to lung cancer using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Patients were diagnosed with lung cancer from May 2006 to October 2008 by postoperative pathological examination. A total of 150 patients, including 115 males and 35 females, aged 31–76 years (mean, 57.1 years) were enrolled. The control group consisted of 152 healthy volunteers who received physical examination at outpatient clinics. Genomic DNA was extracted from the peripheral venous blood of the 302 subjects, and the GSTP1 genotype was determined by PCR-RFLP and restricted enzyme digestion of PCR products. GSTP1 polymorphisms were analyzed in the 302 subjects. The C and G allele frequencies of GSTP1 in the control and lung cancer groups showed no significant difference (P=0.135); the frequencies of three different genotypes, A/A, A/G and G/G, of GSTP1 in the control and lung cancer groups exhibited no significant differences between the two groups (P=0.223). GSTP1 genotype frequencies in the study population fitted the Hardy-Weinberg equilibrium, demonstrating that the genotype results of this study conform to this genetic law. Overall, 50.7% of the subjects in the lung cancer group carried the non-A/A genotype of GSTP1, which was higher than the 43.4% of the control group. The risk of lung cancer in subjects with the non-A/A genotype was 1.43-fold higher than that in those with the A/A genotype, but no statistical significance was found (P=0.138). GSTP1 exon 5 polymorphisms were demonstrated to be associated with lung cancer susceptibility on the whole. However, stratified analysis suggested the correlation of GSTP1 exon 5 polymorphisms with lung squamous cell carcinoma risk, and that exon 5 polymorphisms might increase the risk of lung squamous cell carcinoma. Exon 5 GSTP1 polymorphisms were not found to be a strong influencing factor in lung cancer risk, but may play a certain role. PMID:26622518

  1. Monohalogenated ferrocenes C5H5FeC5H4 X (X = Cl, Br and I) and a second polymorph of C5H5FeC5H4I

    PubMed Central

    Romanov, Alexander S.; Mulroy, Joseph M.; Khrustalev, Victor N.; Antipin, Mikhail Yu.; Timofeeva, Tatiana V.

    2009-01-01

    The structures of the three title monosubstituted ferrocenes, namely 1-chloro­ferrocene, [Fe(C5H5)(C5H4Cl)], (I), 1-bromo­ferrocene, [Fe(C5H5)(C5H4Br)], (II), and 1-iodo­ferrocene, [Fe(C5H5)(C5H4I)], (III), were determined at 100 K. The chloro- and bromo­ferrocenes are isomorphous crystals. The new triclinic polymorph [space group P , Z = 4, T = 100 K, V = 943.8 (4) Å3] of iodo­ferrocene, (III), and the previously reported monoclinic polymorph of (III) [Laus, Wurst & Schottenberger (2005 ▶). Z. Kristallogr. New Cryst. Struct. 220, 229–230; space group Pc, Z = 4, T = 100 K, V = 924.9 Å3] were obtained by crystallization from ethanolic solutions at 253 and 303 K, respectively. All four phases contain two independent mol­ecules in the unit cell. The relative orientations of the cyclo­penta­dienyl (Cp) rings are eclipsed and staggered in the independent mol­ecules of (I) and (II), while (III) demonstrates only an eclipsed conformation. The triclinic and monoclinic polymorphs of (III) contain nonbonded inter­molecular I⋯I contacts, causing different packing modes. In the triclinic form of (III), the mol­ecules are arranged in zigzag tetra­mers, while in the monoclinic form the mol­ecules are arranged in zigzag chains along the a axis. Crystallographic data for (III), along with the computed lattice energies of the two polymorphs, suggest that the monoclinic form is more stable. PMID:19893225

  2. RSCA genotyping of MHC for high-throughput evolutionary studies in the model organism three-spined stickleback Gasterosteus aculeatus

    PubMed Central

    Lenz, Tobias L; Eizaguirre, Christophe; Becker, Sven; Reusch, Thorsten BH

    2009-01-01

    Background In all jawed vertebrates, highly polymorphic genes of the major histocompatibility complex (MHC) encode antigen presenting molecules that play a key role in the adaptive immune response. Their polymorphism is composed of multiple copies of recently duplicated genes, each possessing many alleles within populations, as well as high nucleotide divergence between alleles of the same species. Experimental evidence is accumulating that MHC polymorphism is a result of balancing selection by parasites and pathogens. In order to describe MHC diversity and analyse the underlying mechanisms that maintain it, a reliable genotyping technique is required that is suitable for such highly variable genes. Results We present a genotyping protocol that uses Reference Strand-mediated Conformation Analysis (RSCA), optimised for recently duplicated MHC class IIB genes that are typical for many fish and bird species, including the three-spined stickleback, Gasterosteus aculeatus. In addition we use a comprehensive plasmid library of MHC class IIB alleles to determine the nucleotide sequence of alleles represented by RSCA allele peaks. Verification of the RSCA typing by cloning and sequencing demonstrates high congruency between both methods and provides new insight into the polymorphism of classical stickleback MHC genes. Analysis of the plasmid library additionally reveals the high resolution and reproducibility of the RSCA technique. Conclusion This new RSCA genotyping protocol offers a fast, but sensitive and reliable way to determine the MHC allele repertoire of three-spined sticklebacks. It therefore provides a valuable tool to employ this highly polymorphic and adaptive marker in future high-throughput studies of host-parasite co-evolution and ecological speciation in this emerging model organism. PMID:19291291

  3. Solvation and Aggregation of Meta-Aminobenzoic Acid in Water: Density Functional Theory and Molecular Dynamics Study

    PubMed Central

    Gaines, Etienne

    2018-01-01

    Meta-aminobenzoic acid, an important model system in the study of polymorphism and crystallization of active pharmaceutical ingredients, exist in water in both the nonionic (mABA) and zwitterionic (mABA±) forms. However, the constituent molecules of the polymorph that crystallizes from aqueous solutions are zwitterionic. This study reports atomistic simulations of the events surrounding the early stage of crystal nucleation of meta-aminobenzoic acid from aqueous solutions. Ab initio molecular dynamics was used to simulate the hydration of mABA± and mABA and to quantify the interaction of these molecules with the surrounding water molecules. Density functional theory calculations were conducted to determine the low-lying energy conformers of meta-aminobenzoic acid dimers and to compute the Gibbs free energies in water of nonionic, (mABA)2, zwitterionic, (mABA±)2, and nonionic-zwitterionic, (mABA)(mABA±), species. Classical molecular dynamics simulations of mixed mABA–mABA± aqueous solutions were carried out to examine the aggregation of meta-aminobenzoic acid. According to these simulations, the selective crystallization of the polymorphs whose constituent molecules are zwitterionic is driven by the formation of zwitterionic dimers in solution, which are thermodynamically more stable than (mABA)2 and (mABA)(mABA±) pairs. This work represents a paradigm of the role of molecular processes during the early stages of crystal nucleation in affecting polymorph selection during crystallization from solution. PMID:29360788

  4. Curvature Forces in Membrane Lipid-Protein Interactions

    PubMed Central

    Brown, Michael F.

    2012-01-01

    Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes of membrane proteins—involving folding, stability, and membrane shape transitions—potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics, and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function. PMID:23163284

  5. Association of CTLA-4 gene 49A/G polymorphism with the incidence of type 1 diabetes mellitus in the Iranian Kurdish population.

    PubMed

    Ahmadi, Slahadin; Rostamzadeh, Jalal; Khosravi, Darya; Shariati, Parvin; Shakiba, Nadia

    2013-12-15

    Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) has an inhibitory function on T cells and is critical for the induction of peripheral tolerance. CTLA-4 +49 G allele affects the CTLA-4 function and has been reported to be correlated with a higher risk of various autoimmune diseases including type 1 diabetes (T1D). The present study was conducted to investigate the association between the polymorphism of the CTLA-4 exon 1+49 A/G and susceptibility to TID and type 2 diabetes (T2D) in Kurds living in Iranian Kurdistan. The+49 A/G polymorphism was analyzed in 60 patients with T1D, 56 patients with T2D and 107 control subjects using PCR Single-strand Conformation Polymorphism (SSCP) and restriction fragment length polymorphism methods. All studied populations (T1D, T2D and Controls) were in Hardy-Weinberg equilibrium (p, 0.39, 0.94 and 0.89, respectively). Both+49 G allele (p = 0. 015, OR = 1.86) and +49 A/G genotype frequencies (p = 0. 012, OR = 2.31) were significantly higher in T1D patients than control. There was significant over-representation of the G allele in female T1D patients. No significant differences in +49 G allele and +49 A/G genotype frequencies were found between T2D and control subjects. SSCP analysis did not show new mutation in the amplified segment. The results of this study indicate that CTLA-4+49 A/G gene polymorphism confers genetic susceptibility to T1D but not T2D in the Kurdish population living in Iranian Kurdistan and women carrying the +49 G allele are at greater risk of getting T1D than men having the G allele.

  6. Identifying disease polymorphisms from case-control genetic association data.

    PubMed

    Park, L

    2010-12-01

    In case-control association studies, it is typical to observe several associated polymorphisms in a gene region. Often the most significantly associated polymorphism is considered to be the disease polymorphism; however, it is not clear whether it is the disease polymorphism or there is more than one disease polymorphism in the gene region. Currently, there is no method that can handle these problems based on the linkage disequilibrium (LD) relationship between polymorphisms. To distinguish real disease polymorphisms from markers in LD, a method that can detect disease polymorphisms in a gene region has been developed. Relying on the LD between polymorphisms in controls, the proposed method utilizes model-based likelihood ratio tests to find disease polymorphisms. This method shows reliable Type I and Type II error rates when sample sizes are large enough, and works better with re-sequenced data. Applying this method to fine mapping using re-sequencing or dense genotyping data would provide important information regarding the genetic architecture of complex traits.

  7. High Genetic and Epigenetic Stability in Coffea arabica Plants Derived from Embryogenic Suspensions and Secondary Embryogenesis as Revealed by AFLP, MSAP and the Phenotypic Variation Rate

    PubMed Central

    Bobadilla Landey, Roberto; Cenci, Alberto; Georget, Frédéric; Bertrand, Benoît; Camayo, Gloria; Dechamp, Eveline; Herrera, Juan Carlos; Santoni, Sylvain; Lashermes, Philippe; Simpson, June; Etienne, Hervé

    2013-01-01

    Embryogenic suspensions that involve extensive cell division are risky in respect to genome and epigenome instability. Elevated frequencies of somaclonal variation in embryogenic suspension-derived plants were reported in many species, including coffee. This problem could be overcome by using culture conditions that allow moderate cell proliferation. In view of true-to-type large-scale propagation of C. arabica hybrids, suspension protocols based on low 2,4-D concentrations and short proliferation periods were developed. As mechanisms leading to somaclonal variation are often complex, the phenotypic, genetic and epigenetic changes were jointly assessed so as to accurately evaluate the conformity of suspension-derived plants. The effects of embryogenic suspensions and secondary embryogenesis, used as proliferation systems, on the genetic conformity of somatic embryogenesis-derived plants (emblings) were assessed in two hybrids. When applied over a 6 month period, both systems ensured very low somaclonal variation rates, as observed through massive phenotypic observations in field plots (0.74% from 200 000 plant). Molecular AFLP and MSAP analyses performed on 145 three year-old emblings showed that polymorphism between mother plants and emblings was extremely low, i.e. ranges of 0–0.003% and 0.07–0.18% respectively, with no significant difference between the proliferation systems for the two hybrids. No embling was found to cumulate more than three methylation polymorphisms. No relation was established between the variant phenotype (27 variants studied) and a particular MSAP pattern. Chromosome counting showed that 7 of the 11 variant emblings analyzed were characterized by the loss of 1–3 chromosomes. This work showed that both embryogenic suspensions and secondary embryogenesis are reliable for true-to-type propagation of elite material. Molecular analyses revealed that genetic and epigenetic alterations are particularly limited during coffee somatic embryogenesis. The main change in most of the rare phenotypic variants was aneuploidy, indicating that mitotic aberrations play a major role in somaclonal variation in coffee. PMID:23418563

  8. Different structural stability and toxicity of PrP(ARR) and PrP(ARQ) sheep prion protein variants.

    PubMed

    Paludi, Domenico; Thellung, Stefano; Chiovitti, Katia; Corsaro, Alessandro; Villa, Valentina; Russo, Claudio; Ianieri, Adriana; Bertsch, Uwe; Kretzschmar, Hans A; Aceto, Antonio; Florio, Tullio

    2007-12-01

    The polymorphisms at amino acid residues 136, 154, and 171 in ovine prion protein (PrP) have been associated with different susceptibility to scrapie: animals expressing PrP(ARQ) [PrP(Ala136/Arg154/Gln171)] show vulnerability, whereas those that express PrP(ARR) [PrP(Ala136/Arg154/Arg171)] are resistant to scrapie. The aim of this study was to evaluate the in vitro toxic effects of PrP(ARR) and PrP(ARQ) variants in relation with their structural characteristics. We show that both peptides cause cell death inducing apoptosis but, unexpectedly, the scrapie resistant PrP(ARR) form was more toxic than the scrapie susceptible PrP(ARQ) variant. Moreover, the alpha-helical conformation of PrP(ARR) was less stable than that of PrP(ARQ) and the structural determinants responsible of these different conformational stabilities were characterized by spectroscopic analysis. We observed that PrP toxicity was inversely related to protein structural stability, being the unfolded conformation more toxic than the native one. However, the PrP(ARQ) variant displays a higher propensity to form large aggregates than PrP(ARR). Interestingly, in the presence of small amounts of PrP(ARR), PrP(ARQ) aggregability was reduced to levels similar to that of PrP(ARR). Thus, in contrast to PrP(ARR) toxicity, scrapie transmissibility seems to reside in the more stable conformation of PrP(ARQ) that allows the formation of large amyloid fibrils.

  9. Molecular aetiology of primary hyperoxaluria type 1.

    PubMed

    Danpure, Christopher J

    2004-01-01

    Primary hyperoxaluria type 1 (PH1) is a rare autosomal-recessive disorder, caused by a deficiency of the liver-specific intermediary-metabolic enzyme alanine:glyoxylate aminotransferase (AGT). AGT deficiency results in increased synthesis and excretion of the metabolic end-product oxalate and the deposition of insoluble calcium oxalate in the kidney and urinary tract. Numerous mutations and polymorphisms have been identified in the gene (AGXT) that encodes AGT, some of which interact synergistically to cause a variety of complex enzyme phenotypes, including AGT intraperoxisomal aggregation, accelerated degradation, and peroxisome-to-mitochondrion mistargeting. The latter is the single most common cause of PH1 and results from the functional interaction between a common Pro11Leu polymorphism and a disease-specific Gly170Arg mutation. The recent solution of the crystal structure of AGT has enabled the effects of several mutations and polymorphisms to be rationalised in terms of their likely effects on AGT conformation. Increased understanding of the molecular aetiology of PH1 has led to significant improvements in all aspects of the clinical management of the disorder, including diagnosis (by enzyme assay of percutaneous needle liver biopsies), prenatal diagnosis (by DNA analysis of chorionic villus samples) and treatment (by liver transplantation as a form of enzyme replacement therapy). Copyright (c) 2004 S. Karger AG, Basel.

  10. Age-related macular degeneration-associated silent polymorphisms in HtrA1 impair its ability to antagonize insulin-like growth factor 1.

    PubMed

    Jacobo, Sarah Melissa P; Deangelis, Margaret M; Kim, Ivana K; Kazlauskas, Andrius

    2013-05-01

    Synonymous single nucleotide polymorphisms (SNPs) within a transcript's coding region produce no change in the amino acid sequence of the protein product and are therefore intuitively assumed to have a neutral effect on protein function. We report that two common variants of high-temperature requirement A1 (HTRA1) that increase the inherited risk of neovascular age-related macular degeneration (NvAMD) harbor synonymous SNPs within exon 1 of HTRA1 that convert common codons for Ala34 and Gly36 to less frequently used codons. The frequent-to-rare codon conversion reduced the mRNA translation rate and appeared to compromise HtrA1's conformation and function. The protein product generated from the SNP-containing cDNA displayed enhanced susceptibility to proteolysis and a reduced affinity for an anti-HtrA1 antibody. The NvAMD-associated synonymous polymorphisms lie within HtrA1's putative insulin-like growth factor 1 (IGF-1) binding domain. They reduced HtrA1's abilities to associate with IGF-1 and to ameliorate IGF-1-stimulated signaling events and cellular responses. These observations highlight the relevance of synonymous codon usage to protein function and implicate homeostatic protein quality control mechanisms that may go awry in NvAMD.

  11. The BDNF Val66Met Polymorphism Interacts with Maternal Parenting Influencing Adolescent Depressive Symptoms: Evidence of Differential Susceptibility Model.

    PubMed

    Zhang, Leilei; Li, Zhi; Chen, Jie; Li, Xinying; Zhang, Jianxin; Belsky, Jay

    2016-03-01

    Although depressive symptoms are common during adolescence, little research has examined gene-environment interaction on youth depression. This study chose the brain-derived neurotrophic factor (BDNF) gene, tested the interaction between a functional polymorphism resulting amino acid substitution of valine (Val) to methionine (Met) in the proBDNF protein at codon 66 (Val66Met), and maternal parenting on youth depressive symptoms in a sample of 780 community adolescents of Chinese Han ethnicity (aged 11-17, M = 13.6, 51.3 % females). Participants reported their depressive symptoms and perceived maternal parenting. Results indicated the BDNF Val66Met polymorphism significantly moderated the influence of maternal warmth-reasoning, but not harshness-hostility, on youth depressive symptoms. Confirmatory model evaluation indicated that the interaction effect involving warmth-reasoning conformed to the differential-susceptibility rather than diathesis-stress model of person-X-environment interaction. Thus, Val carriers experienced less depressive symptoms than Met homozygotes when mothering was more positive but more symptoms when mothering was less positive. The findings provided evidence in support of the differential susceptibility hypothesis of youth depressive symptoms and shed light on the importance of examining the gene-environment interaction from a developmental perspective.

  12. Single strand conformation polymorphism analysis of androgen receptor gene mutations in patients with androgen insensitivity syndromes: Application for diagnosis, genetic counseling, and therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiort, O.; Huang, Q.; Sinnecker, G.H.G.

    Recent studies indicate that mutations in the androgen receptor gene are associated with androgen insensitivity syndromes, a heterogeneous group of related disorders involving defective sexual differentiation in karyotypic males. In this report, the authors address the possibility of rapid mutational analysis of the androgen receptor gene for initial diagnosis, genetic counseling, and molecular subclassification of affected patients and their families. DNA from peripheral blood leukocytes of six patients from five families with various degrees of androgen insensitivity was studied. Exons 2 to 8 of the androgen receptor gene were analyzed using a combination of single strand conformation polymorphism analysis andmore » direct DNA sequencing. Female family members were also studied to identify heterozygote carriers. Point mutations in the AR gene were identified in all six patients, and all mutations caused amino acid substitutions. One patient with incomplete androgen insensitivity was a mosaic for the mutation. Four of the five mothers, as well as a young sister of one patient, were carriers of the mutation present in the affected child. The data show that new mutations may occur in the androgen receptor gene leading to sporadic androgen insensitivity syndrome. Molecular genetic characterization of the variant allele can serve as a primary tool for diagnosis and subsequent therapy, and can provide a basis for distinguishing heterozygous carriers in familial androgen resistance. The identification of carriers is of substantial clinical importance for genetic counseling. 29 refs., 2 figs., 1 tab.« less

  13. p53 in pure epithelioid PEComa: an immunohistochemistry study and gene mutation analysis.

    PubMed

    Bing, Zhanyong; Yao, Yuan; Pasha, Theresa; Tomaszewski, John E; Zhang, Paul J

    2012-04-01

    Pure epithelioid PEComa (PEP; so-called epithelioid angiomyolipoma) is rare and is more often associated with aggressive behaviors. The pathogenesis of PEP has been poorly understood. The authors studied p53 expression and gene mutation in PEPs by immunohistochemistry, single-strand conformation polymorphism, and direct sequencing in paraffin material from 8 PEPs. A group of classic angiomyolipomas (AMLs) were also analyzed for comparison. Five PEPs were from kidneys and 1 each from the heart, the liver, and the uterus. PEPs showed much stronger p53 nuclear staining (Allred score 6.4 ± 2.5) than the classic AML (2.3 ± 2.9) (P < .01). There was no p53 single-strand conformation polymorphism identified in either the PEPs or the 8 classic AMLs. p53 mutation analyses by direct sequencing of exons 5 to 9 showed 4 mutations in 3 of 8 PEPs but none in any of the 8 classic AMLs. The mutations included 2 missense mutations in a hepatic PEComa and 2 silent mutations in 2 renal PEPs. Both the missense mutations in the hepatic PEComa involved the exon 5, one involving codon 165, with change from CAG to CAC (coding amino acid changed from glutamine to histidine), and the other involving codon 182, with change from TGC to TAC (coding amino acid changed from cysteine to tyrosine). The finding of stronger p53 expression and mutations in epithelioid angiomyolipomas might have contributed to their less predictable behavior. However, the abnormal p53 expression cannot be entirely explained by p53 mutations in the exons examined in the PEPs.

  14. Haplotype diversity of the myostatin gene among beef cattle breeds

    PubMed Central

    Dunner, Susana; Miranda, M Eugenia; Amigues, Yves; Cañón, Javier; Georges, Michel; Hanset, Roger; Williams, John; Ménissier, François

    2003-01-01

    A total of 678 individuals from 28 European bovine breeds were both phenotyped and analysed at the myostatin locus by the Single Strand Conformation Polymorphism (SSCP) method. Seven new mutations were identified which contribute to the high polymorphism (1 SNP every 100 bp) present in this small gene; twenty haplotypes were described and a genotyping method was set up using the Oligonucleotide Ligation Assay (OLA) method. Some haplotypes appeared to be exclusive to a particular breed; this was the case for 5 in the Charolaise (involving mutation Q204X) and 7 in the Maine-Anjou (involving mutation E226X). The relationships between the different haplotypes were studied, thus allowing to test the earlier hypothesis on the origin of muscular hypertrophy in Europe: muscular hypertrophy (namely nt821(del11)) was mainly spread in different waves from northern Europe milk purpose populations in most breeds; however, other mutations (mostly disruptive) arose in a single breed, were highly selected and have since scarcely evolved to other populations. PMID:12605853

  15. Isolation and characterization of ten novel microsatellite loci in the red-winged tinamou (Rhynchotus rufescens, Tinamiformes, Aves) and cross-amplification in other tinamous.

    PubMed

    Santos, Dimas O; Moreira, Lucas R; Tonhati, Humberto; Caparroz, Renato

    2012-04-01

    We describe the isolation and characterization of ten microsatellite loci from the red-winged tinamou (Rhynchotus rufescens) and also evaluated the cross-amplification of these loci and other ten loci previously developed for the great tinamou (Tinamus major) in other tinamous. Genetic variability was assessed using 24 individuals. Six loci were polymorphic with moderate to high number of alleles per locus (2-12 alleles) and showed expected heterozygosity (HE) ranging from 0.267 to 0.860. All loci conformed to the Hardy-Weinberg expectation and linkage disequilibrium was not significant for any pair of loci. This battery of polymorphic loci showed high paternity exclusion probability (0.986) and low genetic identity probability (4.95 × 10(-5)), proving to be helpful for parentage tests and population analyses in the red-winged tinamou. The cross-amplification was moderate where of the 160 locus/taxon combinations, 46 (28.75%) successfully amplified.

  16. Nucleotides containing variously modified sugars: energetics, structure, and mechanical properties.

    PubMed

    Yurenko, Yevgen P; Novotný, Jan; Nikolaienko, Tymofii Yu; Marek, Radek

    2016-01-21

    The influence of various sugar residue modifications on intrinsic energetic, conformational, and mechanical properties of 2'-deoxyribonucleotide-5'-monophosphates (dNs) was comprehensively investigated using modern quantum chemical approaches. In total, fourteen sugar modifications, including double bonds and heteroatoms (S and N) inside the sugar ring, as well as fluorination in various positions, were analyzed. Among hundreds of possible conformational states of dNs, only two - AI and BI, corresponding to the most biologically significant forms of a double-helical DNA, were considered for each dN. It was established that the most of the studied modifications tend to strongly stabilize either AI or BI conformation of dNs both in the gas phase and in aqueous solution (modelled by implicit solvent models). Therefore, some of these modifications can be used as a tool for reducing structural polymorphism of nucleic acids in solution as well as for designing oligonucleotides with specific structural features. The evaluation of relaxed force constants (RFC) for glycosidic bonds suggests that the majority of the studied modifications of the sugar residue yield increased strengths of glycosidic bonds in dNs, and can therefore be used for designing modified nucleic acids with an increased resistance to abasic lesions. The most significant reinforcement of the glycosidic bond occurs in dNs containing the CF2 group instead of the O4' oxygen and the fluorine atom at the 2'-α-position. The calculation of the RFC and vibrational root-mean-square (VRMS) deviations for conformational degrees of freedom revealed a strong dependence between mechanical properties of dNs and their energetic characteristics. In particular, electronic energies of AI and BI conformers of dNs calculated in vacuo are closely connected with the values of relaxed force constants (RFC) for the δ angle: the higher RFC(δ) values correspond to more energetically favorable conformers.

  17. ConformRank: A conformity-based rank for finding top-k influential users

    NASA Astrophysics Data System (ADS)

    Wang, Qiyao; Jin, Yuehui; Cheng, Shiduan; Yang, Tan

    2017-05-01

    Finding influential users is a hot topic in social networks. For example, advertisers identify influential users to make a successful campaign. Retweeters forward messages from original users, who originally publish messages. This action is referred to as retweeting. Retweeting behaviors generate influence. Original users have influence on retweeters. Whether retweeters keep the same sentiment as original users is taken into consideration in this study. Influence is calculated based on conformity from emotional perspective after retweeting. A conformity-based algorithm, called ConformRank, is proposed to find top-k influential users, who make the most users keep the same sentiment after retweeting messages. Emotional conformity is introduced to denote how users conform to original users from the emotional perspective. Conforming weights are introduced to denote how two users keep the same sentiment after retweeting messages. Emotional conformity is applied for users and conforming weights are used for relations. Experiments were conducted on Sina Weibo. Experimental results show that users have larger influence when they publish positive messages.

  18. [RAPD analysis of Aspergilli and its application in brewing industry].

    PubMed

    Pan, Li; Wang, Bin; Guo, Yong

    2007-06-01

    Phylogenetic analysis of sixteen Aspergilli was done by RAPD technology, using Aspergillus oryzae AS3.951, Aspergillus flavus GIM3.18 and Aspergillus sojae AS3.495 as controls. First, genome DNA of the sixteen test strains were prepared by improved extraction method, and their quality was verified by electrophoresis and spectrophotometry. They displayed an identical band (approximately 20 kb) in agarose gel electrophoresis, which conformed to the fact that these strains all belong to Aspergillus. OD260/OD280 of the prepared DNA ranged from 1.80 to 1.90, illustrating that they were good enough to be used as templates in the following RAPD-PCR experiment. Then, three appropriate primers (Primerl, Primer2, Primer5) for RAPD-PCR were screened from nine random primers, and repetitive experiments demonstrated that the RAPD-PCR polymorphic patterns of the sixteen test strains based on these three primers were stable. There were usually 8-14 bands in their RADP-PCR patterns, where the number of the main bands was 4-9 and the secondary bands were abundant. There were totally 181 bands in their RAPD-PCR patterns, where the percentage of polymorphic bands reached to 40.9% (74 bands). The similarity coefficient between the strains was calculated based on their RAPD-PCR patterns, ranging from 8.0% to 96.6%. All these data suggests that the genetic polymorphism of the strains is abundant and they have evident genetic differentiation. The phylogenetic tree of the sixteen test strains was reconstructed according to their RAPD-PCR patterns with Primer1, Primer2 and Primer5. It basically corresponded to traditional morphological taxonomy, demonstrating that the application of RAPD molecular marker in the phylogenetic analysis of these Aspergilli is feasible. Besides, the aflatoxin-producing strains (GIM3.17, CICC2219, CICC2357, CICC2390, CICC2402, CICC2404) could be easily discriminated by RAPD molecular marker, whereas it is difficult to distinguish them by conventional morphological taxonomy. Consequently, RAPD molecular marker provides a novel clue to discriminating aflatoxin-producing strains in brewing industry.

  19. Vibrational characterisation of a crystallised oligoaniline: a model compound of polyaniline

    NASA Astrophysics Data System (ADS)

    Quillard, Sophie; Corraze, Benoı̂t; Boyer, Marie Isabelle; Fayad, Elias; Louarn, Guy; Froyer, Gérard

    2001-09-01

    We present a detailed study on the vibrational properties of N,N‧-diphenyl-1,4-phenylenediamine in different crystalline forms. A new triclinic form of the molecule has been obtained through appropriate recrystallization procedure. This polymorphism of the crystalline state was associated to different vibrational features. These results are discussed with regards to the possible conformations of the molecule. In order to complete the study, thin solid films of these materials were also elaborated by vacuum sublimation of the molecule, upon selected conditions of rate, deposition and thickness. Spectroscopic measurements of these layers are showed and compared to those obtained on the crystalline solid forms. We performed convenient oxidation processes of this neutral N,N‧-diphenyl-1,4-phenylenediamine (powder and thin solid film) leading to the formation of the correspondent radical cation species. A comparison with radical cation generated in solution by electrochemical oxidative method is done. Vibrational characterisations of this doped oligomer were achieved in each case and finally, the observed differences are discussed in terms of conformation.

  20. Comparison of the DNA extraction methods for polymerase chain reaction amplification from formalin-fixed and paraffin-embedded tissues.

    PubMed

    Sato, Y; Sugie, R; Tsuchiya, B; Kameya, T; Natori, M; Mukai, K

    2001-12-01

    To obtain an adequate quality and quantity of DNA from formalin-fixed and paraffin-embedded tissue, six different DNA extraction methods were compared. Four methods used deparaffinization by xylene followed by proteinase K digestion and phenol-chloroform extraction. The temperature of the different steps was changed to obtain higher yields and improved quality of extracted DNA. The remaining two methods used microwave heating for deparaffinization. The best DNA extraction method consisted of deparaffinization by microwave irradiation, protein digestion with proteinase K at 48 degrees C overnight, and no further purification steps. By this method, the highest DNA yield was obtained and the amplification of a 989-base pair beta-globin gene fragment was achieved. Furthermore, DNA extracted by means of this procedure from five gastric carcinomas was successfully used for single strand conformation polymorphism and direct sequencing assays of the beta-catenin gene. Because the microwave-based DNA extraction method presented here is simple, has a lower contamination risk, and results in a higher yield of DNA compared with the ordinary organic chemical reagent-based extraction method, it is considered applicable to various clinical and basic fields.

  1. Structure of GroEL in Complex with an Early Folding Intermediate of Alanine Glyoxylate Aminotransferase*

    PubMed Central

    Albert, Armando; Yunta, Cristina; Arranz, Rocío; Peña, Álvaro; Salido, Eduardo; Valpuesta, José María; Martín-Benito, Jaime

    2010-01-01

    Primary hyperoxaluria type 1 is a rare autosomal recessive disease caused by mutations in the alanine glyoxylate aminotransferase gene (AGXT). We have previously shown that P11L and I340M polymorphisms together with I244T mutation (AGXT-LTM) represent a conformational disease that could be amenable to pharmacological intervention. Thus, the study of the folding mechanism of AGXT is crucial to understand the molecular basis of the disease. Here, we provide biochemical and structural data showing that AGXT-LTM is able to form non-native folding intermediates. The three-dimensional structure of a complex between the bacterial chaperonin GroEL and a folding intermediate of AGXT-LTM mutant has been solved by cryoelectron microscopy. The electron density map shows the protein substrate in a non-native extended conformation that crosses the GroEL central cavity. Addition of ATP to the complex induces conformational changes on the chaperonin and the internalization of the protein substrate into the folding cavity. The structure provides a three-dimensional picture of an in vivo early ATP-dependent step of the folding reaction cycle of the chaperonin and supports a GroEL functional model in which the chaperonin promotes folding of the AGXT-LTM mutant protein through forced unfolding mechanism. PMID:20056599

  2. Structure of GroEL in complex with an early folding intermediate of alanine glyoxylate aminotransferase.

    PubMed

    Albert, Armando; Yunta, Cristina; Arranz, Rocío; Peña, Alvaro; Salido, Eduardo; Valpuesta, José María; Martín-Benito, Jaime

    2010-02-26

    Primary hyperoxaluria type 1 is a rare autosomal recessive disease caused by mutations in the alanine glyoxylate aminotransferase gene (AGXT). We have previously shown that P11L and I340M polymorphisms together with I244T mutation (AGXT-LTM) represent a conformational disease that could be amenable to pharmacological intervention. Thus, the study of the folding mechanism of AGXT is crucial to understand the molecular basis of the disease. Here, we provide biochemical and structural data showing that AGXT-LTM is able to form non-native folding intermediates. The three-dimensional structure of a complex between the bacterial chaperonin GroEL and a folding intermediate of AGXT-LTM mutant has been solved by cryoelectron microscopy. The electron density map shows the protein substrate in a non-native extended conformation that crosses the GroEL central cavity. Addition of ATP to the complex induces conformational changes on the chaperonin and the internalization of the protein substrate into the folding cavity. The structure provides a three-dimensional picture of an in vivo early ATP-dependent step of the folding reaction cycle of the chaperonin and supports a GroEL functional model in which the chaperonin promotes folding of the AGXT-LTM mutant protein through forced unfolding mechanism.

  3. Analysis of genetic diversity in pigeon pea germplasm using retrotransposon-based molecular markers.

    PubMed

    Maneesha; Upadhyaya, Kailash C

    2017-09-01

    Pigeon pea (Cajanus cajan), an important legume crop is predominantly cultivated in tropical and subtropical regions of Asia and Africa. It is normally considered to have a low degree of genetic diversity, an impediment in undertaking crop improvement programmes.We have analysed genetic polymorphism of domesticated pigeon pea germplasm (47 accessions) across the world using earlier characterized panzee retrotransposon-based molecularmarkers. Itwas conjectured that since retrotransposons are interspersed throughout the genome, retroelements-based markers would be able to uncover polymorphism possibly inherent in the diversity of retroelement sequences. Two PCR-based techniques, sequence-specific amplified polymorphism (SSAP) and retrotransposon microsatellite amplified polymorphism (REMAP) were utilized for the analyses.We show that a considerable degree of polymorphism could be detected using these techniques. Three primer combinations in SSAP generated 297 amplified products across 47 accessions with an average of 99 amplicons per assay. Degree of polymorphism varied from 84-95%. In the REMAP assays, the number of amplicons was much less but up to 73% polymorphism could be detected. On the basis of similarity coefficients, dendrograms were constructed. The results demonstrate that the retrotransposon-based markers could serve as a better alternative for the assessment of genetic diversity in crops with apparent low genetic base.

  4. Associated analysis of single nucleotide polymorphisms found on exon 3 of the IGF-1 gene with Tibetan miniature pig growth traits.

    PubMed

    Yue, M; Tian, Y G; Wang, Y J; Gu, Y; Bayaer, N; Hu, Q; Gu, W W

    2014-02-27

    The IGF-1 gene is an important regulating factor that has a growth-promoting effect on growth hormone. The IGF-1 gene promotes muscle cell differentiation in the muscle cell formation process. The IGF-1 gene also regulates the growth of skeletal muscle during skeletal muscle growth. In addition, the IGF-1 gene plays an important role in the formation of mammals and poultry embryos, and the process of postnatal growth. The IGF-1 gene has been implicated as a candidate gene for the regulation of pig growth traits. We analyzed exon 3 of the IGF-1 gene polymorphism in Tibetan miniature pigs (N = 128) by polymerase chain reaction-single-strand conformation polymorphism and DNA sequencing. One single nucleotide polymorphism (T40C) was found on exon 3 of the IGF-1 gene. Statistical analysis of genotype frequencies revealed that the T allele was dominant in Tibetan miniature pigs at the T40C locus. The association analysis showed that the IGF-1 mutation had an effect on the body weight, body length, and chest circumference of pigs aged 6-8 months. In addition, the IGF-1 mutation had an effect on body weight in pigs aged 9-11 months (P < 0.05). We speculated that the pigs with the TT genotype grow more rapidly compared to those with the TC genotype. The TC genotype of the Tibetan miniature pig has a smaller body type. This information provides a theoretical basis for the genetic background of Tibetan miniature pigs.

  5. Polymorphous computing fabric

    DOEpatents

    Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  6. Modelling charge interactions in the prion protein: predictions for pathogenesis.

    PubMed

    Warwicker, J

    1999-04-30

    Calculations are presented for the pH-dependence of stability and membrane charge complementarity of prion protein fragments. The theoretical results are compared with reported characterisations of prion protein folding in vitro. Discussion of models for conformational change and pathogenesis in vivo leads to the prediction of amino acids that could mediate sensitivity to the endosomal pH and to a design strategy for recombinant prion proteins with an increased susceptibility to prion proteinSc-like properties in vitro. In this model, the protective effect of certain basic polymorphisms can be interpreted in terms of oligomerisation on a negatively-charged surface.

  7. Serotonin transporter promoter variants: Analysis in Indian autistic and control population.

    PubMed

    Guhathakurta, Subhrangshu; Ghosh, Sagarmoy; Sinha, Swagata; Chatterjee, Anindita; Ahmed, Shabina; Chowdhury, Susanta Roy; Gangopadhyay, Prasanta Kumar; Ghosh, Saurabh; Singh, Manoranjan; Usha, Rajamma

    2006-05-30

    Serotonin transporter (5-HTT) is a transmembrane protein belonging to Na+/Cl- dependent membrane transporter family and transports 5-HT across the membranes of presynaptic neurons. 5-HTT-linked polymorphic region (5-HTTLPR) gained much interest because of the differential regulation of expression and activity of 5-HTT by its various genotypes. A population-based study has been conducted on 5-HTTLPR with 358 individuals, which included 79 autistic probands, 136 parents, and 143 controls from two subpopulations of east and northeast regions of India. The genotypic frequencies of all the groups conform to Hardy-Weinberg equilibrium. With the finding of efficacy of serotonin reuptake inhibitors in ameliorating ritualistic behavior in autistic disorder, 5-HTT emerged as a putative candidate gene for autism and association studies have been carried out in different ethnic populations. But these studies were inconclusive due to conflicting results on association. Because such a study has never been performed in the Indian population, we have tested the possible involvement of 5-HTTLPR polymorphism with autism. The present study failed to establish any association or linkage of 5-HTTLPR with autism in the Indian population by case-control studies (chi2 = 1.314, P = 0.63) and family-based approaches (TDT chi2 = 0.22, P = 0.64 and HHRR-chi2 = 0.25, P = 0.61). However, when a meta-analysis of all the available TDT data, inclusive of the present study is carried out, we observed a significant preferential transmission of S-allele from parents to the affected offspring (chi2 = 7.51, P = 0.006) indicating an association of 5-HTTLPR with autism.

  8. Identification of novel potential genetic predictors of urothelial bladder carcinoma susceptibility in Pakistani population.

    PubMed

    Ali, Syeda Hafiza Benish; Bangash, Kashif Sardar; Rauf, Abdur; Younis, Muhammad; Anwar, Khursheed; Khurram, Raja; Khawaja, Muhammad Athar; Azam, Maleeha; Qureshi, Abid Ali; Akhter, Saeed; Kiemeney, Lambertus A; Qamar, Raheel

    2017-10-01

    Urothelial bladder carcinoma (UBC) is the most common among urinary bladder neoplasms. We carried out a preliminary study to determine the genetic etiology of UBC in Pakistani population, for this 25 sequence variants from 17 candidate genes were studied in 400 individuals by using polymerase chain reaction-based techniques. Multivariate logistic regression analysis was performed for association analysis of the overall data as well as the data stratified by smoking status, tumor grade and tumor stage. Variants of GSTM1, IGFBP3, LEPR and ACE were found to be associated with altered UBC risk in the overall comparison. CYP1B1 and CDKN1A variants displayed a risk modulation among smokers; IGFBP3 and LEPR variants among non-smokers while GSTM1 polymorphism exhibited association with both. GSTM1 and LEPR variants conferred an altered susceptibility to low grade UBC; GSTT1, IGFBP3 and PPARG variants to high grade UBC while ACE polymorphism to both grades. GSTM1 and LEPR variants exhibited risk modulation for non-muscle-invasive bladder cancer (NMIBC); GSTT1 and PPARG variants for muscle-invasive bladder cancer (MIBC), and ACE variant for NMIBC as well as MIBC. In general, the susceptibility markers were common for low grade and NMIBC; and distinct from those for high grade and MIBC indicating the distinct pathologies of both groups. In brief, our results conform to reports of previously associated variants in addition to identifying novel potential genetic predictors of UBC susceptibility.

  9. Prion protein testis specific (PRNT) gene polymorphisms and transcript level in ovine spermatozoa: Implications in freezability, fertilization and embryo production.

    PubMed

    Pereira, R M; Mesquita, P; Pires, V M R; Baptista, M C; Barbas, J P; Pimenta, J; Horta, A E M; Prates, J A M; Marques, C C

    2018-07-15

    An essential role of prion protein testis specific (PRNT) and prion protein 2 dublet (PRND) genes in the male reproductive function has been highlighted, although a deeper knowledge for the mechanisms involved is still lacking. Our goal was to determine the importance of the PRNT haplotypic variants and mRNA expression levels in ovine spermatozoa freezability and ability for fertilization and embryo developmental processes. Their association with the PRND gene polymorphisms was also analyzed. DNA from rams belonging to three Portuguese sheep breeds (n = 28) was screened by single-strand conformation polymorphism (SSCP) analysis to identify the PRNT and PRND polymorphisms. Semen collected from these rams was cryopreserved and fertility traits evaluated. The SSCP analyses revealed polymorphisms in the codons 6, 38, 43 and 48 of the PRNT coding region - respectively c.17C > T (p.Ser6Phe, which disrupts a consensus arginine-X-X serine/threonine motif); c.112G > C (p.Gly38 > Arg); and synonymous c.129T > C and c.144A > G. The polymorphisms in codons 6, 38 and 48 occur simultaneously while the one in codon 43 occurs independently. Six haplotypes were identified in the PRNT coding region, resulting in three different amino acid polymorphic variants (6S-38G-43C-48V, S6F-G38R-43C-48V and 6F-38R-43C-48V). The PRNT gene mRNA transcript level in spermatozoa was related to the identified haplotypic variants, either considering the codons 6-38-48 (P ≤ 0.0001) or the codon 43 alone (P ≤ 0.0001) or altogether (P ≤ 0.0001). An interaction between PRNT haplotypes and PRND genotypes on PRNT transcript level was also identified (P = 0.0003). Rams carrying the 17C-112G-144A PRNT haplotype had sperm with the highest post-thawed individual motility (P ≤ 0.03). Combined PRNT and PRND polymorphic variation influenced the post-thawed individual motility (P = 0.01). The male PRNT haplotypic, either considering the codons 6-38-48 and 43 altogether or the codon 43 alone, interfered (P ≤ 0.04) in embryo production rates. In conclusion, our data confirm that the PRNT gene is highly polymorphic in sheep and that the PRNT and PRND genotypes are associated. The identified polymorphisms of PRNT coding region seems to interfere on the ram spermatozoa mRNA transcript level and on male fertility, specifically in sperm freezability and ability for embryo development. Copyright © 2018. Published by Elsevier Inc.

  10. Polymorphism in R-tamsulosin (an alpha blocker): The unexpected manifestation of a sulfonamide⋯o-diethoxybenzene heterosynthon

    NASA Astrophysics Data System (ADS)

    Nanubolu, Jagadeesh Babu; Sridhar, Balasubramanian; Ravikumar, Krishnan

    2014-12-01

    A two point Nsbnd H⋯O dimer or an infinite catemer are the most preferred motifs/synthons for sulfonamide structures. Such synthons are known to be so robust that they are only disrupted in the presence of highly activated O acceptors such as pyridine-N-oxide and sulfoxide. We demonstrate in this article that a multi-point synthon offered by much weaker ethoxy O and amine N acceptors can however strongly compete and disrupt the robust sulfonamide homosynthons. This has been illustrated with the synthon analysis in three polymorphic crystal structures of R-tamsulosin, an active drug used in the treatment of Benign Prostatic Hyperplasia (BPH) and its hydrochloride salt. These crystalline solids are characterized by Single crystal X-ray diffraction (SC-XRD), powder X-ray diffraction (PXRD), Fourier Transform Infrared (FT-IR) and Raman spectroscopy. Forms I, II of the free base and hydrochloride salt crystallize in the monoclinic P21, C2, and P21 space groups respectively with two molecules in the asymmetric unit (Z‧ = 2), whereas, form III of freebase crystallize in the orthorhombic P212121 space group with Z‧ = 1. Remarkably, all four crystal structures contain a totally unexpected sulfonamide⋯o-diethoxybenzene heterosynthon. The multi-point motifs observed in polymorphs are relatively stronger than those in the hydrochloride salt because of the gauche conformation of the tamsulosin linker chain which renders an additional hydrogen bond interaction with amine N acceptor, and resemble the crown ether sulfonamide recognition pattern. Observation of this new heterosynthon offers potential scope in the design of pharmaceutical cocrystals for sulfonamide bearing drug molecules. The present study also presents a detailed hydrogen bond motif analysis in 310 primary sulfonamide structures culled from the latest version of Cambridge Structural Database (CSD). The role of various competing groups is discussed in the context of understanding the most recurring sulfonamide homo and heterosynthons.

  11. Evolutionary Determinants of Morphological Polymorphism in Colonial Animals.

    PubMed

    Simpson, Carl; Jackson, Jeremy B C; Herrera-Cubilla, Amalia

    2017-07-01

    Colonial animals commonly exhibit morphologically polymorphic modular units that are phenotypically distinct and specialize in specific functional tasks. But how and why these polymorphic modules have evolved is poorly understood. Across colonial invertebrates, there is wide variation in the degree of polymorphism, from none in colonial ascidians to extreme polymorphism in siphonophores, such as the Portuguese man-of-war. Bryozoa are a phylum of exclusively colonial invertebrates that uniquely exhibit almost the entire range of polymorphism, from monomorphic species to others that rival siphonophores in their polymorphic complexity. Previous approaches to understanding the evolution of polymorphism have been based on analyses of (1) the functional role of polymorphs or (2) presumed evolutionary costs and benefits based on evolutionary theory that postulates polymorphism should be evolutionarily sustainable only in more stable environments because polymorphism commonly leads to the loss of feeding and sexual competence. Here we use bryozoans from opposite shores of the Isthmus of Panama to revisit the environmental hypothesis by comparison of faunas from distinct oceanographic provinces that differ greatly in environmental variability, and we then examine the correlations between the extent of polymorphism in relation to patterns of ecological succession and variation in life histories. We find no support for the environmental hypothesis. Distributions of the incidence of polymorphism in the oceanographically unstable Eastern Pacific are indistinguishable from those in the more stable Caribbean. In contrast, the temporal position of species in a successional sequence is collinear with the degree of polymorphism because species with fewer types of polymorphs are competitively replaced by species with higher numbers of polymorphs on the same substrata. Competitively dominant species also exhibit patterns of growth that increase their competitive ability. The association between degrees of polymorphism and variations in life histories is fundamental to understanding of the macroevolution of polymorphism.

  12. Mutation analysis of the Smad3 gene in human osteoarthritis.

    PubMed

    Yao, Jun-Yan; Wang, Yan; An, Jing; Mao, Chun-Ming; Hou, Ning; Lv, Ya-Xin; Wang, You-Liang; Cui, Fang; Huang, Min; Yang, Xiao

    2003-09-01

    Osteoarthritis (OA) is the most common joint disease worldwide. Recent studies have shown that targeted disruption of Smad3 in mouse results in OA. To reveal the possible association between the Smad3 gene mutation and human OA, we employed polymerase chain reaction-single strand conformation polymorphism and sequencing to screen mutations in all nine exons of the Smad3 gene in 32 patients with knee OA and 50 patients with only bone fracture. A missense mutation of the Smad3 gene was found in one patient. The single base mutation located in the linker region of the SMAD3 protein was A --> T change in the position 2 of codon 197 and resulted in an asparagine to isoleucine amino-acid substitution. The expressions of matrix metalloproteinase 2 (MMP-2) and MMP-9 in sera of the patient carrying the mutation were higher than other OA patients and controls. This is the first report showing that the Smad3 gene mutations could be associated with the pathogenesis of human OA.

  13. Development and characterization of microsatellite markers for the Pacific abalone ( Haliotis discus) via EST database mining

    NASA Astrophysics Data System (ADS)

    Zhan, Aibin; Bao, Zhenmin; Wang, Mingling; Chang, Dan; Yuan, Jian; Wang, Xiaolong; Hu, Xiaoli; Liang, Chengzhu; Hu, Jingjie

    2008-05-01

    The EST database of the Pacific abalone ( Haliotis discus) was mined for developing microsatellite markers. A total of 1476 EST sequences were registered in GenBank when data mining was performed. Fifty sequences (approximately 3.4%) were found to contain one or more microsatellites. Based on the length and GC content of the flanking regions, cluster analysis and BLASTN, 13 microsatellite-containing ESTs were selected for PCR primer design. The results showed that 10 out of 13 primer pairs could amplify scorable PCR products and showed polymorphism. The number of alleles ranged from 2 to 13 and the values of H o and H e varied from 0.1222 to 0.8611 and 0.2449 to 0.9311, respectively. No significant linkage disequilibrium (LD) between any pairs of these loci was found, and 6 of 10 loci conformed to the Hardy-Weinberg equilibrium (HWE). These EST-SSRs are therefore potential tools for studies of intraspecies variation and hybrid identification.

  14. Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage.

    PubMed

    Weiss, S; Zankel, A; Lebuhn, M; Petrak, S; Somitsch, W; Guebitz, G M

    2011-03-01

    The colonisation of activated zeolites (i.e. clinoptilolites) as carriers for microorganisms involved in the biogas process was investigated. Zeolite particle sizes of 1.0-2.5mm were introduced to anaerobic laboratory batch-cultures and to continuously operated bioreactors during biogas production from grass silage. Incubation over 5-84 days led to the colonisation of zeolite surfaces in small batch-cultures (500 ml) and even in larger scaled and flow-through disturbed bioreactors (28 l). Morphological insights were obtained by using scanning electron microscopy (SEM). Single strand conformation polymorphism (SSCP) analysis based on amplification of bacterial and archaeal 16S rRNA fragments demonstrated structurally distinct populations preferring zeolite as operational environment. via sequence analysis conspicuous bands from SSCP patterns were identified. Populations immobilised on zeolite (e.g. Ruminofilibacter xylanolyticum) showed pronounced hydrolytic enzyme activity (xylanase) shortly after re-incubation in sterilised sludge on model substrate. In addition, the presence of methanogenic archaea on zeolite particles was demonstrated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Resistance gene homologues in Theobroma cacao as useful genetic markers.

    PubMed

    Kuhn, D N; Heath, M; Wisser, R J; Meerow, A; Brown, J S; Lopes, U; Schnell, R J

    2003-07-01

    Resistance gene homologue (RGH) sequences have been developed into useful genetic markers for marker-assisted selection (MAS) of disease resistant Theobroma cacao. A plasmid library of amplified fragments was created from seven different cultivars of cacao. Over 600 cloned recombinant amplicons were evaluated. From these, 74 unique RGHs were identified that could be placed into 11 categories based on sequence analysis. Primers specific to each category were designed. The primers specific for a single RGH category amplified fragments of equal length from the seven different cultivars used to create the library. However, these fragments exhibited single-strand conformational polymorphism (SSCP), which allowed us to map six of the RGH categories in an F(2) population of T. cacao. RGHs 1, 4 and 5 were in the same linkage group, with RGH 4 and 5 separated by less than 4 cM. As SSCP can be efficiently performed on our automated sequencer, we have developed a convenient and rapid high throughput assay for RGH alleles.

  16. Side-chain conformational space analysis (SCSA): A multi conformation-based QSAR approach for modeling and prediction of protein-peptide binding affinities

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Chen, Xiang; Shang, Zhicai

    2009-03-01

    In this article, the concept of multi conformation-based quantitative structure-activity relationship (MCB-QSAR) is proposed, and based upon that, we describe a new approach called the side-chain conformational space analysis (SCSA) to model and predict protein-peptide binding affinities. In SCSA, multi-conformations (rather than traditional single-conformation) have received much attention, and the statistical average information on multi-conformations of side chains is determined using self-consistent mean field theory based upon side chain rotamer library. Thereby, enthalpy contributions (including electrostatic, steric, hydrophobic interaction and hydrogen bond) and conformational entropy effects to the binding are investigated in terms of occurrence probability of residue rotamers. Then, SCSA was applied into the dataset of 419 HLA-A*0201 binding peptides, and nonbonding contributions of each position in peptide ligands are well determined. For the peptides, the hydrogen bond and electrostatic interactions of the two ends are essential to the binding specificity, van der Waals and hydrophobic interactions of all the positions ensure strong binding affinity, and the loss of conformational entropy at anchor positions partially counteracts other favorable nonbonding effects.

  17. Methods for MHC genotyping in non-model vertebrates.

    PubMed

    Babik, W

    2010-03-01

    Genes of the major histocompatibility complex (MHC) are considered a paradigm of adaptive evolution at the molecular level and as such are frequently investigated by evolutionary biologists and ecologists. Accurate genotyping is essential for understanding of the role that MHC variation plays in natural populations, but may be extremely challenging. Here, I discuss the DNA-based methods currently used for genotyping MHC in non-model vertebrates, as well as techniques likely to find widespread use in the future. I also highlight the aspects of MHC structure that are relevant for genotyping, and detail the challenges posed by the complex genomic organization and high sequence variation of MHC loci. Special emphasis is placed on designing appropriate PCR primers, accounting for artefacts and the problem of genotyping alleles from multiple, co-amplifying loci, a strategy which is frequently necessary due to the structure of the MHC. The suitability of typing techniques is compared in various research situations, strategies for efficient genotyping are discussed and areas of likely progress in future are identified. This review addresses the well established typing methods such as the Single Strand Conformation Polymorphism (SSCP), Denaturing Gradient Gel Electrophoresis (DGGE), Reference Strand Conformational Analysis (RSCA) and cloning of PCR products. In addition, it includes the intriguing possibility of direct amplicon sequencing followed by the computational inference of alleles and also next generation sequencing (NGS) technologies; the latter technique may, in the future, find widespread use in typing complex multilocus MHC systems. © 2009 Blackwell Publishing Ltd.

  18. Computing the melting point and thermodynamic stability of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride

    NASA Astrophysics Data System (ADS)

    Jayaraman, Saivenkataraman; Maginn, Edward J.

    2007-12-01

    The melting point, enthalpy of fusion, and thermodynamic stability of two crystal polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride are calculated using a thermodynamic integration-based atomistic simulation method. The computed melting point of the orthorhombic phase ranges from 365 to 369 K, depending on the classical force field used. This compares reasonably well with the experimental values, which range from 337 to 339 K. The computed enthalpy of fusion ranges from 19 to 29 kJ/mol, compared to the experimental values of 18.5-21.5 kJ/mol. Only one of the two force fields evaluated in this work yielded a stable monoclinic phase, despite the fact that both give accurate liquid state densities. The computed melting point of the monoclinic polymorph was found to be 373 K, which is somewhat higher than the experimental range of 318-340 K. The computed enthalpy of fusion was 23 kJ/mol, which is also higher than the experimental value of 9.3-14.5 kJ/mol. The simulations predict that the monoclinic form is more stable than the orthorhombic form at low temperature, in agreement with one set of experiments but in conflict with another. The difference in free energy between the two polymorphs is very small, due to the fact that a single trans-gauche conformational difference in an alkyl sidechain distinguishes the two structures. As a result, it is very difficult to construct simple classical force fields that are accurate enough to definitively predict which polymorph is most stable. A liquid phase analysis of the probability distribution of the dihedral angles in the alkyl chain indicates that less than half of the dihedral angles are in the gauche-trans configuration that is adopted in the orthorhombic crystal. The low melting point and glass forming tendency of this ionic liquid is likely due to the energy barrier for conversion of the remaining dihedral angles into the gauche-trans state. The simulation procedure used to perform the melting point calculations is an extension of the so-called pseudosupercritical path sampling procedure. This study demonstrates that the method can be effectively applied to quite complex systems such as ionic liquids and that the appropriate choice of tethering potentials for a key step in the thermodynamic path can enable first order phase transitions to be avoided.

  19. Understanding the kinetic mechanism of RNA single base pair formation

    PubMed Central

    Xu, Xiaojun; Yu, Tao; Chen, Shi-Jie

    2016-01-01

    RNA functions are intrinsically tied to folding kinetics. The most elementary step in RNA folding is the closing and opening of a base pair. Understanding this elementary rate process is the basis for RNA folding kinetics studies. Previous studies mostly focused on the unfolding of base pairs. Here, based on a hybrid approach, we investigate the folding process at level of single base pairing/stacking. The study, which integrates molecular dynamics simulation, kinetic Monte Carlo simulation, and master equation methods, uncovers two alternative dominant pathways: Starting from the unfolded state, the nucleotide backbone first folds to the native conformation, followed by subsequent adjustment of the base conformation. During the base conformational rearrangement, the backbone either retains the native conformation or switches to nonnative conformations in order to lower the kinetic barrier for base rearrangement. The method enables quantification of kinetic partitioning among the different pathways. Moreover, the simulation reveals several intriguing ion binding/dissociation signatures for the conformational changes. Our approach may be useful for developing a base pair opening/closing rate model. PMID:26699466

  20. Subtle Changes in Peptide Conformation Profoundly Affect Recognition of the Non-Classical MHC Class I Molecule HLA-E by the CD94-NKG2 Natural Killer Cell Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoare, Hilary L; Sullivan, Lucy C; Clements, Craig S

    2008-03-31

    Human leukocyte antigen (HLA)-E is a non-classical major histocompatibility complex class I molecule that binds peptides derived from the leader sequences of other HLA class I molecules. Natural killer cell recognition of these HLA-E molecules, via the CD94-NKG2 natural killer family, represents a central innate mechanism for monitoring major histocompatibility complex expression levels within a cell. The leader sequence-derived peptides bound to HLA-E exhibit very limited polymorphism, yet subtle differences affect the recognition of HLA-E by the CD94-NKG2 receptors. To better understand the basis for this peptide-specific recognition, we determined the structure of HLA-E in complex with two leader peptides,more » namely, HLA-Cw*07 (VMAPRALLL), which is poorly recognised by CD94-NKG2 receptors, and HLA-G*01 (VMAPRTLFL), a high-affinity ligand of CD94-NKG2 receptors. A comparison of these structures, both of which were determined to 2.5-Å resolution, revealed that allotypic variations in the bound leader sequences do not result in conformational changes in the HLA-E heavy chain, although subtle changes in the conformation of the peptide within the binding groove of HLA-E were evident. Accordingly, our data indicate that the CD94-NKG2 receptors interact with HLA-E in a manner that maximises the ability of the receptors to discriminate between subtle changes in both the sequence and conformation of peptides bound to HLA-E.« less

  1. Structure, stability and behaviour of nucleic acids in ionic liquids

    PubMed Central

    Tateishi-Karimata, Hisae; Sugimoto, Naoki

    2014-01-01

    Nucleic acids have become a powerful tool in nanotechnology because of their conformational polymorphism. However, lack of a medium in which nucleic acid structures exhibit long-term stability has been a bottleneck. Ionic liquids (ILs) are potential solvents in the nanotechnology field. Hydrated ILs, such as choline dihydrogen phosphate (choline dhp) and deep eutectic solvent (DES) prepared from choline chloride and urea, are ‘green’ solvents that ensure long-term stability of biomolecules. An understanding of the behaviour of nucleic acids in hydrated ILs is necessary for developing DNA materials. We here review current knowledge about the structures and stabilities of nucleic acids in choline dhp and DES. Interestingly, in choline dhp, A–T base pairs are more stable than G–C base pairs, the reverse of the situation in buffered NaCl solution. Moreover, DNA triplex formation is markedly stabilized in hydrated ILs compared with aqueous solution. In choline dhp, the stability of Hoogsteen base pairs is comparable to that of Watson–Crick base pairs. Moreover, the parallel form of the G-quadruplex is stabilized in DES compared with aqueous solution. The behaviours of various DNA molecules in ILs detailed here should be useful for designing oligonucleotides for the development of nanomaterials and nanodevices. PMID:25013178

  2. Salt forms of the pharmaceutical amide dihydrocarbamazepine.

    PubMed

    Buist, Amanda R; Kennedy, Alan R

    2016-02-01

    Carbamazepine (CBZ) is well known as a model active pharmaceutical ingredient used in the study of polymorphism and the generation and comparison of cocrystal forms. The pharmaceutical amide dihydrocarbamazepine (DCBZ) is a less well known material and is largely of interest here as a structural congener of CBZ. Reaction of DCBZ with strong acids results in protonation of the amide functionality at the O atom and gives the salt forms dihydrocarbamazepine hydrochloride {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium chloride, C15H15N2O(+)·Cl(-)}, dihydrocarbamazepine hydrochloride monohydrate {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium chloride monohydrate, C15H15N2O(+)·Cl(-)·H2O} and dihydrocarbamazepine hydrobromide monohydrate {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium bromide monohydrate, C15H15N2O(+)·Br(-)·H2O}. The anhydrous hydrochloride has a structure with two crystallographically independent ion pairs (Z' = 2), wherein both cations adopt syn conformations, whilst the two hydrated species are mutually isostructural and have cations with anti conformations. Compared to neutral dihydrocarbamazepine structures, protonation of the amide group is shown to cause changes to both the molecular (C=O bond lengthening and C-N bond shortening) and the supramolecular structures. The amide-to-amide and dimeric hydrogen-bonding motifs seen for neutral polymorphs and cocrystalline species are replaced here by one-dimensional polymeric constructs with no direct amide-to-amide bonds. The structures are also compared with, and shown to be closely related to, those of the salt forms of the structurally similar pharmaceutical carbamazepine.

  3. Primary hyperoxaluria type 1 in the Canary Islands: A conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase

    PubMed Central

    Santana, A.; Salido, E.; Torres, A.; Shapiro, L. J.

    2003-01-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of metabolism resulting from a deficiency of alanine:glyoxylate aminotransferase (AGXT; EC 2.6.1.44). Most of the PH1 alleles detected in the Canary Islands carry the Ile-244 → Thr (I244T) mutation in the AGXT gene, with 14 of 16 patients homozygous for this mutation. Four polymorphisms within AGXT and regional microsatellites also were shared in their haplotypes (AGXT*LTM), consistent with a founder effect. The consequences of these amino acid changes were investigated. Although I244T alone did not affect AGXT activity or subcellular localization, when present in the same protein molecule as Leu-11 → Pro (L11P), it resulted in loss of enzymatic activity in soluble cell extracts. Like its normal counterpart, the AGXT*LTM protein was present in the peroxisomes but it was insoluble in detergent-free buffers. The polymorphism L11P behaved as an intragenic modifier of the I244T mutation, with the resulting protein undergoing stable interaction with molecular chaperones and aggregation. This aggregation was temperature-sensitive. AGXT*LTM expressed in Escherichia coli, as a GST-fusion protein, and in insect cells could be purified and retained enzymatic activity. Among various chemical chaperones tested in cell culture, betaine substantially improved the solubility of the mutant protein and the enzymatic activity in cell lysates. In summary, I244T, the second most common mutation responsible for PH1, is a protein conformational disease that may benefit from new therapies with pharmacological chaperones or small molecules to minimize protein aggregation. PMID:12777626

  4. Primary hyperoxaluria type 1 in the Canary Islands: a conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase.

    PubMed

    Santana, A; Salido, E; Torres, A; Shapiro, L J

    2003-06-10

    Primary hyperoxaluria type 1 (PH1) is an inborn error of metabolism resulting from a deficiency of alanine:glyoxylate aminotransferase (AGXT; EC 2.6.1.44). Most of the PH1 alleles detected in the Canary Islands carry the Ile-244 --> Thr (I244T) mutation in the AGXT gene, with 14 of 16 patients homozygous for this mutation. Four polymorphisms within AGXT and regional microsatellites also were shared in their haplotypes (AGXT*LTM), consistent with a founder effect. The consequences of these amino acid changes were investigated. Although I244T alone did not affect AGXT activity or subcellular localization, when present in the same protein molecule as Leu-11 --> Pro (L11P), it resulted in loss of enzymatic activity in soluble cell extracts. Like its normal counterpart, the AGXT*LTM protein was present in the peroxisomes but it was insoluble in detergent-free buffers. The polymorphism L11P behaved as an intragenic modifier of the I244T mutation, with the resulting protein undergoing stable interaction with molecular chaperones and aggregation. This aggregation was temperature-sensitive. AGXT*LTM expressed in Escherichia coli, as a GST-fusion protein, and in insect cells could be purified and retained enzymatic activity. Among various chemical chaperones tested in cell culture, betaine substantially improved the solubility of the mutant protein and the enzymatic activity in cell lysates. In summary, I244T, the second most common mutation responsible for PH1, is a protein conformational disease that may benefit from new therapies with pharmacological chaperones or small molecules to minimize protein aggregation.

  5. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein.

    PubMed

    Chao, Kinlin L; Kulakova, Liudmila; Herzberg, Osnat

    2017-02-14

    The exact function of human gasdermin-B (GSDMB), which regulates differentiation and growth of epithelial cells, is yet to be elucidated. In human epidermal growth factor receptor 2 (HER2)-positive breast cancer, GSDMB gene amplification and protein overexpression indicate a poor response to HER2-targeted therapy. Genome-wide association studies revealed a correlation between GSDMB SNPs and an increased susceptibility to Crohn's disease, ulcerative colitis, and asthma. The N- and C-terminal domains of all gasdermins possess lipid-binding and regulatory activities, respectively. Inflammatory caspases cleave gasdermin-D in the interdomain linker but not GSDMB. The cleaved N-terminal domain binds phosphoinositides and cardiolipin, forms membrane-disrupting pores, and executes pyroptosis. We show that both full-length GSDMB and the N-terminal domain bind to nitrocellulose membranes immobilized with phosphoinositides or sulfatide, but not with cardiolipin. In addition, the GSDMB N-terminal domain binds liposomes containing sulfatide. The crystal structure of the GSDMB C-terminal domain reveals the structural impact of the amino acids encoded by SNPs that are linked to asthma and inflammatory bowel disease (IBD). A loop that carries the polymorphism amino acids corresponding to healthy individuals (Gly299:Pro306) exhibits high conformational flexibility, whereas the loop carrying amino acids found in individuals with increased disease risk (Arg299:Ser306) exhibits a well-defined conformation and higher positive surface charge. Apoptotic executioner caspase-3, -6, and -7, but not the inflammatory caspases, cleave GSDMB at 88 DNVD 91 within the N-terminal domain. Selective sulfatide binding may indicate possible function for GSDMB in the cellular sulfatide transport.

  6. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein

    PubMed Central

    Chao, Kinlin L.; Kulakova, Liudmila; Herzberg, Osnat

    2017-01-01

    The exact function of human gasdermin-B (GSDMB), which regulates differentiation and growth of epithelial cells, is yet to be elucidated. In human epidermal growth factor receptor 2 (HER2)-positive breast cancer, GSDMB gene amplification and protein overexpression indicate a poor response to HER2-targeted therapy. Genome-wide association studies revealed a correlation between GSDMB SNPs and an increased susceptibility to Crohn’s disease, ulcerative colitis, and asthma. The N- and C-terminal domains of all gasdermins possess lipid-binding and regulatory activities, respectively. Inflammatory caspases cleave gasdermin-D in the interdomain linker but not GSDMB. The cleaved N-terminal domain binds phosphoinositides and cardiolipin, forms membrane-disrupting pores, and executes pyroptosis. We show that both full-length GSDMB and the N-terminal domain bind to nitrocellulose membranes immobilized with phosphoinositides or sulfatide, but not with cardiolipin. In addition, the GSDMB N-terminal domain binds liposomes containing sulfatide. The crystal structure of the GSDMB C-terminal domain reveals the structural impact of the amino acids encoded by SNPs that are linked to asthma and inflammatory bowel disease (IBD). A loop that carries the polymorphism amino acids corresponding to healthy individuals (Gly299:Pro306) exhibits high conformational flexibility, whereas the loop carrying amino acids found in individuals with increased disease risk (Arg299:Ser306) exhibits a well-defined conformation and higher positive surface charge. Apoptotic executioner caspase-3, -6, and -7, but not the inflammatory caspases, cleave GSDMB at 88DNVD91 within the N-terminal domain. Selective sulfatide binding may indicate possible function for GSDMB in the cellular sulfatide transport. PMID:28154144

  7. Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories.

    PubMed

    Fabricius, K E; Mieog, J C; Colin, P L; Idip, D; van Oppen, M J H

    2004-08-01

    The potential of corals to associate with more temperature-tolerant strains of algae (zooxanthellae, Symbiodinium) can have important implications for the future of coral reefs in an era of global climate change. In this study, the genetic identity and diversity of zooxanthellae was investigated at three reefs with contrasting histories of bleaching mortality, water temperature and shading, in the Republic of Palau (Micronesia). Single-stranded conformation polymorphism and sequence analysis of the ribosomal DNA internal transcribed spacer (ITS)1 region was used for genotyping. A chronically warm but partly shaded coral reef in a marine lake that is hydrographically well connected to the surrounding waters harboured only two single-stranded conformation polymorphism profiles (i.e. zooxanthella communities). It consisted only of Symbiodinium D in all 13 nonporitid species and two Porites species investigated, with the remaining five Porites harbouring C*. Despite the high temperature in this lake (> 0.5 degrees above ambient), this reef did not suffer coral mortality during the (1998) bleaching event, however, no bleaching-sensitive coral families and genera occur in the coral community. This setting contrasts strongly with two other reefs with generally lower temperatures, in which 10 and 12 zooxanthella communities with moderate to low proportions of clade D zooxanthellae were found. The data indicate that whole coral assemblages, when growing in elevated seawater temperatures and at reduced irradiance, can be composed of colonies associated with the more thermo-tolerant clade D zooxanthellae. Future increases in seawater temperature might, therefore, result in an increasing prevalence of Symbiodinium phylotype D in scleractinian corals, possibly associated with a loss of diversity in both zooxanthellae and corals. Copyright 2004 Blackwell Publishing Ltd

  8. Association of transforming growth-factor alpha gene polymorphisms with nonsyndromic cleft palate only (CPO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiang, R.; Lidral, A.C.; Ardinger, H.H.

    1993-10-01

    Genetic analysis and tissue-specific expression studies support a role for transforming growth-factor alpha (TGFA) in craniofacial development. Previous studies have confirmed an association of alleles for TGFA with nonsyndromic cleft lip with or without cleft palate (CL/P) in humans. The authors carried out a retrospective association study to determine whether specific allelic variants of the TGFA gene are also associated with cleft palate only (CPO). The PCR products from 12 overlapping sets of primers to the TGFA cDNA were examined by using single-strand conformational polymorphism analysis. Four DNA polymorphic sites for TGFA were identified in the 3[prime] untranslated region ofmore » the TGFA gene. These variants, as well as previously identified RFLPs for TGFA, were characterized in case and control populations for CPO by using X[sup 2] analysis. A significant association between alleles of TGFA and CPO was identified which further supports a role for this gene as one of the genetic determinants of craniofacial development. Sequence analysis of the variants disclosed a cluster of three variable sites within 30 bp of each other in the 3[prime] untranslated region previously associated with an antisense transcript. These studies extend the role for TGFA in craniofacial morphogenesis and support an interrelated mechanism underlying nonsyndromic forms of CL/P. 46 refs., 3 figs., 3 tabs.« less

  9. Role of Superoxide Dismutase 2 Gene Ala16Val Polymorphism and Total Antioxidant Capacity in Diabetes and its Complications

    PubMed Central

    Pourvali, Katayoun; Abbasi, Mehrnaz; Mottaghi, Azadeh

    2016-01-01

    Diabetes Mellitus (DM) is a chronic heterogeneous disorder and oxidative stress is a key participant in the development and progression of it and its complications. Anti-oxidant status can affect vulnerability to oxidative damage, onset and progression of diabetes and diabetes complications. Superoxide dismutase 2 (SOD2) is one of the major antioxidant defense systems against free radicals. SOD2 is encoded by the nuclear SOD2 gene located on the human chromosome 6q25 and the Ala16Val polymorphism has been identified in exon 2 of the human SOD2 gene. Ala16Val (rs4880) is the most commonly studied SOD2 single nucleotide polymorphism (SNP) in SOD2 gene. This SNP changes the amino acid at position 16 from valine (Val) to alanine (Ala), which has been shown to cause a conformational change in the target sequence of manganese superoxide dismutase (MnSOD) and also affects MnSOD activity in mitochondria. Ala16Val SNP and changes in the activity of the SOD2 antioxidant enzyme have been associated with altered progression and risk of different diseases. Association of this SNP with diabetes and some of its complications have been studied in numerous studies. This review evaluated how rs4880, oxidative stress and antioxidant status are associated with diabetes and its complications although some aspects of this line still remain unclear. PMID:27141263

  10. Mutation analysis of the MECP2 gene in patients of Slavic origin with Rett syndrome: novel mutations and polymorphisms.

    PubMed

    Zahorakova, Daniela; Rosipal, Robert; Hadac, Jan; Zumrova, Alena; Bzduch, Vladimir; Misovicova, Nadezda; Baxova, Alice; Zeman, Jiri; Martasek, Pavel

    2007-01-01

    Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder in females, is caused mainly by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). Here we report mutation analysis of the MECP2 gene in 87 patients with RTT from the Czech and Slovak Republics, and Ukraine. The patients, all girls, with classical RTT were investigated for mutations using bi-directional DNA sequencing and conformation sensitive gel electrophoresis analysis of the coding sequence and exon/intron boundaries of the MECP2 gene. Restriction fragment length polymorphism analysis was performed to confirm the mutations that cause the creation or abolition of the restriction site. Mutation-negative cases were subsequently examined by multiple ligation-dependent probe amplification (MLPA) to identify large deletions. Mutation screening revealed 31 different mutations in 68 patients and 12 non-pathogenic polymorphisms. Six mutations have not been previously published: two point mutations (323T>A, 904C>T), three deletions (189_190delGA, 816_832del17, 1069delAGC) and one deletion/inversion (1063_1236del174;1189_1231inv43). MLPA analysis revealed large deletions in two patients. The detection rate was 78.16%. Our results confirm the high frequency of MECP2 mutations in females with RTT and provide data concerning the mutation heterogeneity in the Slavic population.

  11. Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids

    PubMed Central

    Taylor, D. Lee; Bruns, Thomas D.

    1997-01-01

    We have investigated the mycorrhizal associations of two nonphotosynthetic orchids from distant tribes within the Orchidaceae. The two orchids were found to associate exclusively with two distinct clades of ectomycorrhizal basidiomycetous fungi over wide geographic ranges. Yet both orchids retained the internal mycorrhizal structure typical of photosynthetic orchids that do not associate with ectomycorrhizal fungi. Restriction fragment length polymorphism and sequence analysis of two ribosomal regions along with fungal isolation provided congruent, independent evidence for the identities of the fungal symbionts. All 14 fungal entities that were associated with the orchid Cephalanthera austinae belonged to a clade within the Thelephoraceae, and all 18 fungal entities that were associated with the orchid Corallorhiza maculata fell within the Russulaceae. Restriction fragment length polymorphism and single-strand conformational polymorphism analysis of ectomycorrhizal tree roots collected adjacent to Cephalanthera showed that (i) the fungi associated internally with Cephalanthera also form typical external ectomycorrhizae and that (ii) ectomycorrhizae formed by other Basidiomycetes were abundant where the orchid grows but these fungi did not associate with the orchid. This is the first proof of ectomycorrhizal epiparasitism in nature by an orchid. We argue that these orchids are cheaters because they do not provide fixed carbon to associated fungi. This view suggests that mycorrhizae, like other ancient mutualisms, are susceptible to cheating. The extreme specificity in these orchids relative to other ectomycorrhizal plants agrees with trends seen in more conventional parasites. PMID:9114020

  12. Analysis of CYP3A4 genetic polymorphisms in Han Chinese.

    PubMed

    Zhou, Qing; Yu, Xiaomin; Shu, Chang; Cai, Yimei; Gong, Wei; Wang, Xumin; Wang, Duen-mei; Hu, Songnian

    2011-06-01

    Our study aimed to comprehensively investigate the genetic polymorphisms of CYP3A4 in Han Chinese. We sequenced the gene regions of CYP3A4, including its promoter, exons, surrounding introns and 3' untranslated region (3'UTR), from 100 unrelated-healthy Han Chinese individuals. We detected 11 SNPs, three of which are novel. According to in silico functional prediction of novel variants, 20148 A>G in exon 10, resulting in substitution of Tyr319 with Cys (CYP3A4*21), may induce dramatic alteration of protein conformation, and 26908 G>A in 3'UTR may disrupt post-transcriptional regulation. We identified five alleles in Han Chinese, the allele frequencies of CYP3A4*1, *5, *6, *18 and *21 are 97, 0.5, 1, 1 and 0.5%, respectively. Haplotype inference revealed 14 haplotypes, of which the major haplotype CYP3A4*1A constitutes 59% of the total chromosomes. We also examined the possible role of natural selection in shaping the variation of CYP3A4 and confirmed a trend, consistent with the action of positive selection. We systematically screened the genetic polymorphisms of CYP3A4 in Han Chinese, highlighted possible functional impairment of the novel allele and summarized the distinct allele and haplotype frequency distribution, with an emphasis on detecting the footprint of recent positive selection on the CYP3A4 gene in Han Chinese.

  13. Developing advanced X-ray scattering methods combined with crystallography and computation.

    PubMed

    Perry, J Jefferson P; Tainer, John A

    2013-03-01

    The extensive use of small angle X-ray scattering (SAXS) over the last few years is rapidly providing new insights into protein interactions, complex formation and conformational states in solution. This SAXS methodology allows for detailed biophysical quantification of samples of interest. Initial analyses provide a judgment of sample quality, revealing the potential presence of aggregation, the overall extent of folding or disorder, the radius of gyration, maximum particle dimensions and oligomerization state. Structural characterizations include ab initio approaches from SAXS data alone, and when combined with previously determined crystal/NMR, atomistic modeling can further enhance structural solutions and assess validity. This combination can provide definitions of architectures, spatial organizations of protein domains within a complex, including those not determined by crystallography or NMR, as well as defining key conformational states of a protein interaction. SAXS is not generally constrained by macromolecule size, and the rapid collection of data in a 96-well plate format provides methods to screen sample conditions. This includes screening for co-factors, substrates, differing protein or nucleotide partners or small molecule inhibitors, to more fully characterize the variations within assembly states and key conformational changes. Such analyses may be useful for screening constructs and conditions to determine those most likely to promote crystal growth of a complex under study. Moreover, these high throughput structural determinations can be leveraged to define how polymorphisms affect assembly formations and activities. This is in addition to potentially providing architectural characterizations of complexes and interactions for systems biology-based research, and distinctions in assemblies and interactions in comparative genomics. Thus, SAXS combined with crystallography/NMR and computation provides a unique set of tools that should be considered as being part of one's repertoire of biophysical analyses, when conducting characterizations of protein and other macromolecular interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Association of BMPR-1B and GDF9 genes polymorphisms and secondary protein structure changes with reproduction traits in Mehraban ewes.

    PubMed

    Abdoli, R; Zamani, P; Deljou, A; Rezvan, H

    2013-07-25

    BMPR-1B and GDF9 genes are well known due to their important effects on litter size and mechanisms controlling ovulation rate in sheep. In the present study, polymorphisms of BMPR-1B gene exon 8 and GDF9 gene exon 1 were detected by single strand conformational polymorphism (SSCP) analysis and DNA sequencing methods in 100 Mehraban ewes. The PCR reaction forced to amplify 140 and 380-bp fragments of BMPR-1B and GDF9 genes, respectively. Two single nucleotide polymorphisms (SNPS) were identified in two different SSCP patterns of BMPR-1B gene (CC and CA genotypes) that deduced one amino acid exchange. Also, two SNPS were identified in three different SSCP patterns of GDF9 gene (AA, AG and GG genotypes) that deduced one amino acid exchanges. Two different secondary structures of protein were predicted for BMPR-1B exon 8, but the secondary protein structures predicted for GDF9 exon 1 were similar together. The evaluation of the associations between the SSCP patterns and the protein structure changes with reproduction traits showed that BMPR-1B exon 8 genotypes have significant effects on some of reproduction traits but the GDF9 genotypes did not have any significant effect. The CA genotype of BMPR-1B exon 8 had a significant positive effect on reproduction performance and could be considered as an important and new mutation, affecting the ewes reproduction performance. Marker assisted selection using BMPR-IB gene could be noticed to improve the reproduction traits in Mehraban sheep. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Development of a new DHPLC assay for genotyping UGT1A (TA)n polymorphism associated with Gilbert's syndrome.

    PubMed

    Mlakar, Simona Jurkovic; Ostanek, Barbara

    2011-01-01

    Gilbert's syndrome is the most common hereditary disorder of bilirubin metabolism. The causative mutation in Caucasians is almost exclusively a (TA) dinucleotide insertion in the UGT1A1 promoter. Affected individuals are homozygous for the variant promoter and have 7 TA repeats instead of 6. Promoters with 5 and 8 TA repeats also exist but are extremely rare in Caucasians. The aim of our study was to develop denaturing high-performance liquid chromatography (DHPLC) assay for genotyping UGT1A1(TA)n polymorphism and to compare it with a previously described single-strand conformation polymorphism (SSCP) assay. Fifty DNA samples with common genotypes ((TA)6/6, (TA)6/7, (TA)7/7) as well as 7 samples with one of the following rare genotypes- (TA)5/6, (TA)5/7, (TA)6/8 or (TA)7/8 were amplified by polymerase chain reaction (PCR) and genotyped by DHPLC using sizing mode. All samples were previously genotyped by SSCP assay which was validated by sequencing analysis. All samples with either common or rare genotypes showed completely concordant results between DHPLC and SSCP assays. Our results show that sizing DHPLC assay is more efficient compared to classical SSCP assay due to shorter time of genotyping analysis, ability of genotyping increased number of samples per day, higher robustness, reproducibility and cost-effectiveness with no loss of accuracy in detection of all UGT1A1(TA)n genotypes. We developed a new DHPLC assay which is suitable for accurate, automated, highthroughput, robust genotyping of all UGT1A1(TA)n polymorphism variants, compared to a labour intensive and time-consuming SSCP assay.

  16. Matrix isolation studies of carbonic acid--the vapor phase above the β-polymorph.

    PubMed

    Bernard, Jürgen; Huber, Roland G; Liedl, Klaus R; Grothe, Hinrich; Loerting, Thomas

    2013-05-22

    Twenty years ago two different polymorphs of carbonic acid, α- and β-H2CO3, were isolated as thin, crystalline films. They were characterized by infrared and, of late, by Raman spectroscopy. Determination of the crystal structure of these two polymorphs, using cryopowder and thin film X-ray diffraction techniques, has failed so far. Recently, we succeeded in sublimating α-H2CO3 and trapping the vapor phase in a noble gas matrix, which was analyzed by infrared spectroscopy. In the same way we have now investigated the β-polymorph. Unlike α-H2CO3, β-H2CO3 was regarded to decompose upon sublimation. Still, we have succeeded in isolation of undecomposed carbonic acid in the matrix and recondensation after removal of the matrix here. This possibility of sublimation and recondensation cycles of β-H2CO3 adds a new aspect to the chemistry of carbonic acid in astrophysical environments, especially because there is a direct way of β-H2CO3 formation in space, but none for α-H2CO3. Assignments of the FTIR spectra of the isolated molecules unambiguously reveal two different carbonic acid monomer conformers (C(2v) and C(s)). In contrast to the earlier study on α-H2CO3, we do not find evidence for centrosymmetric (C(2h)) carbonic acid dimers here. This suggests that two monomers are entropically favored at the sublimation temperature of 250 K for β-H2CO3, whereas they are not at the sublimation temperature of 210 K for α-H2CO3.

  17. Didanosine polymorphism in a supercritical antisolvent process.

    PubMed

    Bettini, R; Menabeni, R; Tozzi, R; Pranzo, M B; Pasquali, I; Chierotti, M R; Gobetto, R; Pellegrino, L

    2010-04-01

    Solid-state properties of active ingredients are crucial in pharmaceutical development owing to their significant clinical and economical implications. In the present work we investigated the solid-state properties and the solubility in water of didanosine, DDI, re-crystallized from a dimethylsulfoxide solution using supercritical CO(2) as an antisolvent (SAS process) for comparison with the commercially available drug product. We also applied modern solid-state NMR (SS NMR) techniques, namely 2D (1)H DQ CRAMPS (Combined Rotation And Multiple Pulse Spectroscopy) and (1)H-(13)C on- and off-resonance CP (cross polarization) FSLG-HETCOR experiments, known for providing reliable information about (1)H-(1)H and (1)H-(13)C intra- and intermolecular proximities, in order to address polymorphism issues arising from the crystallization of a new form in the supercritical process. A new polymorph of didanosine was obtained from the supercritical antisolvent process and characterized by means of 1D and 2D multinuclear ((1)H, (13)C, (15)N) SS NMR. The particle size of the new crystal phase was reduced by varying the antisolvent density through a pressure increase. The structural differences between the commercial product and the SAS re-crystallized DDI are highlighted by X-ray diffractometry and well described by solid-state NMR. The carbon C6 (13)C chemical shift suggests that both commercial and re-crystallized didanosine samples are in the enol form. The analysis of homo- and heteronuclear proximities obtained by means of 2D NMR experiments shows that commercial and SAS re-crystallized DDI possess very similar molecular conformation and hydrogen bond network, but different packing. The new polymorph proved to be a metastable form at ambient conditions, showing higher solubility in water and lower stability to mechanical stress. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  18. Acemetacin cocrystal structures by powder X-ray diffraction.

    PubMed

    Bolla, Geetha; Chernyshev, Vladimir; Nangia, Ashwini

    2017-05-01

    Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p -aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM-NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid-amide dimer three-point synthon R 3 2 (9) R 2 2 (8) R 3 2 (9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM-NAM, ACM-NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study.

  19. Acemetacin cocrystal structures by powder X-ray diffraction

    PubMed Central

    Bolla, Geetha

    2017-01-01

    Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p-aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM–NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid–amide dimer three-point synthon R 3 2(9)R 2 2(8)R 3 2(9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM—NAM, ACM–NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study. PMID:28512568

  20. STK15 polymorphisms and association with risk of invasive ovarian cancer.

    PubMed

    Dicioccio, Richard A; Song, Honglin; Waterfall, Christy; Kimura, Makoto T; Nagase, Hiroki; McGuire, Valerie; Hogdall, Estrid; Shah, Mitul N; Luben, Robert N; Easton, Douglas F; Jacobs, Ian J; Ponder, Bruce A J; Whittemore, Alice S; Gayther, Simon A; Pharoah, Paul D P; Kruger-Kjaer, Susan

    2004-10-01

    STK15 is a putative oncogene that codes for a centrosome-associated, serine/threonine kinase, the normal function of which is to ensure accurate segregation of chromosomes during mitosis. Amplification of STK15 has been reported in ovarian tumors, suggesting a role in ovarian cancer pathology. STK15 is polymorphic with two single nucleotide substitutions (449t/a and 527g/a) in evolutionarily conserved regions causing amino acid changes (F31I and V57I). Two other nucleotide substitutions (287c/g and 1891g/c) of unknown significance are in 5' and 3' untranslated regions (UTR), respectively. To learn more about the involvement of STK15 in ovarian cancer, we genotyped and haplotyped these polymorphisms in three population-based ovarian cancer case-control studies from the United Kingdom, United States, and Denmark with 1,821 combined cases and 2,467 combined controls and calculated risks for developing ovarian cancer. Genotypes of individual polymorphisms in control groups of the United Kingdom, United States, and Denmark conformed to Hardy-Weinberg equilibrium. In combined cases and combined controls, rare allele frequencies were 0.23 and 0.21 for I31, 0.16 and 0.17 for I57, 0.08 and 0.07 for 5' UTR g, and 0.25 and 0.24 for 3' UTR c, respectively. Using FF common homozygotes of F31I as comparator, there was increased ovarian cancer risk to FI heterozygotes (odds ratio, 1.18; 95% confidence interval, 1.01-1.36), II homozygotes (odds ratio, 1.25; 95% confidence interval, 0.89-1.75), and I31 allele carriers (odds ratio, 1.17; 95% confidence interval, 1.02-1.35) in the combined group data. For either V57I, 5' UTR C/G, or 3' UTR G/C, all genotypic ovarian cancer risks were essentially in unity relative to their respective common homozygotes, VV, cc, or gg. Haplotype analysis of combined group data revealed seven haplotypes with frequencies between 0.02 and 0.5, with c-F-V-g the most common. None of the haplotype-specific risks significantly differed from unity relative to c-F-V-g. These results suggest a model of dominant inheritance of ovarian cancer risk by the I31 allele of F31I and that the I31 allele may be a common ovarian cancer susceptibility allele of low penetrance.

  1. Mosquito cytogenetics

    PubMed Central

    Kitzmiller, James B.

    1963-01-01

    Although an intensified interest in mosquito cytogenetics in the past decade has produced a number of contributions to knowledge on this subject, the available information is still superficial and limited to a few mosquito species only. The author of this review summarizes the research done in this field between 1953 and 1962. The following are some of the achievements and some of the gaps that remain to be filled. Karyotypes of several species of Anopheles, Aedes and Culex conform to the general pattern 2n=6, with heterosomes distinguishable only in Anopheles. At least three different karyotypes are present in Anopheles. Salivary gland chromosome maps are now available for several anopheline species, but are still lacking for Culex and Aedes. No precise correlation may yet be made between the frequency of chromosomal aberrations and the degree of insecticide-resistance. Sexual differences in the salivary X-chromosomes have been reported for several species of Anopheles. Chromosomal polymorphism is common in some anophelines, but rare in others. Chromosomal mutation has been induced by means of X-rays. In his conclusions, the author stresses that prospects are especially good for evolutionary and genetic studies involving chromosomal polymorphism. PMID:14058227

  2. Mutations in the PDE6B gene in autosomal recessive retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danciger, M.; Blaney, J.; Gao, Y.Q.

    1995-11-01

    We have studied 24 small families with presumed autosomal recessive inheritance of retinitis pigmentosa by a combination of haplotype analysis and exon screening. Initial analysis of the families was made with a dinucleotide repeat polymorphism adjacent to the gene for rod cGMP-phosphodiesterase (PDE6B). This was followed by denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism electrophoresis (SSCPE) of the 22 exons and a portion of the 5{prime} untranslated region of the PDE6B gene in the probands of each family in which the PDE6B locus could not be ruled out from segregating with disease. Two probands were found with compoundmore » heterozygous mutations: Gly576Asp and His620(1-bp del) mutations were present in one proband, and a Lys706X null mutation and an AG to AT splice acceptor site mutation in intron 2 were present in the other. Only the affecteds of each of the two families carried both corresponding mutations. 29 refs., 3 figs., 1 tab.« less

  3. Haplotype analysis of the germacrene A synthase gene and association with cynaropicrin content and biological activities in Cynara cardunculus.

    PubMed

    Ferro, Ana Margarida; Ramos, Patrícia; Guerra, Ângela; Parreira, Paula; Brás, Teresa; Guerreiro, Olinda; Jerónimo, Eliana; Capel, Carmen; Capel, Juan; Yuste-Lisbona, Fernando J; Duarte, Maria F; Lozano, Rafael; Oliveira, M Margarida; Gonçalves, Sónia

    2018-04-01

    Cynara cardunculus: L. represents a natural source of terpenic compounds, with the predominant molecule being cynaropicrin. Cynaropicrin is gaining interest since it has been correlated to anti-hyperlipidaemia, antispasmodic and cytotoxicity activity against leukocyte cancer cells. The objective of this work was to screen a collection of C. cardunculus, from different origins, for new allelic variants in germacrene A synthase (GAS) gene involved in the cynaropicrin biosynthesis and correlate them with improved cynaropicrin content and biological activities. Using high-resolution melting, nine haplotypes were identified. The putative impact of the identified allelic variants in GAS protein was evaluated by bioinformatic tools and polymorphisms that putatively lead to protein conformational changes were described. Additionally, cynaropicrin and main pentacyclic triterpenes contents, and antithrombin, antimicrobial and antiproliferative activities were also determined in C. cardunculus leaf lipophilic-derived extracts. In this work we identified allelic variants with putative impact on GAS protein, which are significantly associated with cynaropicrin content and antiproliferative activity. The results obtained suggest that the identified polymorphisms should be explored as putative genetic markers correlated with biological properties in Cynara cardunculus.

  4. Association of Melanocortin (MC4R) and Myostatin (MSTN) genes with carcass quality in rabbit.

    PubMed

    El-Sabrout, Karim; Aggag, Sarah

    2018-03-01

    The aim of this study was to investigate the association of Melanocortin (MC4R) and Myostatin (MSTN) with the carcass quality of V-line and Alexandria line rabbits. MC4R and MSTN were screened by single-strand conformational polymorphism analysis (SSCP) then DNA was sequenced. The results identified four novel SNPs using the four studied primers of the MC4R and MSTN genes. The genotype (BB) has significant higher body weight (BW), carcass weight (CW) and dressing percentage (DP) than AA rabbits. There were no significant differences within the two lines in the carcass color (light pink) and carcass fat (CF). GLM analysis for the effect of genotypes on carcass traits demonstrated that the genotype (BB) was significantly associated with high carcass weight (CW) and dressing percentage (DP). The detected mutations and the analysis of carcass quality means revealed a significant association between MSTN and MC4R polymorphisms with some carcass traits that affect meat quality of rabbits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. T Cell Allorecognition via Molecular Mimicry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macdonald, Whitney A.; Chen, Zhenjun; Gras, Stephanie

    T cells often alloreact with foreign human leukocyte antigens (HLA). Here we showed the LC13 T cell receptor (TCR), selected for recognition on self-HLA-B*0801 bound to a viral peptide, alloreacts with B44 allotypes (HLA-B*4402 and HLA-B*4405) bound to two different allopeptides. Despite extensive polymorphism between HLA-B*0801, HLA-B*4402, and HLA-B*4405 and the disparate sequences of the viral and allopeptides, the LC13 TCR engaged these peptide-HLA (pHLA) complexes identically, accommodating mimicry of the viral peptide by the allopeptide. The viral and allopeptides adopted similar conformations only after TCR ligation, revealing an induced-fit mechanism of molecular mimicry. The LC13 T cells did notmore » alloreact against HLA-B*4403, and the single residue polymorphism between HLA-B*4402 and HLA-B*4403 affected the plasticity of the allopeptide, revealing that molecular mimicry was associated with TCR specificity. Accordingly, molecular mimicry that is HLA and peptide dependent is a mechanism for human T cell alloreactivity between disparate cognate and allogeneic pHLA complexes.« less

  6. Variation in the ovine MYF5 gene and its effect on carcass lean meat yield in New Zealand Romney sheep.

    PubMed

    Wang, Jiqing; Zhou, Huitong; Forrest, Rachel H J; Hu, Jiang; Liu, Xiu; Li, Shaobin; Luo, Yuzhu; Hickford, Jon G H

    2017-09-01

    Myogenic factor 5 (MYF5) plays an important role in regulating skeletal muscle, but to date there have been no reports on whether the gene is variable and whether this variation is associated with meat yield in sheep. In this study, four variants (A to D) of ovine MYF5 containing two Single Nucleotide Polymorphisms (SNPs) and one basepair (bp) insertion/deletion were detected by Polymerase Chain Reaction - Single Stranded Conformational Polymorphism (PCR-SSCP) analysis. Breed differences in variant frequencies were observed. The effect of variation in ovine MYF5 on lean meat yield, predicted using VIAScan® technology, was investigated in 388 male NZ Romney lambs. Only genotypes AA and AB were found in these lambs. Lambs with genotype AA had a higher leg yield (P=0.044), loin yield (P=0.002) and total yield (P=0.012) than those with genotype AB. No association with shoulder yield was detected. These results suggest that ovine MYF5 may be a valuable genetic marker for improved lean meat yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization

    PubMed Central

    2018-01-01

    Macrocycles are of considerable interest as highly specific drug candidates, yet they challenge standard conformer generators with their large number of rotatable bonds and conformational restrictions. Here, we present a molecular dynamics-based routine that bypasses current limitations in conformational sampling and extensively profiles the free energy landscape of peptidic macrocycles in solution. We perform accelerated molecular dynamics simulations to capture a diverse conformational ensemble. By applying an energetic cutoff, followed by geometric clustering, we demonstrate the striking robustness and efficiency of the approach in identifying highly populated conformational states of cyclic peptides. The resulting structural and thermodynamic information is benchmarked against interproton distances from NMR experiments and conformational states identified by X-ray crystallography. Using three different model systems of varying size and flexibility, we show that the method reliably reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles and holds promise for structure-based drug design. PMID:29652495

  8. Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization.

    PubMed

    Kamenik, Anna S; Lessel, Uta; Fuchs, Julian E; Fox, Thomas; Liedl, Klaus R

    2018-05-29

    Macrocycles are of considerable interest as highly specific drug candidates, yet they challenge standard conformer generators with their large number of rotatable bonds and conformational restrictions. Here, we present a molecular dynamics-based routine that bypasses current limitations in conformational sampling and extensively profiles the free energy landscape of peptidic macrocycles in solution. We perform accelerated molecular dynamics simulations to capture a diverse conformational ensemble. By applying an energetic cutoff, followed by geometric clustering, we demonstrate the striking robustness and efficiency of the approach in identifying highly populated conformational states of cyclic peptides. The resulting structural and thermodynamic information is benchmarked against interproton distances from NMR experiments and conformational states identified by X-ray crystallography. Using three different model systems of varying size and flexibility, we show that the method reliably reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles and holds promise for structure-based drug design.

  9. Non-pathological complete paternal uniparental isodisomy of chromosome 2 revealed in a maternity testing case.

    PubMed

    Chen, Man; Jiang, Jian; Li, Chen; Ren, He; Chen, Wei; Liu, Zhiyong; Cheng, Feng; Zhao, Jing; Chen, Tong; Chen, Chuguang; Yan, Jiangwei

    2018-05-25

    We present a duo paternity test case to assess the biological relationship between a woman and her female child. After analyzing 57 autosomal and 19 X-chromosomal short tandem repeat loci, mother-daughter exclusions were discovered at four loci, which were all located on chromosome 2. Further testing of whole-genome single nucleotide polymorphisms confirmed that the daughter had complete uniparental disomy (UPD) of chromosome 2. This study presents a cautionary case demonstrating that hasty decisions of parentage exclusion should not be made when genetic markers on the same chromosome do not conform to Mendel's laws due to UPD.

  10. Population genetic structure of the dengue mosquito Aedes aegypti in Venezuela.

    PubMed

    Herrera, Flor; Urdaneta, Ludmel; Rivero, José; Zoghbi, Normig; Ruiz, Johanny; Carrasquel, Gabriela; Martínez, José Antonio; Pernalete, Martha; Villegas, Patricia; Montoya, Ana; Rubio-Palis, Yasmin; Rojas, Elina

    2006-09-01

    The mosquito Aedes aegypti is the main vector of dengue in Venezuela. The genetic structure of this vector was investigated in 24 samples collected from eight geographic regions separated by up to 1160 km. We examined the distribution of a 359-basepair region of the NADH dehydrogenase subunit 4 mitochondrial gene among 1144 Ae. aegypti from eight collections. This gene was amplified by the polymerase chain reaction and tested for variation using single strand conformation polymorphism analysis. Seven haplotypes were detected throughout Venezuela and these were sorted into two clades. Significant differentiation was detected among collections and these were genetically isolated by distance.

  11. Isolation and characterization of eight novel microsatellite loci in the double-crested cormorant (Phalacrocorax auritus)

    USGS Publications Warehouse

    Mercer, Dacey; Haig, Susan; Mullins, Thomas

    2010-01-01

    We describe the isolation and characterization of eight microsatellite loci from the double-crested cormorant (Phalacrocorax auritus). Genetic variability was assessed using 60 individuals from three populations. All loci were variable with the number of alleles ranging from two to 17 per locus, and observed heterozygosity varying from 0.05 to 0.89. No loci showed signs of linkage disequilibrium and all loci conformed to Hardy–Weinberg equilibrium frequencies. Further, all loci amplified and were polymorphic in two related Phalacrocorax species. These loci should prove useful for population genetic studies of the double-crested cormorant and other pelecaniform species.

  12. Atomic structures of corkscrew-forming segments of SOD1 reveal varied oligomer conformations.

    PubMed

    Sangwan, Smriti; Sawaya, Michael R; Murray, Kevin A; Hughes, Michael P; Eisenberg, David S

    2018-02-17

    The aggregation cascade of disease-related amyloidogenic proteins, terminating in insoluble amyloid fibrils, involves intermediate oligomeric states. The structural and biochemical details of these oligomers have been largely unknown. Here we report crystal structures of variants of the cytotoxic oligomer-forming segment residues 28-38 of the ALS-linked protein, SOD1. The crystal structures reveal three different architectures: corkscrew oligomeric structure, nontwisting curved sheet structure and a steric zipper proto-filament structure. Our work highlights the polymorphism of the segment 28-38 of SOD1 and identifies the molecular features of amyloidogenic entities. © 2018 The Protein Society.

  13. Substrate-Independent Epitaxial Growth of the Metal-Organic Framework MOF-508a.

    PubMed

    Wilson, M; Barrientos-Palomo, S N; Stevens, P C; Mitchell, N L; Oswald, G; Nagaraja, C M; Badyal, J P S

    2018-01-31

    Plasmachemical deposition is a substrate-independent method for the conformal surface functionalization of solid substrates. Structurally well-defined pulsed plasma deposited poly(1-allylimidazole) layers provide surface imidazole linker groups for the directed liquid-phase epitaxial (layer-by-layer) growth of metal-organic frameworks (MOFs) at room temperature. For the case of microporous [Zn (benzene-1,4-dicarboxylate)-(4,4'-bipyridine) 0.5 ] (MOF-508), the MOF-508a polymorph containing two interpenetrating crystal lattice frameworks undergoes orientated Volmer-Weber growth and displays CO 2 gas capture behavior at atmospheric concentrations in proportion to the number of epitaxially grown MOF-508 layers.

  14. Density-based clustering of small peptide conformations sampled from a molecular dynamics simulation.

    PubMed

    Kim, Minkyoung; Choi, Seung-Hoon; Kim, Junhyoung; Choi, Kihang; Shin, Jae-Min; Kang, Sang-Kee; Choi, Yun-Jaie; Jung, Dong Hyun

    2009-11-01

    This study describes the application of a density-based algorithm to clustering small peptide conformations after a molecular dynamics simulation. We propose a clustering method for small peptide conformations that enables adjacent clusters to be separated more clearly on the basis of neighbor density. Neighbor density means the number of neighboring conformations, so if a conformation has too few neighboring conformations, then it is considered as noise or an outlier and is excluded from the list of cluster members. With this approach, we can easily identify clusters in which the members are densely crowded in the conformational space, and we can safely avoid misclustering individual clusters linked by noise or outliers. Consideration of neighbor density significantly improves the efficiency of clustering of small peptide conformations sampled from molecular dynamics simulations and can be used for predicting peptide structures.

  15. Comparison of PCR-DGGE and PCR-SSCP analysis for bacterial flora of Japanese traditional fermented fish products, aji-narezushi and iwashi-nukazuke.

    PubMed

    An, Choa; Takahashi, Hajime; Kimura, Bon; Kuda, Takashi

    2010-08-30

    The bacterial flora of two Japanese traditional fermented fish products, aji-narezushi (salted and long-fermented horse mackerel (Trachurus japonicas) with rice) and iwashi-nukazuke (salted and long-fermented sardine (Sardinops melanostica) with rice bran), was analysed using non-culture-based polymerase chain reaction (PCR) denaturing gradient gel electrophoresis (DGGE) and culture-based PCR single-strand conformation polymorphism (SSCP) methods. Viable plate counts in aji-narezushi and iwashi-nukazuke were about 6.3-6.6 and 5.7-6.9 log colony-forming units g(-1) respectively. In the PCR-DGGE analysis, Lactobacillus acidipiscis was detected as the predominant bacterium in two of three aji-narezushi samples, while Lactobacillus versmoldensis was predominant in the third sample. By the PCR-SSCP method, Lb. acidipiscis and Lactobacillus plantarum were isolated as the predominant bacteria, while Lb. versmoldensis was not detected. The predominant bacterium in two of three iwashi-nukazuke samples was Tetragenococcus muriaticus, while Tetragenococcus halophilus was predominant in the third sample. The results suggest that the detection of some predominant lactic acid bacteria species in fermented fish by cultivation methods is difficult. Copyright (c) 2010 Society of Chemical Industry.

  16. Association of GABA(B)R1 receptor gene polymorphism with obstructive sleep apnea syndrome.

    PubMed

    Bayazit, Yildirim A; Yilmaz, Metin; Kokturk, Oguz; Erdal, M Emin; Ciftci, Tansu; Gokdogan, Tuba; Kemaloglu, Yusuf; Ileri, Fikret

    2007-01-01

    GABA(B)R (gamma-amino butyric acid B receptor)-mediated neurotransmission has been implicated in the pathophysiology of a variety of neuropsychiatric disorders. GABA(B)R1 gene variants were identified by single-strand conformation analysis. The nucleotide exchanges cause a substitution of alanine to valine in exon 1a1 (Ala20Val), a substitution of glycine to serine in exon 7 (Gly489Ser) and a silent C to G nucleotide exchange encoding the amino acid phenylalanine in exon 11 (Phe658Phe). The significance of GABA(B)R1a gene polymorphism in obstructive sleep apnea syndrome (OSAS) as well as the association of these polymorphisms with the polysomnography findings in OSAS patients are not known. In this study, we aimed to assess the significance of 3 different GABA(B)R1 gene polymorphisms (Ala20Val, Gly489Ser and Phe658Phe) in OSAS. Seventy-five patients (23 female and 52 male) with OSAS and 99 healthy volunteers (51 female, 48 male) were included in the study to assess Ala20Val, Gly489Ser and Phe658Phe polymorphisms of the GABA(B)R1 gene. For the Ala20Val variants, there was no significant difference between the genotypes and allele frequencies of the patients and controls, nor between both genders (p > 0.05). For Phe658Phe polymorphism, there was no significant difference between genotypes and allele frequencies of the patients and controls (p > 0.05). However, the C/C genotype was overrepresented and the T/C genotype was less frequent in male than female patients (p = 0.03). The C/C genotype was overrepresented and the T/C genotype was less frequent in male patients than male controls (p = 0.01). For GABA(B)R1-Gly489Ser polymorphism, all of the patients and controls had G/G genotype. The apnea arousal index scores of the male patients with C/C genotype were significantly higher than in the patients with C/T genotype (p = 0.01). The percent total sleep time in non-REM 1 scores of the male patients with T/T genotype were significantly higher than in the patients with T/C genotype (p = 0.021). The percent total sleep time in non-REM 2 scores of the female patients with C/C genotype were significantly higher than in the patients with C/T genotype (p = 0.006). The Ala20Val polymorphism of the GABA(B)R1 gene may be associated with OSAS, whereas Gly489Ser polymorphism does not seem to be involved in OSAS. The C/C variant of the Phe658Phe polymorphism GABA(B)R1 gene seems associated with the occurrence of OSAS and is also associated with some sleep related parameters (apnea arousal index and percent total sleep time in non-REM) recorded by polysomnography. Copyright (c) 2007 S. Karger AG, Basel.

  17. Effect of polymorphisms in candidate genes on carcass and meat quality traits in double muscled Piemontese cattle.

    PubMed

    Ribeca, C; Bonfatti, V; Cecchinato, A; Albera, A; Gallo, L; Carnier, P

    2014-03-01

    The aim of this study was to investigate the association between 10 candidate genes and carcass weight and conformation, carcass daily gain, and meat quality (pH, color, cooking loss, drip loss and shear force) in 990 double-muscled Piemontese young bulls. Animals were genotyped at each of the following genes: growth hormone, growth hormone receptor, pro-opiomelanocortin, pro-opiomelanocortin class 1 homeobox 1, melanocortin-4 receptor, corticotrophin-releasing hormone, diacylglycerol O-acyltransferase-1, thyroglobulin, carboxypeptidase E and gamma-3 regulatory subunit of the AMP-activated protein kinase. All the investigated SNPs had additive effects which were relevant for at least one of the traits. Relevant associations between the investigated SNPs and carcass weight, carcass daily gain and carcass conformation were detected, whereas associations of SNPs with meat quality were moderate. Results confirmed some of previously reported associations, but diverged for others. Validation in other cattle breeds is required to use these SNPs in gene-assisted selection programs for enhancement of carcass traits and meat quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Genetic Mapping of Fixed Phenotypes: Disease Frequency as a Breed Characteristic

    PubMed Central

    Jones, Paul; Martin, Alan; Ostrander, Elaine A.; Lark, Karl G.

    2009-01-01

    Traits that have been stringently selected to conform to specific criteria in a closed population are phenotypic stereotypes. In dogs, Canis familiaris, such stereotypes have been produced by breeding for conformation, performance (behaviors), etc. We measured phenotypes on a representative sample to establish breed stereotypes. DNA samples from 147 dog breeds were used to characterize single nucleotide polymorphism allele frequencies for association mapping of breed stereotypes. We identified significant size loci (quantitative trait loci [QTLs]), implicating candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Behavioral loci for herding, pointing, and boldness implicated candidate genes appropriate to behavior (e.g., MC2R, DRD1, and PCDH9). Significant loci for longevity, a breed characteristic inversely correlated with breed size, were identified. The power of this approach to identify loci regulating the incidence of specific polygenic diseases is demonstrated by the association of a specific IGF1 haplotype with hip dysplasia, patella luxation, and pacreatitis. PMID:19321632

  19. Genetic mapping of fixed phenotypes: disease frequency as a breed characteristic.

    PubMed

    Chase, Kevin; Jones, Paul; Martin, Alan; Ostrander, Elaine A; Lark, Karl G

    2009-01-01

    Traits that have been stringently selected to conform to specific criteria in a closed population are phenotypic stereotypes. In dogs, Canis familiaris, such stereotypes have been produced by breeding for conformation, performance (behaviors), etc. We measured phenotypes on a representative sample to establish breed stereotypes. DNA samples from 147 dog breeds were used to characterize single nucleotide polymorphism allele frequencies for association mapping of breed stereotypes. We identified significant size loci (quantitative trait loci [QTLs]), implicating candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Behavioral loci for herding, pointing, and boldness implicated candidate genes appropriate to behavior (e.g., MC2R, DRD1, and PCDH9). Significant loci for longevity, a breed characteristic inversely correlated with breed size, were identified. The power of this approach to identify loci regulating the incidence of specific polygenic diseases is demonstrated by the association of a specific IGF1 haplotype with hip dysplasia, patella luxation, and pancreatitis.

  20. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids?

    PubMed Central

    2017-01-01

    Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events. PMID:29181193

  1. [Effect of TNF-alpha gene polymorphism on outcome of thalidomide-based regimens for multiple myeloma].

    PubMed

    DU, Juan; Yuan, Zhen-Gang; Zhang, Chun-Yang; Fu, Wei-Jun; Jiang, Hua; Chen, Bao-An; Hou, Jian

    2009-10-01

    To evaluate the effect of polymorphism at the -238 and -308 position of the TNF-alpha promotor region on the clinical outcome of thalidomide (Thal)-based regimens for the treatment of multiple myeloma (MM). The polymorphism at the -238 and -308 position of the TNF-alpha promotor region of 168 MM patients treated with Thal-based regimens were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Genotypes were tested for association with overall response by logistic regression, and survival was evaluated by univariate and multivariate analysis. In TNF-alpha -238 position, 11 (6.5%) patients had GA genotype and 1 (0.6%) AA genotype. In TNF-alpha -308 position, 19 (11.3%) had GA genotype and 1 (0.6%) AA genotype. In univariate analysis, the TNF-alpha -238 GA + AA genotypes were associated with a significantly prolonged progression free survival (PFS) (P = 0.017), and a better overall survival (OS) (P = 0.150). Multivariate COX regression analysis showed that TNF-alpha -238 polymorphic status was an independent prognostic factor for prolonged PFS (P = 0.049). The TNF-alpha -238 polymorphic status is associated with a favorable clinical outcome in MM patients treated with thalidomide-based regimen. The polymorphism status of TNF-alpha gene might be of promise for developing a more informative stratification system for MM.

  2. Effects of GWAS-Associated Genetic Variants on lncRNAs within IBD and T1D Candidate Loci

    PubMed Central

    Brorsson, Caroline A.; Pociot, Flemming

    2014-01-01

    Long non-coding RNAs are a new class of non-coding RNAs that are at the crosshairs in many human diseases such as cancers, cardiovascular disorders, inflammatory and autoimmune disease like Inflammatory Bowel Disease (IBD) and Type 1 Diabetes (T1D). Nearly 90% of the phenotype-associated single-nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) lie outside of the protein coding regions, and map to the non-coding intervals. However, the relationship between phenotype-associated loci and the non-coding regions including the long non-coding RNAs (lncRNAs) is poorly understood. Here, we systemically identified all annotated IBD and T1D loci-associated lncRNAs, and mapped nominally significant GWAS/ImmunoChip SNPs for IBD and T1D within these lncRNAs. Additionally, we identified tissue-specific cis-eQTLs, and strong linkage disequilibrium (LD) signals associated with these SNPs. We explored sequence and structure based attributes of these lncRNAs, and also predicted the structural effects of mapped SNPs within them. We also identified lncRNAs in IBD and T1D that are under recent positive selection. Our analysis identified putative lncRNA secondary structure-disruptive SNPs within and in close proximity (+/−5 kb flanking regions) of IBD and T1D loci-associated candidate genes, suggesting that these RNA conformation-altering polymorphisms might be associated with diseased-phenotype. Disruption of lncRNA secondary structure due to presence of GWAS SNPs provides valuable information that could be potentially useful for future structure-function studies on lncRNAs. PMID:25144376

  3. Trigger loop dynamics can explain stimulation of intrinsic termination by bacterial RNA polymerase without terminator hairpin contact.

    PubMed

    Ray-Soni, Ananya; Mooney, Rachel A; Landick, Robert

    2017-10-31

    In bacteria, intrinsic termination signals cause disassembly of the highly stable elongating transcription complex (EC) over windows of two to three nucleotides after kilobases of RNA synthesis. Intrinsic termination is caused by the formation of a nascent RNA hairpin adjacent to a weak RNA-DNA hybrid within RNA polymerase (RNAP). Although the contributions of RNA and DNA sequences to termination are largely understood, the roles of conformational changes in RNAP are less well described. The polymorphous trigger loop (TL), which folds into the trigger helices to promote nucleotide addition, also is proposed to drive termination by folding into the trigger helices and contacting the terminator hairpin after invasion of the hairpin in the RNAP main cleft [Epshtein V, Cardinale CJ, Ruckenstein AE, Borukhov S, Nudler E (2007) Mol Cell 28:991-1001]. To investigate the contribution of the TL to intrinsic termination, we developed a kinetic assay that distinguishes effects of TL alterations on the rate at which ECs terminate from effects of the TL on the nucleotide addition rate that indirectly affect termination efficiency by altering the time window in which termination can occur. We confirmed that the TL stimulates termination rate, but found that stabilizing either the folded or unfolded TL conformation decreased termination rate. We propose that conformational fluctuations of the TL (TL dynamics), not TL-hairpin contact, aid termination by increasing EC conformational diversity and thus access to favorable termination pathways. We also report that the TL and the TL sequence insertion (SI3) increase overall termination efficiency by stimulating pausing, which increases the flux of ECs into the termination pathway. Published under the PNAS license.

  4. Trigger loop dynamics can explain stimulation of intrinsic termination by bacterial RNA polymerase without terminator hairpin contact

    PubMed Central

    Ray-Soni, Ananya; Mooney, Rachel A.; Landick, Robert

    2017-01-01

    In bacteria, intrinsic termination signals cause disassembly of the highly stable elongating transcription complex (EC) over windows of two to three nucleotides after kilobases of RNA synthesis. Intrinsic termination is caused by the formation of a nascent RNA hairpin adjacent to a weak RNA−DNA hybrid within RNA polymerase (RNAP). Although the contributions of RNA and DNA sequences to termination are largely understood, the roles of conformational changes in RNAP are less well described. The polymorphous trigger loop (TL), which folds into the trigger helices to promote nucleotide addition, also is proposed to drive termination by folding into the trigger helices and contacting the terminator hairpin after invasion of the hairpin in the RNAP main cleft [Epshtein V, Cardinale CJ, Ruckenstein AE, Borukhov S, Nudler E (2007) Mol Cell 28:991–1001]. To investigate the contribution of the TL to intrinsic termination, we developed a kinetic assay that distinguishes effects of TL alterations on the rate at which ECs terminate from effects of the TL on the nucleotide addition rate that indirectly affect termination efficiency by altering the time window in which termination can occur. We confirmed that the TL stimulates termination rate, but found that stabilizing either the folded or unfolded TL conformation decreased termination rate. We propose that conformational fluctuations of the TL (TL dynamics), not TL-hairpin contact, aid termination by increasing EC conformational diversity and thus access to favorable termination pathways. We also report that the TL and the TL sequence insertion (SI3) increase overall termination efficiency by stimulating pausing, which increases the flux of ECs into the termination pathway. PMID:29078293

  5. DockRank: Ranking docked conformations using partner-specific sequence homology-based protein interface prediction

    PubMed Central

    Xue, Li C.; Jordan, Rafael A.; EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2015-01-01

    Selecting near-native conformations from the immense number of conformations generated by docking programs remains a major challenge in molecular docking. We introduce DockRank, a novel approach to scoring docked conformations based on the degree to which the interface residues of the docked conformation match a set of predicted interface residues. Dock-Rank uses interface residues predicted by partner-specific sequence homology-based protein–protein interface predictor (PS-HomPPI), which predicts the interface residues of a query protein with a specific interaction partner. We compared the performance of DockRank with several state-of-the-art docking scoring functions using Success Rate (the percentage of cases that have at least one near-native conformation among the top m conformations) and Hit Rate (the percentage of near-native conformations that are included among the top m conformations). In cases where it is possible to obtain partner-specific (PS) interface predictions from PS-HomPPI, DockRank consistently outperforms both (i) ZRank and IRAD, two state-of-the-art energy-based scoring functions (improving Success Rate by up to 4-fold); and (ii) Variants of DockRank that use predicted interface residues obtained from several protein interface predictors that do not take into account the binding partner in making interface predictions (improving success rate by up to 39-fold). The latter result underscores the importance of using partner-specific interface residues in scoring docked conformations. We show that DockRank, when used to re-rank the conformations returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/. PMID:23873600

  6. DockRank: ranking docked conformations using partner-specific sequence homology-based protein interface prediction.

    PubMed

    Xue, Li C; Jordan, Rafael A; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2014-02-01

    Selecting near-native conformations from the immense number of conformations generated by docking programs remains a major challenge in molecular docking. We introduce DockRank, a novel approach to scoring docked conformations based on the degree to which the interface residues of the docked conformation match a set of predicted interface residues. DockRank uses interface residues predicted by partner-specific sequence homology-based protein-protein interface predictor (PS-HomPPI), which predicts the interface residues of a query protein with a specific interaction partner. We compared the performance of DockRank with several state-of-the-art docking scoring functions using Success Rate (the percentage of cases that have at least one near-native conformation among the top m conformations) and Hit Rate (the percentage of near-native conformations that are included among the top m conformations). In cases where it is possible to obtain partner-specific (PS) interface predictions from PS-HomPPI, DockRank consistently outperforms both (i) ZRank and IRAD, two state-of-the-art energy-based scoring functions (improving Success Rate by up to 4-fold); and (ii) Variants of DockRank that use predicted interface residues obtained from several protein interface predictors that do not take into account the binding partner in making interface predictions (improving success rate by up to 39-fold). The latter result underscores the importance of using partner-specific interface residues in scoring docked conformations. We show that DockRank, when used to re-rank the conformations returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/. Copyright © 2013 Wiley Periodicals, Inc.

  7. Interleukin-17 SNPs and serum levels increase ulcerative colitis risk: a meta-analysis.

    PubMed

    Li, Juan; Tian, Hao; Jiang, Hui-Jun; Han, Bin

    2014-11-14

    To investigate the associations of interleukin-17 (IL-17) genetic polymorphisms and serum levels with ulcerative colitis (UC) risk. Relevant articles were identified through a search of the following electronic databases, excluding language restriction: (1) the Cochrane Library Database (Issue 12, 2013); (2) Web of Science (1945-2013); (3) PubMed (1966-2013); (4) CINAHL (1982-2013); (5) EMBASE (1980-2013); and (6) the Chinese Biomedical Database (1982-2013). Meta-analysis was conducted using STATA 12.0 software. Crude odds ratios and standardized mean differences (SMDs) with corresponding 95% confidence intervals (CIs) were calculated. All of the included studies met all of the following five criteria: (1) the study design must be a clinical cohort or a case-control study; (2) the study must relate to the relationship between IL-17A/F genetic polymorphisms or serum IL-17 levels and the risk of UC; (3) all patients must meet the diagnostic criteria for UC; (4) the study must provide sufficient information about single nucleotide polymorphism frequencies or serum IL-17 levels; and (5) the genotype distribution of healthy controls must conform to the Hardy-Weinberg equilibrium (HWE). The Newcastle-Ottawa Scale (NOS) criteria were used to assess the methodological quality of the studies. The NOS criteria included three aspects: (1) subject selection: 0-4; (2) comparability of subjects: 0-2; and (3) clinical outcome: 0-3. NOS scores ranged from 0 to 9, with a score ≥ 7 indicating good quality. Of the initial 177 articles, only 16 case-control studies met all of the inclusion criteria. A total of 1614 UC patients and 2863 healthy controls were included in this study. Fourteen studies were performed on Asian populations, and two studies on Caucasian populations. Results of the meta-analysis revealed that IL-17A and IL-17F genetic polymorphisms potentially increased UC risk under both allele and dominant models (P < 0.001 for all). The results also showed that UC patients had higher serum IL-17 levels than healthy controls (SMD = 5.95, 95%CI: 4.25-7.65, P < 0.001). Furthermore, serum IL-17 levels significantly correlated with the severity of UC (moderate vs mild: SMD = 2.59, 95%CI: 0.03-5.16, P < 0.05; severe vs mild: SMD = 7.09, 95%CI: 3.96-10.23, P < 0.001; severe vs moderate: SMD = 5.84, 95%CI: 5.09-6.59, P < 0.001). The NOS score was ≥ 5 for all of the included studies. Based on the sensitivity analysis, no single study influenced the overall pooled estimates. Neither the Begger's funnel plots nor Egger's test displayed strong statistical evidence for publication bias (IL-17A/F genetic polymorphisms: t = -2.60, P = 0.019; serum IL-17 levels: t = -1.54, P = 0.141). The findings strongly suggest that IL-17A/F genetic polymorphisms and serum IL-17 levels contribute to the development and progression of UC.

  8. Guiding Conformation Space Search with an All-Atom Energy Potential

    PubMed Central

    Brunette, TJ; Brock, Oliver

    2009-01-01

    The most significant impediment for protein structure prediction is the inadequacy of conformation space search. Conformation space is too large and the energy landscape too rugged for existing search methods to consistently find near-optimal minima. To alleviate this problem, we present model-based search, a novel conformation space search method. Model-based search uses highly accurate information obtained during search to build an approximate, partial model of the energy landscape. Model-based search aggregates information in the model as it progresses, and in turn uses this information to guide exploration towards regions most likely to contain a near-optimal minimum. We validate our method by predicting the structure of 32 proteins, ranging in length from 49 to 213 amino acids. Our results demonstrate that model-based search is more effective at finding low-energy conformations in high-dimensional conformation spaces than existing search methods. The reduction in energy translates into structure predictions of increased accuracy. PMID:18536015

  9. Evaluation of genetic diversity in Chinese kale (Brassica oleracea L. var. alboglabra Bailey) by using rapid amplified polymorphic DNA and sequence-related amplified polymorphism markers.

    PubMed

    Zhang, J; Zhang, L G

    2014-02-14

    Chinese kale is an original Chinese vegetable of the Cruciferae family. To select suitable parents for hybrid breeding, we thoroughly analyzed the genetic diversity of Chinese kale. Random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) molecular markers were used to evaluate the genetic diversity across 21 Chinese kale accessions from AVRDC and Guangzhou in China. A total of 104 bands were detected by 11 RAPD primers, of which 66 (63.5%) were polymorphic, and 229 polymorphic bands (68.4%) were observed in 335 bands amplified by 17 SRAP primer combinations. The dendrogram showed the grouping of the 21 accessions into 4 main clusters based on RAPD data, and into 6 clusters based on SRAP and combined data (RAPD + SRAP). The clustering of accessions based on SRAP data was consistent with petal colors. The Mantel test indicated a poor fit for the RAPD and SRAP data (r = 0.16). These results have an important implication for Chinese kale germplasm characterization and improvement.

  10. Inaccurate Color Discrimination by Pollinators Promotes Evolution of Discrete Color Polymorphism in Food-Deceptive Flowers.

    PubMed

    Kagawa, Kotaro; Takimoto, Gaku

    2016-02-01

    Many plant species employing a food-deceptive pollination strategy show discrete or continuous floral polymorphism within their populations. Previous studies have suggested that negative frequency-dependent selection (NFDS) caused by the learning behavior of pollinators was responsible for the maintenance of floral polymorphism. However, NFDS alone does not explain why and when discrete or continuous polymorphism evolves. In this study, we use an evolutionary simulation model to propose that inaccurate discrimination of flower colors by pollinators results in evolution of discrete flower color polymorphism. Simulations showed that associative learning based on inaccurate discrimination in pollinators caused disruptive selection of flower colors. The degree of inaccuracy determined the number of discrete flower colors that evolved. Our results suggest that animal behavior based on inaccurate discrimination may be a general cause of disruptive selection that promotes discrete trait polymorphism.

  11. Sequence-dependent DNA deformability studied using molecular dynamics simulations.

    PubMed

    Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori

    2007-01-01

    Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.

  12. Decoding the conformation-linked functional properties of nucleic acids by the use of computational tools.

    PubMed

    Iacovelli, Federico; Falconi, Mattia

    2015-09-01

    DNA and RNA are large and flexible polymers selected by nature to transmit information. The most common DNA three-dimensional structure is represented by the double helix, but this biopolymer is extremely flexible and polymorphic, and can easily change its conformation to adapt to different interactions and purposes. DNA can also adopt singular topologies, giving rise, for instance, to supercoils, formed because of the limited free rotation of the DNA domain flanking a replication or transcription complex. Our understanding of the importance of these unusual or transient structures is growing, as recent studies of DNA topology, supercoiling, knotting and linking have shown that the geometric changes can drive, or strongly influence, the interactions between protein and DNA, so altering its own metabolism. On the other hand, the unique self-recognition properties of DNA, determined by the strict Watson-Crick rules of base pairing, make this material ideal for the creation of self-assembling, predesigned nanostructures. The construction of such structures is one of the main focuses of the thriving area of DNA nanotechnology, where several assembly strategies have been employed to build increasingly complex DNA nanostructures. DNA nanodevices can have direct applications in biomedicine, but also in the materials science field, requiring the immersion of DNA in an environment far from the physiological one. Crucial help in the understanding and planning of natural and artificial nanostructures is given by modern computer simulation techniques, which are able to provide a reliable structural and dynamic description of nucleic acids. © 2015 FEBS.

  13. Influence of Methylenetetrahydrofolate Reductase C677T Polymorphism on the Risk of Lung Cancer and the Clinical Response to Platinum-Based Chemotherapy for Advanced Non-Small Cell Lung Cancer: An Updated Meta-Analysis

    PubMed Central

    Zhu, Ning; Gong, Yi; He, Jian; Xia, Jingwen

    2013-01-01

    Purpose Methylenetetrahydrofolate reductase (MTHFR) has been implicated in lung cancer risk and response to platinum-based chemotherapy in advanced non-small cell lung cancer (NSCLC). However, the results are controversial. We performed meta-analysis to investigate the effect of MTHFR C677T polymorphism on lung cancer risk and response to platinum-based chemotherapy in advanced NSCLC. Materials and Methods The databases of PubMed, Ovid, Wanfang and Chinese Biomedicine were searched for eligible studies. Nineteen studies on MTHFR C677T polymorphism and lung cancer risk and three articles on C677T polymorphism and response to platinum-based chemotherapy in advanced NSCLC, were identified. Results The results indicated that the allelic contrast, homozygous contrast and recessive model of the MTHFR C677T polymorphism were associated significantly with increased lung cancer risk. In the subgroup analysis, the C677T polymorphism was significantly correlated with an increased risk of NSCLC, with the exception of the recessive model. The dominant model and the variant T allele showed a significant association with lung cancer susceptibility of ever smokers. Male TT homozygote carriers had a higher susceptibility, but the allelic contrast and homozygote model had a protective effect in females. No relationship was observed for SCLC in any comparison model. In addition, MTHFR 677TT homozygote carriers had a better response to platinum-based chemotherapy in advanced NSCLC in the recessive model. Conclusion The MTHFR C677T polymorphism might be a genetic marker for lung cancer risk or response to platinum-based chemotherapy in advanced NSCLC. However, our results require further verification. PMID:24142642

  14. Conformational dynamics is key to understanding loss-of-function of NQO1 cancer-associated polymorphisms and its correction by pharmacological ligands

    NASA Astrophysics Data System (ADS)

    Encarnación, Medina-Carmona; Palomino-Morales, Rogelio J.; Fuchs, Julian E.; Esperanza, Padín-Gonzalez; Noel, Mesa-Torres; Salido, Eduardo; Timson, David J.; Pey, Angel L.

    2016-02-01

    Protein dynamics is essential to understand protein function and stability, even though is rarely investigated as the origin of loss-of-function due to genetic variations. Here, we use biochemical, biophysical, cell and computational biology tools to study two loss-of-function and cancer-associated polymorphisms (p.R139W and p.P187S) in human NAD(P)H quinone oxidoreductase 1 (NQO1), a FAD-dependent enzyme which activates cancer pro-drugs and stabilizes several oncosuppressors. We show that p.P187S strongly destabilizes the NQO1 dimer in vitro and increases the flexibility of the C-terminal domain, while a combination of FAD and the inhibitor dicoumarol overcome these alterations. Additionally, changes in global stability due to polymorphisms and ligand binding are linked to the dynamics of the dimer interface, whereas the low activity and affinity for FAD in p.P187S is caused by increased fluctuations at the FAD binding site. Importantly, NQO1 steady-state protein levels in cell cultures correlate primarily with the dynamics of the C-terminal domain, supporting a directional preference in NQO1 proteasomal degradation and the use of ligands binding to this domain to stabilize p.P187S in vivo. In conclusion, protein dynamics are fundamental to understanding loss-of-function in p.P187S, and to develop new pharmacological therapies to rescue this function.

  15. Building solids inside nano-space: from confined amorphous through confined solvate to confined 'metastable' polymorph.

    PubMed

    Nartowski, K P; Tedder, J; Braun, D E; Fábián, L; Khimyak, Y Z

    2015-10-14

    The nanocrystallisation of complex molecules inside mesoporous hosts and control over the resulting structure is a significant challenge. To date the largest organic molecule crystallised inside the nano-pores is a known pharmaceutical intermediate - ROY (259.3 g mol(-1)). In this work we demonstrate smart manipulation of the phase of a larger confined pharmaceutical - indomethacin (IMC, 357.8 g mol(-1)), a substance with known conformational flexibility and complex polymorphic behaviour. We show the detailed structural analysis and the control of solid state transformations of encapsulated molecules inside the pores of mesoscopic cellular foam (MCF, pore size ca. 29 nm) and controlled pore glass (CPG, pore size ca. 55 nm). Starting from confined amorphous IMC we drive crystallisation into a confined methanol solvate, which upon vacuum drying leads to the stabilised rare form V of IMC inside the MCF host. In contrast to the pure form, encapsulated form V does not transform into a more stable polymorph upon heating. The size of the constraining pores and the drug concentration within the pores determine whether the amorphous state of the drug is stabilised or it recrystallises into confined nanocrystals. The work presents, in a critical manner, an application of complementary techniques (DSC, PXRD, solid-state NMR, N2 adsorption) to confirm unambiguously the phase transitions under confinement and offers a comprehensive strategy towards the formation and control of nano-crystalline encapsulated organic solids.

  16. Genetic screening of the lipoprotein lipase gene for mutations in Chinese subjects with or without hypertriglyceridemia.

    PubMed

    Yang, Yuhong; Mu, Yunxiang; Zhao, Yu; Liu, Xinyu; Zhao, Lili; Wang, Junmei; Xie, Yonghong

    2007-05-01

    To investigate the association between the mutations in lipoprotein lipase gene and hypertriglyceridemia (HTG). The lipoprotein lipase (LPL) gene was screened for mutations in 386 Chinese subjects with (108 cases in the HTG group) or without HTG (278 cases in the control group), by single-strand conformation polymorphism (SSCP) analysis and DNA sequencing. One novel silent mutation L103L, one missense mutation P207L, three splicing mutations Int3/3'-ass/C(-6) --> T, and the common S447X polymorphism has been identified in the whole coding region and exon-intron junctions of the LPL gene were examined. Heterozygous P207L found in the HTG group was the first case reported in Asia and subsequently another P207L heterozygote was found in the proband's family, all of which suggested that P207L was one of the causes of familial combined hyperlipidemia, but was not so prevalent as that in French Canadian. Int3/3'-ass/C(-6) --> T was found in both groups in the present study although it was regarded as a pathogenic variant to HTG earlier on. Moreover about the beneficial polymorphism S447X, there was also some supportive evidence that the levels of triglycerides (TG) in S447X carriers were significantly lower than noncarriers in the subjects without HTG. The association between the LPL variants and HTG is quite complicated and versatile, genotyping of LPL in a larger-scale screening should be necessary and justifiable.

  17. Sequence polymorphisms at the growth hormone GH1/GH2-N and GH2-Z gene copies and their relationship with dairy traits in domestic sheep (Ovis aries).

    PubMed

    Vacca, G M; Dettori, M L; Balia, F; Luridiana, S; Mura, M C; Carcangiu, V; Pazzola, M

    2013-09-01

    The purpose was to analyze the growth hormone GH1/GH2-N and GH2-Z gene copies and to assess their possible association with milk traits in Sarda sheep. Two hundred multiparous lactating ewes were monitored. The two gene copies were amplified separately and each was used as template for a nested PCR, to investigate single strand conformation polymorphism (SSCP) of the 5'UTR, exon-1, exon-5 and 3'UTR DNA regions. SSCP analysis revealed marked differences in the number of polymorphic patterns between the two genes. Sequencing revealed five nucleotide changes at the GH1/GH2-N gene. Five nucleotide changes occurred at the GH2-Z gene: one was located in exon-5 (c.556G > A) and resulted in a putative amino acid substitution G186S. All the nucleotide changes were copy-specific, except c.*30delT, which was common to both GH1/GH2-N and GH2-Z. Variability in the promoter regions of each gene might have consequences on the expression level, due to the involvement in potential transcription factor binding sites. Both gene copies influenced milk yield. A correlation with milk protein and casein content was also evidenced. These results may have implications that make them useful for future breeding strategies in dairy sheep breeding.

  18. Association between single nucleotide polymorphisms of the transforming growth factor β1 gene and the risk of severe radiation esophagitis in patients with lung cancer.

    PubMed

    Guerra, Jose Luis Lopez; Gomez, Daniel; Wei, Qingyi; Liu, Zhengshen; Wang, Li-E; Yuan, Xianglin; Zhuang, Yan; Komaki, Ritusko; Liao, Zhongxing

    2012-12-01

    We investigated the association between single nucleotide polymorphisms (SNPs) in the transforming growth factor β1 (TGFβ1) gene and the risk of radiation-induced esophageal toxicity (RE) in patients with non-small-cell lung cancer (NSCLC). Ninety-seven NSCLC patients with available genomic DNA samples and mostly treated with intensity modulated radio(chemo)therapy from 2003 to 2006 were used as a test dataset and 101 NSCLC patients treated with 3-dimensional conformal radio(chemo)therapy from 1998 to 2002 were used as a validation set. We genotyped three SNPs of the TGFβ1 gene (rs1800469:C-509T, rs1800471:G915C, and rs1982073:T869C) by the polymerase chain reaction restriction fragment length polymorphism method. In the test dataset, the CT/TT genotypes of TGFβ1 rs1800469:C-509T were associated with a statistically significant higher risk of RE grade⩾3 in univariate (P=0.026) and multivariate analysis (P=0.045) when compared with the CC genotype. These results were again observed in both univariate (P=0.045) and multivariate (P=0.023) analysis in the validation dataset. We found and validated that the TGFβ1 rs1800469:C-509T genotype is associated with severe RE. This response marker may be used for guiding therapy intensity in an individual patient, which would further the goal of individualized therapy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. 4D Flexible Atom-Pairs: An efficient probabilistic conformational space comparison for ligand-based virtual screening

    PubMed Central

    2011-01-01

    Background The performance of 3D-based virtual screening similarity functions is affected by the applied conformations of compounds. Therefore, the results of 3D approaches are often less robust than 2D approaches. The application of 3D methods on multiple conformer data sets normally reduces this weakness, but entails a significant computational overhead. Therefore, we developed a special conformational space encoding by means of Gaussian mixture models and a similarity function that operates on these models. The application of a model-based encoding allows an efficient comparison of the conformational space of compounds. Results Comparisons of our 4D flexible atom-pair approach with over 15 state-of-the-art 2D- and 3D-based virtual screening similarity functions on the 40 data sets of the Directory of Useful Decoys show a robust performance of our approach. Even 3D-based approaches that operate on multiple conformers yield inferior results. The 4D flexible atom-pair method achieves an averaged AUC value of 0.78 on the filtered Directory of Useful Decoys data sets. The best 2D- and 3D-based approaches of this study yield an AUC value of 0.74 and 0.72, respectively. As a result, the 4D flexible atom-pair approach achieves an average rank of 1.25 with respect to 15 other state-of-the-art similarity functions and four different evaluation metrics. Conclusions Our 4D method yields a robust performance on 40 pharmaceutically relevant targets. The conformational space encoding enables an efficient comparison of the conformational space. Therefore, the weakness of the 3D-based approaches on single conformations is circumvented. With over 100,000 similarity calculations on a single desktop CPU, the utilization of the 4D flexible atom-pair in real-world applications is feasible. PMID:21733172

  20. Association Between P2RX7 Gene and Hepatocellular Carcinoma Susceptibility: A Case-Control Study in a Chinese Han Population

    PubMed Central

    Duan, Shaobo; Yu, Jie; Han, Zhiyu; Cheng, Zhigang; Liang, Ping

    2016-01-01

    Background Hepatocellular carcinoma (HCC) is one of the most common types of liver cancer. It is hypothesized that P2RX7 genetic polymorphisms have strong association with HCC susceptibility. Therefore, a case-control study was designed and performed to verify the association between P2RX7 gene polymorphisms and HCC susceptibility. Material/Methods A total of 646 subjects were recruited in our study, including 323 HCC patients and 323 healthy controls. Five gene polymorphisms, −762C>T (rs2393799), 946G>A (rs28360457), 1513A>C (rs3751143), 1068G>A (rs1718119), and 1096C>G (rs2230911), were selected. Odds ratio (ORs) and 95% confidence interval (CI) were used to quantify the association between P2RX7 gene polymorphisms and the susceptibility to HCC. All tests were performed using SPSS 20 and a 2-sided P value of less than 0.05 was considered to be statistically significant. Results Our results suggest that allelic frequencies of these 5 SNPs all conformed to Hardy-Weinberg equilibrium (HWE). There was no significant difference in genotype and allele distributions of −762C>T and 1096C>G between the case group and the control group. However, an increased risk of HCC was associated with 946G>A (A vs. G: OR=1.48, 95%CI=1.09–2.01, P=0.013; GA+AA vs. GG: OR=1.46, 95%CI=1.03–2.07, P=0.033). A similar increased risk was associated with 1513A>C polymorphism (C vs. A: OR=1.37, 95%CI=1.05–1.79, P=0.021; AC+CC vs. AA: OR=1.40, 95%CI=1.01–1.93, P=0.041). On the other hand, a decreased risk of HCC was associated with gene polymorphism of 1068G>A (A vs. G: OR=0.68, 95%CI=0.51–0.91, P=0.010; GA+AA vs. GG: OR=0.68, 95%CI=0.49–0.96, P=0.027; AA vs. GG: OR=0.42, 95%CI=0.18–0.99, P=0.048). Conclusions Our results suggest that 3 of the 5 polymorphisms of P2RX7 described above (1513A>C, 946G>A, and 1068G>A) are significantly associated with HCC susceptibility in a Chinese Han population. Studies with larger sample sizes are recommended to confirm whether our results will be applicable to different ethnic populations in China. PMID:27272229

  1. Potential Energy Surface-Based Automatic Deduction of Conformational Transition Networks and Its Application on Quantum Mechanical Landscapes of d-Glucose Conformers.

    PubMed

    Satoh, Hiroko; Oda, Tomohiro; Nakakoji, Kumiyo; Uno, Takeaki; Tanaka, Hiroaki; Iwata, Satoru; Ohno, Koichi

    2016-11-08

    This paper describes our approach that is built upon the potential energy surface (PES)-based conformational analysis. This approach automatically deduces a conformational transition network, called a conformational reaction route map (r-map), by using the Scaled Hypersphere Search of the Anharmonic Downward Distortion Following method (SHS-ADDF). The PES-based conformational search has been achieved by using large ADDF, which makes it possible to trace only low transition state (TS) barriers while restraining bond lengths and structures with high free energy. It automatically performs sampling the minima and TS structures by simply taking into account the mathematical feature of PES without requiring any a priori specification of variable internal coordinates. An obtained r-map is composed of equilibrium (EQ) conformers connected by reaction routes via TS conformers, where all of the reaction routes are already confirmed during the process of the deduction using the intrinsic reaction coordinate (IRC) method. The postcalculation analysis of the deduced r-map is interactively carried out using the RMapViewer software we have developed. This paper presents computational details of the PES-based conformational analysis and its application to d-glucose. The calculations have been performed for an isolated glucose molecule in the gas phase at the RHF/6-31G level. The obtained conformational r-map for α-d-glucose is composed of 201 EQ and 435 TS conformers and that for β-d-glucose is composed of 202 EQ and 371 TS conformers. For the postcalculation analysis of the conformational r-maps by using the RMapViewer software program we have found multiple minimum energy paths (MEPs) between global minima of 1 C 4 and 4 C 1 chair conformations. The analysis using RMapViewer allows us to confirm the thermodynamic and kinetic predominance of 4 C 1 conformations; that is, the potential energy of the global minimum of 4 C 1 is lower than that of 1 C 4 (thermodynamic predominance) and that the highest energy of those of all the TS structures along a route from 4 C 1 to 1 C 4 is lower than that of 1 C 4 to 4 C 1 (kinetic predominance).

  2. Specific energy contributions from competing hydrogen-bonded structures in six polymorphs of phenobarbital.

    PubMed

    Gelbrich, Thomas; Braun, Doris E; Griesser, Ulrich J

    2016-01-01

    In solid state structures of organic molecules, identical sets of H-bond donor and acceptor functions can result in a range of distinct H-bond connectivity modes. Specifically, competing H-bond structures (HBSs) may differ in the quantitative proportion between one-point and multiple-point H-bond connections. For an assessment of such HBSs, the effects of their internal as well as external (packing) interactions need to be taken into consideration. The semi-classical density sums (SCDS-PIXEL) method, which enables the calculation of interaction energies for molecule-molecule pairs, was used to investigate six polymorphs of phenobarbital (Pbtl) with different quantitative proportions of one-point and two-point H-bond connections. The structures of polymorphs V and VI of Pbtl were determined from single crystal data. Two-point H-bond connections are inherently inflexible in their geometry and lie within a small PIXEL energy range (-45.7 to -49.7 kJ mol(-1)). One-point H-bond connections are geometrically less restricted and subsequently show large variations in their dispersion terms and total energies (-23.1 to -40.5 kJ mol(-1)). The comparison of sums of interaction energies in small clusters containing only the strongest intermolecular interactions showed an advantage for compact HBSs with multiple-point connections, whereas alternative HBSs based on one-point connections may enable more favourable overall packing interactions (i.e. V vs. III). Energy penalties associated with experimental intramolecular geometries relative to the global conformational energy minimum were calculated and used to correct total PIXEL energies. The estimated order of stabilities (based on PIXEL energies) is III > I > II > VI > X > V, with a difference of just 1.7 kJ mol(-1) between the three most stable forms. For an analysis of competing HBSs, one has to consider the contributions from internal H-bond and non-H-bond interactions, from the packing of multiple HBS instances and intramolecular energy penalties. A compact HBS based on multiple-point H-bond connections should typically lead to more packing alternatives and ultimately to a larger number of viable low-energy structures than a competing one-point HBS (i.e. dimer vs. catemer). Coulombic interaction energies associated with typical short intermolecular C-H···O contact geometries are small in comparison with dispersion effects associated with the packing complementary molecular shapes.Graphical abstractCompeting H-bond motifs can differ markedly in their energy contributions.

  3. Genetic polymorphisms of genes coding to alcohol-metabolizing enzymes in western Mexicans: association of CYP2E1*c2/CYP2E1*5B allele with cirrhosis and liver function.

    PubMed

    García-Bañuelos, Jesús; Panduro, Arturo; Gordillo-Bastidas, Daniela; Gordillo-Bastidas, Elizabeth; Muñoz-Valle, José Francisco; Gurrola-Díaz, Carmen M; Sánchez-Enríquez, Sergio; Ruiz-Madrigal, Bertha; Bastidas-Ramírez, Blanca Estela

    2012-03-01

    Alcoholic cirrhosis constitutes a major public health problem in the world where ADH1B, ALDH2, and CYP2E1 polymorphisms could be playing an important role. We determined ADH1B*2, ALDH2*2, and CYP2E1*c2 allele frequencies in healthy control individuals (C) and patients with alcoholic cirrhosis (AC) from western Mexico. Ninety C and 41 patients with AC were studied. Genotype and allele frequency were determined through polymerase chain reaction-restriction fragment length polymorphisms. Polymorphic allele distribution in AC was 1.6%ADH1B*2, 0.0%ALDH2*2, and 19.5%CYP2E1*c2; in C: 6.1%ADH1B*2, 0%ALDH2*2, and 10.6%CYP2E1*c2. CYP2E1*c2 polymorphic allele and c1/c2 genotype frequency were significantly higher (p < 0.05 and p < 0.01, respectively) in patients with AC when compared to C. Patients with AC, carrying the CYP2E1*c2 allele, exhibited more decompensated liver functioning evaluated by total bilirubin and prothrombin time, than c1 allele carrying patients (p < 0.05). Cirrhosis severity, assessed by Child's Pugh score and mortality, was higher in patients carrying the c2 allele, although not statistically significant. In this study, CYP2E1*c2 allele was associated with susceptibility to AC; meanwhile, ADH1B*2 and ALDH2*2 alleles were not. CYP2E1*c2 allele was associated with AC severity, which could probably be attributed to the oxidative stress promoted by this polymorphic form. Further studies to clearly establish CYP2E1*c2 clinical relevance in the development of alcohol-induced liver damage and its usefulness as a probable prognostic marker, should be performed. Also, increasing the number of patients and including a control group conformed by alcoholic patients free of liver damage may render more conclusive results. These findings contribute to the understanding of the influence of gene variations in AC development among populations, alcohol metabolism, and pharmacogenetics. Copyright © 2011 by the Research Society on Alcoholism.

  4. SCit: web tools for protein side chain conformation analysis.

    PubMed

    Gautier, R; Camproux, A-C; Tufféry, P

    2004-07-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit.

  5. Are "functionally related polymorphisms" of renin-angiotensin-aldosterone system gene polymorphisms associated with hypertension?

    PubMed

    Hahntow, Ines N; Mairuhu, Gideon; van Valkengoed, Irene Gm; Koopmans, Richard P; Michel, Martin C

    2010-06-02

    Genotype-phenotype association studies are typically based upon polymorphisms or haplotypes comprised of multiple polymorphisms within a single gene. It has been proposed that combinations of polymorphisms in distinct genes, which functionally impact the same phenotype, may have stronger phenotype associations than those within a single gene. We have tested this hypothesis using genes encoding components of the renin-angiotensin-aldosterone system and the high blood pressure phenotype. Our analysis is based on 1379 participants of the cross-sectional SUNSET study randomly selected from the population register of Amsterdam. Each subject was genotyped for the angiotensinogen M235T, the angiotensin-converting enzyme insertion/deletion and the angiotensin II type 1 receptor A1166C polymorphism. The phenotype high blood pressure was defined either as a categorical variable comparing hypertension versus normotension as in most previous studies or as a continuous variable using systolic, diastolic and mean blood pressure in a multiple regression analysis with gender, ethnicity, age, body-mass-index and antihypertensive medication as covariates. Genotype-phenotype relationships were explored for each polymorphism in isolation and for double and triple polymorphism combinations. At the single polymorphism level, only the A allele of the angiotensin II type 1 receptor was associated with a high blood pressure phenotype. Using combinations of polymorphisms of two or all three genes did not yield stronger/more consistent associations. We conclude that combinations of physiologically related polymorphisms of multiple genes, at least with regard to the renin-angiotensin-aldosterone system and the hypertensive phenotype, do not necessarily offer additional benefit in analyzing genotype/phenotype associations.

  6. Genomic and genotyping characterization of haplotype-based polymorphic microsatellites in Prunus

    USDA-ARS?s Scientific Manuscript database

    Efficient utilization of microsatellites in genetic studies remains impeded largely due to the unknown status of their primer reliability, chromosomal location, and allele polymorphism. Discovery and characterization of microsatellite polymorphisms in a taxon will disclose the unknowns and gain new ...

  7. The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers.

    PubMed

    Yang, Shi Ying; Saxena, Rachit K; Kulwal, Pawan L; Ash, Gavin J; Dubey, Anuja; Harper, John D I; Upadhyaya, Hari D; Gothalwal, Ragini; Kilian, Andrzej; Varshney, Rajeev K

    2011-04-01

    With an objective to develop a genetic map in pigeon pea (Cajanus spp.), a total of 554 diversity arrays technology (DArT) markers showed polymorphism in a pigeon pea F(2) mapping population of 72 progenies derived from an interspecific cross of ICP 28 (Cajanus cajan) and ICPW 94 (Cajanus scarabaeoides). Approximately 13% of markers did not conform to expected segregation ratio. The total number of DArT marker loci segregating in Mendelian manner was 405 with 73.1% (P > 0.001) of DArT markers having unique segregation patterns. Two groups of genetic maps were generated using DArT markers. While the maternal genetic linkage map had 122 unique DArT maternal marker loci, the paternal genetic linkage map has a total of 172 unique DArT paternal marker loci. The length of these two maps covered 270.0 cM and 451.6 cM, respectively. These are the first genetic linkage maps developed for pigeon pea, and this is the first report of genetic mapping in any grain legume using diversity arrays technology.

  8. Pseudoracemic amino acid complexes: blind predictions for flexible two-component crystals.

    PubMed

    Görbitz, Carl Henrik; Dalhus, Bjørn; Day, Graeme M

    2010-08-14

    Ab initio prediction of the crystal packing in complexes between two flexible molecules is a particularly challenging computational chemistry problem. In this work we present results of single crystal structure determinations as well as theoretical predictions for three 1 ratio 1 complexes between hydrophobic l- and d-amino acids (pseudoracemates), known from previous crystallographic work to form structures with one of two alternative hydrogen bonding arrangements. These are accurately reproduced in the theoretical predictions together with a series of patterns that have never been observed experimentally. In this bewildering forest of potential polymorphs, hydrogen bonding arrangements and molecular conformations, the theoretical predictions succeeded, for all three complexes, in finding the correct hydrogen bonding pattern. For two of the complexes, the calculations also reproduce the exact space group and side chain orientations in the best ranked predicted structure. This includes one complex for which the observed crystal packing clearly contradicted previous experience based on experimental data for a substantial number of related amino acid complexes. The results highlight the significant recent advances that have been made in computational methods for crystal structure prediction.

  9. Identification of Parelaphostrongylus odocoilei (Nematoda: Protostrongylidae) first-stage larvae in the feces of gray wolves (Canis lupus) by molecular methods.

    PubMed

    Bryan, Heather M; Sim, Kathrin A; Darimont, Chris T; Paquet, Paul C; Wagner, Brent; Muñoz-Fuentes, Violeta; Smits, Judit E; Chilton, Neil B

    2010-01-01

    First-stage nematode larvae with a dorsal-spine (DSL) were detected in five of 1,565 fecal samples from gray wolves (Canis lupus) collected in British Columbia, Canada, between 2005 and 2008. Molecular techniques were used to identify the DSL because it was not possible to determine their species identity using morphologic characters. The DSL were identified as Parelaphostrongylus odocoilei based on the results of single-strand conformation polymorphism (SSCP) analyses and DNA sequencing of the ribosomal DNA first and second internal transcribed spacers. Finding DSL of P. odocoilei in the feces of gray wolves was unexpected because P. odocoilei adults are parasites of cervids and bovids. The most likely explanation for the presence of DSL in wolf feces is that they were ingested along with the viscera of recently consumed prey. This was probably black-tailed deer (Odocoileus hemionus columbianus), which are known in the sampling area to be hosts of P. odocoilei. The present study demonstrates the use of SSCP and DNA sequencing for the identification, to the species level, of parasitic nematode larvae in feces.

  10. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth

    PubMed Central

    Milanesi, Marco; Torrecilha, Rafaela B. P.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Ajmone-Marsan, Paolo; Sonstegard, Tad S.; Sölkner, Johann; Contreras-Castillo, Carmen J.; Garcia, José F.

    2016-01-01

    Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway. PMID:27410030

  11. Blinded study determination of high sensitivity and specificity microchip electrophoresis–SSCP/HA to detect mutations in the p53 gene

    PubMed Central

    Hestekin, Christa N.; Lin, Jennifer S.; Senderowicz, Lionel; Jakupciak, John P.; O’Connell, Catherine; Rademaker, Alfred; Barron, Annelise E.

    2012-01-01

    Knowledge of the genetic changes that lead to disease has grown and continues to grow at a rapid pace. However, there is a need for clinical devices that can be used routinely to translate this knowledge into the treatment of patients. Use in a clinical setting requires high sensitivity and specificity (>97%) in order to prevent misdiagnoses. Single strand conformational polymorphism (SSCP) and heteroduplex analysis (HA) are two DNA-based, complementary methods for mutation detection that are inexpensive and relatively easy to implement. However, both methods are most commonly detected by slab gel electrophoresis, which can be labor-intensive, time-consuming, and often the methods are unable to produce high sensitivity and specificity without the use of multiple analysis conditions. Here we demonstrate the first blinded study using microchip electrophoresis-SSCP/HA. We demonstrate the ability of microchip electrophoresis-SSCP/HA to detect with 98% sensitivity and specificity >100 samples from the p53 gene exons 5–9 in a blinded study in an analysis time of less than 10 minutes. PMID:22002021

  12. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases.more » Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G 2 or G 3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N 2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N 2-dG.« less

  13. Advances in research on and diagnosis and treatment of achondroplasia in China

    PubMed Central

    Wang, Yao; Liu, Zeying; Liu, Zhenxing; Zhao, Heng; Zhou, Xiaoyan; Cui, Yazhou; Han, Jinxiang

    2013-01-01

    Summary Achondroplasia is a rare autosomal dominant genetic disease. Research on achondroplasia in China, however, has received little emphasis. Around 80–90% of cases of neonatal achondroplasia result from mutations in fibroblast growth factor receptor 3 (FGFR3) according to polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). Recently, genetic research on achondroplasia in China made a major breakthrough by revealing two novel mutations located on the FGFR3 gene, thus helping to complete the pathological molecular map of achondroplasia. There are still, however, unknown aspects of the diagnosis and treatment of achondroplasia. This review will summarize advances in research on and the clinical diagnosis and treatment of achondroplasia in China. PMID:25343101

  14. Isolation and characterization of microsatellite loci for mountain mullet (Agonostomus monticola).

    PubMed

    Feldheim, Kevin A; Sanchez, Patrick J; Matamoros, Wilfredo A; Schaefer, Jacob F; Kreiser, Brian R

    2009-11-01

    We report on the isolation of 15 polymorphic microsatellite loci from mountain mullet (Agonostomus monticola). In the two populations sampled, loci exhibited two to 21 alleles and observed heterozygosity values ranged from 0.222 to 1.000. All loci conformed to Hardy-Weinberg equilibrium expectations, and none exhibited linkage disequilibrium. Although A. monticola is an important subsistence fishery in parts of its range, little is known about its ecology and many populations appear to be experiencing declines. These microsatellite loci should prove useful in the study of population structure of A. monticola and aid in other potential conservation efforts such as the management of hatchery broodstock. © 2009 Blackwell Publishing Ltd.

  15. Novel mutations in the TULP1 gene causing autosomal recessive retinitis pigmentosa.

    PubMed

    Paloma, E; Hjelmqvist, L; Bayés, M; García-Sandoval, B; Ayuso, C; Balcells, S; Gonzàlez-Duarte, R

    2000-03-01

    To assess the contribution of TULP1 to autosomal recessive retinitis pigmentosa (arRP). Fifteen exons of the gene were screened by single-strand conformation polymorphism analysis of 7 (of 49) arRP pedigrees showing cosegregation with TULP1 locus markers. In one of the seven families two allelic mutations, IVS4-2delAGA and c.937delC, were found in exons 5 and 10, respectively. Two novel mutations in TULP1 were found to be associated with arRP. That they both compromise the gene product supports their pathogenicity. This gene was present in no more than 2% of a panel of 49 Spanish families affected by arRP.

  16. The Gly972Arg polymorphism in insulin receptor substrate-1 is associated with decreased birth weight in a population-based sample of Brazilian newborns.

    PubMed

    Bezerra, Rosângela M N; de Castro, Vagner; Sales, Teresa; Passini, Renato; Marba, Sergio T M; Saad, Sara T O; Saad, Mario J A

    2002-03-01

    We studied the association between the Gly972Arg polymorphism in insulin receptor substrate-1 (IRS-1) and birth weight in a population-based sample of Brazilian newborns. We studied 194 newborn children with adequate gestational age to identify the association between the Gly972Arg polymorphism and birth weight using PCR-restriction fragment length polymorphism analysis. The data showed that the birth weight was lower in the newborns with the Gly972Arg polymorphism in IRS-1 compared with control subjects (3,141 +/- 31.8 vs. 3,373 +/- 80.3 g, P < 0.008). The results also showed that the frequency of this polymorphism was increased in newborns with a birth weight <3,000 g (P=0.041). These results suggest that the genotype Gly972Arg may influence birth weight, reinforcing the hypothesis that genetically determined insulin resistance and/or reduced insulin secretion can result in impaired insulin-mediated growth in the fetus.

  17. Simultaneous imaging of fat crystallinity and crystal polymorphic types by Raman microspectroscopy.

    PubMed

    Motoyama, Michiyo; Ando, Masahiro; Sasaki, Keisuke; Nakajima, Ikuyo; Chikuni, Koichi; Aikawa, Katsuhiro; Hamaguchi, Hiro-O

    2016-04-01

    The crystalline states of fats, i.e., the crystallinity and crystal polymorphic types, strongly influence their physical properties in fat-based foods. Imaging of fat crystalline states has thus been a subject of abiding interest, but conventional techniques cannot image crystallinity and polymorphic types all at once. This article demonstrates a new technique using Raman microspectroscopy for simultaneously imaging the crystallinity and polymorphic types of fats. The crystallinity and β' crystal polymorph, which contribute to the hardness of fat-based food products, were quantitatively visualized in a model fat (porcine adipose tissue) by analyzing several key Raman bands. The emergence of the β crystal polymorph, which generally results in food product deterioration, was successfully imaged by analyzing the whole fingerprint regions of Raman spectra using multivariate curve resolution alternating least squares analysis. The results demonstrate that the crystalline states of fats can be nondestructively visualized and analyzed at the molecular level, in situ, without laborious sample pretreatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of supersaturation on L-glutamic acid polymorphs under droplet-based microchannels

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Wang, Zhanzhong; Dang, Leping; Wei, Hongyuan

    2016-07-01

    Supersaturation is an important controlling factor for crystallization process and polymorphism. Droplet-based microchannels and conventional crystallization were used to investigate polymorphs of L-gluatamic acid in this work. The results illustrate that it is easy to realize the accurate and rapid control of the crystallization temperature in the droplets, which is especially beneficial to heat and mass transfer during crystallization. It is also noted that higher degree of supersaturation favors the nucleation of α crystal form, while lower degree of supersaturation favors the nucleation of β crystal form under droplet-based microchannels for L-gluatamic acid. In addition, there is a different nucleation behavior to be found under droplet-based microchannels both for the β form and α form of L-glutamic acid. This new finding can provide important insight into the development and design of investigation meanings for drug polymorph.

  19. Structure, Intent and Conformance Monitoring in ATC

    NASA Technical Reports Server (NTRS)

    Reynolds, Tom G.; Histon, Jonathan M.; Davison, Hayley J.; Hansman, R. John

    2004-01-01

    Infield studies of current Air Traffic Control operations it is found that controllers rely on underlying airspace structure to reduce the complexity of the planning and conformance monitoring tasks. The structure appears to influence the controller's working mental model through abstractions that reduce the apparent cognitive complexity. These structure-based abstractions are useful for the controller's key tasks of planning, implementing, monitoring, and evaluating tactical situations. In addition, the structure-based abstractions appear to be important in the maintenance of Situation Awareness. The process of conformance monitoring is analyzed in more detail and an approach to conformance monitoring which utilizes both the structure-based abstractions and intent is presented.

  20. Autogrid-based clustering of kinases: selection of representative conformations for docking purposes.

    PubMed

    Marzaro, Giovanni; Ferrarese, Alessandro; Chilin, Adriana

    2014-08-01

    The selection of the most appropriate protein conformation is a crucial aspect in molecular docking experiments. In order to reduce the errors arising from the use of a single protein conformation, several authors suggest the use of several tridimensional structures for the target. However, the selection of the most appropriate protein conformations still remains a challenging goal. The protein 3D-structures selection is mainly performed based on pairwise root-mean-square-deviation (RMSD) values computation, followed by hierarchical clustering. Herein we report an alternative strategy, based on the computation of only two atom affinity map for each protein conformation, followed by multivariate analysis and hierarchical clustering. This methodology was applied on seven different kinases of pharmaceutical interest. The comparison with the classical RMSD-based strategy was based on cross-docking of co-crystallized ligands. In the case of epidermal growth factor receptor kinase, also the docking performance on 220 known ligands were evaluated, followed by 3D-QSAR studies. In all the cases, the herein proposed methodology outperformed the RMSD-based one.

  1. The 3.2 Angstrom Resolution Structure of the Polymorphic Cowpea Chlorotic Mottle Virus Ribonucleoprotein Particle

    NASA Astrophysics Data System (ADS)

    Speir, Jeffrey Alan

    Structural studies of the polymorphic cowpea chlorotic mottle virus have resulted in high resolution structures for two distinct icosahedral ribonucleoprotein particle conformations dependent upon whether acidic or basic pH conditions prevail. CCMV is stable below pH 6.5, however metal-free particles maintain a 10% increase in hydrodynamic volume at pH >=q 7.5. Identification of this swollen' form of CCMV, which can easily be disrupted with 1M NaCl, led to the first reassembly of an icosahedral virus in vitro from purified viral protein and RNA to form infectious particles, and its assembly has been the subject of biochemical and biophysical investigations for over twenty-five years. Under well defined conditions of pH, ionic strength and divalent metal ion concentration, CCMV capsid protein or capsid protein and RNA will reassemble to form icosahedral particles of various sizes, sheets, tubes, rosettes, and a variety of laminar structures which resemble virion structures from non-related virus families. Analysis of native particles at 3.2A resolution and swollen particles at 28A resolution has suggested that the chemical basis for the formation of polymorphic icosahedral and anisometric structures is: (i) hexamers formed of beta-barrel subunits stabilized by an unusual hexameric parallel beta structure made up of their N-termini, (ii) the location of protein-RNA interactions, (iii) divalent metal cation binding sites that regulate quasi-symmetrical subunit associations, (iv) charge repulsion across the same interfaces when lacking divalent metal ions at basic pH, which induces the formation of sixty 20A diameter portals for RNA release, and (v) a novel, C-terminal-based, subunit dimer assembly unit. The use of C- and N-terminal arms in CCMV has not been observed in other icosahedral RNA virus structures determined at near atomic resolution, however, their detailed interactions and roles in stabilizing the quaternary organization of CCMV are related to that found in the atomic structures of the DNA tumor papovaviruses (SV40 and polyoma). The swollen structure is closely similar to the expanded form of tomato bushy stunt virus (TBSV) previously determined at 8A resolution by X-ray crystallography.

  2. SCit: web tools for protein side chain conformation analysis

    PubMed Central

    Gautier, R.; Camproux, A.-C.; Tufféry, P.

    2004-01-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit. PMID:15215438

  3. Novel methods to enhance single strand conformation polymorphism (SSCP) senstivity and efficiency: Application to mutation detection in cystic fibrosis (CF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagstrom, D.J.; Snow, K.; Yuan, Z.

    1994-09-01

    For single gene defects in which there are a variety of mutations with significant frequencies, it is a challenge to find an efficient and sensitive method for mutation detection. For example, although 70% to 75% of CF chromosomes in a North American Caucasian population have the mutation {delta}F508, more than 400 mutations (mostly single base pair substitutions) are represented on the remaining chromosomes. SSCP analysis is a relatively straightforward procedure and therefore suitable for routine use in a clinical laboratory. However, previous reports have demonstrated suboptimal sensitivity rates in screening for mutations. We have developed a novel set of conditionsmore » which greatly enhances sensitivity and efficiency of SSCP. Our protocol incorporates multiplex PCR, stepping of wattages during electrophoresis and increased salt concentration at the anode relative to the gel. To screen for mutations in the CFTR gene, three multiplex PCR reactions are performed using identical thermocycler parameters. Sizes of PCR products range from 441 bp to 196 bp: size differences of > 30 bp are necessary to ensure separation during electrophoresis. All PCR products are separated by electrophoresis at room temperature on a single gel containing 8% (37.5:1) polyacrylamide, 5% glycerol and 1x TBE. Using an anode buffer with increased salt (2x TBE) sharpens smaller sized bands, and stepping watts from 5W to 20W during electrophoresis enhances sensitivity. Positive controls were used to demonstrate that mutations could be detected. Other mutations or polymorphisms were verified by cycle sequencing of PCR products or by alternative PCR-based assays for the more common mutations. Thus, using 3 PCR reactions per patient and one gel condition, we are able to achieve a CF mutation detection rate of approximately 90% in a North American Caucasian population.« less

  4. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation.

    PubMed

    Liu, Xiaofeng; Bai, Fang; Ouyang, Sisheng; Wang, Xicheng; Li, Honglin; Jiang, Hualiang

    2009-03-31

    Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105-112). Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 A to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 +/- 0.18 seconds per molecule) renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms other four multiple conformer generators in the case of reproducing the bioactive conformations against 329 structures. The speed advantage indicates Cyndi is a powerful alternative method for extensive conformational sampling and large-scale conformer database preparation.

  5. Isolation, characterization, and development of WRKY genes as useful genetic markers in Theobroma cacao.

    PubMed

    Borrone, James W; Kuhn, David N; Schnell, Raymond J

    2004-08-01

    There is currently an international effort in improving disease resistance and crop yield in Theobroma cacao L., an economically important crop of the tropics, using marker-assisted selection for breeding. We are developing molecular genetic markers focusing upon gene families involved with disease resistance. One such family is the WRKY proteins, which are plant-specific transcriptional factors associated with regulating defense responses to both abiotic and biotic stresses. Degenerate PCR primers were designed to the highly conserved DNA-binding domain and other conserved motifs of group I and group II, subgroups a-c, WRKY genes. Sixteen individual WRKY fragments were isolated from a mixture of T. cacao DNA using one pair of primers. Of the 16 WRKY loci investigated, seven contained single nucleotide polymorphisms within the intron as detected by sequence comparison of the PCR products. Four of these were successfully converted into molecular markers and mapped in an F2 population by capillary electrophoresis-single strand conformation polymorphism analysis. This is the first report of a pair of degenerate primers amplifying WRKY loci directly from genomic DNA and demonstrates a simple method for developing useful genetic markers from members of a large gene family. Copyright 2004 Springer-Verlag

  6. Solution and solid-state effects on NMR chemical shifts in sesquiterpene lactones: NMR, X-ray, and theoretical methods.

    PubMed

    Dračínský, Martin; Buděšínský, Miloš; Warżajtis, Beata; Rychlewska, Urszula

    2012-01-12

    Selected guaianolide type sesquiterpene lactones were studied combining solution and solid-state NMR spectroscopy with theoretical calculations of the chemical shifts in both environments and with the X-ray data. The experimental (1)H and (13)C chemical shifts in solution were successfully reproduced by theoretical calculations (with the GIAO method and DFT B3LYP 6-31++G**) after geometry optimization (DFT B3LYP 6-31 G**) in vacuum. The GIPAW method was used for calculations of solid-state (13)C chemical shifts. The studied cases involved two polymorphs of helenalin, two pseudopolymorphs of 6α-hydroxydihydro-aromaticin and two cases of multiple asymmetric units in crystals: one in which the symmetry-independent molecules were connected by a series of hydrogen bonds (geigerinin) and the other in which the symmetry-independent molecules, deprived of any specific intermolecular interactions, differed in the conformation of the side chain (badkhysin). Geometrically different molecules present in the crystal lattices could be easily distinguished in the solid-state NMR spectra. Moreover, the experimental differences in the (13)C chemical shifts corresponding to nuclei in different polymorphs or in geometrically different molecules were nicely reproduced with the GIPAW calculations.

  7. Current molecular genetics strategies for the diagnosis of lysosomal storage disorders.

    PubMed

    Giugliani, Roberto; Brusius-Facchin, Ana-Carolina; Pasqualim, Gabriela; Leistner-Segal, Sandra; Riegel, Mariluce; Matte, Ursula

    2016-01-01

    Lysosomal storage disorders (LSDs) are a group of almost 50 monogenic diseases characterized by mutations causing deficiency of lysosomal enzymes or non-enzyme proteins involved in transport across the lysosomal membrane, protein maturation or lysosomal biogenesis. Usually, affected patients are normal at birth and have a progressive and severe disease with high morbidity and reduced life expectancy. The overall incidence of LSDs is usually estimated as 1:5000, but newborn screening studies are indicating that it could be much higher. Specific therapies were already developed for selected LSDs, making the timely and correct diagnosis very important for successful treatment and also for genetic counseling. In most LSD cases the biochemical techniques provide a reliable diagnosis. However, the identification of pathogenic mutations by genetic analysis is being increasingly recommended to provide additional information. In this paper we discuss the conventional methods for genetic analysis used in the LSDs [restriction fragment length polymorphism (RFLP), amplification-refractory mutation system (ARMS), single strand conformation polymorphism (SSCP), denaturing high performance liquid chromatography (dHPLC), real-time polymerase chain reaction, high resolution melting (HRM), multiplex ligation-dependent probe amplification (MLPA), Sanger sequencing] and also the newer approaches [massive parallel sequencing, array comparative genomic hybridization (CGH)].

  8. Mutational analysis of the PTPN11 gene in Egyptian patients with Noonan syndrome.

    PubMed

    Essawi, Mona L; Ismail, Manal F; Afifi, Hanan H; Kobesiy, Maha M; El Kotoury, Ahmed; Barakat, Maged M

    2013-11-01

    Noonan syndrome (NS) is inherited as an autosomal dominant disorder with dysmorphic facies, short stature, and cardiac defects, which can be caused by missense mutations in the protein tyrosine phosphatase nonreceptor type 11 (PTPN11) gene, which encodes src homology region 2 domain containing tyrosine phosphatase-2 (SHP-2), a protein tyrosine phosphatase that acts in signal transduction downstream to growth factors and cytokines. The current study aimed to study the molecular characterization of the PTPN11 gene among Egyptian patients with Noonan syndrome. Eleven exons of the PTPN11 gene were amplified and screened by single stranded conformational polymorphism (SSCP). DNA samples showing band shift in SSCP were subjected to sequencing. Mutational analysis of the PTPN11 gene revealed T→C transition at position 854 in exon 8, predicting Phe285Ser substitution within PTP domain of SHP-2 protein, in one NS patient and -21C→T polymorphism in intron 7 in four other cases. Knowing that NS is phenotypically heterogeneous, molecular characterization of the PTPN11 gene should serve to establish NS diagnosis in patients with atypical features, although lack of a mutation does not exclude the possibility of NS. Copyright © 2012. Published by Elsevier B.V.

  9. Non-Canonical G-quadruplexes cause the hCEB1 minisatellite instability in Saccharomyces cerevisiae

    PubMed Central

    Piazza, Aurèle; Cui, Xiaojie; Adrian, Michael; Samazan, Frédéric; Heddi, Brahim; Phan, Anh-Tuan; Nicolas, Alain G

    2017-01-01

    G-quadruplexes (G4) are polymorphic four-stranded structures formed by certain G-rich nucleic acids in vitro, but the sequence and structural features dictating their formation and function in vivo remains uncertain. Here we report a structure-function analysis of the complex hCEB1 G4-forming sequence. We isolated four G4 conformations in vitro, all of which bear unusual structural features: Form 1 bears a V-shaped loop and a snapback guanine; Form 2 contains a terminal G-triad; Form 3 bears a zero-nucleotide loop; and Form 4 is a zero-nucleotide loop monomer or an interlocked dimer. In vivo, Form 1 and Form 2 differently account for 2/3rd of the genomic instability of hCEB1 in two G4-stabilizing conditions. Form 3 and an unidentified form contribute to the remaining instability, while Form 4 has no detectable effect. This work underscores the structural polymorphisms originated from a single highly G-rich sequence and demonstrates the existence of non-canonical G4s in cells, thus broadening the definition of G4-forming sequences. DOI: http://dx.doi.org/10.7554/eLife.26884.001 PMID:28661396

  10. NMR based solvent exchange experiments to understand the conformational preference of intrinsically disordered proteins using FG-nucleoporin peptide as a model

    PubMed Central

    Heisel, Kurt A.; Krishnan, V. V.

    2014-01-01

    The conformational preference of a peptide with three phenylalanine-glycine (FG) repeats from the intrinsically disordered domain of nucleoporin 159 (nup159) from the yeast nucleopore complex (NPC) is studied. Conformational states of this FG-peptide in dimethyl sulfoxide (DMSO), a non-native solvent are first studied. A solvent exchange scheme is designed and performed to understand how the conformational preferences of the peptide are altered as the solvent shifts from DMSO to water. An ensemble of structures of a 19-residue peptide is determined based on 13Cα, 1Hα, and 1HN chemical shifts and with inter-proton distances. An experimental model is then presented where chemical shifts and amide-proton temperature dependence is probed at changing DMSO to water ratios. These co-solvent experiments provide evidence of a conformational change as the fraction of water increases by the stark change in the behavior of amide protons under varied temperature. This investigation provides a NMR based experimental method in the field of intrinsically disordered proteins to realize conformational transitions from a non-native set of structures (in DMSO) to a native set of disordered conformers (in water). PMID:24037535

  11. Dopamine D{sub 3} receptor gene: Organization transcript variants, and polymorphism associated with schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffon, N.; Pilon, C.; Martres, M.P.

    1996-02-16

    DNA fragments from a genomic library were used to establish the partial structure of the human dopamine D{sub 3} receptor gene (DRD3). Its coding sequence contains 6 exons and stretches over 40,000 base pairs. The complete DRD3 transcript and three shorter variants, in which the second and/or third exon are deleted, were detected in similar proportions in brains from four controls and three psychiatric patients. The Msp I polymorphism was localized in the fifth intron of the gene, 40,000 base pairs downstream the Bal I polymorphism and a PCR-based method was developed for genotyping this polymorphism. The distributions of themore » Msp I and Bal I genotypes were not independent in 297 individuals ({chi}{sup 2} = 10.5, df = 4, P = 0.03), but only a weak association was found between allele 1 of the Bal I polymorphism and allele 2 of the Msp I polymorphism ({chi}{sup 2} = 3.99, df = 1, P = 0.04). The previously reported association between homozygosity at both alleles of the Bal I polymorphism and schizophrenia was presently maintained in an extended sample, comprising 119 DSM-III-R chronic schizophrenics and 85 controls ({chi}{sup 2}= 5.3, df = 1, P = 0.02) and found more important in males than in females. The presence of the Bal I allele 2 is associated with an early age at onset, particularly in males (df = 35, t value = 2.6, P = 0.014). In the same sample, allelic frequencies, genotype counts, and proportion of homozygotes for the Msp I polymorphism did not differ between schizophrenics and controls ({chi}{sup 2}= 0.06, df = 1, P = 0.80, {chi}{sup 2} = 0.22, df = 1, P = 0.90 and {chi}{sup 2} = 0.16, df = 1, P = 0.69, respectively). The large distance of the Msp I polymorphism from the Bal I polymorphism and its localization in the 3{prime} part of the gene may explain the discrepant results obtained with the two polymorphisms. 36 refs., 2 figs., 4 tabs.« less

  12. Strong Impact of TGF-β1 Gene Polymorphisms on Breast Cancer Risk in Indian Women: A Case-Control and Population-Based Study

    PubMed Central

    Rajender, Singh; Tamang, Rakesh; Rajkumar, Raja; Saini, Karan Singh; Megu, Kaling; Goel, Madhu Mati; Surekha, Daminani; Rao, Digumarthi Raghunatha; Rao, Lakshmi; Ramachandra, Lingadakai; Kumar, Sandeep; Kumar, Surender; Vishnupriya, Satti; Satyamoorthy, Kapaettu; Negi, Mahendra Pal Singh; Thangaraj, Kumarasamy; Konwar, Rituraj

    2013-01-01

    Introduction TGF-β1 is a multi-functional cytokine that plays an important role in breast carcinogenesis. Critical role of TGF-β1 signaling in breast cancer progression is well documented. Some TGF-β1 polymorphisms influence its expression; however, their impact on breast cancer risk is not clear. Methods We analyzed 1222 samples in a candidate gene-based genetic association study on two distantly located and ethnically divergent case-control groups of Indian women, followed by a population-based genetic epidemiology study analyzing these polymorphisms in other Indian populations. The c.29C>T (Pro10Leu, rs1982073 or rs1800470) and c.74G>C (Arg25Pro, rs1800471) polymorphisms in the TGF-β1 gene were analyzed using direct DNA sequencing, and peripheral level of TGF-β1 were measured by ELISA. Results c.29C>T substitution increased breast cancer risk, irrespective of ethnicity and menopausal status. On the other hand, c.74G>C substitution reduced breast cancer risk significantly in the north Indian group (p = 0.0005) and only in the pre-menopausal women. The protective effect of c.74G>C polymorphism may be ethnicity-specific, as no association was seen in south Indian group. The polymorphic status of c.29C>T was comparable among Indo-Europeans, Dravidians, and Tibeto-Burmans. Interestingly, we found that Tibeto-Burmans lack polymorphism at c.74G>C locus as true for the Chinese populations. However, the Brahmins of Nepal (Indo-Europeans) showed polymorphism in 2.08% of alleles. Mean TGF-β1 was significantly elevated in patients in comparison to controls (p<0.001). Conclusion c.29C>T and c.74G>C polymorphisms in the TGF-β1 gene significantly affect breast cancer risk, which correlates with elevated TGF-β1 level in the patients. The c.29C>T locus is polymorphic across ethnically different populations, but c.74G>C locus is monomorphic in Tibeto-Burmans and polymorphic in other Indian populations. PMID:24146803

  13. Prediction of functionally significant single nucleotide polymorphisms in PTEN tumor suppressor gene: An in silico approach.

    PubMed

    Khan, Imran; Ansari, Irfan A; Singh, Pratichi; Dass J, Febin Prabhu

    2017-09-01

    The phosphatase and tensin homolog (PTEN) gene plays a crucial role in signal transduction by negatively regulating the PI3K signaling pathway. It is the most frequent mutated gene in many human-related cancers. Considering its critical role, a functional analysis of missense mutations of PTEN gene was undertaken in this study. Thirty five nonsynonymous single nucleotide polymorphisms (nsSNPs) within the coding region of the PTEN gene were selected for our in silico investigation, and five nsSNPs (G129E, C124R, D252G, H61D, and R130G) were found to be deleterious based on combinatorial predictions of different computational tools. Moreover, molecular dynamics (MD) simulation was performed to investigate the conformational variation between native and all the five mutant PTEN proteins having predicted deleterious nsSNPs. The results of MD simulation of all mutant models illustrated variation in structural attributes such as root-mean-square deviation, root-mean-square fluctuation, radius of gyration, and total energy; which depicts the structural stability of PTEN protein. Furthermore, mutant PTEN protein structures also showed a significant variation in the solvent accessible surface area and hydrogen bond frequencies from the native PTEN structure. In conclusion, results of this study have established the deleterious effect of the all the five predicted nsSNPs on the PTEN protein structure. Thus, results of the current study can pave a new platform to sort out nsSNPs that can be undertaken for the confirmation of their phenotype and their correlation with diseased status in case of control studies. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  14. Does the evolutionary conservation of microsatellite loci imply function?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shriver, M.D.; Deka, R.; Ferrell, R.E.

    Microsatellites are highly polymorphic tandem arrays of short (1-6 bp) sequence motifs which have been found widely distributed in the genomes of all eukaryotes. We have analyzed allele frequency data on 16 microsatellite loci typed in the great apes (human, chimp, orangutan, and gorilla). The majority of these loci (13) were isolated from human genomic libraries; three were cloned from chimpanzee genomic DNA. Most of these loci are not only present in all apes species, but are polymorphic with comparable levels of heterozygosity and have alleles which overlap in size. The extent of divergence of allele frequencies among these fourmore » species were studies using the stepwise-weighted genetic distance (Dsw), which was previously shown to conform to linearity with evolutionary time since divergence for loci where mutations exist in a stepwise fashion. The phylogenetic tree of the great apes constructed from this distance matrix was consistent with the expected topology, with a high bootstrap confidence (82%) for the human/chimp clade. However, the allele frequency distributions of these species are 10 times more similar to each other than expected when they were calibrated with a conservative estimate of the time since separation of humans and the apes. These results are in agreement with sequence-based surveys of microsatellites which have demonstrated that they are highly (90%) conserved over short periods of evolutionary time (< 10 million years) and moderately (30%) conserved over long periods of evolutionary time (> 60-80 million years). This evolutionary conservation has prompted some authors to speculate that there are functional constraints on microsatellite loci. In contrast, the presence of directional bias of mutations with constraints and/or selection against aberrant sized alleles can explain these results.« less

  15. In silico pharmacogenetic approach: The natalizumab case study.

    PubMed

    Cavaliere, Francesca; Montanari, Enrico; Emerson, Andrew; Buschini, Annamaria; Cozzini, Pietro

    2017-09-01

    Natalizumab is a humanized monoclonal antibody to α 4 β 1 integrin and is approved for the treatment of Multiple Sclerosis. In patients there is a great variation in drug response and there is much evidence that genetic contributors play an important role in defining an individual's susceptibility. Natalizumab binds to α 4 -residues Gln-152, Lys-201, Lys256, and these seem to be essential for its activity. Studies on a range of species in disease model have showed a loss of reactivity when any one of those three residues were different to human. Based on these animal studies, we thought that the single nucleotide polymorphism in the ITGA4 human gene causing a lysine to arginine transversion at amino acid position 256 require further investigations in the context of individual drug susceptibility. So, the aim of our study was to investigate the association between this genetic polymorphism and the resistance to natalizumab. We had applied molecular dynamics simulation to study the possible conformational changes induced by Lys256Arg transversion on the overall structure of integrin and we have analyzed the binding affinities of natalizumab in the non-mutated and mutated structures through HINT score. We found that this SNP does not affect the VLA4-natalizumab interaction. Instead, the binding affinities are slightly higher in the mutated complex than in the wild-type. We reported one of the first work in which MD simulation was applied in the pharmacogenetic context, and this approach is rapid and cost effective, since a population survey is carried out only after the positive prediction of simulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Molecular analysis reveals a high mutation frequency in the first untranslated exon of the PPOX gene and largely excludes variegate porphyria in a subset of clinically affected Afrikaner families.

    PubMed

    Kotze, M J; De Villiers, J N; Groenewald, J Z; Rooney, R N; Loubser, O; Thiart, R; Oosthuizen, C J; van Niekerk, M M; Groenewald, I M; Retief, A E; Warnich, L

    1998-10-01

    A subset of probands from 11 South African families with clinical and/or biochemical features of variegate porphyria (VP), but without the known protoporphyrinogen oxidase (PPOX) gene defects identified previously in the South African population, were subjected to mutation analysis. Disease-related mutation(s) could not be identified after screening virtually the entire PPOX gene by heteroduplex single-strand conformation polymorphism analysis (HEX-SSCP), although three new sequence variants were detected in exon 1 of the gene in three normal controls. The presence of these single base changes at nucleotide positions 22 (C/G), 27 (C/A) and 127 (C/A), in addition to the known exon 1 polymorphisms I-26 and I-150, indicates that this untranslated region of the PPOX gene is particularly mutation-prone. Furthermore, microsatellite markers flanking the PPOX and alpha-1 antitrypsin (PI) gene, on chromosomes 1 and 14, respectively, were used to assess the probability of involvement of these loci in disease presentation. Common alleles transmitted from affected parent to affected child were determined where possible in the mutation-negative index cases. Allelic frequencies of these alleles were compared to findings in the normal population, but no predominant disease-associated allele could be identified. Co-segregation of a specific haplotype with the disease phenotype could also not be demonstrated in a large Afrikaner family. It is concluded that further studies are warranted to determine the genetic factor(s) underlying the autosomal dominant pattern of inheritance in molecularly uncharacterized cases showing clinical symptoms of an acute porphyria. Copyright 1998 Academic Press.

  17. Short communication: Improving the accuracy of genomic prediction of body conformation traits in Chinese Holsteins using markers derived from high-density marker panels.

    PubMed

    Song, H; Li, L; Ma, P; Zhang, S; Su, G; Lund, M S; Zhang, Q; Ding, X

    2018-06-01

    This study investigated the efficiency of genomic prediction with adding the markers identified by genome-wide association study (GWAS) using a data set of imputed high-density (HD) markers from 54K markers in Chinese Holsteins. Among 3,056 Chinese Holsteins with imputed HD data, 2,401 individuals born before October 1, 2009, were used for GWAS and a reference population for genomic prediction, and the 220 younger cows were used as a validation population. In total, 1,403, 1,536, and 1,383 significant single nucleotide polymorphisms (SNP; false discovery rate at 0.05) associated with conformation final score, mammary system, and feet and legs were identified, respectively. About 2 to 3% genetic variance of 3 traits was explained by these significant SNP. Only a very small proportion of significant SNP identified by GWAS was included in the 54K marker panel. Three new marker sets (54K+) were herein produced by adding significant SNP obtained by linear mixed model for each trait into the 54K marker panel. Genomic breeding values were predicted using a Bayesian variable selection (BVS) model. The accuracies of genomic breeding value by BVS based on the 54K+ data were 2.0 to 5.2% higher than those based on the 54K data. The imputed HD markers yielded 1.4% higher accuracy on average (BVS) than the 54K data. Both the 54K+ and HD data generated lower bias of genomic prediction, and the 54K+ data yielded the lowest bias in all situations. Our results show that the imputed HD data were not very useful for improving the accuracy of genomic prediction and that adding the significant markers derived from the imputed HD marker panel could improve the accuracy of genomic prediction and decrease the bias of genomic prediction. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Conformational changes induced in the protein tyrosine kinase p72syk by tyrosine phosphorylation or by binding of phosphorylated immunoreceptor tyrosine-based activation motif peptides.

    PubMed Central

    Kimura, T; Sakamoto, H; Appella, E; Siraganian, R P

    1996-01-01

    A critical event in signaling in immune cells is the interaction of Syk or ZAP-70 protein tyrosine kinases with multisubunit receptors that contain an approximately 18-amino-acid domain called the immunoreceptor tyrosine-based activation motif (ITAM). Tyrosine-phosphorylated Syk from activated cells was in a conformation different from that in nonstimulated cells as demonstrated by changes in immunoreactivity. The addition of tyrosine-diphosphorylated ITAM peptides resulted in a similar conformational change in Syk from nonactivated cells. The peptides based on FcepsilonRIgamma were more active than those based on Fcepsilon RIbeta. In vitro autophosphorylation of Syk was dramatically enhanced by the addition of the diphosphorylated ITAM peptides. The conformational change and the enhanced autophosphorylation required the presence of both phosphorylated tyrosines on the same molecule. These conformational changes in Syk by tyrosine phosphorylation or binding to diphosphorylated ITAM could be critical for Syk activation and downstream propagation of intracellular signals. PMID:8657120

  19. [Clustered regularly interspaced short palindromic repeats (CRISPR) site in Bacillus anthracis].

    PubMed

    Gao, Zhiqi; Wang, Dongshu; Feng, Erling; Wang, Bingxiang; Hui, Yiming; Han, Shaobo; Jiao, Lei; Liu, Xiankai; Wang, Hengliang

    2014-11-04

    To investigate the polymorphism of clustered regularly interspaced short palindromic repeats (CRISPR) in Bacillu santhracis and the application to molecular typing based on the polymorphism of CRISPR in B. anthracis. We downloaded the whole genome sequence of 6 B. anthracis strains and extracted the CRISPR sites. We designed the primers of CRISPR sites and amplified the CRISPR fragments in 193 B. anthracis strains by PCR and sequenced these fragments. In order to reveal the polymorphism of CRISPR in B. anthracis, wealigned all the extracted sequences and sequenced results by local blasting. At the same time, we also analyzed the CRISPR sites in B. cereus and B. thuringiensis. We did not find any polymorphism of CRISPR in B. anthracis. The molecular typing approach based on CRISPR polymorphism is not suitable for B. anthracis, but it is possible for us to distinguish B. anthracis from B. cereus and B. thuringiensis.

  20. Coordination polymer flexibility leads to polymorphism and enables a crystalline solid-vapour reaction: a multi-technique mechanistic study.

    PubMed

    Vitórica-Yrezábal, Iñigo J; Libri, Stefano; Loader, Jason R; Mínguez Espallargas, Guillermo; Hippler, Michael; Fletcher, Ashleigh J; Thompson, Stephen P; Warren, John E; Musumeci, Daniele; Ward, Michael D; Brammer, Lee

    2015-06-08

    Despite an absence of conventional porosity, the 1D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 ] (1; TMP=tetramethylpyrazine) can absorb small alcohols from the vapour phase, which insert into AgO bonds to yield coordination polymers [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 (ROH)2 ] (1-ROH; R=Me, Et, iPr). The reactions are reversible single-crystal-to-single-crystal transformations. Vapour-solid equilibria have been examined by gas-phase IR spectroscopy (K=5.68(9)×10(-5) (MeOH), 9.5(3)×10(-6) (EtOH), 6.14(5)×10(-5) (iPrOH) at 295 K, 1 bar). Thermal analyses (TGA, DSC) have enabled quantitative comparison of two-step reactions 1-ROH→1→2, in which 2 is the 2D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)2 ] formed by loss of TMP ligands exclusively from singly-bridging sites. Four polymorphic forms of 1 (1-A(LT) , 1-A(HT) , 1-B(LT) and 1-B(HT) ; HT=high temperature, LT=low temperature) have been identified crystallographically. In situ powder X-ray diffraction (PXRD) studies of the 1-ROH→1→2 transformations indicate the role of the HT polymorphs in these reactions. The structural relationship between polymorphs, involving changes in conformation of perfluoroalkyl chains and a change in orientation of entire polymers (A versus B forms), suggests a mechanism for the observed reactions and a pathway for guest transport within the fluorous layers. Consistent with this pathway, optical microscopy and AFM studies on single crystals of 1-MeOH/1-A(HT) show that cracks parallel to the layers of interdigitated perfluoroalkyl chains develop during the MeOH release/uptake process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mutation-linked defective interdomain interactions within ryanodine receptor cause aberrant Ca²⁺release leading to catecholaminergic polymorphic ventricular tachycardia.

    PubMed

    Suetomi, Takeshi; Yano, Masafumi; Uchinoumi, Hitoshi; Fukuda, Masakazu; Hino, Akihiro; Ono, Makoto; Xu, Xiaojuan; Tateishi, Hiroki; Okuda, Shinichi; Doi, Masahiro; Kobayashi, Shigeki; Ikeda, Yasuhiro; Yamamoto, Takeshi; Ikemoto, Noriaki; Matsuzaki, Masunori

    2011-08-09

    The molecular mechanism by which catecholaminergic polymorphic ventricular tachycardia is induced by single amino acid mutations within the cardiac ryanodine receptor (RyR2) remains elusive. In the present study, we investigated mutation-induced conformational defects of RyR2 using a knockin mouse model expressing the human catecholaminergic polymorphic ventricular tachycardia-associated RyR2 mutant (S2246L; serine to leucine mutation at the residue 2246). All knockin mice we examined produced ventricular tachycardia after exercise on a treadmill. cAMP-dependent increase in the frequency of Ca²⁺ sparks was more pronounced in saponin-permeabilized knockin cardiomyocytes than in wild-type cardiomyocytes. Site-directed fluorescent labeling and quartz microbalance assays of the specific binding of DP2246 (a peptide corresponding to the 2232 to 2266 region: the 2246 domain) showed that DP2246 binds with the K201-binding sequence of RyR2 (1741 to 2270). Introduction of S2246L mutation into the DP2246 increased the affinity of peptide binding. Fluorescence quench assays of interdomain interactions within RyR2 showed that tight interaction of the 2246 domain/K201-binding domain is coupled with domain unzipping of the N-terminal (1 to 600)/central (2000 to 2500) domain pair in an allosteric manner. Dantrolene corrected the mutation-caused domain unzipping of the domain switch and stopped the exercise-induced ventricular tachycardia. The catecholaminergic polymorphic ventricular tachycardia-linked mutation of RyR2, S2246L, causes an abnormally tight local subdomain-subdomain interaction within the central domain involving the mutation site, which induces defective interaction between the N-terminal and central domains. This results in an erroneous activation of Ca²⁺ channel in a diastolic state reflecting on the increased Ca²⁺ spark frequency, which then leads to lethal arrhythmia.

  2. [Genetic polymorphism of the IL8 gene and its associations with milk traits and SCS in Chinese Holstein].

    PubMed

    Chen, Ren-Jin; Yang, Zhang-Ping; Mao, Yong-Jiang; Chen, Ying; Chang, Ling-Ling; Ji, De-Jun; Wu, Hai-Tao; Li, Yun-Long; Li, Rui

    2010-12-01

    The polymorphism of Interleukin-8 (IL8) gene were investigated for 610 Chinese Holstein cows of 30 bull families from a dairy farm in Shanghai using Polymerase Chain Reaction-Single Strand Conformation Polymorphism (PCR-SSCP) technique with a mixed animal model to verify the effects of the polymorphisms on some milk productive performance, tested day milk yield, tested day fat percentage, tested day milk protein percentage, 305 d corrected milk yield, 305 d milk fat yield, 305 d milk protein yield, and somatic cell score (SCS). The aim was to explore the significant molecular marker in practical dairy production. Three genotypes were identified and the genotypic frequencies of KK, KA, and AA were 0.187, 0.451, and 0.362, respectively. The gene frequencies of K and A were 0.412 and 0.588. The results showed highly significant (P < 0.01) association of IL8 mutations with tested day milk yield, 305 d milk protein yield, 305 d corrected milk yield and 305 d milk fat yield, SCS and tested day milk protein percentage (P < 0.05). However, no association (P > 0.05) with tested day milk fat percentage was recorded. The cows with KK genotype had higher tested day milk yield, 305 d milk protein yield, 305 d corrected milk yield and 305 d milk fat yield than those with AA and KA genotypes (P < 0.01). The least square mean of SCS for KK was significantly lower than that with AA and KA genotypes (P < 0.01). AA genotype was significant lower in tested day milk protein percentage than KK and KA genotypes (P < 0.05). The IL8 gene genetic diversity has a great genetic effect on milk traits and mastitis resistance and could be a useful genetic marker for Chinese Holstein breeding.

  3. Associations between novel single nucleotide polymorphisms in the Bos taurus growth hormone gene and performance traits in Holstein-Friesian dairy cattle.

    PubMed

    Mullen, M P; Berry, D P; Howard, D J; Diskin, M G; Lynch, C O; Berkowicz, E W; Magee, D A; MacHugh, D E; Waters, S M

    2010-12-01

    Growth hormone, produced in the anterior pituitary gland, stimulates the release of insulin-like growth factor-I from the liver and is of critical importance in the control of nutrient utilization and partitioning for lactogenesis, fertility, growth, and development in cattle. The aim of this study was to discover novel polymorphisms in the bovine growth hormone gene (GH1) and to quantify their association with performance using estimates of genetic merit on 848 Holstein-Friesian AI (artificial insemination) dairy sires. Associations with previously reported polymorphisms in the bovine GH1 gene were also undertaken. A total of 38 novel single nucleotide polymorphisms (SNP) were identified across a panel of 22 beef and dairy cattle by sequence analysis of the 5' promoter, intronic, exonic, and 3' regulatory regions, encompassing approximately 7 kb of the GH1 gene. Following multiple regression analysis on all SNP, associations were identified between 11 SNP (2 novel and 9 previously identified) and milk fat and protein yield, milk composition, somatic cell score, survival, body condition score, and body size. The G allele of a previously identified SNP in exon 5 at position 2141 of the GH1 sequence, resulting in a nonsynonymous substitution, was associated with decreased milk protein yield. The C allele of a novel SNP, GH32, was associated with inferior carcass conformation. In addition, the T allele of a previously characterized SNP, GH35, was associated with decreased survival. Both GH24 (novel) and GH35 were independently associated with somatic cell count, and 3 SNP, GH21, 2291, and GH35, were independently associated with body depth. Furthermore, 2 SNP, GH24 and GH63, were independently associated with carcass fat. Results of this study further demonstrate the multifaceted influences of GH1 on milk production, fertility, and growth-related traits in cattle. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Association between the SERPINE1 (PAI-1) 4G/5G insertion/deletion promoter polymorphism (rs1799889) and pre-eclampsia: a systematic review and meta-analysis.

    PubMed

    Zhao, Linlu; Bracken, Michael B; Dewan, Andrew T; Chen, Suzan

    2013-03-01

    The SERPINE1 -675 4G/5G promoter region insertion/deletion polymorphism (rs1799889) has been implicated in the pathogenesis of pre-eclampsia (PE), but the genetic association has been inconsistently replicated. To derive a more precise estimate of the association, a systematic review and meta-analysis was conducted. This study conformed to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed (MEDLINE), Scopus and HuGE Literature Finder literature databases were systematically searched for relevant studies. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for the allelic comparison (4G versus 5G) and genotypic comparisons following the co-dominant (4G/4G versus 5G/5G and 4G/5G versus 5G/5G), dominant (4G/4G+4G/5G versus 5G/5G) and recessive (4G/4G versus 4G/5G+5G/5G) genetic models. Between-study heterogeneity was quantified by I(2) statistics and publication bias was appraised with funnel plots. Sensitivity analysis was conducted to evaluate the robustness of meta-analysis findings. Meta-analysis of 11 studies involving 1297 PE cases and 1791 controls found a significant association between the SERPINE1 -675 4G/5G polymorphism and PE for the recessive genetic model (OR = 1.36, 95% CI: 1.13-1.64, P = 0.001), a robust finding according to sensitivity analysis. A low level of between-study heterogeneity was detected (I(2) = 20%) in this comparison, which may be explained by ethnic differences. Funnel plot inspection did not reveal evidence of publication bias. In conclusion, this study provides a comprehensive examination of the available literature on the association between SERPINE1 -675 4G/5G and PE. Meta-analysis results support this polymorphism as a likely susceptibility variant for PE.

  5. On-the-Fly ab Initio Semiclassical Calculation of Glycine Vibrational Spectrum

    PubMed Central

    2017-01-01

    We present an on-the-fly ab initio semiclassical study of vibrational energy levels of glycine, calculated by Fourier transform of the wavepacket correlation function. It is based on a multiple coherent states approach integrated with monodromy matrix regularization for chaotic dynamics. All four lowest-energy glycine conformers are investigated by means of single-trajectory semiclassical spectra obtained upon classical evolution of on-the-fly trajectories with harmonic zero-point energy. For the most stable conformer I, direct dynamics trajectories are also run for each vibrational mode with energy equal to the first harmonic excitation. An analysis of trajectories evolved up to 50 000 atomic time units demonstrates that, in this time span, conformers II and III can be considered as isolated species, while conformers I and IV show a pretty facile interconversion. Therefore, previous perturbative studies based on the assumption of isolated conformers are often reliable but might be not completely appropriate in the case of conformer IV and conformer I for which interconversion occurs promptly. PMID:28489368

  6. Interleukin-17 SNPs and serum levels increase ulcerative colitis risk: A meta-analysis

    PubMed Central

    Li, Juan; Tian, Hao; Jiang, Hui-Jun; Han, Bin

    2014-01-01

    AIM: To investigate the associations of interleukin-17 (IL-17) genetic polymorphisms and serum levels with ulcerative colitis (UC) risk. METHODS: Relevant articles were identified through a search of the following electronic databases, excluding language restriction: (1) the Cochrane Library Database (Issue 12, 2013); (2) Web of Science (1945-2013); (3) PubMed (1966-2013); (4) CINAHL (1982-2013); (5) EMBASE (1980-2013); and (6) the Chinese Biomedical Database (1982-2013). Meta-analysis was conducted using STATA 12.0 software. Crude odds ratios and standardized mean differences (SMDs) with corresponding 95% confidence intervals (CIs) were calculated. All of the included studies met all of the following five criteria: (1) the study design must be a clinical cohort or a case-control study; (2) the study must relate to the relationship between IL-17A/F genetic polymorphisms or serum IL-17 levels and the risk of UC; (3) all patients must meet the diagnostic criteria for UC; (4) the study must provide sufficient information about single nucleotide polymorphism frequencies or serum IL-17 levels; and (5) the genotype distribution of healthy controls must conform to the Hardy-Weinberg equilibrium (HWE). The Newcastle-Ottawa Scale (NOS) criteria were used to assess the methodological quality of the studies. The NOS criteria included three aspects: (1) subject selection: 0-4; (2) comparability of subjects: 0-2; and (3) clinical outcome: 0-3. NOS scores ranged from 0 to 9, with a score ≥ 7 indicating good quality. RESULTS: Of the initial 177 articles, only 16 case-control studies met all of the inclusion criteria. A total of 1614 UC patients and 2863 healthy controls were included in this study. Fourteen studies were performed on Asian populations, and two studies on Caucasian populations. Results of the meta-analysis revealed that IL-17A and IL-17F genetic polymorphisms potentially increased UC risk under both allele and dominant models (P < 0.001 for all). The results also showed that UC patients had higher serum IL-17 levels than healthy controls (SMD = 5.95, 95%CI: 4.25-7.65, P < 0.001). Furthermore, serum IL-17 levels significantly correlated with the severity of UC (moderate vs mild: SMD = 2.59, 95%CI: 0.03-5.16, P < 0.05; severe vs mild: SMD = 7.09, 95%CI: 3.96-10.23, P < 0.001; severe vs moderate: SMD = 5.84, 95%CI: 5.09-6.59, P < 0.001). The NOS score was ≥ 5 for all of the included studies. Based on the sensitivity analysis, no single study influenced the overall pooled estimates. Neither the Begger’s funnel plots nor Egger’s test displayed strong statistical evidence for publication bias (IL-17A/F genetic polymorphisms: t = -2.60, P = 0.019; serum IL-17 levels: t = -1.54, P = 0.141). CONCLUSION: The findings strongly suggest that IL-17A/F genetic polymorphisms and serum IL-17 levels contribute to the development and progression of UC. PMID:25400476

  7. Population genetics of polymorphism and divergence for diploid selection models with arbitrary dominance.

    PubMed

    Williamson, Scott; Fledel-Alon, Adi; Bustamante, Carlos D

    2004-09-01

    We develop a Poisson random-field model of polymorphism and divergence that allows arbitrary dominance relations in a diploid context. This model provides a maximum-likelihood framework for estimating both selection and dominance parameters of new mutations using information on the frequency spectrum of sequence polymorphisms. This is the first DNA sequence-based estimator of the dominance parameter. Our model also leads to a likelihood-ratio test for distinguishing nongenic from genic selection; simulations indicate that this test is quite powerful when a large number of segregating sites are available. We also use simulations to explore the bias in selection parameter estimates caused by unacknowledged dominance relations. When inference is based on the frequency spectrum of polymorphisms, genic selection estimates of the selection parameter can be very strongly biased even for minor deviations from the genic selection model. Surprisingly, however, when inference is based on polymorphism and divergence (McDonald-Kreitman) data, genic selection estimates of the selection parameter are nearly unbiased, even for completely dominant or recessive mutations. Further, we find that weak overdominant selection can increase, rather than decrease, the substitution rate relative to levels of polymorphism. This nonintuitive result has major implications for the interpretation of several popular tests of neutrality.

  8. CADB: Conformation Angles DataBase of proteins

    PubMed Central

    Sheik, S. S.; Ananthalakshmi, P.; Bhargavi, G. Ramya; Sekar, K.

    2003-01-01

    Conformation Angles DataBase (CADB) provides an online resource to access data on conformation angles (both main-chain and side-chain) of protein structures in two data sets corresponding to 25% and 90% sequence identity between any two proteins, available in the Protein Data Bank. In addition, the database contains the necessary crystallographic parameters. The package has several flexible options and display facilities to visualize the main-chain and side-chain conformation angles for a particular amino acid residue. The package can also be used to study the interrelationship between the main-chain and side-chain conformation angles. A web based JAVA graphics interface has been deployed to display the user interested information on the client machine. The database is being updated at regular intervals and can be accessed over the World Wide Web interface at the following URL: http://144.16.71.148/cadb/. PMID:12520049

  9. Mutations in exons of the CYP17-II gene affect sex steroid concentration in male Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Ma, Ruiqin; He, Feng; Wen, Haishen; Li, Jifang; Shi, Bao; Shi, Dan; Liu, Miao; Mu, Weijie; Zhang, Yuanqing; Hu, Jian; Han, Weiguo; Zhang, Jianan; Wang, Qingqing; Yuan, Yuren; Liu, Qun

    2012-03-01

    As a specific gene of fish, cytochrome P450c17-II ( CYP17-II) gene plays a key role in the growth, development an reproduction level of fish. In this study, the single-stranded conformational polymorphism (SSCP) technique was used to characterize polymorphisms within the coding region of CYP17-II gene in a population of 75 male Japanese flounder ( Paralichthys olivaceus). Three single nucleotide polymorphisms (SNPs) were identified in CYP17-II gene of Japanese flounder. They were c.G594A (p.G188R), c.G939A and c.G1502A (p.G490D). SNP1 (c.G594A), located in exon 4 of CYP17-II gene, was significantly associated with gonadosomatic index (GSI). Individuals with genotype GG of SNP1 had significantly lower GSI ( P < 0.05) than those with genotype AA or AG. SNP2 (c.G939A) located at the CpG island of CYP17-II gene. The mutation changed the methylation of exon 6. Individuals with genotype AA of SNP2 had significantly lower serum testosterone (T) level and hepatosomatic index (HSI) compared to those with genotype GG. The results suggested that SNP2 could influence the reproductive endocrine of male Japanese flounder. However, the SNP3 (c.G1502A) located in exon 9 did not affect the four measured reproductive traits. This study showed that CYP17-II gene could be a potentially useful candidate gene for the research of genetic breeding and physiological aspects of Japanese flounder.

  10. Genetic differentiation and phylogeny relationships of functional ApoVLDL-II gene in red jungle fowl and domestic chicken populations.

    PubMed

    Musa, Hassan H; Cheng, Jin H; Bao, Wen B; Li, Bi C; Mekki, Dafaalla M; Chen, Guo H

    2007-08-01

    A total of 243 individuals from Red Jungle Fowl (Gallus gallus spadiceus), Rugao, Anka, Wenchang and Silikes chicken populations were used for polymorphism analysis in functional apoVLDL-II gene by Restriction fragment length polymorphism and single strand conformation polymorphism markers. The results show that Anka population has highest gene diversity and Shannon information index, while Red jungle fowl shows highest effective number of allele. In addition, the higher coefficient of genetic differentiation (Gst) across all loci in apoVLDL-II was indicating that high variation is proportioned among populations. As expected total gene diversity (Ht) has upper estimate compared with within population genetic diversity (Hs) across all loci. The mean Gst value across all loci was (0.194) indicating about 19.4% of total genetic variation could be explained by breeds differences, while the remaining 80.6% was accounted for differences among individuals. The average apoVLDL-II gene flow across all loci in five chicken populations was 1.189. The estimates of genetic identity and distance confirm that these genes are significantly different between genetically fat and lean population, because fat type breed Anka shows highest distance with the other Silikes and Rugao whish are genetically lean. In addition, Wenchang and Red jungle fowl were found more closely and genetically related than the other breeds with 49.4% bootstrapping percentages, then they were related to Silikes by 100% bootstrapping percentages followed by Rugao and finally all of them are related with exotic fat breed Anka.

  11. Apolipoprotein E polymorphism and lipoprotein levels in a Gulf Arab population in Kuwait: a pilot study.

    PubMed

    Al-Shammari, S; Fatania, H; Al-Radwan, R; Akanji, A O

    2004-01-01

    APOE polymorphism is believed to confer susceptibility to coronary heart disease (CHD) and Alzheimer's disease. It is well known that patterns of APOE polymorphisms differ between populations and ethnic groups, although most of the data available so far have been in whites. We evaluated the frequencies of APOE genotypes and their relationships with serum levels of lipids, lipoproteins and apolipoproteins in two groups of Gulf Arab citizens: a control population of healthy voluntary blood donors (n=106), and a group of patients presenting to the lipid clinic for the first time with combined hyperlipidaemia (CH) (n=41). In both groups, fasting serum total cholesterol (TC), triglycerides (TG), HDL, LDL and apolipoprotein A1 and B levels were measured by routine autoanalyzer methods, and APOE genotyping was performed by validated PCR methods. The lipid and lipoprotein levels were related to the specific APOE allele frequencies. Allele frequencies were 5.7% for *E2, 85.4% for *E3, and 9.0% for *E4 in the healthy blood donor group. An essentially similar pattern was seen in the patients with CH. This APOE allelic distribution conforms to patterns described in Chinese, whites and South Asians. In both the blood donor and CH groups there were no consistent links between specific APOE pattern and serum lipoproteins, as would have been predicted from APO *E2 and APO *E4 frequencies. We conclude that APOE allelic patterns in healthy Kuwaiti blood donors and a smaller group of patients with CH do not satisfactorily predict circulating blood levels of lipids and lipoproteins.

  12. Characteristics of polymorphism at a VNTR locus 3[prime] to the apolipoprotein B gene in five human populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deka, R.; DeCroo, S.; Ferrell, R.E.

    1992-12-01

    The authors have analyzed the allele frequency distribution at the hypervariable locus 3[prime] to the apolipoprotein B gene (ApoB 3[prime] VNTR) in five well-defined human populations (Kacharis of northeast India, New Guinea Highlanders of Papua New Guinea, Dogrib Indians of Canada, Pehuenche Indians of Chile, and a relatively homogeneous Caucasian population of northern German extraction) by using the PCR technique. A total of 12 segregating alleles were detected in the pooled sample of 319 individuals. A fairly consistent bimodal pattern of allele frequency distribution, apparent in most of these geographically and genetically diverse populations, suggests that the ApoB 3[prime] VNTRmore » polymorphism predates the geographic dispersal of ancestral human populations. In spite of the observed high degree of polymorphism at this locus (expected heterozygosity levels 55%-78%), the genotype distributions in all populations (irrespective of their tribal or cosmopolitan nature) conform to their respective Hardy-Weinberg predictions. Furthermore, analysis of the congruence between expected heterozygosity and the observed number of alleles reveals that, in general, the allele frequency distributions at this locus are in agreement with the predictions of the classical mutation-drift models. The data also show that alleles that are shared by all populations have the highest average frequency within populations. These findings demonstrate the potential utility of highly informative hypervariable loci such as the ApoB 3[prime] VNTR locus in population genetic research, as well as in forensic medicine and determination of biological relatedness of individuals. 38 refs., 2 figs., 3 tabs.« less

  13. Identification of Diatraea spp. (Lepidoptera: Crambidae) based on cytochrome oxidase II.

    PubMed

    Barrera, Gloria Patricia; Villamizar, Laura Fernanda; Espinel, Carlos; Quintero, Edgar Mauricio; Belaich, Mariano Nicolás; Toloza, Deisy Liseth; Ghiringhelli, Pablo Daniel; Vargas, Germán

    2017-01-01

    Diatraea spp. (Lepidoptera: Crambidae) are a group of insects that are agriculture pests in many economically relevant crops such as sugarcane, sorghum, corn and rice. Recognized species for this genus respond differentially to natural enemies used in their biological control, emphasizing the importance of species in a regional approach. Currently, identification is based on the male genitalia. However, the availability of specimens collected from field and subjectivity based on the character recognition can seriously hamper species identification, and therefore result in inadequate pest management. To overcome this, individuals of Diatraea spp. preliminarily classified male genitalia and obtained from reared conditions and the field (both derived from natural populations occurring in Colombia) were analyzed using genitalic morphometry and molecular biology specifically using a fragment of the cytochrome oxidase subunit II (CO II) mitochondrial gene. Although morphometric analysis did not show any overriding results regarding genitalia morphology, the bioinformatics analyses of CO II sequences resulted in an adequate classification of the individuals within the recognized species. It also, revealed that the occurrence of clades associated with geographical distribution may be associated with cryptic species. The latter was also confirmed by a Single-Strand Conformation Polymorphism (SSCP) methodology evaluating the same fragment of CO II. This experimental approach allows properly recognizing each species and in consequence is proposed as an effective tool in Diatraea species identification.

  14. Identification of Diatraea spp. (Lepidoptera: Crambidae) based on cytochrome oxidase II

    PubMed Central

    Villamizar, Laura Fernanda; Espinel, Carlos; Quintero, Edgar Mauricio; Belaich, Mariano Nicolás; Toloza, Deisy Liseth

    2017-01-01

    Diatraea spp. (Lepidoptera: Crambidae) are a group of insects that are agriculture pests in many economically relevant crops such as sugarcane, sorghum, corn and rice. Recognized species for this genus respond differentially to natural enemies used in their biological control, emphasizing the importance of species in a regional approach. Currently, identification is based on the male genitalia. However, the availability of specimens collected from field and subjectivity based on the character recognition can seriously hamper species identification, and therefore result in inadequate pest management. To overcome this, individuals of Diatraea spp. preliminarily classified male genitalia and obtained from reared conditions and the field (both derived from natural populations occurring in Colombia) were analyzed using genitalic morphometry and molecular biology specifically using a fragment of the cytochrome oxidase subunit II (CO II) mitochondrial gene. Although morphometric analysis did not show any overriding results regarding genitalia morphology, the bioinformatics analyses of CO II sequences resulted in an adequate classification of the individuals within the recognized species. It also, revealed that the occurrence of clades associated with geographical distribution may be associated with cryptic species. The latter was also confirmed by a Single-Strand Conformation Polymorphism (SSCP) methodology evaluating the same fragment of CO II. This experimental approach allows properly recognizing each species and in consequence is proposed as an effective tool in Diatraea species identification. PMID:28873431

  15. The spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β

    PubMed Central

    Koag, Myong-Chul; Nam, Kwangho; Lee, Seongmin

    2014-01-01

    To provide molecular-level insights into the spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β (polβ), we report four crystal structures of polβ complexed with dG•dTTP and dA•dCTP mismatches in the presence of Mg2+ or Mn2+. The Mg2+-bound ground-state structures show that the dA•dCTP-Mg2+ complex adopts an ‘intermediate’ protein conformation while the dG•dTTP-Mg2+ complex adopts an open protein conformation. The Mn2+-bound ‘pre-chemistry-state’ structures show that the dA•dCTP-Mn2+ complex is structurally very similar to the dA•dCTP-Mg2+ complex, whereas the dG•dTTP-Mn2+ complex undergoes a large-scale conformational change to adopt a Watson–Crick-like dG•dTTP base pair and a closed protein conformation. These structural differences, together with our molecular dynamics simulation studies, suggest that polβ increases replication fidelity via a two-stage mismatch discrimination mechanism, where one is in the ground state and the other in the closed conformation state. In the closed conformation state, polβ appears to allow only a Watson–Crick-like conformation for purine•pyrimidine base pairs, thereby discriminating the mismatched base pairs based on their ability to form the Watson–Crick-like conformation. Overall, the present studies provide new insights into the spontaneous replication error and the replication fidelity mechanisms of polβ. PMID:25200079

  16. Polymorph-dependent titanium dioxide nanoparticle dissolution in acidic and alkali digestions

    EPA Science Inventory

    Multiple polymorphs (anatase, brookite and rutile) of titanium dioxide nanoparticles (TiO2-NPs) with variable structures were quantified in environmental matrices via microwave-based hydrofluoric (HF) and nitric (HNO3) mixed acid digestion and muffle furnace (MF)-based potassium ...

  17. Orientation Preferences of Backbone Secondary Amide Functional Groups in Peptide Nucleic Acid Complexes: Quantum Chemical Calculations Reveal an Intrinsic Preference of Cationic D-Amino Acid-Based Chiral PNA Analogues for the P-form

    PubMed Central

    Topham, Christopher M.; Smith, Jeremy C.

    2007-01-01

    Geometric descriptions of nonideal interresidue hydrogen bonding and backbone-base water bridging in the minor groove are established in terms of polyamide backbone carbonyl group orientation from analyses of residue junction conformers in experimentally determined peptide nucleic acid (PNA) complexes. Two types of interresidue hydrogen bonding are identified in PNA conformers in heteroduplexes with nucleic acids that adopt A-like basepair stacking. Quantum chemical calculations on the binding of a water molecule to an O2 base atom in glycine-based PNA thymine dimers indicate that junctions modeled with P-form backbone conformations are lower in energy than a dimer comprising the predominant conformation observed in A-like helices. It is further shown in model systems that PNA analogs based on D-lysine are better able to preorganize in a conformation exclusive to P-form helices than is glycine-based PNA. An intrinsic preference for this conformation is also exhibited by positively charged chiral PNA dimers carrying 3-amino-D-alanine or 4-aza-D-leucine residue units that provide for additional rigidity by side-chain hydrogen bonding to the backbone carbonyl oxygen. Structural modifications stabilizing P-form helices may obviate the need for large heterocycles to target DNA pyrimidine bases via PNA·DNA-PNA triplex formation. Quantum chemical modeling methods are used to propose candidate PNA Hoogsteen strand designs. PMID:17071666

  18. How and how much does RAD-seq bias genetic diversity estimates?

    PubMed

    Cariou, Marie; Duret, Laurent; Charlat, Sylvain

    2016-11-08

    RAD-seq is a powerful tool, increasingly used in population genomics. However, earlier studies have raised red flags regarding possible biases associated with this technique. In particular, polymorphism on restriction sites results in preferential sampling of closely related haplotypes, so that RAD data tends to underestimate genetic diversity. Here we (1) clarify the theoretical basis of this bias, highlighting the potential confounding effects of population structure and selection, (2) confront predictions to real data from in silico digestion of full genomes and (3) provide a proof of concept toward an ABC-based correction of the RAD-seq bias. Under a neutral and panmictic model, we confirm the previously established relationship between the true polymorphism and its RAD-based estimation, showing a more pronounced bias when polymorphism is high. Using more elaborate models, we show that selection, resulting in heterogeneous levels of polymorphism along the genome, exacerbates the bias and leads to a more pronounced underestimation. On the contrary, spatial genetic structure tends to reduce the bias. We confront the neutral and panmictic model to "ideal" empirical data (in silico RAD-sequencing) using full genomes from natural populations of the fruit fly Drosophila melanogaster and the fungus Shizophyllum commune, harbouring respectively moderate and high genetic diversity. In D. melanogaster, predictions fit the model, but the small difference between the true and RAD polymorphism makes this comparison insensitive to deviations from the model. In the highly polymorphic fungus, the model captures a large part of the bias but makes inaccurate predictions. Accordingly, ABC corrections based on this model improve the estimations, albeit with some imprecisions. The RAD-seq underestimation of genetic diversity associated with polymorphism in restriction sites becomes more pronounced when polymorphism is high. In practice, this means that in many systems where polymorphism does not exceed 2 %, the bias is of minor importance in the face of other sources of uncertainty, such as heterogeneous bases composition or technical artefacts. The neutral panmictic model provides a practical mean to correct the bias through ABC, albeit with some imprecisions. More elaborate ABC methods might integrate additional parameters, such as population structure and selection, but their opposite effects could hinder accurate corrections.

  19. Chloroplast DNA polymorphism and evolutional relationships between Asian cultivated rice (Oryza sativa) and its wild relatives (O. rufipogon).

    PubMed

    Li, W J; Zhang, B; Huang, G W; Kang, G P; Liang, M Z; Chen, L B

    2012-12-17

    We analyzed chloroplast DNA (cpDNA) polymorphism and phylogenic relationships between 6 typical indica rice, 4 japonica rice, 8 javanica rice, and 12 Asian common wild rice (Oryza rufipogon) strains collected from different latitudes in China by comparing polymorphism at 9 highly variable regions. One hundred and forty-four polymorphic bases were detected. The O. rufipogon samples had 117 polymorphic bases, showing rich genetic diversity. One hundred and thirty-one bases at 13 sites were identified with indica/japonica characteristics; they showed differences between the indica and japonica subspecies at these sites. The javanica strains and japonica shared similar bases at these 131 polymorphic sites, suggesting that javanica is closely related to japonica. On the basis of length analyses of the open reading frame (ORF)100 and (ORF)29-tRNA-Cys(GCA) (TrnC(GCA)) fragments, the O. rufipogon strains were classified into indica/japonica subgroups, which was consistent with the results of the phylogenic tree assay based on concatenated datasets. These results indicated that differences in indica and japonica also exist in the cpDNA genome of the O. rufipogon strains. However, these differences demonstrated a certain degree of primitiveness and incompleteness, as an O. rufipogon line may show different indica/ japonica attributes at different sites. Consequently, O. rufipogon cannot be simply classified into the indica/japonica types as O. sativa. Our data support the hypothesis that Asian cultivated rice, O. indica and O. japonica, separately evolved from Asian common wild rice (O. rufipogon) strains, which have different indica-japonica differentiation trends.

  20. A Genetic Linkage Map of Longleaf Pine (Pinus palustris Mill.) Based on Random Amplified Polymorphic DNAs

    Treesearch

    C.D. Nelson; Thomas L. Kubisiak; M. Stine; W.L. Nance

    1994-01-01

    Eight megagametophyte DNA samples from a single longleaf pine (Pinus palustris Mill.) tree were used to screen 576 oligonucleotide primers for random amplified polymorphic DNA (RAPD) fragments. Primers amplifying repeatable polymorphic fragments were further characterized within a sample of 72 megagametophytes from the same tree. Fragments...

  1. Detection and validation of single feature polymorphisms using RNA expression data from a rice genome array

    USDA-ARS?s Scientific Manuscript database

    A large number of genetic variations have been identified in rice. Such variations must in many cases control phenotypic differences in abiotic stress tolerance and other traits. A single feature polymorphism (SFP) is an oligonucleotide array-based polymorphism which can be used for identification o...

  2. Specialized Dynamical Properties of Promiscuous Residues Revealed by Simulated Conformational Ensembles

    PubMed Central

    2013-01-01

    The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein–protein interaction prediction and design methods. PMID:24250278

  3. Tris(2-aminoethyl)amine based tripodal urea receptors for oxalate: encapsulation of staggered vs. planar conformers.

    PubMed

    Bose, Purnandhu; Dutta, Ranjan; Ghosh, Pradyut

    2013-07-28

    Simple tris(2-aminoethyl)amine (TREN) based tripodal urea receptors are investigated for the encapsulation of divalent oxalate (C2O4(2-)) in a semi-aqueous medium. A single crystal X-ray diffraction study shows that the receptor with 3-cyanophenyl functionality captures a staggered conformer whereas the 3-fluorophenyl functionalized receptor encapsulates a less stable planar conformer.

  4. The impact of HIV-1 reverse transcriptase polymorphisms on responses to first-line nonnucleoside reverse transcriptase inhibitor-based therapy in HIV-1-infected adults.

    PubMed

    Mackie, Nicola E; Dunn, David T; Dolling, David; Garvey, Lucy; Harrison, Linda; Fearnhill, Esther; Tilston, Peter; Sabin, Caroline; Geretti, Anna M

    2013-09-10

    HIV-1 genetic variability may influence antiretroviral therapy (ART) outcomes. The study aim was to determine the impact of polymorphisms in regions known to harbor major nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance mutations (codons 90-108, 135-138, 179-190, 225-348) on virologic responses to first-line NNRTI-based ART. Reverse transcriptase sequences from ART-naive individuals who commenced efavirenz (EFV) or nevirapine (NVP) with at least two nucleos(t)ide reverse transcriptase inhibitors (NRTIs) without major drug resistance mutations were analyzed. The impact of polymorphisms on week 4 viral load decrease and time to virologic failure was measured over a median 97 weeks. Among 4528 patients, most were infected with HIV-1 subtype B (67%) and commenced EFV-based ART (84%). Overall, 2598 (57%) had at least one polymorphism, most frequently at codons 90, 98, 101, 103, 106, 135, 138, 179, and 238. Virologic failure rates were increased in patients with two (n = 597) or more than two (n = 72) polymorphisms [adjusted hazard ratio 1.43; 95% confidence interval (CI) 1.07-1.92; P = 0.016]. Polymorphisms associated with virologic failure occurred at codons 90 (mostly V90I), 98 (mostly A98S), and 103 (mostly K103R), with adjusted hazard ratios of 1.78 (1.15-2.73; P = 0.009), 1.55 (1.16-2.08; P = 0.003), and 1.75 (1.00-3.05: P = 0.049), respectively. Polymorphisms at codon 179, especially V179D/E/T, predicted reduced week 4 responses (P = 0.001) but not virologic failure. The occurrence of multiple polymorphisms, though uncommon, was associated with a small increase in the risk of NNRTI treatment failure; significant effects were seen with polymorphisms at codon 90, 98, and 103. The mechanisms underlying the slower suppression seen with V179D/E/T deserve further investigation.

  5. Configurations of base-pair complexes in solutions. [nucleotide chemistry

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Nir, S.; Rein, R.; Macelroy, R.

    1978-01-01

    A theoretical search for the most stable conformations (i.e., stacked or hydrogen bonded) of the base pairs A-U and G-C in water, CCl4, and CHCl3 solutions is presented. The calculations of free energies indicate a significant role of the solvent in determining the conformations of the base-pair complexes. The application of the continuum method yields preferred conformations in good agreement with experiment. Results of the calculations with this method emphasize the importance of both the electrostatic interactions between the two bases in a complex, and the dipolar interaction of the complex with the entire medium. In calculations with the solvation shell method, the last term, i.e., dipolar interaction of the complex with the entire medium, was added. With this modification the prediction of the solvation shell model agrees both with the continuum model and with experiment, i.e., in water the stacked conformation of the bases is preferred.

  6. Micromechanical sensors based on conformational change of proteins

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Buchapudi, Koutilya R.; Gao, Hongyan; Xu, Xiaohe; Ji, Hai-Feng

    2008-04-01

    Microcantilevers (MCLs) hold a position as a cost-effective and highly sensitive sensor platform for medical diagnostics, environmental, and fast throughput analysis. One of recently focus in this technology is the development of biosensors based on the conformational change of proteins on MCL surfaces. The surface stress changes due to conformational change of the proteins upon interaction with specific analytes are promising as transducers of chemical information. We will discuss our recent results on several biosensors due to conformational change of proteins. The proteins include glucose oxidase (GOx), organophosphorus hydrolyses (OPH), Calmodulin (CaM), and Horseradish peroxidase (HRP).

  7. Force-momentum-based self-guided Langevin dynamics: A rapid sampling method that approaches the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Wu, Xiongwu; Brooks, Bernard R.

    2011-11-01

    The self-guided Langevin dynamics (SGLD) is a method to accelerate conformational searching. This method is unique in the way that it selectively enhances and suppresses molecular motions based on their frequency to accelerate conformational searching without modifying energy surfaces or raising temperatures. It has been applied to studies of many long time scale events, such as protein folding. Recent progress in the understanding of the conformational distribution in SGLD simulations makes SGLD also an accurate method for quantitative studies. The SGLD partition function provides a way to convert the SGLD conformational distribution to the canonical ensemble distribution and to calculate ensemble average properties through reweighting. Based on the SGLD partition function, this work presents a force-momentum-based self-guided Langevin dynamics (SGLDfp) simulation method to directly sample the canonical ensemble. This method includes interaction forces in its guiding force to compensate the perturbation caused by the momentum-based guiding force so that it can approximately sample the canonical ensemble. Using several example systems, we demonstrate that SGLDfp simulations can approximately maintain the canonical ensemble distribution and significantly accelerate conformational searching. With optimal parameters, SGLDfp and SGLD simulations can cross energy barriers of more than 15 kT and 20 kT, respectively, at similar rates for LD simulations to cross energy barriers of 10 kT. The SGLDfp method is size extensive and works well for large systems. For studies where preserving accessible conformational space is critical, such as free energy calculations and protein folding studies, SGLDfp is an efficient approach to search and sample the conformational space.

  8. Monte Carlo replica-exchange based ensemble docking of protein conformations.

    PubMed

    Zhang, Zhe; Ehmann, Uwe; Zacharias, Martin

    2017-05-01

    A replica-exchange Monte Carlo (REMC) ensemble docking approach has been developed that allows efficient exploration of protein-protein docking geometries. In addition to Monte Carlo steps in translation and orientation of binding partners, possible conformational changes upon binding are included based on Monte Carlo selection of protein conformations stored as ordered pregenerated conformational ensembles. The conformational ensembles of each binding partner protein were generated by three different approaches starting from the unbound partner protein structure with a range spanning a root mean square deviation of 1-2.5 Å with respect to the unbound structure. Because MC sampling is performed to select appropriate partner conformations on the fly the approach is not limited by the number of conformations in the ensemble compared to ensemble docking of each conformer pair in ensemble cross docking. Although only a fraction of generated conformers was in closer agreement with the bound structure the REMC ensemble docking approach achieved improved docking results compared to REMC docking with only the unbound partner structures or using docking energy minimization methods. The approach has significant potential for further improvement in combination with more realistic structural ensembles and better docking scoring functions. Proteins 2017; 85:924-937. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. The Structure of a High Fidelity DNA Polymerase Bound to a Mismatched Nucleotide Reveals an “Ajar” Intermediate Conformation in the Nucleotide Selection Mechanism*

    PubMed Central

    Wu, Eugene Y.; Beese, Lorena S.

    2011-01-01

    To achieve accurate DNA synthesis, DNA polymerases must rapidly sample and discriminate against incorrect nucleotides. Here we report the crystal structure of a high fidelity DNA polymerase I bound to DNA primer-template caught in the act of binding a mismatched (dG:dTTP) nucleoside triphosphate. The polymerase adopts a conformation in between the previously established “open” and “closed” states. In this “ajar” conformation, the template base has moved into the insertion site but misaligns an incorrect nucleotide relative to the primer terminus. The displacement of a conserved active site tyrosine in the insertion site by the template base is accommodated by a distinctive kink in the polymerase O helix, resulting in a partially open ternary complex. We suggest that the ajar conformation allows the template to probe incoming nucleotides for complementarity before closure of the enzyme around the substrate. Based on solution fluorescence, kinetics, and crystallographic analyses of wild-type and mutant polymerases reported here, we present a three-state reaction pathway in which nucleotides either pass through this intermediate conformation to the closed conformation and catalysis or are misaligned within the intermediate, leading to destabilization of the closed conformation. PMID:21454515

  10. Three-dimensional structural analysis of eukaryotic flagella/cilia by electron cryo-tomography

    PubMed Central

    Bui, Khanh Huy; Pigino, Gaia; Ishikawa, Takashi

    2011-01-01

    Electron cryo-tomography is a potential approach to analyzing the three-dimensional conformation of frozen hydrated biological macromolecules using electron microscopy. Since projections of each individual object illuminated from different orientations are merged, electron tomography is capable of structural analysis of such heterogeneous environments as in vivo or with polymorphism, although radiation damage and the missing wedge are severe problems. Here, recent results on the structure of eukaryotic flagella, which is an ATP-driven bending organelle, from green algae Chlamydomonas are presented. Tomographic analysis reveals asymmetric molecular arrangements, especially that of the dynein motor proteins, in flagella, giving insight into the mechanism of planar asymmetric bending motion. Methodological challenges to obtaining higher-resolution structures from this technique are also discussed. PMID:21169680

  11. Isomers and conformational barriers of gas phase nicotine, nornicotine and their protonated forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Tomoki; Farone, William A.; Xantheas, Sotiris S.

    We report extensive conformational searches of the neutral nicotine, nornicotine and their protonated analogs that are based on ab-initio second order Møller-Plesset perturbation (MP2) electronic structure calculations. Initial searches were performed with the 6-31G(d,p) and the energetics of the most important structures were further refined from geometry optimizations with the aug-cc-pVTZ basis set. Based on the calculated free energies at T=298 K for the gas phase molecules, neutral nicotine has two dominant trans conformers, whereas neutral nornicotine is a mixture of several conformers. For nicotine, the protonation on both the pyridine and the pyrrolidine sites is energetically competitive, whereas nornicotinemore » prefers protonation on the pyridine nitrogen. The protonated form of nicotine is mainly a mixture of two pyridine-protonated trans conformers and two pyrrolidine-protonated trans conformers, whereas the protonated form of nornicotine is a mixture of four pyridine-protonated trans conformers. Nornicotine is conformationally more flexible than nicotine, however it is less protonated at the biologically important pyrrolidine nitrogen site. The lowest energy isomers for each case were found to interconvert via low (< 6 kcal/mol) rotational barriers around the pyridine-pyrrolidine bond.« less

  12. Lack of association between alpha2-macroglobulin polymorphisms and Alzheimer's disease.

    PubMed

    Wang, X; Luedecking, E K; Minster, R L; Ganguli, M; DeKosky, S T; Kamboh, M I

    2001-02-01

    This study was undertaken to investigate the role of two alpha2-macroglobulin (A2M) polymorphisms, an intronic 5-bp deletion and Ile1000Val, in the development of Alzheimer's disease (AD) and to evaluate the interaction between the apolipoprotein E (APOE) and A2M polymorphisms. The A2M polymorphisms were screened by using polymerase-chain-reaction-based assays in 555 white late-onset AD cases and 446 controls. The gentoype distributions of the 5-bp deletion and Ile1000Val polymorphisms were comparable between cases and controls (P = 0.158 and P = 0.148, respectively). Likewise, there was no significant difference in allele frequencies of each polymorphism among cases and controls (P = 0.361 and P = 0.062, respectively). The stratification of data by APOE*4 status also did not yield any significant association. In conclusion, we observed no association between either the intronic deletion polymorphism or the Ile1000Val polymorphism of A2M and AD in our case-control cohort.

  13. Both the cis-trans equilibrium and isomerization dynamics of a single proline amide modulate β2-microglobulin amyloid assembly

    PubMed Central

    Torbeev, Vladimir Yu.; Hilvert, Donald

    2013-01-01

    The human protein β2-microglobulin (β2m) aggregates as amyloid fibrils in patients undergoing long-term hemodialysis. Isomerization of Pro32 from its native cis to a nonnative trans conformation is thought to trigger β2m misfolding and subsequent amyloid assembly. To examine this hypothesis, we systematically varied the free-energy profile of proline cis-trans isomerization by replacing Pro32 with a series of 4-fluoroprolines via total chemical synthesis. We show that β2m’s stability, (un)folding, and aggregation properties are all influenced by the rate and equilibrium of Pro32 cis-trans isomerization. As anticipated, the β2m monomer was either stabilized or destabilized by respective incorporation of (2S,4S)-fluoroproline, which favors the native cis amide bond, or the stereoisomeric (2S,4R)-fluoroproline, which disfavors this conformation. However, substitution of Pro32 with 4,4-difluoroproline, which has nearly the same cis-trans preference as proline but an enhanced isomerization rate, caused pronounced destabilization of the protein and increased oligomerization at neutral pH. More remarkably, these subtle alterations in chemical composition—incorporation of one or two fluorine atoms into a single proline residue in the 99 amino acid long protein—modulated the aggregation properties of β2m, inducing the formation of polymorphically distinct amyloid fibrils. These results highlight the importance of conformational dynamics for molecular assembly of an amyloid cross-β structure and provide insights into mechanistic aspects of Pro32 cis-trans isomerism in β2m aggregation. PMID:24262149

  14. Both the cis-trans equilibrium and isomerization dynamics of a single proline amide modulate β2-microglobulin amyloid assembly.

    PubMed

    Torbeev, Vladimir Yu; Hilvert, Donald

    2013-12-10

    The human protein β2-microglobulin (β2m) aggregates as amyloid fibrils in patients undergoing long-term hemodialysis. Isomerization of Pro32 from its native cis to a nonnative trans conformation is thought to trigger β2m misfolding and subsequent amyloid assembly. To examine this hypothesis, we systematically varied the free-energy profile of proline cis-trans isomerization by replacing Pro32 with a series of 4-fluoroprolines via total chemical synthesis. We show that β2m's stability, (un)folding, and aggregation properties are all influenced by the rate and equilibrium of Pro32 cis-trans isomerization. As anticipated, the β2m monomer was either stabilized or destabilized by respective incorporation of (2S,4S)-fluoroproline, which favors the native cis amide bond, or the stereoisomeric (2S,4R)-fluoroproline, which disfavors this conformation. However, substitution of Pro32 with 4,4-difluoroproline, which has nearly the same cis-trans preference as proline but an enhanced isomerization rate, caused pronounced destabilization of the protein and increased oligomerization at neutral pH. More remarkably, these subtle alterations in chemical composition--incorporation of one or two fluorine atoms into a single proline residue in the 99 amino acid long protein--modulated the aggregation properties of β2m, inducing the formation of polymorphically distinct amyloid fibrils. These results highlight the importance of conformational dynamics for molecular assembly of an amyloid cross-β structure and provide insights into mechanistic aspects of Pro32 cis-trans isomerism in β2m aggregation.

  15. The Tubulin-Based-Polymorphism Method Provides a Simple and Effective Alternative to the Genomic Profiling of Grape

    PubMed Central

    Mastromauro, Francesco; Gianì, Silvia; Morello, Laura

    2016-01-01

    The TBP (Tubulin-Based-Polymorphism) method, based on a nuclear ILP (Intron-Length-Polymorphism) molecular marker, has been used for genotyping 37 accessions of the genus Vitis inclusive of different species, rootstocks, wild and cultivated subspecies. A distinct DNA barcode made up by a different number of amplicons, was attributed to each of the different accessions. TBP data were compared with those obtained, with the use of an internationally validated set of six SSR markers. Genetic relationships among the different accessions, dendrogram distributions, correlation values and polymorphic index values (PICs) were definitively comparable when not in favor of TBP. Such an experimental consistency is based upon a genomic organization of the multiple members of the β-tubulin gene family, the targets of TBP-mediated amplification, that is conserved in Vitis as in any other plant species. The TBP amplicons can actually be used as a useful source of sequence polymorphisms for generating primer pairs capable of identifying specific cultivars in a simple assay. An example for the identification of the ‘Sangiovese’ cv. is reported. More generally, these data are discussed in terms of the actual advantages that the introduction of the TBP method in the field of grape characterization and genotyping can provide. PMID:27643687

  16. Laboratory evolution of protein conformational dynamics.

    PubMed

    Campbell, Eleanor C; Correy, Galen J; Mabbitt, Peter D; Buckle, Ashley M; Tokuriki, Nobuhiko; Jackson, Colin J

    2017-11-08

    This review focuses on recent work that has begun to establish specific functional roles for protein conformational dynamics, specifically how the conformational landscapes that proteins can sample can evolve under laboratory based evolutionary selection. We discuss recent technical advances in computational and biophysical chemistry, which have provided us with new ways to dissect evolutionary processes. Finally, we offer some perspectives on the emerging view of conformational dynamics and evolution, and the challenges that we face in rationally engineering conformational dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Prion Strain Characterization of a Novel Subtype of Creutzfeldt-Jakob Disease.

    PubMed

    Galeno, Roberta; Di Bari, Michele Angelo; Nonno, Romolo; Cardone, Franco; Sbriccoli, Marco; Graziano, Silvia; Ingrosso, Loredana; Fiorini, Michele; Valanzano, Angelina; Pasini, Giulia; Poleggi, Anna; Vinci, Ramona; Ladogana, Anna; Puopolo, Maria; Monaco, Salvatore; Agrimi, Umberto; Zanusso, Gianluigi; Pocchiari, Maurizio

    2017-06-01

    In 2007, we reported a patient with an atypical form of Creutzfeldt-Jakob disease (CJD) heterozygous for methionine-valine (MV) at codon 129 who showed a novel pathological prion protein (PrP TSE ) conformation with an atypical glycoform (AG) profile and intraneuronal PrP deposition. In the present study, we further characterize the conformational properties of this pathological prion protein (PrP TSE MV AG ), showing that PrP TSE MV AG is composed of multiple conformers with biochemical properties distinct from those of PrP TSE type 1 and type 2 of MV sporadic CJD (sCJD). Experimental transmission of CJD-MV AG to bank voles and gene-targeted transgenic mice carrying the human prion protein gene (TgHu mice) showed unique transmission rates, survival times, neuropathological changes, PrP TSE deposition patterns, and PrP TSE glycotypes that are distinct from those of sCJD-MV1 and sCJD-MV2. These biochemical and experimental data suggest the presence of a novel prion strain in CJD-MV AG IMPORTANCE Sporadic Creutzfeldt-Jakob disease is caused by the misfolding of the cellular prion protein, which assumes two different major conformations (type 1 and type 2) and, together with the methionine/valine polymorphic codon 129 of the prion protein gene, contribute to the occurrence of distinct clinical-pathological phenotypes. Inoculation in laboratory rodents of brain tissues from the six possible combinations of pathological prion protein types with codon 129 genotypes results in the identification of 3 or 4 strains of prions. We report on the identification of a novel strain of Creutzfeldt-Jakob disease isolated from a patient who carried an abnormally glycosylated pathological prion protein. This novel strain has unique biochemical characteristics, does not transmit to humanized transgenic mice, and shows exclusive transmission properties in bank voles. The identification of a novel human prion strain improves our understanding of the pathogenesis of the disease and of possible mechanisms of prion transmission. Copyright © 2017 American Society for Microbiology.

  18. Using 1H and 13C NMR chemical shifts to determine cyclic peptide conformations: a combined molecular dynamics and quantum mechanics approach.

    PubMed

    Nguyen, Q Nhu N; Schwochert, Joshua; Tantillo, Dean J; Lokey, R Scott

    2018-05-10

    Solving conformations of cyclic peptides can provide insight into structure-activity and structure-property relationships, which can help in the design of compounds with improved bioactivity and/or ADME characteristics. The most common approaches for determining the structures of cyclic peptides are based on NMR-derived distance restraints obtained from NOESY or ROESY cross-peak intensities, and 3J-based dihedral restraints using the Karplus relationship. Unfortunately, these observables are often too weak, sparse, or degenerate to provide unequivocal, high-confidence solution structures, prompting us to investigate an alternative approach that relies only on 1H and 13C chemical shifts as experimental observables. This method, which we call conformational analysis from NMR and density-functional prediction of low-energy ensembles (CANDLE), uses molecular dynamics (MD) simulations to generate conformer families and density functional theory (DFT) calculations to predict their 1H and 13C chemical shifts. Iterative conformer searches and DFT energy calculations on a cyclic peptide-peptoid hybrid yielded Boltzmann ensembles whose predicted chemical shifts matched the experimental values better than any single conformer. For these compounds, CANDLE outperformed the classic NOE- and 3J-coupling-based approach by disambiguating similar β-turn types and also enabled the structural elucidation of the minor conformer. Through the use of chemical shifts, in conjunction with DFT and MD calculations, CANDLE can help illuminate conformational ensembles of cyclic peptides in solution.

  19. Conformal Prediction Based on K-Nearest Neighbors for Discrimination of Ginsengs by a Home-Made Electronic Nose

    PubMed Central

    Sun, Xiyang; Miao, Jiacheng; Wang, You; Luo, Zhiyuan; Li, Guang

    2017-01-01

    An estimate on the reliability of prediction in the applications of electronic nose is essential, which has not been paid enough attention. An algorithm framework called conformal prediction is introduced in this work for discriminating different kinds of ginsengs with a home-made electronic nose instrument. Nonconformity measure based on k-nearest neighbors (KNN) is implemented separately as underlying algorithm of conformal prediction. In offline mode, the conformal predictor achieves a classification rate of 84.44% based on 1NN and 80.63% based on 3NN, which is better than that of simple KNN. In addition, it provides an estimate of reliability for each prediction. In online mode, the validity of predictions is guaranteed, which means that the error rate of region predictions never exceeds the significance level set by a user. The potential of this framework for detecting borderline examples and outliers in the application of E-nose is also investigated. The result shows that conformal prediction is a promising framework for the application of electronic nose to make predictions with reliability and validity. PMID:28805721

  20. Correlation of MSH3 polymorphisms with response and survival in advanced non-small cell lung cancer patients treated with first-line platinum-based chemotherapy.

    PubMed

    Xu, X-L; Yao, Y-L; Xu, W-Z; Feng, J-G; Mao, W-M

    2015-04-15

    Mismatch repair (MMR) genes, as well as the nucleotide excision repair genes, play an important role in removing cisplatin-DNA adducts, and the mutation of MMR genes in tumors can lead to a decreased response to platinum-based therapies. We examined MutS homolog 3 (MSH3), a mismatch repair gene, and whether polymorphisms of MSH3 were associated with response and survival in advanced non-small cell lung cancer (NCSLC) patients who were treated with platinum-based chemotherapy. The peripheral blood of 180 advanced NCSLC patients who were treated with first-line platinum-based chemotherapy was collected to determine the patients' genotypes of MSH3. The three genotypes of the MSH3 polymorphisms rs26279, rs1650697 and rs1105524 were investigated. A statistically significant association was observed between the polymorphism rs26279 (Ala1054Thr) and sensitivity to platinum-based chemotherapy (P = 0.014). A significant correlation was found between rs1105524 and progression-free survival (PFS), with the G/A and A/A genotypes (median survival time: 14.27 months; 95%CI = 9.80-18.75) suffering shorter survival than patients with the G/G genotype (median survival time: 26.37 months; 95%CI = 15.03-37.71) (P = 0.04). Our results showed that single nucleotide polymorphisms in MSH3 had an impact on the chemotherapy response and prognosis of advanced NCSLC patients who were treated with platinum-based chemotherapy.

  1. Using information content and base frequencies to distinguish mutations from genetic polymorphisms in splice junction recognition sites.

    PubMed

    Rogan, P K; Schneider, T D

    1995-01-01

    Predicting the effects of nucleotide substitutions in human splice sites has been based on analysis of consensus sequences. We used a graphic representation of sequence conservation and base frequency, the sequence logo, to demonstrate that a change in a splice acceptor of hMSH2 (a gene associated with familial nonpolyposis colon cancer) probably does not reduce splicing efficiency. This confirms a population genetic study that suggested that this substitution is a genetic polymorphism. The information theory-based sequence logo is quantitative and more sensitive than the corresponding splice acceptor consensus sequence for detection of true mutations. Information analysis may potentially be used to distinguish polymorphisms from mutations in other types of transcriptional, translational, or protein-coding motifs.

  2. Air Quality Conformity for Fiscal Years 1997-2000 Transportation Improvement Program for the Cincinnati Nonattainment Region

    DOT National Transportation Integrated Search

    1996-06-01

    The Clean Air Act Amendments (CAAA) of 1990 required emissions reductions in : nonattainment areas. The CAAA contains conformity provisions requiring : transportation plans and programs to conform to air quality plans. Based on the : documented analy...

  3. A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins.

    PubMed

    Ahmed, Aqeel; Rippmann, Friedrich; Barnickel, Gerhard; Gohlke, Holger

    2011-07-25

    A three-step approach for multiscale modeling of protein conformational changes is presented that incorporates information about preferred directions of protein motions into a geometric simulation algorithm. The first two steps are based on a rigid cluster normal-mode analysis (RCNMA). Low-frequency normal modes are used in the third step (NMSim) to extend the recently introduced idea of constrained geometric simulations of diffusive motions in proteins by biasing backbone motions of the protein, whereas side-chain motions are biased toward favorable rotamer states. The generated structures are iteratively corrected regarding steric clashes and stereochemical constraint violations. The approach allows performing three simulation types: unbiased exploration of conformational space; pathway generation by a targeted simulation; and radius of gyration-guided simulation. When applied to a data set of proteins with experimentally observed conformational changes, conformational variabilities are reproduced very well for 4 out of 5 proteins that show domain motions, with correlation coefficients r > 0.70 and as high as r = 0.92 in the case of adenylate kinase. In 7 out of 8 cases, NMSim simulations starting from unbound structures are able to sample conformations that are similar (root-mean-square deviation = 1.0-3.1 Å) to ligand bound conformations. An NMSim generated pathway of conformational change of adenylate kinase correctly describes the sequence of domain closing. The NMSim approach is a computationally efficient alternative to molecular dynamics simulations for conformational sampling of proteins. The generated conformations and pathways of conformational transitions can serve as input to docking approaches or as starting points for more sophisticated sampling techniques.

  4. Solution-Phase Conformation and Dynamics of Conjugated Isoindigo-Based Donor–Acceptor Polymer Single Chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Franklin L.; Farimani, Amir Barati; Gu, Kevin L.

    Conjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor–acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations. Our simulations elucidate the transition from a rod-like to a coil-like conformation from an analysis of normal modes and persistence length. In addition, we find another transition based on the solvent environment, contrasting the coil-like conformation in a good solvent withmore » a globule-like conformation in a poor solvent. Altogether, our results provide valuable insights into the transition between conformational regimes for conjugated polymers as a function of both the chain length and the solvent environment, which will help to accurately parametrize higher level models.« less

  5. Solution-Phase Conformation and Dynamics of Conjugated Isoindigo-Based Donor–Acceptor Polymer Single Chains

    DOE PAGES

    Lee, Franklin L.; Farimani, Amir Barati; Gu, Kevin L.; ...

    2017-10-25

    Conjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor–acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations. Our simulations elucidate the transition from a rod-like to a coil-like conformation from an analysis of normal modes and persistence length. In addition, we find another transition based on the solvent environment, contrasting the coil-like conformation in a good solvent withmore » a globule-like conformation in a poor solvent. Altogether, our results provide valuable insights into the transition between conformational regimes for conjugated polymers as a function of both the chain length and the solvent environment, which will help to accurately parametrize higher level models.« less

  6. Computational ligand-based rational design: Role of conformational sampling and force fields in model development.

    PubMed

    Shim, Jihyun; Mackerell, Alexander D

    2011-05-01

    A significant number of drug discovery efforts are based on natural products or high throughput screens from which compounds showing potential therapeutic effects are identified without knowledge of the target molecule or its 3D structure. In such cases computational ligand-based drug design (LBDD) can accelerate the drug discovery processes. LBDD is a general approach to elucidate the relationship of a compound's structure and physicochemical attributes to its biological activity. The resulting structure-activity relationship (SAR) may then act as the basis for the prediction of compounds with improved biological attributes. LBDD methods range from pharmacophore models identifying essential features of ligands responsible for their activity, quantitative structure-activity relationships (QSAR) yielding quantitative estimates of activities based on physiochemical properties, and to similarity searching, which explores compounds with similar properties as well as various combinations of the above. A number of recent LBDD approaches involve the use of multiple conformations of the ligands being studied. One of the basic components to generate multiple conformations in LBDD is molecular mechanics (MM), which apply an empirical energy function to relate conformation to energies and forces. The collection of conformations for ligands is then combined with functional data using methods ranging from regression analysis to neural networks, from which the SAR is determined. Accordingly, for effective application of LBDD for SAR determinations it is important that the compounds be accurately modelled such that the appropriate range of conformations accessible to the ligands is identified. Such accurate modelling is largely based on use of the appropriate empirical force field for the molecules being investigated and the approaches used to generate the conformations. The present chapter includes a brief overview of currently used SAR methods in LBDD followed by a more detailed presentation of issues and limitations associated with empirical energy functions and conformational sampling methods.

  7. Influence of autoantibodies against AT1 receptor and AGTR1 polymorphisms on candesartan-based antihypertensive regimen: results from the study of optimal treatment in hypertensive patients with anti-AT1-receptor autoantibodies trial.

    PubMed

    Sun, Yanxiang; Liao, Yuhua; Yuan, Yong; Feng, Li; Ma, Shihui; Wei, Feng; Wang, Min; Zhu, Feng

    2014-01-01

    The autoantibodies against angiotensin AT1 receptors (AT1-AAs) in patients with essential hypertension exhibited an agonistic action like angiotensin II and maintained high blood pressure (BP). Angiotensin II receptor gene (AGTR1) polymorphisms were associated with BP response to RAS inhibition in the hypertensive population. Furthermore, the BP response to AT1 receptor blockers varied significantly among individuals with hypertension. We hypothesized that the polymorphisms of the AGTR1 and AT1-AAs might affect antihypertensive response to AT1 receptor blockers based in patients with primary hypertension. Patients who received a candesartan-based regimen came from the SOT-AT1 study (Study of Optimal Treatment in Hypertensive Patients with Anti-AT1-Receptor Autoantibodies). The established enzyme-labeled immunosorbent assay was used to detect AT1-AAs in the sera of the patients. Genotype 3 single nucleotide polymorphisms in AGTR1 gene was used by DNA sequencing. The correlations among AT1-AAs, AGTR1 gene polymorphisms or haplotypes, and the antihypertensive effect candesartan-based were analyzed using SPSS. The percentage of systolic BP reduction that was candesartan-based was greater in AT1-AA positive groups than in AT1-AA negative ones (21 ± 8 vs. 18 ± 9; P = .001). Meanwhile, systolic BP reduction that was candesartan-based was more significant in the group of rs5186 AC genotypes than AA homozygotes after adjusting for other confounding factors (37.55 ± 13.7 vs. 32.47 ± 17.27 mm Hg; adjusted P = .028). Furthermore, haplotypes (GCC) and (AAC) had impacts on the antihypertensive effect of candesartan therapy. The AT1-AAs, AGTR1 gene polymorphisms and haplotypes solely or jointly have influences on candesartan-based antihypertensive response in patients with primary hypertension. Copyright © 2014 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  8. Characterization of a highly polymorphic region 5′ to JH in the human immunoglobulin heavy chain

    PubMed Central

    Silva, Alcino J.; Johnson, John P.; White, Raymond L.

    1987-01-01

    A cloned DNA segment 1.25 kilobases (kb) upstream from the joining segments of the human heavy chain immunoglobulin gene revealed extensive polymorphic variation at this locus, and the polymorphic pattern was stably transmitted to the next generation. Genomic restriction analysis showed that the polymorphism was caused by insertions/deletions within an MspI/BamHI fragment. Sequencing of one allele, 848 base pairs (bp) long, revealed eleven 50-base-pair tandem repeats. A second allele, 648 bp long, was cloned from a human genomic cosmid library, sequenced, and found to contain four fewer repeats than the first allele. A survey of 186 chromosomes from unrelated individuals of primarily northern European descent revealed at least six alleles. Images PMID:2884636

  9. Microscopic insights into the NMR relaxation based protein conformational entropy meter

    PubMed Central

    Kasinath, Vignesh; Sharp, Kim A.; Wand, A. Joshua

    2013-01-01

    Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven pro! teins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side-chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion - the NMR-derived generalized order parameters - as a proxy from which to derive changes in protein conformational entropy. PMID:24007504

  10. Long-range anisotropic effects in a V-shaped Tröger's base diformanilide: Conformational study by NMR assignment and DFT calculations

    NASA Astrophysics Data System (ADS)

    Trupp, Leandro; Laurella, Sergio L.; Tettamanzi, M. Cristina; Barja, Beatriz C.; Bruttomesso, Andrea C.

    2018-04-01

    Herein we describe the synthesis and conformational analysis of a Tröger's base diformanilide whose distinctive NMR spectra was fully assigned via DFT calculations. The complexity of the spectra originated by the presence of three conformers in equilibrium shows that the nuclei in each side of the molecule are sensitive to the configuration not only of the closest formamide moiety but also of the farthest one, due to long-range anisotropic effects. The temperature and the solvent polarity influence were analyzed to determine the different conformer populations and the corresponding rotational activation parameters.

  11. Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).

    PubMed

    Cox, Christian L; Chippindale, Paul T

    2014-08-01

    We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.

  12. Association of CRTC1 polymorphisms with obesity markers in subjects from the general population with lifetime depression.

    PubMed

    Quteineh, Lina; Preisig, Martin; Rivera, Margarita; Milaneschi, Yuri; Castelao, Enrique; Gholam-Rezaee, Mehdi; Vandenberghe, Frederik; Saigi-Morgui, Nuria; Delacrétaz, Aurélie; Cardinaux, Jean-René; Willemsen, Gonneke; Boomsma, Dorret I; Penninx, Brenda W J H; Ching-López, Ana; Conus, Philippe; Eap, Chin B

    2016-07-01

    Psychiatric disorders have been hypothesized to share common etiological pathways with obesity, suggesting related neurobiological bases. We aimed to examine whether CRTC1 polymorphisms were associated with major depressive disorder (MDD) and to test the association of these polymorphisms with obesity markers in several large case-control samples with MDD. The association between CRTC1 polymorphisms and MDD was investigated in three case-control samples with MDD (PsyCoLaus n1=3,362, Radiant n2=3,148 and NESDA/NTR n3=4,663). The effect of CRTC1 polymorphisms on obesity markers was then explored. CRTC1 polymorphisms were not associated with MDD in the three samples. CRTC1 rs6510997C>T was significantly associated with fat mass in the PsyCoLaus study. In fact, a protective effect of this polymorphism was found in MDD cases (n=1,434, β=-1.32%, 95% CI -2.07 to -0.57, p<0.001), but not in controls. In the Radiant study, CRTC1 polymorphisms were associated with BMI, exclusively in individuals with MDD (n=2,138, β=-0.75kg/m(2), 95% CI -1.30 to -0.21, p=0.007), while no association with BMI was found in the NESDA/NTR study. Estimated fat mass using bioimpedance that capture more accurately adiposity was only present in the PsyCoLaus sample. CRTC1 polymorphisms seem to play a role with obesity markers in individuals with MDD rather than non-depressive individuals. Therefore, the weak association previously reported in the population-based samples was driven by cases diagnosed with lifetime MDD. However, CRTC1 seems not to be implicated directly in the development of psychiatric diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. XPG genetic polymorphisms and clinical outcome of patients with advanced non-small cell lung cancer under platinum-based treatment: a meta-analysis of 12 studies.

    PubMed

    Xiang, Tianxin; Kang, Xiuhua; Gong, Zhenghua; Bai, Wei; Chen, Chuanhui; Zhang, Wei

    2017-04-01

    A number of studies on the relationship between xeroderma pigmentosum group G (XPG) polymorphisms and clinical outcomes in non-small cell cancer (NSCLC) have led to inconclusive results. This meta-analysis evaluates the predictive value of XPG polymorphisms on the treatment response rate and overall survival of patients with NSCLC. To measure the correlative strength of the relationship between XPG polymorphisms and outcomes of patients with NSCLC, we searched electronic databases, including PubMed and China National Knowledge Infrastructure, to retrieve studies up to August 2016. We also employed pooled odds ratios (ORs) and hazard ratios (HRs) corresponding to 95% confidence intervals (95% CIs). Twelve studies involving 2877 patients with NSCLC were included: 8 studies involving 1473 patients examined the correlation between XPG polymorphisms and tumor response rate and 7 studies involving 2329 patients reported on the correlation of XPG polymorphisms with overall survival. None of the XPG His1104Asp(C>G)/His46His(C>T) polymorphisms exhibited a correlation with treatment response rate or overall survival. However, in a further stratified analysis by ethnicity, carriers of the 1104G allele were associated with good response among Asians in the homozygote model (GG vs. CC: OR = 1.57, 95% CI: 1.05-2.34, P = 0.027). Meanwhile, further stratified by ethnicity, His46His polymorphism was not associated with RR and OS in any genetic models. No strong evidence was found to support the use of XPG polymorphisms as tumor response and prognostic factors of patients with NSCLC receiving a platinum-based treatment regimen, which is attributed to marginal association. Studies with large-scale and multiple ethnicities need to be conducted to verify the conclusion.

  14. Benchmarking Commercial Conformer Ensemble Generators.

    PubMed

    Friedrich, Nils-Ole; de Bruyn Kops, Christina; Flachsenberg, Florian; Sommer, Kai; Rarey, Matthias; Kirchmair, Johannes

    2017-11-27

    We assess and compare the performance of eight commercial conformer ensemble generators (ConfGen, ConfGenX, cxcalc, iCon, MOE LowModeMD, MOE Stochastic, MOE Conformation Import, and OMEGA) and one leading free algorithm, the distance geometry algorithm implemented in RDKit. The comparative study is based on a new version of the Platinum Diverse Dataset, a high-quality benchmarking dataset of 2859 protein-bound ligand conformations extracted from the PDB. Differences in the performance of commercial algorithms are much smaller than those observed for free algorithms in our previous study (J. Chem. Inf. 2017, 57, 529-539). For commercial algorithms, the median minimum root-mean-square deviations measured between protein-bound ligand conformations and ensembles of a maximum of 250 conformers are between 0.46 and 0.61 Å. Commercial conformer ensemble generators are characterized by their high robustness, with at least 99% of all input molecules successfully processed and few or even no substantial geometrical errors detectable in their output conformations. The RDKit distance geometry algorithm (with minimization enabled) appears to be a good free alternative since its performance is comparable to that of the midranked commercial algorithms. Based on a statistical analysis, we elaborate on which algorithms to use and how to parametrize them for best performance in different application scenarios.

  15. Conformal array design on arbitrary polygon surface with transformation optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng

    2016-06-15

    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  16. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-09-02

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.

  17. Conformational elasticity can facilitate TALE-DNA recognition

    PubMed Central

    Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P.; Segal, David J.; Duan, Yong

    2015-01-01

    Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo- and bound- conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann/surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. PMID:24629191

  18. Conformational elasticity can facilitate TALE-DNA recognition.

    PubMed

    Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P; Segal, David J; Duan, Yong

    2014-01-01

    Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo and bound conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. © 2014 Elsevier Inc. All rights reserved.

  19. Development of New Candidate Gene and EST-Based Molecular Markers for Gossypium Species

    PubMed Central

    Buyyarapu, Ramesh; Kantety, Ramesh V.; Yu, John Z.; Saha, Sukumar; Sharma, Govind C.

    2011-01-01

    New source of molecular markers accelerate the efforts in improving cotton fiber traits and aid in developing high-density integrated genetic maps. We developed new markers based on candidate genes and G. arboreum EST sequences that were used for polymorphism detection followed by genetic and physical mapping. Nineteen gene-based markers were surveyed for polymorphism detection in 26 Gossypium species. Cluster analysis generated a phylogenetic tree with four major sub-clusters for 23 species while three species branched out individually. CAP method enhanced the rate of polymorphism of candidate gene-based markers between G. hirsutum and G. barbadense. Two hundred A-genome based SSR markers were designed after datamining of G. arboreum EST sequences (Mississippi Gossypium arboreum   EST-SSR: MGAES). Over 70% of MGAES markers successfully produced amplicons while 65 of them demonstrated polymorphism between the parents of G. hirsutum and G. barbadense RIL population and formed 14 linkage groups. Chromosomal localization of both candidate gene-based and MGAES markers was assisted by euploid and hypoaneuploid CS-B analysis. Gene-based and MGAES markers were highly informative as they were designed from candidate genes and fiber transcriptome with a potential to be integrated into the existing cotton genetic and physical maps. PMID:22315588

  20. Characterization of Leishmania isolates from Nepalese patients with visceral leishmaniasis.

    PubMed

    Pandey, Kishor; Yanagi, Testuo; Pandey, Basu Dev; Mallik, Arun Kumar; Sherchand, Jeevan Bahadur; Kanbara, Hiroji

    2007-05-01

    In Nepal, visceral leishmaniasis (VL) is endemic in 13 districts of the central and eastern regions. A total of 166 bone-marrow aspirates were obtained from patients with suspected VL. Ninety-seven were identified as positive by microscopy, and 29 of those were successfully isolated and cultured. We characterized these isolates by molecular analysis and by their ability to infect mice. PCR-restriction fragment length polymorphism analysis of the mini-exon and the cysteine proteinase b gene showed that all isolates were Leishmania donovani, and the restriction pattern of the Nepalese isolates corresponded to the standard Indian strain of L. donovani but differed from that of the Kenyan strain. The single-strand conformation polymorphism analysis of ribosomal internal transcribed spacer showed no genetic heterogeneity within Nepalese isolates. Intraperitoneal inoculation with the promastigotes of all isolates resulted in amastigote proliferation in the spleen of 20 nude mice, of which ten isolates were highly infective, and ten were moderately infective, including one BALB/c mouse. Of the 20 amastigotes isolated from the spleen of nude mice, only the ten highly infective isolates infected BALB/c mice, of which, two isolates were considered to have low infectivity, three isolates were considered to be moderately infective, and five isolates were considered to be highly infective.

  1. Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressures.

    PubMed

    Boldyreva, E V; Shakhtshneider, T P; Vasilchenko, M A; Ahsbahs, H; Uchtmann, H

    2000-04-01

    The anisotropy of structural distortion of the monoclinic polymorph of acetaminophen induced by hydrostatic pressure up to 4.0 GPa was studied by single-crystal X-ray diffraction in a Merrill-Bassett diamond anvil cell (DAC). The space group (P2(1)/n) and the general structural pattern remained unchanged with pressure. Despite the overall decrease in the molar volume with pressure, the structure expanded in particular crystallographic directions. One of the linear cell parameters (c) passed through a minimum as the pressure increased. The intramolecular bond lengths changed only slightly with pressure, but the changes in the dihedral and torsion angles were very large. The compressibility of the intermolecular hydrogen bonds NH...O and OH...O was measured. NH...O bonds were shown to be slightly more compressible than OH...O bonds. The anisotropy of structural distortion was analysed in detail in relation to the pressure-induced changes in the molecular conformations, to the compression of the hydrogen-bond network, and to the changes in the orientation of molecules with respect to each other in the pleated sheets in the structure. Dirichlet domains were calculated in order to analyse the relative shifts of the centroids of the hydrogen-bonded cycles and of the centroids of the benzene rings with pressure.

  2. Structure-Activity Relationship in TLR4 Mutations: Atomistic Molecular Dynamics Simulations and Residue Interaction Network Analysis

    NASA Astrophysics Data System (ADS)

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2017-03-01

    Toll-like receptor 4 (TLR4), a vital innate immune receptor present on cell surfaces, initiates a signaling cascade during danger and bacterial intrusion. TLR4 needs to form a stable hexamer complex, which is necessary to dimerize the cytoplasmic domain. However, D299G and T399I polymorphism may abrogate the stability of the complex, leading to compromised TLR4 signaling. Crystallography provides valuable insights into the structural aspects of the TLR4 ectodomain; however, the dynamic behavior of polymorphic TLR4 is still unclear. Here, we employed molecular dynamics simulations (MDS), as well as principal component and residue network analyses, to decipher the structural aspects and signaling propagation associated with mutations in TLR4. The mutated complexes were less cohesive, displayed local and global variation in the secondary structure, and anomalous decay in rotational correlation function. Principal component analysis indicated that the mutated complexes also exhibited distinct low-frequency motions, which may be correlated to the differential behaviors of these TLR4 variants. Moreover, residue interaction networks (RIN) revealed that the mutated TLR4/myeloid differentiation factor (MD) 2 complex may perpetuate abnormal signaling pathways. Cumulatively, the MDS and RIN analyses elucidated the mutant-specific conformational alterations, which may help in deciphering the mechanism of loss-of-function mutations.

  3. neu mutation in schwannomas induced transplacentally in Syrian golden hamsters by N-nitrosoethylurea: high incidence but low allelic representation.

    PubMed

    Buzard, G S; Enomoto, T; Hongyo, T; Perantoni, A O; Diwan, B A; Devor, D E; Reed, C D; Dove, L F; Rice, J M

    1999-10-01

    Peripheral nerve tumors (PNT) and melanomas induced transplacentally on day 14 of gestation in Syrian golden hamsters by N-nitrosoethylurea were analyzed for activated oncogenes by the NIH 3T3 transfection assay, and for mutations in the neu oncogene by direct sequencing, allele-specific oligonucleotide hybridization, MnlI restriction-fragment-length polymorphism, single-strand conformation polymorphism, and mismatch amplification mutation assays. All (67/67) of the PNT, but none of the melanomas, contained a somatic missense T --> A transversion within the neu oncogene transmembrane domain at a site corresponding to that which also occurs in rat schwannomas transplacentally induced by N-nitrosoethylurea. In only 2 of the 67 individual hamster PNT did the majority of tumor cells appear to carry the mutant neu allele, in contrast to comparable rat schwannomas in which it overwhelmingly predominates. The low fraction of hamster tumor cells carrying the mutation was stable through multiple transplantation passages. In the hamster, as in the rat, specific point-mutational activation of the neu oncogene thus constitutes the major pathway for induction of PNT by transplacental exposure to an alkylating agent, but the low allelic representation of mutant neu in hamster PNT suggests a significant difference in mechanism by which the mutant oncogene acts in this species.

  4. Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands.

    PubMed

    Sedova, Ada; Banavali, Nilesh K

    2017-03-14

    Structural variation in base stacking has been analyzed frequently in isolated double helical contexts for nucleic acids, but not as often in nonhelical geometries or in complex biomolecular environments. In this study, conformations of two neighboring bases near their stacked state in any environment are comprehensively characterized for single-strand dinucleotide (SSD) nucleic acid crystal structure conformations. An ensemble clustering method is used to identify a reduced set of representative stacking geometries based on pairwise distances between select atoms in consecutive bases, with multiple separable conformational clusters obtained for categories divided by nucleic acid type (DNA/RNA), SSD sequence, stacking face orientation, and the presence or absence of a protein environment. For both DNA and RNA, SSD conformations are observed that are either close to the A-form, or close to the B-form, or intermediate between the two forms, or further away from either form, illustrating the local structural heterogeneity near the stacked state. Among this large variety of distinct conformations, several common stacking patterns are observed between DNA and RNA, and between nucleic acids in isolation or in complex with proteins, suggesting that these might be stable stacking orientations. Noncanonical face/face orientations of the two bases are also observed for neighboring bases in the same strand, but their frequency is much lower, with multiple SSD sequences across categories showing no occurrences of such unusual stacked conformations. The resulting reduced set of stacking geometries is directly useful for stacking-energy comparisons between empirical force fields, prediction of plausible localized variations in single-strand structures near their canonical states, and identification of analogous stacking patterns in newly solved nucleic acid containing structures.

  5. Thz Spectroscopy and DFT Modeling of Intermolecular Vibrations in Hydrophobic Amino Acids

    NASA Astrophysics Data System (ADS)

    Williams, michael R. C.; Aschaffenburg, Daniel J.; Schmuttenmaer, Charles A.

    2013-06-01

    Vibrations that involve intermolecular displacements occur in molecular crystals at frequencies in the 0.5-5 THz range (˜15-165 cm^{-1}), and these motions are direct indicators of the interaction potential between the molecules. The intermolecular potential energy surface of crystalline hydrophobic amino acids is inherently interesting simply because of the wide variety of forces (electrostatic, dipole-dipole, hydrogen-bonding, van der Waals) that are present. Furthermore, an understanding of these particular interactions is immediately relevant to important topics like protein conformation and pharmaceutical polymorphism. We measured the low-frequency absorption spectra of several polycrystalline hydrophobic amino acids using THz time-domain spectroscopy, and in addition we carried out DFT calculations using periodic boundary conditions and an exchange-correlation functional that accounts for van der Waals dispersion forces. We chose to investigate a series of similar amino acids with closely analogous unit cells (leucine, isoleucine, and allo-isoleucine, in racemic or pseudo-racemic mixtures). This allows us to consider trends in the vibrational spectra as a function of small changes in molecular arrangement and/or crystal geometry. In this way, we gain confidence that peak assignments are not based on serendipitous similarities between calculated and observed features.

  6. Blinded study determination of high sensitivity and specificity microchip electrophoresis-SSCP/HA to detect mutations in the p53 gene.

    PubMed

    Hestekin, Christa N; Lin, Jennifer S; Senderowicz, Lionel; Jakupciak, John P; O'Connell, Catherine; Rademaker, Alfred; Barron, Annelise E

    2011-11-01

    Knowledge of the genetic changes that lead to disease has grown and continues to grow at a rapid pace. However, there is a need for clinical devices that can be used routinely to translate this knowledge into the treatment of patients. Use in a clinical setting requires high sensitivity and specificity (>97%) in order to prevent misdiagnoses. Single-strand conformational polymorphism (SSCP) and heteroduplex analysis (HA) are two DNA-based, complementary methods for mutation detection that are inexpensive and relatively easy to implement. However, both methods are most commonly detected by slab gel electrophoresis, which can be labor-intensive, time-consuming, and often the methods are unable to produce high sensitivity and specificity without the use of multiple analysis conditions. Here, we demonstrate the first blinded study using microchip electrophoresis (ME)-SSCP/HA. We demonstrate the ability of ME-SSCP/HA to detect with 98% sensitivity and specificity >100 samples from the p53 gene exons 5-9 in a blinded study in an analysis time of <10 min. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Exclusion of a major role for the PTEN tumour-suppressor gene in breast carcinomas

    PubMed Central

    Freihoff, D; Kempe, A; Beste, B; Wappenschmidt, B; Kreyer, E; Hayashi, Y; Meindl, A; Krebs, D; Wiestler, O D; Deimling, A von; Schmutzler, R K

    1999-01-01

    PTEN is a novel tumour-suppressor gene located on chromosomal band 10q23.3. This region displays frequent loss of heterozygosity (LOH) in a variety of human neoplasms including breast carcinomas. The detection of PTEN mutations in Cowden disease and in breast carcinoma cell lines suggests that PTEN may be involved in mammary carcinogenesis. We here report a mutational analysis of tumour specimens from 103 primary breast carcinomas and constitutive DNA from 25 breast cancer families. The entire coding region of PTEN was screened by single-strand conformation polymorphism (SSCP) analysis and direct sequencing using intron-based primers. No germline mutations could be identified in the breast cancer families and only one sporadic carcinoma carried a PTEN mutation at one allele. In addition, all sporadic tumours were analysed for homozygous deletions by differential polymerase chain reaction (PCR) and for allelic loss using the microsatellite markers D10S215, D10S564 and D10S573. No homozygous deletions were detected and only 10 out of 94 informative tumours showed allelic loss in the PTEN region. These results suggest that PTEN does not play a major role in breast cancer formation. 1999 Cancer Research Campaign PMID:10070865

  8. Characterisation of four novel fibrillin-1 (FBN1) mutations in Marfan syndrome.

    PubMed Central

    Adès, L C; Haan, E A; Colley, A F; Richard, R I

    1996-01-01

    Forty-four percent of the fibrillin-1 gene (FBN1) from 19 unrelated families with Marfan syndrome was screened for putative mutations by single strand conformational polymorphism (SSCP) analysis. Four novel mutations were identified and characterised in five people, three with classical Marfan syndrome (two from one family, and one from an unrelated family), one with a more severe phenotype, and one with neonatal Marfan syndrome. The base substitutions G2113A, G2132A, T3163G, and G3458A result in amino acid substitutions A705T, C711Y, C1055G, and C1152Y, respectively. C711Y, C1055G, and C1152Y lead to replacement of a cysteine by another amino acid; the latter two occur within epidermal growth factor-like motifs in exon 25 and 27, respectively. The A705T mutation occurs at exon 16 adjacent to the GT splice site. The A705T and C711Y mutations, at exon 16 and 17, respectively, are the first documented in the second transforming growth factor-beta 1 binding protein-like motif of FBN1. Images PMID:8863159

  9. Photovoltaic Performance of Vapor-Assisted Solution-Processed Layer Polymorph of Cs3Sb2I9.

    PubMed

    Singh, Anupriya; Boopathi, Karunakara Moorthy; Mohapatra, Anisha; Chen, Yang Fang; Li, Gang; Chu, Chih Wei

    2018-01-24

    The presence of toxic lead (Pb) remains a major obstruction to the commercial application of perovskite solar cells. Although antimony (Sb)-based perovskite-like structures A 3 M 2 X 9 can display potentially useful photovoltaic behavior, solution-processed Sb-based perovskite-like structures usually favor the dimer phase, which has poor photovoltaic properties. In this study, we prepared a layered polymorph of Cs 3 Sb 2 I 9 through solution-processing and studied its photovoltaic properties. The exciton binding energy and exciton lifetime of the layer-form Cs 3 Sb 2 I 9 were approximately 100 meV and 6 ns, respectively. The photovoltaic properties of the layered polymorph were superior to those of the dimer polymorph. A solar cell incorporating the layer-form Cs 3 Sb 2 I 9 exhibited an open-circuit voltage of 0.72 V and a power conversion efficiency of 1.5%-the highest reported for an all-inorganic Sb-based perovskite.

  10. Lack of association between temporal lobe epilepsy and a novel polymorphism in the alpha 2 subunit gene (ATP1A2) of the sodium potassium transporting ATPase.

    PubMed

    Buono, R J; Ferraro, T N; O'Connor, M J; Sperling, M R; Abbey, M; Finanger, E; Lohoff, F; Mulholland, N; Berrettini, W H

    2000-02-07

    Genetic linkage studies in rodents and humans have identified specific chromosomal regions harboring seizure susceptibility genes. We have identified a novel polymorphism in the human alpha 2 subunit gene (ATP1A2) of the sodium potassium transporting ATPase (NaK-pump), a candidate gene for human temporal lobe epilepsy (TLE) based on its chromosomal location and function in ion homeostasis. The polymorphism consists of a four base pair insertion 12 base pairs upstream of the start of exon 2. We performed an association study between this polymorphism and TLE. Our study did not find a significant difference in the frequency of this polymorphism between TLE patients and controls, indicating that this variation is not a major susceptibility factor. However, since the number of patients studied so far is small and the functional consequence of the polymorphism is unknown, the variation may yet be found to play a minor role in increased risk for seizure susceptibility. In contrast to the findings in TLE patients and controls, we did find a significant difference in the frequency of the variation between African Americans and persons of European descent. This finding demonstrates the potential effect of population stratification on studies of this type and supports the growing use of parental and familial samples for controls in association studies. Further study of this polymorphism is warranted as it may be involved in other disease processes for which there are known ethnic-specific susceptibilities. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:79-83, 2000. Copyright 2000 Wiley-Liss, Inc.

  11. Quantifying polypeptide conformational space: sensitivity to conformation and ensemble definition.

    PubMed

    Sullivan, David C; Lim, Carmay

    2006-08-24

    Quantifying the density of conformations over phase space (the conformational distribution) is needed to model important macromolecular processes such as protein folding. In this work, we quantify the conformational distribution for a simple polypeptide (N-mer polyalanine) using the cumulative distribution function (CDF), which gives the probability that two randomly selected conformations are separated by less than a "conformational" distance and whose inverse gives conformation counts as a function of conformational radius. An important finding is that the conformation counts obtained by the CDF inverse depend critically on the assignment of a conformation's distance span and the ensemble (e.g., unfolded state model): varying ensemble and conformation definition (1 --> 2 A) varies the CDF-based conformation counts for Ala(50) from 10(11) to 10(69). In particular, relatively short molecular dynamics (MD) relaxation of Ala(50)'s random-walk ensemble reduces the number of conformers from 10(55) to 10(14) (using a 1 A root-mean-square-deviation radius conformation definition) pointing to potential disconnections in comparing the results from simplified models of unfolded proteins with those from all-atom MD simulations. Explicit waters are found to roughen the landscape considerably. Under some common conformation definitions, the results herein provide (i) an upper limit to the number of accessible conformations that compose unfolded states of proteins, (ii) the optimal clustering radius/conformation radius for counting conformations for a given energy and solvent model, (iii) a means of comparing various studies, and (iv) an assessment of the applicability of random search in protein folding.

  12. Amplified fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the yellow fever mosquito Aedes aegypti.

    PubMed

    Zhong, Daibin; Menge, David M; Temu, Emmanuel A; Chen, Hong; Yan, Guiyun

    2006-07-01

    The yellow fever mosquito Aedes aegypti has been the subject of extensive genetic research due to its medical importance and the ease with which it can be manipulated in the laboratory. A molecular genetic linkage map was constructed using 148 amplified fragment length polymorphism (AFLP) and six single-strand conformation polymorphism (SSCP) markers. Eighteen AFLP primer combinations were used to genotype two reciprocal F2 segregating populations. Each primer combination generated an average of 8.2 AFLP markers eligible for linkage mapping. The length of the integrated map was 180.9 cM, giving an average marker resolution of 1.2 cM. Composite interval mapping revealed a total of six QTL significantly affecting Plasmodium susceptibility in the two reciprocal crosses of Ae. aegypti. Two common QTL on linkage group 2 were identified in both crosses that had similar effects on the phenotype, and four QTL were unique to each cross. In one cross, the four main QTL accounted for 64% of the total phenotypic variance, and digenic epistasis explained 11.8% of the variance. In the second cross, the four main QTL explained 66% of the variance, and digenic epistasis accounted for 16% of the variance. The actions of these QTL were either dominance or underdominance. Our results indicated that at least three new QTL were mapped on chromosomes 1 and 3. The polygenic nature of susceptibility to P. gallinaceum and epistasis are important factors for significant variation within or among mosquito strains. The new map provides additional information useful for further genetic investigation, such as identification of new genes and positional cloning.

  13. Two sisters with clinical diagnosis of Wiskott-Aldrich Syndrome: Is the condition in the family autosomal recessive?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondoh, T.; Hayashi, K.; Matsumoto, T.

    1995-10-09

    We report two sisters in a family representing manifestations of Wiskott-Aldrich syndrome (WAS), an X-linked immunodeficiency disorder. An elder sister had suffered from recurrent infections, small thrombocytopenic petechiae, purpura, and eczema for 7 years. The younger sister had the same manifestations as the elder sister`s for a 2-year period, and died of intracranial bleeding at age 2 years. All the laboratory data of the two patients were compatible with WAS, although they were females. Sialophorin analysis with the selective radioactive labeling method of this protein revealed that in the elder sister a 115-KD band that should be specific for sialophorinmore » was reduced in quantity, and instead an additional 135-KD fragment was present as a main band. Polymerase chain reaction (PCR) analysis of the sialophorin gene and single-strand conformation polymorphism (SSCP) analysis of the PCR product demonstrated that there were no detectable size-change nor electrophoretic mobility change in the DNA from both patients. The results indicated that their sialophorin gene structure might be normal. Studies on the mother-daughter transmission of X chromosome using a pERT84-MaeIII polymorphic marker mapped at Xp21 and HPRT gene polymorphism at Xq26 suggested that each sister had inherited a different X chromosome from the mother. Two explanations are plausible for the occurrence of the WAS in our patients: the WAS in the patients is attributable to an autosomal gene mutation which may regulate the sialophorin gene expression through the WAS gene, or, alternatively, the condition in this family is an autosomal recessive disorder separated etiologically from the X-linked WAS. 17 refs., 6 figs., 1 tab.« less

  14. A genetic polymorphism repurposes the G-protein coupled and membrane-associated estrogen receptor GPER to a transcription factor-like molecule promoting paracrine signaling between stroma and breast carcinoma cells

    PubMed Central

    Pupo, Marco; Bodmer, Alexandre; Berto, Melissa; Maggiolini, Marcello; Dietrich, Pierre-Yves; Picard, Didier

    2017-01-01

    GPER is a membrane-associated estrogen receptor of the family of G-protein coupled receptors. For breast cancer, the contribution of GPER to promoting the proliferation and migration of both carcinoma cells and cancer-associated fibroblasts (CAFs) in response to estrogen and other agonists has extensively been investigated. Intriguingly, GPER was previously found to be localized to the nucleus in one isolate of breast CAFs. Moreover, this nuclear GPER was shown to bind regulatory sequences of cancer-relevant target genes and to induce their expression. We decided to find out what induces the nuclear localization of GPER, how general this phenomenon is, and what its functional significance is. We discovered that interfering with N-linked glycosylation of GPER, either by mutation of the predicted glycosylation sites or pharmacologically with tunicamycin, drives GPER into the nucleus. Surveying a small set of CAFs from breast cancer biopsies, we found that a relatively common single nucleotide polymorphism, which results in the expression of a GPER variant with the amino acid substitution P16L, is associated with the nuclear localization of GPER. GPER with P16L fails to be glycosylated, presumably because of a conformational effect on the nearby glycosylation sites. GPER P16L is defective for membrane-associated signaling, but instead acts like an estrogen-stimulated transcription factor. In CAFs, it induces the secretion of paracrine factors that promote the migration of carcinoma cells. This raises the possibility that the GPER P16L polymorphism could be a risk factor for breast cancer. PMID:28596490

  15. Correlation of the A-FABP Gene Polymorphism and mRNA Expression with Intramuscular Fat Content in Three-Yellow Chicken and Hetian-Black Chicken.

    PubMed

    Wang, Yong; Chen, Hongwei; Han, Diangang; Chen, Ying; Muhatai, Gemingguli; Kurban, Tursunjan; Xing, Jinming; He, Jianzhong

    2017-01-02

    The adipocyte-type fatty acid-binding protein (A-FABP) is considered a candidate gene for fat metabolism; thus, it affects fat deposition in chickens. The present study was designed to examine the polymorphism and mRNA abundance of the A-FABP gene with intramuscular fat (IMF) in the pectoralis muscles (PM) and leg muscles (LM) of Three-yellow Chicken (TYC) and Hetian-black Chicken (HTBC). In total, 60 TYCs and 60 HTBCs were sacrificed using exsanguination at market age. The IMF contents of the PM and LM in the HTBC were significantly higher than those in the TYC. Three genotypes of the A-FABP gene first exon, AA, AB, and BB, were examined by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP), and a C51 T mutational site, which is a silent substitution mutation, was revealed. The IMF contents of the AA genotype in the PM of the HTBC were significantly higher than those in the AB genotype; thus, the C51 T mutable site is a gene marker for selecting a higher IMF content in the PM of the HTBC. The relative expression of the A-FABP mRNA in the LM of the HTBC, which was measured by quantitative real-time PCR, was significantly higher than in the TYC. A significantly positive association was detected between A-FABP expression with the IMF contents of the PM and LM of both the TYC and the HTBC. These results provide basic data that might be helpful to further research the role of the A-FABP gene in fat deposition and fatty acid metabolism in chickens.

  16. A genetic polymorphism repurposes the G-protein coupled and membrane-associated estrogen receptor GPER to a transcription factor-like molecule promoting paracrine signaling between stroma and breast carcinoma cells.

    PubMed

    Pupo, Marco; Bodmer, Alexandre; Berto, Melissa; Maggiolini, Marcello; Dietrich, Pierre-Yves; Picard, Didier

    2017-07-18

    GPER is a membrane-associated estrogen receptor of the family of G-protein coupled receptors. For breast cancer, the contribution of GPER to promoting the proliferation and migration of both carcinoma cells and cancer-associated fibroblasts (CAFs) in response to estrogen and other agonists has extensively been investigated. Intriguingly, GPER was previously found to be localized to the nucleus in one isolate of breast CAFs. Moreover, this nuclear GPER was shown to bind regulatory sequences of cancer-relevant target genes and to induce their expression. We decided to find out what induces the nuclear localization of GPER, how general this phenomenon is, and what its functional significance is. We discovered that interfering with N-linked glycosylation of GPER, either by mutation of the predicted glycosylation sites or pharmacologically with tunicamycin, drives GPER into the nucleus. Surveying a small set of CAFs from breast cancer biopsies, we found that a relatively common single nucleotide polymorphism, which results in the expression of a GPER variant with the amino acid substitution P16L, is associated with the nuclear localization of GPER. GPER with P16L fails to be glycosylated, presumably because of a conformational effect on the nearby glycosylation sites. GPER P16L is defective for membrane-associated signaling, but instead acts like an estrogen-stimulated transcription factor. In CAFs, it induces the secretion of paracrine factors that promote the migration of carcinoma cells. This raises the possibility that the GPER P16L polymorphism could be a risk factor for breast cancer.

  17. Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken

    PubMed Central

    Wang, Yong; He, Jianzhong; Yang, Wenxuan; Muhantay, Gemenggul; Chen, Ying; Xing, Jinming; Liu, Jianzhu

    2015-01-01

    This study aims to determine the polymorphism and mRNA expression pattern of the heart-type fatty acid-binding protein (H-FABP) gene and their association with intramuscular fat (IMF) content in the breast and leg muscles of Baicheng oil chicken (BOC). A total of 720 chickens, including 240 black Baicheng oil chicken (BBOC), 240 silky Baicheng oil chicken (SBOC), and 240 white Baicheng oil chicken (WBOC) were raised. Three genotypes of H-FABP gene second extron following AA, AB, and BB were detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) strategy. The G939A site created AA genotype and G956A site created BB genotype. The content of IMF in AA genotype in breast muscle of BBOC was significantly higher than that of AB (p = 0.0176) and the genotype in leg muscle of WBOC was significantly higher than that of AB (p = 0.0145). The G939A site could be taken as genetic marker for higher IMF content selecting for breast muscle of BBOC and leg muscle of WBOC. The relative mRNA expression of H-FABP was measured by real-time PCR at 30, 60, 90, and 120 d. The IMF content significantly increased with age in both muscles. The mRNA expression level of H-FABP significantly decreased with age in both muscles of the three types of chickens. Moreover, a significant negative correlation between H-FABP abundance and IMF content in the leg muscles of WBOC (p = 0.035) was observed. The mRNA expression of H-FABP negatively correlated with the IMF content in both breast and leg muscles of BOC sat slaughter time. PMID:26323394

  18. Polymorphic amplified typing sequences (PATS) and pulsed-field gel electrophoresis (PFGE) yield comparable results in the strain typing of a diverse set of bovine Escherichia coli O157 isolates

    USDA-ARS?s Scientific Manuscript database

    The PCR-based Escherichia coli O157 (O157) strain typing system, Polymorphic Amplified Typing Sequences (PATS), targets insertions-deletions (Indels) and single nucleotide polymorphisms (SNPs) at the XbaI and AvrII(BlnI) restriction enzyme sites, respectively, besides amplifying four known virulenc...

  19. Prolonged neutropenia after irinotecan-based chemotherapy in a child with polymorphisms of UGT1A1 and SLCO1B1.

    PubMed

    Sakaguchi, S; Garcia-Bournissen, F; Kim, R; Schwarz, U I; Nathan, P C; Ito, S

    2009-12-01

    Genetic polymorphisms of uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1), and SLCO1B1 coding organic anion-transporter polypeptide 1B1, are independent risk factors known to increase irinotecan toxicity in adults. Although combined occurrence of polymorphisms in these 2 genes is likely to influence susceptibility to irinotecan toxicity, data are scarce, especially in children. We report an 11-year-old female with severe and prolonged neutropenia after irinotecan-based chemotherapy. The patient's genotyping revealed polymorphisms in both UGT1A1 and SLCO1B1. To our knowledge, this is the first case report of combined genotyping of both UGT1A1 and SLCO1B1 in a child with severe irinotecan toxicity.

  20. Molecular basis of length polymorphism in the human zeta-globin gene complex.

    PubMed Central

    Goodbourn, S E; Higgs, D R; Clegg, J B; Weatherall, D J

    1983-01-01

    The length polymorphism between the human zeta-globin gene and its pseudogene is caused by an allele-specific variation in the copy number of a tandemly repeating 36-base-pair sequence. This sequence is related to a tandemly repeated 14-base-pair sequence in the 5' flanking region of the human insulin gene, which is known to cause length polymorphism, and to a repetitive sequence in intervening sequence (IVS) 1 of the pseudo-zeta-globin gene. Evidence is presented that the latter is also of variable length, probably because of differences in the copy number of the tandem repeat. The homology between the three length polymorphisms may be an indication of the presence of a more widespread group of related sequences in the human genome, which might be useful for generalized linkage studies. PMID:6308667

  1. Polymorphisms in exons 1B and 1C of the type I interleukin-1 receptor gene in patients with endometriosis.

    PubMed

    D'Amora, Paulo; Sato, Hélio; Girão, Manoel J B C; Silva, Ismael D C G; Schor, Eduardo

    2006-09-01

    To study possible correlation between the prevalence of polymorphisms in the type I interleukin-1 receptor gene and pelvic endometriosis. Genotypes of 223 women were analyzed: 109 women with surgically and histologically confirmed endometriosis and 114 healthy women. Distributions of two single-base polymorphisms of the human interleukin-1 receptor type I (IL-1RI) gene were evaluated: PstI, due to a C-->T transition in exon 1B and BsrBI a C-->A transition at position 52 in exon 1C. Polymorphisms were detected by polymerase chain reaction (PCR) followed by restriction fragment length polymorphism analysis (RFLP) resolved on 3% agarose gels stained with ethidium bromide. Genotypes for PstI polymorphisms did not differ significantly among control and endometriosis (P = 0.058). However, in relation to BsrBI polymorphism, protective risk was observed for the development of endometriosis [OR 0.39-IC 95% (0.2-0.9)]. BsrBI heterozygote genotype (C/A) showed protective effect against endometriosis development.

  2. Association between ADAM metallopeptidase domain 33 gene polymorphism and risk of childhood asthma: a meta-analysis.

    PubMed

    Sun, F J; Zou, L Y; Tong, D M; Lu, X Y; Li, J; Deng, C B

    2017-08-31

    This study aimed to investigate the association between ADAM metallopeptidase domain 33 (ADAM33) gene polymorphisms and the risk of childhood asthma. The relevant studies about the relationship between ADAM33 gene polymorphisms and childhood asthma were searched from electronic databases and the deadline of retrieval was May 2016. The single nucleotide polymorphisms (SNPs) of ADAM33 (rs511898, rs2280092, rs3918396, rs528557, rs2853209, rs44707, rs2280091 and rs2280089) were analyzed based on several models including the allele, codominant, recessive and dominant models. The results showed that the ADAM33 rs2280091 polymorphism in all four genetic models was associated with an increased risk of childhood asthma. Positive associations were also found between the polymorphisms rs2280090, rs2787094, rs44707 and rs528557 and childhood asthma in some genetic models. This meta-analysis suggested that ADAM33 polymorphisms rs2280091, rs2280090, rs2787094, rs44707 and rs528557 were significantly associated with a high risk of childhood asthma.

  3. A computational study of vicinal fluorination in 2,3-difluorobutane: implications for conformational control in alkane chains.

    PubMed

    Fox, Stephen J; Gourdain, Stephanie; Coulthurst, Anton; Fox, Clare; Kuprov, Ilya; Essex, Jonathan W; Skylaris, Chris-Kriton; Linclau, Bruno

    2015-01-19

    A comprehensive conformational analysis of both 2,3-difluorobutane diastereomers is presented based on density functional theory calculations in vacuum and in solution, as well as NMR experiments in solution. While for 1,2-difluoroethane the fluorine gauche effect is clearly the dominant effect determining its conformation, it was found that for 2,3-difluorobutane there is a complex interplay of several effects, which are of similar magnitude but often of opposite sign. As a result, unexpected deviations in dihedral angles, relative conformational energies and populations are observed which cannot be rationalised only by chemical intuition. Furthermore, it was found that it is important to consider the free energies of the various conformers, as these lead to qualitatively different results both in vacuum and in solvent, when compared to calculations based only on the electronic energies. In contrast to expectations, it was found that vicinal syn-difluoride introduction in the butane and by extension, longer hydrocarbon chains, is not expected to lead to an effective stabilisation of the linear conformation. Our findings have implications for the use of the vicinal difluoride motif for conformational control. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ClustENM: ENM-Based Sampling of Essential Conformational Space at Full Atomic Resolution

    PubMed Central

    Kurkcuoglu, Zeynep; Bahar, Ivet; Doruker, Pemra

    2016-01-01

    Accurate sampling of conformational space and, in particular, the transitions between functional substates has been a challenge in molecular dynamic (MD) simulations of large biomolecular systems. We developed an Elastic Network Model (ENM)-based computational method, ClustENM, for sampling large conformational changes of biomolecules with various sizes and oligomerization states. ClustENM is an iterative method that combines ENM with energy minimization and clustering steps. It is an unbiased technique, which requires only an initial structure as input, and no information about the target conformation. To test the performance of ClustENM, we applied it to six biomolecular systems: adenylate kinase (AK), calmodulin, p38 MAP kinase, HIV-1 reverse transcriptase (RT), triosephosphate isomerase (TIM), and the 70S ribosomal complex. The generated ensembles of conformers determined at atomic resolution show good agreement with experimental data (979 structures resolved by X-ray and/or NMR) and encompass the subspaces covered in independent MD simulations for TIM, p38, and RT. ClustENM emerges as a computationally efficient tool for characterizing the conformational space of large systems at atomic detail, in addition to generating a representative ensemble of conformers that can be advantageously used in simulating substrate/ligand-binding events. PMID:27494296

  5. Conformational preferences of DNA following damage by aristolochic acids: Structural and energetic insights into the different mutagenic potential of the ALI and ALII-N(6)-dA adducts.

    PubMed

    Kathuria, Preetleen; Sharma, Purshotam; Abendong, Minette N; Wetmore, Stacey D

    2015-04-21

    Aristolochic acids (AAI and AAII), produced by the Aristolochiaceae family of plants, are classified as group I (human) carcinogens by the International Agency for Research on Cancer. These acids are metabolized in cells to yield aristolactams (ALI and ALII, respectively), which further form bulky adducts with the purine nucleobases. Specifically, the adenine lesions are more persistent in cells and have been associated with chronic renal diseases and related carcinogenesis. To understand the structural basis of the nephrotoxicity induced by AAs, the ALI-N(6)-dA and ALII-N(6)-dA lesions are systematically studied using computational methods. Density functional theory calculations indicate that the aristolactam moiety intrinsically prefers a planar conformation with respect to adenine. Nucleoside and nucleotide models suggest that the anti and syn orientations about the glycosidic bond are isoenergetic for both adducts. Molecular dynamics simulations and free energy calculations reveal that the anti base-displaced intercalated conformation is the most stable conformer for both types of AL-N(6)-dA adducted DNA, which agrees with previous experimental work on the ALII-N(6)-dA adduct and thereby validates our approach. Interestingly, this conformer differs from the dominant conformations adopted by other N6-linked adenine lesions, including those derived from polycyclic aromatic hydrocarbons. Furthermore, the second most stable syn base-displaced intercalated conformation lies closer in energy to the anti base-displaced intercalated conformation for ALI-N(6)-dA compared to ALII-N(6)-dA. This indicates that a mixture of conformations may be detectable for ALI-N(6)-dA in DNA. If this enhanced conformational flexibility of double-stranded DNA persists when bound to a lesion-bypass polymerase, this provides a possible structural explanation for the previously observed greater nephrotoxic potential for the ALI versus ALII-N(6)-dA adduct. In addition, the structural characteristics of the preferred conformations of adducted DNA explain the resistance of these adducts to repair and thereby add to our current understanding of the toxicity of AAs within living cells.

  6. Alterations of leaf cell ultrastructures and AFLP DNA profiles in Earth-grown tomato plants propagated from long-term six years Mir-flown seeds

    NASA Astrophysics Data System (ADS)

    Liu, Min; Xue, Huai; Pan, Yi; Zhang, Chunhua; Lu, Jinying

    Leaf cell ultrastructures and DNA variations in the firstand the second-generation of Earthgrown tomato (Lycopersicon esculentun Mill) plants that had been endured a long-term six years spaceflight in the Mir were compared to their ground-based control plants, under observations with a Transmission Electron Microscope and the Amplification Fragment Length Polymorphism (AFLP) analysis. For alterations in the morphological ultrastructures, one plant among the 11 first-generation plants generated from 30 Mir-flown seeds had a three-layered palisade cell structure, while other 10 first-generation plants and all ground-based controls had one-layered palisade cell structure in leaves. Starch grains were larger and in clusters, numbers of starch grains increased in the chloroplasts in the Mir-flown plants. Leaf cells became contracted and deformed, and cell shape patterns were different in the Mir-flown plants. For the leaf genomic DNA alterations, 34 DNA bands were polymorphic with a 1.32% polymorphism among 2582 DNA bands in the first-generation Mir-flown plants. Band types in the spaceflight treated plants were also different from those in the ground-based control. Of 11 survived first-generation plants, 7 spaceflight treated plants (Plant Nos. 1-6 and No. 9) had a same 7 polymorphic bands and a same 0.27%DNA mutation. The DNA mutation rate was greatest in Plants No.10 and No.7 (0.90% and 0.94%), less in Plant No.11 (0.31%) and least in Plant No.8 (0.20%). For the 38 send-generation plants propagated from the No. 5 Mir-flown seed, 6 DNA bands were polymorphic with a 0.23% polymorphism among 2564 amplified DNA bands. Among those 38 second-generation plants amplified by primer pair (E4: ACC, M8: CTT), one DNA band disappeared in 29 second-generation plants and in the original Mir-flown No. 5 plant, compared to the ground-base controls. Among the 38 second-generation plants generated from the Mir-flown No. 5 seed, the DNA band types of 29 second-generation plants were different from that of the ground-base controls and had a same 6 polymorphic bands and a same 0.23% DNA mutation. For the 49 second-generation plants derived from the Mir-flown No. 6 seed, 7 DNA bands were polymorphic with 0.27% polymorphism among 2564 amplified DNA bands. With only one exception among those 49 second-generation plants amplified by primer pair (E3: ACA, M3: CAG), one DNA band disappeared in 48 second-generation plants and in the original Mir-flown No. 6 plant, compared to the ground-based controls. Among the 49 second-generation plants generated from the Mir-flown No. 6 seed, the DNA band types of 48 second-generation plants were different from that of the ground-base controls and had a same 7 polymorphic bands and a same 0.27% DNA mutation. Our results indicated that leaf cell ultrastructures had been altered and heredity variations had been induced by seeds being exposed to a long-term outer-space environment. Further research is needed to elucidate the dynamics and mechanisms resulting in such variations. Plant biology studies in the space environment may open potential approaches to induce mutations and to screen new plant varieties by ground-based selections among spaceflight treated seeds or seedlings.

  7. Structure-based conformational preferences of amino acids

    PubMed Central

    Koehl, Patrice; Levitt, Michael

    1999-01-01

    Proteins can be very tolerant to amino acid substitution, even within their core. Understanding the factors responsible for this behavior is of critical importance for protein engineering and design. Mutations in proteins have been quantified in terms of the changes in stability they induce. For example, guest residues in specific secondary structures have been used as probes of conformational preferences of amino acids, yielding propensity scales. Predicting these amino acid propensities would be a good test of any new potential energy functions used to mimic protein stability. We have recently developed a protein design procedure that optimizes whole sequences for a given target conformation based on the knowledge of the template backbone and on a semiempirical potential energy function. This energy function is purely physical, including steric interactions based on a Lennard-Jones potential, electrostatics based on a Coulomb potential, and hydrophobicity in the form of an environment free energy based on accessible surface area and interatomic contact areas. Sequences designed by this procedure for 10 different proteins were analyzed to extract conformational preferences for amino acids. The resulting structure-based propensity scales show significant agreements with experimental propensity scale values, both for α-helices and β-sheets. These results indicate that amino acid conformational preferences are a natural consequence of the potential energy we use. This confirms the accuracy of our potential and indicates that such preferences should not be added as a design criterion. PMID:10535955

  8. Maintaining and Enhancing Diversity of Sampled Protein Conformations in Robotics-Inspired Methods.

    PubMed

    Abella, Jayvee R; Moll, Mark; Kavraki, Lydia E

    2018-01-01

    The ability to efficiently sample structurally diverse protein conformations allows one to gain a high-level view of a protein's energy landscape. Algorithms from robot motion planning have been used for conformational sampling, and several of these algorithms promote diversity by keeping track of "coverage" in conformational space based on the local sampling density. However, large proteins present special challenges. In particular, larger systems require running many concurrent instances of these algorithms, but these algorithms can quickly become memory intensive because they typically keep previously sampled conformations in memory to maintain coverage estimates. In addition, robotics-inspired algorithms depend on defining useful perturbation strategies for exploring the conformational space, which is a difficult task for large proteins because such systems are typically more constrained and exhibit complex motions. In this article, we introduce two methodologies for maintaining and enhancing diversity in robotics-inspired conformational sampling. The first method addresses algorithms based on coverage estimates and leverages the use of a low-dimensional projection to define a global coverage grid that maintains coverage across concurrent runs of sampling. The second method is an automatic definition of a perturbation strategy through readily available flexibility information derived from B-factors, secondary structure, and rigidity analysis. Our results show a significant increase in the diversity of the conformations sampled for proteins consisting of up to 500 residues when applied to a specific robotics-inspired algorithm for conformational sampling. The methodologies presented in this article may be vital components for the scalability of robotics-inspired approaches.

  9. Direct observation of bis(dicarbollyl)nickel conformers in solution by fluorescence spectroscopy: an approach to redox-controlled metallacarborane molecular motors.

    PubMed

    Safronov, Alexander V; Shlyakhtina, Natalia I; Everett, Thomas A; VanGordon, Monika R; Sevryugina, Yulia V; Jalisatgi, Satish S; Hawthorne, M Frederick

    2014-10-06

    As a continuation of work on metallacarborane-based molecular motors, the structures of substituted bis(dicarbollyl)nickel complexes in Ni(III) and Ni(IV) oxidation states were investigated in solution by fluorescence spectroscopy. Symmetrically positioned cage-linked pyrene molecules served as fluorescent probes to enable the observation of mixed meso-trans/dl-gauche (pyrene monomer fluorescence) and dl-cis/dl-gauche (intramolecular pyrene excimer fluorescence with residual monomer fluorescence) cage conformations of the nickelacarboranes in the Ni(III) and Ni(IV) oxidation states, respectively. The absence of energetically disfavored conformers in solution--dl-cis in the case of nickel(III) complexes and meso-trans in the case of nickel(IV)--was demonstrated based on spectroscopic data and conformer energy calculations in solution. The conformational persistence observed in solution indicates that bis(dicarbollyl)nickel complexes may provide attractive templates for building electrically driven and/or photodriven molecular motors.

  10. Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics simulations

    PubMed Central

    Okazaki, Kei-ichi; Koga, Nobuyasu; Takada, Shoji; Onuchic, Jose N.; Wolynes, Peter G.

    2006-01-01

    Biomolecules often undergo large-amplitude motions when they bind or release other molecules. Unlike macroscopic machines, these biomolecular machines can partially disassemble (unfold) and then reassemble (fold) during such transitions. Here we put forward a minimal structure-based model, the “multiple-basin model,” that can directly be used for molecular dynamics simulation of even very large biomolecular systems so long as the endpoints of the conformational change are known. We investigate the model by simulating large-scale motions of four proteins: glutamine-binding protein, S100A6, dihydrofolate reductase, and HIV-1 protease. The mechanisms of conformational transition depend on the protein basin topologies and change with temperature near the folding transition. The conformational transition rate varies linearly with driving force over a fairly large range. This linearity appears to be a consequence of partial unfolding during the conformational transition. PMID:16877541

  11. Distinct prion-like strains of amyloid beta implicated in phenotypic diversity of Alzheimer's disease.

    PubMed

    Cohen, Mark; Appleby, Brian; Safar, Jiri G

    2016-01-01

    Vast evidence on human prions demonstrates that variable disease phenotypes, rates of propagation, and targeting of distinct brain structures are determined by unique conformers (strains) of pathogenic prion protein (PrP(Sc)). Recent progress in the development of advanced biophysical tools that inventory structural characteristics of amyloid beta (Aβ) in the brain cortex of phenotypically diverse Alzheimer's disease (AD) patients, revealed unique spectrum of oligomeric particles in the cortex of rapidly progressive cases, implicating these structures in variable rates of propagation in the brain, and in distict disease manifestation. Since only ∼30% of phenotypic diversity of AD can be explained by polymorphisms in risk genes, these and transgenic bioassay data argue that structurally distinct Aβ particles play a major role in the diverse pathogenesis of AD, and may behave as distinct prion-like strains encoding diverse phenotypes. From these observations and our growing understanding of prions, there is a critical need for new strain-specific diagnostic strategies for misfolded proteins causing these elusive disorders. Since targeted drug therapy can induce mutation and evolution of prions into new strains, effective treatments of AD will require drugs that enhance clearance of pathogenic conformers, reduce the precursor protein, or inhibit the conversion of precursors into prion-like states.

  12. Peptide Conformation and Supramolecular Organization in Amylin Fibrils: Constraints from Solid State NMR

    PubMed Central

    Luca, Sorin; Yau, Wai-Ming; Leapman, Richard; Tycko, Robert

    2008-01-01

    The 37-residue amylin peptide, also known as islet amyloid polypeptide, forms fibrils that are the main peptide or protein component of amyloid that develops in the pancreas of type 2 diabetes patients. Amylin also readily forms amyloid fibrils in vitro that are highly polymorphic under typical experimental conditions. We describe a protocol for the preparation of synthetic amylin fibrils that exhibit a single predominant morphology, which we call a striated ribbon, in electron microscope and atomic force microscope images. Solid state nuclear magnetic resonance (NMR) measurements on a series of isotopically labeled samples indicate a single molecular structure within the striated ribbons. We use scanning transmission electron microscopy and several types of one-dimensional and two-dimensional solid state NMR techniques to obtain constraints on the peptide conformation and supramolecular structure in these amylin fibrils, and derive molecular structural models that are consistent with the experimental data. The basic structural unit in amylin striated ribbons, which we call the protofilament, contains four-layers of parallel β-sheets, formed by two symmetric layers of amylin molecules. The molecular structure of amylin protofilaments in striated ribbons closely resembles the protofilament in amyloid fibrils with similar morphology formed by the 40-residue β-amyloid peptide that is associated with Alzheimer's disease. PMID:17979302

  13. Three cocrystals and a cocrystal salt of pyrimidin-2-amine and glutaric acid.

    PubMed

    Odiase, Isaac; Nicholson, Catherine E; Ahmad, Ruksanna; Cooper, Jerry; Yufit, Dmitry S; Cooper, Sharon J

    2015-04-01

    Four new cocrystals of pyrimidin-2-amine and propane-1,3-dicarboxylic (glutaric) acid were crystallized from three different solvents (acetonitrile, methanol and a 50:50 wt% mixture of methanol and chloroform) and their crystal structures determined. Two of the cocrystals, namely pyrimidin-2-amine-glutaric acid (1/1), C4H5N3·C6H8O4, (I) and (II), are polymorphs. The glutaric acid molecule in (I) has a linear conformation, whereas it is twisted in (II). The pyrimidin-2-amine-glutaric acid (2/1) cocrystal, 2C4H5N3·C6H8O4, (III), contains glutaric acid in its linear form. Cocrystal-salt bis(2-aminopyrimidinium) glutarate-glutaric acid (1/2), 2C4H6N3(+)·C6H6O4(2-)·2C6H8O4, (IV), was crystallized from the same solvent as cocrystal (II), supporting the idea of a cocrystal-salt continuum when both the neutral and ionic forms are present in appreciable concentrations in solution. The diversity of the packing motifs in (I)-(IV) is mainly caused by the conformational flexibility of glutaric acid, while the hydrogen-bond patterns show certain similarities in all four structures.

  14. Meeting Report: Structural Determination of Environmentally Responsive Proteins

    PubMed Central

    Reinlib, Leslie

    2005-01-01

    The three-dimensional structure of gene products continues to be a missing lynchpin between linear genome sequences and our understanding of the normal and abnormal function of proteins and pathways. Enhanced activity in this area is likely to lead to better understanding of how discrete changes in molecular patterns and conformation underlie functional changes in protein complexes and, with it, sensitivity of an individual to an exposure. The National Institute of Environmental Health Sciences convened a workshop of experts in structural determination and environmental health to solicit advice for future research in structural resolution relative to environmentally responsive proteins and pathways. The highest priorities recommended by the workshop were to support studies of structure, analysis, control, and design of conformational and functional states at molecular resolution for environmentally responsive molecules and complexes; promote understanding of dynamics, kinetics, and ligand responses; investigate the mechanisms and steps in posttranslational modifications, protein partnering, impact of genetic polymorphisms on structure/function, and ligand interactions; and encourage integrated experimental and computational approaches. The workshop participants also saw value in improving the throughput and purity of protein samples and macromolecular assemblies; developing optimal processes for design, production, and assembly of macromolecular complexes; encouraging studies on protein–protein and macromolecular interactions; and examining assemblies of individual proteins and their functions in pathways of interest for environmental health. PMID:16263521

  15. Single Nucleotide Polymorphisms Predict Symptom Severity of Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Jiao, Yun; Chen, Rong; Ke, Xiaoyan; Cheng, Lu; Chu, Kangkang; Lu, Zuhong; Herskovits, Edward H.

    2012-01-01

    Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs)…

  16. A Web-Based Genetic Polymorphism Learning Approach for High School Students and Science Teachers

    ERIC Educational Resources Information Center

    Amenkhienan, Ehichoya; Smith, Edward J.

    2006-01-01

    Variation and polymorphism are concepts that are central to genetics and genomics, primary biological disciplines in which high school students and undergraduates require a solid foundation. From 1998 through 2002, a web-based genetics education program was developed for high school teachers and students. The program included an exercise on using…

  17. Identification of new mutations in primary hyperoxaluria type 1 (PH1).

    PubMed

    von Schnakenburg, C; Rumsby, G

    1998-01-01

    Primary hyperoxaluria type 1 (PH1) is caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). The AGXT gene, which codes for the 392 amino acid protein, has been mapped to chromosome 2q37.3. In order to identify new mutations in the AGXT gene we studied 79 PH1 patients using single strand conformation polymorphism analysis. In addition to a cluster of new mutations in exon 7 we report five novel mutations in exons 2, 4, 5, 9 and 10. These are T444C, G640A, G690A, 1008-1010delGCG and G1171A. These five new mutations contribute to our knowledge of the AGXT gene. Their possible consequences for PH1 phenotype and enzyme activity are discussed.

  18. Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach

    NASA Astrophysics Data System (ADS)

    Lam, Polo C.-H.; Abagyan, Ruben; Totrov, Maxim

    2018-01-01

    Ligand docking to flexible protein molecules can be efficiently carried out through ensemble docking to multiple protein conformations, either from experimental X-ray structures or from in silico simulations. The success of ensemble docking often requires the careful selection of complementary protein conformations, through docking and scoring of known co-crystallized ligands. False positives, in which a ligand in a wrong pose achieves a better docking score than that of native pose, arise as additional protein conformations are added. In the current study, we developed a new ligand-biased ensemble receptor docking method and composite scoring function which combine the use of ligand-based atomic property field (APF) method with receptor structure-based docking. This method helps us to correctly dock 30 out of 36 ligands presented by the D3R docking challenge. For the six mis-docked ligands, the cognate receptor structures prove to be too different from the 40 available experimental Pocketome conformations used for docking and could be identified only by receptor sampling beyond experimentally explored conformational subspace.

  19. Development of Advanced Conformal Ablative TPS Fabricated from Rayon- and PAN-Based Carbon Felts

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Stackpoole, Margaret; White, Susan; Boghozian, Tane

    2016-01-01

    The conformal ablative TPS first developed under NASA's Hypersonics Project in the early 2000's demonstrated very low through the thickness conductivity compared to state-ofthe- art PICA. However, in initial arcjet testing of Conformal-1, surface recession rates were 2x higher than PICA. Because commercial carbon felts are currently available as very thin substrates, this was a concern if conformal TPS were to be considered for a mission that required thicker material. Discussed in this paper are the results of the development of an Advanced Conformal TPS derived from thicker, higher density carbon felt. Two substrate systems were evaluated, the first material was a needled rayon-based carbon felt and the other a needled PAN-based carbon felt. Both substrates were impregnated with phenolic resin following the PICA/CPICA process to add a low density phenolic matrix to the system prior to aerothermal screening at the LaRC HyMETS facility and larger scale testing in the NASA ARC Interaction Heating Facility (IHF) at heating fluxes ranging from 250-1700 W/cm2.

  20. Pilot Non-Conformance to Alerting System Commands

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Hansman, R. John

    1997-01-01

    Instances of pilot non-conformance to alerting system commands have been identified in previous studies. Pilot non-conformance changes the final behavior of the system, and therefore may reduce actual performance from that anticipated. A simulator study has examined pilot non-conformance, using the task of collision avoidance during closely spaced parallel approaches as a case study. Consonance between the display and the alerting system was found to significantly improve subject agreement with automatic alerts. Based on these results, a more general discussion of the factors involved in pilot conformance is given, and design guidelines for alerting systems are given.

  1. One-Carbon Metabolism and Breast Cancer Survival in a Population-Based Study

    DTIC Science & Technology

    2007-06-01

    methylation patterns; gene promoter methylation pattern and overall survival; and one-carbon polymorphisms and treatment regimen in relation to survival... treatment strategy. BODY Task 1. To genotype polymorphisms in one-carbon-metabolizing genes on 1087 BC cases (Months 1- 24) Genotyping...modifying effect of one-carbon gene polymorphisms on chemotherapy response in relation to breast cancer survival. Results were summarized in Table 2. The

  2. DPYD*2A and MTHFR C677T predict toxicity and efficacy, respectively, in patients on chemotherapy with 5-fluorouracil for colorectal cancer.

    PubMed

    Nahid, Noor Ahmed; Apu, Mohd Nazmul Hasan; Islam, Md Reazul; Shabnaz, Samia; Chowdhury, Surid Mohammad; Ahmed, Maizbha Uddin; Nahar, Zabun; Islam, Md Siddiqul; Islam, Mohammad Safiqul; Hasnat, Abul

    2018-01-01

    Significant inter-individual variation in the sensitivity to 5-fluorouracil (5-FU) represents a major therapeutic hindrance either by impairing drug response or inducing adverse drug reactions (ADRs). This study aimed at exploring the cause behind this inter-individual alterations in consequences of 5-fluorouracil-based chemotherapy by investigating the effects of DPYD*2A and MTHFR C677T polymorphisms on toxicity and response of 5-FU in Bangladeshi colorectal cancer patients. Colorectal cancer patients (n = 161) receiving 5-FU-based chemotherapy were prospectively enrolled. DPYD and MTHFR polymorphisms were assessed in peripheral leukocytes. Multivariate analyses were applied to evaluate which variables could predict chemotherapy-induced toxicity and efficacy. Multivariate analyses showed that DPYD*2A polymorphism was a predictive factor (P = 0.023) for grade 3 and grade 4 5-fluorouracil-related toxicities. Although MTHFR C677T polymorphism might act as forecasters for grade 3 or grade 4 neutropenia, diarrhea, and mucositis, this polymorphism was found to increase significantly (P = 0.006) the response of 5-FU. DPYD*2A and MTHFR C677T polymorphisms could explain 5-FU toxicity or clinical outcome in Bangladeshi colorectal patients.

  3. Exploring the role of ionic liquids to tune the polymorphic outcome of organic compounds.

    PubMed

    Zeng, Qingying; Mukherjee, Arijit; Müller, Peter; Rogers, Robin D; Myerson, Allan S

    2018-02-14

    While molecular solvents are commonly used in the screening of polymorphs, the choices are often restricted. Ionic liquids (ILs) - also referred as designer solvents - have immense possibility in this regard because of their wide flexibility of tunability. More importantly, the interactions among the IL components are completely unique compared to those present in the molecular solvents. In this context, we have chosen tetrolic acid (TA) and isonicotinamide (INA), which showed solution-structure link in molecular solvents in the past, as probes to investigate the role of imidazolium based ionic liquids in the polymorphism of these two systems and whether the different solute-solvent interactions in ILs affect the polymorphic outcome. It is observed that the selected imidazolium-based ILs, with varying anion basicity have influenced the crystallization outcome by the interaction between ILs and model compounds. Later, we have utilized the concept of double salt ionic liquids (DSIL) for INA, a penta-morphic system, to investigate the variation in the polymorphic outcome. This approach helped to obtain the forms that were otherwise inaccessible in ILs.

  4. KRAS polymorphisms are associated with survival of CRC in Chinese population.

    PubMed

    Dai, Qiong; Wei, Hui Lian; Huang, Juan; Zhou, Tie Jun; Chai, Li; Yang, Zhi-Hui

    2016-04-01

    rs12245, rs12587, rs9266, rs1137282, rs61764370, and rs712 of KRAS oncogene are characterized in the 3'UTR. The study highlights the important role of these polymorphisms playing in the susceptibility, oxaliplatin-based chemotherapy sensitivity, progression, and prognosis of CRC. Improved multiplex ligation detection reaction (iMLDR) technique is used for genotyping. An unconditional logistic regression model was used to estimate the association of certain polymorphism and CRC risk. The Kaplan-Meier method, log-rank test, and Cox regression model were used to evaluate the effects of polymorphisms on survival analysis. Results demonstrated that TT genotype and T allele of rs712 were associated with the increased risk of CRC; the patients with GG genotype and G allele of rs61764370 had a shorter survival and a higher risk of relapse or metastasis of CRC. Our studies supported the conclusions that rs61764370 and rs712 polymorphisms of the KRAS are functional and it may play an important role in the development of CRC and oxaliplatin-based chemotherapy efficiency and prognosis of CRC.

  5. Polymorphisms in RAI and in genes of nucleotide and base excision repair are not associated with risk of testicular cancer.

    PubMed

    Laska, Magdalena J; Nexø, Bjørn A; Vistisen, Kirsten; Poulsen, Henrik Enghusen; Loft, Steffen; Vogel, Ulla

    2005-07-28

    Testicular cancer has been suggested to be primed in utero and there is familiar occurrence, particularly brothers and sons of men with testicular cancer have increased risk. Although no specific causative genotoxic agents have been identified, variations in DNA repair capacity could be associated with the risk of testicular cancer. A case-control study of 184 testicular cancer cases and 194 population-based controls living in the Copenhagen Greater Area in Denmark was performed. We found that neither polymorphisms in several DNA repair genes nor alleles of several polymorphisms in the chromosomal of region 19q13.2-3, encompassing the genes ASE, ERCC1, RAI and XPD, were associated with risk of testicular cancer in Danish patients. This is in contrast to other cancers, where we reported strong associations between polymorphisms in ERCC1, ASE and RAI and occurrence of basal cell carcinoma, breast cancer and lung. To our knowledge this is the first study of DNA repair gene polymorphisms and risk of testicular cancer.

  6. A preliminary report on the genetic variation in pointed gourd (Trichosanthes dioica Roxb.) as assessed by random amplified polymorphic DNA.

    PubMed

    Adhikari, S; Biswas, A; Bandyopadhyay, T K; Ghosh, P D

    2014-06-01

    Pointed gourd (Trichosanthes dioica Roxb.) is an economically important cucurbit and is extensively propagated through vegetative means, viz vine and root cuttings. As the accessions are poorly characterized it is important at the beginning of a breeding programme to discriminate among available genotypes to establish the level of genetic diversity. The genetic diversity of 10 pointed gourd races, referred to as accessions was evaluated. DNA profiling was generated using 10 sequence independent RAPD markers. A total of 58 scorable loci were observed out of which 18 (31.03%) loci were considered polymorphic. Genetic diversity parameters [average and effective number of alleles, Shannon's index, percent polymorphism, Nei's gene diversity, polymorphic information content (PIC)] for RAPD along with UPGMA clustering based on Jaccard's coefficient were estimated. The UPGMA dendogram constructed based on RAPD analysis in 10 pointed gourd accessions were found to be grouped in a single cluster and may represent members of one heterotic group. RAPD analysis showed promise as an effective tool in estimating genetic polymorphism in different accessions of pointed gourd.

  7. The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues.

    PubMed

    Wood, Bayden R

    2016-04-07

    Since Watson and Crick's historical papers on the structure and function of DNA based on Rosalind Franklin's and Maurice Wilkin's X-ray diffraction patterns tremendous scientific curiosity has been aroused by the unique and dynamic structure of the molecule of life. A-DNA and B-DNA represent different conformations of the DNA molecule, which is stabilised by hydrogen interactions between base pairs, stacking interactions between neighboring bases and long-range intra- and inter-backbone forces. This review highlights the contribution Fourier transform infrared (FTIR) spectroscopy has made to the understanding of DNA conformation in relation to hydration and its potential role in clinical diagnostics. The review will first begin by elucidating the main forms of DNA conformation found in nature and the general structures of the A, B and Z forms. This is followed by a detailed critique on infrared spectroscopy applied to DNA conformation highlighting pivotal studies on isolated DNA, polynucleotides, nucleoprotein and nucleohistone complexes. A discussion on the potential of diagnosing cancer using FTIR spectroscopy based on the detection of DNA bands in cells and tissues will ensue, highlighting the recent studies investigating the conformation of DNA in hydrated and dehydrated cells. The method of hydration as a way to facilitate DNA conformational band assignment will be discussed and the conformational change to the A-form upon dehydration will be used to explain the reason for the apparent lack of FTIR DNA signals observed in fixed or air-dried cells and tissues. The advantages of investigating B-DNA in the hydrated state, as opposed to A-DNA in the dehydrated state, are exemplified in a series of studies that show: (1) improved quantification of DNA in cells; (2) improved discrimination and reproducibility of FTIR spectra recorded of cells progressing through the cell cycle; (3) insights into the biological significance of A-DNA as evidenced by an interesting study on bacteria, which can survive desiccation and at the same time undergo the B-A-B transition. Finally, the importance of preserving the B-DNA conformation for the diagnosis of cancer is put forward as way to improve the sensitivity of this powerful technique.

  8. Understanding network concepts in modules

    PubMed Central

    2007-01-01

    Background Network concepts are increasingly used in biology and genetics. For example, the clustering coefficient has been used to understand network architecture; the connectivity (also known as degree) has been used to screen for cancer targets; and the topological overlap matrix has been used to define modules and to annotate genes. Dozens of potentially useful network concepts are known from graph theory. Results Here we study network concepts in special types of networks, which we refer to as approximately factorizable networks. In these networks, the pairwise connection strength (adjacency) between 2 network nodes can be factored into node specific contributions, named node 'conformity'. The node conformity turns out to be highly related to the connectivity. To provide a formalism for relating network concepts to each other, we define three types of network concepts: fundamental-, conformity-based-, and approximate conformity-based concepts. Fundamental concepts include the standard definitions of connectivity, density, centralization, heterogeneity, clustering coefficient, and topological overlap. The approximate conformity-based analogs of fundamental network concepts have several theoretical advantages. First, they allow one to derive simple relationships between seemingly disparate networks concepts. For example, we derive simple relationships between the clustering coefficient, the heterogeneity, the density, the centralization, and the topological overlap. The second advantage of approximate conformity-based network concepts is that they allow one to show that fundamental network concepts can be approximated by simple functions of the connectivity in module networks. Conclusion Using protein-protein interaction, gene co-expression, and simulated data, we show that a) many networks comprised of module nodes are approximately factorizable and b) in these types of networks, simple relationships exist between seemingly disparate network concepts. Our results are implemented in freely available R software code, which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/ModuleConformity/ModuleNetworks PMID:17547772

  9. Structure, Stiffness and Substates of the Dickerson-Drew Dodecamer

    PubMed Central

    Dršata, Tomáš; Pérez, Alberto; Orozco, Modesto; Morozov, Alexandre V.; Šponer, Jiřĺ; Lankaš, Filip

    2013-01-01

    The Dickerson–Drew dodecamer (DD) d-[CGCGAATTCGCG]2 is a prototypic B-DNA molecule whose sequence-specific structure and dynamics have been investigated by many experimental and computational studies. Here, we present an analysis of DD properties based on extensive atomistic molecular dynamics (MD) simulations using different ionic conditions and water models. The 0.6–2.4-µs-long MD trajectories are compared to modern crystallographic and NMR data. In the simulations, the duplex ends can adopt an alternative base-pairing, which influences the oligomer structure. A clear relationship between the BI/BII backbone substates and the basepair step conformation has been identified, extending previous findings and exposing an interesting structural polymorphism in the helix. For a given end pairing, distributions of the basepair step coordinates can be decomposed into Gaussian-like components associated with the BI/BII backbone states. The nonlocal stiffness matrices for a rigid-base mechanical model of DD are reported for the first time, suggesting salient stiffness features of the central A-tract. The Riemann distance and Kullback–Leibler divergence are used for stiffness matrix comparison. The basic structural parameters converge very well within 300 ns, convergence of the BI/BII populations and stiffness matrices is less sharp. Our work presents new findings about the DD structural dynamics, mechanical properties, and the coupling between basepair and backbone configurations, including their statistical reliability. The results may also be useful for optimizing future force fields for DNA. PMID:23976886

  10. Universal fluorescent tri-probe ligation equipped with capillary electrophoresis for targeting SMN1 and SMN2 genes in diagnosis of spinal muscular atrophy.

    PubMed

    Wang, Chun-Chi; Shih, Chi-Jen; Jong, Yuh-Jyh; Wu, Shou-Mei

    2014-06-23

    This is the first ligase chain reaction used for diagnosis of spinal muscular atrophy (SMA). Universal fluorescent tri-probe ligation (UFTPL), a novel strategy used for distinguishing the multi-nucleotide alternations at single base, is developed to quantitatively analyze the SMN1/SMN2 genes in diagnosis of SMA. Ligase chain reaction was performed by adding three probes including universal fluorescent probe, connecting probe and recognizing probe to differentiate single nucleotide polymorphisms in UFTPL. Our approach was based on the two UFTPL products of survival motor neuron 1 (SMN1) and SMN2 genes (the difference of 9 mer) and analyzed by capillary electrophoresis (CE). We successfully determined various gene dosages of SMN1 and SMN2 genes in homologous or heterologous subjects. By using the UFTPL-CE method, the SMN1 and SMN2 genes were fully resolved with the resolution of 2.16±0.37 (n=3). The r values of SMN1 and SMN2 regression curves over a range of 1-4 copies were above 0.9944. Of the 48 DNA samples, the data of gene dosages were corresponding to that analyzed by conformation sensitive CE and denatured high-performance liquid chromatography (DHPLC). This technique was found to be a good methodology for quantification or determination of the relative genes having multi-nucleotide variants at single base. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Prevalence of combinatorial CYP2C9 and VKORC1 genotypes in Puerto Ricans: implications for warfarin management in Hispanics.

    PubMed

    Duconge, Jorge; Cadilla, Carmen L; Windemuth, Andreas; Kocherla, Mohan; Gorowski, Krystyna; Seip, Richard L; Bogaard, Kali; Renta, Jessica Y; Piovanetti, Paola; D'Agostino, Darrin; Santiago-Borrero, Pedro J; Ruaño, Gualberto

    2009-01-01

    Polymorphisms in the cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) genes significantly alter the effective warfarin dose. We determined the frequencies of alleles, single carriers, and double carriers of single nucleotide polymorphisms (SNPs) in the CYP2C9 and VKORC1 genes in a Puerto Rican cohort and gauged the impact of these polymorphisms on warfarin dosage using a published algorithm. A total of 92 DNA samples were genotyped using Luminex x-MAP technology. The polymorphism frequencies were 6.52%, 5.43% and 28.8% for CYP2C9 *2, *3 and VKORC1-1639 C>A polymorphisms, respectively. The prevalence of combinatorial genotypes was 16% for carriers of both the CYP2C9 and VKORC1 polymorphisms, 9% for carriers of CYP2C9 polymorphisms, 35% for carriers of the VKORC1 polymorphism, and the remaining 40% were non-carriers for either gene. Based on a published warfarin dosing algorithm, single, double and triple carriers of functionally deficient polymorphisms predict reductions of 1.0-1.6, 2.0-2.9, and 2.9-3.7 mg/day, respectively, in warfarin dose. Overall, 60% of the population carried at least a single polymorphism predicting deficient warfarin metabolism or responsiveness and 13% were double carriers with polymorphisms in both genes studied. Combinatorial genotyping of CYP2C9 and VKORC1 can allow for individualized dosing of warfarin among patients with gene polymorphisms, potentially reducing the risk of stroke or bleeding.

  12. Conformation-sensitive infrared bands of uridine-5'-monophosphate

    NASA Astrophysics Data System (ADS)

    Carmona, P.; Molina, M.; Escobar, R.

    1991-03-01

    Infrared spectra are presented for six compounds containing ribose residues with various conformations. The assignments are based chiefly on comparison of the vibrational data observed for these compounds with those for uracil and D-ribose-5-phosphate and on a previous normal coordinate calculation. A spectral feature in the 1300-1260 cm -1 region seems to be sensitive to the ribofuranose conformation, and the usefulness of these structure-spectrum correlations in the conformation studies of polynucleotides is also discussed.

  13. Fast, clash-free RNA conformational morphing using molecular junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heliou, Amelie; Budday, Dominik; Fonseca, Rasmus

    Non-coding ribonucleic acids (ncRNA) are functional RNA molecules that are not translated into protein. They are extremely dynamic, adopting diverse conformational substates, which enables them to modulate their interaction with a large number of other molecules. The flexibility of ncRNA provides a challenge for probing their complex 3D conformational landscape, both experimentally and computationally. As a result, despite their conformational diversity, ncRNAs mostly preserve their secondary structure throughout the dynamic ensemble. Here we present a kinematics-based procedure to morph an RNA molecule between conformational substates, while avoiding inter-atomic clashes. We represent an RNA as a kinematic linkage, with fixed groupsmore » of atoms as rigid bodies and rotatable bonds as degrees of freedom. Our procedure maintains RNA secondary structure by treating hydrogen bonds between base pairs as constraints. The constraints define a lower-dimensional, secondary-structure constraint manifold in conformation space, where motions are largely governed by molecular junctions of unpaired nucleotides. On a large benchmark set, we show that our morphing procedure compares favorably to peer algorithms, and can approach goal conformations to within a low all-atom RMSD by directing fewer than 1% of its atoms. Furthermore, our results suggest that molecular junctions can modulate 3D structural rearrangements, while secondary structure elements guide large parts of the molecule along the transition to the correct final conformation.« less

  14. Conformational Changes of Trialanine in Water Induced by Vibrational Relaxation of the Amide I Mode.

    PubMed

    Bastida, Adolfo; Zúñiga, José; Requena, Alberto; Miguel, Beatriz; Candela, María Emilia; Soler, Miguel Angel

    2016-01-21

    Most of the protein-based diseases are caused by anomalies in the functionality and stability of these molecules. Experimental and theoretical studies of the conformational dynamics of proteins are becoming in this respect essential to understand the origin of these anomalies. However, a description of the conformational dynamics of proteins based on mechano-energetic principles still remains elusive because of the intrinsic high flexibility of the peptide chains, the participation of weak noncovalent interactions, and the role of the ubiquitous water solvent. In this work, the conformational dynamics of trialanine dissolved in water (D2O) is investigated through Molecular Dynamics (MD) simulations combined with instantaneous normal modes (INMs) analysis both at equilibrium and after the vibrational excitation of the C-terminal amide I mode. The conformational equilibrium between α and pPII conformers is found to be altered by the intramolecular relaxation of the amide I mode as a consequence of the different relaxation pathways of each conformer which modify the amount of vibrational energy stored in the torsional motions of the tripeptide, so the α → pPII and pPII → α conversion rates are increased differently. The selectivity of the process comes from the shifts of the vibrational frequencies with the conformational changes that modify the resonance conditions driving the intramolecular energy flows.

  15. Fast, clash-free RNA conformational morphing using molecular junctions

    DOE PAGES

    Heliou, Amelie; Budday, Dominik; Fonseca, Rasmus; ...

    2017-03-13

    Non-coding ribonucleic acids (ncRNA) are functional RNA molecules that are not translated into protein. They are extremely dynamic, adopting diverse conformational substates, which enables them to modulate their interaction with a large number of other molecules. The flexibility of ncRNA provides a challenge for probing their complex 3D conformational landscape, both experimentally and computationally. As a result, despite their conformational diversity, ncRNAs mostly preserve their secondary structure throughout the dynamic ensemble. Here we present a kinematics-based procedure to morph an RNA molecule between conformational substates, while avoiding inter-atomic clashes. We represent an RNA as a kinematic linkage, with fixed groupsmore » of atoms as rigid bodies and rotatable bonds as degrees of freedom. Our procedure maintains RNA secondary structure by treating hydrogen bonds between base pairs as constraints. The constraints define a lower-dimensional, secondary-structure constraint manifold in conformation space, where motions are largely governed by molecular junctions of unpaired nucleotides. On a large benchmark set, we show that our morphing procedure compares favorably to peer algorithms, and can approach goal conformations to within a low all-atom RMSD by directing fewer than 1% of its atoms. Furthermore, our results suggest that molecular junctions can modulate 3D structural rearrangements, while secondary structure elements guide large parts of the molecule along the transition to the correct final conformation.« less

  16. Amyloid and the origin of life: self-replicating catalytic amyloids as prebiotic informational and protometabolic entities.

    PubMed

    Maury, Carl Peter J

    2018-05-01

    A crucial stage in the origin of life was the emergence of the first molecular entity that was able to replicate, transmit information, and evolve on the early Earth. The amyloid world hypothesis posits that in the pre-RNA era, information processing was based on catalytic amyloids. The self-assembly of short peptides into β-sheet amyloid conformers leads to extraordinary structural stability and novel multifunctionality that cannot be achieved by the corresponding nonaggregated peptides. The new functions include self-replication, catalytic activities, and information transfer. The environmentally sensitive template-assisted replication cycles generate a variety of amyloid polymorphs on which evolutive forces can act, and the fibrillar assemblies can serve as scaffolds for the amyloids themselves and for ribonucleotides proteins and lipids. The role of amyloid in the putative transition process from an amyloid world to an amyloid-RNA-protein world is not limited to scaffolding and protection: the interactions between amyloid, RNA, and protein are both complex and cooperative, and the amyloid assemblages can function as protometabolic entities catalyzing the formation of simple metabolite precursors. The emergence of a pristine amyloid-based in-put sensitive, chiroselective, and error correcting information-processing system, and the evolvement of mutualistic networks were, arguably, of essential importance in the dynamic processes that led to increased complexity, organization, compartmentalization, and, eventually, the origin of life.

  17. Population genetic structure analysis and forensic evaluation of Xinjiang Uigur ethnic group on genomic deletion and insertion polymorphisms.

    PubMed

    Mei, Ting; Shen, Chun-Mei; Liu, Yao-Shun; Meng, Hao-Tian; Zhang, Yu-Dang; Guo, Yu-Xin; Dong, Qian; Wang, Xin-Xin; Yan, Jiang-Wei; Zhu, Bo-Feng; Zhang, Li-Ping

    2016-01-01

    The Uigur ethnic minority is the largest ethnic group in the Xinjiang Uygur Autonomous Region of China, and valuable resource for the study of ethnogeny. The objective of this study was to estimate the genetic diversities and forensic parameters of 30 insertion-deletion loci in Uigur ethnic group from Xinjiang Uigur Autonomous Region of China and to analyze the genetic relationships between Xinjiang Uigur group and other previously published groups based on population data of these loci. All the tested loci were conformed to Hardy-Weinberg equilibrium after Bonferroni correction. The observed and expected heterozygosity ranged from 0.3750 to 0.5515; and 0.4057 to 0.5037, respectively. The combined power of discrimination and probability of exclusion in the group were 0.99999999999940 and 0.9963, respectively. We analyzed the D A distance, interpopulation differentiations and population structure, conducted principal component analysis and neighbor-joining tree based on our studied group and 21 reference groups. The present results indicated that the studied Xinjiang Uigur group (represented our samples from the whole territory of Xinjiang Uigur Autonomous Region) had a close relationships with Urumchi Uigur (represented previously reported samples from Urumchi of Xinjiang) and Kazak groups. The present study may provide novel biological information for the study of population genetics, and can also increase our understanding of the genetic relationships between Xinjiang Uigur group and other groups.

  18. THE EFFECT OF CHLORINATION OF NUCLEOTIDE BASES ON THE CONFORMATIONAL PROPERTIES OF THYMIDINE MONOPHOSPHATE.

    PubMed

    Mukhina, T M; Nikolaienko, T Yu

    2015-01-01

    Recent studies on Escherichia coli bacteria cultivation, in which DNA thymine was replaced with 5-chlorouracil have refreshed the problem of understanding the changes to physical properties of DNA monomers resultant from chemical modifications. These studies have shown that the replacement did not affect the normal activities and division of the bacteria, but has significantly reduced its life span. In this paper a comparative analysis was carried out by the methods of computational experiment of a set of 687 possible conformers of natural monomeric DNA unit (2'-deoxyribonucleotide thymidine monophosphate) and 660 conformers of 5-chloro-2'-deoxyuridine monophosphate - a similar molecules in which the natural nitrogenous base thymine is substituted with 5-chlorouracil. Structures of stable conformers of the modified deoxyribonucleotide have been obtained and physical factors, which determine their variation from the conformers of the unmodified molecule have been analyzed. A comparative analysis of the elastic properties of conformers of investigated molecules and non-covalent interactions present in them was conducted. The results can be usedfor planning experiments on synthesis of artficial DNA suitable for incorporation into living organisms.

  19. Methods in Enzymology: “Flexible backbone sampling methods to model and design protein alternative conformations”

    PubMed Central

    Ollikainen, Noah; Smith, Colin A.; Fraser, James S.; Kortemme, Tanja

    2013-01-01

    Sampling alternative conformations is key to understanding how proteins work and engineering them for new functions. However, accurately characterizing and modeling protein conformational ensembles remains experimentally and computationally challenging. These challenges must be met before protein conformational heterogeneity can be exploited in protein engineering and design. Here, as a stepping stone, we describe methods to detect alternative conformations in proteins and strategies to model these near-native conformational changes based on backrub-type Monte Carlo moves in Rosetta. We illustrate how Rosetta simulations that apply backrub moves improve modeling of point mutant side chain conformations, native side chain conformational heterogeneity, functional conformational changes, tolerated sequence space, protein interaction specificity, and amino acid co-variation across protein-protein interfaces. We include relevant Rosetta command lines and RosettaScripts to encourage the application of these types of simulations to other systems. Our work highlights that critical scoring and sampling improvements will be necessary to approximate conformational landscapes. Challenges for the future development of these methods include modeling conformational changes that propagate away from designed mutation sites and modulating backbone flexibility to predictively design functionally important conformational heterogeneity. PMID:23422426

  20. Insights on the structural perturbations in human MTHFR Ala222Val mutant by protein modeling and molecular dynamics.

    PubMed

    Abhinand, P A; Shaikh, Faraz; Bhakat, Soumendranath; Radadiya, Ashish; Bhaskar, L V K S; Shah, Anamik; Ragunath, P K

    2016-01-01

    Methylenetetrahydrofolate reductase (MTHFR) protein catalyzes the only biochemical reaction which produces methyltetrahydrofolate, the active form of folic acid essential for several molecular functions. The Ala222Val polymorphism of human MTHFR encodes a thermolabile protein associated with increased risk of neural tube defects and cardiovascular disease. Experimental studies have shown that the mutation does not affect the kinetic properties of MTHFR, but inactivates the protein by increasing flavin adenine dinucleotide (FAD) loss. The lack of completely solved crystal structure of MTHFR is an impediment in understanding the structural perturbations caused by the Ala222Val mutation; computational modeling provides a suitable alternative. The three-dimensional structure of human MTHFR protein was obtained through homology modeling, by taking the MTHFR structures from Escherichia coli and Thermus thermophilus as templates. Subsequently, the modeled structure was docked with FAD using Glide, which revealed a very good binding affinity, authenticated by a Glide XP score of -10.3983 (kcal mol(-1)). The MTHFR was mutated by changing Alanine 222 to Valine. The wild-type MTHFR-FAD complex and the Ala222Val mutant MTHFR-FAD complex were subjected to molecular dynamics simulation over 50 ns period. The average difference in backbone root mean square deviation (RMSD) between wild and mutant variant was found to be ~.11 Å. The greater degree of fluctuations in the mutant protein translates to increased conformational stability as a result of mutation. The FAD-binding ability of the mutant MTHFR was also found to be significantly lowered as a result of decreased protein grip caused by increased conformational flexibility. The study provides insights into the Ala222Val mutation of human MTHFR that induces major conformational changes in the tertiary structure, causing a significant reduction in the FAD-binding affinity.

  1. Insights into peptide nucleic acid (PNA) structural features: The crystal structure of a d-lysine-based chiral PNA–DNA duplex

    PubMed Central

    Menchise, Valeria; De Simone, Giuseppina; Tedeschi, Tullia; Corradini, Roberto; Sforza, Stefano; Marchelli, Rosangela; Capasso, Domenica; Saviano, Michele; Pedone, Carlo

    2003-01-01

    Peptide nucleic acids (PNAs) are oligonucleotide analogues in which the sugar-phosphate backbone has been replaced by a pseudopeptide skeleton. They bind DNA and RNA with high specificity and selectivity, leading to PNA–RNA and PNA–DNA hybrids more stable than the corresponding nucleic acid complexes. The binding affinity and selectivity of PNAs for nucleic acids can be modified by the introduction of stereogenic centers (such as d-Lys-based units) into the PNA backbone. To investigate the structural features of chiral PNAs, the structure of a PNA decamer containing three d-Lys-based monomers (namely H-GpnTpnApnGpnAdlTdlCdlApnCpnTpn-NH2, in which pn represents a pseudopeptide link and dl represents a d-Lys analogue) hybridized with its complementary antiparallel DNA has been solved at a 1.66-Å resolution by means of a single-wavelength anomalous diffraction experiment on a brominated derivative. Thed-Lys-based chiral PNA–DNA (LPD) heteroduplex adopts the so-called P-helix conformation. From the substantial similarity between the PNA conformation in LPD and the conformations observed in other PNA structures, it can be concluded that PNAs possess intrinsic conformational preferences for the P-helix, and that their flexibility is rather restricted. The conformational rigidity of PNAs is enhanced by the presence of the chiral centers, limiting the ability of PNA strands to adopt other conformations and, ultimately, increasing the selectivity in molecular recognition. PMID:14512516

  2. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics

    PubMed Central

    Dong, Bing; Li, Yan; Han, Xin-li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10−5 in optimized correction and is 1.427 × 10−5 in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  3. A Projective-to-Conformal Fefferman-Type Construction

    NASA Astrophysics Data System (ADS)

    Hammerl, Matthias; Sagerschnig, Katja; Šilhan, Josef; Taghavi-Chabert, Arman; Zádník, Vojtĕch

    2017-10-01

    We study a Fefferman-type construction based on the inclusion of Lie groups SL(n+1) into Spin(n+1,n+1). The construction associates a split-signature (n,n)-conformal spin structure to a projective structure of dimension n. We prove the existence of a canonical pure twistor spinor and a light-like conformal Killing field on the constructed conformal space. We obtain a complete characterisation of the constructed conformal spaces in terms of these solutions to overdetermined equations and an integrability condition on the Weyl curvature. The Fefferman-type construction presented here can be understood as an alternative approach to study a conformal version of classical Patterson-Walker metrics as discussed in recent works by Dunajski-Tod and by the authors. The present work therefore gives a complete exposition of conformal Patterson-Walker metrics from the viewpoint of parabolic geometry.

  4. Development of novel polymorphic microsatellite markers for the silver fox (Vulpes vulpes).

    PubMed

    Yan, S Q; Bai, C Y; Qi, S M; Li, Y M; Li, W J; Sun, J H

    2015-06-01

    The silver fox (Vulpes vulpes), a coat color variant of the red fox, is one of the most important fur-bearing animals. To date, development of microsatellite loci for the silver fox has been limited and mainly based on cross-amplification by using canine SSR primers. In this study, 28 polymorphic microsatellite markers were isolated and identified for silver fox through the construction and screening of an (AC)n-enriched library. The number of alleles per locus ranged from 2 to 8 based on 48 individuals tested. The expected and observed hetero- zygosity and polymorphism information content per locus ranged from 0.2544 to 0.859, 0.2083 to 0.7917, and 0.2181 to 0.821, respectively. The polymorphic markers presented in this study may be useful for future analysis of the genetic diversity and population structure of farmed silver fox and wild red fox.

  5. Plan-graph Based Heuristics for Conformant Probabilistic Planning

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Salesh; Pollack, Martha E.; Smith, David E.

    2004-01-01

    In this paper, we introduce plan-graph based heuristics to solve a variation of the conformant probabilistic planning (CPP) problem. In many real-world problems, it is the case that the sensors are unreliable or take too many resources to provide knowledge about the environment. These domains are better modeled as conformant planning problems. POMDP based techniques are currently the most successful approach for solving CPP but have the limitation of state- space explosion. Recent advances in deterministic and conformant planning have shown that plan-graphs can be used to enhance the performance significantly. We show that this enhancement can also be translated to CPP. We describe our process for developing the plan-graph heuristics and estimating the probability of a partial plan. We compare the performance of our planner PVHPOP when used with different heuristics. We also perform a comparison with a POMDP solver to show over a order of magnitude improvement in performance.

  6. Influence of Hofmeister ions on the structure of proline-based peptide models: A combined experimental and molecular modeling study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brohl, Andreas; Albrecht, Benjamin; Zhang, Yong

    Here, the influence of three sodium salts, covering a wide range of the Hofmeister series, on the conformation of three proline-based peptide models in aqueous solution is examined using a combination of nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The anions preferentially interact with the cis conformers of the peptide models, which is rationalized by the respective electrostatic potential surfaces. These preferred interactions have a strong impact on the thermodynamics of the cis/trans equilibria, leading to a higher population of the cis conformers. In distinct cases, these equilibria are nearly independent of temperature, showing that the salts are alsomore » able to stabilize the conformers over wide temperature ranges.« less

  7. Informational and Normative Influences in Conformity from a Neurocomputational Perspective.

    PubMed

    Toelch, Ulf; Dolan, Raymond J

    2015-10-01

    We consider two distinct influences that drive conformity behaviour. Whereas informational influences facilitate adaptive and accurate responses, normative influences bias decisions to enhance social acceptance. We explore these influences from a perspective of perceptual and value-based decision-making models and apply these models to classical works on conformity. We argue that an informational account predicts a surprising tendency to conform. Moreover, we detail how normative influences fit into this framework and interact with social influences. Finally, we explore potential neuronal substrates for informational and normative influences based on a consideration of the neurobiological literature, highlighting conceptual shortcomings particularly with regard to a failure to segregate informational and normative influences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Influence of Hofmeister Ions on the Structure of Proline-Based Peptide Models: A Combined Experimental and Molecular Modeling Study.

    PubMed

    Bröhl, Andreas; Albrecht, Benjamin; Zhang, Yong; Maginn, Edward; Giernoth, Ralf

    2017-03-09

    The influence of three sodium salts, covering a wide range of the Hofmeister series, on the conformation of three proline-based peptide models in aqueous solution is examined using a combination of nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The anions preferentially interact with the cis conformers of the peptide models, which is rationalized by the respective electrostatic potential surfaces. These preferred interactions have a strong impact on the thermodynamics of the cis/trans equilibria, leading to a higher population of the cis conformers. In distinct cases, these equilibria are nearly independent of temperature, showing that the salts are also able to stabilize the conformers over wide temperature ranges.

  9. Influence of Hofmeister ions on the structure of proline-based peptide models: A combined experimental and molecular modeling study

    DOE PAGES

    Brohl, Andreas; Albrecht, Benjamin; Zhang, Yong; ...

    2017-02-13

    Here, the influence of three sodium salts, covering a wide range of the Hofmeister series, on the conformation of three proline-based peptide models in aqueous solution is examined using a combination of nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The anions preferentially interact with the cis conformers of the peptide models, which is rationalized by the respective electrostatic potential surfaces. These preferred interactions have a strong impact on the thermodynamics of the cis/trans equilibria, leading to a higher population of the cis conformers. In distinct cases, these equilibria are nearly independent of temperature, showing that the salts are alsomore » able to stabilize the conformers over wide temperature ranges.« less

  10. Improved prediction of biochemical recurrence after radical prostatectomy by genetic polymorphisms.

    PubMed

    Morote, Juan; Del Amo, Jokin; Borque, Angel; Ars, Elisabet; Hernández, Carlos; Herranz, Felipe; Arruza, Antonio; Llarena, Roberto; Planas, Jacques; Viso, María J; Palou, Joan; Raventós, Carles X; Tejedor, Diego; Artieda, Marta; Simón, Laureano; Martínez, Antonio; Rioja, Luis A

    2010-08-01

    Single nucleotide polymorphisms are inherited genetic variations that can predispose or protect individuals against clinical events. We hypothesized that single nucleotide polymorphism profiling may improve the prediction of biochemical recurrence after radical prostatectomy. We performed a retrospective, multi-institutional study of 703 patients treated with radical prostatectomy for clinically localized prostate cancer who had at least 5 years of followup after surgery. All patients were genotyped for 83 prostate cancer related single nucleotide polymorphisms using a low density oligonucleotide microarray. Baseline clinicopathological variables and single nucleotide polymorphisms were analyzed to predict biochemical recurrence within 5 years using stepwise logistic regression. Discrimination was measured by ROC curve AUC, specificity, sensitivity, predictive values, net reclassification improvement and integrated discrimination index. The overall biochemical recurrence rate was 35%. The model with the best fit combined 8 covariates, including the 5 clinicopathological variables prostate specific antigen, Gleason score, pathological stage, lymph node involvement and margin status, and 3 single nucleotide polymorphisms at the KLK2, SULT1A1 and TLR4 genes. Model predictive power was defined by 80% positive predictive value, 74% negative predictive value and an AUC of 0.78. The model based on clinicopathological variables plus single nucleotide polymorphisms showed significant improvement over the model without single nucleotide polymorphisms, as indicated by 23.3% net reclassification improvement (p = 0.003), integrated discrimination index (p <0.001) and likelihood ratio test (p <0.001). Internal validation proved model robustness (bootstrap corrected AUC 0.78, range 0.74 to 0.82). The calibration plot showed close agreement between biochemical recurrence observed and predicted probabilities. Predicting biochemical recurrence after radical prostatectomy based on clinicopathological data can be significantly improved by including patient genetic information. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Selecting the spin crossover profile with controlled crystallization of mononuclear Fe(iii) polymorphs.

    PubMed

    Vicente, Ana I; Ferreira, Liliana P; Carvalho, Maria de Deus; Rodrigues, Vítor H N; Dîrtu, Marinela M; Garcia, Yann; Calhorda, Maria José; Martinho, Paulo N

    2018-05-08

    Two polymorphic species of the [Fe(5-Br-salEen)2]ClO4 compound were obtained, each of them being selectively recovered after evaporation of the solvent at a controlled rate. While polymorph 1a is formed during slow evaporation, fast evaporation favors polymorph 1b. The importance of the evaporation rate was recognized after detailed studies of the reaction temperature, solvent evaporation rate and crystallization temperature effects. The complex in the new polymorphic form 1a showed an abrupt spin crossover at 172 K with a small 1 K hysteresis window and over a narrow 10 K range. 57Fe Mössbauer spectroscopy and differential scanning calorimetry, complemented by X-ray studies for both the high-spin and low-spin forms, were used to further characterize the new polymorphic phase 1a. Both polymorphs are based on the same Fe(iii) complex cation hydrogen bonded to the perchlorate anion. These units are loosely bound in the crystals via weak interactions. In the new polymorph 1a, the hydrogen bonds are stronger, while the weak hydrogen and halogen bonds, as well as π-π stacking, create a cooperative network, not present in 1b, responsible for the spin transition profile.

  12. Association of ACE Gene I/D polymorphism with migraine in Kashmiri population.

    PubMed

    Wani, Irfan Yousuf; Sheikh, Saleem; Shah, Zafar Amin; Pandith, Arshid A; Wani, Mushtaq; Asimi, Ravouf; Wani, Maqbool; Sheikh, Shahnawaz; Mehraj, Iqra

    2016-01-01

    Migraine is a complex, recurrent headache disorder that is one of the most common complaints in neurology practice. The role of various genes in its pathogenesis is being studied. We did this study to see whether an association exists between ACE gene I/D polymorphism and migraine in our region. The study included 100 patients diagnosed with migraine and 121 healthy controls. The study subject were age and gender matched. The analysis was based on Polymerase Chain Reaction (PCR) and included following steps: DNA extraction from blood, PCR and Restriction Fragment Length Polymorphism (RFLP). Out of 100 cases, 69 were females and 31 were males. Fifty-seven were having migraine without aura and 43 had migraine with aura. 45 of the cases had II polymorphism, 40 had ID polymorphism and 15 had DD polymorphism in ACE gene. We were not able to find a statistically significant association between ACE gene I/D polymorphism with migraine. The reason for difference in results between our study and other studies could be because of different ethnicity in study populations. So a continuous research is needed in this regard in order to find the genes and different polymorphism that increase the susceptibility of Kashmiri population to migraine.

  13. Exploration of Molecular Factors Impairing Superoxide Dismutase Isoforms Activity in Human Senile Cataractous Lenses

    PubMed Central

    Rajkumar, Sankaranarayanan; Vasavada, Abhay R.; Praveen, Mamidipudi R.; Ananthan, Rajendran; Reddy, Geereddy B.; Tripathi, Harsha; Ganatra, Darshini A.; Arora, Anshul I.; Patel, Alpesh R.

    2013-01-01

    Purpose. To explore different molecular factors impairing the activities of superoxide dismutase (SOD) isoforms in senile cataractous lenses. Methods. Enzyme activity of SOD isoforms, levels of their corresponding cofactors copper (Cu), manganese (Mn), zinc (Zn), and expression of mRNA transcripts and proteins were determined in the lenses of human subjects with and without cataract. DNA from lens epithelium (LE) and peripheral blood was isolated. Polymerase chain reaction–single strand conformation polymorphism (PCR-SSCP) followed by sequencing was carried out to screen somatic mutations. The impact of intronic insertion/deletion (INDEL) variations on the splicing process and on the resultant transcript was evaluated. Genotyping of IVS4+42delG polymorphism of SOD1 gene was done by PCR–restriction fragment length polymorphism (RFLP). Results. A significant decrease in Cu/Zn- and Mn-SOD activity (P < 0.001) and in Cu/Zn-SOD transcript (P < 0.001) and its protein (P < 0.05) were found in cataractous lenses. No significant change in the level of copper (P = 0.36) and an increase in the level of manganese (P = 0.01) and zinc (P = 0.02) were observed in cataractous lenses. A significant positive correlation between the level of Cu/Zn-SOD activity and the levels of Cu (P = 0.003) and Zn (P = 0.005) was found in the cataractous lenses. DNA sequencing revealed three intronic INDEL variations in exon4 of SOD1 gene. Splice-junction analysis showed the potential of IVS4+42delG in creating a new cryptic acceptor site. If it is involved in alternate splicing, it could result in generation of SOD1 mRNA transcripts lacking exon4 region. Transcript analysis revealed the presence of complete SOD1 mRNA transcripts. Genotyping revealed the presence of IVS4+42delG polymorphism in all subjects. Conclusions. The decrease in the activity of SOD1 isoform in cataractous lenses was associated with the decreased level of mRNA transcripts and their protein expression and was not associated with either modulation in the level of enzyme cofactors or with INDEL variations. PMID:23970468

  14. Evaluation of Genetic Variations in Maize Seedlings Exposed to Electric Field Based on Protein and DNA Markers

    PubMed Central

    AL-Huqail, Asma A.; Abdelhaliem, Ekram

    2015-01-01

    The current study analyzed proteins and nuclear DNA of electric fields (ELF) exposed and nonexposed maize seedlings for different exposure periods using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), isozymes, random amplified polymorphic DNA (RAPD), and comet assay, respectively. SDS-PAGE analysis revealed total of 46 polypeptides bands with different molecular weights ranging from 186.20 to 36.00 KDa. It generated distinctive polymorphism value of 84.62%. Leucine-aminopeptidase, peroxidase, and catalase isozymes showed the highest values of polymorphism (100%) based on zymograms number, relative front (R f), and optical intensity while esterase isozyme generated polymorphism value of 83.33%. Amino acids were analyzed using high-performance liquid chromatography, which revealed the presence of 17 amino acids of variable contents ranging from 22.65% to 28.09%. RAPD revealed that 78 amplified DNA products had highly polymorphism value (95.08%) based on band numbers, with variable sizes ranging from 120 to 992 base pairs and band intensity. Comet assay recorded the highest extent of nuclear DNA damage as percentage of tailed DNA (2.38%) and tail moment unit (5.36) at ELF exposure of maize nuclei for 5 days. The current study concluded that the longer ELF exposing periods had genotoxic stress on macromolecules of maize cells and biomarkers used should be augmented for reliable estimates of genotoxicity after exposure of economic plants to ELF stressors. PMID:26180815

  15. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    NASA Astrophysics Data System (ADS)

    Wang, Tiegu; Huang, Qunce; Feng, Weisen

    2007-10-01

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.

  16. The role of the RTEL1 rs2297440 polymorphism in the risk of glioma development: a meta-analysis.

    PubMed

    Zhang, Cuiping; Lu, Yu; Zhang, Xiaolian; Yang, Dongmei; Shang, Shuxin; Liu, Denghe; Jiang, Kongmei; Huang, Weiqiang

    2016-07-01

    The regulator of the telomere elongation helicase1 (RTEL1) gene plays a crucial role in the DNA double-stand break-repair pathway by maintaining genomic stability. Recent epidemiological studies showed that the rs2297440 polymorphism in the RTEL1 gene was a potential risk locus for glioma development, but the results were inconclusive. To clarify the association between this polymorphism and the risk of glioma, we performed a comprehensive meta-analysis. The PubMed, EMBASE, Web of Science, and China National Knowledge Infrastructure databases were systematically searched to identify all relevant published studies up to 30 August 2015. Four eligible studies were finally included. The pooled results indicated that the RTEL1 rs2297440 polymorphism moderately increased the risk of glioma in all genetic models. A comparison of the dominant model CT + CC versus TT (OR 1.40; 95 % CI 1.24-1.60; p < 0.001) indicated that having the C allele conferred a 40 % increased risk of developing glioma. In a subgroup analysis based on geographic location (Europe, Asia, and America), there was an association between the rs2297440 polymorphism and the risk of glioma in all three areas. The results of the subgroup analysis based on source of control indicated an elevated risk of glioma in population-based control studies. This meta-analysis demonstrates that the RTEL1 rs2297440 polymorphism plays a moderate, but significant role in the risk of glioma. Further studies with larger sample sizes are necessary to confirm this finding.

  17. Association of P53 gene polymorphism with gastric cancer in Northern Iran as a high-risk region.

    PubMed

    Hedayatizadeh-Omran, Akbar; Alizadeh-Navaei, Reza; Janbabaei, Ghasem; Omrani-Nava, Versa; Hasheminasab, Yahya; Amjadi, Omolbanin; Tehrani, Mohsen

    2018-05-01

    Gastric cancer has the fourth highest morbidity rate of all cancers worldwide. Genetic factors including alterations in oncogenes and tumor suppressor genes serve an important role in gastric cancer development and progression. The P53 gene acts as a tumor suppressor gene by regulating the cell cycle, DNA transcription and repair, apoptosis, senescence and genome stability. In addition to somatic P53 mutations in cancer development, germline polymorphisms are also involved in different malignancies. The polymorphism of P53 at codon 72 (Arg72Pro) is established as a common variant that increases susceptibility to various cancers. The present case-control study was conducted to evaluate the possible association between this P53 polymorphism and gastric cancer in the Iranian population. A total of 59 patients with gastric cancer and 59 healthy controls were enrolled in the present study. Genomic DNA was extracted from peripheral blood mononuclear cells and genotype analysis was performed using a polymerase chain reaction-based restriction fragment length polymorphism assay. Genotype frequencies did not differ significantly between the patients and controls (P=0.4); the frequencies of the three genotypes Arg/Arg, Arg/Pro and Pro/Pro in gastric cancer patients were 28.8, 49.2 and 22.0%, and in controls were 37.3, 49.2 and 13.6%. Additionally, there were no differences in genotype frequencies based on tumor location, histological differentiation or tumor stage. Based on these findings, it may be concluded that the P53 codon 72 polymorphism does not contribute to gastric cancer susceptibility in Northern Iran.

  18. A Schiff base connectivity switch in sensory rhodopsin signaling

    PubMed Central

    Sineshchekov, Oleg A.; Sasaki, Jun; Phillips, Brian J.; Spudich, John L.

    2008-01-01

    Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI–HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI–HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pKa. These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition. PMID:18852467

  19. A Schiff base connectivity switch in sensory rhodopsin signaling.

    PubMed

    Sineshchekov, Oleg A; Sasaki, Jun; Phillips, Brian J; Spudich, John L

    2008-10-21

    Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI-HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI-HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pK(a). These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition.

  20. First principles study of pressure induced polymorphic phase transition in KNO3

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Vaitheeswaran, G.

    2015-06-01

    We report the structural, elastic, electronic, and vibrational properties of polymorphic phases II and III of KNO3 based on density functional theory (DFT). Using semi-empirical dispersion correction (DFT-D2) method, we predicted the correct thermodynamic ground state of KNO3 and the obtained ground state properties of the polymorphs are in good agreement with the experiments. We further used this method to calculate the elastic constants, IR and Raman spectra, vibrational frequencies and their assignment of these polymorphs. The calculated Tran Blaha-modified Becke Johnson (TB-mBJ) electronic structure shows that both the polymorphic phases are direct band gap insulators with mixed ionic and covalent bonding. Also the TB-mBJ band gaps are improved over standard DFT functionals which are comparable with the available experiments.

Top